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Abstract 

iii 

The work carried out throughout the thesis focused on the behaviour of demountable composite beams 

in order to facilitate the integration of steel-concrete composite construction into the concept of circular 

economy. There are several hindrances in the way of reuse when considering traditional composite 

structures. One of them is the method that the current construction practice applies for connecting the 

concrete deck to the steel beam. The traditionally applied welded studs are advantageous in the terms of 

structural performance; however, they do not provide the ability of dismounting. In order to overcome 

this issue, different demountable shear connection types were investigated that use pretensioned bolted 

connections. The investigations included laboratory experiments in the means of  push-out tests and full-

scale beam-tests. The experiments were complemented by numerical simulations and parametric studies. 

The experiments showed that the developed shear connections have highly a nonlinear load-slip 

behaviour. When these types of connections are applied in a composite beam, the nonlinearity of the 

shear connection causes a nonlinear load-deflection response already in the elastic phase. Analytical 

equations were derived for the description of the elastic properties of composite beams with nonlinear 

shear connection. For the calculation of the elastic deflections an iterative procedure was developed. 

This method is capable of capturing the nonlinear load-deflection response. With the developed iterative 

method, the elastic deflections can be determined with a similar accuracy by using spreadsheet 

calculations as by using nonlinear finite element simulations. 

Due to the highly nonlinear behaviour of the tested shear connections the basic assumptions of 

Eurocode 4 for the determination of the plastic moment resistance of composite beams with partial shear 

connection are not valid anymore. The code does not enable the use of equidistant shear connector 

spacing and the design needs to be conducted using fully elastic analysis. This would make the use of 

demountable shear connections complicated and uneconomic. In the face of these issues, the probability 

of the practical application of demountable and reusable composite structures would be very low. On 

the other hand, experiments and numerical simulations show that composite beams can develop 

plasticity even if a non-ductile shear connection is applied. In order to overcome these issues, a new 

calculation method was developed for the prediction of the plastic moment resistance of demountable 

composite beams. A simplified method was proposed based on the developed procedure by defining an 

effective shear resistance for the demountable shear connections. The effective shear resistance allows 

the current calculation method to be extended for demountable shear connections. In this way, the 

benefits of composite construction can be maintained while providing the possibility of reuse. 

 

Keywords: Demountable composite beams, Circular Economy, Push-out tests, Iterative procedure, 

Effective second moment of area, Plastic moment resistance, Partial shear connection. 
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Sustainable development is about our relationship with the natural environment, with the global 

economic system and with each other [1]. The concept of the circular economy is an essential part of 

sustainable development. This concept is based on the efficient allocation of resources. Three terms are 

frequently used when talking about this concept: reduce, reuse and recycle. Reducing is cutting back on 

the amount of waste we produce; reusing is finding a new way to use our products so that they do not 

become waste; and recycling is using the materials of our products to produce new materials. 

The traditional life-cycle of a building usually does not follow a circular model but a linear one from 

the extraction of the raw materials through material production, component manufacturing, building 

construction and building use. Finally, the building is usually demolished and most of the materials 

become debris and go into landfill [2]. Sustainable development requires the end-of-life impact of a 

building to be minimized [3]. In order to change from a linear model to a circular one some sort of 

recycling process have to be applied when the lifetime of a building is over. To be able to do this, the 

demolition process has to be replaced with a deconstruction process. This means that instead of 

destroying the undesired buildings, we dismount them in such a way that the building components are 

preserved in a valuable condition. 

 

Linear model  Circular model 

  

Figure 1.1 Linear vs. circular model of the life-cycle of a building  
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This way we can reduce waste production and the overall environmental impact. Figure 1.1 shows how 

the deconstruction process enables the change from a linear to a circular model. 

Deconstruction of buildings has a long tradition throughout human history. Reusing building 

components was an obvious choice during times when the labour costs were low and the transportation 

was slow and expensive. A series of legal documents from the third and the fourth century indicate that 

even the Romans had a proper culture in reusing architectural components [4]. We can find several 

examples from the ensuing centuries when a city or a state organised auctions to sell the deconstructed 

building components such as stones, bricks, marble pieces, cast iron elements, woodworks, and 

complete windows as well. This tradition came to an end somewhere between the First and the Second 

World War due to the industrialisation of the construction sector. There were several factors that 

contributed to this change: parallel to the increase of labour costs, the transportation of building materials 

became easier, faster and cheaper. In cities, which were undergoing a rapid development like for 

example New York, the time pressure on the deconstruction companies increased significantly. It was 

no longer worth preserving the building materials from the economic aspect. The developers wanted to 

have the obsolete buildings disappear as quickly as possible. With the appearance of new inventions like 

the wrecking ball, the jackhammer and the multifunctional excavators, the deconstruction process 

quickly transformed to be a demolition process. Destroying buildings with no regard to the potential 

value in its components became a standard until very recently when sustainability is becoming 

increasingly important in the face of climate change and the depletion of finite natural resources. This 

is especially true in the construction industry, which is responsible for the 11% of global carbon dioxide 

emissions [5]. Nowadays, the potential environmental, social and economic benefits of the circular 

economy becoming more and more evident. Nonetheless, its application is still not a common practice 

[6]. 

There are five possible end-of-life scenarios for a building when the principles of the circular economy 

are applied,  [2]: 

(i) reuse in place (refurbishment), 

(ii) relocation, 

(iii) component reuse in a new building, 

(iv) remanufacturing of the building components, and 

(v) material recycling into new building materials. 

These scenarios are in a hierarchic relationship with each other (see Figure 1.2): building relocation and 

component reuse are more desirable options with regard to environmental aspects than recycling and 

remanufacturing as they require less energy input and they produce less waste and CO2. 

Structural steel is highly compatible with the concept of circular economy. As a material, it is 100% 

recyclable for an infinite number of times. Steel is the most recycled material in the world today [7] 

because it can be reused in many ways due to its durability. Also, structural steel works are highly 
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prefabricated and the components are usually connected together by dismountable mechanical 

connections. These attributes make structural steel an ideal candidate for reuse. 

 

 

Figure 1.2 Hierarchic relation between the different end-of-life scenarios  

Steel-concrete composite structures are very efficient in terms of structural performance; however, they 

are more difficult to dismount. The structural efficiency is reached by connecting the two materials so 

that they act as a single member. Each material is used where it is most efficient: the concrete is placed 

where predominantly compression forces arise and the steel is placed where the member is usually in 

tension. For the structural performance it is crucial to have an adequate connection between the 

members. The connection needs to be capable of transferring the shear forces at the steel-concrete 

interface. Traditionally, this is provided by headed stud shear connectors. During the construction of a 

composite beam, the studs are first welded to the flange of the beam and then concrete is cast. As a 

result, the members are firmly connected together. This is good for in terms of structural efficiency, but 

it is quite unfavourable from the demountability point of view. It is not possible to deconstruct this kind 

of structures, but they need to be demolished. This process is a labour and cost intensive work because 

the separation of the materials requires a vast amount of cutting. As a result, reusing the structural 

members is not an option, and already the recycling process is relatively difficult. In order to make steel-

concrete composite structures demountable, the shear connection needs to be demountable first. 

The behaviour of demountable shear connections is usually different from the behaviour of welded 

studs. Although there has been a certain amount of research conducted on this topic; this amount is still 

relatively low when compared to welded studs. As a result, the determination of the longitudinal shear 

resistance of the shear connection and the calculation of the occurring deflections can be challenging.  

This thesis aims to fill this knowledge gap by identifying the advantages and drawbacks of the different 

types of demountable shear connections; it investigates different types of connections that can overcome 

some of the identified hindrances; and it provides calculation methods for the description of the 

behaviour of composite beams with shear connections that have a multilinear load-slip curve. This 

includes an iterative procedure for the calculation of the elastic deflection and an algorithm for the 

calculation of the plastic bending resistance of composite beams with shear connections that have a 

multilinear load-slip behaviour..  
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The aim of the presented work is to provide calculation methods for composite beams in buildings with 

shear connections that have a nonlinear load-slip behaviour. The presented approaches are limited to 

simply supported downstand steel-concrete composite beams with cross section Class 1 and Class 2 

according to Eurocode 3 [8]. Only symmetrical load cases are considered in the thesis: sinusoidal 

loading, uniformly distributed loading, and one- or two-point concentrated loads. The nonsymmetric 

load cases can be considered in an analogous manner. The questions of stability, the effects of fatigue, 

prestressing by tendons and fire actions are not considered. 

The following methodology was followed during the thesis: 

(i) The available international literature on demountable shear connections (Chapter 2.1), the 

typical idealised load slip behaviours (Chapter 2.6) and the existing design code for 

composite beams (Chapter 2.3 and 2.4) were reviewed. 

(ii) The different ductility definitions (Chapter 2.5) and the calculation methods for the 

approximation of the occurring end slip at the ultimate limit state (Chapter 2.7) were 

investigated. 

(iii) The requirements for demountable shear connections were reviewed and new types of 

demountable shear connections were investigated (Chapter 3). 

(iv) An experimental campaign was performed including push-out tests (Chapter 4) and full-

scale beam tests (Chapter 5) using demountable shear connections. 

(v) The experiments were reproduced numerically with the help of nonlinear finite element 

simulations (Chapter 6). 

(vi) Parametric studies were conducted on the validated numerical models (Chapter 7). 

(vii) First, the elastic behaviour of composite beams with conventional shear connections was 

investigated. Then, new equations were derived and an iterative procedure was developed 

for the description of the elastic behaviour of composite beams with shear connections that 

have a multilinear load-slip curve (Chapter 8). 

(viii) The behaviour of composite beams in ultimate limit state was investigated. A new 

algorithm was developed for the determination of the plastic moment resistance of 

composite beams with partial shear connection using shear connections with multilinear 

load-slip curves and a simplification was proposed. The proposed methods are aligned with 

the current design code (Chapter 9). 

The followed methodology is presented in Figure 1.3. 

  

1.2 Scope and limitations 

1.3 Methodology 
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Figure 1.3 Methodology followed in the thesis  
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Dallam [9] and Marshall [10] investigated high-strength bolted shear connectors already five decades 

ago. However, the research on demountable shear connections is still very limited when compared to 

welded studs. The questions of demountability and reusability are becoming increasingly important as 

more emphasis is placed on sustainability. Different types of demountable bolted shear connections have 

been developed in the recent years. This chapter provides a brief overview on demountable shear 

connections. 

The most commonly investigated demountable shear connectors are encased bolts. They are constructed 

by placing structural bolts into predrilled holes in the flange before casting concrete. The first report on 

this topic appeared in the international literature in 1968 by Dallam [9]. He conducted push-out tests on 

prestressed high strength friction grip (HSFG) bolt shear connectors (Figure 2.1) and found that the bolts 

exhibit zero slip in the working range of the load and their shear capacity is about twice that of studs. 

 

 

Figure 2.1 High-strength friction grip bolts tested by Dallam [9] 

Dallam was followed by Dedic and Klaiber [11] who conducted two series of push-out tests on high 

strength bolted shear connectors for the strengthening of existing bridges. In the first series, they used 

bolts that were placed in openings in the concrete. The openings were filled with grout afterwards 

(Figure 2.2 left). In the second series, they investigated through bolts with pockets in the concrete. The 

pocket was filled with grout after tightening the bolt (Figure 2.2 right). 

  

Chapter 2. State of the art 

2.1 Demountable shear connectors 

2.1.1 General 

2.1.2 Encased bolts and studs 
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Figure 2.2 Bolted shear connectors tested by Dedic and Klaiber [11] 

In the frame of a European project, Sedlacek et al. [12] investigated different shear connection types for 

small and medium span composite bridges. They conducted eighteen push-out tests. Ten of them 

investigated the static behaviour and eight of them examined the fatigue performance of the shear 

connections. The main objective of their research was the improvement of the shear connection using 

partially or fully prefabricated deck elements. The partially prefabricated deck elements used in-situ 

concrete around welded studs; and therefore, they were not demountable.  The fully prefabricated slabs 

were connected to the steel beam by structural bolts of grade 10.9. The schematic view of the tested 

demountable solutions is presented in Figure 2.3 (Type Ia) and Figure 2.4 (Type Ib). 

 

 

Figure 2.3 Headed studs in combination with bolts of grade 10.9 tested by Sedlacek et al. (Ia) [12] 

They propose the following formulations for the total shear resistance of the connection type Ia for the 

critical section located above the steel plate: 

𝐹𝑢 = 𝑛𝑠 ∙ 𝐹𝑠𝑡𝑢𝑑 + 𝑛𝑏 ∙ 𝐹𝑐,𝑏𝑜𝑙𝑡 (2.1) 

Where ns is the number of studs, Fstud is the stud resistance nb is the number of bolts and Fc,bolt is the 

resistance at the head of the bolt. The stud shear resistance Fstud can be taken as the smaller resistance 

value obtained using the following equations: 
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𝑃𝑠𝑡𝑢𝑑,1 = 0.35 ∙ 𝑑
2√𝐸𝑐𝑚 ∙ 𝑓𝑐𝑘 (2.2) 

𝑃𝑠𝑡𝑢𝑑,2 = 𝜋 ∙ 𝑑
2𝑓𝑢/4 (2.3) 

Where d is the stud diameter, Ecm is the Youngs’s modulus of the concrete, fck is the characteristic 

compressive strength of the concrete and fu is the specified ultimate tensile strength of the material of 

the stud. 

For the resistance at the bolt head Fc,bolt they propose: 

𝐹𝑐,𝑏𝑜𝑙𝑡 = 𝜎𝑐,𝑅 ∙ 𝑠𝑏 ∙ ℎℎ𝑏 (2.4) 

With: 

𝜎𝑐,𝑅 = 𝛽 ∙ 𝑓𝑐𝑘 (2.5) 

Where sb and hhb are the width and height of the head of the bolt, and β is a factor taking into account 

the effect of local stress concentration in front of the head of the bolt. It can be taken as twice the cylinder 

strength of concrete. 

For the second critical section, which is located between the steel plate and the steel beam, they 

recommend to use the shear resistance of the bolt: 

𝐹𝑣,𝑅 = 0.6 ∙ 𝑓𝑢𝑏 ∙ 𝐴 (2.6) 

Where fub is the tensile strength of the bolt material and A is the cross-sectional area of the bolt. 

For connection type Ib, there are two critical failure modes. The first failure mode is crushing of concrete 

in front of the nuts and the bolt, and the second failure mode is bolt shear failure. For the first failure 

mode they give the resistance Fu as the sum of the resistance determined by the shank of the bolt Fc,s 

and by the nut Fc,nut. 

 

 

Figure 2.4 Shear connection with bolts of grade 10.9 tested by Sedlacek et al. (Ib) [12] 
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𝐹𝑢 = 𝑛𝑏(𝐹𝑐,𝑠 + 𝐹𝑐,𝑛𝑢𝑡) (2.7) 

𝐹𝑐,𝑠 = 0.35 𝑑𝑠
2√𝐸𝑐𝑚 ∙ 𝑓𝑐𝑘 (2.8) 

𝐹𝑐,𝑛𝑢𝑡 = 𝜎𝑐,𝑅 ∙ 𝑠𝑛 ∙ 2 ∙ ℎ𝑛 (2.9) 

Where ds is the diameter of the bolt shank and sn and hn are the width and height of the nut. 

For the bolt shear failure, Equation (2.6) can be used.  

Schaap [13] conducted several push-out tests on post-installed shear connectors. He discussed the 

behaviour of embedded bolts, friction grip bolts and anchor bolts (see Figure 2.5) in his thesis. His 

research was continued by Kwon et al. [14], [15] who summarised the strengthening possibilities of 

existing non-composite steel bridges using post-installed shear connectors. They investigated the shear 

connection behaviour under static and fatigue loading. They proposed to use the following equation for 

the shear resistance of bolted shear connectors: 

𝐹𝑣,𝑅 = 0.5 ∙ 𝑓𝑢𝑏 ∙ 𝐴 (2.10) 

 

 

Figure 2.5 Post-installed demountable shear connectors tested by Schaap [13] and Kwon et al. [14] 

More recently, Pavlovic [16] investigated encased bolts. He conducted two series of push-out tests with 

different bolt diameters (Figure 2.6). He used prefabricated concrete elements with openings at the shear 

connectors. The openings were filled with concrete after the positioning of the deck elements. He 

developed a numerical model based on the experimental results and derived the following formulae for 

the determination of the shear resistance of the investigated shear connections: 

𝑃𝑏,𝑢 = 𝛼𝑏𝑓𝑢𝑏𝐴𝑠, with 𝛼𝑏 = 0.6(34/𝑑)
0.23   (2.11) 

𝑃𝑐,𝑢 = 55 ∙ 𝛼𝑐 ∙ 𝑑
1.9(𝑓𝑐𝑚 ∙ ℎ𝑠𝑐/𝑑)

0.4 + 22000, with 𝛼𝑐 = 22.5/(𝑑 + 3) ≤ 1.0 (2.12) 
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Where Pbu is the resistance of the bolt, fub is the tensile strength of the bolt material, As is the shear area 

of the bolt, d is the bolt diameter, Pcu is the resistance of the concrete, fcm is the mean value of the concrete 

cylinder strength and hsc is the height of the shear connector. 

 

 

Figure 2.6 Demountable shear connectors tested by Pavlovic [16] 

Moynihan and Alwood [17] conducted tests on three composite beams of different lengths using M20 

bolts as demountable shear connectors (Figure 2.7). Two beams were loaded until service loads, 

unloaded, dismounted and reassembled in order to test the demountability and reusability of the system. 

Afterwards, all three beams were loaded until failure. They found that the longer specimens (5 m and 

10 m) behaved similarly to comparable composite beams with welded shear connectors. The tested 

beams had higher resistance than calculated using Eurocode 4 [18]. 

 

 

Figure 2.7 Demountable shear connectors tested by Moynihan and Alwood [17] 

Lam and Dai [19], [20] developed a demountable shear connector that can be manufactured from headed 

studs by cutting threads into the end of the studs (Figure 2.8). As a result, no welding is necessary and 

the shear connectors can be installed through predrilled holes in the flange. They conducted push-out 

tests, and found that the performance and the behaviour is similar to the welded studs. Also, the tests 

showed a high level of ductility but a lower initial stiffness. Rehman et al. [21] continued their research 
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by investigating different types of demountable shear connectors in slabs with profiled decking. Twelve 

push-out tests were prepared including M20 bolts and threaded studs with different diameters. The high 

level of ductility and the relatively low initial stiffness was confirmed. Additionally, they found that 

concrete strength affects the behaviour of the connectors. An increase in the concrete strength results in 

higher shear connector resistance but a lower level of ductility. 

 

 

Figure 2.8 Threaded stud shear connectors tested by Lam et al [19] 

Wang et al. [22] conducted push-out tests on demountable shear connectors similar to the ones tested 

by Lam et al. [19] - [21]. They used Ultra High Performance Concrete (UHPC) and threaded headed 

studs with different diameters and collar lengths. They found that the tested shear connectors did not 

have 6 mm deformation capacity; and therefore, they proposed to use an elastic design method when 

demountable shear connectors are used in steel-UHPC composite beams. 

The earliest identified research on tests with through bolts was conducted by Marshall et al. [10] in 1971. 

He conducted eleven push-out tests and five beam tests on friction grip connectors. He observed that the 

friction coefficient was 0.45 between the precast slab and the steel beam, and it was possible to achieve 

full interaction under service loads. 

 

 

Figure 2.9 Bolted shear connection tested by Marshall [10] 

2.1.3 Through bolts 
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Roik and Bürkner [23] investigated the friction coefficient between steel and prefabricated concrete 

decks in 1978. They conducted four types of tests: Group 1 used two 15 mm thick steel plates and two 

concrete elements. Group 2 had an identical test setup to Group 1 but with 10 mm thick steel plates. 

The test setup of Group 3  was similar to the push-out test setup given by Eurocode 4 [18]. These tests 

consisted of an IPE 300 steel profile and four prefabricated deck elements (Figure 2.10). Each of the 

deck elements were connected to the steel profile by three pretensioned M16 bolts. These three test 

groups were subjected to a single load cycle in displacement controlled mode with a speed of 1 mm / min 

without unloading . Group 4 used identical specimens to Group 1 but it was subjected to a dynamic 

loading that included 3 million cycles with 10 Hz frequency. They tested different levels of pretension 

and found that the friction coefficient varied between 0.501 and 0.555. 

 

 

Figure 2.10 Friction connection tested by Roik and Bürkner [23] 

Bürkner [24] in his thesis investigated composite beams with headed studs experimentally and 

numerically. While reviewing the different shear connection systems he gave the following connection 

type as a possible shear connection for carparks: 

 

 

Figure 2.11 Demountable shear connection for carparks proposed by [24] 
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He also developed a finite element solution model as well as an approximation formula for the 

deflections of composite beams with partial shear connection. This is described in a more detailed way 

in Chapter 2.2. 

A similar system was developed by the company Krupp-Druckenmüller GmbH in Germany. Their 

system was called as the Krupp-Montex system [25] and was applied majorly in carparks in the 1970s. 

The schematic drawing of their system is presented in the following figure: 

 

 

 Figure 2.12 The Krupp-Montex system [25] 

The research of Dedic and Klaiber [11], Schaap [13] and Kwon [14], [15] included tests on through 

bolts; however, in these tests the pockets above the bolt head was filled with grout or concrete. 

Therefore, these types of bolts are not accessible from the top of the deck after installation (see Figure 

2.2 and Figure 2.5). Chen et al. [26] conducted push-out tests using through bolts placed in PVC tubes 

(Figure 2.13). The test parameters included the bolt diameter, the level of the bolt pretension and the 

steel-concrete contact surface properties.  They observed that the ultimate shear capacity was similar to 

the one of welded studs, but the first slip occurred in a significantly lower load level. A mechanical 

model was proposed to predict the ultimate capacity. Afterwards, a finite element model was built to 

investigate the behaviour of demountable composite bridge girders using the proposed demountable 

connectors. 

 

 

Figure 2.13 Through bolts tested by Chen et al. [26] 
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They gave the following equation for the bolt shear resistance: 

𝑉𝑅 = (𝑘𝑠 ∙ sin𝛼 + cos𝛼) ∙ 𝑇𝑡𝑜𝑡 + 0.6 ∙ 𝐴𝑏 ∙ 𝑓𝑢𝑏 ∙ √1 − (
𝑇𝑡𝑜𝑡

𝐴𝑏 ∙ 𝑓𝑢𝑏
)
2

 (2.13) 

Where ks is the friction coefficient, the first part of the equation is the contribution of the friction, α is 

angle of the bolt measured from its original axis after deformation, Ttot is the sum of the bolt pretension 

and the tension due to connection slip, Ab is the area of the bolt and fub is the ultimate tensile strength of 

the bolt. In this formula the first part represents the contribution of the friction to the load bearing 

capacity. This contradicts the findings of Pavlović [16] who pointed out that the pretension force and 

the friction resistance do not influence the load-bearing capacity. 

Through bolts used as demountable shear connectors were tested extensively at the University of New 

South Wales by Lee and Bradford [27], Ataei et al. [28], [29] and Liu et al. [30], [31]. The shear 

connection was similar to the ones tested by Marshall et al. [10] (Figure 2.9). They conducted several 

push-out tests [27], [28] on high strength friction grip bolted shear connectors and found that the load-

slip behaviour can be divided into three distinct parts. 

1) First, there is full interaction between the steel and the concrete until the friction resistance is 

overcome.  

2) Second, bolt slip occurs until the bolt become in contact with the inner surface of the bolt hole. 

3) Third, bearing and shear deformation takes place until the ultimate shear capacity is reached.  

Based on these observations, they proposed a multilinear idealised elastic load-slip response (see Figure 

2.14). They also conducted full scale beam tests using prefabricated concrete deck elements on 7 m long 

beam test specimens [31]. They developed a three-dimensional numerical model using the commercial 

finite element software Abaqus [32]. It was found that their numerical model could capture the 

fundamental behaviour of the demountable composite beam. The increase in the degree of partial shear 

connection resulted in higher resistance values. They recommended using a small number of shear 

connectors with large diameters instead of a large number of connectors with smaller diameters for the 

same degree of shear connection.  

 

 

Figure 2.14 Idealised response in the elastic range by Lee and Bradford [27] 
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A prefabricated and demountable composite bridge was already realised in 1975 using a shear 

connection that purely relies on friction [33]. Figure 2.15 shows the applied shear connection, which 

was comprised of a through bolt, a sleeper clip, a double lock washer and a neoprene plate. 

 

 

Figure 2.15 Friction connection used in the AB bridge [33] 

Single shear connector tests on expansive and adhesive anchor bolts were performed by Schaap [13] 

and Kwon et al. [14], [15] (see Figure 2.5). Ban et al. [34] conducted push-out tests on blind bolt shear 

connectors and investigated the time dependent behaviour of composite beams using blind bolts as shear 

connectors under sustained loading. They installed the blind bolts prior to concrete casting. This is 

different from the procedure applied in the retrofitting of existing structures where the bolts are installed 

after the concrete has hardened. They were followed by Pathirana et al. [35] who conducted push-out 

tests and full-scale composite beam tests using blind bolts as shear connectors. The behaviour of the 

tested demountable composite beams was similar to the behaviour of beams with welded studs in terms 

of stiffness, strength and ductility. Uy et al. [36] investigated blind bolts using numerical simulations. 

 

 

Figure 2.16 Blind bolts applied in beam tests by Ban et al. [34] 

Suwaed and Karavasilis [37] developed a demountable shear connection with through-bolts, where the 

bolt clearance was grouted after installation (see Figure 2.17). 

2.1.4 Other types of demountable connectors 
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Figure 2.17 Demountable shear connection tested by Suwaed and Karavasilis [37] 

Feidaki and Vasdravellis [38] conducted push-out tests on a shear connection that use a steel-yielding 

mechanism provided by a cold formed hollow steel section with slotted holes (Figure 2.18). 

 

 

Figure 2.18 Steel yielding mechanism shear connection developed by Feidaki and Vasdravellis [38] 

A number of researchers developed and investigated demountable shear connections in the past five 

decades. Although all of the previously reviewed solutions facilitate the demounting process, they 

provide different level of reusability. The primary focus was often put on the reusability of the steel 

beam alone, but not on the reusability of the concrete slab.  

For example, when dismounted, the embedded bolts and studs (See ex.: Figure 2.7 and Figure 2.8) 

protrude from the surface of the slab. This makes them vulnerable during manoeuvring, transportation 

and storage. If the threads are damaged, the reuse potential of the slab is lost (or reduced) because these 

bolts being embedded in the concrete are not replaceable. According to EN 1090-2 [39], “if a bolt 

assembly has been tightened to the minimum preload and is later un-tightened, it shall be removed and 

the whole assembly shall be discarded.” This implies that if embedded bolts are preloaded, the slab is 

not reusable anymore.  

Through bolts (Figure 2.13) are easily replaceable, and therefore more preferable in terms of reusability. 

However, their fabrication is a more complicated task. If the slabs are prefabricated, they require special 

2.1.5 Summary 
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attention in terms of tolerances. It should be ensured that the predrilled holes in the flange and the holes 

in the slab align. Additionally, when friction grip bolts are used, creep and shrinkage can cause a loss in 

the pretension force in the bolt. BS 5400-5 [40] mentions that account should be taken of this effect, but 

it does not elaborate how. 

Table 2.1 summarises the advantages and the disadvantages of the most commonly applied generic 

demountable shear connection types. 

In terms of load-slip behaviour, preloaded through bolts (friction grip bolts) behave differently than 

traditional welded studs. Their behaviour can be divided into three distinct parts: a rigid part until the 

friction resistance is overcome, a more or less horizontal part representing the bolt slip inside the bolt 

hole, and a linear or nonlinear part caused by the shear and bearing deformation. 

On the other hand, embedded bolts and studs reach their ultimate load at around 1-2 mm relative slip 

and they can maintain more or less this load level for at least 6 mm slip. This means that among the 

investigated demountable shear connections this is the only type that behaves similarly to welded studs. 
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Table 2.1 Demountable shear connections overview 

Shear 

connection Image Advantages Disadvantages 

Encased 

bolts 

 

- Similar to the traditional 

solution. 

- High strength. 

- Possible use of pretensioning. 

- Lower stiffness than welded studs. 

- The end of the bolt protrudes from 

the slab when removed. 

- The bolt is not replaceable. 

- Reuse of the slab is questionable. 

- Prefabrication is complicated. 

Threaded 

studs 

 

- Similar to the traditional 

solution. 

- Relatively low cost. 

 

- Lower stiffness than welded studs. 

- When removed the end of the bolt 

protrudes. 

- The stud is not replaceable. 

- Reuse of the slab is questionable. 

- Prefabrication is complicated. 

Through 

bolts 

 

- The bolt is replaceable. 

- Relatively high strength. 

- No protruding parts from the 

slab when removed. 

- Provides access from the top. 

- Lower stiffness than welded studs. 

- Loss of pretension due to creep and 

shrinkage. 

- Special attention is required for 

tolerances.  

Anchor 

bolts and 

blind bolts 

 

- No problems with tolerances. 

- Works with prefabrication and 

with in-situ concrete as well. 

- Drilling in the concrete is necessary 

when prefabricated. 

- Lower stiffness than welded studs. 

- Relatively low strength. 
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The determination of the longitudinal shear force is important with regard to the elastic and plastic 

calculations of composite beams. The elastic longitudinal shear force is linearly proportional to the 

vertical shear force if rigid shear connection is used [41]: 

𝑣𝐿,0(𝑥) =
𝑉𝑧(𝑥) ∙ 𝑆𝑖0
𝐼𝑦,𝑒𝑓𝑓

 (2.14) 

The concrete compression force can be calculated as: 

𝐹0(𝑥) =
𝑀𝑦(𝑥) ∙ 𝑆𝑖0

𝐼𝑦,𝑒𝑓𝑓
 (2.15) 

where Vz(x) is the vertical shear force at a distance x from the support, My(x) is the bending moment, Si0 

is the static moment of the concrete section to the centroidal axis of the composite section and Iy,eff (see 

Chapter 8) is effective the second moment of area of the composite section. 

In the case of a flexible shear connection, the longitudinal shear force depends also on the flexibility of 

the connection as well as the loading situation. Hoischen [41] gave the closed solutions of the differential 

equation of composite beams for the longitudinal shear and the concrete compression forces for basic 

load cases. 

For a uniformly distributed load: 

𝐹(𝑥) = 𝐹0 [1 − 2
cosh𝜔

𝐿
2 − cosh𝜔 (

𝐿
2 − 𝑥)

𝑥(𝐿 − 𝑥)𝜔2 ∙ cosh𝜔
𝐿
2

] (2.16) 

𝑣𝐿(𝑥) = 𝑣𝐿,0(𝑥) [1 −
sinh𝜔 (

𝐿
2 − 𝑥)

(
𝐿
2 − 𝑥) ∙ 𝜔 ∙ cosh𝜔 𝑥

] (2.17) 

For a point load acting at mid-span: 

𝐹(𝑥) = 𝐹0(𝑥) [1 −
sinh𝜔 𝑥

𝜔 𝑥 cosh𝜔
𝐿
2

] (2.18) 

𝑣𝐿(𝑥) = 𝑣𝐿,0(𝑥) [1 −
cosh𝜔 𝑥

cosh𝜔
𝐿
2

] (2.19) 

 

 

2.2 Investigations of composite beams with flexible shear connection 
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For a point load acting at a distance z from the support: 

𝐹(𝑥) = 𝐹0(𝑥) [1 −
𝐿 ∙ sinh𝜔  𝑧

𝑧 𝜔 𝑥 sinh𝜔 𝐿
sinh𝜔 𝑥] (2.20) 

𝑣𝐿(𝑥) = 𝑣𝐿,0(𝑥) [1 −
𝐿

𝑧

sinh𝜔 𝑥

sinh𝜔 𝐿
cosh𝜔 𝑥] (2.21) 

Where ω is defined as: 

𝜔 = √
𝑘𝑠𝑐 ∙ 𝑎 ∙ 𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓

𝑎𝑏 ∙ 𝐸𝑐 ∙ 𝐴𝑐(𝐼𝑦,𝑐 + 𝐼𝑦,𝑎) 
 (2.22) 

where ksc is the stiffness of the shear connection, a is the centroidal distance of the concrete and the 

steel, n is the modular ratio, Iy,eff is the second moment of area of the composite section, ab is the 

centroidal distance of the concrete and the composite section, Ec, Ac and Iy,c are the Young’s modulus, 

the cross-sectional area and the second moment of area of the concrete deck, respectively; and finally 

Iy,a is the second moment of area of the steel. 

Zhou et al. [42] also gave the closed solutions of the differential equation while complementing the 

derivations of Hoischen [41] by giving the solutions also for the deflection calculations. Because these 

equations are rather complex, they are not suitable for practical applications. To address this issue, they 

developed an approximation method, which is based on a spring model with an equivalent spring 

stiffness KF. The effective normal stiffness and bending stiffness can be calculated as follows: 

(𝐸𝐴)𝑒𝑓𝑓 =
𝐸𝑐𝐴𝑐 ∙ 𝐾𝐹 ∙ 𝐸𝑎 ∙ 𝐴𝑎
𝐸𝑐𝐴𝑐 + 𝐾𝐹𝐿 + 𝐸𝑎𝐴𝑎

 (2.23) 

𝛽𝑒𝑓𝑓 =
(𝐸𝐴)𝑒𝑓𝑓𝑎

2

𝐸𝐼
 (2.24) 

(𝐸𝐼)𝑒𝑓𝑓 = 𝐸𝐼(1 + 𝛽𝑒𝑓𝑓) (2.25) 

Where EI is the sum of EcIy,c and EaIy,a. 

The comparison of the results obtained by the exact and the approximate solutions showed a good 

agreement in the terms of bending stiffness, internal forces and deflections. 

Hanswille and Schäfer [43] derived the second moment of area Iy,eff of composite beams with flexible 

shear connection for a sinusoidal load. This corresponds to a sine shaped moment diagram but can also 

be used as an approximation for beams loaded uniformly, which have a second order moment diagram.  
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They define the longitudinal shear force as: 

𝑣𝐿(𝑥) =
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙ 𝑠(𝑥) (2.26) 

Where ksc is the stiffness of one shear connector, ssc,eq is the equivalent shear connector spacing and s(x) 

is the slip distribution function. A sinusoidal moment diagram corresponds to a cosine shaped slip 

distribution function: 

𝑠(𝑥) = 𝑠̅ ∙ cos (
𝜋𝑥

𝐿
)  (2.27) 

where 𝑠̅ is the end slip, L is the span of the beam, and 𝑥 is the distance along the length of the beam from 

a support. 

As a result, the corresponding longitudinal shear force distribution also has a cosine shape: 

𝑣𝐿(𝑥) =
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙ 𝑠̅ ∙ cos (
𝜋𝑥

𝐿
)  (2.28) 

Lawson et al. [44] also started their derivations from the same assumptions as Hanswille and Schäfer 

[43] and obtained mathematically equivalent expressions for both the longitudinal shear force as well as 

the second moment of area: 

𝐼𝑦,𝑒𝑓𝑓 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝐴𝑐/𝑛

1 +
𝐴𝑐
𝑛𝐴𝑎

+ (
𝐸𝑎

𝑘𝑠𝑐/𝑠𝑠𝑐,𝑒𝑞
) (
𝜋
𝐿
)
2
(
𝐴𝑐
𝑛
)
∙ 𝑎2 

(2.29) 

The detailed presentation of these derivations is presented in Chapter 8.4 and in Annex C. 

Bürkner [45] analysed composite beams with different types of shear connection using a self-developed 

finite element model. He used a Newton-Raphson iterative procedure that can follow the nonlinear 

behaviour of the steel and concrete materials beyond their elastic limit stresses. He applied an 

incremental equation that contains the elastic virtual work, an incremental correction part for the elastic 

work and the internal elastic-plastic work, which is equivalent to the external load increment. He 

performed the iterations as long as the stress that belongs to the correction part of the equation and the 

deformation increment is below a certain limit value. For the determination of the global plastic 

deformations of the composite beam he also used an iterative Newton-Raphson procedure. He compared 

his numerically obtained results with the results of the experiments that he conducted on 7.5 m long 

composite beams subjected to two-point concentrated loading, and he obtained a good correlation. He 

also gave an approximation formula for the elastic deflections (Wv
*) of composite beams with partial 

shear connection (0.5 < η < 1): 
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𝑊𝑣
∗ = 1.1 ∙ 𝑊𝑣 + 𝛼(𝑊𝑠𝑡 −𝑊𝑣)(1 − 𝜂) (2.30) 

Where Wv is the elastic deflection of an identical composite beam with full shear connection (η = 1) 

using perfectly rigid connectors, Wst is the deflection of the steel beam alone, η is the degree of shear 

connection and α = 0.1 – 0.2 is a parameter that depends on the height of the steel sheeting. 

Kurz et al. [46] gives an iterative procedure for the determination of the stresses in the composite cross-

section when the stresses in the section exceed their elastic limit. They propose an effective cross-section 

divided into lamellas in the z-direction: 

 

 

Figure 2.19 Lamellas of the section according to Kurz et al. [46] 

The method is based on an iterative approximation method, which determines the resulting deformation 

and normal force transformation with reduced cross-sectional values of the elements, by the exceeding 

of the linear-elastic state due to a load ΔP. Then, the load under which the entire lamella 1 of steel or of 

concrete section reaches its critical yield point is determined iteratively. This load is decelerated during 

the iteration; and the normal force and the distribution of the stresses are determined due to an additional 

load ΔP using a reduced steel section in which lamella 1 is not considered anymore. In the next iteration 

step, the additional load ΔP is gradually increased until the entire lamella 2 reaches the yield stress. The 

cross-section values are reduced from the last load point, and the iterative process is performed on the 

remaining lamellae. Using this iterative method in combination with the differential equations solved 

by Zhou [42], they could reproduce the shear stresses on the shear interface of adhesive bonded 

composite beams with a high accuracy. 
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Eurocode 4 [18] section 6.2.1.1 gives three approaches for the calculation of the bending resistance of a 

composite beam: 

1) Rigid-plastic theory 

2) Elastic analysis 

3) Nonlinear theory 

The most frequently applied approach is the rigid-plastic theory in building construction. Eurocode 4 

[18] clause 6.2.1.1 (1) allows to use this theory only if the effective composite section is Class 1 or Class 

2 and where no pre-stressing tendons are used. This condition is usually satisfied in the case of simply 

supported beams where usually only a small part of the web is in compression (if any) and the concrete 

slab prevents the plate buckling of the compression flange [47]. 

This theory uses the following assumptions:  

(i) The cross-section remains plane after deformations. 

(ii) The steel is stressed to its design yield strength fyd both in tension and in compression. 

(iii) The effective concrete area above the plastic neutral axis is stressed to a stress of 0.85 fck / γc 

where fck is the characteristic cylinder compressive strength. 

(iv) The tensile resistance of the concrete is neglected. 

(v) Reinforcement in compression is usually neglected. 

Based on these assumptions, the location of the plastic neutral axis (PNA) and the plastic moment 

resistance can be determined using the equilibrium and the moment equations. As presented in Figure 

2.20, the plastic neutral axis can be located in three different parts of the section. The following 

conditions help to decide whether it is in the concrete, in the flange or in the web of the steel beam: 

PNA is in the concrete if 𝑁𝑝𝑙,𝑐 > 𝑁𝑝𝑙,𝑎 (2.31) 

PNA is in the flange if 𝑁𝑝𝑙,a > 𝑁𝑝𝑙,𝑐 > 𝑁𝑝𝑙,w (2.32) 

PNA is in the web if 𝑁𝑝𝑙,𝑤 > 𝑁𝑝𝑙,𝑐 (2.33) 

where: 

𝑁𝑝𝑙,𝑐 = 𝑏𝑒𝑓𝑓 ∙ ℎ𝑐 ∙ 0.85 ∙ 𝑓𝑐𝑑 is the plastic compression resistance of the concrete, 

𝑁𝑝𝑙,𝑎 = 𝐴𝑎 ∙ 𝑓𝑦𝑑  is the plastic tensile resistance of the steel, and 

𝑁𝑝𝑙,𝑤 = 𝑁𝑝𝑙,𝑎 − 2 ∙ 𝑏 ∙ 𝑡𝑓 ∙ 𝑓𝑦𝑑 is the plastic tensile resistance of the web. 

2.3 Resistances of cross-sections of beams according to Eurocode 4 

2.3.1 General 

2.3.2 Rigid-plastic theory 
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Figure 2.20 Possible plastic stress distributions for full shear connection 

Due to the equilibrium condition, the maximum compression force that can develop in the concrete is 

limited by the resistance of the concrete or by the steel beam: 

𝑁𝑐𝑓 = min (𝑁𝑝𝑙,𝑐 , 𝑁𝑝𝑙,𝑎) (2.34) 

According to Eurocode 4 [18] clause 6.1.1 (7)P, a beam has full shear connection when increase in the 

number of shear connectors would not increase the design bending resistance of the member. This means 

that for a full shear connection the shear connectors should be able to transfer the force that corresponds 

to the aforementioned plastic stress distribution. Otherwise, we are talking about partial shear 

connection. 

When the shear connectors can be represented by a rigid-plastic behaviour each of them develops the 

same shear force irrelevant of the slip. As a result, the developing compression force in the concrete can 

be determined by multiplying the shear connector resistance with the number of shear connectors 

between the critical sections: 

𝑁𝑐 = 𝑛𝑠𝑐 ∙ 𝑃𝑅𝑑 ≤ 𝑁𝑐𝑓 (2.35) 

The ratio of the force that can be transferred by the shear connectors (Nc) to the maximum possible 

compression force in the concrete (Ncf) is called the degree of shear connection (η). Alternatively, η can 

be expressed as the ratio of the number of the shear connectors placed within the shear length (nsc) to 

the number required for full shear connection (nf): 

𝜂 = 𝑁𝑐/𝑁𝑐𝑓, or  (2.36) 

𝜂 = 𝑛𝑠𝑐/𝑛𝑓 (2.37) 

Clause 6.2.1.3 (3) permits to use the concept of partial shear connection only if ductile shear connectors 

are used. Then, the plastic moment resistance can be calculated based on the plastic stress distribution. 

In this case, Nc should be used for the compression force in the concrete instead of the force Ncf. As a 

result, a part of the steel beam should also be in compression for equilibrium. Hence, there are two 

neutral axes. Figure 2.21 presents the possible plastic stress distributions for partial shear connection. 
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Figure 2.21 Possible plastic stress distributions for partial shear connection 

The code permits to approximate the moment resistance using a linear interpolation between the bending 

resistances of the steel beam alone and of the composite section with full shear connection because the 

relation between MRd and Nc can be described by a convex curve (Figure 2.22),: 

𝑀𝑅𝑑 = 𝑀𝑝𝑙,𝑎,𝑅𝑑 + (𝑀𝑝𝑙,𝑅𝑑 −𝑀𝑝𝑙,𝑎,𝑅𝑑)
𝑁𝑐
𝑁𝑐𝑓
  (2.38) 

 

 

Figure 2.22 Relation between MRd and Nc (for ductile shear connectors) (taken from EN1994-1-1 [18]) 

Ductile shear connectors may be placed equidistantly when rigid-plastic analysis is used [18]. 
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Eurocode 4 [18] gives the following formula for the calculation of the elastic bending resistance:  

𝑀𝑒𝑙,𝑅𝑑 = 𝑀𝑎,𝐸𝑑 + 𝑘𝑀𝑐,𝐸𝑑  (2.39) 

Where: 

Ma,Ed is the design bending moment applied to the structural steel section before composite behaviour, 

Mc,Ed is the design bending moment applied to the composite section, and 

k is the lowest factor such that a stress limit is reached.  

The following limiting stresses are defined: 

1) fcd – concrete in compression, 

2) fyd - structural steel in tension or in compression, 

3) fsd – reinforcement in tension or in compression. 

The stresses in the composite section can be determined using the standard formulae of elastic theory. 

For that, an effective (homogenised) cross-section is usually used. 

 When elastic design is used, the shear connectors should be placed in accordance with the longitudinal 

shear flow calculated based on elastic theory: 

𝑣𝐿,𝐸𝑑 =
𝑉𝐸𝑑 ∙ 𝑆𝑦,𝑐

𝐼𝑦,𝑒𝑓𝑓
  (2.40) 

 

 

Figure 2.23 Shear connectors placed according to the elastic shear flow 

2.3.3 Elastic resistance to bending 
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When the bending resistance of composite section is determined using nonlinear theory, the nonlinear 

behaviour of the steel and concrete materials should be taken into account. This is not a simple task, and 

therefore in practice it is usually done by a software [47]. Eurocode 4 [18] gives a simplified 

conservative approximation for Class 1 and Class 2 sections as a function of the compression force: 

𝑀𝑅𝑑 = 𝑀𝑎,𝐸𝑑 + (𝑀𝑒𝑙,𝑅𝑑 −𝑀𝑎,𝐸𝑑)
𝑁𝑐
𝑁𝑐,𝑒𝑙

 for 𝑁𝑐 ≤ 𝑁𝑐,𝑒𝑙 (2.41) 

𝑀𝑅𝑑 = 𝑀𝑒𝑙,𝑅𝑑 + (𝑀𝑝𝑙,𝑅𝑑 −𝑀𝑒𝑙,𝑅𝑑)
𝑁𝑐 −𝑁𝑐,𝑒𝑙
𝑁𝑐,𝑓 −𝑁𝑐,𝑒𝑙

 for 𝑁𝑐,𝑒𝑙 ≤ 𝑁𝑐 ≤ 𝑁𝑐,𝑓 (2.42) 

 

 

Figure 2.24 Simplified relationship between MRd and Nc (taken from EN1994-1-1 [18]) 

  

2.3.4 Nonlinear resistance to bending 
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Eurocode 4 [18] refers to the criteria given by EN1990 [48] for the verification of the serviceability limit 

states. It gives the following design checks: 

1) Stresses 

2) Deformations 

3) Cracking of concrete 

In the calculation of the stresses for beams at the serviceability limit state Eurocode 4 [18] section 7.2.1 

prescribes the following effects to be taken into consideration: 

1) shear lag, 

2) creep and shrinkage, 

3) cracking and tension stiffening of concrete, 

4) sequence of construction, 

5) increased flexibility due to incomplete interaction (slipping of the shear connection), 

6) inelastic behaviour of steel and reinforcement, 

7) torsional and distorsional warping. 

Nevertheless, stress limitation is usually not required for beams in buildings except where fatigue 

verification is required in the ultimate limit state or pre-stressing by tendons or by controlled imposed 

deformations is provided (clause 7.2.1 (1)).  

According to clause 7.3.1 (2), the deflections should be calculated using elastic analysis. Clause 7.3.1 

(4) allows to ignore the effects of incomplete interaction where  

1) the design of the shear connection is in accordance with Eurocode 4 [18] Chapter 6.6; 

2) the degree of shear connection is not less than 0.5, or the shear connector forces in SLS do not 

exceed PRd; and 

3) the height of the ribs of a profiled sheeting does not exceed 80 mm. 

However, where the above conditions are not satisfied, the code does not give guidance on how the 

effects of the incomplete interaction could be considered. 

Concerning the vibrations, the code refers to the criteria given by EN1990 [48]. 

  

2.4 Serviceability limit states 

2.4.1 General 

2.4.2 Stresses 

2.4.3 Deformations 
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For the calculation of the crack width and the corresponding limits, the code refers to EN992-1-1 [49]. 

The limitation crack width depends on the exposure class. Alternatively, the code defines a minimum 

amount of reinforcement in section 7.4.2 and a maximum bar spacing or diameter in section 7.4.3. These 

depend on the mean value of the tensile strength of the concrete, the area of the tensile zone, the arising 

stress and the yield strength of the reinforcement bars. If the minimum reinforcement is provided and 

the bar spacing or diameters do not exceed the defined limits, the crack width verification does not need 

to be performed. 

According to Eurocode 4 [18] clause 6.6.1 (5) a shear connector can be considered ductile, when its 

characteristic slip capacity (δuk) is at least 6 mm. The characteristic slip capacity is defined as the 

minimum test value of δu reduced by 10% or determined by statistical evaluation. The slip capacity δu is 

defined on the descending branch of the load-slip curve (see Figure 2.25). 

 

  

(a) (b) 

Figure 2.25 Determination of slip capacity δu (a) Eurocode 4, Annex B [18], (b) Eurocode 4, Annex B 

background document [50] 

This definition is adequate for traditional headed stud connectors, but it can be misleading for other type 

of connectors. 

Sause and Fahnestock [51] investigated the behaviour of flexural girders. They used two measures for 

the ductility: the rotation capacity R and the maximum inelastic rotation θinel,u. In Equation (2.43), θp 

represents the hypothetical rotation of one end of the I-girder when the plastic moment capacity Mp is 

2.4.4 Cracking of concrete 

2.5 Definition of ductility 

2.5.1 Ductility according to Eurocode 4 

2.5.2 Ductility according to Sause and Fahnestock  
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reached, and θu is the rotation at which the moment capacity returns to Mp. They assumed that the beam 

remains completely elastic until Mp is reached (see Figure 2.26). 

