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Abstract

Abstract

The work carried out throughout the thesis focused on the behaviour of demountable composite beams
in order to facilitate the integration of steel-concrete composite construction into the concept of circular
economy. There are several hindrances in the way of reuse when considering traditional composite
structures. One of them is the method that the current construction practice applies for connecting the
concrete deck to the steel beam. The traditionally applied welded studs are advantageous in the terms of
structural performance; however, they do not provide the ability of dismounting. In order to overcome
this issue, different demountable shear connection types were investigated that use pretensioned bolted
connections. The investigations included laboratory experiments in the means of push-out tests and full-

scale beam-tests. The experiments were complemented by numerical simulations and parametric studies.

The experiments showed that the developed shear connections have highly a nonlinear load-slip
behaviour. When these types of connections are applied in a composite beam, the nonlinearity of the
shear connection causes a nonlinear load-deflection response already in the elastic phase. Analytical
equations were derived for the description of the elastic properties of composite beams with nonlinear
shear connection. For the calculation of the elastic deflections an iterative procedure was developed.
This method is capable of capturing the nonlinear load-deflection response. With the developed iterative
method, the elastic deflections can be determined with a similar accuracy by using spreadsheet

calculations as by using nonlinear finite element simulations.

Due to the highly nonlinear behaviour of the tested shear connections the basic assumptions of
Eurocode 4 for the determination of the plastic moment resistance of composite beams with partial shear
connection are not valid anymore. The code does not enable the use of equidistant shear connector
spacing and the design needs to be conducted using fully elastic analysis. This would make the use of
demountable shear connections complicated and uneconomic. In the face of these issues, the probability
of the practical application of demountable and reusable composite structures would be very low. On
the other hand, experiments and numerical simulations show that composite beams can develop
plasticity even if a non-ductile shear connection is applied. In order to overcome these issues, a new
calculation method was developed for the prediction of the plastic moment resistance of demountable
composite beams. A simplified method was proposed based on the developed procedure by defining an
effective shear resistance for the demountable shear connections. The effective shear resistance allows
the current calculation method to be extended for demountable shear connections. In this way, the

benefits of composite construction can be maintained while providing the possibility of reuse.

Keywords: Demountable composite beams, Circular Economy, Push-out tests, lterative procedure,

Effective second moment of area, Plastic moment resistance, Partial shear connection.
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1. Introduction

Chapter 1. Introduction

1.1  Motivation

Sustainable development is about our relationship with the natural environment, with the global
economic system and with each other [1]. The concept of the circular economy is an essential part of
sustainable development. This concept is based on the efficient allocation of resources. Three terms are
frequently used when talking about this concept: reduce, reuse and recycle. Reducing is cutting back on
the amount of waste we produce; reusing is finding a new way to use our products so that they do not

become waste; and recycling is using the materials of our products to produce new materials.

The traditional life-cycle of a building usually does not follow a circular model but a linear one from
the extraction of the raw materials through material production, component manufacturing, building
construction and building use. Finally, the building is usually demolished and most of the materials
become debris and go into landfill [2]. Sustainable development requires the end-of-life impact of a
building to be minimized [3]. In order to change from a linear model to a circular one some sort of
recycling process have to be applied when the lifetime of a building is over. To be able to do this, the
demolition process has to be replaced with a deconstruction process. This means that instead of
destroying the undesired buildings, we dismount them in such a way that the building components are

preserved in a valuable condition.

Linear model Circular model

Extraction of raw [ Extraction of raw

materials materials J \
Material production P — -\\ o ec‘l“\‘/‘\g[ Material production ]\
/ .

3 /

Component L

manufacturing Waste

1 ]

Building construction

|

Building use

1 |

Demolition

¥

Waste

Figure 1.1 Linear vs. circular model of the life-cycle of a building
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This way we can reduce waste production and the overall environmental impact. Figure 1.1 shows how

the deconstruction process enables the change from a linear to a circular model.

Deconstruction of buildings has a long tradition throughout human history. Reusing building
components was an obvious choice during times when the labour costs were low and the transportation
was slow and expensive. A series of legal documents from the third and the fourth century indicate that
even the Romans had a proper culture in reusing architectural components [4]. We can find several
examples from the ensuing centuries when a city or a state organised auctions to sell the deconstructed
building components such as stones, bricks, marble pieces, cast iron elements, woodworks, and
complete windows as well. This tradition came to an end somewhere between the First and the Second
World War due to the industrialisation of the construction sector. There were several factors that
contributed to this change: parallel to the increase of labour costs, the transportation of building materials
became easier, faster and cheaper. In cities, which were undergoing a rapid development like for
example New York, the time pressure on the deconstruction companies increased significantly. It was
no longer worth preserving the building materials from the economic aspect. The developers wanted to
have the obsolete buildings disappear as quickly as possible. With the appearance of new inventions like
the wrecking ball, the jackhammer and the multifunctional excavators, the deconstruction process
quickly transformed to be a demolition process. Destroying buildings with no regard to the potential
value in its components became a standard until very recently when sustainability is becoming
increasingly important in the face of climate change and the depletion of finite natural resources. This
is especially true in the construction industry, which is responsible for the 11% of global carbon dioxide
emissions [5]. Nowadays, the potential environmental, social and economic benefits of the circular
economy becoming more and more evident. Nonetheless, its application is still not a common practice

[6].

There are five possible end-of-life scenarios for a building when the principles of the circular economy

are applied, [2]:

(i) reuse in place (refurbishment),

(i) relocation,

(iii) component reuse in a new building,

(iv) remanufacturing of the building components, and

(v) material recycling into new building materials.

These scenarios are in a hierarchic relationship with each other (see Figure 1.2): building relocation and
component reuse are more desirable options with regard to environmental aspects than recycling and

remanufacturing as they require less energy input and they produce less waste and CO..

Structural steel is highly compatible with the concept of circular economy. As a material, it is 100%
recyclable for an infinite number of times. Steel is the most recycled material in the world today [7]

because it can be reused in many ways due to its durability. Also, structural steel works are highly
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prefabricated and the components are usually connected together by dismountable mechanical

connections. These attributes make structural steel an ideal candidate for reuse.

| Building reuse (refurbrishment) ‘ Most preferred

| Building relocation |

| Component reuse |

| Remanufacturing ‘

‘ Recycling | Least preferred

Figure 1.2 Hierarchic relation between the different end-of-life scenarios

Steel-concrete composite structures are very efficient in terms of structural performance; however, they
are more difficult to dismount. The structural efficiency is reached by connecting the two materials so
that they act as a single member. Each material is used where it is most efficient: the concrete is placed
where predominantly compression forces arise and the steel is placed where the member is usually in
tension. For the structural performance it is crucial to have an adequate connection between the
members. The connection needs to be capable of transferring the shear forces at the steel-concrete
interface. Traditionally, this is provided by headed stud shear connectors. During the construction of a
composite beam, the studs are first welded to the flange of the beam and then concrete is cast. As a
result, the members are firmly connected together. This is good for in terms of structural efficiency, but
it is quite unfavourable from the demountability point of view. It is not possible to deconstruct this kind
of structures, but they need to be demolished. This process is a labour and cost intensive work because
the separation of the materials requires a vast amount of cutting. As a result, reusing the structural
members is not an option, and already the recycling process is relatively difficult. In order to make steel-

concrete composite structures demountable, the shear connection needs to be demountable first.

The behaviour of demountable shear connections is usually different from the behaviour of welded
studs. Although there has been a certain amount of research conducted on this topic; this amount is still
relatively low when compared to welded studs. As a result, the determination of the longitudinal shear
resistance of the shear connection and the calculation of the occurring deflections can be challenging.
This thesis aims to fill this knowledge gap by identifying the advantages and drawbacks of the different
types of demountable shear connections; it investigates different types of connections that can overcome
some of the identified hindrances; and it provides calculation methods for the description of the
behaviour of composite beams with shear connections that have a multilinear load-slip curve. This
includes an iterative procedure for the calculation of the elastic deflection and an algorithm for the
calculation of the plastic bending resistance of composite beams with shear connections that have a

multilinear load-slip behaviour..
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1.2 Scope and limitations

The aim of the presented work is to provide calculation methods for composite beams in buildings with

shear connections that have a nonlinear load-slip behaviour. The presented approaches are limited to

simply supported downstand steel-concrete composite beams with cross section Class 1 and Class 2

according to Eurocode 3 [8]. Only symmetrical load cases are considered in the thesis: sinusoidal

loading, uniformly distributed loading, and one- or two-point concentrated loads. The nonsymmetric

load cases can be considered in an analogous manner. The questions of stability, the effects of fatigue,

prestressing by tendons and fire actions are not considered.

1.3  Methodology

The following methodology was followed during the thesis:

(i)

(i)

(i)

(iv)

(v)

(vi)
(vii)

(viii)

The available international literature on demountable shear connections (Chapter 2.1), the
typical idealised load slip behaviours (Chapter 2.6) and the existing design code for
composite beams (Chapter 2.3 and 2.4) were reviewed.

The different ductility definitions (Chapter 2.5) and the calculation methods for the
approximation of the occurring end slip at the ultimate limit state (Chapter 2.7) were
investigated.

The requirements for demountable shear connections were reviewed and new types of
demountable shear connections were investigated (Chapter 3).

An experimental campaign was performed including push-out tests (Chapter 4) and full-
scale beam tests (Chapter 5) using demountable shear connections.

The experiments were reproduced numerically with the help of nonlinear finite element
simulations (Chapter 6).

Parametric studies were conducted on the validated numerical models (Chapter 7).

First, the elastic behaviour of composite beams with conventional shear connections was
investigated. Then, new equations were derived and an iterative procedure was developed
for the description of the elastic behaviour of composite beams with shear connections that
have a multilinear load-slip curve (Chapter 8).

The behaviour of composite beams in ultimate limit state was investigated. A new
algorithm was developed for the determination of the plastic moment resistance of
composite beams with partial shear connection using shear connections with multilinear
load-slip curves and a simplification was proposed. The proposed methods are aligned with

the current design code (Chapter 9).

The followed methodology is presented in Figure 1.3.
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4 ™
Literature review of demountable shear connections Chater 2
and the existing design code apter
p. l vy
4 ™
Review of ductility definitions and calculation methods Chabter 2
for the occurring end slip in the ultimate limit state P
h. A
4 ‘ ™
Identification of two possible demountable shear Chaoter 3
connection systems P
p. l vy
4 ™
Experimental investigation of demountable shear
connections Chapter 4 -5
p. ‘ vy
4 ™
Development of nonlinear finite element models Chapter 6
p. l vy
4 ™
Conduction of parametric studies on the validated Chapter 7
numerical models apter
p. l vy
4 ™
Investigation of the elastic behaviour of composite
beams, derivation of new equations and development Chapter 8
of an iterative procedure

L |

Investigation of the behaviour of composite beams in
ultimate limit state and development of new algorithms | Chapter 9
for the determination of the plastic moment resistance

Figure 1.3 Methodology followed in the thesis
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Chapter 2. State of the art

2.1 Demountable shear connectors

2.1.1 General

Dallam [9] and Marshall [10] investigated high-strength bolted shear connectors already five decades
ago. However, the research on demountable shear connections is still very limited when compared to
welded studs. The questions of demountability and reusability are becoming increasingly important as
more emphasis is placed on sustainability. Different types of demountable bolted shear connections have
been developed in the recent years. This chapter provides a brief overview on demountable shear

connections.

2.1.2 Encased bolts and studs

The most commonly investigated demountable shear connectors are encased bolts. They are constructed
by placing structural bolts into predrilled holes in the flange before casting concrete. The first report on
this topic appeared in the international literature in 1968 by Dallam [9]. He conducted push-out tests on
prestressed high strength friction grip (HSFG) bolt shear connectors (Figure 2.1) and found that the bolts
exhibit zero slip in the working range of the load and their shear capacity is about twice that of studs.

|
—T In-situ concrete

HSFG bolt

Wire spring

E| -+ Steel beam

Figure 2.1 High-strength friction grip bolts tested by Dallam [9]

Dallam was followed by Dedic and Klaiber [11] who conducted two series of push-out tests on high
strength bolted shear connectors for the strengthening of existing bridges. In the first series, they used
bolts that were placed in openings in the concrete. The openings were filled with grout afterwards
(Figure 2.2 left). In the second series, they investigated through bolts with pockets in the concrete. The

pocket was filled with grout after tightening the bolt (Figure 2.2 right).
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Bolt embedded in grouted | Through bolt with grouted
opening pocket

Grout Grout |

R Prefabricated concrete

| ~

| RET T High strength bolt
|

| |
= =1 | Steel beam

Figure 2.2 Bolted shear connectors tested by Dedic and Klaiber [11]

In the frame of a European project, Sedlacek et al. [12] investigated different shear connection types for
small and medium span composite bridges. They conducted eighteen push-out tests. Ten of them
investigated the static behaviour and eight of them examined the fatigue performance of the shear
connections. The main objective of their research was the improvement of the shear connection using
partially or fully prefabricated deck elements. The partially prefabricated deck elements used in-situ
concrete around welded studs; and therefore, they were not demountable. The fully prefabricated slabs
were connected to the steel beam by structural bolts of grade 10.9. The schematic view of the tested

demountable solutions is presented in Figure 2.3 (Type la) and Figure 2.4 (Type Ib).

|
T Prefabricated concrete

‘ Headed stud

L High strength bolt

}«.—P Steel plate

g V[ T e

Figure 2.3 Headed studs in combination with bolts of grade 10.9 tested by Sedlacek et al. (1a) [12]

They propose the following formulations for the total shear resistance of the connection type la for the

critical section located above the steel plate:
Fy =ng Fsya + 1p " Fepoir (2.1)

Where ns is the number of studs, Fswq is the stud resistance ny is the number of bolts and Fcpor is the
resistance at the head of the bolt. The stud shear resistance Fswq can be taken as the smaller resistance

value obtained using the following equations:

8
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Pstud,l =0.35- dz\/ Ecm 'fck (2-2)

Pstud,z =T- dzfu/4 (2-3)

Where d is the stud diameter, Ecn is the Youngs’s modulus of the concrete, fu is the characteristic
compressive strength of the concrete and fy is the specified ultimate tensile strength of the material of
the stud.

For the resistance at the bolt head F ot they propose:

Fepoit = Ocr *Sp * hnp (2.4)
With:
Ocr = B fek (2-5)

Where s, and hny, are the width and height of the head of the bolt, and £ is a factor taking into account
the effect of local stress concentration in front of the head of the bolt. It can be taken as twice the cylinder
strength of concrete.

For the second critical section, which is located between the steel plate and the steel beam, they
recommend to use the shear resistance of the bolt:

For=0.6"fy A (2.6)

Where fu, is the tensile strength of the bolt material and A is the cross-sectional area of the bolt.

For connection type Ib, there are two critical failure modes. The first failure mode is crushing of concrete
in front of the nuts and the bolt, and the second failure mode is bolt shear failure. For the first failure
mode they give the resistance F, as the sum of the resistance determined by the shank of the bolt F¢s

and by the nut F¢ .

|
. ‘—I» Prefabricated concrete
\ T ) 1

High strength bolt

| ' }«——P Steel plate
~ \

[é%J ‘M [,é%] Steel beam

Figure 2.4 Shear connection with bolts of grade 10.9 tested by Sedlacek et al. (Ib) [12]
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E,=ny (Fc,s + Fc,nut) (2-7)

F.s =0.35 d?\/ Eem* fer (2.8)
Fenut = OcpSp* 2+ hy (2.9

Where ds is the diameter of the bolt shank and s, and h, are the width and height of the nut.
For the bolt shear failure, Equation (2.6) can be used.

Schaap [13] conducted several push-out tests on post-installed shear connectors. He discussed the
behaviour of embedded bolts, friction grip bolts and anchor bolts (see Figure 2.5) in his thesis. His
research was continued by Kwon et al. [14], [15] who summarised the strengthening possibilities of
existing non-composite steel bridges using post-installed shear connectors. They investigated the shear
connection behaviour under static and fatigue loading. They proposed to use the following equation for

the shear resistance of bolted shear connectors:

Fyr=05"fu" A (2.10)
Bolt embedded in grouted | Through bolt with grouted Expansion anchor Adhesive anchor
opening pocket

— Existing concrete deck
~ Grout i

fg“éf

Flange of the steel beam

Figure 2.5 Post-installed demountable shear connectors tested by Schaap [13] and Kwon et al. [14]

More recently, Pavlovic [16] investigated encased bolts. He conducted two series of push-out tests with
different bolt diameters (Figure 2.6). He used prefabricated concrete elements with openings at the shear
connectors. The openings were filled with concrete after the positioning of the deck elements. He
developed a numerical model based on the experimental results and derived the following formulae for

the determination of the shear resistance of the investigated shear connections:
Pb,u = abfubAS, Wlth ab = 06(34/d)023 (211)

P.y =55 a. - d(fon  hse/d)** + 22000, with a, = 22.5/(d + 3) < 1.0 (2.12)

10
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Where Py, is the resistance of the bolt, fu, is the tensile strength of the bolt material, As is the shear area
of the bolt, d is the bolt diameter, Py is the resistance of the concrete, f.m is the mean value of the concrete

cylinder strength and hg is the height of the shear connector.

M24 Bolt embedded in in-situ concrete | A pair of M16 bolts embedded in in-situ
concrete

— Concrete infill r Prefabricated concrete slab
1 1

=]

L Flange of the steel beam

Figure 2.6 Demountable shear connectors tested by Pavlovic [16]

Moynihan and Alwood [17] conducted tests on three composite beams of different lengths using M20
bolts as demountable shear connectors (Figure 2.7). Two beams were loaded until service loads,
unloaded, dismounted and reassembled in order to test the demountability and reusability of the system.
Afterwards, all three beams were loaded until failure. They found that the longer specimens (5 m and
10 m) behaved similarly to comparable composite beams with welded shear connectors. The tested

beams had higher resistance than calculated using Eurocode 4 [18].

|
‘—$— In-situ concrete
i
i

~———+— Steel beam

High strength bolt

n_“_R_

Figure 2.7 Demountable shear connectors tested by Moynihan and Alwood [17]

Lam and Dai [19], [20] developed a demountable shear connector that can be manufactured from headed
studs by cutting threads into the end of the studs (Figure 2.8). As a result, no welding is necessary and
the shear connectors can be installed through predrilled holes in the flange. They conducted push-out
tests, and found that the performance and the behaviour is similar to the welded studs. Also, the tests

showed a high level of ductility but a lower initial stiffness. Rehman et al. [21] continued their research

11
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by investigating different types of demountable shear connectors in slabs with profiled decking. Twelve
push-out tests were prepared including M20 bolts and threaded studs with different diameters. The high
level of ductility and the relatively low initial stiffness was confirmed. Additionally, they found that
concrete strength affects the behaviour of the connectors. An increase in the concrete strength results in

higher shear connector resistance but a lower level of ductility.

| |

‘ | - | In-situ concrete
‘ | | |

| | | |

‘ i i -—‘» Threaded stud
| | |

| I -] {— Steel beam

Figure 2.8 Threaded stud shear connectors tested by Lam et al [19]

Wang et al. [22] conducted push-out tests on demountable shear connectors similar to the ones tested
by Lam et al. [19] - [21]. They used Ultra High Performance Concrete (UHPC) and threaded headed
studs with different diameters and collar lengths. They found that the tested shear connectors did not
have 6 mm deformation capacity; and therefore, they proposed to use an elastic design method when

demountable shear connectors are used in steel-UHPC composite beams.

2.1.3 Through bolts

The earliest identified research on tests with through bolts was conducted by Marshall et al. [10] in 1971.
He conducted eleven push-out tests and five beam tests on friction grip connectors. He observed that the
friction coefficient was 0.45 between the precast slab and the steel beam, and it was possible to achieve

full interaction under service loads.

| Samal LI, |

‘ - ‘ Prefabricated concrete
| |

| (.

‘ o e _,,,,,,,,‘f High strength bolt

| | |

\ = — — |+ Steel beam

Figure 2.9 Bolted shear connection tested by Marshall [10]
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Roik and Birkner [23] investigated the friction coefficient between steel and prefabricated concrete
decks in 1978. They conducted four types of tests: Group 1 used two 15 mm thick steel plates and two

concrete elements. Group 2 had an identical test setup to Group 1 but with 10 mm thick steel plates.

The test setup of Group 3 was similar to the push-out test setup given by Eurocode 4 [18]. These tests
consisted of an IPE 300 steel profile and four prefabricated deck elements (Figure 2.10). Each of the
deck elements were connected to the steel profile by three pretensioned M16 bolts. These three test
groups were subjected to a single load cycle in displacement controlled mode with a speed of 1 mm / min
without unloading . Group 4 used identical specimens to Group 1 but it was subjected to a dynamic
loading that included 3 million cycles with 10 Hz frequency. They tested different levels of pretension

and found that the friction coefficient varied between 0.501 and 0.555.

|
= - == «T Prefabricated concrete

\

|

| | 1

' o -—‘» High strength bolt
‘ , ,

\

> H—L Steel beam
ARV R ( VI

Figure 2.10 Friction connection tested by Roik and Birkner [23]

Biirkner [24] in his thesis investigated composite beams with headed studs experimentally and
numerically. While reviewing the different shear connection systems he gave the following connection

type as a possible shear connection for carparks:

Non-shrinking filler
Epoxy resin sealing

\
‘ - Steel plate
| =l o' o8 =l pvCbe
| ' JB = o o T - 1 Reinforcement coil
‘ ‘ ; & NN | SO L& N | <—F Prefabricated concrete
i - === | =i e , *'—; U-bar
\ | == \ == |
High strength bolt ;Ué L[E;

Foam rubber

Steel beam

Figure 2.11 Demountable shear connection for carparks proposed by [24]
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He also developed a finite element solution model as well as an approximation formula for the
deflections of composite beams with partial shear connection. This is described in a more detailed way
in Chapter 2.2.

A similar system was developed by the company Krupp-Druckenmiller GmbH in Germany. Their
system was called as the Krupp-Montex system [25] and was applied majorly in carparks in the 1970s.

The schematic drawing of their system is presented in the following figure:

~ Non-shrinking mortar

Steel plate
PVC tube
Reinforcement coil

Prefabricated concrete

I

I

I

|

g |

B e
i

|

T

! U-bar

|

|

| <

|

| ks 8
! =

-
L}

!
High strength bolt gl %

Steel beam ——

!

[

Figure 2.12 The Krupp-Montex system [25]

The research of Dedic and Klaiber [11], Schaap [13] and Kwon [14], [15] included tests on through
bolts; however, in these tests the pockets above the bolt head was filled with grout or concrete.
Therefore, these types of bolts are not accessible from the top of the deck after installation (see Figure
2.2 and Figure 2.5). Chen et al. [26] conducted push-out tests using through bolts placed in PVC tubes
(Figure 2.13). The test parameters included the bolt diameter, the level of the bolt pretension and the
steel-concrete contact surface properties. They observed that the ultimate shear capacity was similar to
the one of welded studs, but the first slip occurred in a significantly lower load level. A mechanical
model was proposed to predict the ultimate capacity. Afterwards, a finite element model was built to
investigate the behaviour of demountable composite bridge girders using the proposed demountable

connectors.

Prefabricated concrete

High strength bolt

|
1 i
|
! B | PVC pipe
1 - ¥
|

\

|

t

Steel beam

Figure 2.13 Through bolts tested by Chen et al. [26]
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They gave the following equation for the bolt shear resistance:

T 2
Vg = (kg sina+cosa) - Tipr + 0.6 -Ap - fup - |1 — (ﬁ) (2.13)

Where ks is the friction coefficient, the first part of the equation is the contribution of the friction, o is
angle of the bolt measured from its original axis after deformation, T is the sum of the bolt pretension
and the tension due to connection slip, Ay is the area of the bolt and fu, is the ultimate tensile strength of
the bolt. In this formula the first part represents the contribution of the friction to the load bearing
capacity. This contradicts the findings of Pavlovi¢ [16] who pointed out that the pretension force and
the friction resistance do not influence the load-bearing capacity.

Through bolts used as demountable shear connectors were tested extensively at the University of New
South Wales by Lee and Bradford [27], Ataei et al. [28], [29] and Liu et al. [30], [31]. The shear
connection was similar to the ones tested by Marshall et al. [10] (Figure 2.9). They conducted several
push-out tests [27], [28] on high strength friction grip bolted shear connectors and found that the load-
slip behaviour can be divided into three distinct parts.

1) First, there is full interaction between the steel and the concrete until the friction resistance is
overcome.
2) Second, bolt slip occurs until the bolt become in contact with the inner surface of the bolt hole.

3) Third, bearing and shear deformation takes place until the ultimate shear capacity is reached.

Based on these observations, they proposed a multilinear idealised elastic load-slip response (see Figure
2.14). They also conducted full scale beam tests using prefabricated concrete deck elements on 7 m long
beam test specimens [31]. They developed a three-dimensional numerical model using the commercial
finite element software Abaqus [32]. It was found that their numerical model could capture the
fundamental behaviour of the demountable composite beam. The increase in the degree of partial shear
connection resulted in higher resistance values. They recommended using a small number of shear
connectors with large diameters instead of a large number of connectors with smaller diameters for the

same degree of shear connection.

Load

Slip

Figure 2.14 Idealised response in the elastic range by Lee and Bradford [27]
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2.1.4 Other types of demountable connectors

A prefabricated and demountable composite bridge was already realised in 1975 using a shear
connection that purely relies on friction [33]. Figure 2.15 shows the applied shear connection, which
was comprised of a through bolt, a sleeper clip, a double lock washer and a neoprene plate.

|

[0 ] el == | Pocket
|
|

Prefabricated concrete

«-4'» High strength bolt

i
|
\
\
\
|
|
| |

| I

_L 5 ; Sleeper clip
Neoprene layer J Wf Steel beam

Figure 2.15 Friction connection used in the AB bridge [33]

Single shear connector tests on expansive and adhesive anchor bolts were performed by Schaap [13]
and Kwon et al. [14], [15] (see Figure 2.5). Ban et al. [34] conducted push-out tests on blind bolt shear
connectors and investigated the time dependent behaviour of composite beams using blind bolts as shear
connectors under sustained loading. They installed the blind bolts prior to concrete casting. This is
different from the procedure applied in the retrofitting of existing structures where the bolts are installed
after the concrete has hardened. They were followed by Pathirana et al. [35] who conducted push-out
tests and full-scale composite beam tests using blind bolts as shear connectors. The behaviour of the
tested demountable composite beams was similar to the behaviour of beams with welded studs in terms

of stiffness, strength and ductility. Uy et al. [36] investigated blind bolts using numerical simulations.

Type 1 blind bolt Type 2 blind bolt

a |l
-—r In-situ concrete

Blind bolt

|
ail |
T T i

Steel beam

Figure 2.16 Blind bolts applied in beam tests by Ban et al. [34]

Suwaed and Karavasilis [37] developed a demountable shear connection with through-bolts, where the

bolt clearance was grouted after installation (see Figure 2.17).
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Plate washer
Plug

High strength bolt

@, T — Conical nut
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Figure 2.17 Demountable shear connection tested by Suwaed and Karavasilis [37]

Feidaki and Vasdravellis [38] conducted push-out tests on a shear connection that use a steel-yielding
mechanism provided by a cold formed hollow steel section with slotted holes (Figure 2.18).

Concrete infill Steel yielding pocket
/ / !
@ ——+— Hollow-core slab
[ U U E ~-~— Plastic foam
| ‘ I S Base plate
E 1= ~——— Flange of the steel beam

@ Lg] High strength bolt

Figure 2.18 Steel yielding mechanism shear connection developed by Feidaki and Vasdravellis [38]

2.1.5 Summary

A number of researchers developed and investigated demountable shear connections in the past five
decades. Although all of the previously reviewed solutions facilitate the demounting process, they
provide different level of reusability. The primary focus was often put on the reusability of the steel
beam alone, but not on the reusability of the concrete slab.

For example, when dismounted, the embedded bolts and studs (See ex.: Figure 2.7 and Figure 2.8)
protrude from the surface of the slab. This makes them vulnerable during manoeuvring, transportation
and storage. If the threads are damaged, the reuse potential of the slab is lost (or reduced) because these
bolts being embedded in the concrete are not replaceable. According to EN 1090-2 [39], “if'a bolt
assembly has been tightened to the minimum preload and is later un-tightened, it shall be removed and
the whole assembly shall be discarded.” This implies that if embedded bolts are preloaded, the slab is

not reusable anymore.

Through bolts (Figure 2.13) are easily replaceable, and therefore more preferable in terms of reusability.

However, their fabrication is a more complicated task. If the slabs are prefabricated, they require special
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attention in terms of tolerances. It should be ensured that the predrilled holes in the flange and the holes
in the slab align. Additionally, when friction grip bolts are used, creep and shrinkage can cause a loss in
the pretension force in the bolt. BS 5400-5 [40] mentions that account should be taken of this effect, but

it does not elaborate how.

Table 2.1 summarises the advantages and the disadvantages of the most commonly applied generic

demountable shear connection types.

In terms of load-slip behaviour, preloaded through bolts (friction grip bolts) behave differently than
traditional welded studs. Their behaviour can be divided into three distinct parts: a rigid part until the
friction resistance is overcome, a more or less horizontal part representing the bolt slip inside the bolt

hole, and a linear or nonlinear part caused by the shear and bearing deformation.

On the other hand, embedded bolts and studs reach their ultimate load at around 1-2 mm relative slip
and they can maintain more or less this load level for at least 6 mm slip. This means that among the
investigated demountable shear connections this is the only type that behaves similarly to welded studs.
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- Relatively low strength.

Table 2.1  Demountable shear connections overview
Shear
connection Image Advantages Disadvantages
- Lower stiffness than welded studs.
- Similar to the traditional - The end of the bolt protrudes from
Encased solution. the slab when removed.
bolts - High strength. - The bolt is not replaceable.
- Possible use of pretensioning. - Reuse of the slab is questionable.
- Prefabrication is complicated.
JETR - Lower stiffness than welded studs.
‘ - Similar to the traditional - When removed the end of the bolt
Threaded L solution. protrudes.
studs i: ;;1 - Relatively low cost. - The stud is not replaceable.
: - Reuse of the slab is questionable.
,“',— - Prefabrication is complicated.
- The bolt is replaceable. - Lower stiffness than welded studs.
Through - Relatively high strength. - Loss of pretension due to creep and
bolts - No protruding parts from the shrinkage.
slab when removed. - Special attention is required for
- Provides access from the top. tolerances.
‘:‘ ; ‘ ] . - Drilling in th_e concrete is necessary
Anchor o No problems with tolerances. when prefabricated.
bolts and L i 1= - Works with prefabrication and ) o\ er stiffness than welded studs.
blind bolts E N with in-situ concrete as well.
| |
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2.2  Investigations of composite beams with flexible shear connection

The determination of the longitudinal shear force is important with regard to the elastic and plastic
calculations of composite beams. The elastic longitudinal shear force is linearly proportional to the
vertical shear force if rigid shear connection is used [41]:

V,(x)-S;
mo(x) = 28 S0 (2.14)
Iyers
The concrete compression force can be calculated as:
M, (x)-S;
Fo(x) = My®) *Sio (2.15)
Iyerr

where V,(x) is the vertical shear force at a distance x from the support, My(x) is the bending moment, Si
is the static moment of the concrete section to the centroidal axis of the composite section and Iy (See
Chapter 8) is effective the second moment of area of the composite section.

In the case of a flexible shear connection, the longitudinal shear force depends also on the flexibility of
the connection as well as the loading situation. Hoischen [41] gave the closed solutions of the differential
equation of composite beams for the longitudinal shear and the concrete compression forces for basic
load cases.

For a uniformly distributed load:

cosha)% — coshw (% — x)

F(x)=Fy|1—-2 I (2.16)
x(L — x)w? - coshwi
sinh w (% - x)
v (x) = v o(x) |1 - 7 (2.17)
(i—x)-w -coshw x
For a point load acting at mid-span:
sinh w x
F(x) =Fy(x)|1—- —7 (2.18)
w xcoshwi
coshw x
v (0) = v |1 ———7F (2.19)
coshwz
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For a point load acting at a distance z from the support:

L-sinhw z
_ _ ; 2.20
FO) =F@ [1 Zw xsinha)Lsmhwx] (2.20)
Lsinhw x
v (x) = vy (%) [1 ~ S snhol coshw x] (2.21)
Where o is defined as:
o= | K@ M lyers (2.22)
ap - Ec 'Ac(ly,c + Iy,a)

where ks is the stiffness of the shear connection, a is the centroidal distance of the concrete and the
steel, n is the modular ratio, lye is the second moment of area of the composite section, ay is the
centroidal distance of the concrete and the composite section, Ec, Ac and ly are the Young’s modulus,
the cross-sectional area and the second moment of area of the concrete deck, respectively; and finally

ly.a is the second moment of area of the steel.

Zhou et al. [42] also gave the closed solutions of the differential equation while complementing the
derivations of Hoischen [41] by giving the solutions also for the deflection calculations. Because these
equations are rather complex, they are not suitable for practical applications. To address this issue, they
developed an approximation method, which is based on a spring model with an equivalent spring

stiffness K. The effective normal stiffness and bending stiffness can be calculated as follows:

EA. Kp-Ey-Aq

(EA)ery = E A, + KpL + E A, (2.23)
(EA)effClZ
R F 2.24

Where El is the sum of Eclyc and Ealy .

The comparison of the results obtained by the exact and the approximate solutions showed a good

agreement in the terms of bending stiffness, internal forces and deflections.

Hanswille and Schafer [43] derived the second moment of area |y of composite beams with flexible
shear connection for a sinusoidal load. This corresponds to a sine shaped moment diagram but can also

be used as an approximation for beams loaded uniformly, which have a second order moment diagram.
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They define the longitudinal shear force as:

kSC
v () =——"5(x) (2.26)

sc,eq

Where ks is the stiffness of one shear connector, Sseq is the equivalent shear connector spacing and s(x)
is the slip distribution function. A sinusoidal moment diagram corresponds to a cosine shaped slip

distribution function:
_ TX
s(x) = §-cos <T) (2.27)

where 5 is the end slip, L is the span of the beam, and x is the distance along the length of the beam from

a support.

As a result, the corresponding longitudinal shear force distribution also has a cosine shape:

v (x) = s 5+ cos (E) (2.28)

Ssc,eq L
Lawson et al. [44] also started their derivations from the same assumptions as Hanswille and Schéafer
[43] and obtained mathematically equivalent expressions for both the longitudinal shear force as well as

the second moment of area:

I A./n
= e ¢ .2
nAa kSC/SSC,eq L n

The detailed presentation of these derivations is presented in Chapter 8.4 and in Annex C.

Burkner [45] analysed composite beams with different types of shear connection using a self-developed
finite element model. He used a Newton-Raphson iterative procedure that can follow the nonlinear
behaviour of the steel and concrete materials beyond their elastic limit stresses. He applied an
incremental equation that contains the elastic virtual work, an incremental correction part for the elastic
work and the internal elastic-plastic work, which is equivalent to the external load increment. He
performed the iterations as long as the stress that belongs to the correction part of the equation and the
deformation increment is below a certain limit value. For the determination of the global plastic
deformations of the composite beam he also used an iterative Newton-Raphson procedure. He compared
his numerically obtained results with the results of the experiments that he conducted on 7.5 m long
composite beams subjected to two-point concentrated loading, and he obtained a good correlation. He
also gave an approximation formula for the elastic deflections (W,") of composite beams with partial

shear connection (0.5 <7 < 1):
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Wy =11 W, + a(Ws — W,)(1 — 1) (2.30)

Where W, is the elastic deflection of an identical composite beam with full shear connection (4 = 1)
using perfectly rigid connectors, Wj is the deflection of the steel beam alone, 7 is the degree of shear

connection and o = 0.1 — 0.2 is a parameter that depends on the height of the steel sheeting.

Kurz et al. [46] gives an iterative procedure for the determination of the stresses in the composite cross-
section when the stresses in the section exceed their elastic limit. They propose an effective cross-section

divided into lamellas in the z-direction:

I Lamella 6
Lamella 5

Lamella 4

Lamella 3

Lamella 2
[ I Lamella 1

Figure 2.19 Lamellas of the section according to Kurz et al. [46]

The method is based on an iterative approximation method, which determines the resulting deformation
and normal force transformation with reduced cross-sectional values of the elements, by the exceeding
of the linear-elastic state due to a load 4P. Then, the load under which the entire lamella 1 of steel or of
concrete section reaches its critical yield point is determined iteratively. This load is decelerated during
the iteration; and the normal force and the distribution of the stresses are determined due to an additional
load 4P using a reduced steel section in which lamella 1 is not considered anymore. In the next iteration
step, the additional load 4P is gradually increased until the entire lamella 2 reaches the yield stress. The
cross-section values are reduced from the last load point, and the iterative process is performed on the
remaining lamellae. Using this iterative method in combination with the differential equations solved
by Zhou [42], they could reproduce the shear stresses on the shear interface of adhesive bonded

composite beams with a high accuracy.
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2.3  Resistances of cross-sections of beams according to Eurocode 4

2.3.1 General
Eurocode 4 [18] section 6.2.1.1 gives three approaches for the calculation of the bending resistance of a

composite beam:

1) Rigid-plastic theory
2) Elastic analysis

3) Nonlinear theory

2.3.2 Rigid-plastic theory

The most frequently applied approach is the rigid-plastic theory in building construction. Eurocode 4
[18] clause 6.2.1.1 (1) allows to use this theory only if the effective composite section is Class 1 or Class
2 and where no pre-stressing tendons are used. This condition is usually satisfied in the case of simply
supported beams where usually only a small part of the web is in compression (if any) and the concrete
slab prevents the plate buckling of the compression flange [47].

This theory uses the following assumptions:

(i) The cross-section remains plane after deformations.

(if) The steel is stressed to its design yield strength fyq both in tension and in compression.

(iii) The effective concrete area above the plastic neutral axis is stressed to a stress of 0.85 fe / yc
where fe is the characteristic cylinder compressive strength.

(iv) The tensile resistance of the concrete is neglected.

(v) Reinforcement in compression is usually neglected.

Based on these assumptions, the location of the plastic neutral axis (PNA) and the plastic moment
resistance can be determined using the equilibrium and the moment equations. As presented in Figure
2.20, the plastic neutral axis can be located in three different parts of the section. The following

conditions help to decide whether it is in the concrete, in the flange or in the web of the steel beam:

PNA is in the concrete if  Np;c > Npjq (2.31)

PNA is in the flange if Npia > Nppe > Nppw (2.32)

PNA is in the web if Npiw > Ny (2.33)
where:

Npic = begs-he-0.85- fcq is the plastic compression resistance of the concrete,
Npia = Aq " fya is the plastic tensile resistance of the steel, and

Npiw = Npia — 2+ b tr - f,q is the plastic tensile resistance of the web.
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Cross-section z, in the concrete z, in the flange zZ, in the web
0.85 f.q | 0.85 Ty 0.85 foq
[ ) | i =
| S == f ,_p]
Y= — ] )M fyg
——
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Figure 2.20 Possible plastic stress distributions for full shear connection

Due to the equilibrium condition, the maximum compression force that can develop in the concrete is

limited by the resistance of the concrete or by the steel beam:
N¢g = min (N, Ny ) (2.34)

According to Eurocode 4 [18] clause 6.1.1 (7)P, a beam has full shear connection when increase in the
number of shear connectors would not increase the design bending resistance of the member. This means
that for a full shear connection the shear connectors should be able to transfer the force that corresponds
to the aforementioned plastic stress distribution. Otherwise, we are talking about partial shear

connection.

When the shear connectors can be represented by a rigid-plastic behaviour each of them develops the
same shear force irrelevant of the slip. As a result, the developing compression force in the concrete can
be determined by multiplying the shear connector resistance with the number of shear connectors

between the critical sections:
N =ngc* Prg < Ny (2.35)

The ratio of the force that can be transferred by the shear connectors (N¢) to the maximum possible
compression force in the concrete (Nc) is called the degree of shear connection (5). Alternatively,  can
be expressed as the ratio of the number of the shear connectors placed within the shear length (ns) to

the number required for full shear connection (ns):
n = N¢/Nc, or (2.36)
N = Nsc/N¢ (2.37)

Clause 6.2.1.3 (3) permits to use the concept of partial shear connection only if ductile shear connectors
are used. Then, the plastic moment resistance can be calculated based on the plastic stress distribution.
In this case, Nc should be used for the compression force in the concrete instead of the force N¢r. As a
result, a part of the steel beam should also be in compression for equilibrium. Hence, there are two

neutral axes. Figure 2.21 presents the possible plastic stress distributions for partial shear connection.
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Cross-section Zya in the flange Z)a in the web
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Figure 2.21 Possible plastic stress distributions for partial shear connection

The code permits to approximate the moment resistance using a linear interpolation between the bending
resistances of the steel beam alone and of the composite section with full shear connection because the

relation between Mgrq and N can be described by a convex curve (Figure 2.22),:

N
Mra = Mpara + (Mpira — Mprara) N—C (2.38)

cf

N =0 N
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Figure 2.22 Relation between Mgrq and N (for ductile shear connectors) (taken from EN1994-1-1 [18])

Ductile shear connectors may be placed equidistantly when rigid-plastic analysis is used [18].
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2.3.3 Elastic resistance to bending

Eurocode 4 [18] gives the following formula for the calculation of the elastic bending resistance:
Meyra = Mgga + kM ga (2.39)

Where:

Maes  isthe design bending moment applied to the structural steel section before composite behaviour,
Mceda  is the design bending moment applied to the composite section, and

k is the lowest factor such that a stress limit is reached.

The following limiting stresses are defined:

1) fcq — concrete in compression,
2) fya - structural steel in tension or in compression,

3) fs — reinforcement in tension or in compression.

The stresses in the composite section can be determined using the standard formulae of elastic theory.

For that, an effective (homogenised) cross-section is usually used.

When elastic design is used, the shear connectors should be placed in accordance with the longitudinal

shear flow calculated based on elastic theory:

VEd ' Sy,c

(2.40)
Lyerr

VLEd =

Epacing ]/spacing 2 I/sp:ac:ing 3 L spacing 4 l/spacing 3 L/spacing 2 ﬁpacing ‘l/
1 A A A U A A A

JIMMELTT T 17T T T T'TFTITNT

Elastic longitudinal shear force distribution (v, ):

VLRd

_I_,_’i

|
Figure 2.23 Shear connectors placed according to the elastic shear flow
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2.3.4 Nonlinear resistance to bending

When the bending resistance of composite section is determined using nonlinear theory, the nonlinear
behaviour of the steel and concrete materials should be taken into account. This is not a simple task, and
therefore in practice it is usually done by a software [47]. Eurocode 4 [18] gives a simplified
conservative approximation for Class 1 and Class 2 sections as a function of the compression force:

N
Mpa = Mg pa + (Meypa — Ma,Ed)N_Cl for Ne < Ne e (2.41)
c.e
N, — N,
Mga = Meyra + (Mpyra — Mel,Rd)ﬁ for Neey < Ne < N f (242)
cf cel
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Figure 2.24 Simplified relationship between Mgq and N (taken from EN1994-1-1 [18])
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2.4  Serviceability limit states

2.4.1 General
Eurocode 4 [18] refers to the criteria given by EN1990 [48] for the verification of the serviceability limit
states. It gives the following design checks:

1) Stresses
2) Deformations

3) Cracking of concrete

2.4.2 Stresses
In the calculation of the stresses for beams at the serviceability limit state Eurocode 4 [18] section 7.2.1
prescribes the following effects to be taken into consideration:

1) shear lag,

2) creep and shrinkage,

3) cracking and tension stiffening of concrete,

4) sequence of construction,

5) increased flexibility due to incomplete interaction (slipping of the shear connection),
6) inelastic behaviour of steel and reinforcement,

7) torsional and distorsional warping.

Nevertheless, stress limitation is usually not required for beams in buildings except where fatigue
verification is required in the ultimate limit state or pre-stressing by tendons or by controlled imposed

deformations is provided (clause 7.2.1 (1)).

2.4.3 Deformations

According to clause 7.3.1 (2), the deflections should be calculated using elastic analysis. Clause 7.3.1

(4) allows to ignore the effects of incomplete interaction where

1) the design of the shear connection is in accordance with Eurocode 4 [18] Chapter 6.6;
2) the degree of shear connection is not less than 0.5, or the shear connector forces in SLS do not
exceed Prg; and

3) the height of the ribs of a profiled sheeting does not exceed 80 mm.

However, where the above conditions are not satisfied, the code does not give guidance on how the

effects of the incomplete interaction could be considered.

Concerning the vibrations, the code refers to the criteria given by EN1990 [48].
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2.4.4 Cracking of concrete

For the calculation of the crack width and the corresponding limits, the code refers to EN992-1-1 [49].
The limitation crack width depends on the exposure class. Alternatively, the code defines a minimum
amount of reinforcement in section 7.4.2 and a maximum bar spacing or diameter in section 7.4.3. These
depend on the mean value of the tensile strength of the concrete, the area of the tensile zone, the arising
stress and the yield strength of the reinforcement bars. If the minimum reinforcement is provided and
the bar spacing or diameters do not exceed the defined limits, the crack width verification does not need
to be performed.

2.5  Definition of ductility

2.5.1 Ductility according to Eurocode 4

According to Eurocode 4 [18] clause 6.6.1 (5) a shear connector can be considered ductile, when its
characteristic slip capacity (ou) is at least 6 mm. The characteristic slip capacity is defined as the
minimum test value of J, reduced by 10% or determined by statistical evaluation. The slip capacity d is
defined on the descending branch of the load-slip curve (see Figure 2.25).

PRk = O-QPe,min‘ni}
when V, £ 11%

‘>‘uk = 0-9‘)‘\1‘mm,m=3
» 5 when V, < 11%

—_F—_———— e =

(@) (b)

Figure 2.25 Determination of slip capacity d, () Eurocode 4, Annex B [18], (b) Eurocode 4, Annex B
background document [50]

This definition is adequate for traditional headed stud connectors, but it can be misleading for other type

of connectors.

2.5.2 Ductility according to Sause and Fahnestock
Sause and Fahnestock [51] investigated the behaviour of flexural girders. They used two measures for
the ductility: the rotation capacity R and the maximum inelastic rotation Gineiu. In Equation (2.43), 6,

represents the hypothetical rotation of one end of the I-girder when the plastic moment capacity M is
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reached, and 6y is the rotation at which the moment capacity returns to M,. They assumed that the beam

remains completely elastic until M, is reached (see Figure 2.26).

R=2—1 (2.43)

They anticipate that the rotation capacity R reaches or exceeds 3 for a compact and adequately braced

I-girder.

M ©p L Ou-Op=R0Op .
Mp” S ~
Mt / P
. ———C)
R %
(o) O, ©

Figure 2.26 Moment vs. end rotation behaviour of a flexural member by Sause and Fahnestock [51]

2.6 Typical idealised load-slip behaviours
Bartschi [52] lists four basic idealised load-slip curves based on the ductility and the flexibility of the
shear connection. The idealised curves are either flexible or rigid, ductile of brittle. Using the previously

introduced notations, the four basic cases are summarised in Table 2.2 and shown in Figure 2.27.

Load (P) Load (P) Load (P) Load (P)
Slip (d) Slip (8) i Slip (8) Slip (8)
6u=ée|=o 6E|=0 6“26u,min 5u=6e|>0 6e|>0 6UZ6u,min
Rigid-brittle Rigid-ductile Flexible-brittle Flexible-ductile

Figure 2.27 Typical idealised load slip behaviours
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Table 2.2  Typical idealised load-slip behaviours

Load-slip behaviour Elastic slip Deformation capacity Ductility parameter
Rigid-brittle 0a=0 ou=0 D=0
Rigid-ductile 0 =0 Ou > Oumin D=o

Flexible-brittle 0e1 >0 Ou = el D=0
Flexible ductile de1 >0 Ou > Jumin D > Dmin

Headed stud connectors usually have a load-slip behaviour similar to the one presented in Figure 2.25,
and they are often idealised by a rigid-ductile curve.

Among the previously introduced demountable shear connections, embedded bolts and studs could be
characterised by a flexible-ductile curve. Through bolts however, could not be characterised by any of
the idealised curves presented in Figure 2.27. As mentioned earlier, the load-slip curve of preloaded
friction grip bolts has three parts: a nearly vertical part, a nearly horizontal part and a linear or nonlinear

part (see Figure 2.14).

2.7  Controlling end slip in the ultimate limit state

2.7.1 General

In a composite beam, a relative strain difference occurs at the steel-concrete interface during
deformation. This strain difference is usually referred to as “slip strain”. If we integrate the slip strains
from the point of the maximum bending moment to the support we obtain the end slip. The determination
of the end slip is not a complicated task as long as all of the components (the steel beam, the concrete
and the shear connection) are in elastic state (see Chapter 8.4). When it comes to ultimate limit state, the
determination of the end slip becomes a complex task due to the nonlinear behaviour of the materials.
However, it is important to control the end slip in order to avoid premature failure of the connectors.
This chapter presents different methods that can be used for the approximation or the limitation of the

end slip.

2.7.2  Minimum degree of shear connection by Eurocode 4

Eurocode 4 [18] rules are mainly based on studies on welded studs. The traditionally applied studs
usually have at least 6 mm slip capacity [47]. The code does not contain a slip limitation nor a method
for the calculation of the occurring end slip. Instead, it gives an indirect slip limitation by providing
rules for the minimum degree of shear connection. These rules intend to ensure that the occurring end
slip does not exceed the aforementioned 6 mm. In the current form of the code, the minimum degree of

shear connection for steel sections with equal flanges is given by equations (2.44) and (2.45).
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355
L, <25 n=1- <f—> (0.75 - 0.03L,) n = 0.4 (2.44)
y

L, > 25 n=1 (2.45)

However, it was shown by Romero [53] that composite beams with a degree of shear connection, which
is close to the minimum defined by the code can still experience slips that exceed 6 mm. It is planned
that in the next version of the code, the limitation would be modified [54]. For propped construction,

equation (2.44) will become:

355
L, <25 n = [1 - <f_> (0.75 - 0.03L6)] 6% n =04 (2.46)
y

For unpropped construction:

355 )
L, <25 n=|1- f_ (0.75-0.03L,) | 61 * kynpr n =03 (2.47)
y
where:
o1 is the utilization factor, and

Kunpr is the reduction factor accounting for the influence of an unpropped beam.

2.7.3 Oehlers and Bradford

Because plasticity in the steel and concrete elements only occurs in a small volume of the composite
beam, Oehlers and Bradford [55] assume that the steel and the concrete remain elastic, but all the shear
connectors are in plastic state, i.e. the force in each shear connector equals to the shear resistance of the
connection. This assumption is in accordance with the assumption of Aribert [56]. The maximum slip

can be calculated as:

Smax = AmK1 — AshearK> (2'48)
where:
Anm is the area of the moment diagram between the maximum moment and the support,

Ashear 1S the area of the axial force diagram over the same region,

hc + ha and

=—< ¢ 2.49
YT Ed +EI, (2.49)
X _( 1 N 1 ) (h, + hy)? (2.50)
27 \E.A. E,A,)  E..+E,,
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Alternatively, they give an equation, which was originally proposed by Johnson and Molenstra [57].
The equation is not based on a mechanical model but it was created with the help of multiple linear
regressions using exponential and polynomial functions and the results of nonlinear finite element
simulations of 45 beams. According to the authors, the best compromise between simplicity and

accuracy was found to be the following equation:

.. a _ B
Smax = A/Im'a—Lha (5) M (2.51)
6-E,1, D My
where:
D is the depth of the composite section,

a=-0.13and g = 1.03 forn = 0.5, and

a =—0.24and g = 1.70 forn = 0.75.

In equation (2.51), the first term refers to the elastic end slip with no shear connection:

Mpl,a -L- ha

= 2.52

0T T E, 1, (252)
This equation is based on the assumption that the concrete part does not exist:

h.=1.,=E.=0 (2.53)

2.7.4 Eggert

Eggert [58] investigated composite beams with low degrees of shear connections. He carried out full
scale beam tests as well as numerical investigations and he gave equations for the calculation of the

occurring slip at ultimate limit state:

. 1373 )
Smax = So (al (hL—a)o 325 +a, <%‘;7p:/m> +ay- (2221)0-163 +a, (;—:)0 666) —as (2.54)
where:
So is the elastic end slip with no shear connection (same as in equation (2.52)),
a; = 0.049,

a, = 0.118 - (=51.353 - + 48.411),
a3 = 0.015- (622.87 - n% — 669.35 - + 209.76),
a, = 0.0005- (143.58 -3 — 139.28 - + 40.108 - n — 4.170),

as = 5.119,
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Wp = - .Ll\z/lm,

8- Mpq
Wpa =Tz
F.=A."f. and
F, =4, f,

2.7.5 Bartschi

Bartschi [52] derived a formulation for the determination of the elastic slip if there is no shear
connection. He determined the end slip at ultimate load from the results of numerical simulations. He
found that in beams with no shear connection the slip at which the plastic bending resistance is reached
is 1.5 times more than the slip at first yield:

L 15-f,—0o h.+h
L2 <1+ d ”) (2.55)

Sulto = @15 T 0.5-hy,
where a = 2/3 for uniformly distributed load, « = 1/2 for concentrated load that acts at mid-span,
a = 1- e/L or symmetrical two point loads that act in a distance e from the supports, and ¢ is the maximum

normal stress in the steel beam due to unpropped construction.

For beams with full shear connection, he recommends to use the differential equation of nonlinear

composite action or a finite element analysis. Both of these methods require a large computational effort.

For partial shear connection the analytical determination of the occurring end slip is even more difficult.
Nevertheless, he remarks that the slip in a composite beam with partial shear connection is smaller than
in a beam with no shear connection and larger than in a beam with full shear connection. As a greatly
simplified model, he recommends to use a linear interpolation (see Figure 2.28) between the end slip
with no shear connection and the end slip with full shear connection according to the degree of partial

shear connection.

Smax

1.5,

0 1 n=N/Ng

Figure 2.28 Linear interpolation of the end slip based on the degree of shear connection proposed by
Bartschi [52]
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2.7.6  Summary

This chapter presented different methods for the calculation or the limitation of the occurring slip at the
ultimate limit state. Among these methods, only the equation (2.48) by Oehlers and Bradford [55] is
based on a mechanical model. Additionally, Bartschi gives the differential equation for nonlinear
composite action, but because of its complexity it can only be solved by means of numerical methods.
The indirect limitation of Eurocode 4 [18], the formulation (2.51) of Johnson and Molenstra [57] and
the equation (2.54) of Eggert [58] are all based on the statistical evaluation of experimental and
numerical investigations of composite beams with welded studs. This means that the scope of their
application is limited to the cases that are similar to the original data set, i.e. they are only applicable in
the case of welded headed studs or equivalent shear connectors. Also, the method of Oehlers and
Bradford [55] assumes that the shear connection can be described with a rigid-ductile curve. As
presented in section 2.1, demountable shear connectors behave differently than welded studs in general.
Their initial stiffness is lower than the one of welded studs, so they cannot be considered as a rigid
connection, but rather as a flexible one. The determination of the occurring slip in the case of flexible
shear connection is a relatively easy task as long as all the components are in elastic state (see chapter
8.4). It is a much more complex task in the ultimate limit state because of the nonlinear behaviour of the
steel, of the concrete and possibly of the shear connection. Accordingly, no closed analytical solution
could be identified in the international literature. The occurring slip is usually determined using finite

element simulations.
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Chapter 3. New types of demountable shear connections

3.1 General

In the frame of the conducted research, two types of shear connections have been investigated and tested
in the laboratory. The solutions are somewhat similar to other shear connections that can be found in the
international literature; however, there are certain differences, which will be pointed out in this chapter.
During their design process, the focus was put on the matters of demountability, reusability and
structural performance. This chapter presents the requirements that were considered and the investigated

shear connections.

3.2  Requirements of demountable shear connections

Demountable shear connections should fulfil several criteria at the same time. These criteria include the

matters of

1) structural performance,
2) safety,

3) tolerances,

4) corrosion resistance,
5) aesthetics,

6) economy,

7) adaptability,

8) standardisation,

9) environmental impact,
10) construction,

11) deconstruction, and

12) reuse.

This section summarises the different requirements that were taken into consideration.

3.2.1 Structural performance

The primary purpose of the shear connection is to connect the steel beam and the concrete deck in such
a way that they withstand the external loads as a single member. For that, the shear connection should
be capable of transmitting the occurring longitudinal shear force on the steel-concrete interface; and
therefore, the shear connectors should have sufficient shear resistance. Transverse separation should be
prevented; so the connection should have a certain tension resistance. The stiffness of the shear
connection is also an important factor as it directly affects the stiffness of the composite beam.
Additionally, a certain deformation capacity is required to ensure that the connection does not fail
prematurely before the curvature required to develop the moment resistance is reached. Furthermore,

ductility plays an important role when the design relies on the inelastic redistribution of the shear forces.
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3.2.2 Construction, deconstruction and reuse
Crowther [2] identifies 27 different aspects of design for deconstruction (DFD). Among these aspects,

those that are relevant for demountable composite flooring systems are listed here:

1) Use recycled and recyclable materials.

2) Use dismountable mechanical connections and dry joints.

3) Use an open building system where parts are freely interchangeable.

4) Use modular design and a standard structural grid.

5) Use construction technologies that are compatible with standard building practice and common
tools.

6) Use prefabrication.

7) Provide access to all parts.

8) Make components of a size that suits the intended means of handling.

9) Provide tolerances for assembly and disassembly.

10) Use a minimum number of fasteners or connectors.

11) Use a minimum number of different types of fasteners or connectors.

12) Design to withstand repeated use.

13) Use lightweight materials and components.
Additionally, other aspects have been identified that are more specific to composite floors:

14) Preferably, provide access from the top of the slab for safety reasons.
15) Avoid any protruding parts from the slab to facilitate transportation and storage.

16) The potential damage should occur in the easily replaceable elements.

3.3 Investigated demountable shear connections

Two types of demountable shear connections were investigated by the means of laboratory testing. This

section presents the investigated connections.

3.3.1 Friction bolts in cast in cylinders (System P3)

Shear connection type P3 is a through bolt type connection. This system is similar to the Krupp-Montex
system [25] (see Figure 2.12), but it uses a steel tube instead of a PVC one to avoid any losses of
pretension from the effects of creep and shrinkage. The connection uses a cast-in steel cylinder welded
to an L-profile (not included in the Krupp-Montex system), a top plate welded to the cylinder and a pre-
tensioned M20 bolt with a grade of 8.8. The steel cylinder protects the concrete from any damage that
might occur due to bearing. The L-profile provides steel-to-steel contact between the slab and the beam
and it helps to protect the edge of the deck element throughout its lifetime. The bolt is placed inside the
cylinder from the direction of the top plate during the assembly process, and it connects the deck element
to the steel beam through ¢24 pre-drilled holes in the flange. The oversized hole facilitates the hole

alignment during the assembly process. Pockets (voids) are created in the concrete in order to avoid any
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protruding part on the top surface and to provide access to the connection from the top of the slab. This
makes the disassembly process safer as there is no need for workers being underneath the slab during

deconstruction. The layout of this shear connection system is presented in Figure 3.1.

T Prefabricated concrete
Top plate

AAAAAAAA

Steel tube

L-profile

dy=24 predrilled hole

M20 bolt, Gr. 8.8
Steel beam

Figure 3.1 Layout of the shear connection system P3

3.3.2 Coupled bolts (System P15)

Generally, the end of an embedded bolt protrudes from the bottom surface of the slab. As a result, special
care is required during the assembly, the disassembly and the transportation processes to avoid any
damages in the threads. Furthermore, the application of pre-tension is possible only if the deck elements
are not meant to be reused because once the bolts has been tightened to a minimum preload they are not

reusable [39]. Embedded bolts being fully encased in the concrete are not replaceable.

In order to overcome these issues, shear connection type P15 uses an embedded bolt coupled with an
external bolt. An embedded DIN 6334 [59] mechanical coupler device provides the connection between
the two bolts. This way, there are no protruding parts and the external bolt is replaceable. The coupler
has a grade of 10.9, while the bolts are made of 8.8 material. If thread damage occurs during pre-
tensioning, it would occur in the replaceable bolt and not in the embedded coupler due to its higher
material strength. L-profiles are used similarly to system P3, but no welding is necessary in this case.

The external bolts are placed from below the flange through oversized pre-drilled holes.

Two variants of this connection type have been developed. The two variants are mostly identical, but
P15.1 uses pre-tensioned bolts and P15.2 uses epoxy resin injected bolts i.e. the bolt hole is filled with
resin around the bolt. This solution allows larger clearance in the flange as the resin prevents the slippage

of the bolt. Figure 3.2 shows the layout of the two variants of the shear connector system.

A similar connection system was proposed by Yang et al. (2018) [60] parallel to the conduction of the
research presented in this thesis. They investigated M18, M22 and M27 bolts in combination with a
coupler device similar to the one presented here. The schematic drawing of their solution is presented
in Figure 3.3. he main differences between their solution and shear connection system P15 are the

following:

(i) Their investigation did not include preloaded bolts.
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(it) Their solution did not include L-profiles.

(iii) Their embedded bolts had 200 mm height and were encased in a relatively thick (500 mm)
concrete slab. In the case of shear connection type P15 the investigated deck thickness was
150 mm as given by Eurocode 4, Annex B [18].

(iv) During the fabrication of the push-out tests, they first placed the bolts inside the pre-drilled holes
of the steel beam together with the coupler device. This was followed by concrete casting.
Therefore their system corresponds to an in-situ construction method, not like shear connection

type P15, where the concrete deck is prefabricated.

Preloaded bolt Epoxy resin injection bolt
(P15.1) (P15.2)

. =+ Prefabricated concrete
M20 bolt, Gr. 8.8

M20 mechanical coupler, Gr. 10.9
L-profile

d,=24 predrilled‘holel I d,=26 predrilled hole filled with epoxy resin

Washer plate —} ! . M20 injection bolt, Gr. 8.8
M20 bolt, Gr. 8.8 —

. =7 In-situ concrete

M22 bolt, Gr. 8.8

M22 mechanical coupler, Gr. 8.8

Steel beam
M22 bolt, Gr. 8.8

Figure 3.3 Layout of the shear connection system tested by Yang et al. [60]

3.3.3 Fulfilment of the relevant requirements

Table 3.1 summarises how the presented demountable shear connections (Type P3 and P15) fulfil the

different requirements that were presented in section 3.2.
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Table 3.1  Fulfilment of the requirements of demountable shear connections
# Requirement How do the connections fulfil the requirement?

1  Use recycled and recyclable materials. The connections use steel and concrete, which are
recyclable, and do not use non-recyclable materials (for
example certain types of plastics)

2 Use dismountable mechanical The connections use bolted connections.

connections and dry joints.

3 Use an open building system where Equidistant placement of the shear connections is preferred

parts are freely interchangeable. to have interchangeable parts.

4 Use modular design and a standard The placement of the connectors should be in accordance

structural grid. with the basic module.

5  Use construction technologies that are The connections use commercially available standard

compatible with standard building products.
practice and common tools.

6  Use prefabrication. The connection types use prefabricated concrete deck
elements.

7  Provide access to all parts. The connections are accessible from below the flange.
System P3 is also accessible from the top.

8  Make components of a size that suits the ~ The deck elements should respect the size and weight

intended means of handling. limitations defined by the building constructor.

9  Provide tolerances for assembly and The connections use oversized holes.

disassembly.

10  Use a minimum number of fasteners or The connections use high-stregth bolts to minimise the

connectors. numer of connectors.

11 Use a minimum number of different The connections use standard M20 bolts, which are widely

types of fasteners or connectors. applied in the current construction practice.

12 Design to withstand repeated use. The connections use steel L-profiles that provide edge
protection to the slabs during handling and transportation.
The connections also use relatively high strength concrete to
fulfil this requirement.

13  Use lightweight materials and Composite slabs can be used, which have lower weight than

components. solid slabs.

14  Preferably, provide access from the top System P3 fulfils this requirement, P15 does not.

of the slab for safety reasons.
15 Avoid any protruding parts from the slab  Both connections fulfil this requirement.
to facilitate transportation and storage.
16  The potential damage should occur in The failure occurs always in the replaceble bolts.

the easily replaceable elements.
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Chapter 4. Push-out tests

41 General

Five series of push-out tests were conducted on different variants of the shear connections presented in
section 3.3. Each series consisted of three nominally identical specimens with a geometrical layout
similar to the one recommended by Eurocode 4 [18]. The tests on the two most heavily loaded specimens
were repeated with new bolts to assess the reusability of the specimens. This chapter presents the details
of the conducted push-out tests including the description of the test specimens, the test setup, the
measurements, the testing procedure and the results in the terms of load-slip behaviour and observed

damages. Parts of the results shown here were presented in [61] and [62].

4.2  Tests specimens

The tests specimens comprised of an HE 260B hot-rolled steel beam and four concrete deck elements.
The deck elements were prefabricated in a horizontal position and were connected to the steel beam by
eight demountable shear connectors after the concrete had hardened. Figure 4.1 (a) shows the schematic

view of the test specimen.
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Figure 4.1 (a) The test specimen, (b) Solid strip in combination with profiled steel sheeting

Two test series (P3.2 and P3.3) used ComFlor® 80 [63] profiled steel sheeting but they had full depth
in the vicinity of the shear connectors (see Figure 4.1, b). As a result, it was possible to achieve a reduced

weight compared to solid slabs without compromising the shear connection behaviour.

In series P3.2, the steel beam, the L-profiles and the bolts were galvanized in order to assess the effect
of galvanization on the friction resistance by comparing the obtained friction coefficients of the
galvanised and the non-galvanised specimens. This corresponds to surface treatment class B according
to EN1090-2 [39]. In all of the other series, the surface of the steel beam and the L-profiles were first
cleaned from any chemical contaminants, then the loose rust was removed by wire brushing before the
assembly of the specimens (surface treatment class C). Table 4.1 presents the overview of the test

parameters.
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The testing matrix consists of three series using system P3 and two series using system P15. The first
test parameter was the type of the shear connection. The performance of the different shear connection
types can be assessed by comparing the results of test series P3.1 with the results of P15.2. The only

difference in these test series was the type of the connection.

The second test parameter was the type of the slab. Test series P3.1 and P3.3 were almost identical: the
only difference was that in P3.3 profile sheeting was applied in combination with a solid strip, while
P3.1 used fully solid slabs. This way, it is possible to assess whether a solid strip in the vicinity of the

shear connector is sufficient to provide a solid like behaviour or not.

The third test parameter was the surface treatment. The geometry and the applied material grades of
series P3.2 and P3.3 were identical, but in series P3.2 the elements were galvanised. The comparison of
these test series can show how galvanisation affects the friction coefficient.

The fourth test parameter was the effects of epoxy resin injection. To assess this effect the results of
P15.1 (preloaded bolts) should be compared to the results of P15.2 (injection bolts).

Table 4.1  Test parameters

Series Shear connection Slab type Remark Surface treatment class
P3.1 Friction bolts in cylinders Solid C

P3.2 Friction bolts in cylinders Solid + CF80 Galvanized elements

P3.3 Friction bolts in cylinders Solid + CF80 C

P15.1 Coupled bolts Solid C

P15.2 Coupled bolts Solid Injection bolts C

In all cases, $8/75, B500 B reinforcement was applied. The solid slabs had two layers of reinforcement
in both directions. The slabs with profiled steel sheeting had only one layer in both directions. U-bars
were placed around the shear connectors as defined by Eurocode 4 [18] for shear connectors that are
placed near the edge of the concrete slab. The concrete was cast on two different occasions. The concrete

strength was measured at the age of 28 days on standard cube specimens.

The pre-tensioning was applied using the combined method defined by EN 1090-2 [39]. This method

includes two steps:

1) atightening step to a snug tight condition;

2) atightening step in which a specified part turn is applied to the turned part of the assembly.

As it was shown by complementary pretension tests (see Annex A.3), the pretension force can be
accurately controlled by applying a certain amount of rotation. In shear connection type P3, the
tightening was performed by turning the nut, while in the case of shear connection type P15, by turning
the head of the external bolt. In test series P15.2, injection bolts were applied. First, the bolts were

tightened with the help of a common wrench to a snug-tight condition. Afterwards, two-component
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epoxy resin was injected to the clearance between the bolt and the inside surface of the hole through a
small hole in the head of the bolt according to EN 1090-2 [39].

Figure 4.2 shows photos taken during the fabrication of the specimens. Table 4.2 presents the measured
concrete strength values (see Annex A.2), the applied reinforcement and the applied pretension force
for each specimen. The reason behind the relatively high concrete strength was to represent reusable
elements that have an extended lifespan because they need to withstand multiple use. They have a high
demand for robustness; and therefore, it is necessary that they have a high resistance against mechanical

impacts.

Table 4.2  Concrete strength, reinforcement and pretension

. Concrete cube strength . Applied pretension
Series Reinforcement
fe.28 [N/mm?] [KN]
P3.1 59.4 2 layers ¢8/75 100
P3.2 59.4 1 layer ¢8/75 120
P3.3 59.4 1 layer ¢8/75 120
P15.1 44.3 2 layers ¢8/75 176
P15.2 44.3 2 layers ¢8/75 0
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(@) (b)

(e) ®

Figure 4.2 (a) Beams with pre-drilled holes, (b) embedded bolt with coupler in the formwork, (c) cast-
in cylinder with welded top plate and U-bars, (d) reinforcement mesh in the formwork, (e)

injection bolt with a small hole in the head, (f) injection bolt after injection
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4.3  Testsetup

The specimens were placed on a steel base plate with mortar bedding one day before testing. The tests
were conducted using a hydraulic jack with a load capacity of 1000 kN. A vertical force / displacement
was imposed on the endplate of the steel beam during the tests. Belts were put around the specimens to
prevent the parts from falling apart once the continuity was lost (see Figure 4.3). The force in the
hydraulic jack and the displacements were continuously monitored during test conduction.

Figure 4.3 Test setup

4.4 Measurements

Fifteen displacement transducers (LVDTs) were applied for each specimen to measure the

0] relative vertical displacement between the steel beam and the slab elements,
(i) the vertical displacement of the beam measured from the ground floor,

(iii)  the transversal separation between the steel beam and the slab elements,

(iv)  the relative horizontal displacement between the adjacent slab elements, and

(V) the relative horizontal displacement between the slabs on the different flanges of the beam.

Figure 4.4 shows the layout of the applied displacement transducers.
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Figure 4.4 The layout of the LVDTs

Additionally, compression tests were conducted on concrete cube specimens and uniaxial tensile tests
on steel coupon specimens fabricated from the L-profiles and from the applied bolts. The detailed results

of these tests can be found in 0.

45  Test procedure

The following loading regime was applied:

LR1: The first test of each series was conducted with monotone increasing load without cycles in

order to determine the failure load.

LR2: Inthe second test of each series, 25 cycles were performed between the 5% and the 40% of the
failure load measured during LR1. The frequency of the cycles was 1 cycle / 2 minutes
(0.0083 Hz).

LR3: The third test of each series included 25 cycles between the same limits and with the same
frequency as in LR2. In addition, several unloading — reloading cycles were performed after

every 0.5 mm — 1 mm increments in the relative slip.

The specimens were loaded in force-controlled mode with 20 kN / min load rate until the first slip had
occurred. Afterwards, the loading procedure continued in displacement-controlled mode with a speed

of 0.5 mm / min.

As the specimens were loaded differently, the obtained results cannot be used for the statistical

evaluation of the shear connection resistance. However, they can be used for the evaluation of the

48



4, Push-out tests

general behaviour of the connections as well as for the validation of numerical models where — if

necessary- the different loading regimes can be simulated.

Load Load Load
Pu
—~ —
0.4 Py
0.05 Py
Slip Slip Slip
Loading regime #1 Loading regime #2 Loading regime #3

Figure 4.5 The loading regimes

The applied bolts had in all cases at least 20% overstrength compared to their characteristic strength
value (see Annex A.1.2). As a result, the 1000 kN capacity of the hydraulic jack was not sufficient to
cause failure when 8 bolts were applied in test P15.2-1. Therefore, in the subsequent test series, the tests
started with 8 bolts until the total load level of 500 kN in load regime 1 (LR1). Then the specimens were
unloaded, and the 4 bolts in the upper row were removed. This was also useful for the assessment of the
demountability. Afterwards, the specimens were tested with only the four lower bolts. In LR2 and LR3,
the four upper bolts were removed before testing. Because the rigidity and the bearing capacity of the
steel beam and the concrete elements are very high compared to the shear stiffness of the connection,
the relative slip and the load on the upper and lower bolt row was assumed to be equal. This assumption
was supported by the experimental measurements as no difference could be observed between the load-

slip curves of the specimens with 8 bolts and with 4 bolts.

The use of only one row of bolts along the loading direction could lead to tilting and separation of the
slabs relative to the beam. In order to justify that the applied test setup is suitable for the push-out tests,
the following experimental results were used: LVDTSs (iv) (see Figure 4.4) measured the tilting of the
slab elements, which was between 0.16 and 0.74 degrees (2.8 mrad and 13.8 mrad, respectively) in all
cases. The maximum transverse separation at failure measured by LVDTs (iii) was 0.3 mm. The
maximum relative horizontal displacement measured by LVDTs (v) was 1.1 mm. Based on these

measurements it was concluded, that the setup with four bolts was suitable for push-out tests.

4.6  Test results

4.6.1 General

EN1990-1-1, Annex B [18] prescribes that the longitudinal slip between each concrete slab and the steel
section should be measured at least until the load has dropped to 20% below the maximum load. During
the tests, bolt shear failure occurred in all cases, which is a brittle failure. Due to the fracture of the bolts,
the concrete slab elements were not connected to the steel beam anymore, and a sudden load drop was

observed from the maximum load to zero. The failure was defined at this point where the integrity of
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the specimens was lost. In the subsequent sections, the term “initial stiffness” is used for the description
of the stiffness of the specimens before bolt slip inside the bolt holes occurred at load levels exceeding

the friction resistance. The initial stiffness Sini was determined as the secant stiffness at this point:

Sini = —— (4.1)

where F; is the measured friction resistance and sgs is the corresponding value of the slip.

4.6.2 Friction bolts in cast in cylinders (System P3)

The following figure shows the measurements obtained by the displacement sensors denoted as LVDT
(i) (see Figure 4.4) for specimen P3.1-1. These measurements correspond to the relative slip between
the steel beam and each individual slab element.
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Figure 4.6 Load slip curves of Specimen P3.1-1 at each slab element (LVDT i)

As one can see, the four slab elements had a similar load-slip behaviour, which indicate that during the
test conduction the load was distributed uniformly among the four shear connectors. However, in this
particular test specimen, the four shear connectors did not fail at the same time. At 7.2 mm relative slip,
the bolt that connected Slab 4 to the steel beam failed at a load level of 134.7 kKN. This is represented by
a sudden jump in the load-slip curve. Afterwards, the displacement was further increased, and the other
three bolts failed at 143.7 kN. All bolts failed due to bolt shear.
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The following figures show the measurements obtained by LVDT (iii) (transverse separation) and
LVDT (v) (slab-to-slab relative horizontal displacement). In the figures positive values denote

separation.
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Figure 4.7 Transverse separation measurements of specimen P3.1-1 (LVDT iii)
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Figure 4.8 Slab-to-slab relative horizontal displacement of specimen P3.1-1 (LVDT v)

Figure 4.7 shows that only minor (less than 0.2 mm) relative horizontal displacements occurred during
the test between the beam and the slab elements at the shear connectors. Similarly, Figure 4.8 indicates
that the relative horizontal displacement between Slab 1 and Slab 4, and between Slab 2 and Slab 3 were
negligible during the tests. When the bolt that connected Slab 4 to the steel beam failed, the connection
between this slab element and the steel beam was completely lost. This resulted a sudden jump in the

measurement representing the relative displacement between Slab 1 and Slab 4.

Figure 4.9 shows the measurements of the relative horizontal displacement between the adjacent slab
elements (LVDT (iv)). As these measurements were performed at the top and the bottom of the slabs,
these measurements show the tilting of the slab elements. In the figure the positive values indicate when
the distance between the slab decreased and negative values when it increased. The results indicate, that

there were only minor relative displacements at the bottom of the slabs close to the supporting plate. On
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the other hand we can observe higher relative displacement values at the top of the slabs. Both
measurements (Slab 1-2 top and Slab 3-4 top) show that the top of the adjacent slab elements came
closer to each other as the load increased. This represents and inward tilting. As the two curves overlap
it also shows that this occurred in a symmetric manner between the opposite sides of the beam. The
maximum value of the measured relative displacement when bolt shear failure occurred was 5 mm at
the top and -0.5 mm at the bottom. This corresponds to a 5.5 mm relative displacement over an 800 mm
height, which is 0.4 degrees or 6.87 mrad relative rotation between the slab elements. On average the
slabs had a relative rotation of 0.2 degrees (3.44 mrad) to the steel beam. As these values are relatively
low, it was concluded that the test setup is suitable for the assessment of the shear resistance of the

connectors.
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Figure 4.9 Relative horizontal displacement between the adjacent slab elements P3.1-1 (LVDT iv)

Similar behaviours (negligible transverse separation and minor inward tilting) were observed in all of

the other tests.