𝑅 =
𝜃𝑢
𝜃𝑝
− 1  (2.43) 

They anticipate that the rotation capacity R reaches or exceeds 3 for a compact and adequately braced 

I-girder. 

 

 

Figure 2.26 Moment vs. end rotation behaviour of a flexural member by Sause and Fahnestock [51] 

Bärtschi [52] lists four basic idealised load-slip curves based on the ductility and the flexibility of the 

shear connection. The idealised curves are either flexible or rigid, ductile of brittle. Using the previously 

introduced notations, the four basic cases are summarised in Table 2.2 and shown in Figure 2.27. 

 

 

Figure 2.27 Typical idealised load slip behaviours 

  

2.6 Typical idealised load-slip behaviours 
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Table 2.2 Typical idealised load-slip behaviours 

Load-slip behaviour Elastic slip Deformation capacity Ductility parameter 

Rigid-brittle δel = 0 δu = 0 D = 0 

Rigid-ductile δel = 0 δu > δu,min D = ∞ 

Flexible-brittle δel > 0 δu = δel D = 0 

Flexible ductile δel > 0 δu > δu,min D > Dmin 

 

Headed stud connectors usually have a load-slip behaviour similar to the one presented in Figure 2.25, 

and they are often idealised by a rigid-ductile curve. 

Among the previously introduced demountable shear connections, embedded bolts and studs could be 

characterised by a flexible-ductile curve. Through bolts however, could not be characterised by any of 

the idealised curves presented in Figure 2.27. As mentioned earlier, the load-slip curve of preloaded 

friction grip bolts has three parts: a nearly vertical part, a nearly horizontal part and a linear or nonlinear 

part (see Figure 2.14). 

In a composite beam, a relative strain difference occurs at the steel-concrete interface during 

deformation. This strain difference is usually referred to as “slip strain”. If we integrate the slip strains 

from the point of the maximum bending moment to the support we obtain the end slip. The determination 

of the end slip is not a complicated task as long as all of the components (the steel beam, the concrete 

and the shear connection) are in elastic state (see Chapter 8.4). When it comes to ultimate limit state, the 

determination of the end slip becomes a complex task due to the nonlinear behaviour of the materials. 

However, it is important to control the end slip in order to avoid premature failure of the connectors. 

This chapter presents different methods that can be used for the approximation or the limitation of the 

end slip. 

Eurocode 4 [18] rules are mainly based on studies on welded studs. The traditionally applied studs 

usually have at least 6 mm slip capacity [47]. The code does not contain a slip limitation nor a method 

for the calculation of the occurring end slip. Instead, it gives an indirect slip limitation by providing 

rules for the minimum degree of shear connection. These rules intend to ensure that the occurring end 

slip does not exceed the aforementioned 6 mm. In the current form of the code, the minimum degree of 

shear connection for steel sections with equal flanges is given by equations (2.44) and (2.45). 

  

2.7 Controlling end slip in the ultimate limit state 

2.7.1 General 

2.7.2 Minimum degree of shear connection by Eurocode 4 
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𝐿𝑒 ≤ 25 𝜂 ≥ 1 − (
355

𝑓𝑦
) (0.75 ∙ 0.03𝐿𝑒) 𝜂 ≥ 0.4 (2.44) 

𝐿𝑒 > 25 𝜂 ≥ 1  (2.45) 

However, it was shown by Romero [53] that composite beams with a degree of shear connection, which 

is close to the minimum defined by the code can still experience slips that exceed 6 mm. It is planned 

that in the next version of the code, the limitation would be modified [54]. For propped construction, 

equation (2.44) will become: 

𝐿𝑒 ≤ 25 𝜂 ≥ [1 − (
355

𝑓𝑦
) (0.75 ∙ 0.03𝐿𝑒)] 𝛿1

2 𝜂 ≥ 0.4 (2.46) 

For unpropped construction: 

𝐿𝑒 ≤ 25 𝜂 ≥ [1 − (
355

𝑓𝑦
) (0.75 ∙ 0.03𝐿𝑒)] 𝛿1

2 ∙ 𝑘𝑢𝑛𝑝𝑟 𝜂 ≥ 0.3 (2.47) 

where: 

δ1  is the utilization factor, and  

kunpr  is the reduction factor accounting for the influence of an unpropped beam.  

Because plasticity in the steel and concrete elements only occurs in a small volume of the composite 

beam, Oehlers and Bradford [55] assume that the steel and the concrete remain elastic, but all the shear 

connectors are in plastic state, i.e. the force in each shear connector equals to the shear resistance of the 

connection. This assumption is in accordance with the assumption of Aribert [56]. The maximum slip 

can be calculated as: 

𝑠𝑚𝑎𝑥 = 𝐴𝑚𝐾1 − 𝐴𝑠ℎ𝑒𝑎𝑟𝐾2 (2.48) 

where: 

Am is the area of the moment diagram between the maximum moment and the support, 

Ashear is the area of the axial force diagram over the same region, 

𝐾1 =
ℎ𝑐 + ℎ𝑎

𝐸𝑐𝐼𝑐 + 𝐸𝑎𝐼𝑎
, 

and 
(2.49) 

𝐾2 = (
1

𝐸𝑐𝐴𝑐
+

1

𝐸𝑎𝐴𝑎
) +

(ℎ𝑐 + ℎ𝑎)
2

𝐸𝑐𝐼𝑐 + 𝐸𝑎𝐼𝑎
 

(2.50) 

2.7.3 Oehlers and Bradford 
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Alternatively, they give an equation, which was originally proposed by Johnson and Molenstra [57]. 

The equation is not based on a mechanical model but it was created with the help of multiple linear 

regressions using exponential and polynomial functions and the results of nonlinear finite element 

simulations of 45 beams. According to the authors, the best compromise between simplicity and 

accuracy was found to be the following equation: 

𝑠𝑚𝑎𝑥 = (
𝑀𝑝𝑙,𝑎 ∙ 𝐿 ∙ ℎ𝑎
6 ∙ 𝐸𝑎 ∙ 𝐼𝑎

)(
𝐿

𝐷
)
𝛼

(
𝑀𝑝𝑙 −𝑀𝑝𝑙,𝑎
𝑀𝑝𝑙,𝑎

)

𝛽

 (2.51) 

where: 

D is the depth of the composite section, 

𝛼 = −0.13 and 𝛽 = 1.03 for 𝜂 = 0.5, and 

𝛼 = −0.24 and 𝛽 = 1.70 for 𝜂 = 0.75. 

In equation (2.51), the first term refers to the elastic end slip with no shear connection: 

𝑠0 =
𝑀𝑝𝑙,𝑎 ∙ 𝐿 ∙ ℎ𝑎
6 ∙ 𝐸𝑎 ∙ 𝐼𝑎

 (2.52) 

This equation is based on the assumption that the concrete part does not exist: 

ℎ𝑐 = 𝐼𝑐 = 𝐸𝑐 = 0 (2.53) 

Eggert [58] investigated composite beams with low degrees of shear connections. He carried out full 

scale beam tests as well as numerical investigations and he gave equations for the calculation of the 

occurring slip at ultimate limit state: 

𝑠𝑚𝑎𝑥 = 𝑠0 ∙ (𝛼1 (
𝐿

ℎ𝑎
)
0.325

+ 𝛼2 (
𝑤𝑝 − 𝑤𝑝𝑎

𝑤𝑝𝑎
)

1.373

+ 𝛼3 ∙ (
𝑧𝑝𝑙,1

ℎ𝑐
)
0.163

+ 𝛼4 (
𝐹𝑐
𝐹𝑎
)
0.666

) − 𝛼5 (2.54) 

where: 

s0 is the elastic end slip with no shear connection (same as in equation (2.52)), 

𝛼1 = 0.049, 

𝛼2 = 0.118 ∙ (−51.353 ∙ 𝜂 + 48.411), 

𝛼3 = 0.015 ∙ (622.87 ∙ 𝜂
2 − 669.35 ∙ 𝜂 + 209.76), 

𝛼4 = 0.0005 ∙ (143.58 ∙ 𝜂
3 − 139.28 ∙ 𝜂2 + 40.108 ∙ 𝜂 − 4.170), 

𝛼5 = 5.119, 

2.7.4 Eggert 
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𝑤𝑝 =
8 ∙ 𝑀𝑝𝑙
𝐿2

, 

𝑤𝑝𝑎 =
8 ∙ 𝑀𝑝𝑙,𝑎
𝐿2

, 

𝐹𝑐 = 𝐴𝑐 ∙ 𝑓𝑐, and  

𝐹𝑎 = 𝐴𝑎 ∙ 𝑓𝑦. 

Bärtschi [52] derived a formulation for the determination of the elastic slip if there is no shear 

connection. He determined the end slip at ultimate load from the results of numerical simulations. He 

found that in beams with no shear connection the slip at which the plastic bending resistance is reached 

is 1.5 times more than the slip at first yield: 

𝑠𝑢𝑙𝑡,0 = 𝛼 ∙
𝐿

2
∙
1.5 ∙ 𝑓𝑦 − 𝜎

𝐸𝑎
(1 +

ℎ𝑐 + ℎ𝑝
0.5 ∙ ℎ𝑎

) (2.55) 

where α = 2/3 for uniformly distributed load, α = 1/2  for concentrated load that acts at mid-span,  

α = 1- e/L or symmetrical two point loads that act in a distance e from the supports, and σ is the maximum 

normal stress in the steel beam due to unpropped construction. 

For beams with full shear connection, he recommends to use the differential equation of nonlinear 

composite action or a finite element analysis. Both of these methods require a large computational effort.  

For partial shear connection the analytical determination of the occurring end slip is even more difficult. 

Nevertheless, he remarks that the slip in a composite beam with partial shear connection is smaller than 

in a beam with no shear connection and larger than in a beam with full shear connection. As a greatly 

simplified model, he recommends to use a linear interpolation (see Figure 2.28) between the end slip 

with no shear connection and the end slip with full shear connection according to the degree of partial 

shear connection. 

 

 

Figure 2.28 Linear interpolation of the end slip based on the degree of shear connection proposed by 

Bärtschi [52] 

2.7.5 Bärtschi 
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This chapter presented different methods for the calculation or the limitation of the occurring slip at the 

ultimate limit state. Among these methods, only the equation (2.48) by Oehlers and Bradford [55] is 

based on a mechanical model. Additionally, Bärtschi gives the differential equation for nonlinear 

composite action, but because of its complexity it can only be solved by means of numerical methods. 

The indirect limitation of Eurocode 4 [18], the formulation (2.51) of Johnson and Molenstra [57] and 

the equation (2.54) of Eggert [58] are all based on the statistical evaluation of experimental and 

numerical investigations of composite beams with welded studs. This means that the scope of their 

application is limited to the cases that are similar to the original data set, i.e. they are only applicable in 

the case of welded headed studs or equivalent shear connectors. Also, the method of Oehlers and 

Bradford [55] assumes that the shear connection can be described with a rigid-ductile curve. As 

presented in section 2.1, demountable shear connectors behave differently than welded studs in general. 

Their initial stiffness is lower than the one of welded studs, so they cannot be considered as a rigid 

connection, but rather as a flexible one. The determination of the occurring slip in the case of flexible 

shear connection is a relatively easy task as long as all the components are in elastic state (see chapter 

8.4). It is a much more complex task in the ultimate limit state because of the nonlinear behaviour of the 

steel, of the concrete and possibly of the shear connection. Accordingly, no closed analytical solution 

could be identified in the international literature. The occurring slip is usually determined using finite 

element simulations. 

  

2.7.6 Summary 
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In the frame of the conducted research, two types of shear connections have been investigated and tested 

in the laboratory. The solutions are somewhat similar to other shear connections that can be found in the 

international literature; however, there are certain differences, which will be pointed out in this chapter. 

During their design process, the focus was put on the matters of demountability, reusability and 

structural performance. This chapter presents the requirements that were considered and the investigated 

shear connections. 

Demountable shear connections should fulfil several criteria at the same time. These criteria include the 

matters of  

1) structural performance, 

2) safety, 

3) tolerances, 

4) corrosion resistance, 

5) aesthetics, 

6) economy, 

7) adaptability, 

8) standardisation, 

9) environmental impact, 

10) construction, 

11) deconstruction, and 

12) reuse. 

This section summarises the different requirements that were taken into consideration.  

The primary purpose of the shear connection is to connect the steel beam and the concrete deck in such 

a way that they withstand the external loads as a single member. For that, the shear connection should 

be capable of transmitting the occurring longitudinal shear force on the steel-concrete interface; and 

therefore, the shear connectors should have sufficient shear resistance. Transverse separation should be 

prevented; so the connection should have a certain tension resistance. The stiffness of the shear 

connection is also an important factor as it directly affects the stiffness of the composite beam. 

Additionally, a certain deformation capacity is required to ensure that the connection does not fail 

prematurely before the curvature required to develop the moment resistance is reached. Furthermore, 

ductility plays an important role when the design relies on the inelastic redistribution of the shear forces. 

Chapter 3. New types of demountable shear connections 

3.1 General 

3.2 Requirements of demountable shear connections 

3.2.1 Structural performance 
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Crowther [2] identifies 27 different aspects of design for deconstruction (DFD). Among these aspects, 

those that are relevant for demountable composite flooring systems are listed here: 

1) Use recycled and recyclable materials. 

2) Use dismountable mechanical connections and dry joints. 

3) Use an open building system where parts are freely interchangeable. 

4) Use modular design and a standard structural grid. 

5) Use construction technologies that are compatible with standard building practice and common 

tools. 

6) Use prefabrication. 

7) Provide access to all parts. 

8) Make components of a size that suits the intended means of handling. 

9) Provide tolerances for assembly and disassembly. 

10) Use a minimum number of fasteners or connectors. 

11) Use a minimum number of different types of fasteners or connectors. 

12) Design to withstand repeated use. 

13) Use lightweight materials and components. 

Additionally, other aspects have been identified that are more specific to composite floors: 

14) Preferably, provide access from the top of the slab for safety reasons. 

15) Avoid any protruding parts from the slab to facilitate transportation and storage. 

16) The potential damage should occur in the easily replaceable elements. 

Two types of demountable shear connections were investigated by the means of laboratory testing. This 

section presents the investigated connections. 

Shear connection type P3 is a through bolt type connection. This system is similar to the Krupp-Montex 

system [25] (see Figure 2.12), but it uses a steel tube instead of a PVC one to avoid any losses of 

pretension from the effects of creep and shrinkage. The connection uses a cast-in steel cylinder welded 

to an L-profile (not included in the Krupp-Montex system), a top plate welded to the cylinder and a pre-

tensioned M20 bolt with a grade of 8.8. The steel cylinder protects the concrete from any damage that 

might occur due to bearing. The L-profile provides steel-to-steel contact between the slab and the beam 

and it helps to protect the edge of the deck element throughout its lifetime. The bolt is placed inside the 

cylinder from the direction of the top plate during the assembly process, and it connects the deck element 

to the steel beam through ϕ24 pre-drilled holes in the flange. The oversized hole facilitates the hole 

alignment during the assembly process. Pockets (voids) are created in the concrete in order to avoid any 

3.2.2 Construction, deconstruction and reuse 

3.3 Investigated demountable shear connections 

3.3.1 Friction bolts in cast in cylinders (System P3) 
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protruding part on the top surface and to provide access to the connection from the top of the slab. This 

makes the disassembly process safer as there is no need for workers being underneath the slab during 

deconstruction. The layout of this shear connection system is presented in Figure 3.1. 

 

 

Figure 3.1 Layout of the shear connection system P3 

Generally, the end of an embedded bolt protrudes from the bottom surface of the slab. As a result, special 

care is required during the assembly, the disassembly and the transportation processes to avoid any 

damages in the threads. Furthermore, the application of pre-tension is possible only if the deck elements 

are not meant to be reused because once the bolts has been tightened to a minimum preload they are not 

reusable [39]. Embedded bolts being fully encased in the concrete are not replaceable. 

In order to overcome these issues, shear connection type P15 uses an embedded bolt coupled with an 

external bolt. An embedded DIN 6334 [59] mechanical coupler device provides the connection between 

the two bolts. This way, there are no protruding parts and the external bolt is replaceable. The coupler 

has a grade of 10.9, while the bolts are made of 8.8 material. If thread damage occurs during pre-

tensioning, it would occur in the replaceable bolt and not in the embedded coupler due to its higher 

material strength. L-profiles are used similarly to system P3, but no welding is necessary in this case. 

The external bolts are placed from below the flange through oversized pre-drilled holes.  

Two variants of this connection type have been developed. The two variants are mostly identical, but 

P15.1 uses pre-tensioned bolts and P15.2 uses epoxy resin injected bolts i.e. the bolt hole is filled with 

resin around the bolt. This solution allows larger clearance in the flange as the resin prevents the slippage 

of the bolt. Figure 3.2 shows the layout of the two variants of the shear connector system. 

A similar connection system was proposed by Yang et al. (2018) [60] parallel to the conduction of the 

research presented in this thesis. They investigated M18, M22 and M27 bolts in combination with a 

coupler device similar to the one presented here. The schematic drawing of their solution is presented 

in Figure 3.3. he main differences between their solution and shear connection system P15 are the 

following:  

(i) Their investigation did not include preloaded bolts. 

3.3.2 Coupled bolts (System P15) 
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(ii) Their solution did not include L-profiles. 

(iii) Their embedded bolts had 200 mm height and were encased in a relatively thick (500 mm) 

concrete slab. In the case of shear connection type P15 the investigated deck thickness was 

150 mm as given by Eurocode 4, Annex B [18]. 

(iv) During the fabrication of the push-out tests, they first placed the bolts inside the pre-drilled holes 

of the steel beam together with the coupler device. This was followed by concrete casting. 

Therefore their system corresponds to an in-situ construction method, not like shear connection 

type P15, where the concrete deck is prefabricated. 

 

 

Figure 3.2 Layout of the shear connection system P15 

 

 

Figure 3.3 Layout of the shear connection system tested by Yang et al. [60] 

3.3.3 Fulfilment of the relevant requirements 

Table 3.1 summarises how the presented demountable shear connections (Type P3 and P15) fulfil the 

different requirements that were presented in section 3.2. 
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Table 3.1 Fulfilment of the requirements of demountable shear connections 

# Requirement How do the connections fulfil the requirement? 

1 Use recycled and recyclable materials. The connections  use steel and concrete, which are 

recyclable, and do not use non-recyclable materials (for 

example certain types of plastics) 

2 Use dismountable mechanical 

connections and dry joints. 

The connections use bolted connections. 

3 Use an open building system where 

parts are freely interchangeable. 

Equidistant placement of the shear connections is preferred 

to have interchangeable parts. 

4 Use modular design and a standard 

structural grid. 

The placement of the connectors should be in accordance 

with the basic module. 

5 Use construction technologies that are 

compatible with standard building 

practice and common tools. 

The connections use commercially available standard 

products. 

6 Use prefabrication. The connection types use prefabricated concrete deck 

elements. 

7 Provide access to all parts. The connections are accessible from below the flange. 

System P3 is also accessible from the top. 

8 Make components of a size that suits the 

intended means of handling. 

The deck elements should respect the size and weight 

limitations defined by the building constructor.  

9 Provide tolerances for assembly and 

disassembly. 

The connections use oversized holes. 

10 Use a minimum number of fasteners or 

connectors. 

The connections use high-stregth bolts to minimise the 

numer of connectors. 

11 Use a minimum number of different 

types of fasteners or connectors. 

The connections use standard M20 bolts, which are widely 

applied in the current construction practice. 

12 Design to withstand repeated use. The connections use steel L-profiles that provide edge 

protection to the slabs during handling and transportation. 

The connections also use relatively high strength concrete to 

fulfil this requirement. 

13 Use lightweight materials and 

components. 

Composite slabs can be used, which have lower weight than 

solid slabs. 

14 Preferably, provide access from the top 

of the slab for safety reasons. 

System P3 fulfils this requirement, P15 does not. 

15 Avoid any protruding parts from the slab 

to facilitate transportation and storage. 

Both connections fulfil this requirement. 

16 The potential damage should occur in 

the easily replaceable elements. 

The failure occurs always in the replaceble bolts. 
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Five series of push-out tests were conducted on different variants of the shear connections presented in 

section 3.3. Each series consisted of three nominally identical specimens with a geometrical layout 

similar to the one recommended by Eurocode 4 [18]. The tests on the two most heavily loaded specimens 

were repeated with new bolts to assess the reusability of the specimens. This chapter presents the details 

of the conducted push-out tests including the description of the test specimens, the test setup, the 

measurements, the testing procedure and the results in the terms of load-slip behaviour and observed 

damages. Parts of the results shown here were presented in [61] and [62]. 

The tests specimens comprised of an HE 260B hot-rolled steel beam and four concrete deck elements. 

The deck elements were prefabricated in a horizontal position and were connected to the steel beam by 

eight demountable shear connectors after the concrete had hardened. Figure 4.1 (a) shows the schematic 

view of the test specimen. 

 

 
 

(a) (b) 

Figure 4.1 (a) The test specimen, (b) Solid strip in combination with profiled steel sheeting 

Two test series (P3.2 and P3.3) used ComFlor® 80 [63] profiled steel sheeting but they had full depth 

in the vicinity of the shear connectors (see Figure 4.1, b). As a result, it was possible to achieve a reduced 

weight compared to solid slabs without compromising the shear connection behaviour. 

In series P3.2, the steel beam, the L-profiles and the bolts were galvanized in order to assess the effect 

of galvanization on the friction resistance by comparing the obtained friction coefficients of the 

galvanised and the non-galvanised specimens. This corresponds to surface treatment class B according 

to EN1090-2 [39]. In all of the other series, the surface of the steel beam and the L-profiles were first 

cleaned from any chemical contaminants, then the loose rust was removed by wire brushing before the 

assembly of the specimens (surface treatment class C). Table 4.1 presents the overview of the test 

parameters. 

Chapter 4. Push-out tests 

4.1 General 

4.2 Tests specimens 
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The testing matrix consists of three series using system P3 and two series using system P15. The first 

test parameter was the type of the shear connection. The performance of the different shear connection 

types can be assessed by comparing the results of test series P3.1 with the results of P15.2. The only 

difference in these test series was the type of the connection. 

The second test parameter was the type of the slab. Test series P3.1 and P3.3 were almost identical: the 

only difference was that in P3.3 profile sheeting was applied in combination with a solid strip, while 

P3.1 used fully solid slabs. This way, it is possible to assess whether a solid strip in the vicinity of the 

shear connector is sufficient to provide a solid like behaviour or not. 

The third test parameter was the surface treatment. The geometry and the applied material grades of 

series P3.2 and P3.3 were identical, but in series P3.2 the elements were galvanised. The comparison of 

these test series can show how galvanisation affects the friction coefficient. 

The fourth test parameter was the effects of epoxy resin injection. To assess this effect the results of 

P15.1 (preloaded bolts) should be compared to the results of P15.2 (injection bolts). 

Table 4.1 Test parameters 

Series Shear connection Slab type Remark Surface treatment class 

P3.1 Friction bolts in cylinders Solid  C 

P3.2 Friction bolts in cylinders Solid + CF80 Galvanized elements B 

P3.3 Friction bolts in cylinders Solid + CF80  C 

P15.1 Coupled bolts Solid  C 

P15.2 Coupled bolts Solid Injection bolts C 

 

In all cases, ϕ8/75, B500 B reinforcement was applied. The solid slabs had two layers of reinforcement 

in both directions. The slabs with profiled steel sheeting had only one layer in both directions. U-bars 

were placed around the shear connectors as defined by Eurocode 4 [18] for shear connectors that are 

placed near the edge of the concrete slab. The concrete was cast on two different occasions. The concrete 

strength was measured at the age of 28 days on standard cube specimens. 

The pre-tensioning was applied using the combined method defined by EN 1090-2 [39]. This method 

includes two steps:  

1) a tightening step to a snug tight condition; 

2) a tightening step in which a specified part turn is applied to the turned part of the assembly. 

As it was shown by complementary pretension tests (see Annex A.3), the pretension force can be 

accurately controlled by applying a certain amount of rotation. In shear connection type P3, the 

tightening was performed by turning the nut, while in the case of shear connection type P15, by turning 

the head of the external bolt. In test series P15.2, injection bolts were applied. First, the bolts were 

tightened with the help of a common wrench to a snug-tight condition. Afterwards, two-component 
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epoxy resin was injected to the clearance between the bolt and the inside surface of the hole through a 

small hole in the head of the bolt according to EN 1090-2 [39]. 

Figure 4.2 shows photos taken during the fabrication of the specimens. Table 4.2 presents the measured 

concrete strength values (see Annex A.2), the applied reinforcement and the applied pretension force 

for each specimen. The reason behind the relatively high concrete strength was to represent reusable 

elements that have an extended lifespan because they need to withstand multiple use. They have a high 

demand for robustness; and therefore, it is necessary that they have a high resistance against mechanical 

impacts. 

Table 4.2 Concrete strength, reinforcement and pretension 

Series 
Concrete cube strength 

fc,28 [N/mm2] 
Reinforcement 

Applied pretension 

[kN] 

P3.1 59.4 2 layers ϕ8/75 100 

P3.2 59.4 1 layer ϕ8/75 120 

P3.3 59.4 1 layer ϕ8/75 120 

P15.1 44.3 2 layers ϕ8/75 176 

P15.2 44.3 2 layers ϕ8/75 0 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.2 (a) Beams with pre-drilled holes, (b) embedded bolt with coupler in the formwork, (c) cast-

in cylinder with welded top plate and U-bars, (d) reinforcement mesh in the formwork, (e) 

injection bolt with a small hole in the head, (f) injection bolt after injection 
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The specimens were placed on a steel base plate with mortar bedding one day before testing. The tests 

were conducted using a hydraulic jack with a load capacity of 1000 kN. A vertical force / displacement 

was imposed on the endplate of the steel beam during the tests. Belts were put around the specimens to 

prevent the parts from falling apart once the continuity was lost (see Figure 4.3). The force in the 

hydraulic jack and the displacements were continuously monitored during test conduction. 

 

 

Figure 4.3 Test setup 

Fifteen displacement transducers (LVDTs) were applied for each specimen to measure the  

(i) relative vertical displacement between the steel beam and the slab elements, 

(ii) the vertical displacement of the beam measured from the ground floor, 

(iii) the transversal separation between the steel beam and the slab elements, 

(iv) the relative horizontal displacement between the adjacent slab elements, and 

(v) the relative horizontal displacement between the slabs on the different flanges of the beam.  

Figure 4.4 shows the layout of the applied displacement transducers. 

 

4.3 Test setup 

4.4 Measurements 
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Figure 4.4 The layout of the LVDTs 

Additionally, compression tests were conducted on concrete cube specimens and uniaxial tensile tests 

on steel coupon specimens fabricated from the L-profiles and from the applied bolts. The detailed results 

of these tests can be found in 0. 

The following loading regime was applied: 

LR1: The first test of each series was conducted with monotone increasing load without cycles in 

order to determine the failure load. 

LR2: In the second test of each series, 25 cycles were performed between the 5% and the 40% of the 

failure load measured during LR1. The frequency of the cycles was 1 cycle / 2 minutes 

(0.0083 Hz). 

LR3: The third test of each series included 25 cycles between the same limits and with the same 

frequency as in LR2. In addition, several unloading – reloading cycles were performed after 

every 0.5 mm – 1 mm increments in the relative slip. 

The specimens were loaded in force-controlled mode with 20 kN / min load rate until the first slip had 

occurred. Afterwards, the loading procedure continued in displacement-controlled mode with a speed 

of 0.5 mm / min. 

As the specimens were loaded differently, the obtained results cannot be used for the statistical 

evaluation of the shear connection resistance. However, they can be used for the evaluation of the 

4.5 Test procedure 
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general behaviour of the connections as well as for the validation of numerical models where – if 

necessary- the different loading regimes can be simulated. 

 

 

Figure 4.5 The loading regimes 

The applied bolts had in all cases at least 20% overstrength compared to their characteristic strength 

value (see Annex A.1.2). As a result, the 1000 kN capacity of the hydraulic jack was not sufficient to 

cause failure when 8 bolts were applied in test P15.2-1. Therefore, in the subsequent test series, the tests 

started with 8 bolts until the total load level of 500 kN in load regime 1 (LR1). Then the specimens were 

unloaded, and the 4 bolts in the upper row were removed. This was also useful for the assessment of the 

demountability. Afterwards, the specimens were tested with only the four lower bolts. In LR2 and LR3, 

the four upper bolts were removed before testing. Because the rigidity and the bearing capacity of the 

steel beam and the concrete elements are very high compared to the shear stiffness of the connection, 

the relative slip and the load on the upper and lower bolt row was assumed to be equal. This assumption 

was supported by the experimental measurements as no difference could be observed between the load-

slip curves of the specimens with 8 bolts and with 4 bolts. 

The use of only one row of bolts along the loading direction could lead to tilting and separation of the 

slabs relative to the beam. In order to justify that the applied test setup is suitable for the push-out tests, 

the following experimental results were used: LVDTs (iv) (see Figure 4.4) measured the tilting of the 

slab elements, which was between 0.16 and 0.74 degrees (2.8 mrad and 13.8 mrad, respectively) in all 

cases. The maximum transverse separation at failure measured by LVDTs (iii) was 0.3 mm. The 

maximum relative horizontal displacement measured by LVDTs (v) was 1.1 mm. Based on these 

measurements it was concluded, that the setup with four bolts was suitable for push-out tests. 

EN1990-1-1, Annex B [18] prescribes that the longitudinal slip between each concrete slab and the steel 

section should be measured at least until the load has dropped to 20% below the maximum load. During 

the tests, bolt shear failure occurred in all cases, which is a brittle failure. Due to the fracture of the bolts, 

the concrete slab elements were not connected to the steel beam anymore, and a sudden load drop was 

observed from the maximum load to zero. The failure was defined at this point where the integrity of 

4.6 Test results 

4.6.1 General 
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the specimens was lost. In the subsequent sections, the term “initial stiffness” is used for the description 

of the stiffness of the specimens before bolt slip inside the bolt holes occurred at load levels exceeding 

the friction resistance. The initial stiffness Sini was determined as the secant stiffness at this point: 

𝑆𝑖𝑛𝑖 =
𝐹𝑠
𝑠𝐹𝑠

 (4.1) 

where Fs is the measured friction resistance and sFs is the corresponding value of the slip. 

The following figure shows the measurements obtained by the displacement sensors denoted as LVDT 

(i) (see Figure 4.4) for specimen P3.1-1. These measurements correspond to the relative slip between 

the steel beam and each individual slab element. 

 

 

Figure 4.6 Load slip curves of Specimen P3.1-1 at each slab element (LVDT i) 

As one can see, the four slab elements had a similar load-slip behaviour, which indicate that during the 

test conduction the load was distributed uniformly among the four shear connectors. However, in this 

particular test specimen, the four shear connectors did not fail at the same time. At 7.2 mm relative slip, 

the bolt that connected Slab 4 to the steel beam failed at a load level of 134.7 kN. This is represented by 

a sudden jump in the load-slip curve. Afterwards, the displacement was further increased, and the other 

three bolts failed at 143.7 kN. All bolts failed due to bolt shear. 
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The following figures show the measurements obtained by LVDT (iii) (transverse separation) and 

LVDT (v) (slab–to–slab relative horizontal displacement). In the figures positive values denote 

separation. 

 

 

Figure 4.7 Transverse separation measurements of specimen P3.1-1 (LVDT iii) 

 

 

Figure 4.8 Slab-to-slab relative horizontal displacement of specimen P3.1-1 (LVDT v) 

Figure 4.7 shows that only minor (less than 0.2 mm) relative horizontal displacements occurred during 

the test between the beam and the slab elements at the shear connectors. Similarly, Figure 4.8 indicates 

that the relative horizontal displacement between Slab 1 and Slab 4, and between Slab 2 and Slab 3 were 

negligible during the tests. When the bolt that connected Slab 4 to the steel beam failed, the connection 

between this slab element and the steel beam was completely lost. This resulted a sudden jump in the 

measurement representing the relative displacement between Slab 1 and Slab 4. 

Figure 4.9 shows the measurements of the relative horizontal displacement between the adjacent slab 

elements (LVDT (iv)). As these measurements were performed at the top and the bottom of the slabs, 

these measurements show the tilting of the slab elements. In the figure the positive values indicate when 

the distance between the slab decreased and negative values when it increased. The results indicate, that 

there were only minor relative displacements at the bottom of the slabs close to the supporting plate. On 
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the other hand we can observe higher relative displacement values at the top of the slabs. Both 

measurements (Slab 1-2 top and Slab 3-4 top) show that the top of the adjacent slab elements came 

closer to each other as the load increased. This represents and inward tilting. As the two curves overlap 

it also shows that this occurred in a symmetric manner between the opposite sides of the beam. The 

maximum value of the measured relative displacement when bolt shear failure occurred was 5 mm at 

the top and -0.5 mm at the bottom. This corresponds to a 5.5 mm relative displacement over an 800 mm 

height, which is 0.4 degrees or 6.87 mrad relative rotation between the slab elements. On average the 

slabs had a relative rotation of 0.2 degrees (3.44 mrad) to the steel beam. As these values are relatively 

low, it was concluded that the test setup is suitable for the assessment of the shear resistance of the 

connectors. 

 

 

Figure 4.9 Relative horizontal displacement between the adjacent slab elements P3.1-1 (LVDT iv) 

Similar behaviours (negligible transverse separation and minor inward tilting) were observed in all of 

the other tests. 

The load-displacement curves of the friction bolts in cast in cylinders with solid slabs (P3.1) are shown 

in Figure 4.10. In the figure the relative slip corresponds to the average measured slip between the steel 

beam and the four slab elements. Due to the pre-tensioning, the initial stiffness of the system was 

relatively high (250 kN / mm) in the early load stages until the friction resistance was overcome at a 

load level of 26 kN / shear connector. Afterwards, the stiffness decreased significantly to 15 kN / mm. 

Only minor nonlinear behaviour was observed. In all cases, shear failure of the bolts occurred at an 

average load level of 141 kN / shear connector. The failure happened in a very brittle way at a relative 

slip level between 7 mm and 10 mm with no or minor descending branch. The load-displacement curves 

of specimens P3.1-1 and P3.1-3 are in a good agreement, while P3.1-2 shows larger slip capacity. This 

is due to the fact that the hole clearance was not deducted from the presented slip values, and the bolts 

have been positioned randomly inside the holes. In the case of P3.1-1, the sudden jump in the curve at 

7 mm slip is caused by the failure of one bolt, which failed earlier than the others. 
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Figure 4.10 Load slip curves of System P3.1 

As shown in Figure 4.11, minor damages were observed on the steel elements of the specimens: bearing 

deformation of the holes in the L-profiles, and thread penetration on the bearing surface of the holes in 

the steel beam. 

 

  

(a) (b) 

Figure 4.11 Observed damages, (a) bearing deformation, (b) thread penetration in the flange 
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The load-displacement curves of the specimens where solid slabs were applied in combination with 

profiled steel sheeting are illustrated in Figure 4.12 and Figure 4.13. 

 

 

Figure 4.12 Load slip curves of System P3.2 

 

 

Figure 4.13 Load slip curves of System P3.3 

The initial stiffness of P3.2 and P3.3 was 500 kN / mm and 300 kN / mm, respectively. In the case of 

the galvanized specimens (P3.2), the first slip occurred at a load level of 57 kN / shear connector, while 

in the case of specimens with no surface finish (P3.3), the friction resistance was 31 kN / shear connector. 

The stiffness decreased to 15 kN / mm after the first slip had occurred. Figure 4.14 shows the failure 

surface of the failed galvanized bolts. 

It can be noticed that for the bolts of series P3.2 the resistance is higher (168 kN) when compared to the 

results of P3.3 (143 kN). This is due to the higher material strength, which was confirmed by uniaxial 

tensile tests that had been conducted on four bolts of each type (see Annex A.1.2). The resulting mean 

values of the ultimate strengths were 1045.6 MPa and 948.7 MPa, respectively. All bolts failed in shear 

and similar minor damages were observed as in series P3.1. 
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Figure 4.14 Failure surface of the bolts 

The following figure presents the slip measurements (LVDT (i) on Figure 4.4) of specimen P15.1-1 at 

each slab element. As on can see, the load-slip curves of Slab 1 and Slab 4 overlap with each other, as 

well as the curves of Slab 2 and Slab 3. However, at a certain load level Slab 2 and 3 had around 1 mm 

greater slip than Slab 1 and Slab 4. This is due to the different positions of the bolts in the holes.. Apart 

from this effect, the curves are parallel and all the bolts failed at the same time. This indicates that the 

load was distributed uniformly among the bolts. 

  

 

Figure 4.15 Load slip curves of Specimen P15.1-1 at each slab element (LVDT i) 

Figure 4.16 shows the measurements of the transverse separation. In the figure positive values denote 

separation. Similarly to the results presented in Figure 4.7, only minor displacements (less than 0.2 mm) 

could be observed here. Figure 4.17 indicates that the relative horizontal displacement between the slabs 

at different sides of the beam were also negligibly small (less than 0.3 mm). Figure 4.18 presents the 

relative horizontal displacement measured between the adjacent slab elements at the top and at the 
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bottom. These measurements can also show the tilting of the slab elements from the difference in the 

displacements measured at the top and at the bottom of the specimen.  

 

 

Figure 4.16 Transverse separation measurements of specimen P15.1-1 (LVDT iii) 

 

 

Figure 4.17 Slab-to-slab relative horizontal displacement of specimen P15.1-1 (LVDT v) 

 

 

Figure 4.18 Relative horizontal displacement between the adjacent slab elements P15.1-1 (LVDT iv) 
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In the previous figure positive values denote closing and negative values denote separation. Similarly to 

the previously shown measurements (Figure 4.9), higher displacements could be measured at the top of 

the specimens. This also represents and inward tilting. The maximum value of the measured relative 

displacement when bolt shear failure occurred was 4.9 mm at the top and -0.2 mm at the bottom. This 

corresponds to a 5.1 mm relative displacement over an 800 mm height, which is 0.4 degrees or 6.37 

mrad relative rotation between the slab elements. On average, this means that the slabs had a relative 

rotation of 0.2 degrees (3.28 mrad) to the steel beam. 

Similar behaviour could be observed in the case of each test specimens. Based on the presented 

measurements, it was concluded that the test setup is suitable for the assessment of the shear resistance 

and the general load-slip behaviour of the connectors. 

The load-slip curves of the tests with coupled bolts with pretension are presented in Figure 4.19. The 

initial stiffness was 70 kN / mm. The first slip occurred at a load level of 50 kN / shear connector. After 

a slip of 2 mm, the stiffness reduced to 30 kN / mm. Brittle shear failure of the bolts occurred in all cases 

at an average load level of 142 kN / shear connector. 

 

 

Figure 4.19 Load slip curves of System P15.1 

As shown in Figure 4.20 (a), no bearing deformation was observed in the L-profile. However, thread 

penetration occurred in the bearing surface of the holes in the steel beam (Figure 4.20 (b)). 

Figure 4.21 presents the results of the tests with epoxy resin injection bolts. The load-slip curves have 

three parts: an initial part with a stiffness of 100 kN / mm until the load level of 50 kN, a second part 

with a stiffness of 30 kN / mm until the load level of 110 kN and a final part with a stiffness of 5 kN / mm 

until failure. The shear failure of the bolts occurred at an average load level of 131 kN. As the epoxy 

resin in the bolt holes prevented the slippage of the bolts, the curves overlap despite the varying loading 

regime. Bolt shear was the only observed damage on the specimens. Figure 4.22 shows a bolt after 

failure. The resin remained intact during the test. Because of the threaded shape of the resin, the use of 

a wrench was necessary for the removal of the bolt head from the steel beam. 
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(a) (b) 

Figure 4.20 Observed damages of System P15.1 (a) sheared bolt and no bearing deformation in the L-

profile, (b) thread penetration in the flange 

 

 

Figure 4.21 Load slip curves of System P15.2 

 

 

 

Figure 4.22 Sheared bolt after failure 
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In order to assess the effect of the observed minor damages on the reusability, the most heavily loaded 

specimens (P3.2-3 and P3.3-3) were reassembled with new bolts and the tests were repeated. The failed 

bolts were replaced by new bolts from the same batch. This means, black bolts were replaced by identical 

black bolts and galvanised bolts were replaced by identical galvanised ones. The results of these tests 

are indicated as P3.2-3R and P3.3-3R in Figure 4.23 (a) and (b), respectively. In the second tests, the 

failure mode was again bolt shear leading to similar resistance values as in the case of the original tests. 

The slip at which the ultimate resistance was reached increased in the case of the reused galvanised 

specimen. In the non-galvanised specimen the obtained slip was lower than in the case of the original 

tests. The stiffness of the reused galvanised specimen was relatively low before 6 mm slip was reached 

when compared to the original specimens. This could be explained by the already existing bearing 

deformation of the hole of the L-profile. This phenomenon could not be observed in the non-galvanised 

specimen. These observations can be explained by the different bolt positions inside the bolt hole that 

have a direct impact on the amount of slip that the bolt can undergo before it becomes in contact with 

the inner surface of the bolt hole. 

Lower friction resistance was observed in the case of the galvanized specimen (P3.2-3R). This can be 

explained by the flattening of the surface asperities. The obtained shear force and slip values are 

presented in Table 4.3 together with the results of the original tests. 

 

  

(a) (b) 

Figure 4.23 Load slip curves of the reused specimens (a) galvanised, (b) non-galvanised 
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Table 4.3 Results of the reused specimens 

Test specimen 
Loading 

regime 

Shear 

resistance [kN] 

Slip at max force 

[mm] 
Remark 

P3.2-1 LR1 166.2 8.5  

P3.2-2 LR2 170.5 9.1  

P3.2-3 LR3 168.7 8.9  

P3.2-3R LR1 172.3 10.3 Reused with new galvanised bolts 

P3.3-1 LR1 143.9 8.6  

P3.3-2 LR2 138.2 10.6  

P3.3-3 LR3 143.1 10.0  

P3.3-3R LR1 136.6 7.7 Reused with new black bolts 

 

The load-slip curves of the shear connections that use preloaded bolts can be divided into three parts: 

1. Due to the pre-tensioning, the initial stiffness of the specimens is high (250 – 500 kN / mm). 

2. After the friction resistance is overcome, slip occurs and the stiffness is significantly 

reduced. 

3. When the bolt become in contact with the inner surface of the hole, bearing and shear 

deformation occurs with a stiffness between 15 kN / mm and 20 kN / mm. These values are 

relatively low compared to traditional welded stud shear connectors, which have a stiffness 

usually in the range of 40 to 60 kN / mm when applied with profiled sheeting [64]. 

 

 

Figure 4.24 Simplified behaviour 

The behaviour described above is in accordance with the observations of Lee and Bradford [27]. 

The second part of the general load-slip behaviour represents the bolt slip inside the bolt hole. The 

amount of slip before the bolt becomes in contact with the inner surface of the bolt hole is defined by 

the hole clearance and the position of the bolt inside the hole. Among these two parameters, the position 

of the bolt is difficult to control because it depends on the construction and installation tolerances. This 

4.7 Discussion 

4.7.1 Load-slip behaviour 
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is the reason why the three nominally identical specimens within a certain test series had slightly 

different load-slip curves. The different amount of slip inside the hole caused the observed horizontal 

offset of the third part (shear and bearing deformation) of the curves. This effect was not removed by 

the cyclic loading because the cycles were performed after bolt slip had already occurred. 

The position of the bolts in the hole does not have an impact on the shear resistance, but it has a 

significant impact on the slip at which the ultimate capacity is reached (see for example the results of 

test series P15.1 on Figure 4.19.). Also, the force values that belong to a certain slip have a high 

variability. These observations indicate that special attention is required for the construction and 

installation tolerances to reduce this variability. Numerical simulations showed (see chapter 6.3) that the 

average load-slip curve that correspond to a central bolt position can represent the general behaviour of 

the composite beam with high accuracy. However, dangerous cases may occur if some of the bolts have 

lower slip capacity than the others because of their different positions inside the hole. Further 

probabilistic analyses are recommended to quantify the corresponding risk. 

Alternatively, epoxy resin injection bolts can be used because the epoxy resin prevents the bolt slippage; 

and therefore, the load-slip curves overlap very well with each other (see Figure 4.21). 

This behaviour is somewhat different than the one of headed stud connectors. As shown in the DISCCO 

project [65], usually concrete failure precedes bolt shear failure. This is especially true when the studs 

are placed in deep metal decking. Pavlović [16] investigated encased bolted shear connectors. He 

observed both failure due to concrete crushing and failure due to bolt shear, but in his tests some kind 

of concrete damage always accompanied the bolt shear failure. This could not be observed in the tests 

presented here due to the large bearing surface of the cast-in cylinder and of the mechanical coupler 

device. The results obtained the tests presented in this section are similar to the ones obtained by Chen 

et al. [26] and Lee and Bradford [27] who investigated through bolts similar to System P3. However, 

they also observed local damage of the concrete at the base of the shear connectors. This leads to the 

conclusion that the L-profile, the steel cylinder and the mechanical coupler make the tested systems 

robust and they help preserving the reusability of the concrete deck elements. 

The highest resistance (168 kN) was measured in tests series P3.2 which consisted of the cast-in 

cylinders and galvanized elements. However, this is the result of the higher material strength of the bolts 

and not the galvanization, which only provides a zinc coating and does not affect the material strength. 

The shear failure of the bolts was the governing failure mode in all cases. System P3 produced higher 

resistances (150 kN on average) than System P15 (137 kN on average). 

Table 4.4 summarises the measured shear resistance values (Pult) of all tests in comparison with the 

calculated shear resistance (Fv,Rm), which was determined with the formulation given by EN1993-1-8 

[66] without applying any partial factors.  

4.7.2 Shear resistance 
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Table 4.4 Summary of the measured material properties and shear resistance values 

Specimen  

Tensile 

strength 

fu,m 

[MPa] 

Slab type 

Surf. 

treat 

class 

Preload 

Fpc 

[kN] 

Friction 

resistance 

Fs 

[kN] 

Calculated 

shear 

resistance 

Fv,Rm 

[kN] 

Measured 

shear 

resistance, 

Pult [kN] 

Slip at 

max. 

force 

[mm] 

P3.1-1 948.7 Solid C 100 28 139.5 134.7 7.2 

P3.1-2 948.7 Solid C 100 23 139.5 140.6 10.3 

P3.1-3 948.7 Solid C 100 28 139.5 143.9 7.7 

P3.2-1 1045.6 
Solid + 

CF80 
B 120 54 153.7 166.2 8.5 

P3.2-2 1045.6 
Solid + 

CF80 
B 120 56 153.7 170.5 9.1 

P3.2-3 1056.6 
Solid + 

CF80 
B 120 61 155.3 168.7 8.9 

P3.3-1 948.7 
Solid + 

CF80 
C 120 32 139.5 143.9 8.6 

P3.3-2 948.7 
Solid + 

CF80 
C 120 30 139.5 138.2 10.6 

P3.3-3 948.7 
Solid + 

CF80 
C 120 32 139.5 143.1 10 

P15.1-1 967.8* Solid C 176 44 142.3 136.7 6.1 

P15.1-1 967.8* Solid C 176 49 142.3 142.2 8.2 

P15.1-1 967.8* Solid C 176 46 142.3 147.9 8.8 

P15.2-1 892.1* Solid C 0 0 131.1 132.1 7.1 

P15.2-2 892.1* Solid C 0 0 131.1 131.1 5.4 

P15.2-3 892.1* Solid C 0 0 131.1 130.2 5.1 

P3.2-3R 1045.6 
Solid + 

CF80 
B 120 27 153.7 172.3 10.4 

P3.3-3R 948.7 
Solid + 

CF80 
C 120 33 139.5 136.6 7.7 

*Calculated from the average measured shear force with Equation (4.3) 
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𝐹𝑣,𝑅𝑚 = 0.6 ∙ 𝑓𝑢,𝑚 ∙ 𝐴𝑠 (4.2) 

where: 

fu,m  is the measured tensile strength of the bolts; and 

As = 245 mm2 is the shear area of a fully threaded M20 bolt.  

As there were no tensile tests conducted on the bolts applied in test series P15.1 and P15.2 due to the 

size limitations of the testing equipment, their tensile strength was calculated from the average shear 

resistance obtained by the push-out tests by rearranging the previous equation: 

𝑓𝑢,𝑚
∗ =

𝑃𝑢𝑙𝑡,𝑚
0.6 ∙ 𝐴𝑠

 (4.3) 

When comparing the results of system P3.1 and P3.3 (see Table 4.4) we can observe, that the different 

levels of pretension did not influence the shear resistance, but it had an influence on the friction 

resistance. This observation is also in accordance with the findings of Pavlović [16]. 

System P3 had in all cases larger slip capacity than System P15. In almost all cases, the load-slip curves 

showed, that the slip capacity has a high sensitivity on the position of the bolts inside the holes (see 

section 4.7.1). The only exception was series P15.2 where the epoxy resin was injected into the bolt hole 

because the resin prevented the slippage inside the hole. 