The load-displacement curves of the friction bolts in cast in cylinders with solid slabs (P3.1) are shown
in Figure 4.10. In the figure the relative slip corresponds to the average measured slip between the steel
beam and the four slab elements. Due to the pre-tensioning, the initial stiffness of the system was
relatively high (250 kN / mm) in the early load stages until the friction resistance was overcome at a
load level of 26 kN / shear connector. Afterwards, the stiffness decreased significantly to 15 kN / mm.
Only minor nonlinear behaviour was observed. In all cases, shear failure of the bolts occurred at an
average load level of 141 kN / shear connector. The failure happened in a very brittle way at a relative
slip level between 7 mm and 10 mm with no or minor descending branch. The load-displacement curves
of specimens P3.1-1 and P3.1-3 are in a good agreement, while P3.1-2 shows larger slip capacity. This
is due to the fact that the hole clearance was not deducted from the presented slip values, and the bolts
have been positioned randomly inside the holes. In the case of P3.1-1, the sudden jump in the curve at

7 mm slip is caused by the failure of one bolt, which failed earlier than the others.
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Figure 4.10 Load slip curves of System P3.1

As shown in Figure 4.11, minor damages were observed on the steel elements of the specimens: bearing
deformation of the holes in the L-profiles, and thread penetration on the bearing surface of the holes in

the steel beam.

(b)

Figure 4.11 Observed damages, (a) bearing deformation, (b) thread penetration in the flange
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The load-displacement curves of the specimens where solid slabs were applied in combination with

profiled steel sheeting are illustrated in Figure 4.12 and Figure 4.13.
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Figure 4.12 Load slip curves of System P3.2
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Figure 4.13 Load slip curves of System P3.3

The initial stiffness of P3.2 and P3.3 was 500 kN / mm and 300 kN / mm, respectively. In the case of
the galvanized specimens (P3.2), the first slip occurred at a load level of 57 kN / shear connector, while
in the case of specimens with no surface finish (P3.3), the friction resistance was 31 kN / shear connector.
The stiffness decreased to 15 kKN / mm after the first slip had occurred. Figure 4.14 shows the failure

surface of the failed galvanized bolts.

It can be noticed that for the bolts of series P3.2 the resistance is higher (168 kN) when compared to the
results of P3.3 (143 kN). This is due to the higher material strength, which was confirmed by uniaxial
tensile tests that had been conducted on four bolts of each type (see Annex A.1.2). The resulting mean
values of the ultimate strengths were 1045.6 MPa and 948.7 MPa, respectively. All bolts failed in shear

and similar minor damages were observed as in series P3.1.
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Figure 4.14 Failure surface of the bolts

4.6.3 Coupled bolts

The following figure presents the slip measurements (LVDT (i) on Figure 4.4) of specimen P15.1-1 at
each slab element. As on can see, the load-slip curves of Slab 1 and Slab 4 overlap with each other, as
well as the curves of Slab 2 and Slab 3. However, at a certain load level Slab 2 and 3 had around 1 mm
greater slip than Slab 1 and Slab 4. This is due to the different positions of the bolts in the holes.. Apart
from this effect, the curves are parallel and all the bolts failed at the same time. This indicates that the
load was distributed uniformly among the bolts.
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Figure 4.15 Load slip curves of Specimen P15.1-1 at each slab element (LVDT i)

Figure 4.16 shows the measurements of the transverse separation. In the figure positive values denote
separation. Similarly to the results presented in Figure 4.7, only minor displacements (less than 0.2 mm)
could be observed here. Figure 4.17 indicates that the relative horizontal displacement between the slabs
at different sides of the beam were also negligibly small (less than 0.3 mm). Figure 4.18 presents the

relative horizontal displacement measured between the adjacent slab elements at the top and at the
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bottom. These measurements can also show the tilting of the slab elements from the difference in the

displacements measured at the top and at the bottom of the specimen.
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Figure 4.16 Transverse separation measurements of specimen P15.1-1 (LVDT iii)
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Figure 4.17 Slab-to-slab relative horizontal displacement of specimen P15.1-1 (LVDT v)
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Figure 4.18 Relative horizontal displacement between the adjacent slab elements P15.1-1 (LVDT iv)
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In the previous figure positive values denote closing and negative values denote separation. Similarly to
the previously shown measurements (Figure 4.9), higher displacements could be measured at the top of
the specimens. This also represents and inward tilting. The maximum value of the measured relative
displacement when bolt shear failure occurred was 4.9 mm at the top and -0.2 mm at the bottom. This
corresponds to a 5.1 mm relative displacement over an 800 mm height, which is 0.4 degrees or 6.37
mrad relative rotation between the slab elements. On average, this means that the slabs had a relative

rotation of 0.2 degrees (3.28 mrad) to the steel beam.

Similar behaviour could be observed in the case of each test specimens. Based on the presented
measurements, it was concluded that the test setup is suitable for the assessment of the shear resistance

and the general load-slip behaviour of the connectors.

The load-slip curves of the tests with coupled bolts with pretension are presented in Figure 4.19. The
initial stiffness was 70 KN / mm. The first slip occurred at a load level of 50 kN / shear connector. After
a slip of 2 mm, the stiffness reduced to 30 KN / mm. Brittle shear failure of the bolts occurred in all cases
at an average load level of 142 kN / shear connector.
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Figure 4.19 Load slip curves of System P15.1

As shown in Figure 4.20 (a), no bearing deformation was observed in the L-profile. However, thread

penetration occurred in the bearing surface of the holes in the steel beam (Figure 4.20 (b)).

Figure 4.21 presents the results of the tests with epoxy resin injection bolts. The load-slip curves have
three parts: an initial part with a stiffness of 100 kN / mm until the load level of 50 kN, a second part
with a stiffness of 30 kN / mm until the load level of 110 kN and a final part with a stiffness of 5 kN / mm
until failure. The shear failure of the bolts occurred at an average load level of 131 kN. As the epoxy
resin in the bolt holes prevented the slippage of the bolts, the curves overlap despite the varying loading
regime. Bolt shear was the only observed damage on the specimens. Figure 4.22 shows a bolt after
failure. The resin remained intact during the test. Because of the threaded shape of the resin, the use of

a wrench was necessary for the removal of the bolt head from the steel beam.
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(@) (b)

Figure 4.20 Observed damages of System P15.1 (a) sheared bolt and no bearing deformation in the L-

profile, (b) thread penetration in the flange
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Figure 4.21 Load slip curves of System P15.2

Bolt head

Figure 4.22 Sheared bolt after failure
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4.6.4 Teston reused elements

In order to assess the effect of the observed minor damages on the reusability, the most heavily loaded
specimens (P3.2-3 and P3.3-3) were reassembled with new bolts and the tests were repeated. The failed
bolts were replaced by new bolts from the same batch. This means, black bolts were replaced by identical
black bolts and galvanised bolts were replaced by identical galvanised ones. The results of these tests
are indicated as P3.2-3R and P3.3-3R in Figure 4.23 (a) and (b), respectively. In the second tests, the
failure mode was again bolt shear leading to similar resistance values as in the case of the original tests.

The slip at which the ultimate resistance was reached increased in the case of the reused galvanised
specimen. In the non-galvanised specimen the obtained slip was lower than in the case of the original
tests. The stiffness of the reused galvanised specimen was relatively low before 6 mm slip was reached
when compared to the original specimens. This could be explained by the already existing bearing
deformation of the hole of the L-profile. This phenomenon could not be observed in the non-galvanised
specimen. These observations can be explained by the different bolt positions inside the bolt hole that
have a direct impact on the amount of slip that the bolt can undergo before it becomes in contact with

the inner surface of the bolt hole.

Lower friction resistance was observed in the case of the galvanized specimen (P3.2-3R). This can be
explained by the flattening of the surface asperities. The obtained shear force and slip values are

presented in Table 4.3 together with the results of the original tests.
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Figure 4.23 Load slip curves of the reused specimens (a) galvanised, (b) non-galvanised
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Table 4.3  Results of the reused specimens

Test specimen Loaging . Shear Slip at max force Remark
regime resistance [kN] [mm]
P3.2-1 LR1 166.2 8.5
P3.2-2 LR2 170.5 9.1
P3.2-3 LR3 168.7 8.9
P3.2-3R LR1 172.3 10.3 Reused with new galvanised bolts
P3.3-1 LR1 143.9 8.6
P3.3-2 LR2 138.2 10.6
P3.3-3 LR3 143.1 10.0
P3.3-3R LR1 136.6 7.7 Reused with new black bolts

4.7  Discussion

4.7.1 Load-slip behaviour

The load-slip curves of the shear connections that use preloaded bolts can be divided into three parts:

1. Due to the pre-tensioning, the initial stiffness of the specimens is high (250 —500 kN / mm).

2. After the friction resistance is overcome, slip occurs and the stiffness is significantly
reduced.

3. When the bolt become in contact with the inner surface of the hole, bearing and shear

deformation occurs with a stiffness between 15 kN / mm and 20 kN / mm. These values are
relatively low compared to traditional welded stud shear connectors, which have a stiffness

usually in the range of 40 to 60 kN / mm when applied with profiled sheeting [64].

Load

3. Bearing and shear

2. Slip in the bolt hole
Slip

1. Friction —

Figure 4.24 Simplified behaviour

The behaviour described above is in accordance with the observations of Lee and Bradford [27].

The second part of the general load-slip behaviour represents the bolt slip inside the bolt hole. The
amount of slip before the bolt becomes in contact with the inner surface of the bolt hole is defined by
the hole clearance and the position of the bolt inside the hole. Among these two parameters, the position

of the bolt is difficult to control because it depends on the construction and installation tolerances. This
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is the reason why the three nominally identical specimens within a certain test series had slightly
different load-slip curves. The different amount of slip inside the hole caused the observed horizontal
offset of the third part (shear and bearing deformation) of the curves. This effect was not removed by

the cyclic loading because the cycles were performed after bolt slip had already occurred.

The position of the bolts in the hole does not have an impact on the shear resistance, but it has a
significant impact on the slip at which the ultimate capacity is reached (see for example the results of
test series P15.1 on Figure 4.19.). Also, the force values that belong to a certain slip have a high
variability. These observations indicate that special attention is required for the construction and
installation tolerances to reduce this variability. Numerical simulations showed (see chapter 6.3) that the
average load-slip curve that correspond to a central bolt position can represent the general behaviour of
the composite beam with high accuracy. However, dangerous cases may occur if some of the bolts have
lower slip capacity than the others because of their different positions inside the hole. Further
probabilistic analyses are recommended to quantify the corresponding risk.

Alternatively, epoxy resin injection bolts can be used because the epoxy resin prevents the bolt slippage;
and therefore, the load-slip curves overlap very well with each other (see Figure 4.21).

This behaviour is somewhat different than the one of headed stud connectors. As shown in the DISCCO
project [65], usually concrete failure precedes bolt shear failure. This is especially true when the studs
are placed in deep metal decking. Pavlovi¢ [16] investigated encased bolted shear connectors. He
observed both failure due to concrete crushing and failure due to bolt shear, but in his tests some kind
of concrete damage always accompanied the bolt shear failure. This could not be observed in the tests
presented here due to the large bearing surface of the cast-in cylinder and of the mechanical coupler
device. The results obtained the tests presented in this section are similar to the ones obtained by Chen
et al. [26] and Lee and Bradford [27] who investigated through bolts similar to System P3. However,
they also observed local damage of the concrete at the base of the shear connectors. This leads to the
conclusion that the L-profile, the steel cylinder and the mechanical coupler make the tested systems

robust and they help preserving the reusability of the concrete deck elements.

4.7.2 Shear resistance

The highest resistance (168 kN) was measured in tests series P3.2 which consisted of the cast-in
cylinders and galvanized elements. However, this is the result of the higher material strength of the bolts
and not the galvanization, which only provides a zinc coating and does not affect the material strength.
The shear failure of the bolts was the governing failure mode in all cases. System P3 produced higher

resistances (150 kN on average) than System P15 (137 kN on average).

Table 4.4 summarises the measured shear resistance values (Pur) of all tests in comparison with the
calculated shear resistance (Fvrm), Which was determined with the formulation given by EN1993-1-8

[66] without applying any partial factors.
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Table 4.4  Summary of the measured material properties and shear resistance values
; ‘i Calculated .
Tensile surf.  Preload Friction shear Measured ~ Slip at
. strength b resistance resistance shear max.
Specimen fum Slab type HZ:: Foc s = resistance,  force
[MPa] [kN] [kN] kN Puit [kN] [mm]
[kN]
P3.1-1 948.7 Solid C 100 28 139.5 134.7 7.2
P3.1-2 948.7 Solid C 100 23 139.5 140.6 10.3
P3.1-3 948.7 Solid C 100 28 139.5 143.9 7.7
Solid +
P3.2-1 1045.6 CF80 B 120 54 153.7 166.2 8.5
P3.2-2 1045.6 Solid + B 120 56 153.7 170.5 9.1
' ' CF80 ' ' '
P3.2-3 1056.6 Solid + B 120 61 155.3 168.7 8.9
' ' CF80 ' ' '
P3.3-1 948.7 Solid + C 120 32 139.5 143.9 8.6
' ' CF80 ' ' '
P3.3-2 948.7 Solid + C 120 30 139.5 138.2 10.6
' ' CF80 ' ' '
P333  o4g7  Sold+ c 120 32 139.5 143.1 10
' ' CF80 ' '
P15.1-1 967.8* Solid C 176 44 142.3 136.7 6.1
P15.1-1 967.8* Solid C 176 49 142.3 142.2 8.2
P15.1-1 967.8* Solid C 176 46 142.3 147.9 8.8
P15.2-1 892.1* Solid C 0 0 131.1 132.1 7.1
P15.2-2 892.1* Solid C 0 0 131.1 131.1 5.4
P15.2-3 892.1* Solid C 0 0 131.1 130.2 5.1
P3.2-3R 1045.6 Solid + B 120 27 153.7 172.3 10.4
' ' CF80 ' ' '
P3.3-3R 948.7 Solid + C 120 33 139.5 136.6 7.7
' ' CF80 ' ' '

*Calculated from the average measured shear force with Equation (4.3)
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Fv,Rm =0.6" fu,m " Ag (4-2)
where:
fum is the measured tensile strength of the bolts; and

s=245mm? is the shear area of a fully threaded M20 bolt.

As there were no tensile tests conducted on the bolts applied in test series P15.1 and P15.2 due to the
size limitations of the testing equipment, their tensile strength was calculated from the average shear
resistance obtained by the push-out tests by rearranging the previous equation:

Pult,m
0.6 Ag

fum = (4.3)
When comparing the results of system P3.1 and P3.3 (see Table 4.4) we can observe, that the different
levels of pretension did not influence the shear resistance, but it had an influence on the friction

resistance. This observation is also in accordance with the findings of Pavlovi¢ [16].

4.7.3 Slip capacity

System P3 had in all cases larger slip capacity than System P15. In almost all cases, the load-slip curves
showed, that the slip capacity has a high sensitivity on the position of the bolts inside the holes (see
section 4.7.1). The only exception was series P15.2 where the epoxy resin was injected into the bolt hole

because the resin prevented the slippage inside the hole.

4.7.4 The effect of the solid strip
The specimens where the solid slab was used in combination with profiled steel sheeting behaved
similarly to the specimens with fully solid slabs. The solid strip in the shear connection region was

sufficient to prevent the profiled sheeting from compromising the shear connection behaviour.

4.7.5 Ductility

Eurocode 4 [18] considers a connector as ductile if the characteristic slip capacity is at least 6 mm. It
defines the characteristic slip as the maximum slip measured at the characteristic load level, which is
90% of the failure load in the descending branch of the load-slip curve. Most of the tested configurations
had larger deformation capacity than 6 mm, except series P15.2. However, after the maximal load was
reached, the specimen failed earlier than the 10% load drop could have happened. Furthermore, contrary
to traditional shear connectors where the maximal load is usually reached after 1-2 mm of relative slip,
the tested demountable shear connection systems showed monotonic increasing load-slip behaviour.
Besides P15.2, each specimen reached its maximum load at a slip level between 6 mm and 10 mm. Only
minor descending branch was observed after failure. This means that the Eurocode 4 [18] ductility
definition (which is indeed a slip capacity requirement) cannot be applied. Therefore, in this thesis,

another ductility definition will be used for the description of the behaviour of the shear connections. A
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similar expression will be applied as by Sause and Fahnestock [51] (see Chapter 2.5.2); however, the
parameters in the formulation will be defined differently to represent the shear connection behaviour. A

ductility parameter D is introduced based on Equation (2.43):
p=-2_"¢ (4.4)

In this formulation, de represents the elastic part of the slip. It is taken as the slip where 0.7 Pg« load is
first reached [18]. With this definition, D represents the ratio of the inelastic deformation to the elastic
one. However, this parameter alone is not sufficient to distinguish between ductile and brittle connectors.
For example, in the case of a perfectly rigid connector (Je = 0) that has any nonzero inelastic slip capacity
(6u - de > 0), Equation (4.4) leads to results approaching infinity. Such a connection would not

necessarily be ductile if the deformation capacity is low.

Consequently, a shear connection can be considered as ductile only if both the ductility parameter D and
the slip capacity J, exceed a certain limit:

D = Dyin (4.5)

Oy = 6y min (4.6)
The 6 mm criterion of Eurocode 4 [18] for the ductility is indeed a slip capacity requirement:

Sumin = 6 Mm (4.7)

Traditionally, for headed stud connectors de = 1 mm and d, = 6 mm [50], [65]. Based on these values,
the REDUCE design guide [67] proposes that D should reach or exceed 5:

Dppin = 5 (4.8)

It is important to note that this number is rather conservative. Some headed stud connectors that are
normally considered as ductile would not satisfy this criterion. For instance, Oehlers and Bradford [68]
give estimates for the proportionality limit J, and ultimate slip for welded studs in solid slabs based on
the stud diameter: 6,~ 0.1 d, and d, =~ 0.3 d. They assume, that the ultimate resistance P, is reached at

the proportionality limit. Using the Eurocode 4 [18] terminology, the characteristic load is:
Pri =09 P, (4.9)
The load-slip relation is assumed to be linear for d < dp. The slip de is taken at 0.7 Pr:
8,=07-09-01-d=0.063d (4.10)

The corresponding ductility parameter is:
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0.3d—-0.063d
= = 3. 411
0.063d 376 (411)

These examples illustrate that a single, commonly accepted minimum required ductility parameter Dpin

does not exist; however, generally it is in the range from 3 to 5.

Using these definitions, the ductility parameters were determined for each of the tested shear
connections. For this calculation, the minimum obtained resistance and slip values were used. The

results of the calculation can be found in the following table.

Table 4.5  Ductility parameters of the tested shear connections

Series Pu 0.9 Py 0.63 Py J du D
[kN] [kN] [kN] [mm] [mm] [-]

P3.1 135 122 85 4.6 7.2 0.6

P3.2 166 149 105 3.6 8.5 1.4

P3.3 138 124 87 4.6 8.6 0.9

P15.1 137 123 86 25 6.1 14
P15.2 130 117 82 1.4 5.1 2.6

As one can see, even if the criterion of the minimum required slip capacity given by Equation (4.6) is
satisfied in most of the cases (6, > 6 mm), the obtained ductility parameters are always less than 5,
which means that the criterion of the ductility parameter given by Equation (4.5) is not satisfied in any
of the cases. As a result, using the categorisation presented in Figure 2.27, all of the investigated shear

connections are considered as “flexible-brittle” connections.

4.7.6 Friction resistance and surface treatment
In the load-slip curves, the first loss of stiffness indicate the point where the friction resistance (Fs) was
overcome. This point is the end of the first part of the general load-slip curve showed in Figure 4.24.

The friction coefficient could be calculated using the following equations:

Fy = Fpe 1 (4.12)
Or, alternatively:

i=F /by (4.13)

where Fs is the friction resistance, Fp is the pre-tensioning force and x is the friction coefficient.

Table 4.6 summarises the average measured friction resistance and the calculated friction coefficient
values. The tests showed that the specimens with no surface finish had a friction coefficient of 0.26,
while the galvanized specimens had 0.48. However, after re-assembly of the failed specimens, the

friction coefficient of the galvanized specimens was reduced to 0.23. There was no change in the case
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of the specimens with no surface finish (see Table 4.6). This reduction of friction coefficient could be

explained by the flattening of the surface asperities during the first test.

Table 4.6  Preload and friction resistance

Series Preload _Friction Fr_ic_tion Suface F_riction coefficient

[KN] resistance [kN] coefficient [[]  treatmentclass given by EN1090 [-]
P3.1 100 26 0.26 C 0.30
P3.2 120 57 0.48 B 0.40
P3.2R 120 27 0.23 B 0.40
P3.3 120 31 0.26 C 0.30
P3.3R 120 33 0.27 C 0.30
P15.1 176 46 0.26 C 0.30

The following figure shows the comparison of the results obtained by test series P3.2 and P3.3. These
two test series were nominally identical. The only difference between them was the different surface
treatment. The black curves indicate the results obtained by the galvanised specimens (P3.2) and the
grey curves indicate the non-galvanised ones. We can observe two major differences: the first is the
higher shear resistance and the second is the higher friction resistance of the galvanised specimens. As
discussed in section 4.7.2, the higher shear resistance is due to the higher material strength of the
galvanised bolts. As the applied pretension forces were identical in both cases (see Table 4.6), the

difference in the friction resistance originates from the different surface treatments.
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Figure 4.25 Comparison of galvanised (P3.2) and non-galvanised (P3.3) specimens

4.7.7 Demountability and reusability

In load regime 1 (LR1), the specimens were loaded until 500 kN (except P15.2-1, which was loaded
until 2000 kN), then unloaded, and the four upper bolts were removed. The successful removal of these
bolts proved the demountability of the tested systems. Specimens P3.2-3 and P3.3-3 were re-assembled

after failure with new bolts. Afterwards, they were loaded until failure. Their second test showed similar
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behaviour to their original tests in the means of resistance, stiffness and slip capacity. Because the failure
occurred in the bolts and not in the connected members, the developed composite flooring systems are

robust and therefore adequate for reuse.

4.7.8 Challenges in design and application

Some factors can make the design and application of demountable shear connections challenging. First,
the fabrication and installation process require special care for tolerances. If the tolerances are too small,
the construction process can become difficult or even impossible. However, too large tolerances lead to
an increase in slip and a reduction in stiffness. In the tested shear connection types ¢$24 holes were
applied for M24 bolts. The beam test specimens presented in the following chapter used the same
tolerances. This hole size was sufficient to assemble the specimens successfully. The numerical
simulations of the beam tests (Chapter 6.3) showed that the mean value of the bolt position (central
position) can be used for the numerical modelling. However, further probabilistic analysis is
recommended to assess how the different bolt positions could affect the load-bearing capacity of
demountable composite beams. Second, the tested shear connections showed lower stiffness than
standard welded studs. This can lead to increased deflections when applied in a beam (see Chapter 5).
The question of the reduced beam stiffness is investigated in Chapter 8. Third, the observed load-slip
behaviour is different from an ideally plastic curve that represents the traditional shear studs. This will
have an effect on the definition of the ultimate load bearing capacity of the shear connection. This

guestion in investigated in detail in Chapter 9.
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Chapter 5. Beam tests

51 General

Based on the experimental observations of the push-out tests, two shear connection variants were
selected and were implemented in two, six-meter-long beam test specimens with prefabricated deck
elements. This chapter presents the details of the conducted beam tests including the description of the
test specimens, the test setup, the measurements, the testing procedure and the results in terms of load-
deflection behaviour and observed damages. Parts of the results shown here were presented in [69].

5.2  Beam tests conducted in the DISCCO project

Nellinger [64] conducted two beam tests in the frame of a preceding RFCS project, called DISCCO
[65]. His aim was to investigate the load-displacement behaviour of beams with low degrees of shear
connection. Both beams were comprised of an IPE 360 steel beam and a 150 mm thick composite slab
with ComFlor® 80 [63] metal decking. The beams had a clear span of 6 m and were subjected to a two-
point loading. Both beams used headed studs of 19 mm diameter and 125 mm nominal height
(Kdco SD 19x125) welded through the decking. The schematic view and the cross-section of the beam
tests are presented in Figure 5.1 and Figure 5.2, respectively.

Composite slab

(in-situ) P/2 P/2
Wt T TN FamY Tan FaaV Vamtifant Famt fan FanY fany fani { AT ASTAATAATAS
7z \ Steel beam Z
IPE 360
y 2250 ¥ 1500 / 2250 i
¥ 6000 P
Figure 5.1 Schematic view of Nellinger’s beam tests
) 1500 B

Composite slab /7 Shear connectors

. (in-situ) (Koco SD 19x125)
- VITIETIITEIIIIIELITTI00I1L0011011100111111
\ ComFlor 80
§ Stiffeners at the profiled steel sheeting
supports and under the
load introduction points Steel beam

IPE 360

Figure 5.2 Cross-section of Nellinger’s beam test (Specimen 2-10)
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The two beam tests differed only in the number of shear connectors per rib. In the first test (Specimen
2-09), single stud connectors were applied and in the second test (Specimen 2-10) the connectors were
placed in pairs. The longitudinal shear connector spacing was 300 mm in both cases. The parameters of

the beam tests conducted by Nellinger [64] are presented in Table 5.1.

Table 5.1  Tested beam configurations of Nellinger

Test Clear Section Slab Shear connectors "
No. span, L [1
IPE 360 CF80, d =150 mm Koco SD 19x150
2-09 6m S355 C35/45 (f, = 550 MPa) 0.22
(fy = 382 MPa) (f. = 48.62 MPa) (single)
IPE 360 CF80, d =150 mm Koco SD 19x150
2-10 6m S355 C35/45 (f, = 550 MPa) 0.32
(fy = 382 MPa) (fc = 49.02 MPa) (pairs)

As the demountable shear connections investigated in this thesis are more likely to be placed in pairs,
the second beam test specimen of Nellinger [64] (Specimen 2-10) was selected to be a benchmark test
when investigating the behaviour of composite beams with demountable shear connections. This test
contained 10 pairs of shear connectors placed on the half-length, among which 8 pairs were placed
within the shear length (between the support and the load application point. Among the push-out tests
conducted by Nellinger [64], test series 3-02 represents the shear connection that he applied in beam test

2-10. The load-slip curve of this connection is presented in the following figure:
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Figure 5.3 Load-slip curve of the shear connection used in Nellinger’s beam test (Specimen 2-10)

5.3  Tests specimens with demountable shear connection
Two beam tests have been performed on 6 m span composite beams with demountable shear connectors.
The geometrical layout of the tests and the material grade of the steel and the concrete were selected to

be similar to the test of Nellinger [64] presented in the previous section. Therefore, it was possible to
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make a direct comparison of the results with conventional welded shear connectors. Table 5.1

summarises the tested configurations.

Table 5.2  Tested beam configurations

Test Clear . Shear connection Distribution of shear
Section Slab
No. span, L type connectors
IPE 360 CF80 P3.3 Uniform along the length
B7 6m d =150 mm Friction bolts in cast placed in pairs with 600
S355 . ; .
C35/45 in cylinders mm spacing
CF80 Uniform along the length
IPE 360 _ P15.1 AR
B8 6m S355 d =150 mm Coupled bolts placed in pairs with 600

C35/45 mm spacing

Each specimen comprised of a 6.3 m long IPE 360 steel beam with a grade of S355 and two pre-
fabricated composite slab elements with a depth of 150 mm and a width of 790 mm using
ComFlor® 80 [63] metal decking. The beams were subjected to two-point loads so that a defined zone

of the beam was subjected to constant shear. Figure 5.4 shows the schematic view of the beam tests.

Prefabricated
composite slab \ P2 P/2
NN i

Z \ Diagonal strut \ Steel beam 7
IPE 360
p 2250 v 1500 v 2250 y
A A A A
b 6000 y

Figure 5.4 Schematic view of the beam tests

The total width of the specimens was 1600 mm. This width corresponds to the effective width defined
by Eurocode 4 [18]:

L 6000 mm
beff=b0+zbei=bo+2'§=100mm+2-T=1600mm (5.2)

The shear connectors were placed in pairs with a transversal spacing (bo) of 100 mm and a longitudinal
spacing of 600 mm. The slab elements were stabilised with diagonal struts so that no tension force arose
in the shear connectors from the self-weight of the composite slabs. The diagonal struts were not
connected to the slabs by any mechanical connectors. They only provided vertical support to deck
elements; therefore, they did not influence the longitudinal flexural behaviour. Figure 5.5 shows the
cross-section of the tested beams, Figure 5.6 shows the diagonal struts before positioning the second
deck element of specimen B8 and Figure 5.7 shows beam test specimen B7 from below before the testing

was commenced.
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Figure 5.5 Cross-section of the tested beams (a) plan, (b) photo
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Figure 5.7 Beam specimen B7 from below before test conduction
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The beams were designed for a 37% nominal degree of shear connection. This value was calculated

using the following equation:

_ PR,6 *Nge

5.2
N, (5.2)

where ng is the number of shear connectors provided within the length between points of zero and
maximum moment, N¢s is the compression resistance of the effective area of the concrete slab acting
compositely with the steel section, and Prs= 91.4 kN is the average shear connector force obtained by
the push out test series P3.3 at 6 mm slip.

In Equation (5.2), N¢s was calculated using the expected values of the material strengths of the steel and
the concrete because the actual material properties were unknown before test conduction. For the steel
yield strength, the formulation given by the JCSS Probabilistic Model Code [70] was used:

fyexp = fysp - @ exp(—u-v) — C = 394 MPa (5.3)

where:
fysp = 355 MPa is the nominal value of the yield strength;
a=1.05 is a spatial position factor for hot rolled sections;

u=-15 is a factor related to the fractile of the distribution used in describing the distance

between the nominal value and the mean value;
v=0.07 is the coefficient of variation; and

C=20MPa iss aconstant reducing the yield strength as obtained from usual mill tests to the static

yield strength.

The concrete strength was calculated using the formulation of Eurocode 2 [49]:
fem = fex + 8 MPa = 43 MPa (5.4)

where fo = 35 MPa is the characteristic cylinder strength of a C35/45 concrete.

The calculated # = 0.37 value corresponds to a uniform spacing of 600 mm in pairs. This degree of shear
connection is less than the minimum permitted by Eurocode 4 [39], which is 40%. In the RFCS project
DISCCO [65], the degree of shear connection in the beam tests ranged from 25% to 38%.

Specimen B7 used shear connection type P3.3, and specimen B8 used shear connection type P15.1. Both

shear connection system utilise friction in the early load stages and bolt bearing afterwards.

Shear connector type P3.3 consists of a cast-in steel cylinder welded to an L-profile located at the edge
of the slab, a top plate welded to the cylinder and a pre-tensioned bolt with a grade of 8.8. This

connection provides accessibility from the top of the slab through pockets in the concrete.
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Shear connector type P15.1 uses an embedded coupler device, an embedded bolt and a bolt placed from

below the slab. The coupler is of grade 10.9 and the bolts are of grade 8.8 steel. Figure 5.8 shows photos

of the shear connector systems in the slabs before concreting.
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Figure 5.8 Shear connector systems applied in the beam tests: (a) and (b) System P3.3 in beam B7, (¢)
and (d) System P15.1 in beam B8
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5.4  Fabrication and assembly

The formworks for the deck elements were fabricated from plywood placed on standard European
pallets. The solid strips were created by placing profiled foam fillers between the base plate of the
formwork and the holes under the crests of the profiled steel sheeting. L-profiles with pre-drilled holes
were placed between one end of the profiled sheeting and the side wall of the formwork. In specimen
B7, expanded polystyrene (EPS) foam blocks were glued to the top plate of the shear connectors in order
to create pockets in the concrete (see Figure 5.8). The EPS blocks were removed after the concrete had
hardened. In specimen B8, holes were drilled into the base plate of the formwork through the pre-drilled
holes of the L-profiles. Then, the mechanical coupler device with the embedded bolt were placed above
the holes and dummy bolts were placed from below the base plate of the formwork into the coupler
device to keep them in place during concreting. One layer of $8/95/135, B500 B reinforcement mesh
were placed on the top of the profiled steel sheeting. Additionally, two layers of $10 U-bars were placed

around the shear connectors (see Figure 5.8).

The composite deck elements were fabricated in 6 m long pieces. This means that no transversal joints
were applied. However, in practice, it is possible that the application of transversal joints is not
avoidable. Lam et al. [71] pointed out that grouted joints can be applied for the transversal connection
of the deck elements without compromising the flexural behaviour. Therefore, the tested beams without

any transversal joints can represent the behaviour of demountable composite beams adequately.

Both beams were cast on the same day from the same concrete mixture. After the concrete had hardened,
the slabs were lifted and placed on the top of the steel beam. For each deck element it was necessary to
align 10-10 holes in the steel beam and the concrete at the same time. Due to the L-profiles with

pre-drilled holes, low tolerances could be achieved and the hole alignment was successful.

Then, the composite slab elements were fixed to the beam with high-strength bolts through 24 mm
diameter pre-drilled holes in the top flange of the beam. The beams were continuously supported along
the total length during the assembly. This type of construction corresponds to a propped construction

method.

In both cases the bolts were tightened by rotating the bolt head using a pneumatic impact wrench. Direct
tension indicator (DTI) washers were applied in accordance with the requirements of EN 1090-2 [39] in
order to control the pre-tension force (see Figure 5.9). According to the specifications of the
manufacturer of the washers [72], the mean value of the bolt preload that belongs to the flattening of the
washers is 150 kN. This is different than the preload during the push-out tests (120 kN for P3.3 and 176
kN for P15.1). This difference can cause between 6.7 - 7.8 kN difference in the resulting friction
resistance but it does not affect the shear resistance of the connection (see Chapter 4.7.2 and also the

findings of Pavlovi¢ [16]).
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The assembly of specimen B7 was performed in the following sequence:

1.
2.

w

© N o g &

Lifting the first composite slab element.

Inserting bolts into the cast-in cylinders from the top of the slab.

Positioning the slab on the top of the beam — when the slab is aligned, all the bolts fit into
the holes of the steel beam.

Mounting the nuts.

Tightening the bolts with hand tools.

Repeating step 1-5 with the second slab element.

Tightening the bolts with a pneumatic impact wrench in two cycles.

Checking the indicator gap of the DTI washer using a feeler gauge.

Specimen B8 was assembled in the following order:

@

N o g &

Lifting the first composite slab element.

Positioning the slab on the top of the beam.

Inserting bolts into the coupler embedded in the slab from below the upper flange of the
steel beam.

Tightening the bolts with hand tools.

Repeating step 1-4 with the second slab element.

Tightening the bolts with a pneumatic impact wrench in two cycles.

Checking the indicator gap of the DTI washer using a feeler gauge.

(b)

(d)

Figure 5.9 DTI washers, (a) and (c) before usage, (b) and (d) after usage
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5.5 Loading protocol and test conduction

The tests were conducted using a 1000 kN capacity hydraulic jack. Two-point loading was applied to
the beam using a testing rig composed of a spreader beam, and two additional beams with steel rods
welded on their bottom flange (see Figure 5.11). Steel plates and neoprene layers were applied under
the load application rods in order to equilibrate the surface roughness of the concrete and to prevent the
local failure of the concrete due to the high concentrated forces. Both the steel and the neoprene layers
had a thickness of 10 mm and a width of 100 mm.

The loading protocol consisted of two parts:
First part: 25 cycles as described in EN1994-1-1 [18] for push-out tests

1.1 Loading until the 40% of expected failure load (Pexp)
1.2 25 cycles between the 5% and the 40% of the expected failure load (1 min/ cycle)

Second part: Incremental cyclic loading (loading speed equivalent to 1.2)

2.1 5 cycles between the 5% and the 50% Of Peyp,
2.2 5 cycles between the 5% and the 60% Of Peyp,
2.3 5 cycles between the 5% and the 70% Of Peyp,
2.4 5 cycles between the 5% and the 80% Of Peyp,

2.5 Monotone loading until failure.

The loading was paused for five minutes after each five cycles. The expected failure load was
determined using the nonlinear finite element software Abaqus [32]. The cycles were performed using
force-controlled mode, while the monotonic loading was applied using displacement-controlled mode.

The schematic drawing of the loading protocol is shown in Figure 5.10.

5.6 Measurements

For each specimen, 28 displacement sensors (LVDTSs) were applied to measure

0] The end slip of each composite slab,
(i) The slip values at the shear connectors,
(ili)  The transverse separation of the slabs relative to the beam, and

(iv)  The deflection values of the beam in different positions.

The designation and range of the sensors are presented in see Table 5.3. Additionally, one inclinometer
was applied on the beam and 10 linear strain gauges (HBM-1-6/120-LY61) [73]: four on the web of the
beam, and six on longitudinal reinforcement bars inside the slabs. Furthermore, the travel and the force
values of the hydraulic jack were continuously monitored during the tests. Figure 5.11 shows the

measurement setup, and Figure 5.12 presents a photo of the test setup.
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Figure 5.10 Loading protocol

Table 5.3  Applied displacement sensors and inclinometer

# Position Measurement ?:;?]e
1 RS-0 Right slab, end slip 20
2 RS-1 Right slab, 1st shear connector slip 20
3 RS-2 Right slab, 2nd shear connector slip 20
4 RS-3 Right slab, 3rd shear connector slip 20
5 RS-4 Right slab, 4th shear connector slip 20
6 RS-5 Right slab, 5th shear connector slip 20
7 RS-6 Right slab, 6th shear connector slip 20
8 RS-7 Right slab, 7th shear connector slip 20
9 RS-8 Right slab, 8th shear connector slip 20
10 RS-9 Right slab, 9th shear connector slip 20
11 RS-10 Right slab, 10th shear connector slip 20
12 RS-11 Right slab, end slip 20
13 LS-0 Left slab, end slip 20
14 LS-1 Left slab, 1st shear connector slip 20
15 LS-3 Left slab, 3rd shear connector slip 20
16 LS-8 Left slab, 8th shear connector slip 20
17 LS-10 Left slab, 10th shear connector slip 20
18 LS-11 Left slab, end slip 20
19 RC-1 Right slab, top, compression 20
20 LC-1 Left slab, top, compression 20
21 BD-0 Supporting beam deflection at 0 mm 50
22 BD-1 Beam deflection at 1125 mm 100
23 BD-2 Beam deflection, load application 100
24 BD-3 Beam deflection, mid-span 100
25 BD-4 Beam deflection, load application 100
26 BD-5 Beam deflection at 4875 mm 100
27 BD-6 Supporting beam deflection at 6000 mm 50
28 RT-1 Right slab, mid-span, transverse separation 50
29 LT-1 Left slab, mid-span, transverse separation 50
30 IN-1 Inclinometer at beam support
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Additionally, compression tests on concrete cube specimens and uniaxial tensile tests on steel coupon
specimens were carried out to obtain information about the properties of the applied materials.

According to these tests, the mean values of the concrete cube strength and the steel yield strength were:
foum = 64.0 MPa (5.5)
fym = 381.8 MPa (5.6)

The detailed results of the conducted material tests can be found in 0.

5.7 Disassembly and observed damages

Both beams were loaded up to failure, and the deflection was further increased until ~220 mm (L/27).
Figure 5.14 and Figure 5.14 show global photos of the deformation of specimen B7 and B8 under failure

conditions. Figure 5.15 shows the specimens after removing them from the testing frame.

Figure 5.13 Specimen B7 under failure conditions
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li

L -

Figure 5.15 Specimen B7 (right) and B8 (left) after removing them from the testing frame

After the tests, the specimens were disassembled. The disassembly process required less time and effort
than in the case of standard composite beams, where welded studs provide the shear connection; and
therefore, the separation of the materials requires a large amount of cutting. The concrete slab elements
could be separated from the steel beam by using a normal wrench. Hence, the demountability of the

specimens was proven.
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5.7.1 Beam test B7 with friction bolts in cast in cylinders

Beam test B7 failed at a total load level of 600 kN due to concrete crushing. Cracks appeared above the
crests of the profiled sheeting due to tensile stresses arising from bending. The shear connectors did not
fail during the tests; however, shear deformation of the bolts and thread penetration in the steel beam
were observed. During dismantling all bolts could be removed from the specimen. Figure 5.16 shows
the observed damages.

(d)

Figure 5.16 Observed damages in specimen B7, (a) concrete crushing, (b) cracks due to bending,

(c) thread penetration in the flange, (d) bolt deformation
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5.7.2 Beam test B8 with coupled bolts

In the case of specimen B8, the maximum total load was reached at 569 kN. At this load level, the first
shear connectors failed. This was followed by the failure of three additional shear connectors as the test
was continued and the deformation was further increased. Finally, concrete crushing took place.
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Figure 5.19 Cracks on the concrete, (a) cracks around shear connector L1, (b) cracks around shear

connector R2, (c) cracks above the crests, (d) longitudinal crack

The failure of the shear connectors occurred in the following order: R1, L1, R2, L2, R4. Two shear
connectors (R3, L10) broke during dismantling because they had suffered excessive deformations during
the test. The location of the failed bolts in top view is shown in Figure 5.17, and Figure 5.18 shows the
failed bolts after the test.

Thread penetration could be observed in the holes of the steel profile similar to the case of test B7. The
concrete slab cracked around the outermost shear connectors (see Figure 5.19, a and b) above the crests
of the sheeting (Figure 5.19, c) and longitudinally, parallel to the inner edge (Figure 5.19, d).

5.8  Experimental results

This section presents the measured load-deflection curves and the results of the slip measurements.

5.8.1 Load-deflection curves
The measurements started after the assembly of the test setup. Therefore, the self-weight of the
composite beam is not included in the measured data. The calculated self-weight deflection is 0.77 mm.

The load-deflection curves of specimen B7 and B8 are presented in the following figures.
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Figure 5.20 Load-deflection curve of specimen B7
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Figure 5.21 Load-deflection curve of specimen B8

Beam test B7 failed at a total load level of 600 kN by concrete crushing. This load level corresponds to
a bending moment of 675 kNm. The mid-span deflection at failure was 198 mm (L / 30). After the first
cycles of the loading procedure (part 1.2: 25 cycles between 26 kN and 210 kN), the specimen had a

residual deflection of 8.2 mm.

The failure of specimen B8 occurred by shear connector failure at a load level of 569 kN. The
corresponding bending moment capacity is 640 kNm. At this load level, the deflection of the beam was

133 mm (L / 45). After the first shear connector had failed, the deflection was further increased, and the

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Mid-span deflection,

v [mm]
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failure of the subsequent shear connectors occurred. This mechanism is represented by the stepwise

dropping of load on the load-deflection curve.

Both tested beams produced higher resistance than the similar beam tested in the frame of the DISCCO

project [65]. The initial stiffness values were compared at the deflection value of 20 mm (L / 300).

The moment-deflection curves are presented in Figure 5.22 and in Figure 5.23. In the figures, the
calculated plastic moment capacity in case of full shear connection (M), the plastic moment resistance
of the steel beam (Mpi,2), the calculated plastic moment capacity (M,;,) and the elastic moment resistance
of the composite section (Mg are also presented. The plastic moment capacity (M,;,) was determined
using a newly developed algorithm (Method PL1), which is presented in detail in Chapter 9.4.2.
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Figure 5.22 Moment-deflection curve of specimen B7
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Figure 5.23 Moment-deflection curve of specimen B8
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5.8.2 Slip measurements
Figure 5.24 and Figure 5.25 show the results of the end slip measurements. Slip was monitored at both

ends of each slab element. The presented end slip values are the mean values of the four measurements.

In the case of specimen B7, the first slip took place at the load level of 50 kN (56.3 kNm). After the first
25 cycles of the loading protocol, the residual slip was 1.46 mm. The end slip was 9 mm when the
specimen failed due to concrete crushing. This slip level is in the range where shear connector failure
occurred in the push-out tests (c.f. Figure 4.13).
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Figure 5.24 Specimen B7: total load vs. average end slip

In the case of specimen B8, the first slip occurred at a load level of 110 kN (123.8 kNm). The end slip
at failure was 7.5 mm. At this slip, the two outermost shear connectors (R1 and L1) failed. This slip
value is in accordance with the average slip capacity of the shear connector measured in the push-out
tests (see Figure 4.19).
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Figure 5.25 Specimen B8: total load vs. average end slip
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Figure 5.26 and Figure 5.27 show the slip measurements at each shear connector along the length of the
beams at different load levels. The dots represent the measured slip at the individual shear connectors.

Cosine functions were also plotted in the figures as an approximation of the slip distribution functions.
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Figure 5.26 Specimen B7: Slip values at different load levels
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Figure 5.27 Specimen B8: Slip values at different load levels

The end slip was determined at different load levels for both beams. For load levels lower than the elastic
limit of the beams (P < Pg), the end slip was calculated using Equation (8.41). The end slip when the
plastic capacity of the beam is reached (P = Pp,;) was calculated using Equation (9.4). Between the
elastic and the plastic limit load (Pei < P < Pp;,) linear interpolation was applied. The comparison of the

measured and the calculated end slip is presented in Figure 5.28 and Figure 5.29.
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Figure 5.29 Calculated vs. measured end slip (Specimen B8)

5.9 Discussion of the results and observations of the beam tests

5.9.1 Load bearing capacity and degree of shear connection

The stress block method of Eurocode 4 [18] enables to calculate the bending moment capacity of the
composite section with partial shear connection based on plastic theory (see Chapter 2.3.2). The method
assumes that the developing compression force in the concrete is #Nc, where # is the degree of shear
connection. In the case of the tested specimens, the moment capacity can be calculated from the
measured ultimate load with Equation (5.7) but the degree of shear connection is not because the
developing compression force is unknown. Using the aforementioned method, it is possible to calculate
backwards the degree of shear connection from the measured bending moment capacity (Mur), the
calculated bending capacity of the steel beam alone (Mpi.2) and the calculated bending capacity of the

composite section in the case of full shear connection (Mpis). The following table summarises the
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determined degree of shear connection for both of the tested specimens and for the beam that was tested
within the frame of the DISCCO project [65]. In this table, Py and My also includes the the self-weight
of the beams, which means an additional 37 kN force and 28 kNm bending moment to the measured

values.

P
My, = %“ 2.25m (5.7)

Table 5.4  Load bearing capacity and degree of shear connection of the tested beams

Test No. Sheali Purt Muit Mpl.a Mopi.£ n
connection [kN] [kNm] [kNm] [kNm] [-]
B7 P3.3 637 703 382 861 0.50
B8 P15.1 606 668 382 861 0.41
DISCCO Welded stud 494 542 372 825 0.32

5.9.2 Stiffness and degree of interaction

The degree of interaction y is governed by the stiffness of the shear connection. If there is no shear
connection, the degree of interaction is zero, while in case of a perfectly rigid shear connection its value
is one. The load-deflection response of the beams showed some nonlinearities already at the early load
stages below reaching L / 300 deflection. The corresponding load values (Pis00) are smaller than the
load (Pg) that corresponds to the elastic limit (see Table 5.5). This, and the lack of visible cracks or
damages indicate that these nonlinearities do not originate from the plastification of the cross-section.
These slight nonlinearities can be explained by the nonlinear behaviour of the shear connection due to
bolt slippage in the bolt holes. Therefore, it was concluded that the beam behaved elastically until at
least this deflection level. As the L/ 300 deflection also corresponds to the limitation of the serviceability

limit state, the stiffness at this point was used for the presented evaluation.

The load level at which the beam would reach this deflection (Piss00) Was calculated using elastic theory
for both extreme cases (v = 0 and w = 1). The actual degree of interaction was determined using linear

interpolation:
PL/300 = PL/300,1/)=0 + (PL/300,111=1 - PL/300,111=0) P (5.8)
So, the degree of interaction is:

Pr/300 = Pr/300,9=0

_ 5.9
Pr300,p=1 — Pr/300,9=0 (5.9)

Table 5.5 summarises the total load at the deflection of L / 300 (Pws00) and the corresponding stiffness

values (Sisz00). As one can see, both of the tested demountable composite beams had lower stiffhess than
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the beam with welded studs tested in the DISCCO project [65]. In the case of welded studs, the degree
of interaction is similar to the degree of shear connection (y = 0.34 vs. = 0.33). This is not the case for
the demountable beams (B7 and B8), where the degree of interaction is relatively low despite of the
higher values of #. This means, that in the design of demountable composite beams special attention is

required for the occurring deflections.

Table 5.5  Stiffness Tested beam configurations

Test No. Shear. P00 Pel SLr300 PLaooy=0  PLzooy=1 \ n
connection  [kN] [kN] [kN/mm] [kN] [kN] [-] [-]
B7 P3.3 210 389 10.50 173 596 0.10 0.50
B8 P15.1 289 405 14.45 173 596 0.27 0.41
DISCCO  Welded stud 319 409 15.95 153 584 0.34 0.33

5.9.3 Fabrication

Prefabricated elements require special attention for tolerances. With the fabrication procedure presented
in Chapter 5.4, it was possible to reach sufficiently low tolerances to be able to assemble the specimens.
However, it is important to note that the L-profiles applied in specimen B7 were slightly distorted after
welding the steel cylinders. A special attention is required during the welding process in order to be able
to eliminate this kind of distortion. Otherwise, the distortions need to be corrected before placing the L-

profiles inside the formwork.

5.9.4 Disassembly

The demountability and reusability of the tested systems had already been proven during the push-out
tests. Therefore, the specimens were not disassembled during the beam tests. After the tests - by when
the steel beam, the concrete slab and the shear connectors had all been highly deformed - the specimens
were disassembled with standard hand tools. Hence, the demountability was proven again. As it was
already mentioned in section 5.9.2, no signs of cracks, damages or plastic deformations were observed
before reaching L / 300 deflection, which corresponds to the serviceability limit. This indicates that

beams that do not observe loads beyond the serviceability limit state remain reusable.
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Chapter 6. Numerical simulations

6.1 General

The conducted experiments were reproduced numerically using the finite element software Abaqus [32].

(i) First, the materials were calibrated based on material testing. The concrete material calibration
was based on compression tests. The steel materials were calibrated based on uniaxial tensile
tests using the calibration method of Pavlovi¢ [16].

(if) Second, advanced three-dimensional models were developed for the push out tests. The models
were validated against the experimental measurements.

(iii) Third, a simplified model representing the beam tests was developed and validated.

(iv) Fourth, parametric studies were conducted on the validated beam test models in order to gain a
better understanding of the influences of the different parameters and to assess the accuracy of

the developed calculation methods presented in Chapter 8 and Chapter 9.

This chapter describes the developed numerical models as well as their validation against the

experimental measurements. The parametric studies are described in Chapter 7.

6.2  Advanced modelling of push-out tests

6.2.1 General

During the push-out tests presented in Chapter 4, no concrete failure happened. The observed damages
occurred locally in the vicinity of the shear connectors. Therefore, only this part of the push-out tests
was reproduced numerically with the Finite Element software ABAQUS® [32]. This chapter presents
the developed finite element models for shear connection systems P3 (friction bolts in cast in cylinders)
and P15 (coupled bolts).

6.2.2 Geometry and boundary conditions
The model of System P3 (friction bolts in cast-in cylinders) consisted of an M20 bolt, a part of the flange
of the beam, a part of the L-profile, a top plate, a washer plate, a steel cylinder and a part of the concrete

between the top plate and the L-profile.

The model of System P15 (coupled bolts) included two M20 bolts coupled with a mechanical coupler
device, an L-profile, a part of the flange of the steel beam and a washer plate. Additionally, in P15.2

epoxy resin was placed filling the gap between the lower bolt and the inner surface of the bolt hole.

The geometry of the models is shown in Figure 6.1, and the components of the finite element models
are summarised in Table 6.1 and in Table 6.2. The bolts were modelled together with the nuts and

washers as one piece. The reinforcement bars were neglected in the model.
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Figure 6.1 Components of the FE model (a) System P3, (b) System P15

(b)

Table 6.1  Components of the FE model (P3)
Element Section Material Hole diameter
Bolt with nut and washer M20, L=149.5 8.8
Top plate PL80x80x5 S355 22
Steel cylinder 42.4x4x109 S355
Leg of the L-profile 80x80x6 S355 22
Flange of the beam 80x80x17.5 S355 24
Washer plate PL40x40x12 S355 21
Concrete 80x80x109 C45/55
Table 6.2  Components of the FE model (P15)
Element Section Material Hole diameter
Upper bolt M20, L=70 8.8
Coupler M20, L=60 10.9
Lower bolt with washer M20, L=60 8.8
L-profile 80x80x6 S355 22
Flange of the beam 80x17.5 S355 24 in P15.1 and 26 in P15.2
Washer plate PL40x40x12 S355 21
Concrete 80x144x160 C45/55
Epoxy resin* D=26 SW404

*only in P15.2
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The following boundary conditions were applied:

1. Surfaces at the sides were fixed against translations in normal direction.
2. The steel flange was fixed in vertical direction.
3. Temporary boundary conditions were applied for all individual parts in the initial step while

the contacts were formulated.
4, 0.5 mm / sec horizontal movement was applied on the flange of the steel beam to simulate

the push-out test procedure.

6.2.3 Contact modelling

For the modelling of the contacts between the elements “General Explicit Contact” was applied. General
Contact allows users to define contact between all or multiple areas of the model. These are all defined
as a single interaction assuming any part of the model can be in contact with any other part. The
interaction was defined as “Hard Contact” in the normal direction, i.e. no penetration of the elements is
allowed; and Coulomb friction in the tangential direction with a friction coefficient of 0.26 for the wire
brushed steel-to-steel contact surfaces and 0.48 for the galvanised contact surfaces. These values

correspond to the ones obtained by the push-out tests.

Tie constrain was applied for those elements that were welded together in reality (top plate, cylinder and
L-profile), and for the coupler device and the coupled bolts. This constrains prevents the relative motion

between the tied contact surfaces.

6.2.4 Material models

The steel material behaviour was modelled by defining its elastic, inelastic and damage properties. The
elastic part of the behaviour is represented by its initial Young’s modulus (Eo = 210 GPa) and its
Poisson’s ratio (v=0.3). Plasticity with isotropic hardening was applied for the modelling of the inelastic
behaviour using the true stress — true strain relationship obtained by standard 1SO 6892-1:2016 [74]
tensile testing (see Annex A.1). Uniaxial tensile tests have been conducted on the L-profiles, on the
black bolts applied in push-out test series P3.1 and P3.3 and on the galvanized bolts applied in test series
P3.2. No tensile tests were conducted on the bolts applied in test series P15.1 and P15.2, because the
lengths of the bolts were not sufficient to be clamped adequately in the testing machine. Therefore, the
same material model was applied for test series P15.1 and P15.2 as for P3.1 and P3.3. The following
table shows the mean values of the measured yield strength and tensile strength of the applied bolts and

the L-profiles.

Table 6.3  Mean values of the measured yield strengths and tensile strengths

Element Material Corrsponding push-out test Yield strength, Tensile strength,
grade fym [MPa] fum [MPa]
L-profile S355 P3.1, P3.2, P3.3, P15.1, P15.2 386.6 519.4
Black bolt 8.8 P3.1, P3.3 872.3 948.7
Galvanized bolt 8.8 P3.2 1011.9 1045.6
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For the modelling of the steel behaviour, “Damage for ductile metals” were used. The calibration

procedure followed the modelling method of Pavlovi¢ [16]:
First, the load-displacement curves were extracted from the tensile tests. The engineering stress (o)
values were determined as:

g; = Fi/SO (61)

where F; is the force measured during the tensile tests, and Sy is the original cross-sectional area.

In order to determine the engineering strains (e;), the original gauge length (lo) needs to be fictitiously
reduced to the average necking zone length (liec). This way the effects of strain localisation can be taken

into account;

Lo, i<n
I = Al; — AL\ _ (6.2)
Yo+ (e — L) (ﬁ) ) i=zn
where
lo is the original gauge length;
lioc is the average necking zone length;
Al is the elongation at loading stage “i";
Al is the elongation at the onset of necking;
Al is the elongation at rupture; and
oL = 0.51is the strain localisation rate factor.
The engineering strains can be than calculated as:
Ali/li i<n
= Al; — Al
& g1 + L -1 i>n (63)

L,

The true strain (¢;) and true stress (o) values can be calculated with the following formulations:
g=In1+g) (6.4)
o, =0; (1+¢) (6.5)

The true stress values determined by Equation (6.5) show the damaged material response. We need the
undamaged material response because the damage will be implemented by the damage parameter (D)
and not by the stress-strain relationship. The undamaged material response is defined by the following

equation:
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. (oi i<n
[ = 6.6
% {O‘n(1+£i), i>n (6.6)
where oy, is the engineering strain at the onset of necking.
The true plastic strains can be determined from the total true strains:
o!
Epri = & — El (6.7)

The following figure shows the obtained stress-strain diagrams for the investigated black bolts:
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Figure 6.2 Stress strain relationship of a ductile material undergoing damage

The damage parameter (D) is a dimensionless variable representing the difference between the damaged

and undamaged response (Equation (6.8)). Its value is 0 before necking occurs and is 1 at fracture.
D = 1 - (O-i, - Ui,) (XD (68)

In the previous equation ap = 1.5 is the damage eccentricity factor. In Abaqus [32], the damage evolution
law is described in a tabular form, where the damage parameter (D) is given as the function of the
equivalent plastic displacement ug,i. Its values can be obtained from the plastic strains in the necking

zone with the following equation:

e —el

_ pli pln
upl,i - upl,f ’ <! _ ¢! (69)
- °“pLf plin

where:

Upi f is the equivalent plastic displacement at fracture determined by Equation (6.10);
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& pli is the true plastic strain at load stage “i”;
&’pn IS the true plastic strain at the onset of necking; and

&’pt  Isthe true plastic strain at fracture.

Upf = ASLchar(‘c-‘;’al,f — &pin) (6.10)
where:
As is the finite element size factor determined by Equation (6.11); and

Lenar  is the characteristic element length determined by Equation (6.12).

As = 3Lp/Lg (6.11)

where:

Lr is the element size for a refined mesh density that could be considered as a reference mesh, here
its value was taken as 1.5 mm; and

Le is the element size for the actual mesh density

The characteristic element length was taken as:
Lenar = Agle (6-12)
where A is the element type factor. The following table summarises the applied parameters:

Table 6.4  Parameters for ductile damage model

Material lo lioc oL ap 8’p|,n S’pl,f JE s Le Lchar

El
ULl grade  [mm] [mm] [-] [-] [-] [] [-] [[] [mm] [mm]

L-profile S355 90.2 25 0.5 15 0126 0336 31 0.630 6 18.6

Black bolt 8.8 57.7 10 0.3 15 0053 0302 31 0.794 3 9.3

Galvanized

bolt 8.8 57.7 10 0.3 15 0.046 0265 31 0.794 3 9.3

Additionally, the equivalent plastic strain at the onset of damage & o, Was defined based on the triaxiality

and the uniaxial plastic strain at the onset of damage & ‘pi,n:
€01 = Eprn - € O (6.13)

where £ = 1.5 is a material parameter [16], and @ is the stress triaxiality. For uniaxial tension its value
is 1/3. Using Equation (6.13), the following values were obtained for the equivalent plastic strain at the

onset of damage as the function of the triaxiality:
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Figure 6.3 Equivalent plastic strain at the onset of damage as the function of stress triaxiality

Figure 6.4 shows the steel coupon specimens that were used for the calibration of the material models

and their numerically reproduction.

@ (b)

(© (d)
Figure 6.4 (a) and (b) photos, (c) and (d) numerical models of the steel coupon specimens

No concrete damage was observed during the experiments, so it was sufficient to describe the concrete
behaviour with its elastic properties: E = 33.4 GPa and v = 0.2. The epoxy resin was modelled using a
Young’s modulus of E = 7.6 GPa and a Poisson’s ratio of 0.01 [75].

6.2.5 Finite elements and mesh
Every part was modelled using 8-node reduced integration brick elements (C3D8R). The mesh size

varied from 1.5 mm to 6 mm. Figure 6.5 shows the applied finite element mesh.

6.2.6 Load steps and solving technique

Although the three nominally identical specimens within the same test series were loaded differently
during the push out tests (see chapter 4.5), no effects of the different loading regimes on the load-slip
behaviour could be identified. Therefore, the different loading regimes were not implemented in the

numerical simulations.
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The load was applied in two steps:

1. Application of the pre-tension force to the bolts as a thermal contraction using a predefined

filed of an artificial temperature difference and an artificial thermal expansion coefficient.
2.

Defining a constant velocity of 0.5 mm / sec in the vertical direction on a reference point

coupled with the flange of the beam. This was applied through 100 seconds resulting in 50
mm total displacement.

The solution was found using dynamic explicit solver technique.
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Figure 6.5 Finite element mesh (a) and (c) P3 with and without concrete, (b) and (d) P15 with and
without concrete
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6.2.7 Validation
Figure 6.6 shows the numerical model of specimen P3.3 under failure conditions. As one can see, both
the observed bolt shear failure and the bearing deformation of the L-profile (Figure 6.7) could be

reproduced numerically.

S, Mises
(Avg: 75%)
8

Bearing
deformation

(a) (b)

Figure 6.6 Numerical model of specimen P3.3 (a) before failure, (b) after failure

——]

U
L

(b)

Figure 6.7 Bearing deformation of the L-profile (a) photo, (b) FE simulation
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Figure 6.8 shows the numerical model of specimen P15.1 before and after failure.

S, Mises
(Avg: 75%)

(a) (b)
Figure 6.8 Numerical model of specimen P15.1 (a) before failure, (b) after failure

The comparison of the experimentally and the numerically obtained load slip curves is presented in
Figure 6.9. The developed numerical model could capture the general behaviour of the shear
connections. The numerically obtained load-slip curves show the three distinct parts that had been
previously observed in the push-out tests: first, no slip because of the friction, second bolt slip in the
hole, and third, shear and bearing deformation. The only exception is system P15.2, where the bolt slip
in the hole is prevented by the epoxy resin injection. In terms of resistance, stiffness and deformation
capacity, the model could capture the behaviour of system P3 with an acceptable accuracy. However, in
the case of system P15, the numerical model shows a higher stiffness during shear deformation than the
experiment. As a result, the deformation capacity is underestimated. One possible explanation for this
could be a locking phenomenon. Another explanation could be the tie constrain between the coupler
device and the bolts. The tie constrain prevents any relative displacement between the connected
surfaces, so the model does not account for the small gap between the threads of the bolts and the coupler
that is present in the reality. Nevertheless, the general behaviour as well as the shear resistance could be
captured accurately.
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System P3: Friction bolts in cast-in cylinders
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Figure 6.9 Comparison of the experimentally and the numerically obtained load-slip curves
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6.3  Modelling of beam tests

6.3.1 General
The investigated beams were reproduced numerically using the commercial software Abaqus [32]. This
chapter presents the development and validation of the numerical models.

6.3.2 Geometry and boundary conditions

The cross-section of the tested beams is presented in Figure 6.10. The model consisted of an IPE360
steel beam with a length of 6 m and a 1.58 m wide concrete slab. The longitudinal gap between the slab
elements and the rounding of the steel beam were neglected. Due to the transversal orientation of the
ribs and the profiled sheeting, these parts do not contribute to the longitudinal flexural capacity of the
composite section. Consequently, these parts could also be neglected in the numerical model.

) 1600 y P 1580 v
A A A A
¥ 790 w20 790 ¥ Va Concrete slab

55
50

8L

50

III}IIIIIIIIIIIIII i

Concrete slab

360
360

Steel beam Steel beam

(a) (b)
Figure 6.10 Cross-section of the tested beams, (a) plan, (b) FE model

The beam was modelled as a simply supported beam with the help of two reference points at the two
ends of the beam. Pinned support was applied on one end of the beam: the vertical and the horizontal
displacements were restrained as well as the rotation around the axis of the beam. On the other end, a
roller support was applied similarly to the pinned support but allowing for the horizontal displacement
in the axial direction. A reference point was created above the geometrical centre of the beam. This point
was connected to the surface of the concrete at the two loading positions using continuum distributing

coupling. The loading was applied using a prescribed displacement on the reference point.

Load application

Concrete slab

Shear connectors

Roller support

Steel beam

Pinned support

Figure 6.11 Components and boundary conditions and components of the FE model
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6.3.3 Material models

The implemented stress-strain curve of the S355 steel material is presented in Figure 6.12. The yield
strength was taken as fy, = 381.8 MPa, and the tensile strengths as f, = 467.7 MPa. The Young’s modulus
was E = 188.5 GPa. These values are taken as the mean values of the properties measured during the
uniaxial tensile tests (see Annex A.1.4). The hardening part was modelled using the 1/100 of the initial

Young’s modulus [76]. For the ultimate strain, the measured &, = 0.35 value was implemented.

[8)]
o o
o o

Stress, o [MPa]
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-
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Figure 6.12 The implemented stress-strain curve of the steel material

Concrete damaged plasticity model (CDP) was used for the description of the material behaviour of the
concrete. The effects of creep and shrinkage were not taken into account during the analyses. The
concrete strength was determined using standard cube tests at the day of testing. The mean value of the
compressive strength was foum = 64 MPa (see Annex A.2). The cylinder strength of the concrete was

estimated using Equation (6.14) given by the commercial finite element software Atena [77]:
fe = 0.85 fom = 54.41 MPa (6.14)

Where feum is the mean value of the measured cube strengths.

The tensile strength was determined using equation (6.15) given by CEB-FIP Model Code 2010 [78] :

2/3

fe = (foum)”~ =480 MPa (6.15)

The initial elastic modulus was determined using equation (6.16) given by CEB-FIP Model Code 2010
[78]:

Ecm = (6000 — 15.5fy m )/ feum = 40066 MPa (6.16)

For the description of the nonlinear stress-strain relationship, the formulation given by EN1992-1-1 [49]
was used (Figure 6.13):
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kn — 2
g__mMm=n (6.17)
fe 1+(k—2)n
where:
- N =g/E
gc1 1S the strain at peak stress, and
- k=1.05"E.pn - €1/fz
The descending branch of the curve was described by a linear relationship.
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Figure 6.13 Concrete compressive stress-strain relationship
The concrete compression damage parameter was defined as:
D.=1-f./o, (6.18)

The concrete tensile behaviour was described using the proposal of CEB-FIP Model Code 2010 [78]
(see Figure 6.14).

Stress

fctm

Ge
0.2 o

W1=GF/fctm We=5 GF/fctm
Crack opening, w

Figure 6.14 Concrete tension law

The specific fracture energy Gr represents the area under the stress-crack relationship. For the

determination of its value the following equation was used [78]:
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f0.18
¢ _ =0.14988 N/mm (6.19)

Gr=73"7000

The concrete tension damage parameter was defined as:
Dt = 1 —ft/O't (620)

The concrete damaged plasticity model of Abaqus [32] requires the definition of the following

parameters:

1) The dilation angle was taken as y = 36° as recommended by Pavlovi¢ [16].

2) The flow potential eccentricity was set to be ¢ = 0.1 recommended by Abaqus [32].

3) The ratio of the biaxial and uniaxial compressive strength was taken as awo/ oo = 1.20 as given
by CEB-FIP Model Code 2010 [78].

4) For the ratio of the second stress invariant on the tensile meridian K = 2/3 was used [32].

5) Finally, the viscosity parameter was defined as x = 0.001 [79].

The following table summarises the plasticity parameters for the CDP model:

Table 6.5 Concrete damaged plasticity model parameters

v & o0/ 6o K H
36° 0.1 1.20 0.6667 0.001

The shear connectors were modelled using point based, mesh-independent fastener elements. The
behaviour of the shear connectors could be described with the “Slot + Align” connection type. The
“Slot” connection type provides a connection, where node b stays on the line defined by the orientation
of node a and the initial position of node b [32]. This connection type allows to define a nonlinear spring
law to describe the load-displacement behaviour of node b relative to node a. The “Align” connection
type ensures that the three local directions are aligned. The application of this type of connection is
important, otherwise the direction of the nonlinear spring would not follow the deflection of the beam.

The following figure shows the theoretical model that describe the connection behaviour.

Before deformation After deformation
Yb Yb
I i
b b %

concrete deck
concrete deck

beam flange beam flange

—Xa X,

Figure 6.15 Theoretical model of the “Slot + Align” type connection
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Although, the bolt position can vary inside the hole, it was assumed that the application of the average
load-slip curves obtained by the push-out tests can represent the global behaviour of the experiments
accurately due to the fact that each experiment used 20 bolts (presumably placed randomly inside the
holes) to connect the slab elements to the steel beam. This was proven by the successful validation of
the numerical model against the experimental measurements and observations (see Chapter 6.3.6).
Therefore, the nonlinear spring behaviour was described by the average load-slip curves:
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Figure 6.16 Average load slip curves (a) System P3.3, (b) System P15.1

In order to model shear connection failure, an artificial linear descending branch was added (dashed line
in the figure below) to the load-slip curves presented in the previous figure:

—P33
P15.1

0 2 4 6 8 10 12

Figure 6.17 Descending branch to model shear connector failure

6.3.4 Finite elements and mesh

The steel beam and the concrete slab were modelled with 4-node, reduced integration shell elements
(S4R) with 5 integration points through the thickness. The solid strip of the concrete slab above the steel

beam was modelled using a different shell thickness (see Figure 6.10, b). The global mesh density was
50 mm.
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Figure 6.18 Applied finite element mesh

6.3.5 Solving technique

The load was applied in one step using a 180 mm prescribed displacement on the reference point coupled
with the top surface of the concrete slab. The maximum increment size was chosen to be 0.05. This
value corresponds to a maximum of 9 mm vertical displacement in each step in order to capture the
nonlinear behaviour accurately. The analysis was conducted using a quasi-static full Newton solution
technique with a direct equation solver method. The beams were continuously supported during the
installation of the deck elements and the shear connectors (see section 5.4). This corresponds to a
propped construction method, which means that the steel beam and the concrete deck carry all the
applied loads together as a composite section. The numerical model was prepared accordingly: the steel

beam and the concrete deck were connected together before applying any loads.

The failure load was obtained at the point where the numerical model stopped converging. The lack of

convergence could originate from four different factors:

1) Too large stresses at the load introduction points. This mode was sorted out by coupling the
reference point to a sufficiently large surface (100 mm x 100 mm) at the top of the concrete
slab.

2) The shear connectors reach their slip capacity. This is why the descending branch was added to
the load slip curves (see Figure 6.17) to intentionally cause convergence problems when the slip
capacity is reached.

3) Loss of stiffness due to concrete crushing. This happens when the concrete damage parameter
reaches the value of 1 (D = 1).

4) The steel beam is fully plastic.

6.3.6 Validation

The obtained numerical results were compared to the experimental observations.

Both simulations finally stopped due to failure of the shear connection (point 2 in the list presented in
section 6.3.5). This is in accordance with the experimental observations in the case of specimen B8,

where also shear connection failure happened. Specimen B7 failed due to concrete crushing during the
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experiment but the shear connectors did not broke finally. However, at this point the shear connectors
at the end of the beam were highly deformed and were close to failure (see Figure 5.16, d). This is also
supported by the slip measurements, which showed that the end slip at failure was 9 mm (see Figure
5.24). This is close to the mean value (9.7 mm) of the ultimate slip obtained by the push out tests. In
other words, the concrete crushing due to high deformation and the failure of the outermost shear
connectors occurred more-or-less at the same load level. In the experiment, concrete crushing occurred
first, while having highly deformed shear connectors, and in the numerical simulation shear connector

failure occurred first while the concrete was highly damaged (see Figure 6.25).

The comparison of the experimentally and numerically obtained results showed a sufficiently accurate
correlation in the means of load-deflection curves (see Figure 6.19 and Figure 6.20), the end slip (Figure
6.21 and Figure 6.22), the slip distribution (Figure 6.23 and Figure 6.24) and the observed damages
(Figure 6.25 and Figure 6.26). The following figures show the experimentally and numerically obtained
load-deflection curves. The numerical model was able to capture the general behaviour of the composite

beam as well as its ultimate load bearing capacity.
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Figure 6.19 Comparison of numerical and experimental load-deflection curves of specimen B7
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Figure 6.20 Comparison of numerical and experimental load-deflection curves of specimen B8
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The next figures show the experimentally and numerically obtained end slip. As one can see, the
difference between the two curves are greater than in the case of the load-deflection curves. This
difference can originate from different factors. First, the average load-slip curves are implemented in
the numerical model assuming central position of all bolts. In reality, the individual bolt positions may
differ from this position. Second, the numerical model is perfectly symmetric, while in the laboratory
experiment one side of the beam observed greater slips. In the presented experimental end slip curves
the curves represent the average end slip measured at four points (at the two ends of the two deck
elements). Despite of the differences, the numerically obtained curves show a relatively good correlation

with the experimental measurements, and the ultimate load and slip could be well captured.
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Figure 6.21 Comparison of numerical and experimental load vs. end slip curves of specimen B7
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Figure 6.22 Comparison of numerical and experimental load vs. end slip curves of specimen B8

The following figures show the obtained slip distributions together with cosine functions fitted to the
experimentally and numerically obtained end slip values. The comparison was made at a 500 kN load

level, because some of the intermediate slip measuring devices (LVDTSs) stopped functioning at high
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deformation levels. Until at least 500 kN they functioned properly. At this load level the numerical
simulation produced higher slip values as the experimental measurements (see also Figure 6.21 and
Figure 6.22). Theoretically, a cosine slip distribution corresponds to a sinusoidal loading and a linear
elastic shear connection. In the tests, the two-point loading was applied and highly nonlinear shear
connection. Nevertheless, the assumed cosine slip distribution that is later used in the elastic (Chapter
8) and plastic calculations (Chapter 9) can describe the slip distribution function relatively accurately,

even if it does not correspond to the actual loading situation.
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Figure 6.23 Comparison of numerical and experimental slip distributions of specimen B7
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Figure 6.24 Comparison of numerical and experimental slip distributions of specimen B8

The following figure shows the concrete compression damage taken from the numerical model of beam

test B7. In the figure, the dark areas show the highly damaged parts of the concrete. As one can see, the

112



6. Numerical simulations

value of the damage parameter near the load introduction points is close to one, which corresponds to
the total loss of stiffness. This is in accordance with the experimental observation, where concrete

crushing occurred near to the load introduction point.

DAMAGEC

SNEG, (fraction = -1.0)
SPOS, (fraction = 1.0)
(Avg: 75%)

Concrete crushing

Figure 6.25 Concrete compression damage (beam B7)

The following figure shows the concrete tension damage for the numerical model of the test specimen
B7. In the figure, the dark regions show the places where concrete cracking occurs. The numerical model
could reproduce the cracks around the shear connectors, the longitudinal cracks at the axes where the

shear connectors were placed as well as the cracks at the side of the beam due to bending.

Cracks at the shear connectors Longitudinal cracks

DAMAGET
SNEG, (fraction = -1.0)
SPOS, (fraction = 1.0)
(Avg: 75%)

Cracks due to bending

Figure 6.26 Concrete tension damage (beam B8)
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Based on these observations, it was concluded that the developed numerical model is capable of
capturing the general behaviour of the investigated demountable composite beams with high accuracy.
The validated numerical model can be used for extending the experimental study with virtual

experiments.
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Chapter 7. Parametric studies

7.1  General

The experimental investigations were extended by virtual experiments in the form of parametric studies
with the help of the validated numerical models of the beam tests. A certain number of parametric studies
on demountable composite beams have already been performed by Jung [80] using similar numerical
models as presented in this thesis. It was found that the shear connection distribution has an important
effect on the stiffness and on the moment resistance of demountable composite beams. Higher resistance
and stiffness values were obtained when the shear connectors were placed according to the elastic shear
flow than in the case of equidistant spacing. It was also found that the slip distribution function can be

approximated by a cosine function despite.

The studies performed within the frame of this thesis complement the previous studies by extending the
range of the investigated parameters. This chapter presents the investigated parameters, an extract of the
results and the conclusions that were drawn from the performed simulations. Parts of these results were

already presented in [81].

7.2 Investigated parameters
Atotal of 112 numerical simulations were performed on shell models of composite beams with different
parameters. The numerical models were prepared on the basis of the validated model presented in

Chapter 6.3. The conducted parametric studies can be divided into two parts.

7.2.1 Parametric study PS-1

The purpose of this study was to investigate the effects of different parameters on the load-deflection
behaviour. Thirty four simulations were conducted on 6 m long beams with the same geometry and
loading (two-point loads) as in the case of the conducted beam tests. This way it was possible to make
a direct comparison between the simulations and the experimental measurements. The following

parameters were investigated in this study:

1) Type of shear connection
2) Steel grade
3) Concrete strength

4) Shear connection distribution

The material behaviour of the steel and the concrete was modelled in the same manner as presented in
Chapter 6.3. Where the same materials were applied as in the conducted beam tests (S355 for steel and
C45/55 for concrete), the material properties were modelled with their experimentally measured values.
In those simulations where the material grade was different than the tested ones, the expected values of
the material properties were used. More information is given about the investigated material properties
in Chapter 7.3.
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The following table shows the investigated parameters of parametric study PS-1:

Table 7.1 Investigated parameters (PS-1)

Parameter Designation Value of the parameter
Loading - 2-point load
Beam length 6 6m
Steel profile E36 IPE 360
S2 S275
Steel grade S3 S355
S4 S460
C20 C20/25
Concrete grade C25 C25/30
C45 C45/55
Material properties M Measured / expected values
Shear connector DP1 600 mm uniform spacing
distribution DE1 300 mm on L/6, then 975 mm
PO Welded stud connector
Shear connection P3.3 Friction bolt in cast in cylinders
P15.1 Coupled bolts
P15.2 Coupled bolts with epoxy resin injection

7.2.2 Parametric study PS-2

Seventy eight additional simulations were performed for the assessment of the accuracy of the developed
analytical equations that describe the elastic behaviour (Chapter 8.5) and the developed calculation
method for the plastic moment resistance of demountable composite beams (Chapter 9.4). The 78
simulations included 39 simulations where the material properties were taken into account with their
measured / expected values, and 39 simulations where their design values were used. More information
is given about the investigated material properties in Chapter 7.3. In these simulations, the loading was

applied as a uniformly distributed load.
The differences in the models of PS-2 compared to the models of PS-1 are the following:

(i) The loading was applied as a uniformly distributed load in PS-2, while in PS-1 it two-point
loading was applied.

(ii) In PS-2, the effect of steel hardening was neglected; and therefore, a bilinear stress-strain curve
(linear elastic — perfectly plastic) was applied in order to use the same material model in the

numerical and in the analytic calculations (see Chapter 7.3).