The specimens where the solid slab was used in combination with profiled steel sheeting behaved 

similarly to the specimens with fully solid slabs. The solid strip in the shear connection region was 

sufficient to prevent the profiled sheeting from compromising the shear connection behaviour. 

Eurocode 4 [18] considers a connector as ductile if the characteristic slip capacity is at least 6 mm. It 

defines the characteristic slip as the maximum slip measured at the characteristic load level, which is 

90% of the failure load in the descending branch of the load-slip curve. Most of the tested configurations 

had larger deformation capacity than 6 mm, except series P15.2. However, after the maximal load was 

reached, the specimen failed earlier than the 10% load drop could have happened. Furthermore, contrary 

to traditional shear connectors where the maximal load is usually reached after 1-2 mm of relative slip, 

the tested demountable shear connection systems showed monotonic increasing load-slip behaviour. 

Besides P15.2, each specimen reached its maximum load at a slip level between 6 mm and 10 mm. Only 

minor descending branch was observed after failure. This means that the Eurocode 4 [18] ductility 

definition (which is indeed a slip capacity requirement) cannot be applied. Therefore, in this thesis, 

another ductility definition will be used for the description of the behaviour of the shear connections. A 

4.7.3 Slip capacity 

4.7.4 The effect of the solid strip 

4.7.5 Ductility 
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similar expression will be applied as by Sause and Fahnestock [51] (see Chapter 2.5.2); however, the 

parameters in the formulation will be defined differently to represent the shear connection behaviour. A 

ductility parameter D is introduced based on Equation (2.43): 

𝐷 =
𝛿𝑢 − 𝛿𝑒𝑙
𝛿𝑒𝑙

  (4.4) 

In this formulation, δel represents the elastic part of the slip. It is taken as the slip where 0.7 PRk load is 

first reached [18]. With this definition, D represents the ratio of the inelastic deformation to the elastic 

one. However, this parameter alone is not sufficient to distinguish between ductile and brittle connectors. 

For example, in the case of a perfectly rigid connector (δel ≈ 0) that has any nonzero inelastic slip capacity 

(δu - δel > 0), Equation (4.4) leads to results approaching infinity. Such a connection would not 

necessarily be ductile if the deformation capacity is low. 

Consequently, a shear connection can be considered as ductile only if both the ductility parameter D and 

the slip capacity δu exceed a certain limit:  

𝐷 ≥ 𝐷𝑚𝑖𝑛 (4.5) 

𝛿𝑢 ≥ 𝛿𝑢,𝑚𝑖𝑛 (4.6) 

The 6 mm criterion of Eurocode 4 [18] for the ductility is indeed a slip capacity requirement: 

𝛿𝑢,𝑚𝑖𝑛 = 6 mm (4.7) 

Traditionally, for headed stud connectors δel ≈ 1 mm and δu ≈ 6 mm [50], [65]. Based on these values, 

the REDUCE design guide [67] proposes that D should reach or exceed 5: 

𝐷𝑚𝑖𝑛 = 5 (4.8) 

It is important to note that this number is rather conservative. Some headed stud connectors that are 

normally considered as ductile would not satisfy this criterion. For instance, Oehlers and Bradford [68] 

give estimates for the proportionality limit δp and ultimate slip for welded studs in solid slabs based on 

the stud diameter: δp ≈ 0.1 d, and δu ≈ 0.3 d. They assume, that the ultimate resistance Pu is reached at 

the proportionality limit. Using the Eurocode 4 [18] terminology, the characteristic load is: 

𝑃𝑅𝑘 = 0.9 𝑃𝑢 (4.9) 

The load-slip relation is assumed to be linear for δ < δp. The slip δel is taken at 0.7 PRk: 

𝛿𝑒𝑙 = 0.7 ∙ 0.9 ∙ 0.1 ∙ 𝑑 = 0.063 𝑑 (4.10) 

The corresponding ductility parameter is: 
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𝐷 =
0.3 𝑑 − 0.063 𝑑

0.063 𝑑
= 3.76 (4.11) 

These examples illustrate that a single, commonly accepted minimum required ductility parameter Dmin 

does not exist; however, generally it is in the range from 3 to 5. 

Using these definitions, the ductility parameters were determined for each of the tested shear 

connections. For this calculation, the minimum obtained resistance and slip values were used. The 

results of the calculation can be found in the following table. 

Table 4.5 Ductility parameters of the tested shear connections 

Series 
Pu  

[kN] 

0.9 Pu 

[kN] 

0.63 Pu 

[kN] 

δel 

[mm] 

δu 

[mm] 

D 

[-] 

P3.1 135 122 85 4.6 7.2 0.6 

P3.2 166 149 105 3.6 8.5 1.4 

P3.3 138 124 87 4.6 8.6 0.9 

P15.1 137 123 86 2.5 6.1 1.4 

P15.2 130 117 82 1.4 5.1 2.6 

 

As one can see, even if the criterion of the minimum required slip capacity given by Equation (4.6) is 

satisfied in most of the cases (δu > 6 mm), the obtained ductility parameters are always less than 5, 

which means that the criterion of the ductility parameter given by Equation (4.5) is not satisfied in any 

of the cases. As a result, using the categorisation presented in Figure 2.27, all of the investigated shear 

connections are considered as “flexible-brittle” connections. 

In the load-slip curves, the first loss of stiffness indicate the point where the friction resistance (Fs) was 

overcome. This point is the end of the first part of the general load-slip curve showed in Figure 4.24. 

The friction coefficient could be calculated using the following equations: 

𝐹𝑠 = 𝐹𝑝𝑐 ∙ 𝜇 (4.12) 

Or, alternatively: 

𝜇 = 𝐹𝑠/𝐹𝑝𝑐 (4.13) 

where Fs is the friction resistance, Fpc is the pre-tensioning force and μ is the friction coefficient.  

Table 4.6 summarises the average measured friction resistance and the calculated friction coefficient 

values. The tests showed that the specimens with no surface finish had a friction coefficient of 0.26, 

while the galvanized specimens had 0.48. However, after re-assembly of the failed specimens, the 

friction coefficient of the galvanized specimens was reduced to 0.23. There was no change in the case 

4.7.6 Friction resistance and surface treatment 
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of the specimens with no surface finish (see Table 4.6). This reduction of friction coefficient could be 

explained by the flattening of the surface asperities during the first test.  

Table 4.6 Preload and friction resistance 

Series 
Preload 

[kN] 

Friction 

resistance [kN] 

Friction 

coefficient [-] 

Suface 

treatment class 

Friction coefficient 

given by EN1090 [-] 

P3.1 100 26 0.26 C 0.30 

P3.2 120 57 0.48 B 0.40 

P3.2R 120 27 0.23 B 0.40 

P3.3 120 31 0.26 C 0.30 

P3.3R 120 33 0.27 C 0.30 

P15.1 176 46 0.26 C 0.30 

 

The following figure shows the comparison of the results obtained by test series P3.2 and P3.3. These 

two test series were nominally identical. The only difference between them was the different surface 

treatment. The black curves indicate the results obtained by the galvanised specimens (P3.2) and the 

grey curves indicate the non-galvanised ones. We can observe two major differences: the first is the 

higher shear resistance and the second is the higher friction resistance of the galvanised specimens. As 

discussed in section 4.7.2, the higher shear resistance is due to the higher material strength of the 

galvanised bolts. As the applied pretension forces were identical in both cases (see Table 4.6), the 

difference in the friction resistance originates from the different surface treatments. 

 

 

Figure 4.25 Comparison of galvanised (P3.2) and non-galvanised (P3.3) specimens 

In load regime 1 (LR1), the specimens were loaded until 500 kN (except P15.2-1, which was loaded 

until 1000 kN), then unloaded, and the four upper bolts were removed. The successful removal of these 

bolts proved the demountability of the tested systems. Specimens P3.2-3 and P3.3-3 were re-assembled 

after failure with new bolts. Afterwards, they were loaded until failure. Their second test showed similar 
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4.7.7 Demountability and reusability 
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behaviour to their original tests in the means of resistance, stiffness and slip capacity. Because the failure 

occurred in the bolts and not in the connected members, the developed composite flooring systems are 

robust and therefore adequate for reuse. 

Some factors can make the design and application of demountable shear connections challenging. First, 

the fabrication and installation process require special care for tolerances. If the tolerances are too small, 

the construction process can become difficult or even impossible. However, too large tolerances lead to 

an increase in slip and a reduction in stiffness. In the tested shear connection types ϕ24 holes were 

applied for M24 bolts. The beam test specimens presented in the following chapter used the same 

tolerances. This hole size was sufficient to assemble the specimens successfully. The numerical 

simulations of the beam tests (Chapter 6.3) showed that the mean value of the bolt position (central 

position) can be used for the numerical modelling. However, further probabilistic analysis is 

recommended to assess how the different bolt positions could affect the load-bearing capacity of 

demountable composite beams. Second, the tested shear connections showed lower stiffness than 

standard welded studs. This can lead to increased deflections when applied in a beam (see Chapter 5). 

The question of the reduced beam stiffness is investigated in Chapter 8. Third, the observed load-slip 

behaviour is different from an ideally plastic curve that represents the traditional shear studs. This will 

have an effect on the definition of the ultimate load bearing capacity of the shear connection. This 

question in investigated in detail in Chapter 9. 

 

 

  

4.7.8 Challenges in design and application 



 

 

 

 



5. Beam tests 

69 

Based on the experimental observations of the push-out tests, two shear connection variants were 

selected and were implemented in two, six-meter-long beam test specimens with prefabricated deck 

elements. This chapter presents the details of the conducted beam tests including the description of the 

test specimens, the test setup, the measurements, the testing procedure and the results in terms of load-

deflection behaviour and observed damages. Parts of the results shown here were presented in [69]. 

5.2 Beam tests conducted in the DISCCO project 

Nellinger [64] conducted two beam tests in the frame of a preceding RFCS project, called DISCCO 

[65]. His aim was to investigate the load-displacement behaviour of beams with low degrees of shear 

connection. Both beams were comprised of an IPE 360 steel beam and a 150 mm thick composite slab 

with ComFlor® 80 [63] metal decking. The beams had a clear span of 6 m and were subjected to a two-

point loading. Both beams used headed studs of 19 mm diameter and 125 mm nominal height 

(Köco SD 19x125) welded through the decking. The schematic view and the cross-section of the beam 

tests are presented in Figure 5.1 and Figure 5.2, respectively. 

 

 

Figure 5.1 Schematic view of Nellinger’s beam tests 

 

 

Figure 5.2 Cross-section of Nellinger’s beam test (Specimen 2-10) 

Chapter 5. Beam tests 

5.1 General 
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The two beam tests differed only in the number of shear connectors per rib. In the first test (Specimen 

2-09), single stud connectors were applied and in the second test (Specimen 2-10) the connectors were 

placed in pairs. The longitudinal shear connector spacing was 300 mm in both cases. The parameters of 

the beam tests conducted by Nellinger [64] are presented in Table 5.1. 

Table 5.1 Tested beam configurations of Nellinger 

Test 

No. 

Clear 

span, L 
Section Slab Shear connectors 

η 

[-] 

2-09 6 m 

IPE 360 

S355 

(fy = 382 MPa) 

CF80, d =150 mm 

C35/45 

(fc = 48.62 MPa) 

Köco SD 19x150 

(fu = 550 MPa) 

(single) 

0.22 

2-10 6 m 

IPE 360 

S355 

(fy = 382 MPa) 

CF80, d =150 mm 

C35/45 

(fc = 49.02 MPa) 

Köco SD 19x150 

(fu = 550 MPa) 

(pairs) 

0.32 

 

As the demountable shear connections investigated in this thesis are more likely to be placed in pairs, 

the second beam test specimen of Nellinger [64] (Specimen 2-10) was selected to be a benchmark test 

when investigating the behaviour of composite beams with demountable shear connections. This test 

contained 10 pairs of shear connectors placed on the half-length, among which 8 pairs were placed 

within the shear length (between the support and the load application point. Among the push-out tests 

conducted by Nellinger [64], test series 3-02 represents the shear connection that he applied in beam test 

2-10. The load-slip curve of this connection is presented in the following figure: 

 

 

Figure 5.3 Load-slip curve of the shear connection used in Nellinger’s beam test (Specimen 2-10) 

Two beam tests have been performed on 6 m span composite beams with demountable shear connectors. 

The geometrical layout of the tests and the material grade of the steel and the concrete were selected to 

be similar to the test of Nellinger [64] presented in the previous section. Therefore, it was possible to 
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make a direct comparison of the results with conventional welded shear connectors. Table 5.1 

summarises the tested configurations. 

Table 5.2 Tested beam configurations 

Test 

No. 

Clear 

span, L 
Section Slab 

Shear connection 

type 

Distribution of shear 

connectors 

B7 6 m 
IPE 360 

S355 

CF80 

d =150 mm 

C35/45 

P3.3 

Friction bolts in cast 

in cylinders 

Uniform along the length 

placed in pairs with 600 

mm spacing 

B8 6 m 
IPE 360 

S355 

CF80 

d =150 mm 

C35/45 

P15.1 

Coupled bolts 

Uniform along the length 

placed in pairs with 600 

mm spacing 

 

Each specimen comprised of a 6.3 m long IPE 360 steel beam with a grade of S355 and two pre-

fabricated composite slab elements with a depth of 150 mm and a width of 790 mm using 

ComFlor® 80 [63] metal decking. The beams were subjected to two-point loads so that a defined zone 

of the beam was subjected to constant shear. Figure 5.4 shows the schematic view of the beam tests. 

 

 

Figure 5.4 Schematic view of the beam tests 

The total width of the specimens was 1600 mm. This width corresponds to the effective width defined 

by Eurocode 4 [18]: 

𝑏𝑒𝑓𝑓 = 𝑏0 +∑𝑏𝑒𝑖 = 𝑏0 + 2 ∙
𝐿

8
= 100 𝑚𝑚 +  2 ∙

6000 𝑚𝑚

8
= 1600 𝑚𝑚 (5.1) 

The shear connectors were placed in pairs with a transversal spacing (b0) of 100 mm and a longitudinal 

spacing of 600 mm. The slab elements were stabilised with diagonal struts so that no tension force arose 

in the shear connectors from the self-weight of the composite slabs. The diagonal struts were not 

connected to the slabs by any mechanical connectors. They only provided vertical support to deck 

elements; therefore, they did not influence the longitudinal flexural behaviour. Figure 5.5 shows the 

cross-section of the tested beams, Figure 5.6 shows the diagonal struts before positioning the second 

deck element of specimen B8 and Figure 5.7 shows beam test specimen B7 from below before the testing 

was commenced. 
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Figure 5.5 Cross-section of the tested beams (a) plan, (b) photo 

 

 

Figure 5.6 Beam during assembly and diagonal struts before positioning the deck element 

 

 

Figure 5.7 Beam specimen B7 from below before test conduction 



5. Beam tests 

73 

The beams were designed for a 37% nominal degree of shear connection. This value was calculated 

using the following equation: 

𝜂 =
𝑃𝑅,6 ∙ 𝑛𝑠𝑐
𝑁𝑐,𝑓

 (5.2) 

where nsc is the number of shear connectors provided within the length between points of zero and 

maximum moment, Nc,f is the compression resistance of the effective area of the concrete slab acting 

compositely with the steel section, and PR,6 = 91.4 kN is the average shear connector force obtained by 

the push out test series P3.3 at 6 mm slip. 

In Equation (5.2), Ncf was calculated using the expected values of the material strengths of the steel and 

the concrete because the actual material properties were unknown before test conduction. For the steel 

yield strength, the formulation given by the JCSS Probabilistic Model Code [70] was used: 

𝑓𝑦,𝑒𝑥𝑝 = 𝑓𝑦,𝑠𝑝 ∙ 𝛼 ∙ 𝑒𝑥𝑝(−𝑢 ∙ 𝑣) − 𝐶 = 394 𝑀𝑃𝑎 (5.3) 

where: 

fy,sp = 355 MPa is the nominal value of the yield strength; 

α = 1.05  is a spatial position factor for hot rolled sections; 

u = -1.5 is a factor related to the fractile of the distribution used in describing the distance 

between the nominal value and the mean value; 

v = 0.07 is the coefficient of variation; and  

C = 20 MPa is s a constant reducing the yield strength as obtained from usual mill tests to the static 

yield strength. 

The concrete strength was calculated using the formulation of Eurocode 2 [49]: 

𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 8 𝑀𝑃𝑎 = 43 𝑀𝑃𝑎 (5.4) 

where fck = 35 MPa is the characteristic cylinder strength of a C35/45 concrete. 

The calculated η = 0.37 value corresponds to a uniform spacing of 600 mm in pairs. This degree of shear 

connection is less than the minimum permitted by Eurocode 4 [39], which is 40%. In the RFCS project 

DISCCO [65], the degree of shear connection in the beam tests ranged from 25% to 38%.  

Specimen B7 used shear connection type P3.3, and specimen B8 used shear connection type P15.1. Both 

shear connection system utilise friction in the early load stages and bolt bearing afterwards. 

Shear connector type P3.3 consists of a cast-in steel cylinder welded to an L-profile located at the edge 

of the slab, a top plate welded to the cylinder and a pre-tensioned bolt with a grade of 8.8. This 

connection provides accessibility from the top of the slab through pockets in the concrete. 
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Shear connector type P15.1 uses an embedded coupler device, an embedded bolt and a bolt placed from 

below the slab. The coupler is of grade 10.9 and the bolts are of grade 8.8 steel. Figure 5.8 shows photos 

of the shear connector systems in the slabs before concreting. 

 

 

 

 

(a) (b) 

  

 
 

(c) (d) 

Figure 5.8 Shear connector systems applied in the beam tests: (a) and (b) System P3.3 in beam B7, (c) 

and (d) System P15.1 in beam B8 

  



5. Beam tests 

75 

The formworks for the deck elements were fabricated from plywood placed on standard European 

pallets. The solid strips were created by placing profiled foam fillers between the base plate of the 

formwork and the holes under the crests of the profiled steel sheeting. L-profiles with pre-drilled holes 

were placed between one end of the profiled sheeting and the side wall of the formwork. In specimen 

B7, expanded polystyrene (EPS) foam blocks were glued to the top plate of the shear connectors in order 

to create pockets in the concrete (see Figure 5.8). The EPS blocks were removed after the concrete had 

hardened. In specimen B8, holes were drilled into the base plate of the formwork through the pre-drilled 

holes of the L-profiles. Then, the mechanical coupler device with the embedded bolt were placed above 

the holes and dummy bolts were placed from below the base plate of the formwork into the coupler 

device to keep them in place during concreting. One layer of ϕ8/95/135, B500 B reinforcement mesh 

were placed on the top of the profiled steel sheeting. Additionally, two layers of ϕ10 U-bars were placed 

around the shear connectors (see Figure 5.8). 

The composite deck elements were fabricated in 6 m long pieces. This means that no transversal joints 

were applied. However, in practice, it is possible that the application of transversal joints is not 

avoidable. Lam et al. [71] pointed out that grouted joints can be applied for the transversal connection 

of the deck elements without compromising the flexural behaviour. Therefore, the tested beams without 

any transversal joints can represent the behaviour of demountable composite beams adequately. 

Both beams were cast on the same day from the same concrete mixture. After the concrete had hardened, 

the slabs were lifted and placed on the top of the steel beam. For each deck element it was necessary to 

align 10-10 holes in the steel beam and the concrete at the same time. Due to the L-profiles with 

pre-drilled holes, low tolerances could be achieved and the hole alignment was successful. 

Then, the composite slab elements were fixed to the beam with high-strength bolts through 24 mm 

diameter pre-drilled holes in the top flange of the beam. The beams were continuously supported along 

the total length during the assembly. This type of construction corresponds to a propped construction 

method. 

In both cases the bolts were tightened by rotating the bolt head using a pneumatic impact wrench. Direct 

tension indicator (DTI) washers were applied in accordance with the requirements of EN 1090-2 [39] in 

order to control the pre-tension force (see Figure 5.9). According to the specifications of the 

manufacturer of the washers [72], the mean value of the bolt preload that belongs to the flattening of the 

washers is 150 kN. This is different than the preload during the push-out tests (120 kN for P3.3 and 176 

kN for P15.1). This difference can cause between 6.7 - 7.8 kN difference in the resulting friction 

resistance but it does not affect the shear resistance of the connection (see Chapter 4.7.2 and also the 

findings of Pavlović [16]).  

 

 

5.4 Fabrication and assembly 
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The assembly of specimen B7 was performed in the following sequence: 

1. Lifting the first composite slab element. 

2. Inserting bolts into the cast-in cylinders from the top of the slab. 

3. Positioning the slab on the top of the beam – when the slab is aligned, all the bolts fit into 

the holes of the steel beam. 

4. Mounting the nuts. 

5. Tightening the bolts with hand tools. 

6. Repeating step 1-5 with the second slab element. 

7. Tightening the bolts with a pneumatic impact wrench in two cycles. 

8. Checking the indicator gap of the DTI washer using a feeler gauge. 

Specimen B8 was assembled in the following order: 

1. Lifting the first composite slab element. 

2. Positioning the slab on the top of the beam. 

3. Inserting bolts into the coupler embedded in the slab from below the upper flange of the 

steel beam. 

4. Tightening the bolts with hand tools. 

5. Repeating step 1-4 with the second slab element. 

6. Tightening the bolts with a pneumatic impact wrench in two cycles. 

7. Checking the indicator gap of the DTI washer using a feeler gauge. 

 

  

(a) (b) 

  

(c) (d) 

Figure 5.9 DTI washers, (a) and (c) before usage, (b) and (d) after usage 
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The tests were conducted using a 1000 kN capacity hydraulic jack. Two-point loading was applied to 

the beam using a testing rig composed of a spreader beam, and two additional beams with steel rods 

welded on their bottom flange (see Figure 5.11). Steel plates and neoprene layers were applied under 

the load application rods in order to equilibrate the surface roughness of the concrete and to prevent the 

local failure of the concrete due to the high concentrated forces. Both the steel and the neoprene layers 

had a thickness of 10 mm and a width of 100 mm. 

The loading protocol consisted of two parts: 

First part: 25 cycles as described in EN1994-1-1 [18] for push-out tests 

1.1 Loading until the 40% of expected failure load (Pexp) 

1.2 25 cycles between the 5% and the 40% of the expected failure load (1 min / cycle) 

Second part: Incremental cyclic loading (loading speed equivalent to 1.2) 

2.1 5 cycles between the 5% and the 50% of Pexp, 

2.2 5 cycles between the 5% and the 60% of Pexp, 

2.3 5 cycles between the 5% and the 70% of Pexp, 

2.4 5 cycles between the 5% and the 80% of Pexp, 

2.5 Monotone loading until failure. 

The loading was paused for five minutes after each five cycles. The expected failure load was 

determined using the nonlinear finite element software Abaqus [32]. The cycles were performed using 

force-controlled mode, while the monotonic loading was applied using displacement-controlled mode. 

The schematic drawing of the loading protocol is shown in Figure 5.10. 

For each specimen, 28 displacement sensors (LVDTs) were applied to measure 

(i) The end slip of each composite slab, 

(ii) The slip values at the shear connectors, 

(iii) The transverse separation of the slabs relative to the beam, and 

(iv) The deflection values of the beam in different positions. 

The designation and range of the sensors are presented in see Table 5.3. Additionally, one inclinometer 

was applied on the beam and 10 linear strain gauges (HBM-1-6/120-LY61) [73]: four on the web of the 

beam, and six on longitudinal reinforcement bars inside the slabs. Furthermore, the travel and the force 

values of the hydraulic jack were continuously monitored during the tests. Figure 5.11 shows the 

measurement setup, and Figure 5.12 presents a photo of the test setup. 

 

 

5.5 Loading protocol and test conduction 

5.6 Measurements 
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Figure 5.10 Loading protocol 

 

Table 5.3 Applied displacement sensors and inclinometer 

# Position Measurement 
Range 

[mm] 

1 RS-0 Right slab, end slip 20 

2 RS-1 Right slab, 1st shear connector slip 20 

3 RS-2 Right slab, 2nd shear connector slip 20 

4 RS-3 Right slab, 3rd shear connector slip 20 

5 RS-4 Right slab, 4th shear connector slip 20 

6 RS-5 Right slab, 5th shear connector slip 20 

7 RS-6 Right slab, 6th shear connector slip 20 

8 RS-7 Right slab, 7th shear connector slip 20 

9 RS-8 Right slab, 8th shear connector slip 20 

10 RS-9 Right slab, 9th shear connector slip 20 

11 RS-10 Right slab, 10th shear connector slip 20 

12 RS-11 Right slab, end slip 20 

13 LS-0 Left slab, end slip 20 

14 LS-1 Left slab, 1st shear connector slip 20 

15 LS-3 Left slab, 3rd shear connector slip 20 

16 LS-8 Left slab, 8th shear connector slip 20 

17 LS-10 Left slab, 10th shear connector slip 20 

18 LS-11 Left slab, end slip 20 

19 RC-1 Right slab, top, compression 20 

20 LC-1 Left slab, top, compression 20 

21 BD-0 Supporting beam deflection at 0 mm 50 

22 BD-1 Beam deflection at 1125 mm 100 

23 BD-2 Beam deflection, load application 100 

24 BD-3 Beam deflection, mid-span 100 

25 BD-4 Beam deflection, load application 100 

26 BD-5 Beam deflection at 4875 mm 100 

27 BD-6 Supporting beam deflection at 6000 mm 50 

28 RT-1 Right slab, mid-span, transverse separation 50 

29 LT-1 Left slab, mid-span, transverse separation 50 

30 IN-1 Inclinometer at beam support  
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Figure 5.11 Measurement setup 
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Figure 5.12 The test setup 
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Additionally, compression tests on concrete cube specimens and uniaxial tensile tests on steel coupon 

specimens were carried out to obtain information about the properties of the applied materials. 

According to these tests, the mean values of the concrete cube strength and the steel yield strength were: 

𝑓𝑐𝑢,𝑚 = 64.0 𝑀𝑃𝑎 (5.5) 

𝑓𝑦,𝑚 = 381.8 𝑀𝑃𝑎 (5.6) 

The detailed results of the conducted material tests can be found in 0. 

Both beams were loaded up to failure, and the deflection was further increased until ~220 mm (L/27). 

Figure 5.14 and Figure 5.14 show global photos of the deformation of specimen B7 and B8 under failure 

conditions. Figure 5.15 shows the specimens after removing them from the testing frame. 

 

 

Figure 5.13 Specimen B7 under failure conditions 

  

5.7 Disassembly and observed damages 
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Figure 5.14 Specimen B8 under failure conditions 

 

 

Figure 5.15 Specimen B7 (right) and B8 (left) after removing them from the testing frame 

After the tests, the specimens were disassembled. The disassembly process required less time and effort 

than in the case of standard composite beams, where welded studs provide the shear connection; and 

therefore, the separation of the materials requires a large amount of cutting. The concrete slab elements 

could be separated from the steel beam by using a normal wrench. Hence, the demountability of the 

specimens was proven. 
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Beam test B7 failed at a total load level of 600 kN due to concrete crushing. Cracks appeared above the 

crests of the profiled sheeting due to tensile stresses arising from bending. The shear connectors did not 

fail during the tests; however, shear deformation of the bolts and thread penetration in the steel beam 

were observed. During dismantling all bolts could be removed from the specimen. Figure 5.16 shows 

the observed damages. 

 

  

(a) (b) 

  

(c) (d) 

Figure 5.16 Observed damages in specimen B7, (a) concrete crushing, (b) cracks due to bending, 

(c) thread penetration in the flange, (d) bolt deformation 

  

5.7.1 Beam test B7 with friction bolts in cast in cylinders 
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In the case of specimen B8, the maximum total load was reached at 569 kN. At this load level, the first 

shear connectors failed. This was followed by the failure of three additional shear connectors as the test 

was continued and the deformation was further increased. Finally, concrete crushing took place.  

 

 

Figure 5.17 Location of the failed bolts 

 

 

 

Figure 5.18 Failed bolts after the test 

  

5.7.2 Beam test B8 with coupled bolts 
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(a) (b) 

  

(c) (d) 

Figure 5.19 Cracks on the concrete, (a) cracks around shear connector L1, (b) cracks around shear 

connector R2, (c) cracks above the crests, (d) longitudinal crack 

The failure of the shear connectors occurred in the following order: R1, L1, R2, L2, R4. Two shear 

connectors (R3, L10) broke during dismantling because they had suffered excessive deformations during 

the test. The location of the failed bolts in top view is shown in Figure 5.17, and Figure 5.18 shows the 

failed bolts after the test. 

Thread penetration could be observed in the holes of the steel profile similar to the case of test B7. The 

concrete slab cracked around the outermost shear connectors (see Figure 5.19, a and b) above the crests 

of the sheeting (Figure 5.19, c) and longitudinally, parallel to the inner edge (Figure 5.19, d). 

This section presents the measured load-deflection curves and the results of the slip measurements. 

The measurements started after the assembly of the test setup. Therefore, the self-weight of the 

composite beam is not included in the measured data. The calculated self-weight deflection is 0.77 mm. 

The load-deflection curves of specimen B7 and B8 are presented in the following figures. 

 

 

5.8 Experimental results 

5.8.1 Load-deflection curves 
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Figure 5.20 Load-deflection curve of specimen B7 

 

 

Figure 5.21 Load-deflection curve of specimen B8 

Beam test B7 failed at a total load level of 600 kN by concrete crushing. This load level corresponds to 

a bending moment of 675 kNm. The mid-span deflection at failure was 198 mm (L / 30). After the first 

cycles of the loading procedure (part 1.2: 25 cycles between 26 kN and 210 kN), the specimen had a 

residual deflection of 8.2 mm.  

The failure of specimen B8 occurred by shear connector failure at a load level of 569 kN. The 

corresponding bending moment capacity is 640 kNm. At this load level, the deflection of the beam was 

133 mm (L / 45). After the first shear connector had failed, the deflection was further increased, and the 
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failure of the subsequent shear connectors occurred. This mechanism is represented by the stepwise 

dropping of load on the load-deflection curve. 

Both tested beams produced higher resistance than the similar beam tested in the frame of the DISCCO 

project [65]. The initial stiffness values were compared at the deflection value of 20 mm (L / 300). 

The moment-deflection curves are presented in Figure 5.22 and in Figure 5.23. In the figures, the 

calculated plastic moment capacity in case of full shear connection (Mpl,f), the plastic moment resistance 

of the steel beam (Mpl,a), the calculated plastic moment capacity (Mpl,η) and the elastic moment resistance 

of the composite section (MEl) are also presented. The plastic moment capacity (Mpl,η) was determined 

using a newly developed algorithm (Method PL1), which is presented in detail in Chapter 9.4.2. 

 

Figure 5.22 Moment-deflection curve of specimen B7 

 

 

Figure 5.23 Moment-deflection curve of specimen B8 

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

M
id

-s
p

a
n
 m

o
m

e
n
t,

 M
[k

N
]

Mid-span deflection, v [mm]

Method EL1

Method EL2

L/300 L/50

Mpl,f

Mpl,η (Method PL1) 

MEl

Mpl,a

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

M
id

-s
p
a
n
 m

o
m

e
n
t,

 M
[k

N
m

]

Mid-span deflection, v [mm]

Method EL1

Method EL2

L/300 L/50

MPl,f

Mpl,η (Method PL1) 

MEl

Mpl,a



5. Beam tests 

88 

Figure 5.24 and Figure 5.25 show the results of the end slip measurements. Slip was monitored at both 

ends of each slab element. The presented end slip values are the mean values of the four measurements. 

In the case of specimen B7, the first slip took place at the load level of 50 kN (56.3 kNm). After the first 

25 cycles of the loading protocol, the residual slip was 1.46 mm. The end slip was 9 mm when the 

specimen failed due to concrete crushing. This slip level is in the range where shear connector failure 

occurred in the push-out tests (c.f. Figure 4.13). 

 

 

Figure 5.24 Specimen B7: total load vs. average end slip 

In the case of specimen B8, the first slip occurred at a load level of 110 kN (123.8 kNm). The end slip 

at failure was 7.5 mm. At this slip, the two outermost shear connectors (R1 and L1) failed. This slip 

value is in accordance with the average slip capacity of the shear connector measured in the push-out 

tests (see Figure 4.19). 

 

 

Figure 5.25 Specimen B8: total load vs. average end slip 
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5.8.2 Slip measurements 
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Figure 5.26 and Figure 5.27 show the slip measurements at each shear connector along the length of the 

beams at different load levels. The dots represent the measured slip at the individual shear connectors. 

Cosine functions were also plotted in the figures as an approximation of the slip distribution functions.  

 

 

Figure 5.26 Specimen B7: Slip values at different load levels 

 

 

Figure 5.27 Specimen B8: Slip values at different load levels 

The end slip was determined at different load levels for both beams. For load levels lower than the elastic 

limit of the beams (P < PEl), the end slip was calculated using Equation (8.41). The end slip when the 

plastic capacity of the beam is reached (P = PPl,η) was calculated using Equation (9.4). Between the 

elastic and the plastic limit load (PEl < P < PPl,η) linear interpolation was applied. The comparison of the 

measured and the calculated end slip is presented in Figure 5.28 and Figure 5.29. 
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Figure 5.28 Calculated vs. measured end slip (Specimen B7) 

 

 

Figure 5.29 Calculated vs. measured end slip (Specimen B8) 
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connection. In the case of the tested specimens, the moment capacity can be calculated from the 

measured ultimate load with Equation (5.7) but the degree of shear connection is not because the 

developing compression force is unknown. Using the aforementioned method, it is possible to calculate 

backwards the degree of shear connection from the measured bending moment capacity (Mult), the 

calculated bending capacity of the steel beam alone (Mpl.a) and the calculated bending capacity of the 
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5.9 Discussion of the results and observations of the beam tests 

5.9.1 Load bearing capacity and degree of shear connection 
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determined degree of shear connection for both of the tested specimens and for the beam that was tested 

within the frame of the DISCCO project [65]. In this table, Pult and Mult also includes the the self-weight 

of the beams, which means an additional 37 kN force and 28 kNm bending moment to the measured 

values. 

𝑀𝑢𝑙𝑡 =
𝑃𝑢𝑙𝑡
2
∙ 2.25 𝑚 (5.7) 

Table 5.4 Load bearing capacity and degree of shear connection of the tested beams 

Test No. 
Shear 

connection 

Pult 

[kN] 

Mult 

[kNm] 

Mpl.a 

[kNm] 

Mpl.f 

[kNm] 

η 

[-] 

B7 P3.3 637 703 382 861 0.50 

B8 P15.1 606 668 382 861 0.41 

DISCCO Welded stud 494 542 372 825 0.32 

 

The degree of interaction ψ is governed by the stiffness of the shear connection. If there is no shear 

connection, the degree of interaction is zero, while in case of a perfectly rigid shear connection its value 

is one. The load-deflection response of the beams showed some nonlinearities already at the early load 

stages below reaching L / 300 deflection. The corresponding load values (PL/300) are smaller than the 

load (PEl) that corresponds to the elastic limit (see Table 5.5). This, and the lack of visible cracks or 

damages indicate that these nonlinearities do not originate from the plastification of the cross-section. 

These slight nonlinearities can be explained by the nonlinear behaviour of the shear connection due to 

bolt slippage in the bolt holes. Therefore, it was concluded that the beam behaved elastically until at 

least this deflection level. As the L / 300 deflection also corresponds to the limitation of the serviceability 

limit state, the stiffness at this point was used for the presented evaluation. 

The load level at which the beam would reach this deflection (PL/300) was calculated using elastic theory 

for both extreme cases (ψ = 0 and ψ = 1). The actual degree of interaction was determined using linear 

interpolation: 

𝑃𝐿/300 = 𝑃𝐿/300,𝜓=0 + (𝑃𝐿/300,𝜓=1 − 𝑃𝐿/300,𝜓=0) ∙ 𝜓 (5.8) 

So, the degree of interaction is: 

𝜓 =
𝑃𝐿/300 − 𝑃𝐿/300,𝜓=0

𝑃𝐿/300,𝜓=1 − 𝑃𝐿/300,𝜓=0
 (5.9) 

Table 5.5 summarises the total load at the deflection of L / 300 (PL/300) and the corresponding stiffness 

values (SL/300). As one can see, both of the tested demountable composite beams had lower stiffness than 

5.9.2 Stiffness and degree of interaction 
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the beam with welded studs tested in the DISCCO project [65]. In the case of welded studs, the degree 

of interaction is similar to the degree of shear connection (ψ = 0.34 vs. η = 0.33). This is not the case for 

the demountable beams (B7 and B8), where the degree of interaction is relatively low despite of the 

higher values of η. This means, that in the design of demountable composite beams special attention is 

required for the occurring deflections. 

 

Table 5.5 Stiffness Tested beam configurations 

Test No. 
Shear 

connection 

PL/300 

[kN] 

PEl 

[kN] 

SL/300 

[kN/mm] 

PL/300,ψ=0 

[kN] 

PL/300,ψ=1 

[kN] 

ψ 

[-] 

η 

[-] 

B7 P3.3 210 389 10.50 173 596 0.10 0.50 

B8 P15.1 289 405 14.45 173 596 0.27 0.41 

DISCCO Welded stud 319 409 15.95 153 584 0.34 0.33 

 

Prefabricated elements require special attention for tolerances. With the fabrication procedure presented 

in Chapter 5.4, it was possible to reach sufficiently low tolerances to be able to assemble the specimens. 

However, it is important to note that the L-profiles applied in specimen B7 were slightly distorted after 

welding the steel cylinders. A special attention is required during the welding process in order to be able 

to eliminate this kind of distortion. Otherwise, the distortions need to be corrected before placing the L-

profiles inside the formwork. 

The demountability and reusability of the tested systems had already been proven during the push-out 

tests. Therefore, the specimens were not disassembled during the beam tests. After the tests - by when 

the steel beam, the concrete slab and the shear connectors had all been highly deformed - the specimens 

were disassembled with standard hand tools. Hence, the demountability was proven again. As it was 

already mentioned in section 5.9.2, no signs of cracks, damages or plastic deformations were observed 

before reaching L / 300 deflection, which corresponds to the serviceability limit. This indicates that 

beams that do not observe loads beyond the serviceability limit state remain reusable. 

  

5.9.3 Fabrication 

5.9.4 Disassembly 
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The conducted experiments were reproduced numerically using the finite element software Abaqus [32]. 

(i) First, the materials were calibrated based on material testing. The concrete material calibration 

was based on compression tests. The steel materials were calibrated based on uniaxial tensile 

tests using the calibration method of Pavlović [16]. 

(ii) Second, advanced three-dimensional models were developed for the push out tests. The models 

were validated against the experimental measurements. 

(iii) Third, a simplified model representing the beam tests was developed and validated.  

(iv) Fourth, parametric studies were conducted on the validated beam test models in order to gain a 

better understanding of the influences of the different parameters and to assess the accuracy of 

the developed calculation methods presented in Chapter 8 and Chapter 9. 

This chapter describes the developed numerical models as well as their validation against the 

experimental measurements. The parametric studies are described in Chapter 7. 

During the push-out tests presented in Chapter 4, no concrete failure happened. The observed damages 

occurred locally in the vicinity of the shear connectors. Therefore, only this part of the push-out tests 

was reproduced numerically with the Finite Element software ABAQUS® [32]. This chapter presents 

the developed finite element models for shear connection systems P3 (friction bolts in cast in cylinders) 

and P15 (coupled bolts). 

The model of System P3 (friction bolts in cast-in cylinders) consisted of an M20 bolt, a part of the flange 

of the beam, a part of the L-profile, a top plate, a washer plate, a steel cylinder and a part of the concrete 

between the top plate and the L-profile.  

The model of System P15 (coupled bolts) included two M20 bolts coupled with a mechanical coupler 

device, an L-profile, a part of the flange of the steel beam and a washer plate. Additionally, in P15.2 

epoxy resin was placed filling the gap between the lower bolt and the inner surface of the bolt hole. 

The geometry of the models is shown in Figure 6.1, and the components of the finite element models 

are summarised in Table 6.1 and in Table 6.2. The bolts were modelled together with the nuts and 

washers as one piece. The reinforcement bars were neglected in the model. 

  

Chapter 6. Numerical simulations 

6.1 General 

6.2 Advanced modelling of push-out tests 

6.2.1 General 

6.2.2 Geometry and boundary conditions  
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(a) (b) 

Figure 6.1 Components of the FE model (a) System P3, (b) System P15 

Table 6.1 Components of the FE model (P3) 

Element Section Material Hole diameter 

Bolt with nut and washer M20, L=149.5 8.8  

Top plate PL80x80x5 S355 22 

Steel cylinder  42.4x4x109 S355  

Leg of the L-profile 80x80x6 S355 22 

Flange of the beam 80x80x17.5 S355 24 

Washer plate PL40x40x12 S355 21 

Concrete 80x80x109 C45/55  

Table 6.2 Components of the FE model (P15) 

Element Section Material Hole diameter 

Upper bolt M20, L=70 8.8  

Coupler M20, L=60 10.9  

Lower bolt with washer M20, L=60 8.8  

L-profile 80x80x6 S355 22 

Flange of the beam 80x17.5 S355 24 in P15.1 and 26 in P15.2 

Washer plate PL40x40x12 S355 21 

Concrete 80x144x160 C45/55  

Epoxy resin* D=26 SW404  

*only in P15.2 

  

M20 bolt 

Top plate 

Concrete 

Steel cylinder 

L-profile 

Flange 

Washer plate 

Concrete 

L-profile 

Flange 

M20 bolt 

Washer plate 

M20 bolt 

Epoxy resin 
(only in P15.2) 
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The following boundary conditions were applied: 

1. Surfaces at the sides were fixed against translations in normal direction. 

2. The steel flange was fixed in vertical direction. 

3. Temporary boundary conditions were applied for all individual parts in the initial step while 

the contacts were formulated. 

4. 0.5 mm / sec horizontal movement was applied on the flange of the steel beam to simulate 

the push-out test procedure. 

For the modelling of the contacts between the elements “General Explicit Contact” was applied. General 

Contact allows users to define contact between all or multiple areas of the model. These are all defined 

as a single interaction assuming any part of the model can be in contact with any other part. The 

interaction was defined as “Hard Contact” in the normal direction, i.e. no penetration of the elements is 

allowed; and Coulomb friction in the tangential direction with a friction coefficient of 0.26 for the wire 

brushed steel-to-steel contact surfaces and 0.48 for the galvanised contact surfaces. These values 

correspond to the ones obtained by the push-out tests. 

Tie constrain was applied for those elements that were welded together in reality (top plate, cylinder and 

L-profile), and for the coupler device and the coupled bolts. This constrains prevents the relative motion 

between the tied contact surfaces. 

The steel material behaviour was modelled by defining its elastic, inelastic and damage properties. The 

elastic part of the behaviour is represented by its initial Young’s modulus (E0 = 210 GPa) and its 

Poisson’s ratio (ν = 0.3). Plasticity with isotropic hardening was applied for the modelling of the inelastic 

behaviour using the true stress – true strain relationship obtained by standard ISO 6892-1:2016 [74] 

tensile testing (see Annex A.1). Uniaxial tensile tests have been conducted on the L-profiles, on the 

black bolts applied in push-out test series P3.1 and P3.3 and on the galvanized bolts applied in test series 

P3.2. No tensile tests were conducted on the bolts applied in test series P15.1 and P15.2, because the 

lengths of the bolts were not sufficient to be clamped adequately in the testing machine. Therefore, the 

same material model was applied for test series P15.1 and P15.2 as for P3.1 and P3.3. The following 

table shows the mean values of the measured yield strength and tensile strength of the applied bolts and 

the L-profiles. 

Table 6.3 Mean values of the measured yield strengths and tensile strengths 

Element 
Material 

grade 
Corrsponding push-out test 

Yield strength, 

fy,m [MPa] 

Tensile strength, 

fu,m [MPa] 

L-profile S355 P3.1, P3.2, P3.3, P15.1, P15.2 386.6 519.4 

Black bolt 8.8 P3.1, P3.3 872.3 948.7 

Galvanized bolt 8.8 P3.2 1011.9 1045.6 

6.2.3 Contact modelling 

6.2.4 Material models 
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For the modelling of the steel behaviour, “Damage for ductile metals” were used. The calibration 

procedure followed the modelling method of Pavlović [16]: 

First, the load-displacement curves were extracted from the tensile tests. The engineering stress (σi) 

values were determined as: 

𝜎𝑖 = 𝐹𝑖/𝑆0 (6.1) 

where Fi is the force measured during the tensile tests, and S0 is the original cross-sectional area. 

In order to determine the engineering strains (εi), the original gauge length (l0) needs to be fictitiously 

reduced to the average necking zone length (lloc). This way the effects of strain localisation can be taken 

into account: 

𝑙𝑖 = {

𝑙0,                                                             𝑖 < 𝑛

𝑙0 + (𝑙𝑙𝑜𝑐 − 𝑙0) (
Δ𝑙𝑖 − Δ𝑙𝑛
Δ𝑙𝑟 − Δ𝑙𝑛

)
𝛼𝐿

, 𝑖 ≥ 𝑛 
 (6.2) 

where  

l0 is the original gauge length; 

lloc is the average necking zone length; 

Δli is the elongation at loading stage “i"; 

Δln is the elongation at the onset of necking; 

Δlr is the elongation at rupture; and 

αL = 0.5 is the strain localisation rate factor. 

The engineering strains can be than calculated as: 

𝜀𝑖 = {

Δ𝑙𝑖/𝑙𝑖                                 𝑖 < 𝑛

𝜀𝑖−1 +
Δ𝑙𝑖 − Δ𝑙𝑖−1

𝑙𝑖
, 𝑖 ≥ 𝑛 

 (6.3) 

The true strain (ε’i)  and true stress (σ’i) values can be calculated with the following formulations: 

𝜀𝑖
′ = ln (1 + 𝜀𝑖) (6.4) 

𝜎𝑖
′ = 𝜎𝑖 (1 + 𝜀𝑖) (6.5) 

The true stress values determined by Equation (6.5) show the damaged material response. We need the 

undamaged material response because the damage will be implemented by the damage parameter (D) 

and not by the stress-strain relationship. The undamaged material response is defined by the following 

equation: 
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𝜎𝑖
′ = {

𝜎𝑖
′,                         𝑖 < 𝑛

𝜎𝑛(1 + 𝜀𝑖), 𝑖 ≥ 𝑛 
 (6.6) 

where σn is the engineering strain at the onset of necking. 

The true plastic strains can be determined from the total true strains: 

𝜀𝑝𝑙,𝑖
′ = 𝜀𝑖

′ −
𝜎𝑖
′

𝐸
 (6.7) 

The following figure shows the obtained stress-strain diagrams for the investigated black bolts: 

 

 

Figure 6.2 Stress strain relationship of a ductile material undergoing damage 

The damage parameter (D) is a dimensionless variable representing the difference between the damaged 

and undamaged response (Equation (6.8)). Its value is 0 before necking occurs and is 1 at fracture. 

𝐷 = 1 − (𝜎𝑖
′ − 𝜎𝑖

′)𝛼𝐷 (6.8) 

In the previous equation αD = 1.5 is the damage eccentricity factor. In Abaqus [32], the damage evolution 

law is described in a tabular form, where the damage parameter (D) is given as the function of the 

equivalent plastic displacement upl,i. Its values can be obtained from the plastic strains in the necking 

zone with the following equation: 

𝑢𝑝𝑙,𝑖
 = 𝑢𝑝𝑙,𝑓

 ∙
𝜀𝑝𝑙,𝑖
′ − 𝜀𝑝𝑙,𝑛

′

𝜀𝑝𝑙,𝑓
′ − 𝜀𝑝𝑙,𝑛

′  (6.9) 

where: 

upl,f is the equivalent plastic displacement at fracture determined by Equation (6.10); 
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ε’pl,i is the true plastic strain at load stage “i”; 

ε’pl,n is the true plastic strain at the onset of necking; and 

ε’pl,f is the true plastic strain at fracture. 

𝑢𝑝𝑙,𝑓
 = 𝜆𝑆𝐿𝑐ℎ𝑎𝑟(𝜀𝑝𝑙,𝑓

′ − 𝜀𝑝𝑙,𝑛
′ ) (6.10) 

where: 

λS is the finite element size factor determined by Equation (6.11); and 

Lchar is the characteristic element length determined by Equation (6.12). 

𝜆𝑆 = √𝐿𝑅/𝐿𝐸
3

 (6.11) 

where: 

LR is the element size for a refined mesh density that could be considered as a reference mesh, here 

its value was taken as 1.5 mm; and 

LE  is the element size for the actual mesh density 

The characteristic element length was taken as: 

𝐿𝑐ℎ𝑎𝑟 = 𝜆𝐸𝐿𝐸 (6.12) 

where λE is the element type factor. The following table summarises the applied parameters: 

Table 6.4 Parameters for ductile damage model 

Element 
Material 

grade 

l0 

[mm] 

lloc 

[mm] 

αL 

[-] 

αD 

[-] 

ε’pl,n 

[-] 

ε’pl,f 

[-] 

λE 

[-] 

λS 

[-] 

LE 

[mm] 

Lchar 

[mm] 

L-profile S355 90.2 25 0.5 1.5 0.126 0.336 3.1 0.630 6 18.6 

Black bolt 8.8 57.7 10 0.3 1.5 0.053 0.302 3.1 0.794 3 9.3 

Galvanized 

bolt 
8.8 57.7 10 0.3 1.5 0.046 0.265 3.1 0.794 3 9.3 

 

Additionally, the equivalent plastic strain at the onset of damage ε’0,pl was defined based on the triaxiality 

and the uniaxial plastic strain at the onset of damage ε’pl,n: 

𝜀0,𝑝𝑙
′ = 𝜀𝑝𝑙,𝑛

′ ∙ 𝑒−𝛽∙(Θ−1/3) (6.13) 

where β = 1.5 is a material parameter [16], and Θ is the stress triaxiality. For uniaxial tension its value 

is 1/3. Using Equation (6.13), the following values were obtained for the equivalent plastic strain at the 

onset of damage as the function of the triaxiality: 
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Figure 6.3 Equivalent plastic strain at the onset of damage as the function of stress triaxiality 

Figure 6.4 shows the steel coupon specimens that were used for the calibration of the material models 

and their numerically reproduction. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.4 (a) and (b) photos, (c) and (d) numerical models of the steel coupon specimens 

No concrete damage was observed during the experiments, so it was sufficient to describe the concrete 

behaviour with its elastic properties: E = 33.4 GPa and ν = 0.2. The epoxy resin was modelled using a 

Young’s modulus of E = 7.6 GPa and a Poisson’s ratio of 0.01 [75]. 

Every part was modelled using 8-node reduced integration brick elements (C3D8R). The mesh size 

varied from 1.5 mm to 6 mm. Figure 6.5 shows the applied finite element mesh. 

Although the three nominally identical specimens within the same test series were loaded differently 

during the push out tests (see chapter 4.5), no effects of the different loading regimes on the load-slip 

behaviour could be identified. Therefore, the different loading regimes were not implemented in the 

numerical simulations. 
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6.2.5 Finite elements and mesh 

6.2.6 Load steps and solving technique 
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The load was applied in two steps: 

1. Application of the pre-tension force to the bolts as a thermal contraction using a predefined 

filed of an artificial temperature difference and an artificial thermal expansion coefficient. 

2. Defining a constant velocity of 0.5 mm / sec in the vertical direction on a reference point 

coupled with the flange of the beam. This was applied through 100 seconds resulting in 50 

mm total displacement. 

The solution was found using dynamic explicit solver technique. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.5 Finite element mesh (a) and (c) P3 with and without concrete, (b) and (d) P15 with and 

without concrete 
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Figure 6.6 shows the numerical model of specimen P3.3 under failure conditions. As one can see, both 

the observed bolt shear failure and the bearing deformation of the L-profile (Figure 6.7) could be 

reproduced numerically. 

 

   

(a) (b) 

Figure 6.6 Numerical model of specimen P3.3 (a) before failure, (b) after failure 

 

  

(a) (b) 

Figure 6.7 Bearing deformation of the L-profile (a) photo, (b) FE simulation 

6.2.7 Validation 

Bearing 
deformation 
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Figure 6.8 shows the numerical model of specimen P15.1 before and after failure. 

 

 

 

 

 (a) (b) 

Figure 6.8 Numerical model of specimen P15.1 (a) before failure, (b) after failure 

The comparison of the experimentally and the numerically obtained load slip curves is presented in 

Figure 6.9. The developed numerical model could capture the general behaviour of the shear 

connections. The numerically obtained load-slip curves show the three distinct parts that had been 

previously observed in the push-out tests: first, no slip because of the friction, second bolt slip in the 

hole, and third, shear and bearing deformation. The only exception is system P15.2, where the bolt slip 

in the hole is prevented by the epoxy resin injection. In terms of resistance, stiffness and deformation 

capacity, the model could capture the behaviour of system P3 with an acceptable accuracy. However, in 

the case of system P15, the numerical model shows a higher stiffness during shear deformation than the 

experiment. As a result, the deformation capacity is underestimated. One possible explanation for this 

could be a locking phenomenon. Another explanation could be the tie constrain between the coupler 

device and the bolts. The tie constrain prevents any relative displacement between the connected 

surfaces, so the model does not account for the small gap between the threads of the bolts and the coupler 

that is present in the reality. Nevertheless, the general behaviour as well as the shear resistance could be 

captured accurately. 
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System P3: Friction bolts in cast-in cylinders 

  

(a) System P3 with solid slab (b) System P3 with CF80 + galvanization 

  

 

 

(c) System P3 with CF80  

  

System P15: Coupled bolts 

  

(d) System P15 with solid slab (e) System P15 with solid slab and epoxy resin 

Figure 6.9 Comparison of the experimentally and the numerically obtained load-slip curves 
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The investigated beams were reproduced numerically using the commercial software Abaqus [32]. This 

chapter presents the development and validation of the numerical models. 

The cross-section of the tested beams is presented in Figure 6.10. The model consisted of an IPE360 

steel beam with a length of 6 m and a 1.58 m wide concrete slab. The longitudinal gap between the slab 

elements and the rounding of the steel beam were neglected. Due to the transversal orientation of the 

ribs and the profiled sheeting, these parts do not contribute to the longitudinal flexural capacity of the 

composite section. Consequently, these parts could also be neglected in the numerical model. 

 

  

(a) (b) 

Figure 6.10 Cross-section of the tested beams, (a) plan, (b) FE model 

The beam was modelled as a simply supported beam with the help of two reference points at the two 

ends of the beam. Pinned support was applied on one end of the beam: the vertical and the horizontal 

displacements were restrained as well as the rotation around the axis of the beam. On the other end, a 

roller support was applied similarly to the pinned support but allowing for the horizontal displacement 

in the axial direction. A reference point was created above the geometrical centre of the beam. This point 

was connected to the surface of the concrete at the two loading positions using continuum distributing 

coupling. The loading was applied using a prescribed displacement on the reference point. 

 

 

Figure 6.11 Components and boundary conditions and components of the FE model 

6.3 Modelling of beam tests 

6.3.1 General 

6.3.2 Geometry and boundary conditions 

Concrete slab 

Steel beam 

Load application 

Shear connectors 

Pinned support 

Roller support 
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The implemented stress-strain curve of the S355 steel material is presented in Figure 6.12. The yield 

strength was taken as fy = 381.8 MPa, and the tensile strengths as fu = 467.7 MPa. The Young’s modulus 

was E = 188.5 GPa. These values are taken as the mean values of the properties measured during the 

uniaxial tensile tests (see Annex A.1.4). The hardening part was modelled using the 1/100 of the initial 

Young’s modulus [76]. For the ultimate strain, the measured εu = 0.35 value was implemented. 

 

 

Figure 6.12 The implemented stress-strain curve of the steel material 

Concrete damaged plasticity model (CDP) was used for the description of the material behaviour of the 

concrete. The effects of creep and shrinkage were not taken into account during the analyses. The 

concrete strength was determined using standard cube tests at the day of testing. The mean value of the 

compressive strength was fcu,m = 64 MPa (see Annex A.2). The cylinder strength of the concrete was 

estimated using Equation (6.14) given by the commercial finite element software Atena [77]: 

𝑓𝑐 = 0.85 𝑓𝑐𝑢,𝑚 = 54.41 𝑀𝑃𝑎 (6.14) 

Where fcu,m is the mean value of the measured cube strengths. 

The tensile strength was determined using equation (6.15) given by CEB-FIP Model Code 2010 [78] : 

𝑓𝑡 = (𝑓𝑐𝑢,𝑚)
2/3
= 4.80 𝑀𝑃𝑎 (6.15) 

The initial elastic modulus was determined using equation (6.16) given by CEB-FIP Model Code 2010 

[78]: 

𝐸𝑐𝑚 = (6000 − 15.5𝑓𝑐𝑢,𝑚)√𝑓𝑐𝑢,𝑚 = 40066 𝑀𝑃𝑎 (6.16) 

For the description of the nonlinear stress-strain relationship, the formulation given by EN1992-1-1 [49] 

was used (Figure 6.13): 

6.3.3 Material models 
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𝜎

𝑓𝑐
=

𝑘𝜂 − 𝜂2

1 + (𝑘 − 2)𝜂
 (6.17) 

where:  

- 𝜂 = 𝜀𝑐/𝜀𝑐1, 

- 𝜀𝑐1 is the strain at peak stress, and 

- 𝑘 = 1.05 ∙ 𝐸𝑐𝑚 ∙ 𝜀𝑐1/𝑓𝑐. 

The descending branch of the curve was described by a linear relationship. 

 

 

Figure 6.13 Concrete compressive stress-strain relationship 

The concrete compression damage parameter was defined as: 

𝐷𝑐 = 1 − 𝑓𝑐/𝜎𝑐  (6.18) 

The concrete tensile behaviour was described using the proposal of CEB-FIP Model Code 2010 [78] 

(see Figure 6.14). 

 

 

Figure 6.14 Concrete tension law 

The specific fracture energy GF represents the area under the stress-crack relationship. For the 

determination of its value the following equation was used [78]: 
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𝐺𝐹 = 73 ∙
𝑓𝑐
0.18

1000
= 0.14988 𝑁/𝑚𝑚  (6.19) 

The concrete tension damage parameter was defined as: 

𝐷𝑡 = 1 − 𝑓𝑡/𝜎𝑡 (6.20) 

The concrete damaged plasticity model of Abaqus [32] requires the definition of the following 

parameters: 

1) The dilation angle was taken as ψ = 36° as recommended by Pavlović [16]. 

2) The flow potential eccentricity was set to be ε = 0.1 recommended by Abaqus [32]. 

3) The ratio of the biaxial and uniaxial compressive strength was taken as σb0 / σc0 = 1.20 as given 

by CEB-FIP Model Code 2010 [78]. 

4) For the ratio of the second stress invariant on the tensile meridian K = 2/3 was used [32].  

5) Finally, the viscosity parameter was defined as μ = 0.001 [79]. 

The following table summarises the plasticity parameters for the CDP model: 

Table 6.5 Concrete damaged plasticity model parameters 

ψ ε  σb0 / σc0 K μ 

36° 0.1 1.20 0.6667 0.001 

 

The shear connectors were modelled using point based, mesh-independent fastener elements. The 

behaviour of the shear connectors could be described with the “Slot + Align” connection type. The 

“Slot” connection type provides a connection, where node b stays on the line defined by the orientation 

of node a and the initial position of node b [32]. This connection type allows to define a nonlinear spring 

law to describe the load-displacement behaviour of node b relative to node a. The “Align” connection 

type ensures that the three local directions are aligned. The application of this type of connection is 

important, otherwise the direction of the nonlinear spring would not follow the deflection of the beam. 

The following figure shows the theoretical model that describe the connection behaviour. 

 

 

Figure 6.15 Theoretical model of the “Slot + Align” type connection 
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Although, the bolt position can vary inside the hole, it was assumed that the application of the average 

load-slip curves obtained by the push-out tests can represent the global behaviour of the experiments 

accurately due to the fact that each experiment used 20 bolts (presumably placed randomly inside the 

holes) to connect the slab elements to the steel beam. This was proven by the successful validation of 

the numerical model against the experimental measurements and observations (see Chapter 6.3.6). 

Therefore, the nonlinear spring behaviour was described by the average load-slip curves: 

 

  

(a) (b) 

Figure 6.16 Average load slip curves (a) System P3.3, (b) System P15.1 

In order to model shear connection failure, an artificial linear descending branch was added (dashed line 

in the figure below) to the load-slip curves presented in the previous figure: 

 

 

Figure 6.17 Descending branch to model shear connector failure 

The steel beam and the concrete slab were modelled with 4-node, reduced integration shell elements 

(S4R) with 5 integration points through the thickness. The solid strip of the concrete slab above the steel 

beam was modelled using a different shell thickness (see Figure 6.10, b). The global mesh density was 

50 mm. 
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Figure 6.18 Applied finite element mesh 

The load was applied in one step using a 180 mm prescribed displacement on the reference point coupled 

with the top surface of the concrete slab. The maximum increment size was chosen to be 0.05. This 

value corresponds to a maximum of 9 mm vertical displacement in each step in order to capture the 

nonlinear behaviour accurately. The analysis was conducted using a quasi-static full Newton solution 

technique with a direct equation solver method. The beams were continuously supported during the 

installation of the deck elements and the shear connectors (see section 5.4). This corresponds to a 

propped construction method, which means that the steel beam and the concrete deck carry all the 

applied loads together as a composite section. The numerical model was prepared accordingly: the steel 

beam and the concrete deck were connected together before applying any loads. 

The failure load was obtained at the point where the numerical model stopped converging. The lack of 

convergence could originate from four different factors: 

1) Too large stresses at the load introduction points. This mode was sorted out by coupling the 

reference point to a sufficiently large surface (100 mm x 100 mm) at the top of the concrete 

slab. 

2) The shear connectors reach their slip capacity. This is why the descending branch was added to 

the load slip curves (see Figure 6.17) to intentionally cause convergence problems when the slip 

capacity is reached. 

3) Loss of stiffness due to concrete crushing. This happens when the concrete damage parameter 

reaches the value of 1 (D = 1). 

4) The steel beam is fully plastic. 

The obtained numerical results were compared to the experimental observations. 

Both simulations finally stopped due to failure of the shear connection (point 2 in the list presented in 

section 6.3.5). This is in accordance with the experimental observations in the case of specimen B8, 

where also shear connection failure happened. Specimen B7 failed due to concrete crushing during the 

6.3.5 Solving technique 

6.3.6 Validation 
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experiment but the shear connectors did not broke finally. However, at this point the shear connectors 

at the end of the beam were highly deformed and were close to failure (see Figure 5.16, d). This is also 

supported by the slip measurements, which showed that the end slip at failure was 9 mm (see Figure 

5.24). This is close to the mean value (9.7 mm) of the ultimate slip obtained by the push out tests. In 

other words, the concrete crushing due to high deformation and the failure of the outermost shear 

connectors occurred more-or-less at the same load level. In the experiment, concrete crushing occurred 

first, while having highly deformed shear connectors, and in the numerical simulation shear connector 

failure occurred first while the concrete was highly damaged (see Figure 6.25). 

The comparison of the experimentally and numerically obtained results showed a sufficiently accurate 

correlation in the means of load-deflection curves (see Figure 6.19 and Figure 6.20), the end slip (Figure 

6.21 and Figure 6.22), the slip distribution (Figure 6.23 and Figure 6.24) and the observed damages 

(Figure 6.25 and Figure 6.26). The following figures show the experimentally and numerically obtained 

load-deflection curves. The numerical model was able to capture the general behaviour of the composite 

beam as well as its ultimate load bearing capacity. 

 

 

Figure 6.19 Comparison of numerical and experimental load-deflection curves of specimen B7 

 

 

Figure 6.20 Comparison of numerical and experimental load-deflection curves of specimen B8 
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The next figures show the experimentally and numerically obtained end slip. As one can see, the 

difference between the two curves are greater than in the case of the load-deflection curves. This 

difference can originate from different factors. First, the average load-slip curves are implemented in 

the numerical model assuming central position of all bolts. In reality, the individual bolt positions may 

differ from this position. Second, the numerical model is perfectly symmetric, while in the laboratory 

experiment one side of the beam observed greater slips. In the presented experimental end slip curves 

the curves represent the average end slip measured at four points (at the two ends of the two deck 

elements). Despite of the differences, the numerically obtained curves show a relatively good correlation 

with the experimental measurements, and the ultimate load and slip could be well captured. 

 

 

Figure 6.21 Comparison of numerical and experimental load vs. end slip curves of specimen B7 

 

 

Figure 6.22 Comparison of numerical and experimental load vs. end slip curves of specimen B8 

The following figures show the obtained slip distributions together with cosine functions fitted to the 

experimentally and numerically obtained end slip values. The comparison was made at a 500 kN load 

level, because some of the intermediate slip measuring devices (LVDTs) stopped functioning at high 
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deformation levels. Until at least 500 kN they functioned properly. At this load level the numerical 

simulation produced higher slip values as the experimental measurements (see also Figure 6.21 and 

Figure 6.22). Theoretically, a cosine slip distribution corresponds to a sinusoidal loading and a linear 

elastic shear connection. In the tests, the two-point loading was applied and highly nonlinear shear 

connection. Nevertheless, the assumed cosine slip distribution that is later used in the elastic (Chapter 

8) and plastic calculations (Chapter 9) can describe the slip distribution function relatively accurately, 

even if it does not correspond to the actual loading situation. 

 

 

Figure 6.23 Comparison of numerical and experimental slip distributions of specimen B7 

 

 

Figure 6.24 Comparison of numerical and experimental slip distributions of specimen B8 

The following figure shows the concrete compression damage taken from the numerical model of beam 
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value of the damage parameter near the load introduction points is close to one, which corresponds to 

the total loss of stiffness. This is in accordance with the experimental observation, where concrete 

crushing occurred near to the load introduction point. 

 

 

Figure 6.25 Concrete compression damage (beam B7) 

The following figure shows the concrete tension damage for the numerical model of the test specimen 

B7. In the figure, the dark regions show the places where concrete cracking occurs. The numerical model 

could reproduce the cracks around the shear connectors, the longitudinal cracks at the axes where the 

shear connectors were placed as well as the cracks at the side of the beam due to bending.  

 

 

Figure 6.26 Concrete tension damage (beam B8) 
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Based on these observations, it was concluded that the developed numerical model is capable of 

capturing the general behaviour of the investigated demountable composite beams with high accuracy. 

The validated numerical model can be used for extending the experimental study with virtual 

experiments. 
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The experimental investigations were extended by virtual experiments in the form of parametric studies 

with the help of the validated numerical models of the beam tests. A certain number of parametric studies 

on demountable composite beams have already been performed by Jung [80] using similar numerical 

models as presented in this thesis. It was found that the shear connection distribution has an important 

effect on the stiffness and on the moment resistance of demountable composite beams. Higher resistance 

and stiffness values were obtained when the shear connectors were placed according to the elastic shear 

flow than in the case of equidistant spacing. It was also found that the slip distribution function can be 

approximated by a cosine function despite. 

The studies performed within the frame of this thesis complement the previous studies by extending the 

range of the investigated parameters. This chapter presents the investigated parameters, an extract of the 

results and the conclusions that were drawn from the performed simulations. Parts of these results were 

already presented in [81]. 

A total of 112  numerical simulations were performed on shell models of composite beams with different 

parameters. The numerical models were prepared on the basis of the validated model presented in 

Chapter 6.3. The conducted parametric studies can be divided into two parts.  

The purpose of this study was to investigate the effects of different parameters on the load-deflection 

behaviour. Thirty four simulations were conducted on 6 m long beams with the same geometry and 

loading (two-point loads) as in the case of the conducted beam tests. This way it was possible to make 

a direct comparison between the simulations and the experimental measurements. The following 

parameters were investigated in this study: 

1) Type of shear connection 

2) Steel grade 

3) Concrete strength 

4) Shear connection distribution 

The material behaviour of the steel and the concrete was modelled in the same manner as presented in 

Chapter 6.3. Where the same materials were applied as in the conducted beam tests (S355 for steel and 

C45/55 for concrete), the material properties were modelled with their experimentally measured values. 

In those simulations where the material grade was different than the tested ones, the expected values of 

the material properties were used. More information is given about the investigated material properties 

in Chapter 7.3. 

Chapter 7. Parametric studies 

7.1 General 

7.2 Investigated parameters 

7.2.1 Parametric study PS-1 
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The following table shows the investigated parameters of parametric study PS-1: 

Table 7.1 Investigated parameters (PS-1) 

Parameter Designation Value of the parameter 

Loading - 2-point load 

Beam length 6 6 m 

Steel profile E36 IPE 360 

Steel grade 

S2 S275 

S3 S355 

S4 S460 

Concrete grade 

C20 C20/25 

C25 C25/30 

C45 C45/55 

Material properties M Measured / expected values 

Shear connector 

distribution 

DP1 600 mm uniform spacing 

DE1 300 mm on L/6, then 975 mm 

Shear connection  

P0 Welded stud connector 

P3.3 Friction bolt in cast in cylinders 

P15.1 Coupled bolts 

P15.2 Coupled bolts with epoxy resin injection 

 

Seventy eight additional simulations were performed for the assessment of the accuracy of the developed 

analytical equations that describe the elastic behaviour (Chapter 8.5) and the developed calculation 

method for the plastic moment resistance of demountable composite beams (Chapter 9.4). The 78 

simulations included 39 simulations where the material properties were taken into account with their 

measured / expected values, and 39 simulations where their design values were used. More information 

is given about the investigated material properties in Chapter 7.3.  In these simulations, the loading was 

applied as a uniformly distributed load. 

The differences in the models of PS-2 compared to the models of PS-1 are the following: 

(i) The loading was applied as a uniformly distributed load in PS-2, while in PS-1 it two-point 

loading was applied. 

(ii) In PS-2, the effect of steel hardening was neglected; and therefore, a bilinear stress-strain curve 

(linear elastic – perfectly plastic) was applied in order to use the same material model in the 

numerical and in the analytic calculations (see Chapter 7.3). 

Beams with different lengths, steel profiles, shear connector distributions, shear connection types and 

material properties were investigated. The concrete slab was modelled using the effective width given 

7.2.2 Parametric study PS-2 
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by Eurocode 4 [18] (see Equation (5.1)) in all cases. Table 7.2 shows the analysed range of parameters 

and Figure 7.1 shows the applied naming conventions.  

 

Table 7.2 Investigated parameters PS-2 

Parameter Designation Value of the parameter 

Loading - Uniformly distributed 

Beam length 

6 6 m 

8 8.1 m 

16 16.2 m 

Steel profile 

E27 IPE 270 

E36 IPE 360 

E45 IPE 450 

E60 IPE 600 

Steel grade S3 S355 

Concrete grade 
C20 C20/25 

C45 C45/55 

Material properties 
M Measured / expected values 

D Desing values 

Shear connector 

distribution 

DP1 600 mm uniform spacing 

DP2 300 mm uniform spacing 

Shear connection  

P0 Welded stud connector 

P3.3 Friction bolt in cast in cylinders 

P15.1 Coupled bolts 
 

 

 

Figure 7.1 Naming conventions for parametric studies 

 

For the assessment of the developed calculation methods presented in Chapter 8 and Chapter 9, the 

material properties were taken into account with their measured / expected values to simulate the real 

behaviour as accurately as possible. This means, when the same materials were investigated as in the 

real beam tests presented in Chapter 5 (C45/55 for the concrete and S355 for the steel), the 

7.3 Material models 
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experimentally measured material properties were used. The results of the material tests are presented 

in 0. When the material grade differed from the ones applied in the experiments, their expected (most 

probable) values were used.  

The expected value of the concrete cylinder strength was calculated using the formulation given by 

EN1992-1-1 [49]: 

𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 8 𝑀𝑃𝑎  (7.1) 

The expected value of the steel yield strength was calculated with the help of the formulation given by 

the JCSS Probabilistic Model Code [70]: 

𝑓𝑦𝑚 = 𝑓𝑦,𝑠𝑝 ∙ 𝛼 ∙ 𝑒𝑥𝑝(−𝑢 ∙ 𝑣) − 𝐶 (7.2) 

where: 

fy,sp   is the nominal value of the yield strength; 

α = 1.05  is a spatial position factor for hot rolled sections; 

u = -1.5 is a factor related to the fractile of the distribution used in describing the distance 

between the nominal value and the mean value; 

v = 0.07 is the coefficient of variation; and  

C = 20 MPa is s a constant reducing the yield strength as obtained from usual mill tests to the static 

yield strength. 

The developed calculation methods presented in Chapter 8 and Chapter 9 are meant to facilitate the 

design process of composite beams with nonlinear shear connection. In practice, it is quite probable that 

the structural engineer will use the design values of the material properties when investigating the 

ultimate design resistance of a composite beam. Therefore, additionally to the simulations using the 

measured / expected values, the same simulations were performed using the design values of the material 

properties as well. 

The design value of the concrete strength (fcd) was calculated as: 

𝑓𝑐𝑑 =
𝑓𝑐𝑘
𝛾𝑐

 (7.3) 

Where fck denotes the characteristic cylinder strength and γC = 1.5 is the partial factor for the resistance 

of concrete sections given by EN1992-1-1 [49]. 

The design yield strength was calculated as: 

𝑓𝑦𝑑 =
𝑓𝑦,𝑠𝑝

𝛾𝑀0
 (7.4) 
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Where fy,sp is the nominal value of the yield strength and 𝛾𝑀0 = 1.0 is the partial factor for resistance of 

steel cross-sections recommended by EN1993-1-1 [8]. 

The following table summarises the implemented cylinder strength values for the concrete and yield 

strength values for the steel. The numbers in the table marked with an asterisk are measured material 

properties. All of the other values were calculated using Equations (7.1) - (7.4). 

Table 7.3 Analysed material grades 

Concrete C20/25 C25/30 C45/55 

fcm [MPa] 28 33 54* 

fcd [MPa] 13.33 16.67 30 

Steel S275 S355 S460 

fym [MPa] 301 391* 516 

fyd [MPa] 275 355 460 

* measured values 

 

The same constitutive models were applied for the material modelling as presented in Chapter 6.3.3., 

with the implementation of the values presented in Table 7.3. However, the steel hardening was 

neglected in the numerical models of parametric study PS-2; and therefore, a linear elastic, perfectly 

plastic constitutive law was used (Figure 7.2). For the ultimate strain, the measured εu = 0.35 value was 

used in all cases but this strain level was never reached during the simulations. The strain at yield εy was 

obtained as the ratio of the yield strength (fym or fyd) to the Young’s modulus (E). 

 𝜀𝑦 =
𝑓𝑦

𝐸
 (7.5) 

  

 

Figure 7.2 Bilinear constitutive model of steel 

The shear connectors were modelled as point based fasteners as presented in Chapter 6.3.3. When the 

materials were modelled with their measured / expected values, the average load-slip curves were used 

for the description of the nonlinear shear connection behaviour (Figure 7.3). Traditional welded stud 

7.4 Shear connections 
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connections in solids slabs were also investigated (shear connection type P0). Its load-slip curve was 

taken from [24]. 

 

 

Figure 7.3 Average load-slip curves of the shear connections 

When the materials were modelled with their design values, the shear connection behaviour was also 

modelled with the design load-slip curves. The design curves were created using the proposals of 

Eurocode 4 [18]. First, the load-slip curve with the minimum failure load was selected from the push 

out test results (Chapter 4.6). Then, the load values of the curve were reduced by 10% in order to obtain 

the characteristic curve. Afterwards, the load values were divided by γV = 1.25 [18] to get the design 

curve. 

𝑃𝑅𝑑 =
𝑃𝑅𝑘
𝛾𝑉

=
0.9 𝑃𝑚𝑖𝑛 

𝛾𝑉
 (7.6) 

 

 

Figure 7.4 Minimum, characteristic and design load slip curves 
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Figure 7.5 Design load slip curves of the shear connections 

In this section, an extract of the results of the parametric studies is presented and summarised. The 

details of all simulations and the corresponding results are presented in Annex B. 

Figure 7.6 shows the moment-deflection curves of beams with different shear connector types. Each 

beams were 6 m long beams with an IPE360 steel profile made of S355 material. The shear connectors 

were distributed uniformly in pairs with a longitudinal spacing of 600 mm. The concrete slab used CF80 

profiled decking and had a total depth of 150 mm and a width of 1600 mm, which corresponds to the 

effective width given by Eurocode 4 [18]. The beams differed only in the applied type of shear 

connection. 

Each beam failed due to shear connection failure. The stiffness of each specimen was similar at the early 

load stages (below 150 kN of total load). After this point, the stiffness of the specimens with pre-

tensioned shear connectors (P3.3 and P15.1) decreased. This is due to the bolt slippage in the bolt hole 

(the quasi horizontal part of the load slip-curve). As a result, the mid-span deflections of these specimens 

were higher than in the case of the specimens with epoxy resin injection (P15.2) and with welded studs 

(P0). Concerning the ultimate loads, every specimen failed between the total load levels of 560 kN and 

600 kN.  

 

 

Figure 7.6 Moment-deflection curves of identical beams with different types of shear connection 
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7.5 Results and discussions of parametric study PS-1  

7.5.1 Influence of the type of the shear connection 
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Figure 7.7 shows the slip distribution of beams with different types of shear connection under failure 

conditions. In each cases, the highest slip was measured at the outermost shear connectors. As all the 

beams failed due to shear connection failure, the end-slip was equal to the slip capacity of the shear 

connectors in each cases. The end-slip at failure in descending order were 9.7 mm for P3.3, 7.7 mm for 

P15.1, 6 mm for P0 and 5.4 mm for P15.2. The corresponding deflection values at failure follow the 

same order (Figure 7.6). Only the beams with shear connection type P3.3 and P15.1 could reach L / 50 

(120 mm) deflection, which is a generally accepted ductility criterion for beams.  

The slip distribution of each type can be described with a monotonic decreasing curve until the middle 

of the beam. Figure 7.8 shows the corresponding shear connector forces. 

 

 

Figure 7.7 Slip distribution of beams with different types of shear connection 

 

 

Figure 7.8 Shear connector forces of beams with different types of shear connection 

As one can see, the shear connector forces have a more-or-less constant value between the supports and 

the position of the concentrated loads. This corresponds to the constant vertical shear diagram in this 

region. The vertical shear diagram between the applied concentrated forces is theoretically zero. 
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However, shear connectors placed in this area also underwent some slip and; and therefore, could 

develop a certain amount of shear force. These forces are usually neglected when determining the arising 

compression force of the concrete. 

The method presented in Chapter 9.4.2 (Method PL1) is based on the assumption of a cosine shaped slip 

distribution function. The more the slip distribution function differs from a cosine shape, the less 

accurate the method will become. As it was already mentioned and presented in Figure 7.7, the slip 

distribution functions do not resemble a cosine function in these cases but to a more-or-less constant 

curve between the load application points and the supports. Nonetheless, the method was used for the 

calculation of the plastic moment resistance of the tested beams. Table 7.4 shows the comparison of the 

numerically and analytically obtained results. 

Table 7.4 Comparison of analytically and numerically obtained moment results 

Shear 

connection 

Pult 

[kN] 

Nc 

[kN] 

Mult 

[kNm] 

Nc.calc 

[kN] 

Mpl.η 

[kNm] 

Nc.calc/Nc 

[-] 

Mpl.η/Mult 

[kNm] 

P0 564 1031 609 872 637 0.85 1.05 

P3.3 584 1179 657 814 627 0.69 0.95 

P15.1 591 1214 664 925 647 0.76 0.97 

P15.2 561 1137 631 929 647 0.82 1.03 

 

Where: 

Pult is the numerically obtained maximum total load; 

Nc is the compression force of the concrete calculated as the sum of the shear connector forces; 

Mult is the numerically obtained moment resistance; 

Nc.calc is the analytically obtained concrete compression force determined by Equation (9.2); 

Mpl.η is the analytically obtained moment resistance determined according to the procedure described 

in Chapter 9.4.2. 

This comparison shows, that even if the slip distribution function is far from being a cosine function for 

this loading situation, the analytical method can predict the moment resistance with relatively high 

accuracy. In the case of shear connection P0 and P15.2, the analytical method (Method PL1) 

overestimated the moment capacity. This is due to the fact that these beams failed at relatively low 

deflection levels (see Figure 7.6), and the beam could not develop the assumed plastic stress distribution 

(see Figure 7.9). 

The discrepancy between the calculated and numerically determined concrete compression force values 

is relatively large (31% for P3.3), but the maximum difference in the analytically and numerically 

obtained moment resistance values is only 5%. For uniformly loaded beams, which has a slip distribution 

closer to a cosine function this difference becomes even smaller (see Chapter 7.6 and Chapter 9.4.2). 
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Figure 7.9 Von-Mises stresses in [MPa] under failure conditions 

The following figure shows the influence of the different steel grades. Each of the beams failed due to 

shear connector failure. The figure clearly shows that the steel grade has a great influence on the 

behaviour. The ultimate load of the specimens with S275, S355 and S460 steel were 513 kN, 596 kN 

and 691 kN respectively. This shows a linear relationship between the yield strength and the resistance. 

 

 

Figure 7.10 Moment-deflection curves of identical beams with different steel grades 

Figure 7.11 shows the obtained slip distributions under failure conditions. As all beams failed finally 

due to bolt shear failure, the end slip always corresponds to the slip capacity of the applied shear 

connector (9.7 mm for P3.3). A certain difference can be observed in the curves: the slip measured at 

the 4th shear connector measured from the support, which is closest to the load application  was 9.1 mm 

for S275, 8.5 mm for S355 and 7.8 mm for S460 steel beams. This is due to the fact that the plastic zone 
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7.5.2 Influence of the steel grade 
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is larger when the steel grade is lower (see Figure 7.12) and this has a direct influence on the slip 

distribution (see Figure 9.3). 

 

 

Figure 7.11 Slip distribution curves of identical beams with different steel grades 
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Figure 7.12 Von-Mises stresses in [MPa] for identical beams with different steel grades 
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The highest concrete damage belongs to the beam where S275 steel is applied.,Less concrete damage 

can be observed when the steel grade is higher: 

 

 Concrete compression damage 

 S275 S355 S460 

   
 

    

  Concrete tension damage  

 S275 S355 S460 

    

Figure 7.13 Concrete damage for identical beams with different steel grades under failure conditions 

Identical, 6 m long composite beams with different concrete grades were analysed. The beams used 

IPE 360 steel profile with a grade of S355. Shear connectors of type P15.1 were applied placed 

uniformly in pairs with a longitudinal spacing of 600 mm. As shown in Figure 7.14, the influence of the 

concrete grade on the general behaviour is very low. The moment-deflection curves of the beams are 

very similar in each cases. However, when we examine the concrete damage (Figure 7.15 - Figure 7.17), 

we find that the difference in the concrete damage is significant. The beams with C25/35 and C45/55 

concrete failed due to bolt shear failure at 7.5 mm end slip, while the beam with C20/55 concrete failed 

due to the crushing of the concrete while having an end slip of 7.2 mm. 

 

 

Figure 7.14 Moment-deflection curves of identical beams with different concrete grades 
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7.5.3 Influence of the concrete strength 
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Figure 7.15 Concrete tension damage of a 6 m long composite beam with C20/25 concrete under failure 

conditions (concrete failure) 

 

 

Figure 7.16 Concrete tension damage of a 6 m long composite beam with C25/35 concrete under failure 

conditions (shear connection failure) 

 

 

Figure 7.17 Concrete tension damage of a 6 m long composite beam with C45/55 concrete under failure 

conditions (shear connection failure) 

 

 



7. Parametric studies 

128 

In shear connector layout DE1 and DP1 the number of shear connectors were almost identical:10 pairs 

on the half-length in DP1, and 11 pairs in DE1. Figure 7.18 and Figure 7.19 show, that by placing more 

shear connectors near to the supports the stiffness of the composite beam increases; however, this effect 

is relatively small. When comparing the slip distributions and the shear connector forces (Figure 7.20 - 

Figure 7.27), we observe, that the slip and force values are similar in both of the two different shear 

connector arrangements. However, small differences can be identified. For instance, with non-uniformly 

placed shear connectors, the largest slip does not necessarily occur at the end of the beam (see Figure 

7.22 and Figure 7.26). This is can be explained as follows: the beam was subjected to a two-point 

loading, which corresponds to a constant shear force diagram between the supports and the load 

application points. Because of this, the largest slip occurs where the shear connectors are placed less 

frequently. 

 

 

Figure 7.18 Comparison of the moment deflection curves of identical beams with shear connection 

distribution DE1 and DP1 (P0 and P3.3) 

 

 

Figure 7.19 Comparison of the moment deflection curves of identical beams with shear connection 

distribution DE1 and DP1 (P15.1 and P15.2) 
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7.5.4 Influence of the distribution of the shear connectors 
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Figure 7.20 Slip distribution of identical beams with different shear connector distribution (P0) 

 

 

Figure 7.21 Shear connector forces of beams with different shear connector distribution (P0) 

 

 

Figure 7.22 Slip distribution of identical beams with different shear connector distribution (P3.3) 
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Figure 7.23 Shear connector forces of beams with different shear connector distribution (P3.3) 

 

 

Figure 7.24 Slip distribution of identical beams with different shear connector distribution (P15.1) 

 

 

Figure 7.25 Shear connector forces of beams with different shear connector distribution (15.1) 
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Figure 7.26 Slip distribution of identical beams with different shear connector distribution (P15.2) 

 

 

Figure 7.27 Shear connector forces of beams with different shear connector distribution (P15.2) 

 

7.6 Results and discussions of parametric study PS-2  

The main purpose of parametric study PS-2 was to assess the accuracy of the developed calculation 

methods that are presented in Chapter 8 and in Chapter 9. The details of the numerical models and the 

results (moment-deflection curves, ultimate moment resistance and slip distributions) are presented in 

Annex B.2. Figure 7.1 presents the applied naming conventions. 

The application of the developed calculation methods (Method PL1 and PL2) for the plastic moment 

resistance (see Chapter 9) requires to assume a certain slip distribution function. Therefore, besides the 
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distribution along the length. The following figures show the obtained slip values relative to the end slip 

at every shear connector along the halt length under failure conditions (either shear connector failure or 

concrete failure). The figures show those 39 beams that were modelled with the measured / expected 

values of the material properties (see Chapter 7.3) because they can represent the real behaviour more 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000

S
lip

 [
m

m
]

Position [mm]

6E36-S3C45M-DE1-P152

6E36-S3C45M-DP1-P152

Position of 
loading

-150

-100

-50

0

50

100

150

0 1000 2000 3000 4000 5000 6000S
h

e
a

r 
c
o

n
n

e
c
to

r 
fo

rc
e

 [
k
N

]

Position [mm]

6E36-S3C45M-DE1-P152

6E36-S3C45M-DP1-P152

Position of 
loading

7.6.1 Slip distribution 



7. Parametric studies 

132 

accurately than the other 39 beams, which were modelled with their design values. The results of  those 

beams are presented in Annex B.2. 

In the figures, the obtained slip values are connected with lines in order to see the slip distribution 

function. In Chapter 9, it is proposed to approximate the slip distribution with a cosine function; 

therefore, a cosine curve is also plotted on the figures.  

In the figures, we can observe that the slip distribution can vary based on the type of shear connection 

as well as the distribution of the shear connectors. Shear connection distribution DP1 represent an 

equidistant spacing of 600 mm and DP2 represents and equidistant spacing of 300 mm. In all cases the 

largest slip belongs to the outermost shear connectors, i.e. always the end slip is the largest slip value. 

In general, the slip distribution is closer to a cosine function in those cases where the shear connector 

spacing (DP1) is 600 mm than in the cases with 300 mm spacing (DP2). This can be explained by the 

fact that beams with distribution DP2 fail generally at much higher deflection levels than beams with 

distribution DP1 (see Annex B.2). Higher levels of deflection result in higher plastic strains, which have 

a direct effect on the slip distribution (see Figure 9.3). As long as the plastic strains are relatively low, 

the slip distribution resembles more to the elastic slip distribution, which is usually approximated by a 

cosine function (for instance [43] and [44]). 

A cosine function seems to be a reasonable approximation anyway, as it is easy to use and can describe 

the slip distribution relatively well even if it does not take the increased slip due to plastification of the 

section into account. Neglecting this increased slip in calculation methods PL1 and PL2 is on the “safe 

side” because it only means that we take a lower concrete compression force into account and finally 

we obtain a lower moment capacity. Nevertheless, the applicability of methods PL1 and PL2 is not 

necessarily limited to a cosine function but other functions can also be used. 

 

 

Figure 7.28 Slip distribution of 6 m long beams with IPE270 
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Figure 7.29 Slip distribution of 6 m long beams with IPE360 

 

 

Figure 7.30 Slip distribution of 8.1 m long beams with IPE450 

 

 

Figure 7.31 Slip distribution of 16.2 m long beams with IPE600 
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The developed calculation methods are presented in Chapter 8 and in Chapter 9. Their practical 

applications are presented in Annex F. This chapter presents the moment-deflection curves in 

comparison with the results obtained by the developed analytical calculations for eight beams (two 

beams for each type of steel profile) from parametric study PS-2. 

 

 
 

(a) (b) 

  

(c) (d) 

Figure 7.32 Comparison of analytically and numerically obtained results (Part 1) 
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7.6.2 Comparison of results with the analytical methods 
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(c) (d) 

Figure 7.33 Comparison of analytically and numerically obtained results (Part 2) 

As one can see, the results obtained by numerical simulations and by analytical calculations are in a 

good agreement. This is especially true for Method EL2 and Method PL1. 
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Based on the performed simulations the following conclusions could be drawn:  

1) The resistance of the composite beams with demountable shear connections were similar to or 

higher than the one with welded studs. 

2) Beams with pretensioned bolts had lower bending stiffness due to the bolt slippage in the bolt 

hole. Similar observations were made during the experimental investigations presented in 

Chapter 5.8. 

3) Among the investigated parameters the highest influence belonged to the yield strength of the 

steel. Beams with a higher steel grade had a higher moment capacity and a lower concrete 

damage. Lower steel grades resulted in higher slips at around the load application points due to 

the plastification of the section. 

4) The non-ductile behaviour of the shear connection did not have an effect on the ductility of the 

composite beam. The beams failed beyond an L / 50 deflection level, which is a generally 

accepted ductility criterion. However, the shear connection, which had lower deformation 

capacity (P0 and P15.2) had a negative effect on the ductility. This means that for the ductility 

of a composite beam the final deformation capacity of the shear connection is more important 

than the ductility of the shear connection. 

5) Low degree of shear connection has a negative effect on the ductility of composite beams 

because the shear connection failure occurs at lower deflection levels. 

6) Beams subjected to a symmetric two-point loading (PS-1) had a slip distribution at failure, 

which was more-or-less constant on the shear length. The plastic moment capacity of these 

beams could be determined relatively accurately using Method PL1. The greatest difference in 

the numerically and analytically obtained moment resistance values was 5%. 

7) The slip distribution of beams subjected to a uniformly distributed load (PS-2) could be 

described with a monotonic decreasing curve. The use of a cosine function for the 

approximation of the slip distribution seems to be reasonable. 

8) The concrete grade did not have a significant influence on the general load-deflection behaviour, 

but the deck elements with lower grade concrete underwent a higher concrete damage. 

Therefore, from a reusability point of view, higher grade concrete (C45/55) is recommended. 

9) The comparison of the results obtained by numerical simulations and the developed calculation 

methods presented in Chapter 8 and in Chapter 9 showed a good agreement. This is especially 

true for Method EL2 and for Method PL1.  

 

  

7.7 Conclusions 
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Understanding the elastic behaviour of a composite beam is essential for the assessment of its 

serviceability performance. This can include the calculation of the deflection, the end slip and the 

stresses for a given load. This chapter covers the following topics: 

1) Basic equations of composite beams 

2) Equations of the second moment of area for different types of shear connection 

3) Calculation of the end slip 

4) The elastic deflection calculation for prismatic and non-prismatic composite beams 

5) Long-term effects 

6) Calculation of the location of the elastic neutral axes for different types of shear connection 

7) Calculation of normal stresses from bending 

An iterative procedure was developed for the calculation of the elastic properties of composite beams 

with nonlinear shear connection (Method EL2). This method is presented in chapter 8.5. 

The derivations presented in this chapter are reduced in length. The complete derivations can be found 

in Annex C. 

The presented calculation method considers the determination of the second moment of area, the 

deflections and the elastic stresses of steel-concrete composite beams. Stability phenomena are not 

considered. It is applicable if the following conditions are satisfied: 

(i) The beam is simply supported and subjected to a positive bending moment. 

(ii) The concrete deck is placed above the steel section (i.e. downstand composite beams). 

(iii) The steel beam can be hot-rolled or fabricated (Class 1, 2 or 3). 

(iv) The concrete deck can be solid or with profiled decking. 

(v) The section is symmetric to the vertical axis. 

(vi) The shear connection is distributed uniformly along the length. 

(vii) The slip distribution function can be approximated with a cosine function. 

(viii) The load-slip behaviour of the shear connection can be described with a monotonic increasing 

curve. 

 

 

 

Chapter 8. Elastic behaviour of composite beams 

8.1 General 

8.2 Scope of the calculation method 
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The forthcoming derivations are based on the following assumptions: 

(i) The beam in consideration is a Euler-Bernoulli beam, i.e. the cross-sections originally plane and 

perpendicular to the axis of the beam remain plane and perpendicular to the axis of the beam 

after deformation. 

(ii) Only small displacements are considered. 

(iii) The steel and the concrete can be considered as linear elastic isotropic materials. 

(iv) There is no separation between the steel beam and the concrete slab. 

(v) There is no cracking of the concrete. 

(vi) The curvature of the steel and the concrete is the same at any section. 

The basic equations presented here were already presented in the international literature by several 

researchers, for instance by Hoischen [41], Hanswille [43], [82] and by Lawson et al. [44]. Nevertheless, 

they are re-presented in this section because they are fundamental for understanding the new method 

presented in Chapter 8.5. 

In order to determine the second moment of area Iy,eff  of the composite section, first consider the 

equilibrium equations of the composite section due to an externally applied moment My(x) As a result 

of the composite action, a compression force Fx,c(x) acts in the concrete slab and a tension force Fx,a(x) 

in the steel beam (see Figure 8.1).  

 

 

Figure 8.1 Theoretical model and cross-sectional forces of a composite beam with flexible shear 

connection 

If there is no externally applied normal force, the magnitudes of these forces are equal. This will be 

denoted as Fx(x) in the forthcoming. 

8.3 Assumptions 

8.4 Fundamentals 

8.4.1 Basic equations 
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  |𝐹𝑥,𝑎(𝑥)| = |𝐹𝑥,𝑐(𝑥)| = 𝐹𝑥(𝑥) (8.1) 

The externally applied moment My(x) is equilibrated by the moment resisted by the slab My,c(x), the 

moment resisted by the steel beam My,a(x) and the moment generated by the pair of the normal forces 

Fx(x): 

𝑀𝑦(𝑥) = 𝑀𝑦,𝑐(𝑥) + 𝑀𝑦,𝑎(𝑥) + 𝐹𝑥(𝑥) ∙ 𝑎 (8.2) 

where a is the distance between the centroidal axes of the slab and the steel beam.  

The curvature of the slab and the steel beam is the same at any sections: 

𝑀𝑦,𝑐(𝑥)

𝐸𝑐𝐼𝑦,𝑐
=
𝑀𝑦,𝑎(𝑥)

𝐸𝑎𝐼𝑦,𝑎
=
𝑀𝑦(𝑥)

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
= 𝜅(𝑥) (8.3) 

The modular ratio expresses the ratio of the modulus of elasticity of the steel and of the concrete: 

𝑛 = 𝐸𝑎/𝐸𝑐 (8.4) 

Using equation (8.3) in equation (8.2), we can express the second moment of area as: 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹(𝑥) ∙ 𝑎

𝐸𝑎𝜅(𝑥)
 (8.5) 

The rate of change of slip 𝑑𝑠(𝑥)/𝑑𝑥 is determined by the strain difference between the steel and the 

concrete at their contact surface: 

𝑑𝑠(𝑥)

𝑑𝑥
= 𝜀𝑥,𝑎(𝑧, 𝑥) − 𝜀𝑥,𝑐(𝑧, 𝑥) (8.6) 

The moment equation of a composite section can be expressed as: 

𝑀𝑦(𝑥) = −
𝑑𝑠(𝑥)

𝑑𝑥
∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓

𝑎
+
𝐹𝑥(𝑥)𝐼𝑦,𝑒𝑓𝑓

𝑎
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

) (8.7) 

The complete derivation can be found in Annex C, equations (C.32) - (C.46). 

The second moment of area is one of the most important properties of a section. Among others, it is 

used for the calculation of the deflections and the stresses. Although some of the derivations presented 

in this chapter have already been presented in the international literature by [43] and [44] in a similar 

way, they are re-presented here because they are fundamental for the understanding of the equations 

presented in Chapter 8.5. 