Beams with different lengths, steel profiles, shear connector distributions, shear connection types and

material properties were investigated. The concrete slab was modelled using the effective width given
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by Eurocode 4 [18] (see Equation (5.1)) in all cases. Table 7.2 shows the analysed range of parameters

and Figure 7.1 shows the applied naming conventions.

Table 7.2 Investigated parameters PS-2

Parameter Designation Value of the parameter
Loading - Uniformly distributed
6 6m
Beam length 8 8.1m
16 16.2m
E27 IPE 270
E36 IPE 360
Steel profile
E45 IPE 450
E60 IPE 600
Steel grade S3 S355
C20 C20/25
Concrete grade
C45 C45/55
) ) M Measured / expected values
Material properties ]
D Desing values
distribution DP2 300 mm uniform spacing
PO Welded stud connector
Shear connection P3.3 Friction bolt in cast in cylinders
P15.1 Coupled bolts

6E27 S3C45M- DP1 P3.3

Length of the beam I— Shear connection type
Steel proflle Shear connection distribution
Steel grade Design / measured values

Concrete grade

Figure 7.1 Naming conventions for parametric studies

7.3 Material models

For the assessment of the developed calculation methods presented in Chapter 8 and Chapter 9, the
material properties were taken into account with their measured / expected values to simulate the real
behaviour as accurately as possible. This means, when the same materials were investigated as in the
real beam tests presented in Chapter 5 (C45/55 for the concrete and S355 for the steel), the
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experimentally measured material properties were used. The results of the material tests are presented
in 0. When the material grade differed from the ones applied in the experiments, their expected (most

probable) values were used.

The expected value of the concrete cylinder strength was calculated using the formulation given by
EN1992-1-1 [49]:

fem = fex + 8 MPa (7.1)

The expected value of the steel yield strength was calculated with the help of the formulation given by
the JCSS Probabilistic Model Code [70]:

fym = fy,sp rarexp(—u-v)—C (7.2)
where:
fy.sp is the nominal value of the yield strength;
a=1.05 is a spatial position factor for hot rolled sections;
u=-15 is a factor related to the fractile of the distribution used in describing the distance

between the nominal value and the mean value;
v=0.07 is the coefficient of variation; and

C=20MPa issaconstant reducing the yield strength as obtained from usual mill tests to the static

yield strength.

The developed calculation methods presented in Chapter 8 and Chapter 9 are meant to facilitate the
design process of composite beams with nonlinear shear connection. In practice, it is quite probable that
the structural engineer will use the design values of the material properties when investigating the
ultimate design resistance of a composite beam. Therefore, additionally to the simulations using the
measured / expected values, the same simulations were performed using the design values of the material

properties as well.

The design value of the concrete strength (f.q) was calculated as:

fer
fea == (7.3)
Ye
Where fo denotes the characteristic cylinder strength and yc = 1.5 is the partial factor for the resistance

of concrete sections given by EN1992-1-1 [49].

The design yield strength was calculated as:

fya = ysp (7.4)

Ymo
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Where fy s, is the nominal value of the yield strength and y,,, = 1.0 is the partial factor for resistance of

steel cross-sections recommended by EN1993-1-1 [8].

The following table summarises the implemented cylinder strength values for the concrete and yield
strength values for the steel. The numbers in the table marked with an asterisk are measured material

properties. All of the other values were calculated using Equations (7.1) - (7.4).

Table 7.3 Analysed material grades

Concrete C20/25  C25/30  C45/55
fem [MPa] 28 33 54*
fea [MPa] 13.33 16.67 30
Steel S275 $355 460
fm [MPa] 301 391* 516
f,d [MPa] 275 355 460

* measured values

The same constitutive models were applied for the material modelling as presented in Chapter 6.3.3.,
with the implementation of the values presented in Table 7.3. However, the steel hardening was
neglected in the numerical models of parametric study PS-2; and therefore, a linear elastic, perfectly
plastic constitutive law was used (Figure 7.2). For the ultimate strain, the measured &, = 0.35 value was
used in all cases but this strain level was never reached during the simulations. The strain at yield &, was

obtained as the ratio of the yield strength (fym or fyq) to the Young’s modulus (E).

‘, = % (7.5)

Stress, 0

_E\ I

€y

g )
Strain, €

Figure 7.2 Bilinear constitutive model of steel

7.4  Shear connections
The shear connectors were modelled as point based fasteners as presented in Chapter 6.3.3. When the
materials were modelled with their measured / expected values, the average load-slip curves were used

for the description of the nonlinear shear connection behaviour (Figure 7.3). Traditional welded stud
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connections in solids slabs were also investigated (shear connection type PO0). Its load-slip curve was
taken from [24].

160 [
140 PO, welded stud
120 -7

i w7 7 7| P3.3, cylinder system
80

E 60 — |

S o P15.1, coupler system
xF ] e P15.2, coupler system
0 with epoxy resin

0 1 2 3 4 5 6 7 8 9 10 11 12
Slip [mm]

Figure 7.3 Average load-slip curves of the shear connections

When the materials were modelled with their design values, the shear connection behaviour was also
modelled with the design load-slip curves. The design curves were created using the proposals of
Eurocode 4 [18]. First, the load-slip curve with the minimum failure load was selected from the push
out test results (Chapter 4.6). Then, the load values of the curve were reduced by 10% in order to obtain
the characteristic curve. Afterwards, the load values were divided by y = 1.25 [18] to get the design
curve.

P 09P,;
Py = Rk _ 09 Finin. (7.6)
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Figure 7.4 Minimum, characteristic and design load slip curves
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Figure 7.5 Design load slip curves of the shear connections

7.5 Results and discussions of parametric study PS-1

In this section, an extract of the results of the parametric studies is presented and summarised. The
details of all simulations and the corresponding results are presented in Annex B.

7.5.1 Influence of the type of the shear connection

Figure 7.6 shows the moment-deflection curves of beams with different shear connector types. Each
beams were 6 m long beams with an IPE360 steel profile made of S355 material. The shear connectors
were distributed uniformly in pairs with a longitudinal spacing of 600 mm. The concrete slab used CF80
profiled decking and had a total depth of 150 mm and a width of 1600 mm, which corresponds to the
effective width given by Eurocode 4 [18]. The beams differed only in the applied type of shear
connection.

Each beam failed due to shear connection failure. The stiffness of each specimen was similar at the early
load stages (below 150 kN of total load). After this point, the stiffness of the specimens with pre-
tensioned shear connectors (P3.3 and P15.1) decreased. This is due to the bolt slippage in the bolt hole
(the quasi horizontal part of the load slip-curve). As a result, the mid-span deflections of these specimens
were higher than in the case of the specimens with epoxy resin injection (P15.2) and with welded studs
(P0). Concerning the ultimate loads, every specimen failed between the total load levels of 560 kN and
600 kN.

— 1000 [
S E | L/300 L/50
Z 800 f 6E36-S3C45M-DP1-P0
= -
= 600 [ ——e6E36-S3C45M-DP1-P3.3
S a00 [
2 F ———#6E36-S3C45M-DP1-P15.1
2 200 t /

720 I N SR *6E36-S3C45M-DP1-P15.2

O 1 T T N T TR N T B T N I T N N
0 50 100 150 200

Mid-span deflection, v [mm]

Figure 7.6 Moment-deflection curves of identical beams with different types of shear connection
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Figure 7.7 shows the slip distribution of beams with different types of shear connection under failure
conditions. In each cases, the highest slip was measured at the outermost shear connectors. As all the
beams failed due to shear connection failure, the end-slip was equal to the slip capacity of the shear
connectors in each cases. The end-slip at failure in descending order were 9.7 mm for P3.3, 7.7 mm for
P15.1, 6 mm for PO and 5.4 mm for P15.2. The corresponding deflection values at failure follow the
same order (Figure 7.6). Only the beams with shear connection type P3.3 and P15.1 could reach L / 50

(220 mm) deflection, which is a generally accepted ductility criterion for beams.

The slip distribution of each type can be described with a monotonic decreasing curve until the middle

of the beam. Figure 7.8 shows the corresponding shear connector forces.
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Figure 7.7 Slip distribution of beams with different types of shear connection
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Figure 7.8 Shear connector forces of beams with different types of shear connection

As one can see, the shear connector forces have a more-or-less constant value between the supports and
the position of the concentrated loads. This corresponds to the constant vertical shear diagram in this

region. The vertical shear diagram between the applied concentrated forces is theoretically zero.
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However, shear connectors placed in this area also underwent some slip and; and therefore, could
develop a certain amount of shear force. These forces are usually neglected when determining the arising

compression force of the concrete.

The method presented in Chapter 9.4.2 (Method PL1) is based on the assumption of a cosine shaped slip
distribution function. The more the slip distribution function differs from a cosine shape, the less
accurate the method will become. As it was already mentioned and presented in Figure 7.7, the slip
distribution functions do not resemble a cosine function in these cases but to a more-or-less constant
curve between the load application points and the supports. Nonetheless, the method was used for the
calculation of the plastic moment resistance of the tested beams. Table 7.4 shows the comparison of the

numerically and analytically obtained results.

Table 7.4  Comparison of analytically and numerically obtained moment results

Shear Puit Nc Muit Nc.calc Mpt.y Ne.cate/Nc Mp[,;,/M ult
connection [kN] [kN] [KNm] [kN] [KNm] [-1 [KNm]
PO 564 1031 609 872 637 0.85 1.05
P3.3 584 1179 657 814 627 0.69 0.95
P15.1 591 1214 664 925 647 0.76 0.97
P15.2 561 1137 631 929 647 0.82 1.03
Where:
Putt is the numerically obtained maximum total load;
Nc is the compression force of the concrete calculated as the sum of the shear connector forces;

My is the numerically obtained moment resistance;
Necac IS the analytically obtained concrete compression force determined by Equation (9.2);

M., isthe analytically obtained moment resistance determined according to the procedure described
in Chapter 9.4.2.

This comparison shows, that even if the slip distribution function is far from being a cosine function for
this loading situation, the analytical method can predict the moment resistance with relatively high
accuracy. In the case of shear connection PO and P15.2, the analytical method (Method PL1)
overestimated the moment capacity. This is due to the fact that these beams failed at relatively low
deflection levels (see Figure 7.6), and the beam could not develop the assumed plastic stress distribution

(see Figure 7.9).

The discrepancy between the calculated and numerically determined concrete compression force values
is relatively large (31% for P3.3), but the maximum difference in the analytically and numerically
obtained moment resistance values is only 5%. For uniformly loaded beams, which has a slip distribution

closer to a cosine function this difference becomes even smaller (see Chapter 7.6 and Chapter 9.4.2).
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Figure 7.9 Von-Mises stresses in [MPa] under failure conditions
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7.5.2 Influence of the steel grade

The following figure shows the influence of the different steel grades. Each of the beams failed due to
shear connector failure. The figure clearly shows that the steel grade has a great influence on the
behaviour. The ultimate load of the specimens with S275, S355 and S460 steel were 513 kN, 596 kN

and 691 kN respectively. This shows a linear relationship between the yield strength and the resistance.
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Figure 7.10 Moment-deflection curves of identical beams with different steel grades

Figure 7.11 shows the obtained slip distributions under failure conditions. As all beams failed finally
due to bolt shear failure, the end slip always corresponds to the slip capacity of the applied shear
connector (9.7 mm for P3.3). A certain difference can be observed in the curves: the slip measured at
the 4" shear connector measured from the support, which is closest to the load application was 9.1 mm
for S275, 8.5 mm for S355 and 7.8 mm for S460 steel beams. This is due to the fact that the plastic zone
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is larger when the steel grade is lower (see Figure 7.12) and this has a direct influence on the slip

distribution (see Figure 9.3).
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Figure 7.11 Slip distribution curves of identical beams with different steel grades
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Figure 7.12 Von-Mises stresses in [MPa] for identical beams with different steel grades
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The highest concrete damage belongs to the beam where S275 steel is applied.,Less concrete damage

can be observed when the steel grade is higher:

Concrete compression damage
S275 S355 S460

oPo0o0oDo00D0
ORNWAUG DY
I=1=1=1=-1=1=1=-1=1-1-]

Concrete tension damage
S275 S355 S460
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Figure 7.13 Concrete damage for identical beams with different steel grades under failure conditions

7.5.3 Influence of the concrete strength

Identical, 6 m long composite beams with different concrete grades were analysed. The beams used
IPE 360 steel profile with a grade of S355. Shear connectors of type P15.1 were applied placed
uniformly in pairs with a longitudinal spacing of 600 mm. As shown in Figure 7.14, the influence of the
concrete grade on the general behaviour is very low. The moment-deflection curves of the beams are
very similar in each cases. However, when we examine the concrete damage (Figure 7.15 - Figure 7.17),
we find that the difference in the concrete damage is significant. The beams with C25/35 and C45/55
concrete failed due to bolt shear failure at 7.5 mm end slip, while the beam with C20/55 concrete failed

due to the crushing of the concrete while having an end slip of 7.2 mm.
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Figure 7.14 Moment-deflection curves of identical beams with different concrete grades
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Figure 7.15 Concrete tension damage of a 6 m long composite beam with C20/25 concrete under failure
conditions (concrete failure)
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Figure 7.16 Concrete tension damage of a 6 m long composite beam with C25/35 concrete under failure

conditions (shear connection failure)
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Figure 7.17 Concrete tension damage of a 6 m long composite beam with C45/55 concrete under failure

conditions (shear connection failure)

127



7. Parametric studies

7.5.4 Influence of the distribution of the shear connectors

In shear connector layout DE1 and DP1 the number of shear connectors were almost identical:10 pairs
on the half-length in DP1, and 11 pairs in DEL. Figure 7.18 and Figure 7.19 show, that by placing more
shear connectors near to the supports the stiffness of the composite beam increases; however, this effect
is relatively small. When comparing the slip distributions and the shear connector forces (Figure 7.20 -
Figure 7.27), we observe, that the slip and force values are similar in both of the two different shear
connector arrangements. However, small differences can be identified. For instance, with non-uniformly
placed shear connectors, the largest slip does not necessarily occur at the end of the beam (see Figure
7.22 and Figure 7.26). This is can be explained as follows: the beam was subjected to a two-point
loading, which corresponds to a constant shear force diagram between the supports and the load

application points. Because of this, the largest slip occurs where the shear connectors are placed less

frequently.
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Figure 7.18 Comparison of the moment deflection curves of identical beams with shear connection
distribution DE1 and DP1 (PO and P3.3)
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Figure 7.19 Comparison of the moment deflection curves of identical beams with shear connection
distribution DE1 and DP1 (P15.1 and P15.2)
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Figure 7.21 Shear connector forces of beams with different shear connector distribution (PO)
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Figure 7.22 Slip distribution of identical beams with different shear connector distribution (P3.3)
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Slip [mm]

-6
8 f
-10 E

. Position of
loading

OND» OO

AN

_2§

\\

\;\,_:.

1000

2000

3000
Position [mm]

4000

5000

6000

—o— 6E36-S3C45M-DE1-P151
—e— 6E36-S3C45M-DP1-P151
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Figure 7.25 Shear connector forces of beams with different shear connector distribution (15.1)
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Figure 7.26 Slip distribution of identical beams with different shear connector distribution (P15.2)
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Figure 7.27 Shear connector forces of beams with different shear connector distribution (P15.2)

7.6  Results and discussions of parametric study PS-2

The main purpose of parametric study PS-2 was to assess the accuracy of the developed calculation
methods that are presented in Chapter 8 and in Chapter 9. The details of the numerical models and the
results (moment-deflection curves, ultimate moment resistance and slip distributions) are presented in

Annex B.2. Figure 7.1 presents the applied naming conventions.

7.6.1 Slip distribution

The application of the developed calculation methods (Method PL1 and PL2) for the plastic moment
resistance (see Chapter 9) requires to assume a certain slip distribution function. Therefore, besides the
general load-deflection behaviour, the ultimate moment capacity and the end slip at failure (presented
in Annex B.2) one of the most important outcomes of the presented parametric study is the slip
distribution along the length. The following figures show the obtained slip values relative to the end slip
at every shear connector along the halt length under failure conditions (either shear connector failure or
concrete failure). The figures show those 39 beams that were modelled with the measured / expected

values of the material properties (see Chapter 7.3) because they can represent the real behaviour more
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accurately than the other 39 beams, which were modelled with their design values. The results of those

beams are presented in Annex B.2.

In the figures, the obtained slip values are connected with lines in order to see the slip distribution
function. In Chapter 9, it is proposed to approximate the slip distribution with a cosine function;
therefore, a cosine curve is also plotted on the figures.

In the figures, we can observe that the slip distribution can vary based on the type of shear connection
as well as the distribution of the shear connectors. Shear connection distribution DP1 represent an
equidistant spacing of 600 mm and DP2 represents and equidistant spacing of 300 mm. In all cases the

largest slip belongs to the outermost shear connectors, i.e. always the end slip is the largest slip value.

In general, the slip distribution is closer to a cosine function in those cases where the shear connector
spacing (DP1) is 600 mm than in the cases with 300 mm spacing (DP2). This can be explained by the
fact that beams with distribution DP2 fail generally at much higher deflection levels than beams with
distribution DP1 (see Annex B.2). Higher levels of deflection result in higher plastic strains, which have
a direct effect on the slip distribution (see Figure 9.3). As long as the plastic strains are relatively low,
the slip distribution resembles more to the elastic slip distribution, which is usually approximated by a
cosine function (for instance [43] and [44]).

A cosine function seems to be a reasonable approximation anyway, as it is easy to use and can describe
the slip distribution relatively well even if it does not take the increased slip due to plastification of the
section into account. Neglecting this increased slip in calculation methods PL1 and PL2 is on the “safe
side” because it only means that we take a lower concrete compression force into account and finally
we obtain a lower moment capacity. Nevertheless, the applicability of methods PL1 and PL2 is not

necessarily limited to a cosine function but other functions can also be used.
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7.6.2 Comparison of results with the analytical methods

The developed calculation methods are presented in Chapter 8 and in Chapter 9. Their practical
applications are presented in Annex F. This chapter presents the moment-deflection curves in
comparison with the results obtained by the developed analytical calculations for eight beams (two

beams for each type of steel profile) from parametric study PS-2.
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Figure 7.32 Comparison of analytically and numerically obtained results (Part 1)
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Figure 7.33 Comparison of analytically and numerically obtained results (Part 2)

As one can see, the results obtained by numerical simulations and by analytical calculations are in a
good agreement. This is especially true for Method EL2 and Method PL1.
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7.7

Conclusions

Based on the performed simulations the following conclusions could be drawn:

1)

2)

3)

4)

5)

6)

7)

8)

9)

The resistance of the composite beams with demountable shear connections were similar to or
higher than the one with welded studs.

Beams with pretensioned bolts had lower bending stiffness due to the bolt slippage in the bolt
hole. Similar observations were made during the experimental investigations presented in
Chapter 5.8.

Among the investigated parameters the highest influence belonged to the yield strength of the
steel. Beams with a higher steel grade had a higher moment capacity and a lower concrete
damage. Lower steel grades resulted in higher slips at around the load application points due to
the plastification of the section.

The non-ductile behaviour of the shear connection did not have an effect on the ductility of the
composite beam. The beams failed beyond an L / 50 deflection level, which is a generally
accepted ductility criterion. However, the shear connection, which had lower deformation
capacity (PO and P15.2) had a negative effect on the ductility. This means that for the ductility
of a composite beam the final deformation capacity of the shear connection is more important
than the ductility of the shear connection.

Low degree of shear connection has a negative effect on the ductility of composite beams
because the shear connection failure occurs at lower deflection levels.

Beams subjected to a symmetric two-point loading (PS-1) had a slip distribution at failure,
which was more-or-less constant on the shear length. The plastic moment capacity of these
beams could be determined relatively accurately using Method PL1. The greatest difference in
the numerically and analytically obtained moment resistance values was 5%.

The slip distribution of beams subjected to a uniformly distributed load (PS-2) could be
described with a monotonic decreasing curve. The use of a cosine function for the
approximation of the slip distribution seems to be reasonable.

The concrete grade did not have a significant influence on the general load-deflection behaviour,
but the deck elements with lower grade concrete underwent a higher concrete damage.
Therefore, from a reusability point of view, higher grade concrete (C45/55) is recommended.
The comparison of the results obtained by numerical simulations and the developed calculation
methods presented in Chapter 8 and in Chapter 9 showed a good agreement. This is especially
true for Method EL2 and for Method PL1.
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Chapter 8. Elastic behaviour of composite beams

8.1 General

Understanding the elastic behaviour of a composite beam is essential for the assessment of its
serviceability performance. This can include the calculation of the deflection, the end slip and the
stresses for a given load. This chapter covers the following topics:

1) Basic equations of composite beams

2) Equations of the second moment of area for different types of shear connection

3) Calculation of the end slip

4) The elastic deflection calculation for prismatic and non-prismatic composite beams

5) Long-term effects

6) Calculation of the location of the elastic neutral axes for different types of shear connection

7) Calculation of normal stresses from bending

An iterative procedure was developed for the calculation of the elastic properties of composite beams

with nonlinear shear connection (Method EL2). This method is presented in chapter 8.5.

The derivations presented in this chapter are reduced in length. The complete derivations can be found

in Annex C.

8.2  Scope of the calculation method
The presented calculation method considers the determination of the second moment of area, the
deflections and the elastic stresses of steel-concrete composite beams. Stability phenomena are not

considered. It is applicable if the following conditions are satisfied:

(i)  The beam is simply supported and subjected to a positive bending moment.

(ii)  The concrete deck is placed above the steel section (i.e. downstand composite beams).

(iii)  The steel beam can be hot-rolled or fabricated (Class 1, 2 or 3).

(iv) The concrete deck can be solid or with profiled decking.

(v)  The section is symmetric to the vertical axis.

(vi) The shear connection is distributed uniformly along the length.

(vii) The slip distribution function can be approximated with a cosine function.

(viii) The load-slip behaviour of the shear connection can be described with a monotonic increasing

curve.
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8.3  Assumptions

The forthcoming derivations are based on the following assumptions:

(i) The beam in consideration is a Euler-Bernoulli beam, i.e. the cross-sections originally plane and
perpendicular to the axis of the beam remain plane and perpendicular to the axis of the beam
after deformation.

(if) Only small displacements are considered.

(iii) The steel and the concrete can be considered as linear elastic isotropic materials.

(iv) There is no separation between the steel beam and the concrete slab.

(v) There is no cracking of the concrete.

(vi) The curvature of the steel and the concrete is the same at any section.

8.4 Fundamentals

8.4.1 Basic equations

The basic equations presented here were already presented in the international literature by several
researchers, for instance by Hoischen [41], Hanswille [43], [82] and by Lawson et al. [44]. Nevertheless,
they are re-presented in this section because they are fundamental for understanding the new method

presented in Chapter 8.5.

In order to determine the second moment of area lye Of the composite section, first consider the
equilibrium equations of the composite section due to an externally applied moment My(x) As a result
of the composite action, a compression force Fx¢(X) acts in the concrete slab and a tension force Fxa(x)

in the steel beam (see Figure 8.1).

M, ¢ Ee, Ac, ly.c
v (EE’LT _ = ff __ ; FyctdFyc ') My c+dM, :' :.’ . 'é‘ g he
f.‘ Lw'lksc Lw‘Wk.‘H: I'""S-ds - | S ,,Dp

t Ssceq ,‘ a
Ya
My.a M, ,+dM,
( Fx,a | - Fx,a+dea§ _é_ v ha
Ea, As, |
L ¢ a yia

Figure 8.1 Theoretical model and cross-sectional forces of a composite beam with flexible shear

connection

If there is no externally applied normal force, the magnitudes of these forces are equal. This will be

denoted as Fx(x) in the forthcoming.
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|Fx,a(x)| = |Fx,c(x)| = Fe(%) (8-1)

The externally applied moment My(X) is equilibrated by the moment resisted by the slab My(x), the
moment resisted by the steel beam My,a(x) and the moment generated by the pair of the normal forces
Fx(x):

My, (x) = My . (x) + My 4(x) + F(x) - a (8.2)

where a is the distance between the centroidal axes of the slab and the steel beam.

The curvature of the slab and the steel beam is the same at any sections:

My,c(x) _ My,a(x) _ My(x) _
Ecly, . Eulyq Eolyerr

K(x) (8.3)

The modular ratio expresses the ratio of the modulus of elasticity of the steel and of the concrete:
n = E,/E, (8.4)
Using equation (8.3) in equation (8.2), we can express the second moment of area as:

I Iy F(x)-a

veff = 7 + Iy,a + m (85)

The rate of change of slip ds(x)/dx is determined by the strain difference between the steel and the
concrete at their contact surface:

ds(x)

dx = gx,a(z: x) - EX,C(ZI x) (86)

The moment equation of a composite section can be expressed as:

M, (x) = — (8.7)

ds(x) Ealyers N ()L e ¢ (AC + nAa)
dx a a A A,

The complete derivation can be found in Annex C, equations (C.32) - (C.46).

8.4.2 Second moment of area

The second moment of area is one of the most important properties of a section. Among others, it is
used for the calculation of the deflections and the stresses. Although some of the derivations presented
in this chapter have already been presented in the international literature by [43] and [44] in a similar
way, they are re-presented here because they are fundamental for the understanding of the equations

presented in Chapter 8.5.
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No shear connection

If there is no shear connection, there is no compression force in the concrete from composite action:
F(x)=0 (8.8)

Using this in equation (8.5), the second moment of area will be the sum of the second moment of area
of the steel and of the concrete divided by the modular ratio. The concrete contribution is often
neglected:

Ly ; F(x)-a Iy,

Iy,eff = T + v,a —EaK(x) = ? + Iy,a = Iy,a (89)

Rigid shear connection
In order to determine the second moment of area, we use equation (8.5):

I E(x)-a
Lyerr =541, 4+
yeff = T YA T E k(x)

with:

Eqk(x) = My(x) /1y eff

I E(x)-a-1
In the case of rigid shear connection, there is no slip between the slab and the steel beam:
s(x) =0,and (8.11)
s _, (8.12)
dx
So, equation (8.7) becomes:
Fx(X)[y eff AC + TlAa
M = . 8.13
() ~55) (8.13)

By substituting equation (8.13) into equation (8.10) we obtain the effective second moment of area of a

composite beam with rigid shear connection:

1l A A
e e, Ada 8.14
yeff = lya ™ A, +n4, a (8.14)

The complete derivation can be found in Annex C, equations (C.50) - (C.54).
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Flexible (linear elastic) shear connection (Method EL1)

In the case of flexible shear connection, the exact solution of the slip distribution, the compression force
in the concrete and the longitudinal shear force requires the solution of the differential equation of the

composite beam; and therefore a rather complex task for practical applications (see Chapter 2.2).

As a simplification, generally the slip s(x) is assumed to vary according to a cosine function along the
length of the beam (for instance by Hanswille and Schéafer [43] and by Lawson et al. [44]). As a result,
the compression force and the bending moment My(x) are assumed to vary according to a sine function.
This moment diagram corresponds to an external load g.(x) that is distributed according to a sine
function along the length. However, it is still a good approximation for a uniformly loaded beam where

the moment diagram is a second order parabola.

The second moment of area can be determined in the same way as in the case of rigid shear connection.
The assumed slip function is:

s(x) =§-cos (nL_x) (8.15)

where 5 is the end slip, L is the span of the beam, and x is the distance along the length of the beam from

a support.
Therefore:
ds(x) T X
e .l an (It 8.16
dx ST Sm(L) (8.16)

The shear connector forces Ps(X) are not considered in discrete points, but over a unit length:

kSC

= §-cos (E) : s

3 (8.17)

P (x) =s(x) -

sc,eq Ssc,eq

where ks is the stiffness of the shear connectors, and Sseq iS the equivalent longitudinal spacing. The

compression force in the slab Fx(x) can be determined from the integral of the shear connector forces:

X k X
E(x) = f P (x) dx = 5§ —= f cos (nTx) dx =
0

0 Ssc,eq

F.(x)=§-——+—"sin (E) (8.18)
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Using equations (8.16) and (8.18), equation (8.7) becomes:

_ Xy lyers n ks L/A.+n4,
M =35-sin(—) -2 g .2 ._< ) _
y(x) =3 sm( I ) " ( a'] + Seeq T\ A, (8.19)

By substituting equations (8.19) and (8.18) into equation (8.10) we obtain the effective second moment

of area of composite beams with flexible shear connectors:

I A./n
- e ¢ . q?
Lyerr=1yq+ n + - A N ( E )(E)Z (ﬁ) a (8.20)
nAa ksc/ssc,eq L n
The end slip as the function of the mid-span moment M is:
_ M-a
T ke L (At nA (8.21)
I sc_ . L(4c a .
Iyerr (Ea LT Soceq A ( A4, ))
Or, by introducing an auxiliary parameter Si:
S a
k= E A, +nA
a C a
( koo )(A)z A4, (8.22)
Ssc,eq T
_ S s T
§ = M——= (8.23)
Iyers Fsc L
Alternatively, the mid-span moment that belongs to a certain the end slip is:
_ I ke L
M= g 2eff Tsc ~ (8.24)

Sk Ssc,eq T

The complete derivation can be found in Annex C, equations (C.55) - (C.60).

An example of the practical application of this calculation is presented in Annex F.3.
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8.4.3 Elastic deflection determination
The elastic deflection of a composite beam can be determined as the double integral of the curvature

function.

k(x) = (8.25)

When the beam in consideration is prismatic, i.e. the cross-section is uniform along the length, the well-
known formulations can be used for the calculation of the deflections. These formulations are
summarised here for the basic load cases.

For a point load P at mid-span:

PL?
W= (8.26)
48 " Ealy,eff

For symmetric two-point loads acting at a distance e measured from the supports:

w Pe (317 - 4e?) (8.27)
W=——" —4e ,
24‘ " Ealy,eff

For uniformly distributed load:

5 qL*
384 Eqlyers

(8.28)

w =
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Figure 8.2 Comparison of the numerically and analytically obtained deflections
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8. Elastic behaviour of composite beams

Figure 8.2 shows the comparison of the analytically and numerically determined deflections of a
composite beams analysed in the frame of the parametric studies presented in Chapter 7. The beam was
denoted as 16E60-S3C20M-DP1-P3.3, which corresponds to a 16.2 m long composite beam with an
IPE 600 section made of S355 steel and C20/25 concrete deck. It uses shear connectors of type P3.3
distributed uniformly in pairs with a longitudinal spacing of 300 mm. The deflection was calculated

using Equation (8.28), and the second moment of area was determined using Equation (8.20).

8.4.4 Location of the neutral axes

The concrete slab and the steel beam have their own elastic neutral axes:

Ec, Ac, ch X,c,top
- T . T I
A Ll G
h xatop | _ v
[ 7 —x %P TR

Ya

$_ 777777777777 v v |ha

x,a,bot

Figure 8.3 Strain diagram of a composite section with flexible shear connection

Elastic neutral axes in the case of no shear connection

If there is no shear connection, each element has its neutral axis in its centroidal axis. Using the notations
of the Figure 8.3, this means:

Zer,c = he/2 (8.29)
Zel,a = Ya (8.30)

where zq ¢ is the distance between the neutral axis of the concrete and its extreme fibre in compression,
and ze4 is the distance between the neutral axis of the steel beam and its extreme fibre in compression.

Elastic neutral axes in the case of rigid shear connection

If the connection between the slab and the steel beam is rigid, their neutral axes coincide:

Zete = he + My + Zg1 4 (8.31)

144



8. Elastic behaviour of composite beams

Elastic neutral axes in the case of flexible shear connection

In the case of a flexible shear connection, the location of the elastic neutral axes depends on the stiffness
and spacing of the shear connectors. At any section, the concrete is subjected to a bending moment

My,c(x) and a compression force Fx(x). The corresponding strains are presented in Figure 8.4.

Figure 8.4 Strains in the slab

Similarly, at any section, the steel beam is subjected to a bending moment My.a(X) and a tension force
F«(x). The corresponding strains are presented in Figure 8.5.
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X,a,bot

Figure 8.5 Strains in the beam

Based on these strain diagrams, the location of the neutral axes can be written as the function of the

shear connection stiffness and spacing:

hC Tl'Sk

Zelc = 7 + A (8-32)
c
Sk
Zela = Ys — A_ (8.33)
a

where Sy is an auxiliary parameter given by Equation (8.22).

The complete derivations can be found in Annex C, equations (C.70) - (C.86).
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8. Elastic behaviour of composite beams

8.5  Composite beams with nonlinear shear connection (Method EL2)

8.5.1 Second moment of area for nonlinear connection
EN1994-1-1 [18], A.3 proposes that the shear connector stiffness ksc may be taken as:

koo = 0.7Pg;./s (8.34)

where:
Pre:  is the characteristic resistance of the shear connector;

S: is the slip, determined from push tests in accordance with EN1994-1-1 [18], Annex B, at a
load of 0.7 Pr.

It is important to note that the above equation refers mainly to welded studs that have a more-or-less
ideal bi-linear elastic-plastic behaviour, where the load level of 0.7 Pg fells into the elastic part. The
tested demountable shear connectors behave differently than the welded studs. Although several
different variants have been tested, one common property of the different results was the highly
nonlinear load-slip behaviour (see Figure 4.24). The behaviour of the pre-tensioned shear connectors
can be divided into three distinct parts:

1) First, the shear connections behave rigidly until the friction resistance is overcome.
2) Second, bolt slip occurs inside the bolt hole.
3) Finally, the third part is the shear deformation of the bolts.

Generally, the load level of 0.7 Pry fells into the third part of the load-slip curve. As a result, the stiffness
at this point cannot represent the stiffness of the shear connectors accurately for all load levels. Indeed,
the actual stiffness depends on the acting load on the shear connector, which is different for all shear
connectors along the length. Maintaining the assumption of a cosine slip function, the slip at each shear
connector can be determined with Equation (8.15). If the slip of the connector is known, the secant

stiffness ks, of each shear connector can be determined from the load-slip curve (see Figure 8.6).

Shear connector force,
PSC

SG,i

-
P
/
=
/
/
s
/
Y
p
“ksci
" Ksc,i

Slip, s

Figure 8.6 Secant stiffness depending on the occurring slip
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P. . :
Ko = —= (8.35)
Si
The individual shear connector forces over a unit length can be expressed as:
(x) = s(x) - =5-cos (ﬂx) K (8.36)
SC : Ssc eq L Ssc,eq .

Strictly speaking, the cosine slip distribution in the previous equation corresponds to a sinusoidal loading
and a linear elastic shear connection. The conducted parametric studies show (Chapter 7), that it is still
a reasonable approximation for uniformly distributed loading and nonlinear shear connection. However,
it is important to note that the more the moment diagram differs from a sinusoidal curve the less accurate

this approximation will become.

Because this function is non-continuous over the length, the compression force in the concrete slab will

become the sum of the integrals of the parts where the function is continuous:

sc,i L . [ . i —1
(xm) z J;l 1)L scz(x)dx = SZ Sec ea T[ [sm (%) — Sin <%>] (8.37)
=1

where m is the number of shear connectors (or pairs of shear connectors) and xn is the distance from the

support until the section in consideration. Using the previous formula, Equation (8.7) becomes:

_ T Eqlyesrm . (mm
My(xm)zs-z- " sin 2n, +

m .
_Z ksc,i L . T (i—-Dm yeffm (Ac + nAa)
+Ss —-|sin| =— ] —sin
£ S5c0q T 2n, 2n, a AcA,

The second moment of area can be expressed similarly as using equations (C.87) - (C.92).

(8.38)

Fa S‘“(an) Aetndy) (639

T Tan () (D] A

n n
=1S5ceq ™ 2n, 2n,,

Lyefrm = lya +

This equations shows that the second moment of area is not constant nor continuous over the length, but

it takes a certain value at every shear connector.

147



8. Elastic behaviour of composite beams

The second moment of area at midspan is:

2
Iy,c a

vaeffvnp = Iyla + 7

U A, +nA,
Lo Teal LT, () ((i—l)n)] +(%gae) 640
L o———"|SIn{5— ) —SIn 2—
np

where n, is the number of shear connectors (or pairs of shear connectors) over the shear length.

These derivations commenced with the assumption that the slip at every shear connector is known, i.e.
the end slip is known. However, the occurring the end slip depends on the load level. Its value can be

expressed based on the the mid-span moment and the effective second moment of area at mid-span:

M-a
™ np ksei L [ (im\ . ((i=Dm\| (A +nd, (8.41)
Iy'eff'np (L Eq + Zi:l Ssceq T sin <2np> Sm( 2n, ( AcAq )

As one may notice, the end slip depends on the shear connector stiffhess values and vice-versa. In other

S =

words these values are interdependent. The solution for this issue is an iterative procedure:

1) At the beginning of the calculation, the value of the end slip is unknown; therefore, it is
necessary to assume any value between zero and the maximum possible end slip defined by the
load-slip curve

2) Then, the secant stiffness of the shear connectors can be determined by equation (8.35).

3) Afterwards, the second moment of area at mid-span can be calculated by equation (8.40).

4) The end slip can be calculated by equation (8.41).

5) The calculated end slip needs to be compared to the initial assumption.

6) If the discrepancy between the two end slips is greater than 1%, the initial assumption needs to
be updated with the calculated end slip and all the steps need to be repeated.

7) When the discrepancy between the two end slip values is less than 1%, the second moment of
area can be determined at each shear connector by equation (8.39).

8) Due to the different bending stiffness values, the beam cannot be considered to be prismatic
anymore. For the calculation of the deflections, the deflection increments need to be calculated
first. This is presented in chapter 8.5.2.

9) The total deflection will be the sum of the defection increments (equation (8.43)).

The error in the end slip (the difference between the assumed end slip and the calculated one) decreases
with each iteration. Figure 8.7 shows how the error decreases with the iterations with the help of four

examples. The flowchart of the iterative procedure is presented in Figure 8.8.

The complete derivations of the equation presented in this chapter can be found in Annex C, equations
(C.87) - (C.94). An example of the practical application of this calculation method is presented in
Annex F.4.
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Figure 8.7 Error in end slip vs. the number of iterations
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Figure 8.8 Iterative procedure for the determination of the elastic deflection
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8. Elastic behaviour of composite beams

8.5.2 Elastic deflection of beams with nonlinear shear connection

As it was described in the previous section, when shear connectors with nonlinear load-slip curves are
applied, the second moment of area is not uniform along the length, but it has certain values between
the sections of each shear connector. Therefore, the beam cannot be considered as a prismatic beam.

e D N load, q(x)

ksc.1 ksc,i ksc,np

N AT I AT I A IATAT AT

N
[« L >
g[_m slip, s(x)
Si w
_ bending moment, M(x)
™
D ——— curvature, K(x)
Wm
deflection, w(x)
W

Figure 8.9 Loading, slip, moment, curvature and deflection diagram of a composite beam with

nonlinear shear connection

The function of the curvature is not continuous because of the different second moment of area values
along the length:
M (x,)
K () = ———— (8.42)
Eolyerpm
As a result, the deflection at mid-span w will be the sum of the integral of the parts where the previous

function is continuous:

mL
np "p np
w= Z Jf Ky (X)dx? = Z Wi, (8.43)
m=1(m-1)L m=1
Zn,
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8. Elastic behaviour of composite beams

The previous integral (equation (8.43)) was solved for basic load cases.