 

8.4.2 Second moment of area 
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No shear connection 

If there is no shear connection, there is no compression force in the concrete from composite action: 

𝐹(𝑥) = 0 (8.8) 

Using this in equation (8.5), the second moment of area will be the sum of the second moment of area 

of the steel and of the concrete divided by the modular ratio. The concrete contribution is often 

neglected: 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹𝑥(𝑥) ∙ 𝑎

𝐸𝑎𝜅(𝑥)
=
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 ≈ 𝐼𝑦,𝑎 (8.9) 

Rigid shear connection 

In order to determine the second moment of area, we use equation (8.5): 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹𝑥(𝑥) ∙ 𝑎

𝐸𝑎𝜅(𝑥)
  

with: 

𝐸𝑎𝜅(𝑥) = 𝑀𝑦(𝑥)/𝐼𝑦,𝑒𝑓𝑓 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹𝑥(𝑥) ∙ 𝑎 ∙ 𝐼𝑦,𝑒𝑓𝑓

𝑀𝑦(𝑥)
 (8.10) 

In the case of rigid shear connection, there is no slip between the slab and the steel beam: 

𝑠(𝑥) = 0, and (8.11) 

𝑑𝑠(𝑥)

𝑑𝑥
= 0 (8.12) 

So, equation (8.7) becomes: 

𝑀𝑦(𝑥) =
𝐹𝑥(𝑥)𝐼𝑦,𝑒𝑓𝑓

𝑎
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

) (8.13) 

By substituting equation (8.13) into equation (8.10) we obtain the effective second moment of area of a 

composite beam with rigid shear connection: 

𝐼𝑦,𝑒𝑓𝑓 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝐴𝑐𝐴𝑎
𝐴𝑐 + 𝑛𝐴𝑎

∙ 𝑎2 (8.14) 

The complete derivation can be found in Annex C, equations (C.50) - (C.54). 
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Flexible (linear elastic) shear connection (Method EL1) 

In the case of flexible shear connection, the exact solution of the slip distribution, the compression force 

in the concrete and the longitudinal shear force requires the solution of the differential equation of the 

composite beam; and therefore a rather complex task for practical applications (see Chapter 2.2). 

As a simplification, generally the slip s(x) is assumed to vary according to a cosine function along the 

length of the beam (for instance by Hanswille and Schäfer [43] and by Lawson et al. [44]). As a result, 

the compression force and the bending moment My(x) are assumed to vary according to a sine function. 

This moment diagram corresponds to an external load qz(x) that is distributed according to a sine 

function along the length. However, it is still a good approximation for a uniformly loaded beam where 

the moment diagram is a second order parabola.  

The second moment of area can be determined in the same way as in the case of rigid shear connection. 

The assumed slip function is: 

𝑠(𝑥) = 𝑠̅ ∙ cos (
𝜋𝑥

𝐿
)  (8.15) 

where 𝑠̅ is the end slip, L is the span of the beam, and 𝑥 is the distance along the length of the beam from 

a support. 

Therefore: 

𝑑𝑠(𝑥)

𝑑𝑥
= −𝑠̅ ∙

𝜋

𝐿
∙ sin (

𝜋𝑥

𝐿
) (8.16) 

The shear connector forces Psc(x) are not considered in discrete points, but over a unit length: 

𝑃𝑠𝑐(𝑥) = 𝑠(𝑥) ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

= 𝑠̅ ∙ cos (
𝜋𝑥

𝐿
) ∙

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

 (8.17) 

where ksc is the stiffness of the shear connectors, and ssc,eq is the equivalent longitudinal spacing. The 

compression force in the slab Fx(x) can be determined from the integral of the shear connector forces:  

𝐹𝑥(𝑥) = ∫ 𝑃𝑠𝑐(𝑥) 𝑑𝑥
𝑥

0

= 𝑠̅ ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∫ cos (
𝜋𝑥

𝐿
) 𝑑𝑥 =

𝑥

0

  

𝐹𝑥(𝑥) = 𝑠̅ ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
∙ sin (

𝜋𝑥

𝐿
) (8.18) 
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Using equations (8.16) and (8.18), equation (8.7) becomes: 

𝑀𝑦(𝑥) = 𝑠̅ ∙ sin (
𝜋𝑥

𝐿
) ∙
𝐼𝑦,𝑒𝑓𝑓

𝑎
(𝐸𝑎 ∙

𝜋

𝐿
+
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)) (8.19) 

By substituting equations (8.19) and (8.18) into equation (8.10) we obtain the effective second moment 

of area of composite beams with flexible shear connectors: 

𝐼𝑦,𝑒𝑓𝑓 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝐴𝑐/𝑛

1 +
𝐴𝑐
𝑛𝐴𝑎

+ (
𝐸𝑎

𝑘𝑠𝑐/𝑠𝑠𝑐,𝑒𝑞
) (
𝜋
𝐿
)
2
(
𝐴𝑐
𝑛
)
∙ 𝑎2 

(8.20) 

The end slip as the function of the mid-span moment 𝑀̅ is: 

𝑠̅ =
𝑀̅ ∙ 𝑎

𝐼𝑦,𝑒𝑓𝑓 (𝐸𝑎 ∙
𝜋
𝐿 +

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋 (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))

 
(8.21)   

Or, by introducing an auxiliary parameter Sk: 

𝑆𝑘 =
𝑎

𝐸𝑎

(
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

) (
𝐿
𝜋)

2 +
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

 

(8.22) 

𝑠̅ = 𝑀̅
𝑆𝑘
𝐼𝑦,𝑒𝑓𝑓

𝑠𝑠𝑐,𝑒𝑞

𝑘𝑠𝑐

𝜋

𝐿
 (8.23) 

Alternatively, the mid-span moment that belongs to a certain the end slip is: 

𝑀̅ = 𝑠̅
 𝐼𝑦,𝑒𝑓𝑓

𝑆𝑘

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
 (8.24) 

The complete derivation can be found in Annex C, equations (C.55) - (C.60). 

An example of the practical application of this calculation is presented in Annex F.3.  
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The elastic deflection of a composite beam can be determined as the double integral of the curvature 

function.  

𝜅(𝑥) =
𝑀(𝑥)

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
 (8.25) 

When the beam in consideration is prismatic, i.e. the cross-section is uniform along the length, the well-

known formulations can be used for the calculation of the deflections. These formulations are 

summarised here for the basic load cases. 

For a point load 𝑃 at mid-span: 

𝑤̅ =
𝑃𝐿3

48 ∙ 𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
 (8.26) 

For symmetric two-point loads acting at a distance 𝑒 measured from the supports: 

𝑤̅ =
𝑃𝑒

24 ∙ 𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
∙ (3𝐿2 − 4𝑒2) (8.27) 

For uniformly distributed load: 

𝑤̅ =
5

384
∙
𝑞𝐿4

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
 (8.28) 

 

 

Figure 8.2 Comparison of the numerically and analytically obtained deflections 
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8.4.3 Elastic deflection determination 
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Figure 8.2 shows the comparison of the analytically and numerically determined deflections of a 

composite beams analysed in the frame of the parametric studies presented in Chapter 7. The beam was 

denoted as 16E60-S3C20M-DP1-P3.3, which corresponds to a 16.2 m long composite beam with an 

IPE 600 section made of S355 steel and C20/25 concrete deck. It uses shear connectors of type P3.3  

distributed uniformly in pairs with a longitudinal spacing of 300 mm. The deflection was calculated 

using Equation (8.28), and the second moment of area was determined using Equation (8.20). 

The concrete slab and the steel beam have their own elastic neutral axes: 

 

 

Figure 8.3 Strain diagram of a composite section with flexible shear connection 

Elastic neutral axes in the case of no shear connection 

If there is no shear connection, each element has its neutral axis in its centroidal axis. Using the notations 

of the Figure 8.3, this means: 

𝑧𝑒𝑙,𝑐 = ℎ𝑐/2 (8.29) 

𝑧𝑒𝑙,𝑎 = 𝑦𝑎 (8.30) 

where zel,c is the distance between the neutral axis of the concrete and its extreme fibre in compression, 

and zel,a is the distance between the neutral axis of the steel beam and its extreme fibre in compression. 

Elastic neutral axes in the case of rigid shear connection 

If the connection between the slab and the steel beam is rigid, their neutral axes coincide: 

𝑧𝑒𝑙,𝑐 = ℎ𝑐 + ℎ𝑝 + 𝑧𝑒𝑙,𝑎 (8.31) 

 

 

 

8.4.4 Location of the neutral axes 
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Elastic neutral axes in the case of flexible shear connection 

In the case of a flexible shear connection, the location of the elastic neutral axes depends on the stiffness 

and spacing of the shear connectors. At any section, the concrete is subjected to a bending moment 

My,c(x) and a compression force Fx(x). The corresponding strains are presented in Figure 8.4. 

 

 

Figure 8.4 Strains in the slab 

Similarly, at any section, the steel beam is subjected to a bending moment My,a(x) and a tension force 

Fx(x). The corresponding strains are presented in Figure 8.5. 

 

 

Figure 8.5 Strains in the beam 

Based on these strain diagrams, the location of the neutral axes can be written as the function of the 

shear connection stiffness and spacing: 

𝑧𝑒𝑙,𝑐 =
ℎ𝑐
2
+
𝑛 ∙ 𝑆𝑘
𝐴𝑐

 (8.32) 

𝑧𝑒𝑙,𝑎 = 𝑦𝑠 −
𝑆𝑘
𝐴𝑎

 (8.33) 

where Sk is an auxiliary parameter given by Equation (8.22). 

The complete derivations can be found in Annex C, equations (C.70) - (C.86). 
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EN1994-1-1 [18], A.3 proposes that the shear connector stiffness ksc may be taken as: 

𝑘𝑠𝑐 = 0.7𝑃𝑅𝑘/𝑠 (8.34) 

where: 

PRk:  is the characteristic resistance of the shear connector; 

s: is the slip, determined from push tests in accordance with EN1994-1-1 [18], Annex B, at a 

load of 0.7 PRk. 

It is important to note that the above equation refers mainly to welded studs that have a more-or-less 

ideal bi-linear elastic-plastic behaviour, where the load level of 0.7 PRk fells into the elastic part. The 

tested demountable shear connectors behave differently than the welded studs. Although several 

different variants have been tested, one common property of the different results was the highly 

nonlinear load-slip behaviour (see Figure 4.24). The behaviour of the pre-tensioned shear connectors 

can be divided into three distinct parts: 

1) First, the shear connections behave rigidly until the friction resistance is overcome. 

2) Second, bolt slip occurs inside the bolt hole. 

3) Finally, the third part is the shear deformation of the bolts. 

Generally, the load level of  0.7 PRk fells into the third part of the load-slip curve. As a result, the stiffness 

at this point cannot represent the stiffness of the shear connectors accurately for all load levels. Indeed, 

the actual stiffness depends on the acting load on the shear connector, which is different for all shear 

connectors along the length. Maintaining the assumption of a cosine slip function, the slip at each shear 

connector can be determined with Equation (8.15). If the slip of the connector is known, the secant 

stiffness ksc,i of each shear connector can be determined from the load-slip curve (see Figure 8.6). 

 

 

 

Figure 8.6 Secant stiffness depending on the occurring slip 

8.5 Composite beams with nonlinear shear connection (Method EL2) 

8.5.1 Second moment of area for nonlinear connection 
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𝑘𝑠𝑐,𝑖 =
𝑃𝑠𝑐,𝑖
𝑠𝑖

 (8.35) 

The individual shear connector forces over a unit length can be expressed as: 

𝑃𝑠𝑐,𝑖(𝑥) = 𝑠(𝑥) ∙
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

= 𝑠̅ ∙ 𝑐𝑜𝑠 (
𝜋𝑥

𝐿
) ∙
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

 (8.36) 

Strictly speaking, the cosine slip distribution in the previous equation corresponds to a sinusoidal loading 

and a linear elastic shear connection. The conducted parametric studies show (Chapter 7), that it is still 

a reasonable approximation for uniformly distributed loading and nonlinear shear connection. However, 

it is important to note that the more the moment diagram differs from a sinusoidal curve the less accurate 

this approximation will become.  

Because this function is non-continuous over the length, the compression force in the concrete slab will 

become the sum of the integrals of the parts where the function is continuous: 

𝐹𝑥(𝑥𝑚) =∑∫ 𝑃𝑠𝑐,𝑖(𝑥)𝑑𝑥

𝑖∙𝐿
2𝑛𝑝

(𝑖−1)𝐿
2𝑛𝑝

𝑚

𝑖=1

= 𝑠̅∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ [sin(

𝑖𝜋

2𝑛𝑝
) −sin (

(𝑖 − 1)𝜋

2𝑛𝑝
)]  

𝑚

𝑖=1

 (8.37) 

where m is the number of shear connectors (or pairs of shear connectors) and xm is the distance from the 

support until the section in consideration. Using the previous formula, Equation (8.7) becomes: 

𝑀𝑦(𝑥𝑚) = 𝑠̅ ∙
𝜋

𝐿
∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚

𝑎
sin(

𝑚𝜋

2𝑛𝑝
) +

+ 𝑠̅∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ [sin (

𝑖𝜋

2𝑛𝑝
) − sin(

(𝑖 − 1)𝜋

2𝑛𝑝
)]  

𝑚

𝑖=1

𝐼𝑦,𝑒𝑓𝑓,𝑚

𝑎
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

) 

(8.38) 

The second moment of area can be expressed similarly as using equations (C.87) - (C.92). 

𝐼𝑦,𝑒𝑓𝑓,𝑚 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝑎2

𝜋
𝐿 ∙

𝐸𝑎 sin (
𝑚𝜋
2𝑛𝑝

)

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) −sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  𝑚
𝑖=1

+ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)

 

(8.39) 

This equations shows that the second moment of area is not constant nor continuous over the length, but 

it takes a certain value at every shear connector. 

 

 

 



8. Elastic behaviour of composite beams 

148 

The second moment of area at midspan is: 

𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝑎2

𝜋
𝐿
∙

𝐸𝑎

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) − sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  
𝑛𝑝
𝑖=1

+ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)
 

(8.40) 

where np is the number of shear connectors (or pairs of shear connectors) over the shear length. 

These derivations commenced with the assumption that the slip at every shear connector is known, i.e. 

the end slip is known. However, the occurring the end slip depends on the load level. Its value can be 

expressed based on the the mid-span moment and the effective second moment of area at mid-span: 

𝑠̅ =
𝑀̅ ∙ 𝑎

𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝 (
𝜋
𝐿 ∙ 𝐸𝑎 +

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) − sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  
𝑛𝑝
𝑖=1

(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))

 
(8.41) 

As one may notice, the end slip depends on the shear connector stiffness values and vice-versa. In other 

words these values are interdependent. The solution for this issue is an iterative procedure: 

1) At the beginning of the calculation, the value of the end slip is unknown; therefore, it is 

necessary to assume any value between zero and the maximum possible end slip defined by the 

load-slip curve 

2) Then, the secant stiffness of the shear connectors can be determined by equation (8.35). 

3) Afterwards, the second moment of area at mid-span can be calculated by equation (8.40). 

4) The end slip can be calculated by equation (8.41). 

5) The calculated end slip needs to be compared to the initial assumption. 

6) If the discrepancy between the two end slips is greater than 1%, the initial assumption needs to 

be updated with the calculated end slip and all the steps need to be repeated. 

7) When the discrepancy between the two end slip values is less than 1%, the second moment of 

area can be determined at each shear connector by equation (8.39). 

8) Due to the different bending stiffness values, the beam cannot be considered to be prismatic 

anymore. For the calculation of the deflections, the deflection increments need to be calculated 

first. This is presented in chapter 8.5.2. 

9) The total deflection will be the sum of the defection increments (equation (8.43)). 

The error in the end slip (the difference between the assumed end slip and the calculated one) decreases 

with each iteration. Figure 8.7 shows how the error decreases with the iterations with the help of four 

examples. The flowchart of the iterative procedure is presented in Figure 8.8. 

The complete derivations of the equation presented in this chapter can be found in Annex C, equations 

(C.87) - (C.94). An example of the practical application of this calculation method is presented in 

Annex F.4. 
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Figure 8.7 Error in end slip vs. the number of iterations 

 

 

Figure 8.8 Iterative procedure for the determination of the elastic deflection 
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As it was described in the previous section, when shear connectors with nonlinear load-slip curves are 

applied, the second moment of area is not uniform along the length, but it has certain values between 

the sections of each shear connector. Therefore, the beam cannot be considered as a prismatic beam.  

 

 

Figure 8.9 Loading, slip, moment, curvature and deflection diagram of a composite beam with 

nonlinear shear connection 

The function of the curvature is not continuous because of the different second moment of area values 

along the length: 

𝜅𝑚(𝑥𝑚) =
𝑀(𝑥𝑚)

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚
 (8.42) 

As a result, the deflection at mid-span 𝑤̅ will be the sum of the integral of the parts where the previous 

function is continuous: 

𝑤̅ = ∑ ∬ 𝜅𝑚(𝑥)𝑑𝑥
2

𝑚∙𝐿
2𝑛𝑝

(𝑚−1)𝐿
2𝑛𝑝

𝑛𝑝

𝑚=1

= ∑ 𝑤𝑚

𝑛𝑝

𝑚=1

 (8.43) 

 

  

8.5.2 Elastic deflection of beams with nonlinear shear connection 
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The previous integral (equation (8.43)) was solved for basic load cases. 

For a point load P at mid-span: 

𝑤𝑚 =
𝑃/2

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚
∙ [
𝐿2

8
(𝐴 − 𝐵) +

1

6
(𝐵3 − 𝐴3)] (8.44) 

Where the variables A and B denote the integration boundaries of the section in consideration: 

𝐴 =
𝑚 ∙ 𝐿

2𝑛𝑝
 

𝐵 =
(𝑚 − 1)𝐿

2𝑛𝑝
 

For symmetric 2-point loads acting at a distance e measured from the supports: 

𝑤𝑚 =
𝑃

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚
∙ [
𝐿2

8
(𝐴 − 𝐵) +

1

6
(𝐵3 − 𝐴3)] (8.45) 

for  0 < 𝐴 < 𝑒 , and  

𝑤𝑚 =
𝑃 ∙ 𝑒

2 𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚
∙ [𝐿(𝐴 − 𝐵) + (𝐵2 − 𝐴2)] 

for 𝑒 < 𝐴 < 𝐿/2 

(8.46) 

For uniformly distributed load: 

𝑤𝑚 =
𝑞

24𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚
∙ [𝐿3(𝐴 − 𝐵) + 2𝐿(𝐵3 − 𝐴3)  + 𝐴4 − 𝐵4] (8.47) 

The uniformly distributed load can be approximated with a sinusoidal load. This means that the second 

order parabola shaped moment diagram will be approximated with a sinusoidal one: 

𝑀𝑦(𝑥) = 𝑀̅ sin (
𝜋𝑥

𝐿
) (8.48) 

Then, the deflection increments are: 

𝑤𝑚 =
𝑀̅

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚
(
𝐿

𝜋
)
2

 [𝑠𝑖𝑛 (
𝐴𝜋

𝐿
) − 𝑠𝑖𝑛 (

𝐵𝜋

𝐿
)]   (8.49) 

The following figure shows the comparison between the numerically determined deflections and the 

deflections calculated using the presented iterative procedure for a 16 m long composite beam, which 

was earlier used for the comparison presented in Figure 8.2: 
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Figure 8.10 Comparison of the numerically and analytically determined deflections 

Eurocode 4 [18] accounts for long-term effects such as creep and shrinkage with a modified modular 

ratio: 

𝑛𝐿 = 𝑛0(1 + 𝜓𝐿𝜑𝑡) (8.50) 

Where: 

n0 is the modular ratio Ea / Ecm for short term loading; 

Ecm is the secant modulus of elasticity of the concrete for short-term loading according to EN1992-1-

1 [49]; 

φt is the creep coefficient according to EN1992-1-1 [49] depending on the age t of the concrete at 

the moment considered and at the age t0 at loading; 

ψL is the creep multiplier depending on the type of loading (ψL = 1.1 for permanent loads and 

ψL = 0.55 for primary and secondary effects). 

As a result, the composite beam stiffness EIy,eff is lower for long-term loads than it is for short-term 

loads. Usually, the deflections are determined for long-term loads (wlt) and for short-term loads (wst) 

separately, and then the final deflection (wtot) can be calculated as their sum: 

𝑤𝑡𝑜𝑡 = 𝑤𝑙𝑡 +𝑤𝑠𝑡 (8.51) 

This calculation causes no problem when a flexible or a rigid shear connection is used,. However, in the 

case of nonlinear shear connection, the actual stiffness of each shear connector depends on the occurring 

slip and the load level. This means that by the time the short-term loads are applied to the structure, the 

0

500

1000

1500

2000

2500

3000

0 100 200 300 400

M
o
m

e
n
t,
 M

 [
k
N

m
]

Mid-span deflection, v [mm]

L/300 L/50

MEl

Elastic deflection (Method EL1)

Deflection (ABAQUS)

Elastic deflection
(Method EL2)

8.5.3 Long-term effects on the deflection 
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shear connectors have already undergone some slip due to the long-term loads. In order to take this 

effect into account, the following calculation method is proposed: 

1) Determine the deflection due to long-term loads wlt with the long-term modular ratio nL. 

2) Check the occurring slip si at each shear connector. 

3) At every shear connector offset the origin of the load-slip curve to the actual load-slip values 

(Psc,i; si). (see Figure 8.11) 

4) Determine the deflection due to short-term loads wst with the short-term modular ratio n0 and 

the modified load slip curves. 

5) The total deflection can be calculated by Equation (8.51). 

 

 

Figure 8.11 Offset of the load-slip diagram for the calculation of short-term deflections 

When deriving the equations for the location of the elastic neutral axes, it is necessary to divide the 

beams into sections at each shear connector because each shear connector has a different secant stiffness. 

As a result, the location of the neutral axes will not be constant along the length but will change at every 

shear connector. At shear connector number m: 

𝑧𝑒𝑙,𝑐,𝑚 =
ℎ𝑐
2
+
𝑛 ∙ 𝑆𝑘,𝑚
𝐴𝑐

 (8.52) 

𝑧𝑒𝑙,𝑎,𝑚 = 𝑦𝑠 −
𝑆𝑘,𝑚
𝐴𝑎

 (8.53) 

Where Sk,m is the auxiliary parameter at location m: 

𝑆𝑘,𝑚 =
𝑎

𝐸𝑎

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

∙ [sin (
𝑖𝜋
2𝑛𝑝

) − sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  𝑚
𝑖=1 (

𝐿
𝜋)

2 +
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

 

(8.54) 

8.5.4 Elastic neutral axes in the case of nonlinear shear connection 
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The derivations of equations (8.52) - (8.54) was done using equations (8.37) - (8.39) in a similar way 

as presented in Annex C by equations (C.70) - (C.86).  

When a composite section is designed elastically, a stress verification should be performed proving that 

the stresses everywhere in the section in the corresponding limit state are below the elastic limit stresses 

(see Chapter 2.3.3). The stresses are usually determined with the help of the well-known formulae of 

structural mechanics using the cross-sectional properties of a homogenised cross-section: 

Normal stress in the concrete: 𝜎𝑥,𝑐(𝑥, 𝑧) =
𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓(𝑥)
∙ 𝑧𝑐(𝑥)  (8.55) 

Normal stress in the steel: 𝜎𝑥,𝑎(𝑥, 𝑧) =
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓(𝑥)
∙ 𝑧𝑎(𝑥) (8.56) 

The derivation of these equations are presented in Annex C by equations (C.47) - (C.49). 

It is important to note that in the previous formulae, both the second moment of area and the location of 

the neutral axes depend on the position along the length if a nonlinear shear connection is applied. These 

parameters are constant in the case of rigid or flexible shear connection.  

  

8.5.5 Elastic stresses from bending 
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The calculation method that is suitable for the determination of the plastic moment resistance of a 

composite beam is largely influenced by the behaviour of the shear connection. This chapter presents 

the calculation methods for composite beams with rigid-ductile and rigid-brittle shear connections. A 

new calculation method is also presented in Chapter 9.4.2 for the calculation of the plastic moment 

resistance of composite beams with flexible or nonlinear shear connection, and a simplified procedure 

is proposed in Chapter 9.4.3. 

For the determination of the plastic moment resistance MRd of composite beams with ductile shear 

connectors, the approach given by Eurocode 4 [18] is based on the equilibrium and moment equations 

that correspond to the plastic stress distribution. The approach assumes full plasticity, i.e. everywhere 

in the section the stresses are equal to their plastic limit stresses and all the shear connectors undergo 

plastic deformations. Where the shear connector behaviour can be described by an ideal rigid-plastic 

load-slip curve this approach is convenient to use because the longitudinal shear force will be the same 

(PRd) at every shear connector along the length. The developing compression force in the concrete equals 

to the sum of the shear connector forces between the critical sections. As every shear connector develops 

the same shear force, the compression force in the concrete can be determined by multiplying the shear 

connector resistance with the number of shear connectors between the critical sections (equation (2.35)). 

The same principles apply for full and for partial shear connection as well. This approach was already 

presented in detail in Chapter 2.3.2. It is important to note that the use of this approach might lead to 

unconservative design when not rigid-ductile, but flexible ductile connectors are used. 

In the case of rigid shear connection, the redistribution of the shear forces is not possible; therefore, the 

slip must be kept small (≈0). This leads to a shear connector distribution that follows the elastic shear 

flow in the elastic zone (where ME ≤ Mel) of the beam. In the plastic zone of the beam (where 

Mel < ME ≤ Mpl), additional shear connectors are required because the longitudinal shear force will 

increase due to the plastification of the members (see Figure 9.1). The longitudinal shear force in the 

plastic zone (vL,p) can be calculated from the difference between the compression force of the concrete 

at the sections where the elastic moment resistance Mel is reached and the position of the maximum 

bending moment ME,max divided by the length between these sections (Lp) [82]: 

𝑣𝐿 =
𝑁𝑐,𝑝𝑙 −𝑁𝑐,𝑒𝑙

𝐿𝑝
 (9.1) 

Chapter 9. Plastic moment resistance of composite beams 

9.1 General 

9.2 Composite beams with rigid-ductile shear connection 

9.3 Composite beams with rigid-brittle shear connection 
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The determination of the normal force Nc,pl in the plastic zone requires an iterative procedure, which 

needs to consider the occurring strains. 

Alternatively, Eurocode 4 [18] proposes a linear interpolation, which was already presented in 

Chapter 2.3.4. 

 

 

Figure 9.1 Longitudinal shear flow and the normal stress diagrams in the elastic and plastic limit state 

When flexible shear connectors are applied, a relative slip occurs at the steel-concrete interface. 

Consequently, some sort of redistribution of the longitudinal shear is possible depending on the 

flexibility and the deformation capacity of the connection.  

In order to be able to calculate the moment capacity of a composite beam it is essential to know the 

developing compression force in the concrete slab. This force depends on the shear force that the shear 

connectors can transfer. However, given that the load-slip behaviour is a flexible one, the force will be 

different in each shear connector depending on the occurring slip. The compression force in the concrete 

deck will be then the sum of the shear connector forces. Consequently, it is necessary to know the value 

of the occurring slip at each shear connector along the length at the load level where the plastic moment 

resistance is reached. The slip originates from the relative strain difference between the bottom fibre of 

the concrete deck and the top fibre of the steel beam. For a simply supported beam with flexible shear 

connectors and linear load-slip curve, it is usually assumed that the slip distribution along the length 

follows the shape of the integral of the moment diagram as long as the beam is in elastic state [83]. As 

a simplification, some researchers [43], [44] assume a cosine shaped slip distribution along the length. 

Theoretically, this would correspond to a sinusoidal moment diagram but it is also a reasonable 

approximation for uniformly loaded beams with a second order moment diagram. 

Beyond the elastic limit (ME > Mel,R), further elastic deformations occur and plastic strains start to 

develop. A plastic zone starts to form at the location of the maximum bending moment. 

9.4 Composite beams with flexible or nonlinear shear connection 

9.4.1 Fundamental behaviour 
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Figure 9.2 Comparison of  a sinusoidal curve and a second order parabola 

This is not limited to a discrete section but it has a certain length that includes all the sections where the 

acting moment is higher than the elastic moment resistance (c.f. Figure 9.1). This part of the beam will 

be referred to as the “plastic zone”. The sections outside this region remain in elastic state. The slip due 

to plastic deformation is constant in the elastic part of the beam [52]. The total slip can be determined 

as the sum of the slips due to elastic and plastic deformations (see Figure 9.3). In the figure below, the 

slip distribution curve is schematic but not in scale. 

 

 

Figure 9.3 Slips due to elastic and plastic deformations 

Nonetheless, the evaluation of the occurring slip is a complex task, as the slip due plastic deformation 

is difficult to quantify. It depends on several different factors, such as: 

1) the length of the plastic zone, 

2) the material behaviour, 

3) the location of the neutral axes, 

4) the loading situation, 

5) the load-slip behaviour of the connectors, and 

6) the number of shear connectors. 

Without the use of a non-linear finite element simulation, this information is hardly obtainable.   

Sine

2nd order
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In order to overcome the issues presented in the previous section, herein a new approach is proposed, 

which can be used for the determination of the plastic moment resistance of composite beams with 

flexible and with nonlinear shear connection. 

The presented method is applicable if the following conditions and assumptions are satisfied: 

(i) The beam is simply supported and subjected to a positive bending moment. 

(ii) The concrete deck is placed above the steel section (i.e. downstand composite beams). 

(iii) The steel section is Class 1 or 2 according to EN1993-1-1 [8]. 

(iv) The steel beam can be hot-rolled or fabricated. 

(v) The concrete deck can be solid or with profiled decking. 

(vi) The section is symmetric to the vertical axis. 

(vii) The shear connection is distributed uniformly along the length. 

(viii) The load-slip behaviour of the shear connection can be described with a monotonic increasing 

curve. 

(ix) The curvature of the composite beam under failure conditions is large enough to enable the 

assumption of a plastic stress distribution in the cross-section. 

Among the aforementioned conditions and assumptions, (ix) is difficult to quantify without the help of 

a numerical analysis. Nonetheless, the design method of Eurocode 4 [18] assumes that this condition is 

satisfied when the requirements for the minimum degree of shear connection are met. 

It is important to note that the minimum degree of shear connection rules were developed based on 

studies on headed studs that had a slip capacity at least 6 mm. The calculation method presented here is 

not limited to shear connectors that have a larger slip capacity than 6 mm. However, a higher degree of 

shear connection is required when shear connectors with low slip capacity (< 6 mm) are applied. The 

exact definition of the minimum required degree of shear connection is out of the scope of this thesis; 

and therefore, the application of this procedure for beams with shear connectors that have a lower slip 

capacity than 6 mm is not recommended as long as a reliable definition for the minimum degree of shear 

connection is not established. 

It is also important to point out that the development of this procedure was made based on simply 

supported beams subjected to uniformly distributed loading. The more the bending moment diagram 

differs from a sinusoidal shape, the less accurate this procedure will become. 

If all the presented conditions are satisfied, the plastic moment resistance can be determined in the 

following way: First, it is necessary to assume: 

1) a certain value for the end slip 𝑠̅ when the plastic moment capacity is reached, and 

2) a certain slip distribution function along the length s(x). 

9.4.2 New plastic calculation method for nonlinear shear connections (Method PL1) 
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With these assumptions, the occurring slip si can be estimated at each shear connector row and therefore 

the shear connector forces Psc,i can be determined with the help of their load-slip curve. The sum of these 

forces will be then the compression force in the concrete deck (equation (9.2)). 

 

 

Figure 9.4 Determination of shear force from the slip distribution with the help of the load-slip curve 

𝑁𝑐 = 𝑛𝑟∑𝑃𝑠𝑐,𝑖

𝑛𝑝

𝑖=1

 (9.2) 

where: 

nr is the number of shear connectors in a row, and  

np is the number of shear connector rows placed within the critical length 

Knowing the compression force Nc in the concrete, the plastic stress distribution can be determined. The 

moment resistance Mpl,η can be calculated from the equilibrium and moment equations using the 

Eurocode 4 [18] approach for partial shear connection. 

The presented algorithm is summarised in Figure 9.5. 

 

  



9. Plastic moment resistance of composite beams 

160 

 

 

Figure 9.5 Algorithm for the determination of the plastic moment resistance of composite beams with 

non-ductile shear connection (Method PL1) 

The accuracy of the algorithm depends on the initially assumed end slip and slip distribution function. 

As presented in Chapter 2.7 and 9.4.1, the approximation of the occurring end slip is complicated at the 

ultimate limit state. However, experimental and numerical investigations show that the following 

assumptions are reasonable:  

(i) The end slip can be approximated by equation (9.4). 

(ii) The slip distribution can be described by a cosine function (equation (9.3)) similarly to the 

elastic calculations [80]. 

𝑠(𝑥) = 𝑠̅ ∙ cos (
𝜋 ∙ 𝑥

𝐿
) (9.3) 

The approximation of  the end-slip when the plastic moment capacity is reached is not recommended by 

Eggert’s [58] or Johnson and Molenstra’s [57] formulae, which were presented in Chapter 2.7 because 

they were developed for headed stud connectors. Therefore, herein a new approximation is presented 

based on Bärtschi’s [52] proposal that was presented in section 2.7.5. However, instead of using the 

degree of shear connection η for the interpolation, it is now proposed to use the degree of interaction ψ. 

 

Calculate the moment resistance 𝑀𝑝𝑙,𝜂 

from the moment equation. 

Determine the slip 𝑠𝑖 at each shear connector row 

from the slip function 𝑠(𝑥). 

Determine the corresponding shear forces 𝑃𝑠𝑐,𝑖 
with the help of the load-slip curve: 

𝑠𝑖 → 𝑃𝑠𝑐,𝑖 

Calculate the compression force in the concrete: 

𝑁𝑐 = 𝑛𝑟∑𝑃𝑠𝑐,𝑖

𝑛𝑝

𝑖=1

 

Assume an end slip 𝑠̅ and a 

slip distribution function 𝑠(𝑥). 

Determine the plastic stress distribution from the 
equilibrium equation. 
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This is based on the fact that at η = 1 we do not necessarily know the occurring end slip, while at the 

theoretical case of ψ = 1 (perfectly rigid shear connection) we know that no slip occurs. The end slip to 

be taken into account when determining the developing shear connector forces is: 

𝑠̅ = min {
𝛿𝑢

𝑠𝑢𝑙𝑡,0 ∙ (1 − 𝜓)
} (9.4) 

where: 

𝛿𝑢 is the slip capacity of the shear connection; 

𝑠𝑢𝑙𝑡,0 is the end slip when the moment capacity is reached in the case of no shear connection 

determined by equation (2.55)); amd 

𝜓 is the degree of interaction determined by equation (9.5): 

𝜓 =
𝐼𝑦,𝑒𝑓𝑓 − (𝐼𝑦,𝑎 +

𝐼𝑦,𝑐
𝑛 )

𝐼𝑦,𝑟𝑖𝑔𝑖𝑑 − (𝐼𝑦,𝑎 +
𝐼𝑦,𝑐
𝑛 )

 (9.5) 

 

 

Figure 9.6 Linear interpolation of the end slip based on the degree of shear interaction 
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The following figure shows the comparison of the numerically and analytically determined plastic 

moment resistance of the same composite beam that was used for the illustration of the accuracy of the 

analytically determined deflections (Figure 8.2 and Figure 8.10): 

 

 

Figure 9.7 Comparison of the numerically and analytically obtained plastic moment resistance values 

Using this algorithm, the plastic moment resistance Mpl,η was determined for the composite beams, 

which were simulated in the frame of the parametric study PS-2 presented in Annex B.2. The comparison 

of the analytically and numerically obtained resistance Mu,FEM values can be found in Annex D, and are 

presented in Figure 9.8. The resistance model uncertainty parameters were determined for each cases: 

𝜃𝑖 =
𝑀𝑢,𝐹𝐸𝑀,𝑖
𝑀𝑝𝑙,𝜂,𝑖

 (9.6) 

The mean value of the model uncertainties: 

𝜇𝜃 =
1

𝑛
∙∑𝜃𝑖 = 1.010

𝑛

𝑖=1

 (9.7) 

The standard deviation: 

𝜎𝜃 =
1

𝑛
∙∑(𝜃𝑖 − 𝜇𝜃)

2 = 0.037

𝑛

𝑖=1

 (9.8) 

The coefficient of variation: 

𝑉𝜃 =
𝜎𝜃
𝜇𝜃
= 0.037 (9.9) 
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These values indicate that the developed calculation method is in a good agreement with the numerical 

simulations. 

 

 

Figure 9.8 Comparison of the analytically and numerically obtained resistance values 

An example of the practical application of this method is presented in Annex F.5. 
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The previously presented method (Method PL1) requires the individual shear connector forces to be 

determined in each calculation. This chapter proposes a simplification by defining the average shear 

connector force as the effective shear connection resistance PR,eff, and introducing a parameter kflex that 

represents the ratio of PR,eff  to the shear force in the last shear connector 𝑃̅: 

𝑃𝑅,𝑒𝑓𝑓 =
∑ 𝑃𝑠𝑐,𝑖
𝑛𝑝
𝑖=1

𝑛𝑝
 (9.10) 

𝑘𝑓𝑙𝑒𝑥 =
𝑃𝑅,𝑒𝑓𝑓

𝑃̅
 (9.11) 

The factor kflex depends on: 

1) the load-slip curve of the shear connection, 

2) the number of shear connector rows on the critical length, 

3) the distribution of the shear connectors, 

4) the assumed end slip, and 

5) the slip distribution function. 

The procedure presented in the previous section can be simplified if we apply the following assumptions: 

(i) The end slip is exactly 6 mm when the plastic moment resistance is reached. 

(ii) The slip distribution can be described by a cosine function. 

(iii) The shear connectors are placed equidistantly. 

With the previous assumptions, kflex only depends on the number of shear connector rows np on the 

critical length and the type of the shear connection. The value of kflex was calculated using the load-slip 

curves of the tested demountable shear connectors presented in Chapter 4 (see Figure 9.9). Shear 

connection type P15.2 was excluded as it did not have a 6 mm deformation capacity. 

 

 

Figure 9.9 Reduction factor kflex depending on the number of shear connector rows 
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As one can see, the more shear connector rows we have, the lower the value of kflex is. However, the 

difference in the values of kflex between 4 rows and 30 rows is relatively small. For the tested shear 

connections, its value varies between 0.69 to 0.81. 

As a simplification, it is proposed to use the number that corresponds to np = 6. This means, that when 

determining the average shear connector force PReff  we assume that only six pairs of shear connectors 

are placed on the critical length. The advantage of this simplification is that kflex now only depends on 

the load-slip curve, i.e. it became a shear connection specific parameter. For shear connection type P3.3 

its value is kflex = 0.756, and for P15.1 it is kflex = 0.762. Once this parameter is known, the algorithm 

presented in Figure 9.5 becomes simpler. The effective shear connector resistance can be determined as: 

𝑃𝑅,𝑒𝑓𝑓 = 𝑘𝑓𝑙𝑒𝑥 ∙ 𝑃𝑅,6 (9.12) 

where PR,6 is the shear connector resistance at 6 mm slip. The compression force Nc in the concrete can 

be calculated by multiplying the number of shear connectors on the critical length by the effective shear 

connector resistance (c.f. Equation (2.35)) 

𝑁𝑐 = 𝑛 ∙ 𝑃𝑅,𝑒𝑓𝑓 ≤ 𝑁𝑐,𝑓 (9.13) 

After this point, the calculation procedure is analogous to the Eurocode 4 [18] method for the 

determination of the plastic moment resistance of sections with partial shear connection (see Chapter 

2.3.2). The plastic stress distribution and the location of the neutral axes can be determined from the 

equilibrium equations; and the moment resistance Mpl,η from the moment equation. The flowchart of the 

simplified calculation method is presented in Figure 9.11. 

The following figure shows the comparison of the analytically and numerically obtained results of the 

beam that was used for the previous comparisons presented in Figure 8.2, Figure 8.10 and Figure 9.7: 

 

 

Figure 9.10 Comparison of the numerically and analytically obtained plastic moment resistance values 
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Similarly to Section 9.4.2, the calculated moment resistance values were compared to the numerically 

obtained ones (Annex E). The corresponding statistical parameters are summarised in the following 

table, and the comparison of the experimentally and numerically obtained resistance values is presented 

in Figure 9.12. 

Table 9.1 Statistical parameters of the model uncertainties 

Parameter Notation Value 

Mean value μθ 1.052 

Standard deviation σθ 0.063 

Coefficient of variaton Vθ 0.060 

 

Although the simplified method (Method PL2) produces more conservative results than the method 

presented in the previous section (Method PL1), it was concluded that the simplified calculation method 

is applicable for the determination of the plastic moment resistance of composite beams with 

demountable shear connection. An example of the practical application of this method is presented in 

Annex F.6. 

 

 

 

Figure 9.11 Simplified algorithm for the determination of the plastic moment resistance of composite 

beams with non-ductile shear connection (Method PL-2) 

 

 

 

Calculate the moment resistance Mpl,η 
from the moment equation. 

Determine the effective shear connector resistance: 
𝑃𝑅,𝑒𝑓𝑓 = 𝑘𝑓𝑙𝑒𝑥 ∙ 𝑃𝑅,6 

Calculate the compression force in the concrete: 

𝑁𝑐 = 𝑛 ∙ 𝑃𝑅,𝑒𝑓𝑓 ≤ 𝑁𝑐,𝑓 

Determine the plastic stress distribution from the 
equilibrium equation. 

Find 𝑘𝑓𝑙𝑒𝑥  specific to the shear 

connection 
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Figure 9.12 Comparison of the analytically and numerically obtained resistance values 
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(viii) The load-slip behaviour of the shear connection can be described with a monotonic increasing 

curve. 

(ix) The curvature of the composite beam under failure conditions is large enough to enable the 

assumption of a plastic stress distribution in the cross-section. 

Among the aforementioned conditions (ix) is difficult to quantify, so at this point, it is recommended to 

limit the application of the presented methods to cases where the minimum degree of shear connection 

requirement of Eurocode 4 [18] is satisfied and the shear connection has a slip capacity that exceeds 

6 mm. Further development is needed for the quantification of the minimum degree of shear connection 

requirements for different types of shear connections to ensure that the assumed plastic stress 

distribution can develop in the cross-section. 

The development of the presented methods based on uniformly loaded beams and it assumed a cosine 

slip distribution function. It is important to point out that different loading situations will result in 

different slip distribution functions. The more the slip distribution differs from a cosine shape the less 

accurate the presented methods will become. Nonetheless, the methods can be applied with different 

slip distribution functions based on the same principles as presented in this chapter. Further research is 

required to find slip distribution functions for different loading situations that can represent the real 

behaviour more accurately. 

The presented methods are based on the assumption that the greatest slip occurs at the end of the beam. 

This was supported by the parametric studies conducted on uniformly loaded beams (see Chapter 7.6). 

However, it is possible that such cases exist where this assumption is not valid anymore due to the 

increased slips at the plastic zone of the beam (Figure 9.13). The exact identification of these cases are 

recommended to be the subject of further research. 

 

 

Figure 9.13 A slip distribution where the slip at the edge of the plastic zone exceeds the end slip 
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The work carried out throughout the thesis focused on the behaviour of demountable composite beams 

in order to facilitate the integration of steel-concrete composite construction into the concept of circular 

economy. There are several hindrances in the way of reuse when considering traditional composite 

structures. One of them is the method the current construction practice applies for connecting the 

concrete deck to the steel beam. The traditionally applied welded studs are advantageous in the terms of 

structural performance; however, they do not provide the ability of dismounting. In order to overcome 

this issue, different types of shear connection types were investigated that use bolted connections. The 

structural solutions were investigated using experimental structural testing; and the laboratory 

experiments were complemented by numerical simulations. The experimental research included push-

out tests for the assessment of the shear connection behaviour; and full scale beam tests for the evaluation 

of the structural performance of demountable composite beams. The investigation showed that the 

behaviour of demountable composite beams differs from the behaviour of the non-demountable 

traditional solution. Analytical equations were derived for the description of the elastic behaviour and a 

new calculation method was proposed for the determination of the plastic moment resistance of 

composite beams with demountable shear connection. This chapter presents the main conclusions that 

were drawn based on the conducted research. 

The tested demountable shear connections behaved differently than welded studs. They did not show a 

ductile behaviour; and their load-slip curve could not be described by an ideal rigid-plastic curve but a 

rather linear elastic one. The more accurate description is a multilinear curve that has three distinct parts 

(see Figure 4.24): 

1) an almost vertical, rigid part until the friction resistance is overcome, 

2) an almost horizontal part, which shows the bolt slippage in the bolt hole, and  

3) a nonlinear part, which represents the shear and bearing deformation before the failure occurs. 

The four parameters that have the highest influence on the load-slip behaviour are the bolt shear 

resistance, the level of pretension, the surface treatment (i.e. the friction coefficient) and the diameter of 

the bolt hole. 

The failure occurred due to the shearing of the bolt in all of the conducted push-out tests. The failure of 

the concrete was prevented by the large bearing surfaces of the tested connectors. The demountable 

shear connections produced in all cases similar or higher resistance values than welded studs, but the 

corresponding stiffness values were significantly lower. The observed slip capacities were generally 

between 6 mm and 12 mm.  

Chapter 10. Conclusions and outlook 

10.1 General 

10.2 Demountable shear connections and composite beams 
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Demountable composite beams behave similarly to traditional non-demountable beams with welded 

stud connectors. The tested demountable composite beams produced higher resistance values than a 

comparable composite beam with welded studs tested in a preceding research project called 

DISCCO [65]. However, the reduced stiffness of the shear connection resulted in a lower bending 

stiffness. Furthermore, the nonlinear behaviour of the shear connection caused a nonlinear load-

deflection response already in the elastic phase.  

The elastic response of demountable composite beams can be calculated by using the cross-sectional 

properties of a homogenised section. For the calculation of the elastic normal stresses from bending, or 

for the calculation of the elastic moment resistance Mel, the location of the elastic neutral axis needs to 

be known. When non-rigid shear connection is applied, the concrete and steel members have their own 

elastic neutral axes. 

Analytical equations were derived for the calculation of the effective second moment of area, and for 

the determination of the location of the neutral axes of the composite beams with flexible (Chapter 8.4) 

and with nonlinear shear connections (Chapter 8.5). 

An iterative procedure was developed (Chapter 8.5) for the calculation of the elastic deflections of 

composite beams with nonlinear shear connection. With the developed iterative method, the elastic 

deflections can be determined with a similar accuracy by using spreadsheet calculations as by using 

nonlinear finite element simulations. 

10.3.1 Beams with flexible shear connection 

The second moment of area of composite beams with flexible shear connection can be determined using 

equation (8.20). According to EN1994-1-1 [18] the stiffness of the shear connection may be taken as 

ksc = 0.7 PRk  / s (see equation (8.34)). This is a reasonable approximation for welded stud connectors as 

well as for demountable shear connectors.  

The location of the elastic neutral axes can be determined by equations (8.32) and (8.33). 

10.3.2 Beams with nonlinear shear connection 

Demountable shear connections can be more accurately described by multilinear load-slip curves. Then, 

the shear connectors can be taken into account with their secant stiffness values in the calculations. The 

secant stiffness ksc,i of each connector depends on the occurring slip, which depends on the load level. 

This results in different second moment of area values Iy,eff,m  along the length, which also depend on the 

load level. An analytical equation was derived for the determination of the second moment of area at 

every shear connector along the length. At shear connector m, Iy,eff,m  can be determined by equation 

(8.39): 

10.3 Elastic behaviour of demountable composite beams 
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𝐼𝑦,𝑒𝑓𝑓,𝑚 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝑎2

𝜋
𝐿
∙

𝐸𝑎 sin (
𝑚𝜋
2𝑛𝑝

)

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋
∙ [sin (

𝑖𝜋
2𝑛𝑝

) −sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  𝑚
𝑖=1

+ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)

 

 

An analytical equation was derived to describe the relationship between the end slip 𝑠̅ and the bending 

moment at mid-span 𝑀̅ (equation (8.41)). For this equation, it is necessary to know the different shear 

connector stiffness values ksc,i, which depend on the end slip. This means, that end slip and the stiffness 

of the shear connectors are interdependent. The solution for this problem is an iterative procedure that 

was presented in Chapter 8.5.1. 

The occurring deflection can be calculated as the double integral of the curvature function, but due to 

the different Iy,eff,m values along the length, the curvature function is not continuous. Therefore, the 

deflection at midspan can be calculated as the sum of the integral of the parts where the curvature 

function is continuous (equation (8.43)). The integral was solved for basic load cases such as: one-point 

load at mid-span, symmetric two-point loads, a uniformly distributed load and a sinusoidal load. The 

formulations are presented in Chapter 8.5.2. The location of the elastic neutral axes can be determined 

by equations (8.52) and (8.53). 

10.4.1 General 

The general behaviour of the tested shear connections is significantly different than the behaviour of 

welded studs. As a result, the basic assumptions of Eurocode 4 [18] for the determination of the plastic 

moment resistance of composite beams with partial shear connection are not valid anymore. The code 

therefore does not enable the use of equidistant shear connector spacing and the design needs to be 

conducted using a fully elastic analysis. This would the make the use of demountable shear connections 

complicated and uneconomic. In the face of these issues, the probability of the practical application of 

demountable and reusable composite structures would be very low. On the other hand, experiments 

(Chapter 5) and numerical simulations (Chapter 6 and Chapter 7) show that composite beams can 

develop plasticity even if non-ductile shear connection is applied. In order to overcome these issues, a 

new calculation method was developed that enables the extension of the code for demountable shear 

connection. In this way, the benefits of composite construction can be maintained while providing the 

possibility of reuse. 

A calculation method was developed (Chapter 9.4.2) that enables the calculation of the developing 

compression force in the concrete based on the individual shear connector forces. These forces depend 

on the load-slip behaviour, the number of shear connectors and the distribution of the shear connectors. 