For a point load P at mid-span:

P/2  [I? 1
Wy = ————|=—(A— B) +=(B? — 43) (8.44)
™ Ealyerrm |8 6

Where the variables A and B denote the integration boundaries of the section in consideration:

A_m-L
2np
m—1)L

po m-DL

2np

For symmetric 2-point loads acting at a distance e measured from the supports:

P B syt an (8.45)
Wy =—— |[=—U- —(B3 - _
m Ealy,eff,m 8 6

for 0<A<e,and

P-e

Wi “[L(A-B) + (B* - A%)] (8.46)

" 2Eglyerrm

fore<A<L/2

For uniformly distributed load:

q

Ym = 24E L, o

- [L3(A—B) + 2L(B3 — A3) + A* — B*] (8.47)

The uniformly distributed load can be approximated with a sinusoidal load. This means that the second

order parabola shaped moment diagram will be approximated with a sinusoidal one:
_ X
M, (x) = M sin (T) (8.48)

Then, the deflection increments are:

g e) [n() s () ©49)
Wm—EaIy'eff'm - sin I sin L .

The following figure shows the comparison between the numerically determined deflections and the
deflections calculated using the presented iterative procedure for a 16 m long composite beam, which

was earlier used for the comparison presented in Figure 8.2:
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Figure 8.10 Comparison of the numerically and analytically determined deflections

8.5.3 Long-term effects on the deflection
Eurocode 4 [18] accounts for long-term effects such as creep and shrinkage with a modified modular

ratio:

n, =no(1+YLep) (8.50)

Where:

No is the modular ratio Ea/ Ecm for short term loading;

Ecn is the secant modulus of elasticity of the concrete for short-term loading according to EN1992-1-
11[49];

¢t is the creep coefficient according to EN1992-1-1 [49] depending on the age t of the concrete at

the moment considered and at the age to at loading;

wL is the creep multiplier depending on the type of loading (y. = 1.1 for permanent loads and
wi = 0.55 for primary and secondary effects).

As a result, the composite beam stiffness Elye is lower for long-term loads than it is for short-term
loads. Usually, the deflections are determined for long-term loads (wi) and for short-term loads (ws)

separately, and then the final deflection (wi) can be calculated as their sum:

Weot = Wi + Wst (8.51)

This calculation causes no problem when a flexible or a rigid shear connection is used,. However, in the
case of nonlinear shear connection, the actual stiffness of each shear connector depends on the occurring

slip and the load level. This means that by the time the short-term loads are applied to the structure, the
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8. Elastic behaviour of composite beams

shear connectors have already undergone some slip due to the long-term loads. In order to take this

effect into account, the following calculation method is proposed:

1) Determine the deflection due to long-term loads wi: with the long-term modular ratio n..

2) Check the occurring slip s; at each shear connector.

3) At every shear connector offset the origin of the load-slip curve to the actual load-slip values
(Psc,i; Si). (see Figure 8.11)

4) Determine the deflection due to short-term loads ws with the short-term modular ratio no and
the modified load slip curves.

5) The total deflection can be calculated by Equation (8.51).

Psc Pis Load-slip curve of
r shear connector i for
short-term loads

Psc,i S
Load-slip curve for J:
long-term loads s

Si \ Slip of shear
connector i due to

long-term loads

Figure 8.11 Offset of the load-slip diagram for the calculation of short-term deflections

8.5.4 Elastic neutral axes in the case of nonlinear shear connection

When deriving the equations for the location of the elastic neutral axes, it is necessary to divide the
beams into sections at each shear connector because each shear connector has a different secant stiffness.
As a result, the location of the neutral axes will not be constant along the length but will change at every

shear connector. At shear connector number m:

h n- Sk
Zel,c,m = 76 + Ac'm (8.52)
Sk
Zetam = ¥s =4 = (8.53)
a
Where Sy is the auxiliary parameter at location m:
S a
= E A+ nA
a c a
Zm kSC,i s l e (l — 1)7‘[ (£)2 ACAa (854)
=150 0q sin 2n, sin o, )| &
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8. Elastic behaviour of composite beams

The derivations of equations (8.52) - (8.54) was done using equations (8.37) - (8.39) in a similar way
as presented in Annex C by equations (C.70) - (C.86).

8.5.5 Elastic stresses from bending

When a composite section is designed elastically, a stress verification should be performed proving that
the stresses everywhere in the section in the corresponding limit state are below the elastic limit stresses
(see Chapter 2.3.3). The stresses are usually determined with the help of the well-known formulae of

structural mechanics using the cross-sectional properties of a homogenised cross-section:

. M, (x)
Normal stress in the concrete: Oxc(x,2) = ———"2.(x) (8.55)
Ly ers(X)
. My (x)
Normal stress in the steel: Oxa(X,2) = ——<"2z4(%) (8.56)
Iyerr ()

The derivation of these equations are presented in Annex C by equations (C.47) - (C.49).

It is important to note that in the previous formulae, both the second moment of area and the location of
the neutral axes depend on the position along the length if a nonlinear shear connection is applied. These
parameters are constant in the case of rigid or flexible shear connection.
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9. Plastic moment resistance of composite beams

Chapter 9. Plastic moment resistance of composite beams

9.1 General

The calculation method that is suitable for the determination of the plastic moment resistance of a
composite beam is largely influenced by the behaviour of the shear connection. This chapter presents
the calculation methods for composite beams with rigid-ductile and rigid-brittle shear connections. A
new calculation method is also presented in Chapter 9.4.2 for the calculation of the plastic moment
resistance of composite beams with flexible or nonlinear shear connection, and a simplified procedure

is proposed in Chapter 9.4.3.

9.2  Composite beams with rigid-ductile shear connection

For the determination of the plastic moment resistance Mgrq Of composite beams with ductile shear
connectors, the approach given by Eurocode 4 [18] is based on the equilibrium and moment equations
that correspond to the plastic stress distribution. The approach assumes full plasticity, i.e. everywhere
in the section the stresses are equal to their plastic limit stresses and all the shear connectors undergo
plastic deformations. Where the shear connector behaviour can be described by an ideal rigid-plastic
load-slip curve this approach is convenient to use because the longitudinal shear force will be the same
(Pra) at every shear connector along the length. The developing compression force in the concrete equals
to the sum of the shear connector forces between the critical sections. As every shear connector develops
the same shear force, the compression force in the concrete can be determined by multiplying the shear
connector resistance with the number of shear connectors between the critical sections (equation (2.35)).
The same principles apply for full and for partial shear connection as well. This approach was already
presented in detail in Chapter 2.3.2. It is important to note that the use of this approach might lead to

unconservative design when not rigid-ductile, but flexible ductile connectors are used.

9.3 Composite beams with rigid-brittle shear connection

In the case of rigid shear connection, the redistribution of the shear forces is not possible; therefore, the
slip must be kept small (=0). This leads to a shear connector distribution that follows the elastic shear
flow in the elastic zone (where Mg < M) of the beam. In the plastic zone of the beam (where
Me < Mg < My)), additional shear connectors are required because the longitudinal shear force will
increase due to the plastification of the members (see Figure 9.1). The longitudinal shear force in the
plastic zone (vi) can be calculated from the difference between the compression force of the concrete
at the sections where the elastic moment resistance Mg is reached and the position of the maximum

bending moment Mg max divided by the length between these sections (L) [82]:

Nc,pl - Nc,el

UL= L

(9.1)

p
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9. Plastic moment resistance of composite beams

The determination of the normal force N¢p in the plastic zone requires an iterative procedure, which

needs to consider the occurring strains.

Alternatively, Eurocode 4 [18] proposes a linear interpolation, which was already presented in
Chapter 2.3.4.

| |
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elastic zone plastic zone elastic zone
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Figure 9.1 Longitudinal shear flow and the normal stress diagrams in the elastic and plastic limit state
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9.4  Composite beams with flexible or nonlinear shear connection

9.4.1 Fundamental behaviour
When flexible shear connectors are applied, a relative slip occurs at the steel-concrete interface.
Consequently, some sort of redistribution of the longitudinal shear is possible depending on the

flexibility and the deformation capacity of the connection.

In order to be able to calculate the moment capacity of a composite beam it is essential to know the
developing compression force in the concrete slab. This force depends on the shear force that the shear
connectors can transfer. However, given that the load-slip behaviour is a flexible one, the force will be
different in each shear connector depending on the occurring slip. The compression force in the concrete
deck will be then the sum of the shear connector forces. Consequently, it is necessary to know the value
of the occurring slip at each shear connector along the length at the load level where the plastic moment
resistance is reached. The slip originates from the relative strain difference between the bottom fibre of
the concrete deck and the top fibre of the steel beam. For a simply supported beam with flexible shear
connectors and linear load-slip curve, it is usually assumed that the slip distribution along the length
follows the shape of the integral of the moment diagram as long as the beam is in elastic state [83]. As
a simplification, some researchers [43], [44] assume a cosine shaped slip distribution along the length.
Theoretically, this would correspond to a sinusoidal moment diagram but it is also a reasonable

approximation for uniformly loaded beams with a second order moment diagram.

Beyond the elastic limit (Mg > Mer), further elastic deformations occur and plastic strains start to

develop. A plastic zone starts to form at the location of the maximum bending moment.
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Figure 9.2 Comparison of a sinusoidal curve and a second order parabola

This is not limited to a discrete section but it has a certain length that includes all the sections where the

acting moment is higher than the elastic moment resistance (c.f. Figure 9.1). This part of the beam will

be referred to as the “plastic zone”. The sections outside this region remain in elastic state. The slip due

to plastic deformation is constant in the elastic part of the beam [52]. The total slip can be determined

as the sum of the slips due to elastic and plastic deformations (see Figure 9.3). In the figure below, the

slip distribution curve is schematic but not in scale.
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Figure 9.3 Slips due to elastic and plastic deformations
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Nonetheless, the evaluation of the occurring slip is a complex task, as the slip due plastic deformation

is difficult to quantify. It depends on several different factors, such as:

1)
2)
3)
4)
5)
6)

the length of the plastic zone,

the material behaviour,

the location of the neutral axes,

the loading situation,

the load-slip behaviour of the connectors, and

the number of shear connectors.

Without the use of a non-linear finite element simulation, this information is hardly obtainable.
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9.4.2 New plastic calculation method for nonlinear shear connections (Method PL1)
In order to overcome the issues presented in the previous section, herein a new approach is proposed,
which can be used for the determination of the plastic moment resistance of composite beams with

flexible and with nonlinear shear connection.
The presented method is applicable if the following conditions and assumptions are satisfied:

(i)  The beam is simply supported and subjected to a positive bending moment.

(i) The concrete deck is placed above the steel section (i.e. downstand composite beams).

(iii)  The steel section is Class 1 or 2 according to EN1993-1-1 [8].

(iv)  The steel beam can be hot-rolled or fabricated.

(v)  The concrete deck can be solid or with profiled decking.

(vi) The section is symmetric to the vertical axis.

(vii) The shear connection is distributed uniformly along the length.

(viii) The load-slip behaviour of the shear connection can be described with a monotonic increasing
curve.

(ix) The curvature of the composite beam under failure conditions is large enough to enable the

assumption of a plastic stress distribution in the cross-section.

Among the aforementioned conditions and assumptions, (ix) is difficult to quantify without the help of
a numerical analysis. Nonetheless, the design method of Eurocode 4 [18] assumes that this condition is

satisfied when the requirements for the minimum degree of shear connection are met.

It is important to note that the minimum degree of shear connection rules were developed based on
studies on headed studs that had a slip capacity at least 6 mm. The calculation method presented here is
not limited to shear connectors that have a larger slip capacity than 6 mm. However, a higher degree of
shear connection is required when shear connectors with low slip capacity (< 6 mm) are applied. The
exact definition of the minimum required degree of shear connection is out of the scope of this thesis;
and therefore, the application of this procedure for beams with shear connectors that have a lower slip
capacity than 6 mm is not recommended as long as a reliable definition for the minimum degree of shear

connection is not established.

It is also important to point out that the development of this procedure was made based on simply
supported beams subjected to uniformly distributed loading. The more the bending moment diagram

differs from a sinusoidal shape, the less accurate this procedure will become.

If all the presented conditions are satisfied, the plastic moment resistance can be determined in the

following way: First, it is necessary to assume:

1) acertain value for the end slip 5§ when the plastic moment capacity is reached, and

2) a certain slip distribution function along the length s(x).
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With these assumptions, the occurring slip si can be estimated at each shear connector row and therefore
the shear connector forces Ps,; can be determined with the help of their load-slip curve. The sum of these

forces will be then the compression force in the concrete deck (equation (9.2)).

I 171771 .1 T 1 ‘T-T T ‘L. 1 Shear connector force,
1 i no Psc
PaN A

i Slip, s

np
N, =n, Z Py i (9-2)
i=1
where:
N is the number of shear connectors in a row, and
Ny is the number of shear connector rows placed within the critical length

Knowing the compression force N in the concrete, the plastic stress distribution can be determined. The
moment resistance Mp, can be calculated from the equilibrium and moment equations using the

Eurocode 4 [18] approach for partial shear connection.

The presented algorithm is summarised in Figure 9.5.
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Assume an end slip 5§ and a
slip distribution function s(x).

A 4

Determine the slip s; at each shear connector row
from the slip function s(x).

A 4

Determine the corresponding shear forces P;,;
with the help of the load-slip curve:
Si = Psc,i

A 4

Calculate the compression force in the concrete:
p
N(J =ny z Psc,i
i=1

\ 4

Determine the plastic stress distribution from the
equilibrium equation.

A\ 4

Calculate the moment resistance My, ,
from the moment equation.

Figure 9.5 Algorithm for the determination of the plastic moment resistance of composite beams with

non-ductile shear connection (Method PL1)

The accuracy of the algorithm depends on the initially assumed end slip and slip distribution function.
As presented in Chapter 2.7 and 9.4.1, the approximation of the occurring end slip is complicated at the
ultimate limit state. However, experimental and numerical investigations show that the following

assumptions are reasonable:

(i) The end slip can be approximated by equation (9.4).
(ii) The slip distribution can be described by a cosine function (equation (9.3)) similarly to the

elastic calculations [80].

s(x) =§-cos (?) (9.3

The approximation of the end-slip when the plastic moment capacity is reached is not recommended by
Eggert’s [58] or Johnson and Molenstra’s [57] formulae, which were presented in Chapter 2.7 because
they were developed for headed stud connectors. Therefore, herein a new approximation is presented
based on Birtschi’s [52] proposal that was presented in section 2.7.5. However, instead of using the

degree of shear connection # for the interpolation, it is now proposed to use the degree of interaction w.
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This is based on the fact that at # = 1 we do not necessarily know the occurring end slip, while at the
theoretical case of w = 1 (perfectly rigid shear connection) we know that no slip occurs. The end slip to

be taken into account when determining the developing shear connector forces is:

_ Sy }
= mi 9.4
emo, o8
where:
Sy is the slip capacity of the shear connection;

Suito 1S the end slip when the moment capacity is reached in the case of no shear connection

determined by equation (2.55)); amd

Y is the degree of interaction determined by equation (9.5):

I
Lerr— (1 + ﬂ)
yveff v.a n
Y = (9.5)

I
Iy,rigid - (Iy,a + %)

Figure 9.6 Linear interpolation of the end slip based on the degree of shear interaction
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The following figure shows the comparison of the numerically and analytically determined plastic
moment resistance of the same composite beam that was used for the illustration of the accuracy of the

analytically determined deflections (Figure 8.2 and Figure 8.10):
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Figure 9.7 Comparison of the numerically and analytically obtained plastic moment resistance values

Using this algorithm, the plastic moment resistance M,;, was determined for the composite beams,
which were simulated in the frame of the parametric study PS-2 presented in Annex B.2. The comparison
of the analytically and numerically obtained resistance My rem values can be found in Annex D, and are

presented in Figure 9.8. The resistance model uncertainty parameters were determined for each cases:

Mu FEM,i
9, = —— =" 9.6
2 Mpl,n,i ( )
The mean value of the model uncertainties:
n
1
n i=1
The standard deviation:
1 n
Og = —-Z(ei — ug)? = 0.037 (9.8)
n i=1
The coefficient of variation:
Og
Vg = — = 0.037 (9.9)

o
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9. Plastic moment resistance of composite beams

These values indicate that the developed calculation method is in a good agreement with the numerical

simulations.
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Figure 9.8 Comparison of the analytically and numerically obtained resistance values

An example of the practical application of this method is presented in Annex F.5.

3000
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9. Plastic moment resistance of composite beams

9.4.3 Simplified plastic calculation method (Method PL2)

The previously presented method (Method PL1) requires the individual shear connector forces to be
determined in each calculation. This chapter proposes a simplification by defining the average shear
connector force as the effective shear connection resistance Presr, and introducing a parameter Kiex that

represents the ratio of Prest to the shear force in the last shear connector P:

p
" P
Ppesr = % (9.10)
14
P
kflex = R%ff (9.11)

The factor kiex depends on:

1) the load-slip curve of the shear connection,

2) the number of shear connector rows on the critical length,
3) the distribution of the shear connectors,

4) the assumed end slip, and

5) the slip distribution function.

The procedure presented in the previous section can be simplified if we apply the following assumptions:

(i) The end slip is exactly 6 mm when the plastic moment resistance is reached.
(if) The slip distribution can be described by a cosine function.

(iii) The shear connectors are placed equidistantly.

With the previous assumptions, krex only depends on the number of shear connector rows np on the
critical length and the type of the shear connection. The value of kiqex Was calculated using the load-slip
curves of the tested demountable shear connectors presented in Chapter 4 (see Figure 9.9). Shear

connection type P15.2 was excluded as it did not have a 6 mm deformation capacity.

Reduction factor, Kiey

4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of shear connector rows on the shear length, n,

Figure 9.9 Reduction factor ksex depending on the number of shear connector rows
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9. Plastic moment resistance of composite beams

As one can see, the more shear connector rows we have, the lower the value of ksex iS. However, the
difference in the values of knex between 4 rows and 30 rows is relatively small. For the tested shear

connections, its value varies between 0.69 to 0.81.

As a simplification, it is proposed to use the number that corresponds to np = 6. This means, that when
determining the average shear connector force Pret We assume that only six pairs of shear connectors
are placed on the critical length. The advantage of this simplification is that kaex NOw only depends on
the load-slip curve, i.e. it became a shear connection specific parameter. For shear connection type P3.3
its value is knex = 0.756, and for P15.1 it is krex = 0.762. Once this parameter is known, the algorithm

presented in Figure 9.5 becomes simpler. The effective shear connector resistance can be determined as:
Prefr = kflex “Pre (9.12)

where Pgg is the shear connector resistance at 6 mm slip. The compression force N in the concrete can
be calculated by multiplying the number of shear connectors on the critical length by the effective shear

connector resistance (c.f. Equation (2.35))
NC =n- PR,eff < Nc,f (913)

After this point, the calculation procedure is analogous to the Eurocode 4 [18] method for the
determination of the plastic moment resistance of sections with partial shear connection (see Chapter
2.3.2). The plastic stress distribution and the location of the neutral axes can be determined from the
equilibrium equations; and the moment resistance M,;,, from the moment equation. The flowchart of the

simplified calculation method is presented in Figure 9.11.

The following figure shows the comparison of the analytically and numerically obtained results of the

beam that was used for the previous comparisons presented in Figure 8.2, Figure 8.10 and Figure 9.7:
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Figure 9.10 Comparison of the numerically and analytically obtained plastic moment resistance values
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9. Plastic moment resistance of composite beams

Similarly to Section 9.4.2, the calculated moment resistance values were compared to the numerically
obtained ones (Annex E). The corresponding statistical parameters are summarised in the following
table, and the comparison of the experimentally and numerically obtained resistance values is presented
in Figure 9.12.

Table 9.1  Statistical parameters of the model uncertainties

Parameter Notation Value
Mean value Uo 1.052
Standard deviation oo 0.063
Coefficient of variaton Vo 0.060

Although the simplified method (Method PL2) produces more conservative results than the method
presented in the previous section (Method PL1), it was concluded that the simplified calculation method
is applicable for the determination of the plastic moment resistance of composite beams with
demountable shear connection. An example of the practical application of this method is presented in
Annex F.6.

Find k¢, specific to the shear
connection

Y

Determine the effective shear connector resistance:
Prers = Kfiex " Pre

Y

Calculate the compression force in the concrete:
NC =n- PR,eff < Nc,f

A 4

Determine the plastic stress distribution from the
equilibrium equation.

A 4

Calculate the moment resistance Mp;,
from the moment equation.

Figure 9.11 Simplified algorithm for the determination of the plastic moment resistance of composite

beams with non-ductile shear connection (Method PL-2)
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Figure 9.12 Comparison of the analytically and numerically obtained resistance values

9.5 Summary

In this chapter reviewed the calculation methods for the plastic moment resistance of composite beams
with partial shear connection. This was done for different types of shear connection (rigid-ductile, rigid-
brittle and flexible). For beams with flexible or non-linear shear connections a new calculation method
and its simplified version were proposed in Chapter 9.4.2 and Chapter 9.4.3, respectively. It was shown,
that the proposed calculation methods could reproduce the numerically obtained moment resistance

values with a high accuracy within the range of the tested parameters.

The application of these methods are limited to the cases where all of the following conditions are
fulfilled:

(i) The beam is simply supported and subjected to a positive bending moment.
(i)  The concrete deck is placed above the steel section (i.e. downstand composite beams).
(iii)  The steel section is Class 1 or 2 according to EN1993-1-1 [8].
(iv)  The steel beam can be hot-rolled or fabricated.
(v)  The concrete deck can be solid or with profiled decking.
(vi) The section is symmetric to the vertical axis.

(vii) The shear connection is distributed uniformly along the length.
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9. Plastic moment resistance of composite beams

(viii) The load-slip behaviour of the shear connection can be described with a monotonic increasing
curve.
(ix) The curvature of the composite beam under failure conditions is large enough to enable the

assumption of a plastic stress distribution in the cross-section.

Among the aforementioned conditions (ix) is difficult to quantify, so at this point, it is recommended to
limit the application of the presented methods to cases where the minimum degree of shear connection
requirement of Eurocode 4 [18] is satisfied and the shear connection has a slip capacity that exceeds
6 mm. Further development is needed for the quantification of the minimum degree of shear connection
requirements for different types of shear connections to ensure that the assumed plastic stress

distribution can develop in the cross-section.

The development of the presented methods based on uniformly loaded beams and it assumed a cosine
slip distribution function. It is important to point out that different loading situations will result in
different slip distribution functions. The more the slip distribution differs from a cosine shape the less
accurate the presented methods will become. Nonetheless, the methods can be applied with different
slip distribution functions based on the same principles as presented in this chapter. Further research is
required to find slip distribution functions for different loading situations that can represent the real

behaviour more accurately.

The presented methods are based on the assumption that the greatest slip occurs at the end of the beam.
This was supported by the parametric studies conducted on uniformly loaded beams (see Chapter 7.6).
However, it is possible that such cases exist where this assumption is not valid anymore due to the
increased slips at the plastic zone of the beam (Figure 9.13). The exact identification of these cases are

recommended to be the subject of further research.

= Plastic strains
_elastic zone plastic zone _elastic zone.
[l Ll il Ll il Ll [ : : :
Mel
Se Sp

—®

Figure 9.13 A slip distribution where the slip at the edge of the plastic zone exceeds the end slip
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Chapter 10.  Conclusions and outlook

10.1 General

The work carried out throughout the thesis focused on the behaviour of demountable composite beams
in order to facilitate the integration of steel-concrete composite construction into the concept of circular
economy. There are several hindrances in the way of reuse when considering traditional composite
structures. One of them is the method the current construction practice applies for connecting the
concrete deck to the steel beam. The traditionally applied welded studs are advantageous in the terms of
structural performance; however, they do not provide the ability of dismounting. In order to overcome
this issue, different types of shear connection types were investigated that use bolted connections. The
structural solutions were investigated using experimental structural testing; and the laboratory
experiments were complemented by numerical simulations. The experimental research included push-
out tests for the assessment of the shear connection behaviour; and full scale beam tests for the evaluation
of the structural performance of demountable composite beams. The investigation showed that the
behaviour of demountable composite beams differs from the behaviour of the non-demountable
traditional solution. Analytical equations were derived for the description of the elastic behaviour and a
new calculation method was proposed for the determination of the plastic moment resistance of
composite beams with demountable shear connection. This chapter presents the main conclusions that
were drawn based on the conducted research.

10.2 Demountable shear connections and composite beams

The tested demountable shear connections behaved differently than welded studs. They did not show a
ductile behaviour; and their load-slip curve could not be described by an ideal rigid-plastic curve but a
rather linear elastic one. The more accurate description is a multilinear curve that has three distinct parts
(see Figure 4.24):

1) an almost vertical, rigid part until the friction resistance is overcome,
2) an almost horizontal part, which shows the bolt slippage in the bolt hole, and

3) anonlinear part, which represents the shear and bearing deformation before the failure occurs.

The four parameters that have the highest influence on the load-slip behaviour are the bolt shear
resistance, the level of pretension, the surface treatment (i.e. the friction coefficient) and the diameter of
the bolt hole.

The failure occurred due to the shearing of the bolt in all of the conducted push-out tests. The failure of
the concrete was prevented by the large bearing surfaces of the tested connectors. The demountable
shear connections produced in all cases similar or higher resistance values than welded studs, but the
corresponding stiffness values were significantly lower. The observed slip capacities were generally

between 6 mm and 12 mm.
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Demountable composite beams behave similarly to traditional non-demountable beams with welded
stud connectors. The tested demountable composite beams produced higher resistance values than a
comparable composite beam with welded studs tested in a preceding research project called
DISCCO [65]. However, the reduced stiffness of the shear connection resulted in a lower bending
stiffness. Furthermore, the nonlinear behaviour of the shear connection caused a nonlinear load-

deflection response already in the elastic phase.

10.3 Elastic behaviour of demountable composite beams

The elastic response of demountable composite beams can be calculated by using the cross-sectional
properties of a homogenised section. For the calculation of the elastic normal stresses from bending, or
for the calculation of the elastic moment resistance Me, the location of the elastic neutral axis needs to
be known. When non-rigid shear connection is applied, the concrete and steel members have their own

elastic neutral axes.

Analytical equations were derived for the calculation of the effective second moment of area, and for
the determination of the location of the neutral axes of the composite beams with flexible (Chapter 8.4)

and with nonlinear shear connections (Chapter 8.5).

An iterative procedure was developed (Chapter 8.5) for the calculation of the elastic deflections of
composite beams with nonlinear shear connection. With the developed iterative method, the elastic
deflections can be determined with a similar accuracy by using spreadsheet calculations as by using

nonlinear finite element simulations.
10.3.1 Beams with flexible shear connection

The second moment of area of composite beams with flexible shear connection can be determined using
equation (8.20). According to EN1994-1-1 [18] the stiffness of the shear connection may be taken as
ksc = 0.7 Pre /s (see equation (8.34)). This is a reasonable approximation for welded stud connectors as

well as for demountable shear connectors.
The location of the elastic neutral axes can be determined by equations (8.32) and (8.33).
10.3.2 Beams with nonlinear shear connection

Demountable shear connections can be more accurately described by multilinear load-slip curves. Then,
the shear connectors can be taken into account with their secant stiffness values in the calculations. The
secant stiffness ks of each connector depends on the occurring slip, which depends on the load level.
This results in different second moment of area values lym along the length, which also depend on the
load level. An analytical equation was derived for the determination of the second moment of area at
every shear connector along the length. At shear connector m, lyerm Can be determined by equation
(8.39):
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An analytical equation was derived to describe the relationship between the end slip § and the bending
moment at mid-span M (equation (8.41)). For this equation, it is necessary to know the different shear
connector stiffness values Ks,i, which depend on the end slip. This means, that end slip and the stiffness
of the shear connectors are interdependent. The solution for this problem is an iterative procedure that

was presented in Chapter 8.5.1.

The occurring deflection can be calculated as the double integral of the curvature function, but due to
the different lyem values along the length, the curvature function is not continuous. Therefore, the
deflection at midspan can be calculated as the sum of the integral of the parts where the curvature
function is continuous (equation (8.43)). The integral was solved for basic load cases such as: one-point
load at mid-span, symmetric two-point loads, a uniformly distributed load and a sinusoidal load. The
formulations are presented in Chapter 8.5.2. The location of the elastic neutral axes can be determined
by equations (8.52) and (8.53).

10.4 Plastic moment resistance
10.4.1 General

The general behaviour of the tested shear connections is significantly different than the behaviour of
welded studs. As a result, the basic assumptions of Eurocode 4 [18] for the determination of the plastic
moment resistance of composite beams with partial shear connection are not valid anymore. The code
therefore does not enable the use of equidistant shear connector spacing and the design needs to be
conducted using a fully elastic analysis. This would the make the use of demountable shear connections
complicated and uneconomic. In the face of these issues, the probability of the practical application of
demountable and reusable composite structures would be very low. On the other hand, experiments
(Chapter 5) and numerical simulations (Chapter 6 and Chapter 7) show that composite beams can
develop plasticity even if non-ductile shear connection is applied. In order to overcome these issues, a
new calculation method was developed that enables the extension of the code for demountable shear
connection. In this way, the benefits of composite construction can be maintained while providing the

possibility of reuse.

10.4.2 New calculation method for the plastic moment resistance (Method PL1)

A calculation method was developed (Chapter 9.4.2) that enables the calculation of the developing
compression force in the concrete based on the individual shear connector forces. These forces depend
on the load-slip behaviour, the number of shear connectors and the distribution of the shear connectors.

The method requires assumptions for the shape of the slip function and the value of the occurring end
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slip. The slip function can be approximated with a cosine function Equation (9.3)), and the occurring
end slip can be estimated based on the degree of interaction Equation (9.4)). It was shown (Figure 9.8)

that the plastic moment resistance My, can be determined with a high accuracy using the previous

assumptions.

10.4.3 Simplified calculation method for demountable composite beams (Method PL2)

Based on the developed calculation method a simplified method was proposed (Chapter 9.4.3) by
defining an effective shear resistance Prest for the investigated shear connections. Once Pres is known,
the calculation method is analogous to the current Eurocode 4 [18] design procedure. It was shown
(Figure 9.12), that the simplified method is also able to produce plastic moment resistance M,;, values

with acceptable accuracy.

10.5 Further research

10.5.1 Further parametric studies and beam tests

The presented calculation method for the calculation of the plastic moment resistance of composite
beams was evaluated based on a comparison against a certain set of numerical simulations with a certain
set of parameters. Strictly speaking, the scope of its application is limited to cases which fall into the
range of the investigated parameters. Further research is required for the extension of the scope of
application by conducting additional parametric studies and laboratory experiments on full-scale

composite beams.

10.5.2 End slip calculation

The method uses an approximation of the occurring end slip that can be taken into account during the
calculations. The proposed approximation uses a linear interpolation according to the degree of
interaction. One limit of the interpolation is where there is no shear connection (i.e. the degree of
interaction is y = 0). At this point the occurring end slip is given by an approximation proposed by
Baertschi [52]. Within the range of the conducted simulations this approximation gives reasonable
results; however generally, the estimation of the end slip after the section is beyond its elastic limit still

remains relatively uncertain; and therefore, this topic requires further investigation.

10.5.3 Minimum degree of shear connection

The numerical simulations showed that the investigated demountable composite beams could develop
plasticity, and they could reach M,;, even if their degree of shear connection was below the minimum
required by the Eurocode 4 [18]. This shows that the minimum degree of shear connection rules may

need to be redefined for demountable shear connections.

It is possible to use the developed calculation method for shear connections that have a lower slip

capacity than 6 mm, but further development is needed for the quantification of the minimum degree of
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shear connection requirements for different types of shear connections to ensure that the assumed plastic

stress distribution can develop in the cross-section.

In the meantime, it is possible to design demountable composite beams using the developed numerical

model presented in Chapter 6.3.

10.5.4 Slip functions for different loading situation

The assumed cosine function for the description of the slip distribution works well for uniformly loaded
simply supported beams. However, the loading situation can have a significant influence on its shape.
Further research is required to identify the scope of applicability of the cosine function beyond the
uniformly loaded beams; and other slip functions may need to be found for the description of the slip
distribution due to different loading situations.

10.5.5 Further parametric studies on shear connections

The developed numerical model presented in Chapter 6.2 allows to extend the research with further
parametric studies by creating new load-slip curves that can be implemented in the shell model of the
beams. The presented methods are based on the assumption that the greatest slip occurs at the end of the
beam. This was supported by the parametric studies conducted on uniformly loaded beams (see Chapter
7.6). However, it is possible that such cases exist where this assumption is not valid anymore due to the
increased slips at the plastic zone of the beam (Figure 9.13). The exact identification of these cases are
recommended to be the subject of further research.
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Annex A Complementary experiments

Annex A  Complementary experiments

A.1 Steel tensile tests
A.1.1 General

In order to obtain information about the properties of the applied steel materials, standard 1SO 6892-
1:2016 [74] uniaxial tensile tests were conducted on the bolts, the L-profiles and steel beams used in the
laboratory experiments. This chapter presents the results of the tensile tests.

ISO 6892-1:2016 [74] defines the yield strength (Ren) as:

Ren = E,/So (A1)
where Fy is the peak load prior to the first decrease in force and Sy is the original cross-sectional area of
the test piece.

The tensile strength (Rn) is defined as:

R = Fn/So (A2)

where Fr, is the maximum force.

The percentage elongation at fracture, (A) is:

L,—L
A==%_""% 100 (A3)
Lo

where Lo is the original gauge length and L, is the final gauge length after fracture.

The percentage reduction of area (2) is:

Sy —S
Z=uS—O'100 (A.4)

0

where Sy is the minimum cross-sectional area after fracture.
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A.1.2 Tensile tests on bolts

Coupon specimens were fabricated from the bolts applied in push-out test series P3 and in beam tests

B7. The geometry of the steel coupons is presented in the following figure:

& A“| %ection A-A
A i Y i @

Figure A.1 Steel coupon test specimen of bolts (M20)

The following figure shows the coupon specimens after failure. The detailed results can be found in
Table A.2.

Figure A.2 Steel coupon specimens after failure

Table A1 Summary of the tensile tests on bolts (M20)

Measured average tensile

Tensile test series Number of tests strength fum [MPa] Corresponding test series
BL 4 948.7 P3.1, P3.3, B7
GV 4 1045.6 P3.2
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Table A.2  Results of the tensile tests on bolts (M20)

# 1 2 3 4 5 6 7 8
Specimen BL1 BL2 BL3 BL4 GV1 GV2 GV3 GV4
Diameter, di [mm] M20 M20 M20 M20 M20 M20 M20 M20
Grade 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8
Length, L; [mm] 170.1 | 170.0 170.2 170.2 170.4 170.1 170.1 170.1
Neck diameter, do [mm] 8.035 | 8.019 8.049 8.035 8.109 7.975 8.135 8.080

Cross-sectional area, So 50.71 | 5050 | 50.88 | 50.71 | 51.64 | 49.95 | 51.98 | 51.28

[mm2]

Neck length, Lo [mm] 57.74 | 57.50 57.85 57.64 57.70 57.85 57.60 57.60
Yield load, Fy [kN] 44.2 44.5 44.0 44.2 52.1 50.0 52.6 52.6
Failure load, Fn [kN] 48.2 47.9 48.1 48.2 54.0 52.0 54.0 54.2

Yield strength, Ren [MPa] 871.7 | 8811 864.7 871.7 | 1008.8 | 1001.0 | 1012.0 | 1025.8
Tensile strength, Rn [MPa] 950.6 | 948.4 945.3 950.6 | 1045.6 | 1041.0 | 1038.9 | 1057.0

Neck diameter after fracture,
dy [mm]

Area after fracture, S, [mm?] | 16.15 | 17.42 18.47 18.06 19.24 18.36 19.32 18.47

4535 | 4.710 4.850 4.795 4.950 4.835 4.960 4.850

Neck length after fracture,

65.47 | 65.57 65.06 65.18 64.38 64.40 64.08 63.73
Ly [mm]

Percentage elongation at

fracture, A [%] 11.74 | 1231 10.93 11.47 10.15 9.93 9.87 9.33

Percentage reduction area, Z
[%]

Mean value of the yield

68.14 | 65.50 63.69 64.39 62.74 63.24 62.83 63.97

strength, uren [MPa] 872.3 1011.9
S::Ejdgtrgr?ge:/r: aﬂi".l ‘EIA‘EZ] 6.73 10.38
e yield Sengih, v L] 00077 0103
Efriil,%a'}iiﬁ f[ﬁ'ﬂ‘iéi”“'e 948.7 1045.6
ensile srengih, o [MPe) 249 309

Coefficient of variation of 0.0026 0.0077

the tensile strength, Veer [-]
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A.1.3 Tensile tests on L-profiles

From the push-out test specimens, three L-profiles that were selected for tensile testing. From each peace

three coupon specimens were cut out. The geometry of the steel coupons is presented in the following
figure, and the results of the tensile tests are presented in Table A.3.

Section A-A

Aﬁ Y.
___ﬁjL - I

e
|,11 A‘J 114L 69 J&L

250

40

40

69

Figure A.3 Geometry of the steel coupon specimen of the L-profiles (L 80x80x6)
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Figure A.4 Photo the steel coupon specimens of the L-profiles (L 80x80x6)
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Table A.3  Results of the tensile tests on the L-profiles (L 80x80x6)

the tensile strength, Vrer [-]

# 1 2 3 4 5 6 7 8 9
Part L1.1 | L12 | 113 | 121 | 122 | 123 | 131 | 132 | L33
original thickness, ap [mm] 6.05 5.97 6.06 6.02 6.08 5.99 6.09 6.11 6.03
Width, b [mm] 400 | 400 | 400 | 39.9 | 400 | 39.9 | 401 | 400 | 39.9
Total length, Lo [mm] 250.1 | 250.4 | 250.3 | 250.4 | 250.0 | 250.2 | 250.6 | 250.2 | 250.0
?ﬁ':'r%”a' gauge length, Lo 692 | 69.2 | 692 | 69.2 | 692 | 69.2 | 69.2 | 69.2 | 69.2
Neck width, by [mm] 253 | 250 | 254 | 252 | 251 | 25.1 | 250 | 250 | 25.0
[Cr:r’ﬁ]'sec“ona' area, So 152.9 | 149.2 | 154.2 | 1515 | 152.4 | 150.6 | 1525 | 152.6 | 150.9
Parallel length, Le [mm] 901 | 90.2 | 903 | 903 | 90.0 | 90.1 | 90.3 | 90.2 | 90.0
Total length after fracture, | 75 0 | 5755 | 9741 | 2742 | 2740 | 2752 | 276.2 | 2743 | 2757
Lty [mm]

Gauge length after fracture, | o7, | g5 | g74 | 875 | 877 | 884 | 888 | 87.7 | 889
Ly [mm]

Neck width after fracture, | g0 | 194 | 185 | 183 | 188 | 182 | 183 | 184 | 185
by [mm]

Neck thickness after 45 45 4.7 45 | 47 | 45 | 45 | 45 | 45
fracture, a, [mm]

Cross-sectional area after | g3 | g16 | g51 | 815 | 881 | 819 | 828 | 835 | 823
fracture, Sy [mm?]

Parallel length after 1135 | 115.0 | 1141 | 1141 | 1140 | 1151 | 1159 | 114.4 | 115.7
fracture, Ley [mm]

Maximum force, Fr [KN] 804 | 771 | 791 | 773 | 802 | 792 | 789 | 801 | 77.6
Yield strength, Res [MPa] | 392.0 | 372.0 | 385.0 | 369.0 | 403.0 | 394.0 | 391.0 | 403.0 | 370.0
Tensile strength, Ry [MPa] | 525.9 | 516.8 | 513.1 | 510.2 | 526.2 | 525.9 | 517.4 | 524.8 | 514.1
;e[r(;gr_“age reductionarea, | 457 | 453 | 442 | 462 | 422 | 456 | 457 | 453 | 455
Percentage elongation at 259 | 275 | 263 | 264 | 267 | 277 | 284 | 268 | 285
fracture, A [%]:

Mean value of the yield

strength, e [MPa] 383.0 388.7 388.0
Standard deviation of the

yield strength, orer [MPa] 101 17.6 16.7
Coefficient of variation of

the yield strength, Ve [-] 0.0265 0.0453 0.0430

Mean value of the tensile

strongth o [MPa] 518.6 520.7 518.8
Standard deviation of the

tensile strength, oren [MPa] 6.6 9.2 55
Coefficient of variation of 0.0127 0.0176 0.0105
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A.1.4 Tensile tests on the beams

Tensile tests were conducted on steel coupon specimens cut out from the flanges of the beams used in
the beam tests. The geometry of the coupons is presented in the following figure, and the results can be

found in the following table.

Lo=85 Section A-A

S

2=

36
18

1]

Le = 117
Lt = 250

\
l 55

)

Figure A.5 Geometry of the steel coupon specimen of the beams (IPE 360)

Table A.4  Results of the tensile tests on the beams (IPE 360)

NS
) EI%
12,7

# 1 2 3 4
Part Bl B2 T1 T2
original thickness, ao [mm] 12.90 12.64 12.90 12.98
Width, b [mm] 36.1 36.1 36.1 36.1
Total length, Ly [mm] 250.0 250.1 250.2 250.0
Original gauge length, L, [mm] 85.4 85.2 85.0 85.2
Neck width, by [mm] 18.1 18.1 18.2 18.0
Cross-sectional area, Sp [mm?] 234.0 228.4 2345 233.1
Parallel length, Leo [mm] 116.8 116.8 116.8 116.8
Total length after fracture, Ly, [mm] 284.6 284.8 286.0 285.7
Gauge length after fracture, L, [mm] 113.8 113.2 116.5 117.4
Neck width after fracture, b, [mm] 111 10.8 10.9 11.0
Neck thickness after fracture, a, [mm] 6.8 6.5 71 6.9
Neck length after fracture, lioc [mMm] 27 26 30 29
Cross-sectional area after fracture, S, [mm?] 75.5 70.2 77.4 75.9
Parallel length after fracture, L¢, [mm] 151.3 1515 152.7 152.5
Young's modulus, E [GPa] 197.0 183.0 186.0 188.0
Maximum force, Fr [kN] 1115 108.6 108.3 108.5
Yield strength, Rey [MPa] 392.0 378.0 375.0 382.0
Tensile strength, Ry, [MPa] 476.0 464.0 463.0 464.0
Percentage reduction area, Z [%] 67.7 69.3 67.0 67.4
Percentage elongation at fracture, A [%] 33.3 32.9 37.1 37.8
Mean value of the yield strength, zgen [MPa] 381.8

Standard deviation of the yield strength, ogen [MPa] 74

Coefficient of variation of the yield strength, Vgen [-] 0.0194

Mean value of the tensile strength, urer [MPa] 467.7

Standard deviation of the tensile strength, oren [MPa] 7.2

Coefficient of variation of the tensile strength, Vgen [-] 0.0155
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A.2  Concrete compression tests

A.2.1 General

The same concrete grade (C35/45) was ordered for all laboratory experiments. The concrete was cast on
three occasions:

1) 28" June, 2017 — for push-out test series P15.1 and P15.2;
2) 25" September, 2017 — for push-out test series P3.1, P3.2 and P3.3;
3) 27" March, 2018 — for beam tests B7 and BS.

Compression tests were conducted on standard cube specimens on 9 different occasions:

Table A5 Details of the parametric studies PS-1 (part 1)

Concrete age at Average measured
Test series Date of casting Date of testing testing cube strength,
[days] feum [MPa]
ccC1 28/06/2017 26/07/2017 28 44.33
cc2 28/06/2017 04/08/2017 37 49.12
CC3 28/06/2017 22/08/2017 55 52.43
CC4 28/06/2017 25/08/2017 58 55.81
CC5 25/09/2017 23/10/2017 28 59.39
CC6 25/09/2017 21/11/2017 57 70.65
CC7 27/03/2018 24/04/2018 28 51.47
ccs 27/03/2018 05/06/2018 70 64.88
CC9 27/03/2018 14/06/2018 79 63.13

The next table shows the list of the laboratory experiments and the corresponding cube tests.

Table A.6  List of experiments and the corresponding cube tests (Part 1)

Concrete Cube Concrete Concrete

Date of Date of age at Date of cube age at cube
Test . . . test
experiment casting experiment test series cube test strength
[days] [days] feum [MPa]

P15.2-1  26/07/2017 28/06/2017 51 26/07/2017 Ccc1 28 44.33
P15.2-2  02/08/2017 28/06/2017 58 04/08/2017 cc2 37 49.12
P15.2-3  09/08/2017 28/06/2017 65 04/08/2017 cc2 37 49.12
P15.1-1  18/08/2017 28/06/2017 74 04/08/2017 cc2 37 49.12
P15.1-2  22/08/2017 28/06/2017 78 22/08/2017 CC3 55 52.43
P15.1-3  24/08/2017 28/06/2017 80 25/08/2017 CC4 58 55.81
P3.1-1 07/11/2017 25/09/2017 43 23/10/2017 CC5 28 59.39
P3.1-2 10/11/2017 25/09/2017 46 23/10/2017 CC5 28 59.39
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Table A.7  List of experiments and the corresponding cube tests (Part 2)

Concrete Cube Concrete Concrete

Date of Date of age at Date of cube age at cube
Test . . . test
experiment casting experiment test series cube test strength
[days] [days] feum [MPa]

P3.1-3 14/11/2017 25/09/2017 50 23/10/2017 CC5 28 59.39
P3.3-1 17/11/2017 25/09/2017 53 23/10/2017 CC5 28 59.39
P3.3-2 21/11/2017 25/09/2017 57 21/11/2017 CC6 57 70.65
P3.3-3 24/11/2017 25/09/2017 60 21/11/2017 CC6 57 70.65
P3.2-1 28/11/2017 25/09/2017 64 21/11/2017 CC6 57 70.65
P3.2-2 01/12/2017 25/09/2017 67 21/11/2017 CC6 57 70.65
P3.2-3 05/12/2017 25/09/2017 71 21/11/2017 CC6 57 70.65
P3.3-3R  07/12/2017 25/09/2017 73 21/11/2017 CC6 57 70.65
P3.2-3R  12/12/2017 25/09/2017 78 21/11/2017 CC6 57 70.65
B8 05/06/2018 27/03/2018 70 05/06/2018 CCs8 70 64.88
B7 14/06/2018 27/03/2018 79 14/06/2018 CC9 79 63.13

A.2.2 Results of the compression tests

Figure A.6 shows a concrete cube specimen, and the following tables summarise the results of the

conducted compression tests.

¥

h
. b
1
Figure A.6 Concrete cube test specimen
Table A.8  Results of compression test series CC1
Specimen a [mm] b [mm] h [mm] m [g] feumeas [MPa]

CC1-1 150 149 150 7021 44.51
CC1-2 150 150 150 7078 44.96
CC1-3 149 150 150 7734 43.51

Mean value: 44.33

194



Annex A Complementary experiments

Table A.9  Results of compression test series CC2
Specimen a[mm] b [mm] h [mm] m [g] feumeas [MPa]
CC2-1 149 150 150 7808 49.56
CC2-2 151 150 150 7814 49.20
CC2-3 149 149 150 7824 48.62
Mean value: 49.12
Table A.10 Results of compression test series CC3
Specimen a[mm] b [mm] h [mm] m [g] feumeas [MPa]
CC3-1 149 150 150 7776 52.17
CC3-2 147 149 150 7769 52.40
CC3-3 146 150 150 7713 52.74
Mean value: 52.43
Table A.11 Results of compression test series CC4
Specimen a[mm] b [mm] h [mm] m [g] feu,meas [MPa]
CC4-1 149 150 150 7751 54.57
CC4-2 149 150 150 7721 54.35
CC4-3 149 150 150 7734 55.53
Mean value: 55.81
Table A.12 Results of compression test series CC5 - Cube
Specimen a[mm] b [mm] h [mm] m [g] feu,meas [MPa]
CC5.1-1 149 150 150 8024 61.17
CC5.1-2 150 150 150 7995 57.89
CC5.1-3 150 149 150 7960 59.11
Mean value: 59.39
Table A.13 Results of compression test series CC5 — Cylinder
Specimen h [mm] D [mm] m [g] fe,meas [MPa]
CC5.2-1- 292 149 12320 54.02
CC5.2-2 294 148 12376 53.52
CC5.2-3 295 150 12460 52.24
Mean value: 53.26

195



Annex A Complementary experiments

Table A.14 Results of compression test series CC6

Specimen a[mm] b [mm] h [mm] m [g] feumeas [MPa]
CCo6-1 150 150 150 7975 72.71
CC6-2 150 149 149 7969 68.13
CC6-3 150 149 150 7926 71.12

Mean value: 70.65
Table A.15 Results of compression test series CC7

Specimen a[mm] b [mm] h [mm] m [g] feumeas [MPa]
CC7-1 149 150 150 7804 50.92
CC7-2 150 148 151 7701 51.23
CC7-3 149 150 150 7844 52.23

Mean value: 51.47
Table A.16 Results of compression test series CC8

Specimen a[mm] b [mm] h [mm] m [g] feu,meas [MPa]
CC8-1 149 150 150 7744 61.39
CC8-2 148 149 149 7758 68.12
CC8-3 149 149 150 7739 65.12

Mean value: 64.88
Table A.17 Results of compression test series CC9

Specimen a[mm] b [mm] h [mm] m [g] feu,meas [MPa]
CC9o-1 151 150 150 7724 64.27
CC9-2 150 150 150 7750 65.29
CC9-3 150 150 150 7627 59.83

Mean value: 63.13
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A.3 Bolt pretension tests
During the push-out tests it was not possible to measure the bolt pretension. So instead, separate

experiments were carried out with the following test setup:

10 80

Additional steel plate — |
. 17T}

Top-plate

2 Shortened L-profile
0 3 -{| |~— 200 kN Load Cell
iz ES
N S /17 == LMASII,
A ]
Washer plate L%J
M20, 8.8 Bolt Steel beam

Figure A.7 Geometry of the pretension test

The test setup consisted of the following elements:

1) M20, Gr. 8.8 bolts with 12 mm thick washer plates and 4 mm thick washers (7 black and 3
galvanised)

2) An HE 260B beam identical to one used in the push-out tests

3) A 200 kN load cell

4) L-profile with welded top plate and cylinder

5) Additional plate welded to the L-profile and the top plate

While designing the test setup the aim was to represent the push-out test specimens as accurately as
possible. The steel beam was one of the steel beams used in the push-out tests and the bolts, the washers,
the L-profile, the top plate were from the same batch as the ones used in the push-out tests. It was
necessary to keep the clamping length also the same, so the steel cylinder needed to be shortened because
of the addition of the 60 mm high load cell. In this experiment, there was no concrete around the steel
cylinder, so the web of the L-profile was welded to the top plate and an additional 10 mm thick steel
plate was welded to the top plate as well as the leg of the L-profile. The size of the additional plate was
determined such that the resulting normal stiffness is the same as in the case of the push-out test

specimen.

Concrete area below the top plate in the push-out tests:

(42.5mm)? -«
4

(A5)

A, =80mm-80 mm — = 4981 mm?
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Young’s modulus of the concrete:

E. = 33400 N/mm? (A.6)
Young’s modulus of the steel:

E, = 210000 N /mm? (A7)
The normal stiffness should be the same:

E.Aq = EA, (A8)
Therefore, the required steel area:

N

33400 - 4981 mm?
4, =L _ m = 792.2 mm? (A.9)
Ea 210000 ——
mm

This area was composed of the 6 mm thick web and the 10 mm thick additional plate cut to a length of:

A, A.10
10mm+ 6 mm 9.5 mm

The following figure shows the L-profile, the cylinder, the top plate and the additional welded plate:

Figure A.8 The L-profile, the cylinder, the top plate and the additional welded plate
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Before the experiments the position of the bolts and the nuts were marked with a chalk. During the

experiments, the bolts were tightened to a snug tight condition [48], then different amount of rotations

were applied on the nuts while the load was continuously measured. The angle of rotation was measured

afterwards digitally from the photos taken during the experiments:

Figure A.9 Rotation measurement

The following table summarises the obtained rotation and force values:

Table A.18 Results of the pretension measurements

Rotation Force

# [deg] [KN]
1 98 84
2 102 89
3 103 96
4* 115 104
5= 87 95
6* 128 113
7 133 122
8 140 136
9 161 145
10 150 143

*Galvanised bolts

The linear relationship can be observed between the applied rotation and the measured force values.

This relationship can be described as:
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P 1
oo = (€ ) o B A (A11)
p.c ( 360° P2) Tyamp @0

Where @ is the rotation applied on the nut, p, = 2.5 mm is the pitch of the bolt, lcamp = 153.5 mm is the
clamping length, Ea is the Young’s modulus of the steel and As = 245 mm? is the cross-sectional area of
the bolt. From the applied rotation, not all of the elongation is applied to the bolt itself, but a certain
amount is absorbed by the system (by the compression of the elements and the by the bending of the top
plate). Therefore, a dimensionless constant C = 0.39 parameter is introduced that takes into account this
effect. The value of this constant was found using the method of least squares so that the experimentally
obtained results fit the analytical calculation. This way, the first part of the equation represents the
elongation of the bolt, dividing this part with the clamping length we get the normal strain, multiplying
this by the Young’s modulus we get the normal stress, and finally, we obtain the bolt pretension force
by multiplying the stress by the cross-sectional area of the bolt. The following table summarises the

obtained results from this calculation:

Table A.19 Comparison of analytically and experimentally obtained results

Calculated Measured

force, force, 0
Rotation Elongation Strain Stress Fp.c.calc Fpoc Fo.o/Fp.ccalc

# [deg] [mm] [-] [MPa] [kN] [kN] [-]
1 98 0.2648 0.0017 362.3 89 84 0.95
2 102 0.2756 0.0018 377.1 92 89 0.96
3 103 0.2783 0.0018 380.8 93 96 1.03
4* 115 0.3108 0.0020 425.1 104 104 1.00
5* 87 0.2351 0.0015 321.6 79 95 121
6* 128 0.3459 0.0023 473.2 116 113 0.97
7 133 0.3594 0.0023 491.7 120 122 1.01
8 140 0.3783 0.0025 517.6 127 136 1.07
9 161 0.4351 0.0028 595.2 146 145 0.99
10 150 0.4053 0.0026 554.5 136 143 1.05

*Galvanised bolts

The statistical parameters of the uncertainties were determined to evaluate the accuracy of the analytical

approach. First, the model uncertainty parameters were determined:

o
B (A.12)

91' =
Fp,c,calc

The mean value of the model uncertainties:

1 n
i=1
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The standard deviation:

1 n
i=1

The coefficient of variation:

Op

Vg =—=0.074 (A.15)
He

These values show a low uncertainty, and therefore, it was concluded the analytical model can predict

the bolt pretension load from the applied rotation with high accuracy. The following figure shows the
comparison of the obtained results:
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o
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[0}
o
%e

[o)]
o
T

O Galvanised bolts

D
o
T

N
o
T

0 50 100 150 200
Nut rotation, ¢ [deg]

o

Figure A.10 Comparison of analytically and experimentally obtained results

We can also observe from the previous figure that this method of preloading is not sensitive to the
surface treatment because a certain amount rotation always belongs to a certain amount of elongation.
This is not the case with the torque method, which depends on other factors besides the surface treatment
(amount and type of lubrication, thread damages).
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Annex B

B.1

Parametric study PS-1

Parametric studies

Table B. and Table B.2 show the investigated parameters of each simulation and the corresponding

ultimate moment resistance and end slip values.

Table B.1  Details of the parametric studies PS-1 (part 1)
# Name [rlr_l] Profile [MflyDa] [MfICDa] Shear conn. Dist. ’[\IA(;.\IF;:iI ;;'nﬁ;
1 6E36-53C45M-DP1-P0 6 IPE 360 391 54 PO DP1 634 6.0
2 6E36-S3C45M-DP1-P33 6 IPE 360 391 54 P3.3 DP1 657 9.7
3 6E36-S3C45M-DP1-P15.1 6 IPE 360 391 54 P15.1 DP1 664 77
4 6E36-S3C45M-DP1-P152 6 IPE 360 391 54 P15.2 DP1 631 5.4
5 6E36-53C25M-DP1-P0 6 IPE 360 391 33 PO DP1 617 6.0
6  6E36-S3C25M-DP1-P3.3 6 IPE 360 391 33 P3.3 DP1 635 9.2
7 6E36-S3C25M-DP1-P15.1 6 IPE 360 391 33 P15.1 DP1 652 77
8  6E36-S3C25M-DP1-P152 6 IPE 360 391 33 P15.2 DP1 624 5.4
9 6E36-S3C20M-DP1-P0 6 IPE 360 391 28 PO DP1 615 6.0
10 6E36-S3C20M-DP1-P33 6 IPE 360 391 28 P3.3 DP1 628 8.7
11 6E36-S3C20M-DP1-P151 6 IPE 360 391 28 P15.1 DP1 643 7.2
12 6E36-S3C20M-DP1-P152 6 IPE 360 391 28 P15.2 DP1 623 5.4
13 6E36-S3C45M-DE1-P0 6 IPE 360 391 54 PO DE1 664 6.0
14 6E36-S3C45M-DE1-P33 6 IPE 360 391 54 P3.3 DE1 674 8.8
15  6E36-S3C45M-DE1-P151 6 IPE 360 391 54 P15.1 DE1 697 77
16  6E36-S3C45M-DE1-P152 6 IPE 360 391 54 P15.2 DE1 682 5.4
17 6E36-S3C25M-DE1-P33 6 IPE 360 391 33 P3.3 DE1 649 7.3
18 6E36-S3C25M-DE1-P151 6 IPE 360 391 33 P15.1 DE1 671 53
19  6E36-S3C25M-DE1-P152 6 IPE 360 391 33 P15.2 DE1 670 5.4
20 6E36-S3C20M-DE1-P3.3 6 IPE 360 391 28 P3.3 DE1 641 6.6
21  6E36-S3C20M-DE1-P15.1 6 IPE 360 391 28 P15.1 DE1 659 5.0
22 6E36-S3C20M-DE1-P152 6 IPE 360 391 28 P15.2 DE1 662 34
23 6E36-S4C45M-DP1-P33 6 IPE 360 507 54 P3.3 DP1 777 9.7
24 6E36-S4C45M-DP1-P151 6 IPE 360 507 54 P15.1 DP1 766 77
25  6E36-S4C45M-DP1-P152 6 IPE 360 507 54 P15.2 DP1 705 5.4
26 6E36-S4C45M-DE1-P3.3 6 IPE 360 507 54 P3.3 DE1 807 8.8
27  6E36-S4C45M-DE1-P151 6 IPE 360 507 54 P15.1 DE1 824 77
28 6E36-S4C45M-DE1-P152 6 IPE 360 507 54 P15.2 DE1 783 5.4
29 6E36-S2C45M-DP1-P33 6 IPE 360 303 54 P3.3 DP1 550 9.7
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Table B.2  Details of the parametric studies PS-1 (part 2)
L ] f fe Shear . Murem SuFEM
# y ! 1
Name mp Profle Mpa]  [MPa) conn. Dist. pjeNm] [mm]
30 6E36-S2C45M-DP1-P15.1 6 IPE 360 303 54 P15.1 DP1 571 7.7
31 6E36-S2C45M-DP1-P15.2 6 IPE 360 303 54 P15.2 DP1 550 5.4
32 6E36-52C45M-DE1-P3.3 6 IPE 360 303 54 P3.3 DE1 563 8.8
33 6E36-S2C45M-DEL-P15.1 6 IPE 360 303 54 P15.1 DE1 592 7.7
34 6E36-S2C45M-DEL-P15.2 6 IPE 360 303 54 P15.2 DE1 589 5.4

The moment-deflection curves are presented in Figure B.11 - Figure B.13. In the figures, the dots

represent shear connector failure. If no dot is presented at the end of the curve, it means that the failure

occurred in a different way: either by concrete crushing or by plastification of the steel section.
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Figure B.11 Moment deflection curves (a) simulation #1-#4, (b) simulation #5-#8
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Figure B.12 Moment deflection curves (a) simulation #9-#12, (b) simulation #13-#16, (c) simulation

#17-#19, (d) simulation #20-#22
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Figure B.13 Moment deflection curves (a) simulation #23-#25, (b) simulation #26-#28, (c) simulation

#29-#31, (d) simulation #32-#34
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B.2

Parametric study PS-2

Table B.3 - Table B.5 show the investigated parameters of each simulation and the corresponding

ultimate moment resistance and end slip values.

Table B.3  Details of the parametric studies PS-2 (part 1)
# Name [rlﬁ] gS e Profil [MfIyDa] [Mféa] S, Dist ?ﬁ“NFéM] ]
35 6E27-53C45M-DP1-P0 60 S355 IPE270 391 54 PO DP1 389 6.0
36 6E27-S3C45M-DP1-P3.3 60  S355 IPE270 391 54 P3.3 DP1 406 9.7
37 6E27-S3C45M-DP1-P151 60  S355 IPE270 391 54 P151  DP1 411 7.7
38 6E27-53C45M-DP2-P0 60 S355 IPE270 391 54 PO DP2 526 6.0
39 6E27-S3C45M-DP2-P3.3 60  S355 IPE270 391 54 P3.3 DP2 503 7.8
40  6E27-S3C45M-DP2-P151 60  S355 IPE270 391 54 P151  DP2 513 5.6
41 6E27-S3C20M-DP1-P0 60 S355 IPE270 391 28 PO DP1 383 6.0
42 6E27-S3C20M-DP1-P33 60  S355 IPE270 391 28 P3.3 DP1 403 97
43 6E27-S3C20M-DP1-P151 60  S355 IPE270 391 28 P151  DP1 407 7.7
44 6E27-S3C20M-DP2-P0 60 S355 IPE270 391 28 PO DP2 481 32
45 6E27-S3C20M-DP2-P33 60  S355 IPE270 391 28 P3.3 DP2 466 73
46 6E27-S3C20M-DP2-P151 60  S355 IPE270 391 28 P151  DP2 475 5.3
47 6E36-53C45M-DP1-P0 60 S355 IPE360 391 54 PO DP1 625 6.0
48 6E36-S3C45M-DP1-P3.3 60  S355 IPE360 391 54 P3.3 DP1 659 97
49 6E36-S3C45M-DP1-P151 60  S355 IPE360 391 54 P151  DP1 663 7.7
50 6E36-53C45M-DP2-P0 60 S355 IPE360 391 54 PO DP2 780 6.0
51 6E36-S3C45M-DP2-P3.3 60  S355 IPE360 391 54 P3.3 DP2 820 97
52 6E36-S3C45M-DP2-P151 60  S355 IPE360 391 54 P151  DP2 827 7.7
53 6E36-53C20M-DP1-P0 60 S355 IPE360 391 28 PO DP1 621 6.0
54 6E36-S3C20M-DP1-P3.3 60  S355 IPE360 391 28 P3.3 DP1 654 97
55  6E36-S3C20M-DP1-P151 60  S355 IPE360 391 28 P151  DP1 658 7.7
56 6E36-53C20M-DP2-P0 60 S355 IPE360 391 28 PO DP2 758 6.0
57 6E36-S3C20M-DP2-P3.3 60  S355 IPE360 391 28 P3.3 DP2 747 8.4
58 6E36-S3C20M-DP2-P151 60  S355 IPE360 391 28 P151  DP2 755 5.9
59 8E45-53C45M-DP1-P0 81 355 IPE450 391 54 PO DP1 1026 6.0
60 8E45-S3C45M-DP1-P33 81  S355 IPE450 391 54 P3.3 DP1 1092 97
61  BE45-S3C45M-DP1-P151 81  S355 IPE450 391 54 P151  DP1 1087 7.7
62 16E60-S3C45M-DP1-PO 162  S355  IPE600 391 54 PO DP1 2014 6.0
63  16E60-S3C45M-DP1-P3.3 162 S355 IPE600 391 54 P3.3 DP1 2253 9.7
64  16E60-S3C45M-DP1-P15.1 162  S355 IPE600 391 54 PI51  DP1 2234 7.7
65 16E60-S3C45M-DP2-PO 162  S355  IPE600 391 54 PO DP2 2504 2.2
66  16E60-S3C45M-DP2-P3.3 162 S355 IPE600 391 54 P3.3 DP2 2578 8.8
67  16E60-S3C45M-DP2-P15.1 162  S355 IPE600 391 54 PI51  DP2 2655 6.7
68 16E60-S3C20M-DP1-PO 162 S355  IPE600 391 28 PO DP1 1980 6.0
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Table B.4  Details of the parametric studies PS-2 (part 2)

# Name m ome PO b veay  com DSt gl o
69  16EG0-S3C20M-DP1-P33 162  S355  IPE6O0 391 26 P33 DPL 2216 97
70 16E60-S3C20M-DPL-PIS1 162  S355  IPEGO0 391 26 P51 DPL 2197 77
71 16E60-S3C20M-DP2-PO 162  S355  IPEGO0 391 28 PO DP2 2511 60
72 16E60-S3C20M-DP2-P33 162  S355  IPE6O0 391 28 P33 DP2 2454 79
73 16E60-S3C20M-DP2-PIS1 162  S355  IPEGO0 391 26 P51 DP2 2526 59
74 6E27-S3CASD-DP1-PO 60  S355  IPE270 355 30 PO DPL 325 60
75  6E27-S3CASD-DP1-P33 60 S35  IPE270 355 30 P33 DP1 320 106
76  6E27-S3C4SD-DPL-PIS1 60 S35  IPE270 355 30 P51 DPL 337 88
77 6E27-S3CASD-DP2-PO 60  S355  IPE270 355 30 PO DP2 42 60
78 6E27-S3C45D-DP2-P33 60 S35  IPE270 355 30 P33 DP2 394 93
79 6E27-S3C4SD-DP2-PIS1 60 S35  IPE270 355 30 P51 DP2 429 71
80  6E27-S3C20D-DPL-PO 60  S355 IPE270 355 1333 PO DPL 322 60
81  6E27-S3C20D-DP1-P33 60  S355 IPE270 355 1333 P33  DPL 328 100
82 6E27-S3C20D-DPL-P151 60  S355  IPE270 355 1333  PI51  DPL 352 88
83 6E27-S3C20D-DP-PO 60  S355 IPE270 355 1333 PO DP2 405 60
84  6E27-S3C20D-DP2-P33 60 S35  IPE270 355 1333 P33 DP2 364 82
85  6E27-S3C20D-DP2-P151 60  S355  IPE270 355 1333  PI51  DP2 398 60
86  G6E36-S3C4SD-DPL-PO 60 S35  IPE360 355 30 PO DPL 53 60
§7  6E36-S3CASD-DP1-PB3 60 S35  IPE360 355 30 P33 DPL 564 106
88  6E36-S3C4SD-DPL-PISL 60 S35  IPE360 355 30 P51 DPL 583 88
89 6E36-S3C4SD-DP-PO 60 S35  IPE360 355 30 PO DP2 657 60
9  6E36-S3CASD-DP2-PB3 60 S35  IPE360 355 30 P33 DP2 58 80
91  6E36-S3C4SD-DP2-PI51 60 S35  IPE360 355 30 P51 DP2 681 84
92 6E36-S3C20D-DPL-PO 60  S355  IPE360 355 1333 PO DPL 53 60
93 6E36-S3C20D-DP1-P33 60  S355  IPE360 355 1333 P33  DPL 538 99
94  6E36-S3C20D-DPL-PIS1 60  S355  IPE360 355 1333 P51 DPL 569 838
95  6E36-S3C20D-DP-PO 60  S355  IPE360 355 1333 PO DP2 644 60
9  6E6-S3C20D-DP2-P33 60  S355  IPE360 355 1333 P83 DP2 579 77
97 6E36-S3C20D-DP2-P151 60  S355  IPE360 355 1333 P51 DP2 610 57
98 BE45-S3C4SD-DPL-PO 81  S355  IPE450 355 30 PO DPL 871 60
99 8E45-S3CASD-DP1-PB3 81 S35  IPE450 355 30 P33 DPL 898 106
100 8E45-S3C45D-DP1-PIS1 81 S35  IPE450 355 30 P51 DPL 924 88
101 16E60-S3C45D-DPL-PO 162  S355  IPEGO0 355 30 PO DPL 1568 60
102 16E60-S3CASD-DP1-PS3 162  S355  IPEGO0 355 30 P33 DPL 1821 106
103 16E60-S3C4SD-DPL-PIS1 162  S355  IPEGO0 355 30  PI51  DPL 1870 88
104 16E60-S3C45D-DP2-PO 162 S35  IPEGO0 355 30 PO DP2 2208 60
105  16E60-S3CASD-DP2-PS3 162 S35  IPEGO0 355 30 P33 DP2 2120 106
106 16E60-S3C4SD-DP2-PI51 162 S35  IPEGO0 355 30 P51 DP2 2178 75
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Table B.5 Details of the parametric studies PS-2 (part 3)

# Name m orae PO Ba Mba s DSE Gkl o
107 16E60-S3C20D-DP1-PO 162  S355  IPE600 355 1333 PO DPL 1560 60
108 16E60-S3C20D-DP1-P33 162 S35  IPE600 355 1333 P33  DPL 1815 106
109 16E60-S3C20D-DP1-PI51 162  S355  IPE600 355 1333 P15l DPL 182 88
110 16E60-S3C20D-DP2-P0 162  S355  IPE600 355 1333 PO DP2 2109 60
111 16E60-S3C20D-DP2-P33 162  S355  IPE600 355 1333 P33 DP2 2033 94
112 16E60-S3C20D-DP2-P151 162  S355  IPE600 355 1333 P15l DP2 2083 64

The moment-deflection curves are presented in Figure B.14 - Figure B.17. In the figures, the dots
represent shear connector failure. If no dot is presented at the end of the curve, it means that the failure
occurred in a different way: either by concrete crushing or by plastification of the steel section. The left
and the right figures correspond to the same simulations with expected values (left) and with design

values (right).
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(@) (b)

Figure B.14 Moment deflection curves (a) simulation #35-#40, (b) simulation #74-#79
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Figure B.15 Moment deflection curves (a) simulation #41-#46, (b) simulation #80-#85, (c) simulation

#47-#52, (d) simulation #86-#91
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Figure B.16 Moment deflection curves (a) simulation #53-#58, (b) simulation #92-#97, (c) simulation

#59-#61, (d) simulation #98-#100
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Figure B.17 Moment deflection curves (a) simulation #62-#67, (b) simulation #101-#106, (c) simulation
#68-#73, (d) simulation #107-#112
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Figure B.18 Slip distribution of 6 m long beams with IPE270
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Figure B.22 Slip distribution of 6 m long beams with IPE270 (modelled with design values)
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Figure B.23 Slip distribution of 6 m long beams with IPE360 (modelled with design values)
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Figure B.24 Slip distribution of 8.1 m long beams with IPE450 (modelled with design values)
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Figure B.25 Slip distribution of 16.2 m long beams with IPE600 (modelled with design values)
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Annex C  Equations for elastic calculations

C.1  Assumptions
(i) The beam in consideration is as an Euler-Bernoulli beam, i.e. the cross-sections originally plane
and perpendicular to the axis of the beam remain plane and perpendicular to the axis of the beam
after deformation.
(if) Only small displacements are considered.
(iii) The material is linear elastic and isotropic.

C.2 Basic material equations — engineering stress and engineering strain

Equations (C.16) and (C.17) present the simplest forms of the engineering stress and the engineering

strain:
o=F/A (C.16)
e = Al/l, (C.17)

where o is the engineering stress, F is the normal force acting on the cross-section and A is the original
cross-sectional area, ¢ is the engineering strain, 4/ is the elongation and lo is the original length of the

element.

Elastic materials do not show any irreversible phenomena due to external loads. In the case of linear

elastic isotropic materials the relationship between the stresses are linearly proportional to the strains:

0 =09+ Ee (C.18)

Generally, the initial stresses o are neglected because they are significantly smaller than the stresses of

active loads, so the above equation takes the following form:

o = Ee (C.19)

where E is the modulus of elasticity. This equation is referred to as the Hooke’s law in standard
engineering practice. Using equations (C.16) and (C.19), we obtain the relationship between the strain
¢ and the normal force F:

F

o
° - C.20
FTF (C.20)

o
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C.3 Basic equations of beam theory
According to the Euler-Bernoulli beam theory the relationship between the deflection and the applied
load is:

d? Py d?w(x)
dx2\"7Y dx?

) = 200 (c.21)

The flexural rigidity Ely of the beam is often constant along the length, therefore the equation above

becomes:

£l d*w(x)

S =q,(x) (C22)

where w(x) is the deflection of the beam and q(x) is the external load.

The rotation ¢(x) is the first derivative of the deflection:

dw(x)

— C.23
o) =—7 (C.23)
The curvature x(x) is the first derivative of the rotation:
d?w(x) do(x)
= = C.24
() dx? dx (C.24)
The relationship between the external load g,(x) and the shear force V,(x) is:
f q,(x) dx = V,(x) (C.25)
The relationship between the shear force V,(x) and the bending moment My(x) is:
fVZ(x) dx = ff q,(x)dx? = M, (x) (C.26)
or, in another form:
d*My,(x)  dV,(x)
= = C.27
dx? dx 92(%) (€27
Using equations (C.22) and (C.27) we obtain:
d?w(x)
or:
M, (x)
_ My
k(x) = an (C.29)
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According to the Euler-Bernoulli theory, the neighbouring planar cross-sections have different rotations
during pure bending. As a result, the longitudinal fibres that connect them undergo normal strains. The
magnitude of these strains &x(z,x) is the product of the difference in rotation between the sections

do(x)/dx, and the distance z between the fibre in consideration and the axis of the rotation:

& (z,x) = dq;ix) z=k(x)z= Mgl(x) -z (C.30)
y

Using equations (C.19), (C.29) and (C.30), we can express the normal stress ox(X,z) due to the bending

moment as:

_ M, (x) L M, (x) .

V4
EI, I,

0,(x,z) =E-&,(x,2) =E k(x)-z=E (C.31)
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C.4 Composite beams with rigid and flexible shear connections

C.4.1 Assumptions
(i) The steel and the concrete can be considered as linear elastic isotropic materials.
(if) There is no separation between the steel beam and the concrete slab.
(iii) There is no cracking of the concrete.

(iv) The curvature of the steel and the concrete is equal at any section.

C.4.2 Basic equations

In order to determine the second moment of area lye Of the composite section, first consider the
equilibrium equations of the composite section due to an externally applied moment My(x). As a result
of the composite action, a compression force Fy¢(X) acts in the concrete slab and a tension force Fya(x)
in the steel beam:

Ec, Ao, Iy

vew Py [ = F, .+dF M, +dM, . .
( XC, LT : * . __ i X,C X,C ') y.C y.C | HERE _@_:": T 5 — e he
i ks ks i s-ds - ] _hy
. Ssceq ..‘ a
Ya
My.a M, ,+dM, ,
(q’i‘i S Fx.a:’deav _@_ ¥ ha
Ea, Aa, |
E . .

Figure C.1 Theoretical model and cross-sectional forces of a composite beam with flexible shear

connection

If there is no externally applied normal force, the magnitudes of these forces are equal. This will be

denoted as F«(x) in the forthcoming.

Fx,a(x) —Fc(x)=0

|Fx,a(x)| = |Fx,c(x)| = FE.(x) (C'32)

The externally applied moment My(x) is equilibrated by the moment resisted by the slab M, ¢(x), the
moment resisted by the steel beam My.a(X), and the moment generated by the pair of the normal forces
Fx(X):

My(x) = My,c(x) + My,a(x) + Fx(x) a (C.33)

where a is the distance between the centroidal axes of the slab and the steel beam. For a typical

composite beam, it can be calculated as:
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a=y,+h,+h/2 (C.34)

where v, is the distance between the top fibre of the steel beam and its centroidal axis, hy is the height

of the metal decking, and hc is the depth of the concrete over the metal decking.
The curvature of the slab and the steel beam is the same at any section:

Ko (%) = Kq(x) = k(%) (C.35)

Using equation (C.29), the previous equation becomes:

Mye() _ Mya(o) _ My() _
Ecly . Eulyq Eolyerr

K(x) (C.36)
The modular ratio expresses the ratio of the modulus of elasticity of the steel and of the concrete:

n=E,/E, (C.37)
If we rearrange equation (C.36), we obtain the moment resisted by the concrete:

M, (x) M@ Ea M@

M, (x) = El, ,=——— —" =—1 C.38
7 Ealyers ©7 Ealyerp m 7% molyeps ™ (©39)
Similarly, the moment resisted by the steel beam is:
M, (x) M, (x)
My,a(6) = =—Ealya = 7y (C.39)
a‘y.eff yeff

Using equation (C.36) in equation (C.33), we can express the second moment of area:

M, (x) = My, (x) + My 4 (%) + F(x) - a
With:

My,c(x) = Ecly,CK(x)i
M, o(x) = Eql,, 4k (x), and
M, (x) = E4l,, o5 pk(x); We obtain:

Eqlyerpic(x) = EcL, ck(x) + Eqly gk (x) + Fc(x) - a
With:
E. = E,/n,

E
Eqly erpk(x) = 7“ yck(X) + Eqly ok(x) + E(x) - a

1
Eqlyerpic(x) = (% + Iy,a> Ejx(x)+ E(x)ra
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Dividing both sides by Eax(x):

I F(x)-a
1 = >y +1 4+ — "
veff n y,a Ek(x)

(C.40)

The rate of change of slip ds(x)/dx is determined by the strain difference between the steel and the

concrete at their contact surface i.e. at the top fibre of the steel beam:

ds(x)
dx

= gx,a(Z' X) - SX,C(Z' .X)

(C.41)

The strains in the steel and in the concrete can be calculated as the sum of the strains arising from the

normal force and the bending moment. It is important to note that attention needs to be payed to the

signs of the strains as the absolute values of the force F(x) and the distance z is used. Positive sign

denotes elongation and negative sign denotes compression. Using equations (C.20) and (C.30), we can

obtain the strains at the contact surface:

M, .(x) h E.(x)
y.c c X
PRCNEE
Ec(2,%) Ecl,, ( »* o) T E.4,
M@ R
Ealya ° " Eqfqg

‘Sx,a(z; xX)=—

By substituting equations (C.42) and (C.43) into equation (C.41), the rate of change of slip is:

ds(x) _ My,a(x) o
dx Eqlya % E.l,.