The method requires assumptions for the shape of the slip function and the value of the occurring end 

10.4 Plastic moment resistance 

10.4.2 New calculation method for the plastic moment resistance (Method PL1) 



10. Conclusions and outlook 

172 

slip. The slip function can be approximated with a cosine function Equation (9.3)), and the occurring 

end slip can be estimated based on the degree of interaction Equation (9.4)). It was shown (Figure 9.8) 

that the plastic moment resistance Mpl,η can be determined with a high accuracy using the previous 

assumptions. 

Based on the developed calculation method a simplified method was proposed (Chapter 9.4.3) by 

defining an effective shear resistance PR,eff  for the investigated shear connections. Once PR,eff is known, 

the calculation method is analogous to the current Eurocode 4 [18] design procedure. It was shown 

(Figure 9.12), that the simplified method is also able to produce plastic moment resistance Mpl,η values 

with acceptable accuracy. 

The presented calculation method for the calculation of the plastic moment resistance of composite 

beams was evaluated based on a comparison against a certain set of numerical simulations with a certain 

set of parameters. Strictly speaking, the scope of its application is limited to cases which fall into the 

range of the investigated parameters. Further research is required for the extension of the scope of 

application by conducting additional parametric studies and laboratory experiments on full-scale 

composite beams. 

The method uses an approximation of the occurring end slip that can be taken into account during the 

calculations. The proposed approximation uses a linear interpolation according to the degree of 

interaction. One limit of the interpolation is where there is no shear connection (i.e. the degree of 

interaction is ψ = 0). At this point the occurring end slip is given by an approximation proposed by 

Baertschi [52]. Within the range of the conducted simulations this approximation gives reasonable 

results; however generally, the estimation of the end slip after the section is beyond its elastic limit still 

remains relatively uncertain; and therefore, this topic requires further investigation. 

The numerical simulations showed that the investigated demountable composite beams could develop 

plasticity, and they could reach Mpl,η even if their degree of shear connection was below the minimum 

required by the Eurocode 4 [18]. This shows that the minimum degree of shear connection rules may 

need to be redefined for demountable shear connections. 

It is possible to use the developed calculation method for shear connections that have a lower slip 

capacity than 6 mm, but further development is needed for the quantification of the minimum degree of 

10.4.3 Simplified calculation method for demountable composite beams (Method PL2) 

10.5 Further research 

10.5.1 Further parametric studies and beam tests 

10.5.2 End slip calculation 

10.5.3 Minimum degree of shear connection   
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shear connection requirements for different types of shear connections to ensure that the assumed plastic 

stress distribution can develop in the cross-section. 

In the meantime, it is possible to design demountable composite beams using the developed numerical 

model presented in Chapter 6.3. 

The assumed cosine function for the description of the slip distribution works well for uniformly loaded 

simply supported beams. However, the loading situation can have a significant influence on its shape. 

Further research is required to identify the scope of applicability of the cosine function beyond the 

uniformly loaded beams; and other slip functions may need to be found for the description of the slip 

distribution due to different loading situations. 

The developed numerical model presented in Chapter 6.2 allows to extend the research with further 

parametric studies by creating new load-slip curves that can be implemented in the shell model of the 

beams. The presented methods are based on the assumption that the greatest slip occurs at the end of the 

beam. This was supported by the parametric studies conducted on uniformly loaded beams (see Chapter 

7.6). However, it is possible that such cases exist where this assumption is not valid anymore due to the 

increased slips at the plastic zone of the beam (Figure 9.13). The exact identification of these cases are 

recommended to be the subject of further research. 

 

 

 

 

10.5.4 Slip functions for different loading situation 

10.5.5 Further parametric studies on shear connections 
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 Complementary experiments 

A.1 Steel tensile tests 

In order to obtain information about the properties of the applied steel materials, standard ISO 6892-

1:2016 [74] uniaxial tensile tests were conducted on the bolts, the L-profiles and steel beams used in the 

laboratory experiments. This chapter presents the results of the tensile tests. 

ISO 6892-1:2016 [74] defines the yield strength (ReH) as: 

𝑅𝑒𝐻 = 𝐹𝑦/𝑆0 (A.1) 

where Fy is the peak load prior to the first decrease in force and S0 is the original cross-sectional area of 

the test piece. 

The tensile strength (Rm) is defined as: 

𝑅𝑚 = 𝐹𝑚/𝑆0 (A.2) 

where Fm is the maximum force. 

The percentage elongation at fracture, (A) is: 

𝐴 =
𝐿𝑢 − 𝐿0
𝐿0

∙ 100 (A.3) 

where L0 is the original gauge length and Lu is the final gauge length after fracture.  

The percentage reduction of area (Z) is: 

𝑍 =
𝑆𝑢 − 𝑆0
𝑆0

∙ 100 (A.4) 

where Su is the minimum cross-sectional area after fracture. 

  

A.1.1 General 



Annex A Complementary experiments 

188 

Coupon specimens were fabricated from the bolts applied in push-out test series P3 and in beam tests 

B7. The geometry of the steel coupons is presented in the following figure: 

 

 

Figure A.1 Steel coupon test specimen of bolts (M20) 

The following figure shows the coupon specimens after failure. The detailed results can be found in 

Table A.2. 

 

 

Figure A.2 Steel coupon specimens after failure 

 

 

 

Table A.1 Summary of the tensile tests on bolts (M20) 

Tensile test series Number of tests 
Measured average tensile 

strength fu,m [MPa] 
Corresponding test series 

BL 4 948.7 P3.1, P3.3, B7 

GV 4 1045.6 P3.2 

 

  

A.1.2 Tensile tests on bolts 
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Table A.2 Results of the tensile tests on bolts (M20) 

# 1 2 3 4 5 6 7 8 

Specimen BL1 BL2 BL3 BL4 GV1 GV2 GV3 GV4 

Diameter, d1 [mm] M20 M20 M20 M20 M20 M20 M20 M20 

Grade 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 

Length, Lt [mm] 170.1 170.0 170.2 170.2 170.4 170.1 170.1 170.1 

Neck diameter, d0 [mm] 8.035 8.019 8.049 8.035 8.109 7.975 8.135 8.080 

Cross-sectional area, S0 

[mm2] 
50.71 50.50 50.88 50.71 51.64 49.95 51.98 51.28 

Neck length, L0 [mm] 57.74 57.50 57.85 57.64 57.70 57.85 57.60 57.60 

Yield load, Fy [kN] 44.2 44.5 44.0 44.2 52.1 50.0 52.6 52.6 

Failure load, Fm [kN] 48.2 47.9 48.1 48.2 54.0 52.0 54.0 54.2 

Yield strength, ReH [MPa] 871.7 881.1 864.7 871.7 1008.8 1001.0 1012.0 1025.8 

Tensile strength, Rm [MPa] 950.6 948.4 945.3 950.6 1045.6 1041.0 1038.9 1057.0 

Neck diameter after fracture, 

du [mm] 
4.535 4.710 4.850 4.795 4.950 4.835 4.960 4.850 

Area after fracture, Su [mm2] 16.15 17.42 18.47 18.06 19.24 18.36 19.32 18.47 

Neck length after fracture, 

Lu [mm] 
65.47 65.57 65.06 65.18 64.38 64.40 64.08 63.73 

Percentage elongation at 

fracture, A [%] 
11.74 12.31 10.93 11.47 10.15 9.93 9.87 9.33 

Percentage reduction area, Z 

[%] 
68.14 65.50 63.69 64.39 62.74 63.24 62.83 63.97 

Mean value of the yield 

strength, μReH [MPa] 
872.3 1011.9 

Standard deviation of the 

yield strength, σReH [MPa] 
6.73 10.38 

Coefficient of variation of 

the yield strength, VReH [-] 
0.0077 0.0103 

Mean value of the tensile 

strength, μReH [MPa] 
948.7 1045.6 

Standard deviation of the 

tensile strength, σReH [MPa] 
2.49 8.09 

Coefficient of variation of 

the tensile strength, VReH [-] 
0.0026 0.0077 
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From the push-out test specimens, three L-profiles that were selected for tensile testing. From each peace 

three coupon specimens were cut out. The geometry of the steel coupons is presented in the following 

figure, and the results of the tensile tests are presented in Table A.3. 

 

 

Figure A.3 Geometry of the steel coupon specimen of the L-profiles (L 80x80x6) 

 

 

Figure A.4 Photo the steel coupon specimens of the L-profiles (L 80x80x6) 

 

  

A.1.3 Tensile tests on L-profiles 
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Table A.3 Results of the tensile tests on the L-profiles (L 80x80x6) 

# 1 2 3 4 5 6 7 8 9 

Part L1.1 L1.2 L1.3 L2.1 L2.2 L2.3 L3.1 L3.2 L3.3 

original thickness, a0 [mm] 6.05 5.97 6.06 6.02 6.08 5.99 6.09 6.11 6.03 

Width, b [mm] 40.0 40.0 40.0 39.9 40.0 39.9 40.1 40.0 39.9 

Total length, Lt0 [mm] 250.1 250.4 250.3 250.4 250.0 250.2 250.6 250.2 250.0 

Original gauge length, L0 

[mm] 
69.2 69.2 69.2 69.2 69.2 69.2 69.2 69.2 69.2 

Neck width, b0 [mm] 25.3 25.0 25.4 25.2 25.1 25.1 25.0 25.0 25.0 

Cross-sectional area, S0 

[mm2] 
152.9 149.2 154.2 151.5 152.4 150.6 152.5 152.6 150.9 

Parallel length, Lc0 [mm] 90.1 90.2 90.3 90.3 90.0 90.1 90.3 90.2 90.0 

Total length after fracture, 

Ltu [mm] 
273.5 275.2 274.1 274.2 274.0 275.2 276.2 274.3 275.7 

Gauge length after fracture, 

Lu [mm] 
87.1 88.2 87.4 87.5 87.7 88.4 88.8 87.7 88.9 

Neck width after fracture, 

bu [mm] 
18.5 18.3 18.5 18.3 18.8 18.2 18.3 18.4 18.5 

Neck thickness after 

fracture, au [mm] 
4.5 4.5 4.7 4.5 4.7 4.5 4.5 4.5 4.5 

Cross-sectional area  after 

fracture, Su [mm2] 
83.0 81.6 86.1 81.5 88.1 81.9 82.8 83.5 82.3 

Parallel length  after 

fracture, Lcu [mm] 
113.5 115.0 114.1 114.1 114.0 115.1 115.9 114.4 115.7 

Maximum force, Fm [kN] 80.4 77.1 79.1 77.3 80.2 79.2 78.9 80.1 77.6 

Yield strength, ReH [MPa] 392.0 372.0 385.0 369.0 403.0 394.0 391.0 403.0 370.0 

Tensile strength, Rm [MPa] 525.9 516.8 513.1 510.2 526.2 525.9 517.4 524.8 514.1 

Percentage reduction area, 

Z [%]: 
45.7 45.3 44.2 46.2 42.2 45.6 45.7 45.3 45.5 

Percentage elongation at 

fracture, A [%]: 
25.9 27.5 26.3 26.4 26.7 27.7 28.4 26.8 28.5 

Mean value of the yield 

strength, μReH [MPa] 
383.0 388.7 388.0 

Standard deviation of the 

yield strength, σReH [MPa] 
10.1 17.6 16.7 

Coefficient of variation of 

the yield strength, VReH [-] 
0.0265 0.0453 0.0430 

Mean value of the tensile 

strength, μReH [MPa] 
518.6 520.7 518.8 

Standard deviation of the 

tensile strength, σReH [MPa] 
6.6 9.2 5.5 

Coefficient of variation of 

the tensile strength, VReH [-] 
0.0127 0.0176 0.0105 
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Tensile tests were conducted on steel coupon specimens cut out from the flanges of the beams used in 

the beam tests. The geometry of the coupons is presented in the following figure, and the results can be 

found in the following table. 

 

 

Figure A.5 Geometry of the steel coupon specimen of the beams (IPE 360) 

Table A.4 Results of the tensile tests on the beams (IPE 360) 

# 1 2 3 4 

Part B1 B2 T1 T2 

original thickness, a0 [mm] 12.90 12.64 12.90 12.98 

Width, b [mm] 36.1 36.1 36.1 36.1 

Total length, Lt0 [mm] 250.0 250.1 250.2 250.0 

Original gauge length, L0 [mm] 85.4 85.2 85.0 85.2 

Neck width, b0 [mm] 18.1 18.1 18.2 18.0 

Cross-sectional area, S0 [mm2] 234.0 228.4 234.5 233.1 

Parallel length, Lc0 [mm] 116.8 116.8 116.8 116.8 

Total length after fracture, Ltu [mm] 284.6 284.8 286.0 285.7 

Gauge length after fracture, Lu [mm] 113.8 113.2 116.5 117.4 

Neck width after fracture, bu [mm] 11.1 10.8 10.9 11.0 

Neck thickness after fracture, au [mm] 6.8 6.5 7.1 6.9 

Neck length after fracture, lloc [mm] 27 26 30 29 

Cross-sectional area  after fracture, Su [mm2] 75.5 70.2 77.4 75.9 

Parallel length  after fracture, Lcu [mm] 151.3 151.5 152.7 152.5 

Young's modulus, E [GPa] 197.0 183.0 186.0 188.0 

Maximum force, Fm [kN] 111.5 108.6 108.3 108.5 

Yield strength, ReH [MPa] 392.0 378.0 375.0 382.0 

Tensile strength, Rm [MPa] 476.0 464.0 463.0 464.0 

Percentage reduction area, Z [%] 67.7 69.3 67.0 67.4 

Percentage elongation at fracture, A [%] 33.3 32.9 37.1 37.8 

Mean value of the yield strength, μReH [MPa] 381.8 

Standard deviation of the yield strength, σReH [MPa] 7.4 

Coefficient of variation of the yield strength, VReH [-] 0.0194 

Mean value of the tensile strength, μReH [MPa] 467.7 

Standard deviation of the tensile strength, σReH [MPa] 7.2 

Coefficient of variation of the tensile strength, VReH [-] 0.0155 

 

A.1.4 Tensile tests on the beams 
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The same concrete grade (C35/45) was ordered for all laboratory experiments. The concrete was cast on 

three occasions: 

1) 28th June, 2017 – for push-out test series P15.1 and P15.2; 

2) 25th September, 2017 – for push-out test series P3.1, P3.2 and P3.3; 

3) 27th March, 2018 – for beam tests B7 and B8. 

Compression tests were conducted on standard cube specimens on 9 different occasions: 

Table A.5 Details of the parametric studies PS-1 (part 1) 

Test series Date of casting Date of testing 

Concrete age at 

testing 

[days] 

Average measured 

cube strength, 

fcu,m [MPa] 

CC1 28/06/2017 26/07/2017 28 44.33 

CC2 28/06/2017 04/08/2017 37 49.12 

CC3 28/06/2017 22/08/2017 55 52.43 

CC4 28/06/2017 25/08/2017 58 55.81 

CC5 25/09/2017 23/10/2017 28 59.39 

CC6 25/09/2017 21/11/2017 57 70.65 

CC7 27/03/2018 24/04/2018 28 51.47 

CC8 27/03/2018 05/06/2018 70 64.88 

CC9 27/03/2018 14/06/2018 79 63.13 

 

The next table shows the list of the laboratory experiments and the corresponding cube tests. 

Table A.6 List of experiments and the corresponding cube tests (Part 1) 

Test 
Date of 

experiment 

Date of 

casting 

Concrete 

age at 

experiment 

[days] 

Date of cube 

test 

Cube 

test 

series 

Concrete 

age at 

cube test 

[days] 

Concrete 

cube 

strength 

fcu,m [MPa] 

P15.2-1 26/07/2017 28/06/2017 51 26/07/2017 CC1 28 44.33 

P15.2-2 02/08/2017 28/06/2017 58 04/08/2017 CC2 37 49.12 

P15.2-3 09/08/2017 28/06/2017 65 04/08/2017 CC2 37 49.12 

P15.1-1 18/08/2017 28/06/2017 74 04/08/2017 CC2 37 49.12 

P15.1-2 22/08/2017 28/06/2017 78 22/08/2017 CC3 55 52.43 

P15.1-3 24/08/2017 28/06/2017 80 25/08/2017 CC4 58 55.81 

P3.1-1 07/11/2017 25/09/2017 43 23/10/2017 CC5 28 59.39 

P3.1-2 10/11/2017 25/09/2017 46 23/10/2017 CC5 28 59.39 

 

 

A.2 Concrete compression tests 

A.2.1 General 
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Table A.7 List of experiments and the corresponding cube tests (Part 2) 

Test 
Date of 

experiment 

Date of 

casting 

Concrete 

age at 

experiment 

[days] 

Date of cube 

test 

Cube 

test 

series 

Concrete 

age at 

cube test 

[days] 

Concrete 

cube 

strength 

fcu,m [MPa] 

P3.1-3 14/11/2017 25/09/2017 50 23/10/2017 CC5 28 59.39 

P3.3-1 17/11/2017 25/09/2017 53 23/10/2017 CC5 28 59.39 

P3.3-2 21/11/2017 25/09/2017 57 21/11/2017 CC6 57 70.65 

P3.3-3 24/11/2017 25/09/2017 60 21/11/2017 CC6 57 70.65 

P3.2-1 28/11/2017 25/09/2017 64 21/11/2017 CC6 57 70.65 

P3.2-2 01/12/2017 25/09/2017 67 21/11/2017 CC6 57 70.65 

P3.2-3 05/12/2017 25/09/2017 71 21/11/2017 CC6 57 70.65 

P3.3-3R 07/12/2017 25/09/2017 73 21/11/2017 CC6 57 70.65 

P3.2-3R 12/12/2017 25/09/2017 78 21/11/2017 CC6 57 70.65 

B8 05/06/2018 27/03/2018 70 05/06/2018 CC8 70 64.88 

B7 14/06/2018 27/03/2018 79 14/06/2018 CC9 79 63.13 

 

Figure A.6 shows a concrete cube specimen, and the following tables summarise the results of the 

conducted compression tests. 

 

 

Figure A.6 Concrete cube test specimen 

 

Table A.8 Results of compression test series CC1 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC1-1 150 149 150 7021 44.51 

CC1-2 150 150 150 7078 44.96 

CC1-3 149 150 150 7734 43.51 

    Mean value: 44.33 

 

  

A.2.2 Results of the compression tests 
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Table A.9 Results of compression test series CC2 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC2-1 149 150 150 7808 49.56 

CC2-2 151 150 150 7814 49.20 

CC2-3 149 149 150 7824 48.62 

    Mean value: 49.12 

 

Table A.10 Results of compression test series CC3 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC3-1 149 150 150 7776 52.17 

CC3-2 147 149 150 7769 52.40 

CC3-3 146 150 150 7713 52.74 

    Mean value: 52.43 

 

Table A.11 Results of compression test series CC4 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC4-1 149 150 150 7751 54.57 

CC4-2 149 150 150 7721 54.35 

CC4-3 149 150 150 7734 55.53 

    Mean value: 55.81 

 

Table A.12 Results of compression test series CC5 - Cube 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC5.1-1 149 150 150 8024 61.17 

CC5.1-2 150 150 150 7995 57.89 

CC5.1-3 150 149 150 7960 59.11 

    Mean value: 59.39 

 

Table A.13 Results of compression test series CC5 – Cylinder  

Specimen h [mm] D [mm] m [g] fc,meas [MPa] 

CC5.2-1- 292 149 12320 54.02 

CC5.2-2 294 148 12376 53.52 

CC5.2-3 295 150 12460 52.24 

    Mean value: 53.26 
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Table A.14 Results of compression test series CC6 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC6-1 150 150 150 7975 72.71 

CC6-2 150 149 149 7969 68.13 

CC6-3 150 149 150 7926 71.12 

    Mean value: 70.65 

 

Table A.15 Results of compression test series CC7 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC7-1 149 150 150 7804 50.92 

CC7-2 150 148 151 7701 51.23 

CC7-3 149 150 150 7844 52.23 

    Mean value: 51.47 

 

Table A.16 Results of compression test series CC8 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC8-1 149 150 150 7744 61.39 

CC8-2 148 149 149 7758 68.12 

CC8-3 149 149 150 7739 65.12 

    Mean value: 64.88 

 

Table A.17 Results of compression test series CC9 

Specimen a [mm] b [mm] h [mm] m [g] fcu,meas [MPa] 

CC9-1 151 150 150 7724 64.27 

CC9-2 150 150 150 7750 65.29 

CC9-3 150 150 150 7627 59.83 

    Mean value: 63.13 
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During the push-out tests it was not possible to measure the bolt pretension. So instead, separate 

experiments were carried out with the following test setup: 

 

 

Figure A.7 Geometry of the pretension test 

The test setup consisted of the following elements: 

1) M20, Gr. 8.8 bolts with 12 mm thick washer plates and 4 mm thick washers (7 black and 3 

galvanised) 

2) An HE 260B beam identical to one used in the push-out tests 

3) A 200 kN load cell 

4) L-profile with welded top plate and cylinder 

5) Additional plate welded to the L-profile and the top plate 

While designing the test setup the aim was to represent the push-out test specimens as accurately as 

possible. The steel beam was one of the steel beams used in the push-out tests and the bolts, the washers, 

the L-profile, the top plate were from the same batch as the ones used in the push-out tests. It was 

necessary to keep the clamping length also the same, so the steel cylinder needed to be shortened because 

of the addition of the 60 mm high load cell. In this experiment, there was no concrete around the steel 

cylinder, so the web of the L-profile was welded to the top plate and an additional 10 mm thick steel 

plate was welded to the top plate as well as the leg of the L-profile. The size of the additional plate was 

determined such that the resulting normal stiffness is the same as in the case of the push-out test 

specimen. 

Concrete area below the top plate in the push-out tests: 

𝐴𝑐 = 80 𝑚𝑚 ∙ 80 𝑚𝑚 −
(42.5 𝑚𝑚)2 ∙ 𝜋

4
= 4981 𝑚𝑚2 (A.5) 

 

 

A.3 Bolt pretension tests 
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Young’s modulus of the concrete: 

𝐸𝑐 = 33400 𝑁/𝑚𝑚
2 (A.6) 

Young’s modulus of the steel: 

𝐸𝑎 = 210000 𝑁/𝑚𝑚
2 (A.7) 

The normal stiffness should be the same: 

𝐸𝑎𝐴𝑎 = 𝐸𝑐𝐴𝑐 (A.8) 

Therefore, the required steel area: 

𝐴𝑎 =
𝐸𝑐𝐴𝑐
𝐸𝑎

=
33400

𝑁
𝑚𝑚2

∙ 4981 𝑚𝑚2

210000
𝑁
𝑚𝑚2

= 792.2 𝑚𝑚2 (A.9) 

This area was composed of the 6 mm thick web and the 10 mm thick additional plate cut to a length of: 

𝑙 =
𝐴𝑎

10 𝑚𝑚 + 6 𝑚𝑚
= 49.5 𝑚𝑚 (A.10) 

The following figure shows the L-profile, the cylinder, the top plate and the additional welded plate: 

 

 

Figure A.8 The L-profile, the cylinder, the top plate and the additional welded plate 
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Before the experiments the position of the bolts and the nuts were marked with a chalk. During the 

experiments, the bolts were tightened to a snug tight condition [48], then different amount of rotations 

were applied on the nuts while the load was continuously measured. The angle of rotation was measured 

afterwards digitally from the photos taken during the experiments: 

 

 

Figure A.9 Rotation measurement 

The following table summarises the obtained rotation and force values: 

Table A.18 Results of the pretension measurements 

# 

Rotation 

[deg] 

Force 

[kN] 

1 98 84 

2 102 89 

3 103 96 

4* 115 104 

5* 87 95 

6* 128 113 

7 133 122 

8 140 136 

9 161 145 

10 150 143 

*Galvanised bolts 

 

The linear relationship can be observed between the applied rotation and the measured force values. 

This relationship can be described as: 
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𝐹𝑝,𝑐 = (𝐶 ∙
Φ

360°
∙ 𝑝𝑏) ∙

1

𝑙𝑐𝑙𝑎𝑚𝑝
∙ 𝐸𝑎 ∙ 𝐴𝑠 (A.11) 

Where Φ is the rotation applied on the nut, pb = 2.5 mm is the pitch of the bolt, lclamp = 153.5 mm is the 

clamping length, Ea is the Young’s modulus of the steel and As = 245 mm2 is the cross-sectional area of 

the bolt. From the applied rotation, not all of the elongation is applied to the bolt itself, but a certain 

amount is absorbed by the system (by the compression of the elements and the by the bending of the top 

plate). Therefore, a dimensionless constant C = 0.39 parameter is introduced that takes into account this 

effect. The value of this constant was found using the method of least squares so that the experimentally 

obtained results fit the analytical calculation. This way, the first part of the equation represents the 

elongation of the bolt, dividing this part with the clamping length we get the normal strain, multiplying 

this by the Young’s modulus we get the normal stress, and finally, we obtain the bolt pretension force 

by multiplying the stress by the cross-sectional area of the bolt. The following table summarises the 

obtained results from this calculation: 

Table A.19 Comparison of analytically and experimentally obtained results 

# 

Rotation 

[deg] 

Elongation 

[mm] 

Strain 

[-] 

Stress 

[MPa] 

Calculated 

force, 

Fp,c,calc 

[kN] 

Measured 

force, 

Fp,c 

[kN] 

θ 

Fp,c/Fp,c.calc 

[-] 

1 98 0.2648 0.0017 362.3 89 84 0.95 

2 102 0.2756 0.0018 377.1 92 89 0.96 

3 103 0.2783 0.0018 380.8 93 96 1.03 

4* 115 0.3108 0.0020 425.1 104 104 1.00 

5* 87 0.2351 0.0015 321.6 79 95 1.21 

6* 128 0.3459 0.0023 473.2 116 113 0.97 

7 133 0.3594 0.0023 491.7 120 122 1.01 

8 140 0.3783 0.0025 517.6 127 136 1.07 

9 161 0.4351 0.0028 595.2 146 145 0.99 

10 150 0.4053 0.0026 554.5 136 143 1.05 

*Galvanised bolts 

The statistical parameters of the uncertainties were determined to evaluate the accuracy of the analytical 

approach. First, the model uncertainty parameters were determined: 

𝜃𝑖 =
𝐹𝑝,𝑐

𝐹𝑝,𝑐,𝑐𝑎𝑙𝑐
 (A.12) 

The mean value of the model uncertainties: 

𝜇𝜃 =
1

𝑛
∙∑𝜃𝑖 = 1.02

𝑛

𝑖=1

 (A.13) 



Annex A Complementary experiments 

201 

The standard deviation: 

𝜎𝜃 =
1

𝑛
∙∑(𝜃𝑖 − 𝜇𝜃)

2 = 0.076

𝑛

𝑖=1

 (A.14) 

The coefficient of variation: 

𝑉𝜃 =
𝜎𝜃
𝜇𝜃
= 0.074 (A.15) 

These values show a low uncertainty, and therefore, it was concluded the analytical model can predict 

the bolt pretension load from the applied rotation with high accuracy. The following figure shows the 

comparison of the obtained results: 

 

 

Figure A.10 Comparison of analytically and experimentally obtained results 

We can also observe from the previous figure that this method of preloading is not sensitive to the 

surface treatment because a certain amount rotation always belongs to a certain amount of elongation. 

This is not the case with the torque method, which depends on other factors besides the surface treatment 

(amount and type of lubrication, thread damages). 
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Table B. and Table B.2 show the investigated parameters of each simulation and the corresponding 

ultimate moment resistance and end slip values. 

# Name 
L 

[m] 
Profile 

fy 

[MPa] 

fc 

[MPa] 
Shear conn. Dist. 

Mu,FEM 

[kNm] 

su,FEM 

[mm] 

1 6E36-S3C45M-DP1-P0 6 IPE 360 391 54 P0 DP1 634 6.0 

2 6E36-S3C45M-DP1-P3.3 6 IPE 360 391 54 P3.3 DP1 657 9.7 

3 6E36-S3C45M-DP1-P15.1 6 IPE 360 391 54 P15.1 DP1 664 7.7 

4 6E36-S3C45M-DP1-P15.2 6 IPE 360 391 54 P15.2 DP1 631 5.4 

5 6E36-S3C25M-DP1-P0 6 IPE 360 391 33 P0 DP1 617 6.0 

6 6E36-S3C25M-DP1-P3.3 6 IPE 360 391 33 P3.3 DP1 635 9.2 

7 6E36-S3C25M-DP1-P15.1 6 IPE 360 391 33 P15.1 DP1 652 7.7 

8 6E36-S3C25M-DP1-P15.2 6 IPE 360 391 33 P15.2 DP1 624 5.4 

9 6E36-S3C20M-DP1-P0 6 IPE 360 391 28 P0 DP1 615 6.0 

10 6E36-S3C20M-DP1-P3.3 6 IPE 360 391 28 P3.3 DP1 628 8.7 

11 6E36-S3C20M-DP1-P15.1 6 IPE 360 391 28 P15.1 DP1 643 7.2 

12 6E36-S3C20M-DP1-P15.2 6 IPE 360 391 28 P15.2 DP1 623 5.4 

13 6E36-S3C45M-DE1-P0 6 IPE 360 391 54 P0 DE1 664 6.0 

14 6E36-S3C45M-DE1-P3.3 6 IPE 360 391 54 P3.3 DE1 674 8.8 

15 6E36-S3C45M-DE1-P15.1 6 IPE 360 391 54 P15.1 DE1 697 7.7 

16 6E36-S3C45M-DE1-P15.2 6 IPE 360 391 54 P15.2 DE1 682 5.4 

17 6E36-S3C25M-DE1-P3.3 6 IPE 360 391 33 P3.3 DE1 649 7.3 

18 6E36-S3C25M-DE1-P15.1 6 IPE 360 391 33 P15.1 DE1 671 5.3 

19 6E36-S3C25M-DE1-P15.2 6 IPE 360 391 33 P15.2 DE1 670 5.4 

20 6E36-S3C20M-DE1-P3.3 6 IPE 360 391 28 P3.3 DE1 641 6.6 

21 6E36-S3C20M-DE1-P15.1 6 IPE 360 391 28 P15.1 DE1 659 5.0 

22 6E36-S3C20M-DE1-P15.2 6 IPE 360 391 28 P15.2 DE1 662 3.4 

23 6E36-S4C45M-DP1-P3.3 6 IPE 360 507 54 P3.3 DP1 777 9.7 

24 6E36-S4C45M-DP1-P15.1 6 IPE 360 507 54 P15.1 DP1 766 7.7 

25 6E36-S4C45M-DP1-P15.2 6 IPE 360 507 54 P15.2 DP1 705 5.4 

26 6E36-S4C45M-DE1-P3.3 6 IPE 360 507 54 P3.3 DE1 807 8.8 

27 6E36-S4C45M-DE1-P15.1 6 IPE 360 507 54 P15.1 DE1 824 7.7 

28 6E36-S4C45M-DE1-P15.2 6 IPE 360 507 54 P15.2 DE1 783 5.4 

29 6E36-S2C45M-DP1-P3.3 6 IPE 360 303 54 P3.3 DP1 550 9.7 

         

         

 

 

 

 

        

 Parametric studies 

B.1 Parametric study PS-1 

Table B.1 Details of the parametric studies PS-1 (part 1) 
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# Name 
L 

[m] 
Profile 

fy 

[MPa] 

fc 

[MPa] 

Shear 

conn. 
Dist. 

Mu,FEM 

[kNm] 

su,FEM 

[mm] 

30 6E36-S2C45M-DP1-P15.1 6 IPE 360 303 54 P15.1 DP1 571 7.7 

31 6E36-S2C45M-DP1-P15.2 6 IPE 360 303 54 P15.2 DP1 550 5.4 

32 6E36-S2C45M-DE1-P3.3 6 IPE 360 303 54 P3.3 DE1 563 8.8 

33 6E36-S2C45M-DE1-P15.1 6 IPE 360 303 54 P15.1 DE1 592 7.7 

34 6E36-S2C45M-DE1-P15.2 6 IPE 360 303 54 P15.2 DE1 589 5.4 

 

The moment-deflection curves are presented in Figure B.11 - Figure B.13. In the figures, the dots 

represent shear connector failure. If no dot is presented at the end of the curve, it means that the failure 

occurred in a different way: either by concrete crushing or by plastification of the steel section. 

 

  

(a) (b) 

Figure B.11 Moment deflection curves (a) simulation #1-#4, (b) simulation #5-#8 
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Table B.2 Details of the parametric studies PS-1 (part 2) 
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(a) (b) 

  

  

(c) (d) 

Figure B.12 Moment deflection curves (a) simulation #9-#12, (b) simulation #13-#16, (c) simulation 

#17-#19, (d) simulation #20-#22 
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(a) (b) 

  

  

(c) (d) 

Figure B.13 Moment deflection curves (a) simulation #23-#25, (b) simulation #26-#28, (c) simulation 

#29-#31, (d) simulation #32-#34 
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Table B.3 - Table B.5 show the investigated parameters of each simulation and the corresponding 

ultimate moment resistance and end slip values. 

# Name 
L 

[m] 

Steel 

grade 
Profile 

fy 

[MPa] 

fc 

[MPa] 

Shear 

conn. 
Dist. 

Mu,FEM 

[kNm] 

su,FEM 

[mm] 

35 6E27-S3C45M-DP1-P0 6.0 S355 IPE 270 391 54 P0 DP1 389 6.0 

36 6E27-S3C45M-DP1-P3.3 6.0 S355 IPE 270 391 54 P3.3 DP1 406 9.7 

37 6E27-S3C45M-DP1-P15.1 6.0 S355 IPE 270 391 54 P15.1 DP1 411 7.7 

38 6E27-S3C45M-DP2-P0 6.0 S355 IPE 270 391 54 P0 DP2 526 6.0 

39 6E27-S3C45M-DP2-P3.3 6.0 S355 IPE 270 391 54 P3.3 DP2 503 7.8 

40 6E27-S3C45M-DP2-P15.1 6.0 S355 IPE 270 391 54 P15.1 DP2 513 5.6 

41 6E27-S3C20M-DP1-P0 6.0 S355 IPE 270 391 28 P0 DP1 383 6.0 

42 6E27-S3C20M-DP1-P3.3 6.0 S355 IPE 270 391 28 P3.3 DP1 403 9.7 

43 6E27-S3C20M-DP1-P15.1 6.0 S355 IPE 270 391 28 P15.1 DP1 407 7.7 

44 6E27-S3C20M-DP2-P0 6.0 S355 IPE 270 391 28 P0 DP2 481 3.2 

45 6E27-S3C20M-DP2-P3.3 6.0 S355 IPE 270 391 28 P3.3 DP2 466 7.3 

46 6E27-S3C20M-DP2-P15.1 6.0 S355 IPE 270 391 28 P15.1 DP2 475 5.3 

47 6E36-S3C45M-DP1-P0 6.0 S355 IPE 360 391 54 P0 DP1 625 6.0 

48 6E36-S3C45M-DP1-P3.3 6.0 S355 IPE 360 391 54 P3.3 DP1 659 9.7 

49 6E36-S3C45M-DP1-P15.1 6.0 S355 IPE 360 391 54 P15.1 DP1 663 7.7 

50 6E36-S3C45M-DP2-P0 6.0 S355 IPE 360 391 54 P0 DP2 780 6.0 

51 6E36-S3C45M-DP2-P3.3 6.0 S355 IPE 360 391 54 P3.3 DP2 820 9.7 

52 6E36-S3C45M-DP2-P15.1 6.0 S355 IPE 360 391 54 P15.1 DP2 827 7.7 

53 6E36-S3C20M-DP1-P0 6.0 S355 IPE 360 391 28 P0 DP1 621 6.0 

54 6E36-S3C20M-DP1-P3.3 6.0 S355 IPE 360 391 28 P3.3 DP1 654 9.7 

55 6E36-S3C20M-DP1-P15.1 6.0 S355 IPE 360 391 28 P15.1 DP1 658 7.7 

56 6E36-S3C20M-DP2-P0 6.0 S355 IPE 360 391 28 P0 DP2 758 6.0 

57 6E36-S3C20M-DP2-P3.3 6.0 S355 IPE 360 391 28 P3.3 DP2 747 8.4 

58 6E36-S3C20M-DP2-P15.1 6.0 S355 IPE 360 391 28 P15.1 DP2 755 5.9 

59 8E45-S3C45M-DP1-P0 8.1 S355 IPE 450 391 54 P0 DP1 1026 6.0 

60 8E45-S3C45M-DP1-P3.3 8.1 S355 IPE 450 391 54 P3.3 DP1 1092 9.7 

61 8E45-S3C45M-DP1-P15.1 8.1 S355 IPE 450 391 54 P15.1 DP1 1087 7.7 

62 16E60-S3C45M-DP1-P0 16.2 S355 IPE 600 391 54 P0 DP1 2014 6.0 

63 16E60-S3C45M-DP1-P3.3 16.2 S355 IPE 600 391 54 P3.3 DP1 2253 9.7 

64 16E60-S3C45M-DP1-P15.1 16.2 S355 IPE 600 391 54 P15.1 DP1 2234 7.7 

65 16E60-S3C45M-DP2-P0 16.2 S355 IPE 600 391 54 P0 DP2 2504 2.2 

66 16E60-S3C45M-DP2-P3.3 16.2 S355 IPE 600 391 54 P3.3 DP2 2578 8.8 

67 16E60-S3C45M-DP2-P15.1 16.2 S355 IPE 600 391 54 P15.1 DP2 2655 6.7 

68 16E60-S3C20M-DP1-P0 16.2 S355 IPE 600 391 28 P0 DP1 1980 6.0 

 

 

 

 

B.2 Parametric study PS-2 

Table B.3 Details of the parametric studies PS-2 (part 1) 
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# Name 
L 

[m] 

Steel 

grade 
Profile 

fy 

[MPa] 

fc 

[MPa] 

Shear 

conn. 
Dist. 

Mu,FEM 

[kNm] 

su,FEM 

[mm] 

69 16E60-S3C20M-DP1-P3.3 16.2 S355 IPE 600 391 28 P3.3 DP1 2216 9.7 

70 16E60-S3C20M-DP1-P15.1 16.2 S355 IPE 600 391 28 P15.1 DP1 2197 7.7 

71 16E60-S3C20M-DP2-P0 16.2 S355 IPE 600 391 28 P0 DP2 2511 6.0 

72 16E60-S3C20M-DP2-P3.3 16.2 S355 IPE 600 391 28 P3.3 DP2 2454 7.9 

73 16E60-S3C20M-DP2-P15.1 16.2 S355 IPE 600 391 28 P15.1 DP2 2526 5.9 

74 6E27-S3C45D-DP1-P0 6.0 S355 IPE 270 355 30 P0 DP1 325 6.0 

75 6E27-S3C45D-DP1-P3.3 6.0 S355 IPE 270 355 30 P3.3 DP1 320 10.6 

76 6E27-S3C45D-DP1-P15.1 6.0 S355 IPE 270 355 30 P15.1 DP1 337 8.8 

77 6E27-S3C45D-DP2-P0 6.0 S355 IPE 270 355 30 P0 DP2 426 6.0 

78 6E27-S3C45D-DP2-P3.3 6.0 S355 IPE 270 355 30 P3.3 DP2 394 9.3 

79 6E27-S3C45D-DP2-P15.1 6.0 S355 IPE 270 355 30 P15.1 DP2 429 7.1 

80 6E27-S3C20D-DP1-P0 6.0 S355 IPE 270 355 13.33 P0 DP1 322 6.0 

81 6E27-S3C20D-DP1-P3.3 6.0 S355 IPE 270 355 13.33 P3.3 DP1 328 10.0 

82 6E27-S3C20D-DP1-P15.1 6.0 S355 IPE 270 355 13.33 P15.1 DP1 352 8.8 

83 6E27-S3C20D-DP2-P0 6.0 S355 IPE 270 355 13.33 P0 DP2 405 6.0 

84 6E27-S3C20D-DP2-P3.3 6.0 S355 IPE 270 355 13.33 P3.3 DP2 364 8.2 

85 6E27-S3C20D-DP2-P15.1 6.0 S355 IPE 270 355 13.33 P15.1 DP2 398 6.0 

86 6E36-S3C45D-DP1-P0 6.0 S355 IPE 360 355 30 P0 DP1 536 6.0 

87 6E36-S3C45D-DP1-P3.3 6.0 S355 IPE 360 355 30 P3.3 DP1 564 10.6 

88 6E36-S3C45D-DP1-P15.1 6.0 S355 IPE 360 355 30 P15.1 DP1 583 8.8 

89 6E36-S3C45D-DP2-P0 6.0 S355 IPE 360 355 30 P0 DP2 657 6.0 

90 6E36-S3C45D-DP2-P3.3 6.0 S355 IPE 360 355 30 P3.3 DP2 589 8.0 

91 6E36-S3C45D-DP2-P15.1 6.0 S355 IPE 360 355 30 P15.1 DP2 681 8.4 

92 6E36-S3C20D-DP1-P0 6.0 S355 IPE 360 355 13.33 P0 DP1 536 6.0 

93 6E36-S3C20D-DP1-P3.3 6.0 S355 IPE 360 355 13.33 P3.3 DP1 538 9.9 

94 6E36-S3C20D-DP1-P15.1 6.0 S355 IPE 360 355 13.33 P15.1 DP1 569 8.8 

95 6E36-S3C20D-DP2-P0 6.0 S355 IPE 360 355 13.33 P0 DP2 644 6.0 

96 6E36-S3C20D-DP2-P3.3 6.0 S355 IPE 360 355 13.33 P3.3 DP2 579 7.7 

97 6E36-S3C20D-DP2-P15.1 6.0 S355 IPE 360 355 13.33 P15.1 DP2 610 5.7 

98 8E45-S3C45D-DP1-P0 8.1 S355 IPE 450 355 30 P0 DP1 871 6.0 

99 8E45-S3C45D-DP1-P3.3 8.1 S355 IPE 450 355 30 P3.3 DP1 898 10.6 

100 8E45-S3C45D-DP1-P15.1 8.1 S355 IPE 450 355 30 P15.1 DP1 924 8.8 

101 16E60-S3C45D-DP1-P0 16.2 S355 IPE 600 355 30 P0 DP1 1568 6.0 

102 16E60-S3C45D-DP1-P3.3 16.2 S355 IPE 600 355 30 P3.3 DP1 1821 10.6 

103 16E60-S3C45D-DP1-P15.1 16.2 S355 IPE 600 355 30 P15.1 DP1 1870 8.8 

104 16E60-S3C45D-DP2-P0 16.2 S355 IPE 600 355 30 P0 DP2 2208 6.0 

105 16E60-S3C45D-DP2-P3.3 16.2 S355 IPE 600 355 30 P3.3 DP2 2120 10.6 

106 16E60-S3C45D-DP2-P15.1 16.2 S355 IPE 600 355 30 P15.1 DP2 2178 7.5 

 

 

 

 

 

Table B.4 Details of the parametric studies PS-2 (part 2) 
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# Name 
L 

[m] 

Steel 

grade 
Profile 

fy 

[MPa] 

fc 

[MPa] 

Shear 

conn. 
Dist. 

Mu,FEM 

[kNm] 

su,FEM 

[mm] 

107 16E60-S3C20D-DP1-P0 16.2 S355 IPE 600 355 13.33 P0 DP1 1560 6.0 

108 16E60-S3C20D-DP1-P3.3 16.2 S355 IPE 600 355 13.33 P3.3 DP1 1815 10.6 

109 16E60-S3C20D-DP1-P15.1 16.2 S355 IPE 600 355 13.33 P15.1 DP1 1862 8.8 

110 16E60-S3C20D-DP2-P0 16.2 S355 IPE 600 355 13.33 P0 DP2 2109 6.0 

111 16E60-S3C20D-DP2-P3.3 16.2 S355 IPE 600 355 13.33 P3.3 DP2 2033 9.4 

112 16E60-S3C20D-DP2-P15.1 16.2 S355 IPE 600 355 13.33 P15.1 DP2 2083 6.4 

 

The moment-deflection curves are presented in Figure B.14 - Figure B.17. In the figures, the dots 

represent shear connector failure. If no dot is presented at the end of the curve, it means that the failure 

occurred in a different way: either by concrete crushing or by plastification of the steel section. The left 

and the right figures correspond to the same simulations with expected values (left) and with design 

values (right). 

 

  

(a) (b) 

Figure B.14 Moment deflection curves (a) simulation #35-#40, (b) simulation #74-#79 
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Table B.5 Details of the parametric studies PS-2 (part 3) 
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(a) (b) 

  

  

(c) (d) 

Figure B.15 Moment deflection curves (a) simulation #41-#46, (b) simulation #80-#85, (c) simulation 

#47-#52, (d) simulation #86-#91 
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(a) (b) 

  

  

(c) (d) 

Figure B.16 Moment deflection curves (a) simulation #53-#58, (b) simulation #92-#97, (c) simulation 

#59-#61, (d) simulation #98-#100 
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(a) (b) 

  

  

(c) (d) 

Figure B.17 Moment deflection curves (a) simulation #62-#67, (b) simulation #101-#106, (c) simulation 

#68-#73, (d) simulation #107-#112 
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Figure B.18 Slip distribution of 6 m long beams with IPE270 

 

 

Figure B.19 Slip distribution of 6 m long beams with IPE360 

 

 

Figure B.20 Slip distribution of 8.1 m long beams with IPE450 
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Figure B.21 Slip distribution of 16.2 m long beams with IPE600 

 

 

Figure B.22 Slip distribution of 6 m long beams with IPE270 (modelled with design values) 

 

 

Figure B.23 Slip distribution of 6 m long beams with IPE360 (modelled with design values) 
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Figure B.24 Slip distribution of 8.1 m long beams with IPE450 (modelled with design values) 

 

 

Figure B.25 Slip distribution of 16.2 m long beams with IPE600 (modelled with design values) 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.1 0.2 0.3 0.4 0.5

S
lip

 r
e
la

ti
v
e
 t

o
 t
h
e
 e

n
d

-s
lip

, 
s
/s

.u
 [
-]

Position along the length, x/L [-]

8E45-S3C45D-DP1-P0

8E45-S3C45D-DP1-P3.3

8E45-S3C45D-DP1-P15.1

Cosine function

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.1 0.2 0.3 0.4 0.5

S
lip

 r
e
la

ti
v
e
 t

o
 t
h
e
 e

n
d

-s
lip

, 
s
/s

.u
 [
-]

Position along the length, x/L [-]

16E60-S3C45D-DP1-P0

16E60-S3C45D-DP1-P3.3

16E60-S3C45D-DP1-P15.1

16E60-S3C45D-DP2-P0

16E60-S3C45D-DP2-P3.3

16E60-S3C45D-DP2-P15.1

16E60-S3C20D-DP1-P0

16E60-S3C20D-DP1-P3.3

16E60-S3C20D-DP1-P15.1

16E60-S3C20D-DP2-P0

16E60-S3C20D-DP2-P3.3

16E60-S3C20D-DP2-P15.1

Cosine function



 

 

  



Annex C Equations for elastic calculations 

217 

(i) The beam in consideration is as an Euler-Bernoulli beam, i.e. the cross-sections originally plane 

and perpendicular to the axis of the beam remain plane and perpendicular to the axis of the beam 

after deformation. 

(ii) Only small displacements are considered. 

(iii) The material is linear elastic and isotropic. 

Equations (C.16) and (C.17) present the simplest forms of the engineering stress and the engineering 

strain: 

𝜎 = 𝐹/𝐴 (C.16) 

𝜀 = Δ𝑙/𝑙0 (C.17) 

where 𝜎 is the engineering stress, F is the normal force acting on the cross-section and A is the original 

cross-sectional area, ε is the engineering strain, Δl is the elongation and l0 is the original length of the 

element. 

Elastic materials do not show any irreversible phenomena due to external loads. In the case of linear 

elastic isotropic materials the relationship between the stresses are linearly proportional to the strains:  

𝜎 = 𝜎0 + 𝐸𝜀 (C.18) 

Generally, the initial stresses σ0 are neglected because they are significantly smaller than the stresses of 

active loads, so the above equation takes the following form: 

𝜎 = 𝐸𝜀 (C.19) 

where E is the modulus of elasticity. This equation is referred to as the Hooke’s law in standard 

engineering practice. Using equations (C.16) and (C.19), we obtain the relationship between the strain 

ε and the normal force F: 

𝜀 =
𝜎

𝐸
=
𝐹

𝐸𝐴
 (C.20) 

 

  

 Equations for elastic calculations 

C.1 Assumptions 

C.2 Basic material equations – engineering stress and engineering strain 
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According to the Euler-Bernoulli beam theory the relationship between the deflection and the applied 

load is: 

𝑑2

𝑑𝑥2
(𝐸𝐼𝑦

𝑑2𝑤(𝑥)

𝑑𝑥2
) = 𝑞𝑧(𝑥) (C.21) 

The flexural rigidity EIy of the beam is often constant along the length, therefore the equation above 

becomes: 

𝐸𝐼𝑦
𝑑4𝑤(𝑥)

𝑑𝑥4
= 𝑞𝑧(𝑥) (C.22) 

where w(x) is the deflection of the beam and q(x) is the external load. 

The rotation φ(x) is the first derivative of the deflection: 

𝜑(𝑥) =
𝑑𝑤(𝑥)

𝑑𝑥
 (C.23) 

The curvature κ(x) is the first derivative of the rotation: 

𝜅(𝑥) =
𝑑2𝑤(𝑥)

𝑑𝑥2
=
𝑑𝜑(𝑥)

𝑑𝑥
 (C.24) 

The relationship between the external load qz(x) and the shear force Vz(x) is: 

∫𝑞𝑧(𝑥) 𝑑𝑥 = 𝑉𝑧(𝑥) (C.25) 

The relationship between the shear force Vz(x) and the bending moment My(x) is: 

∫𝑉𝑧(𝑥) 𝑑𝑥 =∬𝑞𝑧(𝑥)𝑑𝑥
2 = 𝑀𝑦(𝑥) (C.26) 

or, in another form: 

𝑑2𝑀𝑦(𝑥) 

𝑑𝑥2
=
𝑑𝑉𝑧(𝑥)

𝑑𝑥
= 𝑞𝑧(𝑥) (C.27) 

Using equations (C.22) and (C.27) we obtain: 

𝑀𝑦(𝑥) = 𝐸𝐼𝑦
𝑑2𝑤(𝑥)

𝑑𝑥2
= 𝐸𝐼𝑦 ∙ 𝜅(𝑥) (C.28) 

or: 

𝜅(𝑥) =
𝑀𝑦(𝑥)

𝐸𝐼𝑦
 (C.29) 

C.3 Basic equations of beam theory 
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According to the Euler-Bernoulli theory, the neighbouring planar cross-sections have different rotations 

during pure bending. As a result, the longitudinal fibres that connect them undergo normal strains. The 

magnitude of these strains εx(z,x) is the product of the difference in rotation between the sections 

dφ(x)/dx, and the distance z between the fibre in consideration and the axis of the rotation: 

𝜀𝑥(𝑧, 𝑥) =
𝑑𝜑(𝑥)

𝑑𝑥
∙ 𝑧 = 𝜅(𝑥) ∙ 𝑧 =

𝑀𝑦(𝑥)

𝐸𝐼𝑦
∙ 𝑧 (C.30) 

Using equations (C.19), (C.29) and (C.30), we can express the normal stress σx(x,z) due to the bending 

moment as:  

𝜎𝑥(𝑥, 𝑧) = 𝐸 ∙ 𝜀𝑥(𝑥, 𝑧) = 𝐸 ∙ 𝜅(𝑥) ∙ 𝑧 = 𝐸 ∙
𝑀𝑦(𝑥)

𝐸𝐼𝑦
∙ 𝑧 =

𝑀𝑦(𝑥)

𝐼𝑦
∙ 𝑧 (C.31) 
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(i) The steel and the concrete can be considered as linear elastic isotropic materials. 

(ii) There is no separation between the steel beam and the concrete slab. 

(iii) There is no cracking of the concrete. 

(iv) The curvature of the steel and the concrete is equal at any section. 

In order to determine the second moment of area Iy,eff of the composite section, first consider the 

equilibrium equations of the composite section due to an externally applied moment My(x). As a result 

of the composite action, a compression force Fx,c(x) acts in the concrete slab and a tension force Fx,a(x) 

in the steel beam: 

 

 

Figure C.1 Theoretical model and cross-sectional forces of a composite beam with flexible shear 

connection 

If there is no externally applied normal force, the magnitudes of these forces are equal. This will be 

denoted as Fx(x) in the forthcoming. 

𝐹𝑥,𝑎(𝑥) − 𝐹𝑥,𝑐(𝑥) = 0  

|𝐹𝑥,𝑎(𝑥)| = |𝐹𝑥,𝑐(𝑥)| = 𝐹𝑥(𝑥) (C.32) 

The externally applied moment My(x) is equilibrated by the moment resisted by the slab My,c(x), the 

moment resisted by the steel beam My,a(x), and the moment generated by the pair of the normal forces 

Fx(x): 

𝑀𝑦(𝑥) = 𝑀𝑦,𝑐(𝑥) + 𝑀𝑦,𝑎(𝑥) + 𝐹𝑥(𝑥) ∙ 𝑎 (C.33) 

where a is the distance between the centroidal axes of the slab and the steel beam. For a typical 

composite beam, it can be calculated as: 

C.4 Composite beams with rigid and flexible shear connections 

C.4.1 Assumptions 

C.4.2 Basic equations 
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𝑎 = 𝑦𝑎 + ℎ𝑝 + ℎ𝑐/2 (C.34) 

where ya is the distance between the top fibre of the steel beam and its centroidal axis, hp is the height 

of the metal decking, and hc is the depth of the concrete over the metal decking. 

The curvature of the slab and the steel beam is the same at any section: 

𝜅𝑐(𝑥) = 𝜅𝑎(𝑥) = 𝜅(𝑥) (C.35) 

Using equation (C.29), the previous equation becomes: 

𝑀𝑦,𝑐(𝑥)

𝐸𝑐𝐼𝑦,𝑐
=
𝑀𝑦,𝑎(𝑥)

𝐸𝑎𝐼𝑦,𝑎
=
𝑀𝑦(𝑥)

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
= 𝜅(𝑥) (C.36) 

The modular ratio expresses the ratio of the modulus of elasticity of the steel and of the concrete: 

𝑛 = 𝐸𝑎/𝐸𝑐 (C.37) 

If we rearrange equation (C.36), we obtain the moment resisted by the concrete: 

𝑀𝑦,𝑐(𝑥) =
𝑀𝑦(𝑥)

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
𝐸𝑐𝐼𝑦,𝑐 =

𝑀𝑦(𝑥)

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
∙
𝐸𝑎
𝑛
 ∙ 𝐼𝑦,𝑐 =

𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑐 (C.38) 

Similarly, the moment resisted by the steel beam is: 

𝑀𝑦,𝑎(𝑥) =
𝑀𝑦(𝑥)

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
𝐸𝑎𝐼𝑦,𝑎 =

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑎 (C.39) 

Using equation (C.36) in equation (C.33), we can express the second moment of area: 

𝑀𝑦(𝑥) = 𝑀𝑦,𝑐(𝑥) + 𝑀𝑦,𝑎(𝑥) + 𝐹𝑥(𝑥) ∙ 𝑎  

With: 

𝑀𝑦,𝑐(𝑥) = 𝐸𝑐𝐼𝑦,𝑐𝜅(𝑥), 

𝑀𝑦,𝑎(𝑥) = 𝐸𝑎𝐼𝑦,𝑎𝜅(𝑥), and 

𝑀𝑦(𝑥) = 𝐸𝑎𝐼𝑦,𝑒𝑓𝑓𝜅(𝑥); we obtain: 

 

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓𝜅(𝑥) = 𝐸𝑐𝐼𝑦,𝑐𝜅(𝑥) + 𝐸𝑎𝐼𝑦,𝑎𝜅(𝑥) + 𝐹𝑥(𝑥) ∙ 𝑎  

With: 

𝐸𝑐 = 𝐸𝑎/𝑛,  

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓𝜅(𝑥) =
𝐸𝑎
𝑛
𝐼𝑦,𝑐𝜅(𝑥) + 𝐸𝑎𝐼𝑦,𝑎𝜅(𝑥) + 𝐹𝑥(𝑥) ∙ 𝑎 

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓𝜅(𝑥) = (
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎)𝐸𝑎𝜅(𝑥) + 𝐹𝑥(𝑥) ∙ 𝑎 
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Dividing both sides by Ea κ(x): 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹(𝑥) ∙ 𝑎

𝐸𝑎𝜅(𝑥)
 (C.40) 

The rate of change of slip ds(x)/dx is determined by the strain difference between the steel and the 

concrete at their contact surface i.e. at the top fibre of the steel beam: 

𝑑𝑠(𝑥)

𝑑𝑥
= 𝜀𝑥,𝑎(𝑧, 𝑥) − 𝜀𝑥,𝑐(𝑧, 𝑥) (C.41) 

The strains in the steel and in the concrete can be calculated as the sum of the strains arising from the 

normal force and the bending moment. It is important to note that attention needs to be payed to the 

signs of the strains as the absolute values of the force F(x) and the distance z is used. Positive sign 

denotes elongation and negative sign denotes compression. Using equations (C.20) and (C.30), we can 

obtain the strains at the contact surface: 

𝜀𝑥,𝑐(𝑧, 𝑥) =
𝑀𝑦,𝑐(𝑥)

𝐸𝑐𝐼𝑦,𝑐
∙ (ℎ𝑝 +

ℎ𝑐
2
) −

𝐹𝑥(𝑥)

𝐸𝑐𝐴𝑐
 (C.42) 

𝜀𝑥,𝑎(𝑧, 𝑥) = −
𝑀𝑦,𝑎(𝑥)

𝐸𝑎𝐼𝑦,𝑎
∙ 𝑦𝑎 +

𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
 

(C.43) 

By substituting equations (C.42) and (C.43) into equation (C.41), the rate of change of slip is: 

𝑑𝑠(𝑥)

𝑑𝑥
= −

𝑀𝑦,𝑎(𝑥)

𝐸𝑎𝐼𝑦,𝑎
∙ 𝑦𝑎 −

𝑀𝑦,𝑐(𝑥)

𝐸𝑐𝐼𝑦,𝑐
∙ (ℎ𝑝 +

ℎ𝑐
2
) +

𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
+
𝐹𝑥(𝑥)

𝐸𝑐𝐴𝑐
 (C.44) 

If we substitute equations (C.37)(8.4) and (C.38) into the equation above, we obtain: 

𝑑𝑠(𝑥)

𝑑𝑥
= −

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑎

𝐸𝑎𝐼𝑦,𝑎
∙ 𝑦𝑎 −

𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑐

𝐸𝑐𝐼𝑦,𝑐
∙ (ℎ𝑝 +

ℎ𝑐
2
) +

𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
+
𝐹𝑥(𝑥)

𝐸𝑐𝐴𝑐
 

𝑑𝑠(𝑥)

𝑑𝑥
= −

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓

𝐸𝑎
∙ 𝑦𝑎 −

𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓

𝐸𝑐
∙ (ℎ𝑝 +

ℎ𝑐
2
) +

𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
+
𝐹𝑥(𝑥)

𝐸𝑐𝐴𝑐
 

 

With: 

𝐸𝑐 = 𝐸𝑎/𝑛  

𝑑𝑠(𝑥)

𝑑𝑥
= −

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓

𝐸𝑎
∙ 𝑦𝑎 −

𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
𝐸𝑎
𝑛

∙ (ℎ𝑝 +
ℎ𝑐
2
) +

𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
+
𝐹𝑥(𝑥)

𝐸𝑎
𝑛 𝐴𝑐

 

𝑑𝑠(𝑥)

𝑑𝑥
= −𝑀𝑦(𝑥) ∙

𝑦𝑎 + ℎ𝑝 +
ℎ𝑐
2

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
+
𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
+
𝐹𝑥(𝑥) ∙ 𝑛

𝐸𝑎𝐴𝑐
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with: 

𝑎 = 𝑦𝑎 + ℎ𝑝 +
ℎ𝑐
2

 
 

𝑑𝑠(𝑥)

𝑑𝑥
= −𝑀𝑦(𝑥) ∙

𝑎

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
+
𝐹𝑥(𝑥)

𝐸𝑎
(
1

𝐴𝑎
+
𝑛

𝐴𝑐
) (C.45) 

If we rearrange equation (C.45) for My(x), we get: 

𝑀𝑦(𝑥) ∙
𝑎

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
= −

𝑑𝑠(𝑥)

𝑑𝑥
+
𝐹𝑥(𝑥)

𝐸𝑎
(
1

𝐴𝑎
+
𝑛

𝐴𝑐
) 

𝑀𝑦(𝑥) = −
𝑑𝑠(𝑥)

𝑑𝑥
∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓

𝑎
+
𝐹𝑥(𝑥)

𝐸𝑎
∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓

𝑎
(
1

𝐴𝑎
+
𝑛

𝐴𝑐
) 

 

𝑀𝑦(𝑥) = −
𝑑𝑠(𝑥)

𝑑𝑥
∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓

𝑎
+
𝐹𝑥(𝑥)𝐼𝑦,𝑒𝑓𝑓

𝑎
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

) (C.46) 

The normal stresses from bending can be determined using equation (C.31). Therefore, the normal stress 

in the concrete from bending can be calculated as: 

𝜎𝑥,𝑐(𝑧, 𝑥) =
𝑀𝑦,𝑐(𝑥)

𝐼𝑦,𝑐
∙ 𝑧𝑐 (C.47) 

where zc is the distance between the fibre in consideration from the centroidal axis of the concrete. 

Using equation (C.38), we obtain: 

𝜎𝑥,𝑐(𝑧, 𝑥) =

𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑐

𝐼𝑦,𝑐
∙ 𝑧𝑐 =

𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
∙ 𝑧𝑐 

(C.48) 

Similarly, using equations (C.31) and (C.39) we can express the normal stress in the steel: 

𝜎𝑥,𝑎(𝑧, 𝑥) =
𝑀𝑦,𝑎(𝑥)

𝐼𝑦,𝑎
∙ 𝑧𝑎 =

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑎

𝐼𝑦,𝑎
∙ 𝑧𝑎 =

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑧𝑎 

(C.49) 

In the equations above My,c(x), My,a(x) and My(x) denote the bending moment that acts on the concrete, 

the steel and the composite section respectively. 

  

C.5 Elastic normal stresses from bending 



Annex C Equations for elastic calculations 

224 

In order to determine the second moment of area, we use equation (C.40): 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹𝑥(𝑥) ∙ 𝑎

𝐸𝑎𝜅(𝑥)
  

With: 

𝐸𝑎𝜅(𝑥) = 𝑀𝑦(𝑥)/𝐼𝑦,𝑒𝑓𝑓  

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹𝑥(𝑥) ∙ 𝑎

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓

 
 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹𝑥(𝑥) ∙ 𝑎 ∙ 𝐼𝑦,𝑒𝑓𝑓

𝑀𝑦(𝑥)
 (C.50) 

In the case of rigid shear connection, there is no slip between the slab and the steel beam: 

𝑠(𝑥) = 0 (C.51) 

Therefore: 

𝑑𝑠(𝑥)

𝑑𝑥
= 0 (C.52) 

So equation (C.46) becomes: 

𝑀𝑦(𝑥) =
𝐹𝑥(𝑥)𝐼𝑦,𝑒𝑓𝑓

𝑎
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

) (C.53) 

We obtain the effective second moment of area of composite beams with rigid shear connectors by 

substituting equation (C.53) into equation (C.50): 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹𝑥(𝑥) ∙ 𝑎 ∙ 𝐼𝑦,𝑒𝑓𝑓
𝐹𝑥(𝑥)𝐼𝑦,𝑒𝑓𝑓

𝑎 (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)

 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝑎2

(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)
 

 

𝐼𝑦,𝑒𝑓𝑓 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝐴𝑐𝐴𝑎
𝐴𝑐 + 𝑛𝐴𝑎

∙ 𝑎2 (C.54) 

 

  

C.5.1 Second moment of area for rigid connection 
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In the case of flexible shear connection, generally the slip s(x) is assumed to vary according to a cosine 

function along the length of the beam [43], [44]. As a result, the compression force F(x) and moment 

My(x) is assumed to vary according to a sine function. This moment diagram corresponds to an external 

load qz(x) that is distributed according to a sine function along the length. However, it is still a good 

approximation for a uniformly loaded beam where the moment diagram is a second order parabola. 

The second moment of area can be determined in the same way as in the case of rigid shear connection. 

The assumed slip function is: 

𝑠(𝑥) = 𝑠̅ ∙ cos (
𝜋𝑥

𝐿
)  (C.55) 

where 𝑠̅ is the end slip, L is the span of the beam, and x is the distance along the length of the beam from 

a support.  

Therefore: 

𝑑𝑠(𝑥)

𝑑𝑥
= −𝑠̅ ∙

𝜋

𝐿
∙ sin (

𝜋𝑥

𝐿
) (C.56) 

The shear connector forces Psc(x) are not considered in discrete points, but over a unit length: 

𝑃𝑠𝑐(𝑥) = 𝑠(𝑥) ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

= 𝑠̅ ∙ cos (
𝜋𝑥

𝐿
) ∙

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

 (C.57) 

where ksc is the stiffness of the shear connectors, and ssc,eq is the equivalent longitudinal spacing. The 

compression force in the slab Fx(x) can be determined from the integral of the shear connector forces:  

𝐹𝑥(𝑥) = ∫ 𝑃𝑠𝑐(𝑥) 𝑑𝑥
𝑥

0

= 𝑠̅ ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∫ cos (
𝜋𝑥

𝐿
) 𝑑𝑥 =

𝑥

0

 

𝐹𝑥(𝑥) = 𝑠̅ ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙ [
𝐿

𝜋
∙ sin (

𝜋𝑥

𝐿
)]
0

𝑥

 

𝐹𝑥(𝑥) = 𝑠̅ ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
∙ sin (

𝜋𝑥

𝐿
) − 𝑠̅ ∙

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
∙ sin 0 

 

𝐹𝑥(𝑥) = 𝑠̅ ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
∙ sin (

𝜋𝑥

𝐿
) (C.58) 

Using equations (8.16) and (8.18), equation (8.7) becomes: 

𝑀𝑦(𝑥) = 𝑠̅ ∙
𝜋

𝐿
∙ sin (

𝜋𝑥

𝐿
) ∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓

𝑎
+ 𝑠̅ ∙

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
∙ sin (

𝜋𝑥

𝐿
)
𝐼𝑦,𝑒𝑓𝑓

𝑎
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)  

C.5.2 Second moment of area for flexible connection 
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𝑀𝑦(𝑥) = 𝑠̅ ∙ sin (
𝜋𝑥

𝐿
) ∙
𝐼𝑦,𝑒𝑓𝑓

𝑎
(𝐸𝑎 ∙

𝜋

𝐿
+
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)) (C.59) 

Substituting equations (C.59) and (C.58) into equation (C.50) we obtain the effective second moment 

of area of composite beams with flexible shear connectors: 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝑠̅ ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋
∙ sin (

𝜋𝑥
𝐿
) ∙ 𝑎 ∙ 𝐼𝑦,𝑒𝑓𝑓

𝑠̅ ∙ sin (
𝜋𝑥
𝐿
) ∙
𝐼𝑦,𝑒𝑓𝑓
𝑎 (𝐸𝑎 ∙

𝜋
𝐿
+
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))

 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋 ∙ 𝑎

2

𝐸𝑎 ∙
𝜋
𝐿
+
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)
 

 

Dividing both the numerator and the denominator by ((𝑘𝑠𝑐 ∙ 𝐿)/(𝑠𝑠𝑐,𝑒𝑞 ∙ 𝜋))  

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝑎2

𝐸𝑎

(
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

)
(
𝜋
𝐿)
2
+
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

 
 

Multiplying both the numerator and the denominator by 𝐴𝑐/𝑛  

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

(
𝐴𝑐
𝑛 )𝑎

2

𝐸𝑎

(
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

)
(
𝜋
𝐿
)
2
(
𝐴𝑐
𝑛
) + (

𝑛
𝐴𝑐
+
1
𝐴𝑎
) (
𝐴𝑐
𝑛
)
 

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

(
𝐴𝑐
𝑛 )𝑎

2

𝐸𝑎

(
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

)
(
𝜋
𝐿)
2
(
𝐴𝑐
𝑛 ) + 1 +

𝐴𝑐
𝑛𝐴𝑎

 

 

𝐼𝑦,𝑒𝑓𝑓 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝐴𝑐/𝑛

1 +
𝐴𝑐
𝑛𝐴𝑠

+ (
𝐸𝑎

𝑘𝑠𝑐/𝑠𝑠𝑐,𝑒𝑞
) (
𝜋
𝐿)
2
(
𝐴𝑐
𝑛 )

∙ 𝑎2 
(C.60) 
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In order to determine the relationship between the end slip and the moment at mid-span, we need to 

rearrange equation (C.59) for the end slip: 

𝑀𝑦(𝑥) = 𝑠̅ ∙ sin (
𝜋𝑥

𝐿
) ∙
𝐼𝑦,𝑒𝑓𝑓

𝑎
(𝐸𝑎 ∙

𝜋

𝐿
+
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)) (C.61) 

With: 

𝑥 = 𝐿/2  

𝑀𝑦(𝐿/2) = 𝑠̅ ∙ sin (
𝜋

2
) ∙
𝐼𝑦,𝑒𝑓𝑓

𝑎
(𝐸𝑎 ∙

𝜋

𝐿
+
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))  

With: 

𝑀̅ = 𝑀𝑦(𝐿/2)  

𝑀̅ = 𝑠̅ ∙ 1 ∙
𝐼𝑦,𝑒𝑓𝑓

𝑎
(𝐸𝑎 ∙

𝜋

𝐿
+
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)) 

𝑠̅ =
𝑀̅

𝐼𝑦,𝑒𝑓𝑓
𝑎 (𝐸𝑎 ∙

𝜋
𝐿
+
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))

 

𝑠̅ =
𝑀̅ ∙ 𝑎

𝐼𝑦,𝑒𝑓𝑓 (𝐸𝑎 ∙
𝜋
𝐿 +

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋 (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))

 

𝑠̅ =
𝑀̅ ∙ 𝑎 ∙

𝜋
𝐿

𝐼𝑦,𝑒𝑓𝑓

(

 
 𝐸𝑎

(
𝐿
𝜋)
2 +

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)

)

 
 

 

𝑠̅ =
𝑀̅ ∙ 𝑎 ∙

𝑠𝑠𝑐,𝑒𝑞
𝑘𝑠𝑐

∙
𝜋
𝐿

𝐼𝑦,𝑒𝑓𝑓

(

 𝐸𝑎

(
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

) (
𝐿
𝜋)

2 +
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)

 

 

 

 

 

  

C.5.3 Relationship between the end slip and the moment at mid-span 
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With the introduction of the following parameter: 

𝑆𝑘 =
𝑎

𝐸𝑎

(
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

) (
𝐿
𝜋
)
2 +

𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

 

(C.62) 

𝑠̅ = 𝑀̅
𝑆𝑘
𝐼𝑦,𝑒𝑓𝑓

𝑠𝑠𝑐,𝑒𝑞
𝑘𝑠𝑐

𝜋

𝐿
 (C.63) 

Where 𝑀̅ is the moment at mid-span. 

Alternatively, the mid-span moment can be expressed based on the end slip: 

𝑀̅ = 𝑠̅
 𝐼𝑦,𝑒𝑓𝑓

𝑆𝑘

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
 (C.64) 

 

𝑀̅ = 𝑠̅
 𝐼𝑦,𝑒𝑓𝑓

𝑆𝑘

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
 (C.65) 
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The elastic deflection of a composite beam can be determined as the double integral of the curvature 

function.  

𝜅(𝑥) =
𝑀(𝑥)

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
 (C.66) 

When the beam in consideration is prismatic, i.e. the cross-section is uniform along the length, the well-

known formulations can be used for the calculation of the elastic deflections. These formulations are 

summarised here for the basic load cases. 

For a point load P at mid-span: 

𝑤̅ =
𝑃𝐿3

48 ∙ 𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
 (C.67) 

For symmetric 2-point loads acting at a distance e measured from the supports: 

𝑤̅ =
𝑃𝑒

24 ∙ 𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
∙ (3𝐿2 − 4𝑒2) (C.68) 

For uniformly distributed load: 

𝑤̅ =
5

384
∙
𝑞𝐿4

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
 (C.69) 

 

  

C.5.4 Elastic deflection determination 
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The slab and the steel beam have their own elastic neutral axis (see Figure C.2): 

 

 

Figure C.2 Strain diagram of a composite beam with flexible shear connection 

If there is no shear connection, each element has its neutral axis in its centroidal axis. Using the notations 

of the figure above, this means: 

𝑧𝑒𝑙,𝑐 = ℎ𝑐/2 (C.70) 

𝑧𝑒𝑙,𝑎 = 𝑦𝑎 (C.71) 

where zel,c is the distance between the neutral axis of the concrete and its extreme fibre in compression, 

and zel,a is the distance between the neutral axis of the steel beam and its extreme fibre in compression. 

If the connection between the slab and the steel beam is rigid, their neutral axes coincide: 

𝑧𝑒𝑙,𝑐 = ℎ𝑐 + ℎ𝑝 + 𝑧𝑒𝑙,𝑎 (C.72) 

In the case of a flexible shear connection, the location of the elastic neutral axes depends on the stiffness 

and spacing of the shear connectors.  

  

C.5.5 Location of the elastic neutral axes 
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Elastic neutral axis in the concrete 

At any section, the concrete is subjected to a bending moment My,c(x) and a compression force Fx(x). 

The corresponding strains are presented in Figure C.3. 

 

 

Figure C.3 Strains in the concrete slab 

The strains on the top and on the bottom fibre are: 

𝜀𝑥,𝑐(𝑥, 𝑧) =
𝑀𝑦,𝑐(𝑥)

𝐸𝑐𝐼𝑦,𝑐
∙ 𝑧 −

𝐹𝑥(𝑥)

𝐸𝑐𝐴𝑐
 (C.73) 

𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥) = 𝜀𝑥,𝑐 (𝑥,−
ℎ

2
)  

𝜀𝑥,𝑐,𝑏𝑜𝑡(𝑥) = 𝜀𝑥,𝑐 (𝑥,+
ℎ

2
)  

𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥) =
𝑀𝑦,𝑐(𝑥)

𝐸𝑐𝐼𝑦,𝑐
∙ (−

ℎ𝑐
2
) −

𝐹𝑥(𝑥)

𝐸𝑐𝐴𝑐
  

With: 

𝑀𝑦,𝑐(𝑥) =
𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑐 

 

 

𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥) =

𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑐

𝐸𝑐𝐼𝑦,𝑐
∙ (−

ℎ𝑐
2
) −

𝐹𝑥(𝑥)

𝐸𝑐𝐴𝑐
 

 

𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥) =
1

𝐸𝑐
(−

𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
(
ℎ𝑐
2
) −

𝐹𝑥(𝑥)

𝐴𝑐
) 
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With: 

𝜎𝑥,𝑐,𝑀(𝑥) =
𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
(
ℎ𝑐
2
)  

and 

𝜎𝑥,𝑐,𝐹(𝑥) =
𝐹𝑥(𝑥)

𝐴𝑐
  

𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥) =
1

𝐸𝑐
(− 𝜎𝑥,𝑐,𝑀(𝑥) − 𝜎𝑥,𝑐,𝐹(𝑥)) (C.74) 

𝜀𝑥,𝑐,𝑏𝑜𝑡(𝑥) =
1

𝐸𝑐
(+ 𝜎𝑥,𝑐,𝑀(𝑥) − 𝜎𝑥,𝑐,𝐹(𝑥)) (C.75) 

At the neutral axis, the strains are zero. From similar triangles (see Figure C.3): 

ℎ𝑐
𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥) − 𝜀𝑥,𝑐,𝑏𝑜𝑡(𝑥)

=
𝑧𝑒𝑙,𝑐

𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥) − 0
 (C.76) 

Rearranging the previous equation for zel,c, and substituting equations (C.74) and (C.75): 

𝑧𝑒𝑙,𝑐 =
ℎ𝑐 ∙ 𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥)

𝜀𝑥,𝑐,𝑡𝑜𝑝(𝑥) − 𝜀𝑥,𝑐,𝑏𝑜𝑡(𝑥)
 

 

𝑧𝑒𝑙,𝑐 =
ℎ𝑐 ∙

1
𝐸𝑐
(− 𝜎𝑥,𝑐,𝑀(𝑥) − 𝜎𝑥,𝑐,𝐹(𝑥))

1
𝐸𝑐
(− 𝜎𝑥,𝑐,𝑀(𝑥) − 𝜎𝑥,𝑐,𝐹(𝑥)) −

1
𝐸𝑐
(+ 𝜎𝑥,𝑐,𝑀(𝑥) − 𝜎𝑥,𝑐,𝐹(𝑥))

 

 

𝑧𝑒𝑙,𝑐 =
ℎ𝑐 (− 𝜎𝑥,𝑐,𝑀(𝑥) − 𝜎𝑥,𝑐,𝐹(𝑥))

− 𝜎𝑥,𝑐,𝑀(𝑥) − 𝜎𝑥,𝑐,𝐹(𝑥) − 𝜎𝑥,𝑐,𝑀(𝑥) + 𝜎𝑥,𝑐,𝐹(𝑥)
 

 

𝑧𝑒𝑙,𝑐 =
−ℎ𝑐 ( 𝜎𝑥,𝑐,𝑀(𝑥) + 𝜎𝑥,𝑐,𝐹(𝑥))

− 2 𝜎𝑥,𝑐,𝑀(𝑥)
 

 

 

𝑧𝑒𝑙,𝑐 =
ℎ𝑐 ( 𝜎𝑥,𝑐,𝑀(𝑥) + 𝜎𝑥,𝑐,𝐹(𝑥))

 2 𝜎𝑥,𝑐,𝑀(𝑥)
 (C.77) 

Using the relationships between the compression force in the concrete Fx(x) and the end slip 𝑠̅ (Eq. 

(C.58)) and the between the end slip and the moment at mid span (Eq. (C.63)) the compression force 

can be expressed in the function of the mid-span moment 𝑀̅: 
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𝐹𝑥(𝑥) = 𝑠̅ ∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
∙ sin (

𝜋𝑥

𝐿
)  

With:  

𝑠̅ = 𝑀̅
𝑆𝑘
𝐼𝑦,𝑒𝑓𝑓

𝑠𝑠𝑐,𝑒𝑞
𝑘𝑠𝑐

𝜋

𝐿
 

𝐹𝑥(𝑥) = 𝑀̅
𝑆𝑘
𝐼𝑦,𝑒𝑓𝑓

𝑠𝑠𝑐,𝑒𝑞

𝑘𝑠𝑐

𝜋

𝐿
∙
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿

𝜋
∙ sin (

𝜋𝑥

𝐿
) (C.78) 

From equation (C.61), the moment My(x) in the function of the mid-span moment is: 

𝑀𝑦(𝑥) = 𝑀̅ ∙ sin (
𝜋𝑥

𝐿
) (C.79) 

Substituting the equations above into equation (C.77), the location of the elastic neutral axis can be 

expressed by equation (C.80)(8.32): 

𝑧𝑒𝑙,𝑐 =
ℎ𝑐 ( 𝜎𝑥,𝑐,𝑀(𝑥) + 𝜎𝑥,𝑐,𝐹(𝑥))

 2 𝜎𝑥,𝑐,𝑀(𝑥)
  

with: 

𝜎𝑥,𝑐,𝑀(𝑥) =
𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
(
ℎ𝑐
2
) 

and 

𝜎𝑥,𝑐,𝐹(𝑥) =
𝐹𝑥(𝑥)

𝐴𝑐
 

 

𝑧𝑒𝑙,𝑐 =

ℎ𝑐 ( 
𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
(
ℎ𝑐
2 ) +

𝐹𝑥(𝑥)
𝐴𝑐

)

 2 
𝑀𝑦(𝑥)

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
(
ℎ𝑐
2 )

 

 

𝑧𝑒𝑙,𝑐 =

ℎ𝑐 ( 
𝑀̅ ∙ sin (

𝜋𝑥
𝐿 )

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
(
ℎ𝑐
2
) +

𝑀̅
𝑆𝑘
𝐼𝑦,𝑒𝑓𝑓

𝑠𝑠𝑐,𝑒𝑞
𝑘𝑠𝑐

𝜋
𝐿 ∙

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋 ∙ sin (

𝜋𝑥
𝐿 )

𝐴𝑐
)

 2 
𝑀̅ ∙ sin (

𝜋𝑥
𝐿 )

𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓
(
ℎ𝑐
2 )

 

 

 

𝑧𝑒𝑙,𝑐 =
ℎ𝑐
2
+
𝑛 ∙ 𝑆𝑘
𝐴𝑐

 (C.80) 
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Elastic neutral axis in the steel 

At any section, the steel beam is subjected to a bending moment My,a(x) and a tension force Fx(x). The 

corresponding strains are presented in Figure C.4. 

 

 

Figure C.4 Strains in the steel beam 

The strains on the top and on the bottom fibre are: 

𝜀𝑥,𝑎(𝑥, 𝑧) =
𝑀𝑦,𝑎(𝑥)

𝐸𝑎𝐼𝑦,𝑎
∙ 𝑧 −

𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
 

(C.81) 

 

𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥) = 𝜀𝑥,𝑎(𝑥, −𝑦𝑠) 

𝜀𝑥,𝑎,𝑏𝑜𝑡(𝑥) = 𝜀𝑥,𝑐(𝑥, ℎ𝑎 − 𝑦𝑠) 

𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥) =
𝑀𝑦,𝑎(𝑥)

𝐸𝑎𝐼𝑦,𝑎
∙ (−𝑦𝑠) +

𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
 

 

 

 

with: 

𝑀𝑦,𝑎(𝑥) =
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑎 

 

𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥) =

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
𝐼𝑦,𝑎

𝐸𝑎𝐼𝑦,𝑎
∙ (−𝑦𝑠) +

𝐹𝑥(𝑥)

𝐸𝑎𝐴𝑎
 

 

𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥) =
1

𝐸𝑎
(−
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 +

𝐹𝑥(𝑥)

𝐴𝑎
) 

 

 

and 

𝜀𝑥,𝑎,𝑏𝑜𝑡(𝑥) =
1

𝐸𝑎
(
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ (ℎ𝑎 − 𝑦𝑠) +

𝐹𝑥(𝑥)

𝐴𝑎
)  

  



Annex C Equations for elastic calculations 

235 

With: 

𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) =
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 

𝜎𝑥,𝑎,𝑀,𝑏𝑜𝑡(𝑥) =
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ (ℎ𝑎 − 𝑦𝑠) 

 

and 

𝜎𝑥,𝑎,𝐹(𝑥) =
𝐹𝑥(𝑥)

𝐴𝑎
  

𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥) =
1

𝐸𝑎
(− 𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) + 𝜎𝑥,𝑎,𝐹(𝑥)) (C.82) 

𝜀𝑥,𝑎,𝑏𝑜𝑡(𝑥) =
1

𝐸𝑎
(+ 𝜎𝑥,𝑎,𝑀,𝑏𝑜𝑡(𝑥) + 𝜎𝑥,𝑎,𝐹(𝑥)) (C.83) 

At the neutral axis, the strains are zero. From similar triangles (see Figure C.4): 

ℎ𝑎
𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥) − 𝜀𝑥,𝑎,𝑏𝑜𝑡(𝑥)

=
𝑧𝑒𝑙,𝑎

𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥) − 0
 (C.84) 

Rearranging the previous equation for zel,a, and substituting equations (C.82) and (C.83): 

𝑧𝑒𝑙,𝑎 =
ℎ𝑎 ∙ 𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥)

𝜀𝑥,𝑎,𝑡𝑜𝑝(𝑥) − 𝜀𝑥,𝑎,𝑏𝑜𝑡(𝑥)
 

 

𝑧𝑒𝑙,𝑎 =
ℎ𝑎 ∙

1
𝐸𝑎
(− 𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) + 𝜎𝑥,𝑐,𝐹(𝑥))

1
𝐸𝑎
(− 𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) + 𝜎𝑥,𝑎,𝐹(𝑥)) −

1
𝐸𝑎
(+ 𝜎𝑥,𝑎,𝑀,𝑏𝑜𝑡(𝑥) + 𝜎𝑥,𝑎,𝐹(𝑥))

 

 

𝑧𝑒𝑙,𝑎 =
ℎ𝑎 ∙ (− 𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) + 𝜎𝑥,𝑐,𝐹(𝑥))

− 𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) + 𝜎𝑥,𝑎,𝐹(𝑥) − 𝜎𝑥,𝑎,𝑀,𝑏𝑜𝑡(𝑥) − 𝜎𝑥,𝑎,𝐹(𝑥)
 

𝑧𝑒𝑙,𝑎 =
ℎ𝑎 ∙ ( 𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) − 𝜎𝑥,𝑐,𝐹(𝑥))

 𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) + 𝜎𝑥,𝑎,𝑀,𝑏𝑜𝑡(𝑥)
 

 

 

With: 

𝜎𝑥,𝑎,𝑀,𝑡𝑜𝑝(𝑥) =
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 

𝜎𝑥,𝑎,𝑀,𝑏𝑜𝑡(𝑥) =
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ (ℎ𝑎 − 𝑦𝑠) 
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and 

𝜎𝑥,𝑎,𝐹(𝑥) =
𝐹𝑥(𝑥)

𝐴𝑎
 

𝑧𝑒𝑙,𝑎 =

ℎ𝑎 ∙ ( 
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 −

𝐹𝑥(𝑥)
𝐴𝑎

)

 
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 +

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ (ℎ𝑎 − 𝑦𝑠)

 

 

𝑧𝑒𝑙,𝑎 =

ℎ𝑎 ∙ ( 
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 −

𝐹𝑥(𝑥)
𝐴𝑎

)

 
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 +

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ ℎ𝑎 −

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠

 

 

 

 

𝑧𝑒𝑙,𝑎 =

𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 −

𝐹𝑥(𝑥)
𝐴𝑎

 
𝑀𝑦(𝑥)

𝐼𝑦,𝑒𝑓𝑓

 (C.85) 

The magnitude of the tension force in the steel is equal to the compression force in the concrete. 

Substituting equations (C.78) and (C.79) in the equation above, we obtain the location of the neutral 

axis in the steel beam: 

𝑧𝑒𝑙,𝑎 =

𝑀̅ ∙ sin (
𝜋𝑥
𝐿 )

𝐼𝑦,𝑒𝑓𝑓
∙ 𝑦𝑠 −

𝑀̅
𝑆𝑘
𝐼𝑦,𝑒𝑓𝑓

𝑠𝑠𝑐,𝑒𝑞
𝑘𝑠𝑐

𝜋
𝐿 ∙

𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

∙
𝐿
𝜋 ∙ sin (

𝜋𝑥
𝐿 )

𝐴𝑎

 
𝑀̅ ∙ sin (

𝜋𝑥
𝐿 )

𝐼𝑦,𝑒𝑓𝑓

 

 

 

𝑧𝑒𝑙,𝑎 = 𝑦𝑠 −
𝑆𝑘
𝐴𝑎

 (C.86) 
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The derivation of the equations in the case of nonlinear connection is done similarly to the case where 

flexible shear connection is applied. The main difference is that instead of considering one single shear 

connector stiffness ksc, which describes all shear connectors at all load levels, different shear connector 

stiffness values are considered for each shear connector based on the actual load that they observe. In 

other words, at every load level every shear connector has its own individual stiffness ksc,i (see Chapter 

8.5.1.). The assumption of a cosine slip function is maintained: 

𝑠(𝑥) = 𝑠̅ ∙ cos (
𝜋𝑥

𝐿
)  (C.87) 

Therefore: 

𝑑𝑠(𝑥)

𝑑𝑥
= −𝑠̅ ∙

𝜋

𝐿
∙ sin (

𝜋𝑥

𝐿
) (C.88) 

The shear connector forces Psc,i(x) based on the slip function and their secant stiffness values can be 

described with the following expression: 

𝑃𝑠𝑐,𝑖(𝑥) = 𝑠(𝑥) ∙
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

= 𝑠̅ ∙ 𝑐𝑜𝑠 (
𝜋𝑥

𝐿
) ∙
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

 (C.89) 

Because this function is non-continuous along the length, the compression force Fx(x) in the slab will be 

the sum of the integrals of the parts where the function is continuous: 

𝐹𝑥(𝑥𝑚) =∑∫ 𝑃𝑠𝑐,𝑖(𝑥) 𝑑𝑥

𝑖∙𝐿
2𝑛𝑝

(𝑖−1)𝐿
2𝑛𝑝

𝑚

𝑖=1

=∑∫ 𝑠̅ ∙ cos (
𝜋𝑥

𝐿
) ∙

𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

 𝑑𝑥

𝑖∙𝐿
2𝑛𝑝

(𝑖−1)𝐿
2𝑛𝑝

𝑚

𝑖=1

 

𝐹𝑥(𝑥𝑚) =∑𝑠̅ ∙ [
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ sin (

𝜋𝑥

𝐿
)]
(𝑖−1)𝐿
2𝑛𝑝

𝑖∙𝐿
2𝑛𝑝

𝑚

𝑖=1

 

 

𝐹𝑥(𝑥𝑚) = 𝑠̅∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ [sin(

𝑖𝜋

2𝑛𝑝
) − sin (

(𝑖 − 1)𝜋

2𝑛𝑝
)]  

𝑚

𝑖=1

 (C.90) 

where m is the number of shear connectors (or pairs of shear connectors) and xm is the distance from the 

support until the section in consideration. Using the equations (C.88) and (C.90) in the moment equation 

(C.46): 

𝑀𝑦(𝑥) = −
𝑑𝑠(𝑥)

𝑑𝑥
∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓

𝑎
+
𝐹𝑥(𝑥)𝐼𝑦,𝑒𝑓𝑓

𝑎
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)  

C.6 Composite beams with nonlinear shear connection 

C.6.1 Second moment of area for nonlinear connection 
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𝑀𝑦(𝑥𝑚) = 𝑠̅ ∙
𝜋

𝐿
∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚

𝑎
sin(

𝑚𝜋

2𝑛𝑝
) +

+ 𝑠̅∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ [sin (

𝑖𝜋

2𝑛𝑝
) − sin(

(𝑖 − 1)𝜋

2𝑛𝑝
)]  

𝑚

𝑖=1

𝐼𝑦,𝑒𝑓𝑓,𝑚

𝑎
(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

) 

(C.91) 

If we substitute equations (C.90) and (C.91) into equation (C.50), we obtain the effective second 

moment of area at shear connection m:  

𝐼𝑦,𝑒𝑓𝑓 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝐹(𝑥) ∙ 𝑎 ∙ 𝐼𝑦,𝑒𝑓𝑓

𝑀𝑦(𝑥)
 (B.32) 

𝐼𝑦,𝑒𝑓𝑓,𝑚 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝑎2 

𝜋
𝐿 ∙

𝐸𝑎 ∙ sin (
𝑚𝜋
2𝑛𝑝

)

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) −sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  𝑚
𝑖=1

+ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)

 

(C.92) 

As one can see, the second moment of area is not constant, nor continuous over the length, but it has a 

certain value at every shear connector. Its value at mid-span is: 

𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝑎2

𝜋
𝐿 ∙

𝐸𝑎

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) − sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  
𝑛𝑝
𝑖=1

+ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)
 

(C.93) 
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In order to determine the relationship between the end slip and the moment at mid-span, we need to 

rearrange equation (C.91) for the end slip. 

With:  

 

𝑥 = 𝐿/2  

𝑀𝑦(𝐿/2) = 𝑠̅ ∙
𝜋

𝐿
∙
𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝

𝑎
+ 𝑠̅∑

𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ [sin (

𝑖𝜋

2𝑛𝑝
) − sin (

(𝑖 − 1)𝜋

2𝑛𝑝
)]  

𝑛𝑝

𝑖=1

𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝
𝑎

(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)  

𝑀𝑦(𝐿/2) = 𝑠̅ ∙
𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝

𝑎
(
𝜋

𝐿
∙ 𝐸𝑎 +∑

𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ [sin (

𝑖𝜋

2𝑛𝑝
) − sin (

(𝑖 − 1)𝜋

2𝑛𝑝
)]  

𝑛𝑝

𝑖=1

(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)) 

𝑠̅ =
𝑀𝑦(𝐿/2) ∙ 𝑎

(
𝜋
𝐿 ∙ 𝐸𝑎𝐼𝑦,𝑒𝑓𝑓 +

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) − sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  
𝑛𝑝
𝑖=1

𝐼𝑦,𝑒𝑓𝑓 (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))

 

 

With: 

𝑀̅ = 𝑀𝑦(𝐿/2)  

𝑠̅ =
𝑀̅ ∙ 𝑎

𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝 (
𝜋
𝐿
∙ 𝐸𝑎 + ∑

𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋
∙ [sin (

𝑖𝜋
2𝑛𝑝

) − sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  
𝑛𝑝
𝑖=1

(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))

 
(C.94) 

 

  

C.6.2 Relationship between the end slip and the moment at mid-span 
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Table D.1 - Table D.3 show the comparison of the results of the numerical simulations (parametric study 

PS-2) and the developed calculation method for the calculation of the plastic moment resistance 

(described in Chapter 9.4.2). Those beams where non-demountable welded stud connectors (P0) were 

used and a not satisfy the minimum degree of shear connection requirement of Eurocode 4 [18] (see 

equation (2.44) and (2.45)) could not develop the assumed plastic stress distribution before shear 

connection failure took place at the slip of 6 mm. This observation illustrates well why the code does 

not allow to apply these beams. Therefore, these beams were excluded from the presented comparison. 

On the other hand, demountable composite beams (with shear connection P3.3 or P15.1) that have a 

degree of shear connection lower than the minimum required by the code are still included in the 

comparison because their fundamental behaviour is significantly different from the one of welded studs 

(see Figure 7.3). They have a higher deformation capacity and a monotone increasing load-slip 

behaviour. 

This shows that the minimum degree of shear connection rules may need to be redefined for 

demountable shear connections. 

# Name 

Mu,FEM 

[kNm] 

PR.eff 

[kN] 

Mpl 

[kNm] 

η 

[-] 

ηmin 

[-] 

ψ 

[-] 

Mpl.η 

[kNm] 

θi 

[-] 

35 6E27-S3C45M-DP1-P0 389 109.0 490 0.61 0.40 0.52 407 0.96 

36 6E27-S3C45M-DP1-P3.3 406 107.2 490 0.60 0.40 0.20 404 1.00 

37 6E27-S3C45M-DP1-P15.1 411 115.6 490 0.64 0.40 0.26 416 0.99 

38 6E27-S3C45M-DP2-P0 526 103.1 490 1.00 0.40 0.68 490 1.07 

39 6E27-S3C45M-DP2-P3.3 503 88.4 490 0.98 0.40 0.33 496 1.01 

40 6E27-S3C45M-DP2-P15.1 513 106.8 490 1.00 0.40 0.42 490 1.05 

41 6E27-S3C20M-DP1-P0 383 108.9 469 0.61 0.40 0.53 398 0.96 

42 6E27-S3C20M-DP1-P3.3 403 107.2 469 0.60 0.40 0.21 396 1.02 

43 6E27-S3C20M-DP1-P15.1 407 115.6 469 0.64 0.40 0.27 407 1.00 

44 6E27-S3C20M-DP2-P0 481 102.8 469 1.00 0.40 0.69 469 1.02 

45 6E27-S3C20M-DP2-P3.3 466 87.3 469 0.97 0.40 0.34 473 0.98 

46 6E27-S3C20M-DP2-P15.1 475 105.8 469 1.00 0.40 0.43 469 1.01 

47 6E36-S3C45M-DP1-P0 625 109.0 883 0.38 0.40 0.43 673 0.93 

48 6E36-S3C45M-DP1-P3.3 659 101.7 883 0.36 0.40 0.15 662 1.00 

49 6E36-S3C45M-DP1-P15.1 663 115.6 883 0.41 0.40 0.20 682 0.97 

50 6E36-S3C45M-DP2-P0 780 104.1 883 0.73 0.40 0.60 807 0.97 

51 6E36-S3C45M-DP2-P3.3 820 85.9 883 0.60 0.40 0.26 760 1.08 

 Results of the plastic calculation method (Method PL1) 

Table D.1 Comparison of the numerically and analytically obtained results (part 1) 
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# Name 

Mu,FEM 

[kNm] 

PR.eff 

[kN] 

Mpl 

[kNm] 

η 

[-] 

ηmin 

[-] 

ψ 

[-] 

Mpl.η 

[kNm] 

θi 

[-] 

52 6E36-S3C45M-DP2-P15.1 827 106.7 883 0.75 0.40 0.33 814 1.02 

53 6E36-S3C20M-DP1-P0 621 109.0 827 0.41 0.40 0.44 664 0.94 

54 6E36-S3C20M-DP1-P3.3 654 100.9 827 0.38 0.40 0.15 653 1.00 

55 6E36-S3C20M-DP1-P15.1 658 115.6 827 0.44 0.40 0.21 673 0.98 

56 6E36-S3C20M-DP2-P0 758 103.7 827 0.79 0.40 0.71 778 0.97 

57 6E36-S3C20M-DP2-P3.3 747 84.8 827 0.64 0.40 0.30 738 1.01 

58 6E36-S3C20M-DP2-P15.1 755 105.5 827 0.80 0.40 0.35 781 0.97 

59 8E45-S3C45M-DP1-P0 1026 108.7 1369 0.34 0.44 0.47 1054 0.97 

60 8E45-S3C45M-DP1-P3.3 1092 105.8 1369 0.33 0.44 0.17 1047 1.04 

61 8E45-S3C45M-DP1-P15.1 1087 114.0 1369 0.35 0.44 0.23 1065 1.02 

62 16E60-S3C45M-DP1-P0 2014 106.1 2644 0.45 0.71 0.69 2222 0.91 

63 16E60-S3C45M-DP1-P3.3 2253 100.9 2644 0.43 0.71 0.34 2201 1.02 

64 16E60-S3C45M-DP1-P15.1 2234 109.6 2644 0.47 0.71 0.42 2236 1.00 

65 16E60-S3C45M-DP2-P0 2504 101.6 2644 0.90 0.71 0.82 2597 0.96 

66 16E60-S3C45M-DP2-P3.3 2578 98.7 2644 0.87 0.71 0.50 2578 1.00 

67 16E60-S3C45M-DP2-P15.1 2655 107.3 2644 0.95 0.71 0.60 2635 1.01 

68 16E60-S3C20M-DP1-P0 1980 106.1 2552 0.45 0.71 0.70 2202 0.90 

69 16E60-S3C20M-DP1-P3.3 2216 100.9 2552 0.43 0.71 0.34 2183 1.02 

70 16E60-S3C20M-DP1-P15.1 2197 109.6 2552 0.47 0.71 0.43 2214 0.99 

71 16E60-S3C20M-DP2-P0 2511 101.3 2552 0.90 0.71 0.82 2518 1.00 

72 16E60-S3C20M-DP2-P3.3 2454 98.7 2552 0.87 0.71 0.51 2504 0.98 

73 16E60-S3C20M-DP2-P15.1 2526 107.3 2552 0.95 0.71 0.60 2548 0.99 

74 6E27-S3C45D-DP1-P0 325 78.2 432 0.48 0.43 0.52 336 0.96 

75 6E27-S3C45D-DP1-P3.3 320 60.1 432 0.37 0.43 0.20 311 1.03 

76 6E27-S3C45D-DP1-P15.1 337 81.5 432 0.50 0.43 0.27 341 0.99 

77 6E27-S3C45D-DP2-P0 426 73.5 432 0.90 0.43 0.69 423 1.01 

78 6E27-S3C45D-DP2-P3.3 394 47.7 432 0.59 0.43 0.34 360 1.09 

79 6E27-S3C45D-DP2-P15.1 429 66.7 432 0.82 0.43 0.42 407 1.05 

80 6E27-S3C20D-DP1-P0 322 78.2 372 0.62 0.43 0.53 326 0.99 

81 6E27-S3C20D-DP1-P3.3 328 59.7 372 0.48 0.43 0.21 304 1.08 

82 6E27-S3C20D-DP1-P15.1 352 81.1 372 0.65 0.43 0.27 329 1.07 

83 6E27-S3C20D-DP2-P0 405 73.3 372 1.00 0.43 0.69 372 1.09 

84 6E27-S3C20D-DP2-P3.3 364 47.2 372 0.75 0.43 0.34 343 1.06 

85 6E27-S3C20D-DP2-P15.1 398 66.0 372 1.00 0.43 0.43 372 1.07 

86 6E36-S3C45D-DP1-P0 536 78.3 769 0.30 0.43 0.43 574 0.93 

87 6E36-S3C45D-DP1-P3.3 564 55.6 769 0.22 0.43 0.15 530 1.06 

88 6E36-S3C45D-DP1-P15.1 583 79.3 769 0.31 0.43 0.20 576 1.01 

Table D.2 Comparison of the numerically and analytically obtained results (part 2) 
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# Name 

Mu,FEM 

[kNm] 

PR.eff 

[kN] 

Mpl 

[kNm] 

η 

[-] 

ηmin 

[-] 

ψ 

[-] 

Mpl.η 

[kNm] 

θi 

[-] 

89 6E36-S3C45D-DP2-P0 657 74.1 769 0.57 0.43 0.60 669 0.98 

90 6E36-S3C45D-DP2-P3.3 589 46.3 769 0.36 0.43 0.26 597 0.99 

91 6E36-S3C45D-DP2-P15.1 681 66.6 769 0.52 0.43 0.34 650 1.05 

92 6E36-S3C20D-DP1-P0 536 78.3 614 0.62 0.43 0.45 563 0.95 

93 6E36-S3C20D-DP1-P3.3 538 55.2 614 0.44 0.43 0.16 524 1.03 

94 6E36-S3C20D-DP1-P15.1 569 78.9 614 0.63 0.43 0.21 564 1.01 

95 6E36-S3C20D-DP2-P0 644 73.9 614 1.00 0.43 0.62 614 1.05 

96 6E36-S3C20D-DP2-P3.3 579 45.7 614 0.73 0.43 0.27 581 1.00 

97 6E36-S3C20D-DP2-P15.1 610 65.8 614 1.00 0.43 0.35 614 0.99 

98 8E45-S3C45D-DP1-P0 871 78.3 1196 0.27 0.49 0.48 903 0.96 

99 8E45-S3C45D-DP1-P3.3 898 65.7 1196 0.22 0.49 0.17 869 1.03 

100 8E45-S3C45D-DP1-P15.1 924 83.9 1196 0.29 0.49 0.23 917 1.01 

101 16E60-S3C45D-DP1-P0 1568 76.4 2343 0.36 0.74 0.69 1919 0.82 

102 16E60-S3C45D-DP1-P3.3 1821 67.1 2343 0.32 0.74 0.34 1868 0.98 

103 16E60-S3C45D-DP1-P15.1 1870 80.3 2343 0.38 0.74 0.43 1938 0.96 

104 16E60-S3C45D-DP2-P0 2208 72.2 2343 0.70 0.74 0.82 2189 1.01 

105 16E60-S3C45D-DP2-P3.3 2120 65.5 2343 0.64 0.74 0.51 2144 0.99 

106 16E60-S3C45D-DP2-P15.1 2178 77.8 2343 0.76 0.74 0.60 2225 0.98 

107 16E60-S3C20D-DP1-P0 1560 76.4 2158 0.36 0.74 0.70 1893 0.82 

108 16E60-S3C20D-DP1-P3.3 1815 67.1 2158 0.32 0.74 0.35 1847 0.98 

109 16E60-S3C20D-DP1-P15.1 1862 80.3 2158 0.38 0.74 0.43 1910 0.97 

110 16E60-S3C20D-DP2-P0 2109 72.0 2158 0.70 0.74 0.82 2092 1.01 

111 16E60-S3C20D-DP2-P3.3 2033 64.8 2158 0.63 0.74 0.51 2061 0.99 

112 16E60-S3C20D-DP2-P15.1 2083 77.2 2158 0.75 0.74 0.60 2111 0.99 

 

  

Table D.3 Comparison of the numerically and analytically obtained results (part 3) 
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The same comparison as presented in Annex D was performed for the simplified plastic calculation 

method (Chapter 9.4.3). Again, non-demountable beams with welded shear connection (P0) that have a 

lower degree of shear connection than the minimum required by Eurocode 4 [18] were excluded from 

the comparison. 

Table E.1 Comparison of the numerically and analytically obtained results (part 1) 

# Name 

Mu,FEM 

[kNm] 

Peff,sim 

[-] 

Mpl 

[kNm] 

η 

[-] 

ηmin 

[-] 

Mpl.η,sim 

[kNm] 

θi 

[-] 

35 6E27-S3C45M-DP1-P0 389 108.7 490 0.60 0.40 406 0.96 

36 6E27-S3C45M-DP1-P3.3 406 69.1 490 0.38 0.40 349 1.16 

37 6E27-S3C45M-DP1-P15.1 411 98.4 490 0.55 0.40 392 1.05 

38 6E27-S3C45M-DP2-P0 526 108.7 490 1.00 0.40 490 1.07 

39 6E27-S3C45M-DP2-P3.3 503 69.1 490 0.77 0.40 447 1.13 

40 6E27-S3C45M-DP2-P15.1 513 98.4 490 1.00 0.40 490 1.05 

41 6E27-S3C20M-DP1-P0 383 108.7 469 0.60 0.40 398 0.96 

42 6E27-S3C20M-DP1-P3.3 403 69.1 469 0.38 0.40 345 1.17 

43 6E27-S3C20M-DP1-P15.1 407 98.4 469 0.55 0.40 385 1.06 

44 6E27-S3C20M-DP2-P0 481 108.7 469 1.00 0.40 469 1.02 

45 6E27-S3C20M-DP2-P3.3 466 69.1 469 0.77 0.40 434 1.07 

46 6E27-S3C20M-DP2-P15.1 475 98.4 469 1.00 0.40 469 1.01 

47 6E36-S3C45M-DP1-P0 625 108.7 883 0.38 0.40 672 0.93 

48 6E36-S3C45M-DP1-P3.3 659 69.1 883 0.24 0.40 603 1.09 

49 6E36-S3C45M-DP1-P15.1 663 98.4 883 0.35 0.40 657 1.01 

50 6E36-S3C45M-DP2-P0 780 108.7 883 0.76 0.40 819 0.95 

51 6E36-S3C45M-DP2-P3.3 820 69.1 883 0.49 0.40 760 1.08 

52 6E36-S3C45M-DP2-P15.1 827 98.4 883 0.69 0.40 793 1.04 

53 6E36-S3C20M-DP1-P0 621 108.7 827 0.41 0.40 664 0.94 

54 6E36-S3C20M-DP1-P3.3 654 69.1 827 0.26 0.40 599 1.09 

55 6E36-S3C20M-DP1-P15.1 658 98.4 827 0.37 0.40 650 1.01 

56 6E36-S3C20M-DP2-P0 758 108.7 827 0.83 0.40 787 0.96 

57 6E36-S3C20M-DP2-P3.3 747 69.1 827 0.53 0.40 701 1.07 

58 6E36-S3C20M-DP2-P15.1 755 98.4 827 0.75 0.40 767 0.98 

59 8E45-S3C45M-DP1-P0 1026 108.7 1369 0.34 0.44 1054 0.97 

60 8E45-S3C45M-DP1-P3.3 1092 69.1 1369 0.21 0.44 950 1.15 

61 8E45-S3C45M-DP1-P15.1 1087 98.4 1369 0.31 0.44 1030 1.05 

62 16E60-S3C45M-DP1-P0 2014 108.7 2644 0.46 0.71 2232 0.90 

63 16E60-S3C45M-DP1-P3.3 2253 69.1 2644 0.29 0.71 2034 1.11 

 Results of the simplified calculation method (Method PL2) 
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# Name 

Mu,FEM 

[kNm] 

Peff,sim 

[-] 

Mpl 

[kNm] 

η 

[-] 

ηmin 

[-] 

Mpl.η,sim 

[kNm] 

θi 

[-] 

64 16E60-S3C45M-DP1-P15.1 2234 98.4 2644 0.42 0.71 2191 1.02 

65 16E60-S3C45M-DP2-P0 2504 108.7 2644 0.96 0.71 2643 0.95 

66 16E60-S3C45M-DP2-P3.3 2578 69.1 2644 0.61 0.71 2366 1.09 

67 16E60-S3C45M-DP2-P15.1 2655 98.4 2644 0.87 0.71 2576 1.03 

68 16E60-S3C20M-DP1-P0 1980 108.7 2552 0.46 0.71 2211 0.90 

69 16E60-S3C20M-DP1-P3.3 2216 69.1 2552 0.29 0.71 2025 1.09 

70 16E60-S3C20M-DP1-P15.1 2197 98.4 2552 0.42 0.71 2173 1.01 

71 16E60-S3C20M-DP2-P0 2511 108.7 2552 0.96 0.71 2554 0.98 

72 16E60-S3C20M-DP2-P3.3 2454 69.1 2552 0.61 0.71 2329 1.05 

73 16E60-S3C20M-DP2-P15.1 2526 98.4 2552 0.87 0.71 2503 1.01 

74 6E27-S3C45D-DP1-P0 325 78.3 432 0.48 0.43 336 0.96 

75 6E27-S3C45D-DP1-P3.3 320 40.2 432 0.25 0.43 278 1.15 

76 6E27-S3C45D-DP1-P15.1 337 64.2 432 0.39 0.43 317 1.06 

77 6E27-S3C45D-DP2-P0 426 78.3 432 0.96 0.43 434 0.98 

78 6E27-S3C45D-DP2-P3.3 394 40.2 432 0.49 0.43 339 1.16 

79 6E27-S3C45D-DP2-P15.1 429 64.2 432 0.79 0.43 401 1.07 

80 6E27-S3C20D-DP1-P0 322 78.3 372 0.62 0.43 326 0.99 

81 6E27-S3C20D-DP1-P3.3 328 40.2 372 0.32 0.43 275 1.19 

82 6E27-S3C20D-DP1-P15.1 352 64.2 372 0.51 0.43 310 1.14 

83 6E27-S3C20D-DP2-P0 405 78.3 372 1.00 0.43 372 1.09 

84 6E27-S3C20D-DP2-P3.3 364 40.2 372 0.64 0.43 328 1.11 

85 6E27-S3C20D-DP2-P15.1 398 64.2 372 1.00 0.43 372 1.07 

86 6E36-S3C45D-DP1-P0 536 78.3 769 0.30 0.43 574 0.93 

87 6E36-S3C45D-DP1-P3.3 564 40.2 769 0.16 0.43 494 1.14 

88 6E36-S3C45D-DP1-P15.1 583 64.2 769 0.25 0.43 548 1.06 

89 6E36-S3C45D-DP2-P0 657 78.3 769 0.61 0.43 679 0.97 

90 6E36-S3C45D-DP2-P3.3 589 40.2 769 0.31 0.43 578 1.02 

91 6E36-S3C45D-DP2-P15.1 681 64.2 769 0.50 0.43 644 1.06 

92 6E36-S3C20D-DP1-P0 536 78.3 614 0.62 0.43 563 0.95 

93 6E36-S3C20D-DP1-P3.3 538 40.2 614 0.32 0.43 491 1.09 

94 6E36-S3C20D-DP1-P15.1 569 64.2 614 0.51 0.43 541 1.05 

95 6E36-S3C20D-DP2-P0 644 78.3 614 1.00 0.43 614 1.05 

96 6E36-S3C20D-DP2-P3.3 579 40.2 614 0.64 0.43 566 1.02 

97 6E36-S3C20D-DP2-P15.1 610 64.2 614 1.00 0.43 614 0.99 

98 8E45-S3C45D-DP1-P0 871 78.3 1196 0.27 0.49 903 0.96 

99 8E45-S3C45D-DP1-P3.3 898 40.2 1196 0.14 0.49 787 1.14 

 

Table E.2 Comparison of the numerically and analytically obtained results (part 2) 
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# Name 

Mu,FEM 

[kNm] 

Peff,sim 

[-] 

Mpl 

[kNm] 

η 

[-] 

ηmin 

[-] 

Mpl.η,sim 

[kNm] 

θi 

[-] 

100 8E45-S3C45D-DP1-P15.1 924 64.2 1196 0.22 0.49 865 1.07 

101 16E60-S3C45D-DP1-P0 1568 78.3 2343 0.37 0.74 1929 0.81 

102 16E60-S3C45D-DP1-P3.3 1821 40.2 2343 0.19 0.74 1677 1.09 

103 16E60-S3C45D-DP1-P15.1 1870 64.2 2343 0.30 0.74 1850 1.01 

104 16E60-S3C45D-DP2-P0 2208 78.3 2343 0.76 0.74 2228 0.99 

105 16E60-S3C45D-DP2-P3.3 2120 40.2 2343 0.39 0.74 1953 1.09 

106 16E60-S3C45D-DP2-P15.1 2178 64.2 2343 0.63 0.74 2135 1.02 

107 16E60-S3C20D-DP1-P0 1560 78.3 2158 0.37 0.74 1901 0.82 

108 16E60-S3C20D-DP1-P3.3 1815 40.2 2158 0.19 0.74 1669 1.09 

109 16E60-S3C20D-DP1-P15.1 1862 64.2 2158 0.30 0.74 1832 1.02 

110 16E60-S3C20D-DP2-P0 2109 78.3 2158 0.76 0.74 2115 1.00 

111 16E60-S3C20D-DP2-P3.3 2033 40.2 2158 0.39 0.74 1922 1.06 

112 16E60-S3C20D-DP2-P15.1 2083 64.2 2158 0.63 0.74 2058 1.01 

 

  

Table E.3 Comparison of the numerically and analytically obtained results (part 3) 
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The following example shows the practical application of the developed calculation methods. In this 

example, the expected values of the material properties are used. The results of the calculations are 

compared to results coming from numerical simulations that use the same geometrical and material 

properties. The beam in consideration is denoted as 16E60-S3C45M-DP1-P3.3 in the parametric study 

PS-2 (in Annex B.2). 

The presented example covers the following topics: 

1) Section F.2 presents the geometric and material properties of the beam in consideration. 

2) Section F.3 presents the elastic calculations assuming flexible shear connection on the basis 

of Chapter 8.4. 

3) Section F.4 presents the calculation of elastic deflections assuming nonlinear shear 

connection on the basis of Chapter 8.5. 

4) Section F.5  presents the calculation of the plastic moment resistance on the basis of Chapter 

9.4.2. 

5) Section F.6 presents the simplified calculation of the plastic moment resistance  on the basis 

of Chapter 9.4.3. 

6) Finally, section F.7 presents the summary of the obtained results. 

The beam in consideration is a simply supported beam subjected to a constant uniformly distributed 

load. Propped construction is assumed. 

Length: 𝐿 = 16200 𝑚𝑚  

Steel beam   

Profile: IPE 600  

Profile height: ℎ𝑎 = 600 𝑚𝑚  

Flange width: 𝑏 = 220 𝑚𝑚  

Flange thickness: 𝑡𝑓 = 19 𝑚𝑚  

Web thickness: 𝑡𝑤 = 12 𝑚𝑚  

Web height: ℎ𝑤 = ℎ𝑎 − 2 𝑡𝑓 = 562 𝑚𝑚  

Rounding radius: 𝑟 = 24 𝑚𝑚  

 Example calculations 

F.1 Task description 

F.2 Initial data 

F.2.1 Geometry and loading 
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Cross-sectional area: 𝐴𝑎 = 15598 𝑚𝑚
2  

Second moment of area: 𝐼𝑦,𝑎 = 9.208 ∙ 10
8 𝑚𝑚4  

Centroid measured from the top: 𝑦𝑎 = ℎ𝑎/2 = 300 𝑚𝑚  

Plastic section modulus 

(rounding neglected): 
𝑊𝑝𝑙,𝑦 = 3.376 ∙ 10

6 𝑚𝑚3  

Concrete slab   

Total depth: ℎ𝑡𝑜𝑡 = 150 𝑚𝑚  

Profiled sheeting: ℎ𝑝 = 0 𝑚𝑚 (solid slab)  

Depth: ℎ𝑐 = ℎ𝑡𝑜𝑡 − ℎ𝑝 = 150 𝑚𝑚  

Width: 𝐵𝑒𝑓𝑓 = 2 ∙ 𝐿/8 = 4050 𝑚𝑚  

Cross-sectional area: 𝐴𝑐 = 607500 𝑚𝑚
2  

Second moment of area: 𝐼𝑐,𝑦 = 1.139 ∙ 10
9 𝑚𝑚4  

Centroid measured  from the top: 𝑦𝑐 = ℎ𝑐/2 = 75 𝑚𝑚  

 

Steel: S355  

Yield strength:  𝑓𝑦 = 391 MPa  

Young’s modulus: 𝐸𝑎 = 200 𝐺𝑃𝑎  

Concrete : C45/55  

Cube strength: 𝑓𝑐 = 54 MPa  

Young’s modulus: 𝐸𝑐 = 40.1 𝐺𝑃𝑎  

Modular ratio:   𝑛 = 𝐸𝑎/𝐸𝑐 = 4.99  

 

Shear connection type: P3.3  

Nr. of shear connectors in a row: 𝑛𝑟 = 2  

Transversal spacing: 𝑏0 = 100 𝑚𝑚  

Longitudinal spacing 𝑠𝑙 = 600 𝑚𝑚  

Equivalent longitudinal spacing: 𝑠𝑠𝑐,𝑒𝑞 = 𝑠𝑙/𝑛𝑟 = 300 𝑚𝑚  

F.2.2 Material properties 

F.2.3 Shear connection 
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Nr. of shear connector rows on 

the critical length (L/2): 
𝑛𝑝 =

𝐿/2

𝑠𝑙
= 13.5, so 𝑛𝑝 = 13  

Nr. of shear connectors on the 

critical length (L/2): 

𝑛𝑠𝑐 = 𝑛𝑝 ∙ 𝑛𝑟 = 26  

 

 

Figure F.1 Average load-slip curve of shear connection P3.3 

The shear connection behaviour is approximated by one single stiffness value.  

Shear connection stiffness: 𝑘𝑠𝑐 = 0.7 ∙ 0.9 ∙ 𝑃𝑅,6/𝑠  

Shear resistance at 6 mm: 𝑃𝑅,6 = 91.4 𝑘𝑁  

Slip at 0.7 ∙ 0.9 ∙ 𝑃𝑅,6: 𝑠 = 3.62 𝑚𝑚  

So the shear connection stiffness is:  

𝑘𝑠𝑐 =
0.7 ∙ 0.9 ∙ 𝑃𝑅,6

𝑠
= 15.9 𝑘𝑁/𝑚𝑚 (F.1) 

 

Distance between the centroid of the steel and the concrete: 

 

𝑎 = ℎ𝑐 − 𝑦𝑐 + ℎ𝑝 + 𝑦𝑎 = 150 𝑚𝑚 − 75 𝑚𝑚 + 0 𝑚𝑚 + 300 𝑚𝑚 = 375 𝑚𝑚 (F.2) 

 

Second moment of area: 
 

𝐼𝑦,𝑒𝑓𝑓 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝐴𝑐/𝑛

1 +
𝐴𝑐
𝑛𝐴𝑎

+ (
𝐸𝑎

𝑘𝑠𝑐/𝑠𝑠𝑐,𝑒𝑞
) (
𝜋
𝐿)
2
(
𝐴𝑐
𝑛 )

∙ 𝑎2 = 1.805 ∙ 109 𝑚𝑚4 
(F.3) 

Auxiliary parameter Sk:  

𝑆𝑘 =
𝑎

𝐸𝑎

(
𝑘𝑠𝑐
𝑠𝑠𝑐,𝑒𝑞

) (
𝐿
𝜋)

2 +
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

= 1.749 ∙ 106 𝑚𝑚3 

(F.4) 
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F.3 Elastic calculation assuming flexible shear connection (Method EL1) 
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Neutral axis of the concrete (measured from the top fibre of the concrete):  

𝑧𝑒𝑙,𝑐 =
ℎ𝑐
2
+
𝑛 ∙ 𝑆𝑘
𝐴𝑐

= 89.4 𝑚𝑚 (F.5) 

 

Neutral axis of the steel (measured from the top fibre of the steel): 
 

𝑧𝑒𝑙,𝑎 = 𝑦𝑠 −
𝑆𝑘
𝐴𝑎
= 187.9 𝑚𝑚 (F.6) 

 

Elastic moment resistance (concrete cracking neglected): 
 

Concrete compression:   

𝑀𝑒𝑙,𝑐𝑐 =
𝑓𝑐 ∙ 𝑛 ∙ 𝐼𝑦,𝑒𝑓𝑓 

𝑧𝑒𝑙,𝑐
= 5444 𝑘𝑁𝑚 (F.7) 

 

Steel compression (top flange): 
 

𝑀𝑒𝑙,𝑎𝑐 =
𝑓𝑦 ∙ 𝐼𝑦,𝑒𝑓𝑓 

𝑧𝑒𝑙,𝑎
= 3756 𝑘𝑁𝑚 (F.8) 

 

Steel tension (bottom flange): 
 

𝑀𝑒𝑙,𝑎𝑡 =
𝑓𝑦 ∙ 𝐼𝑦,𝑒𝑓𝑓 

ℎ𝑎 − 𝑧𝑒𝑙,𝑎
= 1712 𝑘𝑁𝑚 (F.9) 

 

The steel bottom flange is decisive. The corresponding elastic moment resistance is: 
 

𝑀𝑒𝑙 = min(𝑀𝑒𝑙,𝑐𝑐;𝑀𝑒𝑙,𝑎𝑐;𝑀𝑒𝑙,𝑎𝑡) = 1712 𝑘𝑁𝑚 (F.10) 

 

The corresponding uniformly distributed load is: 
 

𝑞𝑒𝑙 =
𝑀𝑒𝑙 ∙ 𝐿

2

8
= 52.2 𝑘𝑁/𝑚 (F.11) 

 

Deflection at Mel: 
 

𝑤̅ =
5

384
∙
𝑞𝐿4

𝐸𝑎𝐼𝑦,𝑒𝑓𝑓
= 129.7 𝑚𝑚 (F.12) 

 

The comparison of the numerically and analytically obtained results are presented in Figure F.2. 
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Figure F.2 Numerically and analytically obtained deflections (Method EL1) 
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The presented example shows the elastic deflection calculation at an arbitrary selected load level 

(M < Mel). To obtain the complete moment-deflection curve, the calculation needs to be repeated at 

different load levels. This was performed at 30 load levels and the results are summarised in section 

F.4.3. 

This section shows the deflection calculation that corresponds to 𝑀̅ = 800 kNm mid-span moment. The 

elastic calculation with nonlinear connection is an iterative procedure according to Figure F.3. 

 

 

Figure F.3 Flowchart of the iterative procedure 

  

F.4 Elastic calculation with nonlinear connection (Method EL2) 

F.4.1 General 

F.4.2 Deflection calculation at 800 kNm mid-span moment 

 
Assume  

end slip 𝑠̅𝑗 

Determine the stiffness of 
each connector 𝑘𝑠𝑐,𝑖 

Determine the second 
moment of area at mid-

span 𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝 

Calculate the end slip 𝑠̅𝑗+1 

Calculate the second 
moment of area at each 
shear connector 𝐼𝑦,𝑒𝑓𝑓,𝑚 

Determine the deflection 
increments 𝑤𝑚 

𝑠̅𝑗 = 𝑠̅𝑗+1? 
Yes No 

Update the 
end slip 
𝑠̅𝑗 = 𝑠̅𝑗+1 

Determine the 
mid-span deflection 𝑤̅ 
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Step 1: Assume an arbitrary end slip 

In this example it is assumed to be 3 mm: 

𝑠̅𝑗 = 3 𝑚𝑚 (F.13) 

 

Step 2: Determine the secant stiffness of each shear connector 

In order to be able to determine the secant stiffness values, the occurring slip and the corresponding load 

should be determined at each connector. 

The slip function is described by a cosine function: 

𝑠(𝑥) = 𝑠̅𝑗 ∙ cos (
𝜋 ∙ 𝑥

𝐿
) (F.14) 

where x is the position along the length. For equidistant spacing the equation above can be written as: 

𝑠𝑖 = 𝑠̅𝑗 ∙ cos(
(𝑖 − 1)

𝑛𝑝 
∙
𝜋

2
) (F.15) 

where i is the number of the shear connector counted from the support. 

The corresponding shear force can be determined with the help of the load slip curve: 

𝑠𝑖 → 𝑃𝑖 (F.16) 

The secant stiffness of the connectors can be determined as: 

𝑘𝑠𝑐,𝑖 =
𝑃𝑠𝑐,𝑖
𝑠𝑖

 (F.17) 

 

 

Figure F.4 Determining the secant stiffness of the connectors 
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The following table summarises the obtained slip, force and stiffness values: 

Table F.1 Obtained slip, force and secant stiffness values 

Nr. of the shear 

connector, i 

[-] 

(𝒊 − 𝟏)

𝒏𝒑 
∙
𝝅

𝟐
 

[deg] 

𝐜𝐨𝐬 (
(𝒊 − 𝟏)

𝒏𝒑 
∙
𝝅

𝟐
) 

[-] 

Slip, si 

[mm] 

Force, Psc,i 

[kN] 

Secant 

stiffness, ksc,i 

[N/mm] 

1 0.000 1.000 3.00 48.67 16222 

2 6.923 0.993 2.98 48.54 16297 

3 13.846 0.971 2.91 48.15 16529 

4 20.769 0.935 2.81 47.50 16934 

5 27.692 0.885 2.66 46.61 17547 

6 34.615 0.823 2.47 45.49 18425 

7 41.538 0.749 2.25 44.15 19662 

8 48.462 0.663 1.99 42.62 21424 

9 55.385 0.568 1.70 40.91 24007 

10 62.308 0.465 1.39 39.06 28016 

11 69.231 0.355 1.06 37.08 34857 

12 76.154 0.239 0.72 34.82 48499 

13 83.077 0.121 0.36 32.44 89721 

 

Step 3: Determine the second moment of area at mid-span 

The second moment of area at mid-span can be determined using the following expression: 

𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝑎2

𝜋
𝐿 ∙

𝐸𝑎

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) − sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  
𝑛𝑝
𝑖=1

+ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)
 

(F.18) 

In this formulation there is a part in the denominator which needs to be determined at every shear 

connector:  

𝐾𝑖 =
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ [sin (

𝑖𝜋

2𝑛𝑝
) − sin (

(𝑖 − 1)𝜋

2𝑛𝑝
)]   (F.19) 
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The following table summarises the calculated values of Ki:  

Table F.2 Auxiliary values for the calculation 

Nr. of the shear 

connector, i 

[-] 

𝑲𝒊 

[N/mm] 

1 33610 

2 33274 

3 32754 

4 32052 

5 31168 

6 30104 

7 28859 

8 27425 

9 25780 

10 23866 

11 21525 

12 18146 

13 11244 

SUM: 349807 

 

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿

𝜋
∙ [sin(

𝑖𝜋

2𝑛𝑝
) −sin (

(𝑖 − 1)𝜋

2𝑛𝑝
)] =  ∑𝐾𝑖

𝑛𝑝

𝑖=1

𝑛𝑝

𝑖=1

= 349807 𝑁/𝑚𝑚 (F.20) 

The second moment of area at mid-span is then: 

𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝 = 1.917 ∙ 10
9 ∙ 𝑚𝑚4 (F.21) 

Step 4: Calculation of the end slip 

The end slip can be determined with the following expression.  

𝑠̅𝑗+1 =
𝑀̅ ∙ 𝑎

𝐼𝑦,𝑒𝑓𝑓,𝑛𝑝 (
𝜋
𝐿 ∙ 𝐸𝑎 +

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) − sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  
𝑛𝑝
𝑖=1

(
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

))

 
(F.22) 

In this equation the summation in the denominator is the same as equation (F.20). 

The calculated end slip is: 

𝑠̅𝑗+1 = 2.44 𝑚𝑚 (F.23) 
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Step 5: Verifying the initial assumption 

The discrepancy in our initially assumed and then later calculated end slip can be determined as: 

Δ = 1 −
𝑠̅𝑗+1

𝑠̅𝑗
= 1 −

2.44 𝑚𝑚

3 𝑚𝑚
= 0.1858 = 18.58% (F.24) 

Step 6: Updating the end slip 

If Δ > 0.01, update the end slip: 

𝑠̅𝑗 ≡ 𝑠̅𝑗+1 (F.25) 

Iteration 

Repeat the calculations from Step 2 to Step 6 (equations (F.15)- (F.25)) until the error becomes less than 

1 % (until Δ < 0.01). 

In this example, after 5 iterations the discrepancy decreased below 1%:  

Table F.3 Iterations and discrepancy in the end slip 

Iteration 𝒔̅𝒋 𝒔̅𝒋+𝟏 𝚫 

0 3.00 2.44 0.1858 

1 2.44 2.22 0.0929 

2 2.22 2.11 0.0487 

3 2.11 2.05 0.0261 

4 2.05 2.02 0.0142 

5 2.02 2.01 0.0077 

 

Step 7: Calculate the second moment of area at each shear connector 

The second moment of area at shear connector m can be calculated using the following expression: 

𝐼𝑦,𝑒𝑓𝑓,𝑚 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝑎2 

𝜋
𝐿 ∙

𝐸𝑎 ∙ sin (
𝑚𝜋
2𝑛𝑝

)

∑
𝑘𝑠𝑐,𝑖
𝑠𝑠𝑐,𝑒𝑞

𝐿
𝜋 ∙ [sin (

𝑖𝜋
2𝑛𝑝

) −sin (
(𝑖 − 1)𝜋
2𝑛𝑝

)]  𝑚
𝑖=1

+ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)

 

(F.26) 

Where m is the number of shear connectors (or pairs of shear connectors) until the section in 

consideration. 

The previous equation takes a simpler form if we use equation (F.19): 



Annex F Example calculations 

259 

𝐼𝑦,𝑒𝑓𝑓,𝑚 =
𝐼𝑦,𝑐

𝑛
+ 𝐼𝑦,𝑎 +

𝑎2 

𝜋
𝐿
∙
𝐸𝑎 ∙ sin (

𝑚𝜋
2𝑛𝑝

)

∑ 𝐾𝑖
𝑚
𝑖=1

+ (
𝐴𝑐 + 𝑛𝐴𝑎
𝐴𝑐𝐴𝑎

)

 
(F.27) 

The following table summarises the determined second moment of area values: 

Table F.4 Second moment of area at each shear connector 

Nr. of the shear 

connector, i 

[-] 

Ki 

[N/mm] 

∑𝑲𝒊

𝒎

𝒊=𝟏

 

[N/mm] 

Iy,eff,m 

[mm2] 

1 43845 43845 1.935E+09 

2 43433 87278 1.936E+09 

3 42836 130115 1.939E+09 

4 42052 172167 1.943E+09 

5 41078 213245 1.950E+09 

6 39912 253157 1.958E+09 

7 38545 291702 1.967E+09 

8 36960 328662 1.979E+09 

9 35117 363779 1.992E+09 

10 32884 396663 2.008E+09 

11 29961 426625 2.025E+09 

12 25697 452322 2.042E+09 

13 16266 468588 2.056E+09 

 

Step 8: Calculating the deflection increments between the sections 

The deflection increments for uniformly distributed load is given by the following equation: 

𝑤𝑚 =
𝑞

24𝐸𝑎𝐼𝑦,𝑒𝑓𝑓,𝑚
∙ [𝐿3(𝐴 − 𝐵) + 2𝐿(𝐵3 − 𝐴3)  + 𝐴4 − 𝐵4] (F.28) 

Where: 

𝐴 =
𝑚 ∙ 𝐿

2𝑛𝑝
 

𝐵 =
(𝑚 − 1)𝐿

2𝑛𝑝
 

The uniformly distributed load that corresponds to 800 kNm bending moment is: 

𝑞 =
𝑀̅ ∙ 𝐿2

8
= 24.4 𝑘𝑁/𝑚 (F.29) 
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The calculated deflection increments are summarised in the following table: 

Nr. of the section in 

consideration, m 

[-] 

wm 

[mm] 

1 6.94 

2 6.81 

3 6.58 

4 6.24 

5 5.80 

6 5.29 

7 4.70 

8 4.06 

9 3.37 

10 2.64 

11 1.89 

12 1.14 

13 0.38 

 

Step 9: Calculating the total deflection 

Finally, the total mid-span deflection can be calculated as the sum of the deflection increments: 

𝑤̅ = ∑ 𝑤𝑚

𝑛𝑝

𝑚=1

= 55.82 𝑚𝑚 (F.30) 

 

 

  

Table F.5 Deflection increments 
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The calculation presented in the previous section was repeated for 30 equally spaced load increments 

between 0 and Mel given by equation (F.10) . The following table summarises the obtained results: 

Step 
Moment 

[kNm] 

Deflection 

[mm] 

0 0 0 

1 57.1 2.68 

2 114.2 5.35 

3 171.2 8.03 

4 228.3 10.71 

5 285.4 13.39 

6 342.5 16.10 

7 399.5 19.14 

8 456.6 22.90 

9 513.7 27.69 

10 570.8 33.09 

11 627.9 38.60 

12 684.9 44.25 

13 742.0 49.85 

14 799.1 55.37 

15 856.2 60.95 

16 913.2 66.39 

17 970.3 71.90 

18 1027.4 76.92 

19 1084.5 81.57 

20 1141.6 86.12 

21 1198.6 90.64 

22 1255.7 95.10 

23 1312.8 99.58 

24 1369.9 104.06 

25 1426.9 108.52 

26 1484.0 112.99 

27 1541.1 117.45 

28 1598.2 121.90 

29 1655.3 126.35 

30 1712.3 130.80 

 

F.4.3 Summary of the results 

Table F.6 Mid-span deflection at different load steps 
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The comparison of the analytically and numerically obtained deflections is presented in the following 

figure: 

 

 

Figure F.5 Comparison of the analytically and the numerically obtained results (Method EL2) 

 

  

0

500

1000

1500

2000

2500

3000

0 100 200 300 400

M
o
m

e
n
t,

 M
 [

k
N

m
]

Mid-span deflection, v [mm]

Numerical simulation

Deflection (Method EL2)

L/300                                                                     L/50

MEl



Annex F Example calculations 

263 

For the determination of the plastic moment resistance, it is necessary to assume an end slip and a slip 

distribution function. 

The assumed slip distribution function is a cosine function: 

𝑠(𝑥) = 𝑠̅ ∙ cos (
𝜋 ∙ 𝑥

𝐿
) (F.31) 

The end slip that can be taken into account can be approximated with the following formulation: 

𝑠̅ = min {
𝛿𝑢

𝑠𝑢𝑙𝑡,0 ∙ (1 − 𝜓)
} (F.32) 

Where: 

𝛿𝑢 = 9.7 𝑚𝑚 is the slip capacity of the shear connection. 

In the equation below σ = 0 because of propped construction and α = 2/3 for a uniformly distributed 

load. 

𝑠𝑢𝑙𝑡,0 = 𝛼 ∙
𝐿

2
∙
1.5 ∙ 𝑓𝑦 − 𝜎

𝐸𝑎
(1 +

ℎ𝑐 + ℎ𝑝
0.5 ∙ ℎ𝑎

) = 23.8 𝑚𝑚 (F.33) 

The degree of interaction can be calculated as: 

𝜓 =
𝐼𝑦,𝑒𝑓𝑓 − (𝐼𝑦,𝑎 +

𝐼𝑦,𝑐
𝑛
)

𝐼𝑦,𝑟𝑖𝑔𝑖𝑑 − (𝐼𝑦,𝑎 +
𝐼𝑦,𝑐
𝑛 )

 (F.34) 

The effective second moment of area has been determined by equation (F.3): 

𝐼𝑦,𝑒𝑓𝑓 = 1.809 ∙ 10
9 𝑚𝑚4 (F.35) 

The second moment of area for rigid connection is: 

𝐼𝑦,𝑟𝑖𝑔𝑖𝑑 = 𝐼𝑦,𝑎 +
𝐼𝑦,𝑐

𝑛
+

𝐴𝑐𝐴𝑎
𝐴𝑐 + 𝑛𝐴𝑎

∙ 𝑎2 = 3.093 ∙ 109 𝑚𝑚4 (F.36) 

The degree of interaction is then: 

𝜓 =
1.809 − (0.921 +

1.139
4.99 )

3.093 − (0.921 +
1.139
4.99 )

= 0.34 (F.37) 

 

F.5 Plastic moment resistance calculation (Method PL1) 
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The end slip to be taken into account: 

𝑠̅ = min {
𝛿𝑢

𝑠𝑢𝑙𝑡,0 ∙ (1 − 𝜓)
} =min {

9.7
23.8 ∙ (1 − 0.34)

} = 9.7 𝑚𝑚 (F.38) 

It is now possible to determine the occurring slip at each shear connector, and to calculate the 

corresponding shear forces: 

 

 

Figure F.6 Determination of the shear connector forces using the load-slip curve 

Table F.1 Obtained slip and force values 

Nr. of the shear 

connector, i 

[-] 

(𝒊 − 𝟏)

𝒏𝒑 
∙
𝝅

𝟐
 

[deg] 

𝐜𝐨𝐬 (
(𝒊 − 𝟏)

𝒏𝒑 
∙
𝝅

𝟐
) 

[-] 

Slip, si 

[mm] 

Force, Psc,i 

[kN] 

1 0.000 1.000 9.73 144.40 

2 6.923 0.993 9.66 143.39 

3 13.846 0.971 9.45 140.38 

4 20.769 0.935 9.10 135.41 

5 27.692 0.885 8.62 128.56 

6 34.615 0.823 8.01 119.92 

7 41.538 0.749 7.29 109.63 

8 48.462 0.663 6.45 97.82 

9 55.385 0.568 5.53 84.67 

10 62.308 0.465 4.52 70.35 

11 69.231 0.355 3.45 55.09 

12 76.154 0.239 2.33 44.65 

13 83.077 0.121 1.17 37.74 

 

 

 



Annex F Example calculations 

265 

The effective shear connection force is defined as the average shear force: 

𝑃𝑅,𝑒𝑓𝑓 =
1

𝑛𝑝 
∑𝑃𝑠𝑐,𝑖 = 100.9 𝑘𝑁

𝑛𝑝

𝑖=1

 (F.39) 

The maximum normal force that can be taken by the steel beam: 

𝑁𝑝𝑙,𝑎 = 𝐴𝑎 ∙ 𝑓𝑦 = 6099 𝑘𝑁 (F.40) 

The maximum normal force that can be taken by the flanges: 

𝑁𝑝𝑙,𝑓 = 2 ∙ 𝑏 ∙ 𝑡𝑓 ∙ 𝑓𝑦 = 4369 𝑘𝑁 (F.41) 

The maximum normal force that can be taken by the web: 

𝑁𝑝𝑙,𝑤 = (ℎ𝑎 − 2 ∙ 𝑡𝑓) ∙ 𝑡𝑤 ∙ 𝑓𝑦 = 2637 𝑘𝑁 (F.42) 

The maximum normal force that can be taken by the concrete: 

𝑁𝑐,𝑚𝑎𝑥 = 𝐴𝑐 ∙ 0.85 ∙ 𝑓𝑐 = 27884 𝑘𝑁 (F.43) 

The normal force in case of full connection: 

𝑁𝑐,𝑓 = min(𝑁𝑝𝑙,𝑎;𝑁𝑐,𝑚𝑎𝑥) = 6099 𝑘𝑁 (F.44) 

The normal force that develops in the concrete: 

𝑁𝑐 = min(𝑁𝑐,𝑓; 𝑛𝑠𝑐 ∙ 𝑃𝑅,𝑒𝑓𝑓) = min(6099 𝑘𝑁; 26 ∙ 100.9 𝑘𝑁) = 2624 𝑘𝑁 (F.45) 

The degree of shear connection: 

𝜂 =
𝑁𝑐
𝑁𝑐,𝑓

= 0.43 (F.46) 

The minimum degree of shear connection: 

𝜂𝑚𝑖𝑛 = 1 − (
355

𝑓𝑦
) (0.75 ∙ 0.03𝐿𝑒) = 0.44  (F.47) 

Note: In this example, the requirement for the minimum degree of shear connection (equation (F.47)) is 

not taken into account. 

Plastic neutral axis of the concrete (measured from the top fibre of the concrete): 
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𝑧𝑝𝑙,𝑐 =
𝑁𝑐

𝐵𝑒𝑓𝑓 ∙ 0.85 ∙ 𝑓𝑐
= 14.1 𝑚𝑚 (F.48) 

Location of the plastic neutral axis of the steel: 

If Npl,a > Nc > Npl,w,, the plastic neutral axis is in the flange. 

If Npl,w > Nc, the plastic neutral axis is in the web. 

(F.49) 

(F.50) 

Npl,w = 2637 kN > Nc =2624 kN, so the plastic neutral axis is in the web. 

The corresponding stress distribution: 

 

 

Figure F.7 Stress distribution according to the partial shear theory 

Location of the plastic neutral axis of the steel from the equilibrium equation (measured from the top 

fibre of the concrete): 

𝑧𝑝𝑙,𝑎 =
𝑁𝑝𝑙,𝑤 −𝑁𝑐

2 ∙ 𝑁𝑝𝑙,𝑤
∙ (ℎ𝑎 − 2 ∙ 𝑡𝑓) + ℎ𝑡𝑜𝑡 + 𝑡𝑓 = 170.4 𝑚𝑚 (F.51) 

The plastic moment resistance from the moment equation 

𝑀𝑝𝑙,𝜂 = 𝑁𝑝𝑙,𝑎 (ℎ𝑡𝑜𝑡 + 𝑦𝑎 −
𝑧𝑝𝑙,𝑐

2
) − 𝑁𝑝𝑙,𝑓 (ℎ𝑡𝑜𝑡 −

𝑧𝑝𝑙,𝑐

2
+
𝑡𝑓

2
)

− 2(𝑧𝑝𝑙,𝑎 − ℎ𝑡𝑜𝑡 − 𝑡𝑓)𝑡𝑤𝑓𝑦 (
𝑧𝑝𝑙,𝑎 − ℎ𝑡𝑜𝑡 − 𝑡𝑓

2
+ ℎ𝑡𝑜𝑡 + 𝑡𝑓 −

𝑧𝑝𝑙,𝑐

2
) 

(F.52) 

𝑀𝑝𝑙,𝜂 = 2201 𝑘𝑁𝑚  

Figure F.8 shows the calculated moment capacity on the moment-deflection curve obtained by 

numerical simulation. 
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Figure F.8 Comparison of the numerically and analytically obtained plastic moment resistance 

(Method PL1) 
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The simplified calculation method uses a shear connector specific kflex reduction factor that was 

determined based on the assumptions presented in chapter 9.4.3. 

The reduction factor that belongs to shear connection type P3.3 is kflex = 0.756. The effective shear 

connector resistance is: 

𝑃𝑅,𝑒𝑓𝑓 = 𝑘𝑓𝑙𝑒𝑥 ∙ 𝑃𝑅,6 = 0.756 ∙ 91.4 𝑘𝑁 = 69.1 𝑘𝑁 (F.53) 

The normal force that develops in the concrete: 

𝑁𝑐 = min(𝑁𝑐,𝑓; 𝑛𝑠𝑐 ∙ 𝑃𝑅,𝑒𝑓𝑓) = min(6099 𝑘𝑁; 26 ∙ 69.1 𝑘𝑁) = 830 𝑘𝑁 (F.54) 

The degree of shear connection: 

𝜂 =
𝑁𝑐
𝑁𝑐,𝑓

= 0.14 (F.55) 

Note: In this example, the requirement for the minimum degree of shear connection (equation (F.47)) is 

not taken into account. 

Plastic neutral axis of the concrete (measured from the top fibre of the concrete): 

𝑧𝑝𝑙,𝑐 =
𝑁𝑐

𝐵𝑒𝑓𝑓 ∙ 0.85 ∙ 𝑓𝑐
= 4.5 𝑚𝑚 (F.56) 

Location of the plastic neutral axis of the steel: 

If Npl,a > Nc > Npl,w,, the plastic neutral axis is in the flange. 

If Npl,w > Nc, the plastic neutral axis is in the web. 

(F.57) 

(F.58) 

Npl,w = 2637 kN > Nc =830 kN, so the plastic neutral axis is in the web. 

The corresponding stress distribution: 

 

 

Figure F.9 Stress distribution according to the partial shear theory 

F.6 Simplified calculation of the plastic moment resistance (Method PL2). 
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Location of the plastic neutral axis of the steel from the equilibrium equation (measured from the top 

fibre of the concrete): 

𝑧𝑝𝑙,𝑎 =
𝑁𝑝𝑙,𝑤 −𝑁𝑐

2 ∙ 𝑁𝑝𝑙,𝑤
∙ (ℎ𝑎 − 2 ∙ 𝑡𝑓) + ℎ𝑡𝑜𝑡 + 𝑡𝑓 = 3601.6 𝑚𝑚 (F.59) 

The plastic moment resistance from the moment equation 

𝑀𝑝𝑙,𝜂 = (𝑁𝑝𝑙,𝑎 (ℎ𝑡𝑜𝑡 + 𝑦𝑎 −
𝑧𝑝𝑙,𝑐

2
) − 𝑁𝑝𝑙,𝑓 (ℎ𝑡𝑜𝑡 −

𝑧𝑝𝑙,𝑐

2
+
𝑡𝑓

2
)

− 2(𝑧𝑝𝑙,𝑎 − ℎ𝑡𝑜𝑡 − 𝑡𝑓)𝑡𝑤𝑓𝑦 (
𝑧𝑝𝑙,𝑎 − ℎ𝑡𝑜𝑡 − 𝑡𝑓

2
+ ℎ𝑡𝑜𝑡 + 𝑡𝑓 −

𝑧𝑝𝑙,𝑐

2
)) 

(F.60) 

𝑀𝑝𝑙,𝜂 = 1741 𝑘𝑁𝑚  

The following figure shows the calculated moment capacity on the moment-deflection curve obtained 

by numerical simulation: 

 

 

Figure F.10 Comparison of the numerically and analytically obtained plastic moment resistance 

(Method PL2) 
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The following figure summarises the results of the presented calculation example: 

 

 

Figure F.11 Comparison of the numerically and analytically obtained results 
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The calculations presented in Annex F were performed for the tested beams (Chapter 5) and the results 

of the calculations were compared to the experimental measurements. The following figure shows the 

obtained moment-deflection curves. 

 

 

Figure G.1 Comparison of the experimentally and analytically obtained results (Beam B7) 

 

 

Figure G.2 Comparison of the experimentally and analytically obtained results (Beam B8) 
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