2

My,c(x) ) (hp hc) n Fe(x) n F(x)
EqAq  EcAc

If we substitute equations (C.37)(8.4) and (C.38) into the equation above, we obtain:

My(x) M, (x)
ds(x I y.a n-l y.e h E.(x) E.(x
ds(x) _ _ Lyesr gy — o vers _(hp+_c)+ () | E®
dx Eqlyq E.L, . 2 E,A, E/A,
M, (x) M, (x)
ds(x I n-l h E.(x) FE.(x
() _ veff L, _ y,eff_<hp+_c)+x()+x()
dx Eq Ec 2 EqAq  EcAc
With:
E. =E;/n
M, (x) M, (x)
ds(x I n-l h E.(x) FE.(x
) _ veff ., y,eff_(hp_l__c)_l_x()_l_x()
dx Eq Eq 2) EqA, Eay
n n c
hc
ds(x) M. () Yathy+5 F(x) FE(&)-n
= — X) "
dx Y 2 E,A,  E,A.

(C.42)

(C.43)

(C.44)
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with:
h.
a=y,+hy+—
2
ds(x) a E.(x) /1 n)
=MW (A_a tr (C.45)

If we rearrange equation (C.45) for My(x), we get:

a ds(x E(x)/1 n
My = W) BW(1, 1)
Ealy,eff dx Ea Aa AC
ds(x) Eglyess E.(x) Ealyeff< 1 n)
M — . ’ . ’ 4
y(*) dx a E, a \4, * A,
dS(X) Ealy eff Fx(X)Iy eff Ac + TLAa
M = — . . : C.46
y(*) dx a a ( AA, ) (C.46)

C.5 Elastic normal stresses from bending

The normal stresses from bending can be determined using equation (C.31). Therefore, the normal stress

in the concrete from bending can be calculated as:

My,c (x) ]

Zc
Iy,C

Oxc(2,x) = (C.47)

where z is the distance between the fibre in consideration from the centroidal axis of the concrete.

Using equation (C.38), we obtain:

M, ()

n-Lyers V° M, (x) C.48

Oy, c(2,%) = erff “Ze = JI/ "Zc ( )
y.c n-lyerr

Similarly, using equations (C.31) and (C.39) we can express the normal stress in the steel:

M, (x)
Myo(x)  Tyopp e M@ (C.49)
f ,€ .
Gx,a(z'x)z );a “Zg = 2 I “Zg = Iy " Zg
y.a y.a veff

In the equations above My (x), Mya(x) and My(x) denote the bending moment that acts on the concrete,

the steel and the composite section respectively.
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C.5.1 Second moment of area for rigid connection

In order to determine the second moment of area, we use equation (C.40):

I E(x)-a
I =2y X7 -
yeff =y Ya " Eux(x)

With:

Eqr(x) = My (x) /1y eff

I E.(x)-a
__lyc X
Berr = e * G
Iyers
I E(x)-a-l
_ e x yeff
Lyerr = -t Lo+ M, () (C.50)
In the case of rigid shear connection, there is no slip between the slab and the steel beam:
s(x)=0 (C.51)
Therefore:
d
S® _ (C.52)
dx
So equation (C.46) becomes:
Fx(X)Iy eff AC + TlAa
M = . C.53
() ~5) (C.53)

We obtain the effective second moment of area of composite beams with rigid shear connectors by

substituting equation (C.53) into equation (C.50):

FX(X) a- Iy,eff

Iyesr ===+ 1,0 +
VeIl = T T E (O] erf (Ac + nAa)
a AcA,
I a?
- rc - -
Dyerr == tlyat (AC + nAa)
AcAq
I AA
I Py L .g? (C.54)

yeff = ya ™y A, +nA,
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C.5.2 Second moment of area for flexible connection

In the case of flexible shear connection, generally the slip s(x) is assumed to vary according to a cosine
function along the length of the beam [43], [44]. As a result, the compression force F(x) and moment
My(x) is assumed to vary according to a sine function. This moment diagram corresponds to an external
load g.(x) that is distributed according to a sine function along the length. However, it is still a good
approximation for a uniformly loaded beam where the moment diagram is a second order parabola.

The second moment of area can be determined in the same way as in the case of rigid shear connection.
The assumed slip function is:

s(x) =5 cos (?) (C.55)

where 5 is the end slip, L is the span of the beam, and x is the distance along the length of the beam from

a support.
Therefore:
ds(x) T X
— _s. o an (22 C.56
< ST sm( T ) (C.56)

The shear connector forces Ps(x) are not considered in discrete points, but over a unit length:

_ kse  _ X kge
P (x) = s(x) 'Ssc,eq = §-cos (T) -Ssc‘eq (C.57)

where K is the stiffness of the shear connectors, and ssceq iS the equivalent longitudinal spacing. The

compression force in the slab Fx(x) can be determined from the integral of the shear connector forces:

X k X
E(x) = f P (x) dx = 5 —= f cos (t—x) dx =
0

0 Ssc,eq

X

F(x) = s'-&- [E *sin (E)]

Ssceq LT L 0
k L X k L
Fx(x):s_-i-—-sm(—)— +—2.—-sin0
Ssceq T L Ssceq T
ke L X
E —g.—2° ._.qin(—
2(x) =3 Seeq T sm( I ) (C.58)

Using equations (8.16) and (8.18), equation (8.7) becomes:

E) ) Ealy,eff 45 ksc ] L o (E) Iy,eff (AC + TlAa>

My (x) = 5+ sin (
y X = s sy a Ssceq T
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I k L /A, +nA
My(x):S_'Sin(TZ—x)'M(Ea-%{- sc __( ctn a)) (C.59)

a Ssceq T\ AcAq

Substituting equations (C.59) and (C.58) into equation (C.50) we obtain the effective second moment
of area of composite beams with flexible shear connectors:

e kse L (XY
I ! ‘+I,.+ * Ssceq T Sm(L) alyess
yveff = y.a
" §'Sin(ﬂ)-m E .E+ ks _£(A5+TlAa)
L a @ L Ssceq T\ Acdq
ksc L. a2
Iy, Ssceq T

., ks LA.+nA,
e T Sseq A ( A4, )

Dividing both the numerator and the denominator by ((ks¢ * L)/(Ssc,eq * T))

I a?

_be
lyerr = n tlyat E, n)2+Ac+nAa
AcA,

( ke )(E
Ssceq

Multiplying both the numerator and the denominator by A./n

1 eff:Iy_’C+I at (%)az
T O )+ @) ()
<Ssc,eq)
I (%)
_yc n
T R (R
SC a
<Ssc,eq>
I A./n
Iyefs = Lyq + 25 : -a?
e A ) ®) o
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C.5.3 Relationship between the end slip and the moment at mid-span
In order to determine the relationship between the end slip and the moment at mid-span, we need to

rearrange equation (C.59) for the end slip:

_ X\ lyesr n ks L/A.+n4,
My =5 in () etz g, Ty Jee L )
y(x) =3 sm(L) " <a L+Ssc,eq \ A4, (C.61)
With:
x=1LJ2

I ke, L /A, +nA
My(L/2)=S_-sin(g)-%ff<E .E+ s¢ ._( cThn a))

“ L Seceq T\ Al
With:

M = M, (L/2)

Fosoq-2etsg Ty K .E(Ac”Aa)
L Ssceq T AA,

M

M(E 2y e L (A +nAa)>

L Ssceq T AA,

M-a

kg LA.+nA,
Iyerr <Ea LT Seceq = A4, )
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With the introduction of the following parameter:

a
Sk = E, A, + nA,
( koo )(5)2 AcA,
Ssceq/ \TU
_ S5, s T
s=M k sc,eq
Lyerr ks L

Where M is the moment at mid-span.

Alternatively, the mid-span moment can be expressed based on the end slip:

=3 Iyerr ksc £
Sk SsceqT

=3 Iyerr ks £
Sk SsceqT

(C.62)

(C.63)

(C.64)

(C.65)
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C.5.4 Elastic deflection determination

The elastic deflection of a composite beam can be determined as the double integral of the curvature
function.

k(x) = (C.66)

When the beam in consideration is prismatic, i.e. the cross-section is uniform along the length, the well-
known formulations can be used for the calculation of the elastic deflections. These formulations are
summarised here for the basic load cases.

For a point load P at mid-span:

PL?
W= (C.67)
48 Ealyery

For symmetric 2-point loads acting at a distance e measured from the supports:

Pe

w=———(3L?—4e?) C.68
24‘ " Ealy,eff ( )

For uniformly distributed load:

5 qL*
384 Eqlyers

= (C.69)
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C.5.5 Location of the elastic neutral axes

The slab and the steel beam have their own elastic neutral axis (see Figure C.2):

]

Ya
_@_ 777777777777 y v ha
Ea, Aa Iy
E A Ex,a,bm

Figure C.2 Strain diagram of a composite beam with flexible shear connection

If there is no shear connection, each element has its neutral axis in its centroidal axis. Using the notations
of the figure above, this means:
Zel,c = hc/2 (C.?O)
Zeta = Ya (c.71)

where zq ¢ is the distance between the neutral axis of the concrete and its extreme fibre in compression,

and ze4 is the distance between the neutral axis of the steel beam and its extreme fibre in compression.

If the connection between the slab and the steel beam is rigid, their neutral axes coincide:

Zeole = hc + hp + Zela (C-72)

In the case of a flexible shear connection, the location of the elastic neutral axes depends on the stiffness

and spacing of the shear connectors.
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Elastic neutral axis in the concrete

At any section, the concrete is subjected to a bending moment My c(x) and a compression force Fx(x).

The corresponding strains are presented in Figure C.3.

x.c,M x,.c,F Exc

- |+ -+ £ +

x.c,1op”

R i he/2 !
ey % z
el,c

he/2 €

x,c,boti

L

Figure C.3 Strains in the concrete slab
The strains on the top and on the bottom fibre are:

My,c(x) Fx(x)
ez —
Ecly,c E.A.

Ex,c(x,2) = (C.73)

h
Ex,c,top (X) = &y (x; - E)

h
Ex,c,bot (x) = Ex,c (x; + E)

¢ (x) = My,c(x) ] (_ E) _ Fx(x)
x.c.top E.l,, 2 E A,
With:
M, (x)
M =2
y,c(x) n- Iy,eff y,c
M, (x)
ceptop () = el 2 () B
x.c,top E.l,, 2 E.A,
€ (x)—i _MV—OC)(E>_Fx(x)
x.c.top EC n- Iy,eff 2 AC
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With:
M, (x) rh
_ My he
O-X'C'M(x) N n- Iy,eff ( 2 )
and
E,(x)
Ox,c,F (x) = 3246
1
Ex,c,top x) = E_ (_ Ox,c,M (x) — Ox,cF (x)) (C-74)
c
1
Ex,c,bot (x) = E_ <+ Ox,.c,M (x) — O'x,c,F(x)) (C.75)
c

At the neutral axis, the strains are zero. From similar triangles (see Figure C.3):

hc — Zel,c (C 76)
Sx,c,top (x) - Sx,c,bot(x) gx,c,top (x) -0 .
Rearranging the previous equation for zic, and substituting equations (C.74) and (C.75):
4 = he - Ex,c,top (x)
ele Ex,c.top (x) — Ex,c,bot(x)
1
hc ’ E_c (_ Ox,c,M (X) — Ox,cF (x))
Zel,C = 1 1
E_c (_ Ox,c,M x) — Ox,c,F (x)) - E_c (+ Ox,c,M x) — Ux,c,F(x))
hc (_ Ox,c,M (x) — OxcF (x))
VA =
ebe — Ox,c,M (x) — Oyx,cF (x) — OxcM (x) + Ux,C,F(x)
_hc ( Ox,c,M (x) + Ox,c,F (x))
VA =
ele -2 Ox c,M (x)
h +
Zoyo = c ( Ox,c,M (x) Ox,cF (x)) (C.??)
’ 2 Ox,c,M (x)

Using the relationships between the compression force in the concrete Fy(x) and the end slip § (Eq.
(C.58)) and the between the end slip and the moment at mid span (Eg. (C.63)) the compression force

can be expressed in the function of the mid-span moment M:
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L X
F(x)z_-i._.sin -
* sc,eq ( L )
With
v Sk Ssc,eqz
IJ’.eff ksc L
Sk Ssc eq kse L X
o= o L Seeg 7w O\T C.78
i Ly ers ksc L Ssceq T ( L ) ( )
From equation (C.61), the moment My(x) in the function of the mid-span moment is:
_ . Tx
M, (x) = M - sin (T) (C.79)

Substituting the equations above into equation (C.77), the location of the elastic neutral axis can be
expressed by equation (C.80)(8.32):

_ he ( Oxem(X) + Ox,c,F (x))

Tete = 2 Ux,c,M(x)
with:
M,(x) rh
O-xCM(X)_Tl'}II ff<7c>
y.e
and
Fe(x)
Ox,cr(X) = );1
c
( M, (x) (1) + 52
2 _ n Iy,eff 2 AC
ebe , M@ (h,
n- Iy,eff (7)
—_ 5. S n k L X
V7 cin (X M=k 5984 2 _Tse L2 .gipn (==
L M sm(L )(£>+ Ly esr ke L Ssceq T (L)
¢ n- Iy,eff 2 AC
Zele = = . (TIX
) MSII’I(T)<&)
n- Iy,eff 2
hC n- Sk
Zel,c - ? + Ac (C.80)
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Elastic neutral axis in the steel

At any section, the steel beam is subjected to a bending moment My a(x) and a tension force Fx(x). The

corresponding strains are presented in Figure C.4.

—

|

|

|

| ﬁ(x)‘) ’
R

|

|

|

|

|

—

X,a,bot

Figure C.4 Strains in the steel beam
The strains on the top and on the bottom fibre are:

Mya() B () (C.81)
Ealy,a E Aq

‘Sx,a(x' z) =

‘Sx,a,top(x) = £x,q (X, —¥s)

‘Sx,a,bot(x) = gx,c(x' hq = ¥s)

M,y o (x) F(x)
y.a x
= (= +
gx,a,top(x) Ealy,a ( YS) EaAa
with:
M., (x)
My,a(x) = Iy Iy,a
veff
M)
Lyers V@ F(x)
£ () = 22— (—y9) +
Xx,a,top Ealy,a S EaAa
e LM RO
x,a,top Ea Iy’eff S Aa
and
1 (M, (x) E,(x)
Yy X
= -(h, —
sx,a,bot(x) Ea < Iy,eff ( a ys) + Aa
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With
M, (x)
Ox,a,M,top (x) i Y Vs
veff
(x)
Ux,a,M,bot(x) = Iy ' (ha - ys)
veff
and
F(x)
Ox,a,F (x) = 3;1
a
1
Ex,atop (x) = E_ (_ Ox,a,M,top (x) + Gx,a,F(x)) (C-82)
a
1
Sx,a,bot(x) = E_ (+ Ux,a,M,bot (x) + O-x,a,F(x)) (0-83)

a

At the neutral axis, the strains are zero. From similar triangles (see Figure C.4):

hq Zel,a

Ex,a,top (x) — fgx,a,bot(x) Ex,a,top x)—-0

(C.84)
Rearranging the previous equation for z ., and substituting equations (C.82) and (C.83):

ha " Ex,atop (x)
gx,a,top (x) - gx,a,bot(x)

Zela =

1
hg E_a (_ Ox,a,M,top (x) + Ux,c,F(x))

Zela = 1 1
E_a (_ Gx,a,M,top (x) + Gx,a,F(x)) - E_a (+ Gx,a,M,bot(x) + Ux,a,F(x))

hg - (_ Ox,a,M,top (x) + Ux,c,F(x))

Z I =
er - Ox,a,M,top (x) + Ox.aF (x) — Gx,a,M,bot(x) — Ox,aF (x)
hg - ( Ox,a,M,top (x) — Ox,c,F (x))
Z I =
e Ox,a,M,top (x) + Ux,a,M,bot(x)
With:
M, (x)
Yy
Ox,a,M,top (x) = I Vs
veff
M, (x)
y
O_x,a,M,bot(x) = I ' (ha - ys)
veff
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and

. My(x) . _ Fx(x)
7 _ ha ( Iy,eff s Aa )
M M@

(h., —
Lerr 5T 1o (ha —¥s)
M, (x) E.(x)
. Yy . _
h, (Iy,eff Vs A,
Z =
I MG M0

Y, Y,
Lyesr 7% dyerr % yepr 7°

My(x) . Fx(x)

i Ys =74
_ ‘yeff a

Lyerr

The magnitude of the tension force in the steel is equal to the compression force in the concrete.
Substituting equations (C.78) and (C.79) in the equation above, we obtain the location of the neutral

axis in the steel beam:

_ S S T k L X
o (X M2k _Zscea’ . %sc . Z.gip (22
M- sin (T) e — Lyerr ksc L Ssceq T (L )
Zora = Lyerr s Aq
ela — — . X
M - sin (T)
Lyesr
Sk
Zela = Vs — A (C.86)
a
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C.6  Composite beams with nonlinear shear connection

C.6.1 Second moment of area for nonlinear connection

The derivation of the equations in the case of nonlinear connection is done similarly to the case where
flexible shear connection is applied. The main difference is that instead of considering one single shear
connector stiffness ks, which describes all shear connectors at all load levels, different shear connector
stiffness values are considered for each shear connector based on the actual load that they observe. In
other words, at every load level every shear connector has its own individual stiffness ks (see Chapter

8.5.1.). The assumption of a cosine slip function is maintained:

_ X
s(x) =5-cos <T) (c.87)
Therefore:
ds(x) _m X
— —F.—.cin (=2 C.88
—— =57 sin(T) (C.88)

The shear connector forces Psi(x) based on the slip function and their secant stiffness values can be
described with the following expression:

Poci(0) = s(x) 25 = 5. cos (T2 Lok (C.89)

Ssc,eq L Ssc,eq

Because this function is non-continuous along the length, the compression force Fx(x) in the slab will be

the sum of the integrals of the parts where the function is continuous:

dx = 7Tx ki p
(Xm) ZJ(I DL scz(x) x = 2_];1 1)L ) ) -Ssc,eq x

i=1 an i=1 an
L
nx an
Fe(tm) = Z [ ]
" Ssc,eq 7T ) (12—_1)L
np

E.(xy) = s'i Ksci £ [sin <£> —sin <—(l _ Dn)] C.90
x\tm L Ssc,eq T an an ( . )

where m is the number of shear connectors (or pairs of shear connectors) and xn is the distance from the
support until the section in consideration. Using the equations (C.88) and (C.90) in the moment equation

(C.46):

ds(x) Ealyers Fx(x)ly,eff (AC+nAa)

My(x) = - dx a a A A,
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(C.91)

N ki L [ <m> . <(i—1)n>] Lyeffm (Ac +nAq
+ 5 ——-|sin{ —— ] —sin ( )
—i Ssceq T 2n, 2n,, a AcA,

If we substitute equations (C.90) and (C.91) into equation (C.50), we obtain the effective second

moment of area at shear connection m:

I F(x)-a-1
_yc yveff
berr = ¥t =36y (B.32)
I a?
Iy,eff,m = = + Iy,a + mi
E, - sin|5—
T ¢ (an>

L om Keci L _[Sin( m)_sin ((i—l)n)] +(A0At£aAa) (C.92)

=1Ssceq ™ 2n,,

As one can see, the second moment of area is not constant, nor continuous over the length, but it has a

certain value at every shear connector. Its value at mid-span is:
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C.6.2 Relationship between the end slip and the moment at mid-span

In order to determine the relationship between the end slip and the moment at mid-span, we need to

rearrange equation (C.91) for the end slip.

(C.94)

With:
x=1LJ2
T E Iyeffn 2 ksci L i (l—l)ﬂ Iyeffn AC+TLAa
M,(L/2) =5 —- 'p+_z ~— [sin(—)—sin( )] ’ 'p< )
y(L/2) L a L Ssceq T 2n,, 2n,, a A A,
< (i-1)
Ly z keei L | . [ im ) i—Dm (AC +nAa>
M,(L/2) =3 a [ Ea + LS sin o sin o AA,
s M,(L/2)-a
E . np ksc,i £ s i e (l — 1)7'[ AC + Tl.Aa
<L Balyerr + 2izi5, |5 (an) S‘“( 2n, Iyesr ( A4, )
With:
M= M, (L/2)
~ M-a
S =
L np Ksci L [ (im\ . (i—1)n>] A, +nA
yersmy (L Eo+ X5 Ssceq T [sm (an) sm( 2n,, ( CAcAa a)
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Annex D Results of the plastic calculation method (Method PL1)

Table D.1 - Table D.3 show the comparison of the results of the numerical simulations (parametric study
PS-2) and the developed calculation method for the calculation of the plastic moment resistance
(described in Chapter 9.4.2). Those beams where non-demountable welded stud connectors (PO) were
used and a not satisfy the minimum degree of shear connection requirement of Eurocode 4 [18] (see
equation (2.44) and (2.45)) could not develop the assumed plastic stress distribution before shear
connection failure took place at the slip of 6 mm. This observation illustrates well why the code does
not allow to apply these beams. Therefore, these beams were excluded from the presented comparison.

On the other hand, demountable composite beams (with shear connection P3.3 or P15.1) that have a
degree of shear connection lower than the minimum required by the code are still included in the
comparison because their fundamental behaviour is significantly different from the one of welded studs
(see Figure 7.3). They have a higher deformation capacity and a monotone increasing load-slip

behaviour.

This shows that the minimum degree of shear connection rules may need to be redefined for

demountable shear connections.

Table D.1 Comparison of the numerically and analytically obtained results (part 1)

Murem  Preff Mol 3 Hmin v Mpey i
# Name [kNm]  [kN]  [kNm] [-] [-] [[1 [kNm]  []

35 6E27-S3C45M-DP1-PO 389 109.0 490 061 040 052 407 0.96
36 6E27-S3C45M-DP1-P3.3 406 107.2 490 060 040 0.20 404 1.00
37 6E27-S3C45M-DP1-P15.1 411 115.6 490 064 040 0.26 416 0.99
38 6E27-S3C45M-DP2-P0O 526 103.1 490 100 040 0.68 490 1.07
39 6E27-S3C45M-DP2-P3.3 503 88.4 490 098 040 033 496 1.01
40 6E27-S3C45M-DP2-P15.1 513 106.8 490 100 040 042 490 1.05
41 6E27-S3C20M-DP1-PO 383 108.9 469 061 040 053 398 0.96
42 6E27-S3C20M-DP1-P3.3 403 107.2 469 060 040 021 396 1.02
43 6E27-S3C20M-DP1-P15.1 407 115.6 469 064 040 0.27 407 1.00
44 6E27-S3C20M-DP2-PO 481 102.8 469 100 040 0.69 469 1.02
45 6E27-S3C20M-DP2-P3.3 466 87.3 469 097 040 0.34 473 0.98
46 6E27-S3C20M-DP2-P15.1 475 105.8 469 100 040 043 469 1.01
48 6E36-S3C45M-DP1-P3.3 659 101.7 883 036 040 015 662 1.00
49 6E36-S3C45M-DP1-P15.1 663 115.6 883 041 040 0.20 682 0.97
50 6E36-S3C45M-DP2-P0O 780 104.1 883 0.73 040 0.60 807 0.97
51 6E36-S3C45M-DP2-P3.3 820 85.9 883 060 040 0.26 760 1.08
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Table D.2  Comparison of the numerically and analytically obtained results (part 2)

Mu,Fem Preff Mol ] Hmin v Mpiy O
# Name [kNm]  [KN] [KNm] [-] [-] [[1 [kNm] [-]
52 6E36-S3C45M-DP2-P15.1 827 106.7 883 075 040 0.33 814 1.02
53 6E36-S3C20M-DP1-P0O 621 109.0 827 041 040 044 664 0.94
54 6E36-S3C20M-DP1-P3.3 654 1009 827 038 040 0.15 653 1.00
55 6E36-S3C20M-DP1-P15.1 658 1156 827 044 040 021 673 0.98
56 6E36-S3C20M-DP2-P0 758 103.7 827 079 040 071 778 0.97
57 6E36-S3C20M-DP2-P3.3 747 84.8 827 064 040 0.30 738 1.01
58 6E36-S3C20M-DP2-P15.1 755 10565 827 080 040 0.35 781 0.97
60 8E45-S3C45M-DP1-P3.3 1092 105.8 1369 0.33 044 0.17 1047 1.04
61 8E45-S3C45M-DP1-P15.1 1087 1140 1369 035 044 0.23 1065 1.02
63 16E60-S3C45M-DP1-P3.3 2253 1009 2644 043 071 034 2201 1.02
64  16E60-S3C45M-DP1-P15.1 2234 109.6 2644 047 071 042 2236 1.00
65 16E60-S3C45M-DP2-P0 2504 101.6 2644 090 071 0.82 2597 0.96
66 16E60-S3C45M-DP2-P3.3 2578 98.7 2644 087 071 050 2578 1.00
67  16E60-S3C45M-DP2-P15.1 2655 107.3 2644 095 071 060 2635 1.01
68 16E60-53C20M-DP1-RO 1980  16F 2552 045 64 040 2202 090
69 16E60-S3C20M-DP1-P3.3 2216 1009 2552 043 071 0.34 2183 1.02
70  16E60-S3C20M-DP1-P15.1 2197 109.6 2552 047 071 043 2214 0.99
71 16E60-S3C20M-DP2-P0 2511 101.3 2552 090 0.71 082 2518 1.00
72 16E60-S3C20M-DP2-P3.3 2454 98.7 2552 087 071 051 2504 0.98
73 16E60-S3C20M-DP2-P15.1 2526 107.3 2552 095 0.71 0.60 2548 0.99
74 6E27-S3C45D-DP1-P0 325 78.2 432 048 043 052 336 0.96
75 6E27-S3C45D-DP1-P3.3 320 60.1 432 037 043 0.20 311 1.03
76 6E27-S3C45D-DP1-P15.1 337 81.5 432 050 043 0.27 341 0.99
77 6E27-S3C45D-DP2-P0 426 73.5 432 090 043 0.69 423 1.01
78 6E27-S3C45D-DP2-P3.3 394 47.7 432 059 043 034 360 1.09
79 6E27-S3C45D-DP2-P15.1 429 66.7 432 082 043 042 407 1.05
80 6E27-S3C20D-DP1-P0 322 78.2 372 062 043 053 326 0.99
81 6E27-S3C20D-DP1-P3.3 328 59.7 372 048 043 021 304 1.08
82 6E27-S3C20D-DP1-P15.1 352 81.1 372 065 043 0.27 329 1.07
83 6E27-S3C20D-DP2-P0 405 73.3 372 100 043 0.69 372 1.09
84 6E27-S3C20D-DP2-P3.3 364 47.2 372 075 043 034 343 1.06
85 6E27-S3C20D-DP2-P15.1 398 66.0 372 100 043 043 372 1.07
86 6E36-53C45D-BR1-PO 536 783 769 630 643 843 574 693
87 6E36-S3C45D-DP1-P3.3 564 55.6 769 022 043 0.15 530 1.06
88 6E36-S3C45D-DP1-P15.1 583 79.3 769 031 043 020 576 1.01
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Table D.3  Comparison of the numerically and analytically obtained results (part 3)

Mu,FEM Preff Mo 3 Hmin 7 Mpiy O
# Name [kKNm]  [KN] [kNm] [] [-] [[1 [kNm] [-]
89 6E36-S3C45D-DP2-P0 657 74.1 769 057 043 0.60 669 0.98
90 6E36-S3C45D-DP2-P3.3 589 46.3 769 036 043 0.26 597 0.99
91 6E36-S3C45D-DP2-P15.1 681 66.6 769 052 043 0.34 650 1.05
92 6E36-S3C20D-DP1-P0 536 78.3 614 062 043 045 563 0.95
93 6E36-S3C20D-DP1-P3.3 538 55.2 614 044 043 0.16 524 1.03
94 6E36-S3C20D-DP1-P15.1 569 78.9 614 063 043 0.21 564 1.01
95 6E36-S3C20D-DP2-P0 644 73.9 614 100 043 0.62 614 1.05
96 6E36-S3C20D-DP2-P3.3 579 45.7 614 073 043 0.27 581 1.00
97 6E36-S3C20D-DP2-P15.1 610 65.8 614 100 043 0.35 614 0.99
98 8E45-53C45D-BR1-PO 871 783 1196 027 049 048 963 0-96
99 8E45-S3C45D-DP1-P3.3 898 65.7 1196 022 049 0.17 869 1.03
100 8E45-S3C45D-DP1-P15.1 924 83.9 1196 029 049 0.23 917 1.01
102 16E60-S3C45D-DP1-P3.3 1821 671 2343 032 074 034 1868 0.98
103  16E60-S3C45D-DP1-P15.1 1870 80.3 2343 038 074 043 1938 0.96
105 16E60-S3C45D-DP2-P3.3 2120 655 2343 064 074 051 2144 0.99
106  16E60-S3C45D-DP2-P15.1 2178 778 2343 076 074 060 2225 0.98
108 16E60-S3C20D-DP1-P3.3 1815 671 2158 032 074 035 1847 0.98
109  16E60-S3C20D-DP1-P15.1 1862 80.3 2158 038 074 043 1910 0.97
111 16E60-S3C20D-DP2-P3.3 2033 648 2158 0.63 0.74 051 2061 0.99
112 16E60-S3C20D-DP2-P15.1 2083 77.2 2158 0.75 0.74 060 2111 0.99
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Annex E  Results of the simplified calculation method (Method PL2)

The same comparison as presented in Annex D was performed for the simplified plastic calculation
method (Chapter 9.4.3). Again, non-demountable beams with welded shear connection (P0) that have a
lower degree of shear connection than the minimum required by Eurocode 4 [18] were excluded from

the comparison.

Table E.1  Comparison of the numerically and analytically obtained results (part 1)

Murem  Peffsim Mol n Hmin Mpty,sim i
# Name [KNm] [-] [KNm]  [-] [-] [kNm] [-]
35 6E27-S3C45M-DP1-PO 389 108.7 490  0.60 0.40 406 0.96
36 6E27-S3C45M-DP1-P3.3 406 69.1 490 0.38 0.40 349 1.16
37 6E27-S3C45M-DP1-P15.1 411 98.4 490  0.55 0.40 392 1.05
38 6E27-S3C45M-DP2-P0 526 108.7 490  1.00 0.40 490 1.07
39 6E27-S3C45M-DP2-P3.3 503 69.1 490  0.77 0.40 447 1.13
40 6E27-S3C45M-DP2-P15.1 513 98.4 490  1.00 0.40 490 1.05
41 6E27-S3C20M-DP1-PO 383 108.7 469  0.60 0.40 398 0.96
42 6E27-S3C20M-DP1-P3.3 403 69.1 469  0.38 0.40 345 1.17
43 6E27-S3C20M-DP1-P15.1 407 98.4 469  0.55 0.40 385 1.06
44 6E27-S3C20M-DP2-PO 481 108.7 469  1.00 0.40 469 1.02
45 6E27-S3C20M-DP2-P3.3 466 69.1 469  0.77 0.40 434 1.07
46 6E27-S3C20M-DP2-P15.1 475 98.4 469  1.00 0.40 469 1.01
47 6E36-53C45M-BP1-PO 625 1087 883 038 040 672 693
48 6E36-S3C45M-DP1-P3.3 659 69.1 883 0.24 0.40 603 1.09
49 6E36-S3C45M-DP1-P15.1 663 98.4 883 0.35 0.40 657 1.01
50 6E36-S3C45M-DP2-P0 780 108.7 883 0.76 0.40 819 0.95
51 6E36-S3C45M-DP2-P3.3 820 69.1 883 049 0.40 760 1.08
52 6E36-S3C45M-DP2-P15.1 827 98.4 883  0.69 0.40 793 1.04
53 6E36-S3C20M-DP1-PO 621 108.7 827 041 0.40 664 0.94
54 6E36-S3C20M-DP1-P3.3 654 69.1 827  0.26 0.40 599 1.09
55 6E36-S3C20M-DP1-P15.1 658 98.4 827  0.37 0.40 650 1.01
56 6E36-S3C20M-DP2-P0 758 108.7 827 0.3 0.40 787 0.96
57 6E36-S3C20M-DP2-P3.3 747 69.1 827  0.53 0.40 701 1.07
58 6E36-S3C20M-DP2-P15.1 755 98.4 827 0.75 0.40 767 0.98
60 8E45-S3C45M-DP1-P3.3 1092 69.1 1369 0.21 0.44 950 1.15
61 8E45-S3C45M-DP1-P15.1 1087 98.4 1369 0.31 0.44 1030 1.05
63 16E60-S3C45M-DP1-P3.3 2253 69.1 2644 0.29 0.71 2034 111
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Table E.2  Comparison of the numerically and analytically obtained results (part 2)

Murem  Peftsim Mo ] Hmin Moy, sim O
# Name [kNm]  [-]  [kNm] [-] [-] [kNm] [-]
64 16E60-S3C45M-DP1-P15.1 2234 98.4 2644 042 0.71 2191 1.02
65 16E60-S3C45M-DP2-P0 2504  108.7 2644 0.96 0.71 2643 0.95
66 16E60-S3C45M-DP2-P3.3 2578 69.1 2644 0.61 0.71 2366 1.09
67 16E60-S3C45M-DP2-P15.1 2655 98.4 2644 087 0.71 2576 1.03
68 16E60-53C20M-DRL-RO 1980 1087 2552 046 0L 2211 090
69 16E60-S3C20M-DP1-P3.3 2216 69.1 2552  0.29 0.71 2025 1.09
70 16E60-S3C20M-DP1-P15.1 2197 98.4 2552  0.42 0.71 2173 1.01
71 16E60-S3C20M-DP2-P0 2511  108.7 2552 0.96 0.71 2554 0.98
72 16E60-S3C20M-DP2-P3.3 2454 69.1 2552 0.61 0.71 2329 1.05
73 16E60-S3C20M-DP2-P15.1 2526 98.4 2552  0.87 0.71 2503 1.01
74 6E27-S3C45D-DP1-P0 325 78.3 432 048 0.43 336 0.96
75 6E27-S3C45D-DP1-P3.3 320 40.2 432 0.25 0.43 278 1.15
76 6E27-S3C45D-DP1-P15.1 337 64.2 432 0.39 0.43 317 1.06
77 6E27-S3C45D-DP2-P0 426 78.3 432 0.96 0.43 434 0.98
78 6E27-S3C45D-DP2-P3.3 394 40.2 432 049 0.43 339 1.16
79 6E27-S3C45D-DP2-P15.1 429 64.2 432 0.79 0.43 401 1.07
80 6E27-S3C20D-DP1-P0 322 78.3 372 0.62 0.43 326 0.99
81 6E27-S3C20D-DP1-P3.3 328 40.2 372 0.32 0.43 275 1.19
82 6E27-S3C20D-DP1-P15.1 352 64.2 372 051 0.43 310 1.14
83 6E27-S3C20D-DP2-P0 405 78.3 372 1.00 0.43 372 1.09
84 6E27-S3C20D-DP2-P3.3 364 40.2 372 0.64 0.43 328 1.11
85 6E27-S3C20D-DP2-P15.1 398 64.2 372 1.00 0.43 372 1.07
86 6E36-53C45B-BP1-PY 536 783 769 0630 043 574 093
87 6E36-S3C45D-DP1-P3.3 564 40.2 769  0.16 0.43 494 1.14
88 6E36-S3C45D-DP1-P15.1 583 64.2 769  0.25 0.43 548 1.06
89 6E36-S3C45D-DP2-P0 657 78.3 769 061 0.43 679 0.97
90 6E36-S3C45D-DP2-P3.3 589 40.2 769 031 0.43 578 1.02
91 6E36-S3C45D-DP2-P15.1 681 64.2 769 050 0.43 644 1.06
92 6E36-S3C20D-DP1-P0 536 78.3 614  0.62 0.43 563 0.95
93 6E36-S3C20D-DP1-P3.3 538 40.2 614  0.32 0.43 491 1.09
94 6E36-S3C20D-DP1-P15.1 569 64.2 614 0.1 0.43 541 1.05
95 6E36-S3C20D-DP2-P0 644 78.3 614  1.00 0.43 614 1.05
96 6E36-S3C20D-DP2-P3.3 579 40.2 614  0.64 0.43 566 1.02
97 6E36-S3C20D-DP2-P15.1 610 64.2 614  1.00 0.43 614 0.99
98 8E45-53C€45D-DP1-PY 871 783 186 027 049 963 696
99 8E45-S3C45D-DP1-P3.3 898 40.2 1196 0.14 0.49 787 1.14
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Table E.3  Comparison of the numerically and analytically obtained results (part 3)

Murem  Peffsim Mo ] Hmin Moty sim Oi

# Name [kNm]  [-]  [kNm] [-] [-] [kNm] [-]
100 8E45-S3C45D-DP1-P15.1 924 64.2 1196 0.22 0.49 865 1.07
102 16E60-S3C45D-DP1-P3.3 1821 40.2 2343 0.19 0.74 1677 1.09
103 16E60-S3C45D-DP1-P15.1 1870 64.2 2343  0.30 0.74 1850 1.01
104 16E60-S3C45D-DP2-P0 2208 78.3 2343 0.76 0.74 2228 0.99
105 16E60-S3C45D-DP2-P3.3 2120 40.2 2343 0.39 0.74 1953 1.09
106 16E60-S3C45D-DP2-P15.1 2178 64.2 2343 0.63 0.74 2135 1.02
108 16E60-S3C20D-DP1-P3.3 1815 40.2 2158 0.19 0.74 1669 1.09
109 16E60-S3C20D-DP1-P15.1 1862 64.2 2158 0.30 0.74 1832 1.02
110 16E60-S3C20D-DP2-PO0 2109 78.3 2158 0.76 0.74 2115 1.00
111 16E60-S3C20D-DP2-P3.3 2033 40.2 2158  0.39 0.74 1922 1.06
112 16E60-S3C20D-DP2-P15.1 2083 64.2 2158 0.63 0.74 2058 1.01

247






Annex F Example calculations

Annex F  Example calculations

F.1  Task description

The following example shows the practical application of the developed calculation methods. In this
example, the expected values of the material properties are used. The results of the calculations are
compared to results coming from numerical simulations that use the same geometrical and material
properties. The beam in consideration is denoted as 16E60-S3C45M-DP1-P3.3 in the parametric study
PS-2 (in Annex B.2).

The presented example covers the following topics:

1) Section F.2 presents the geometric and material properties of the beam in consideration.

2) Section F.3 presents the elastic calculations assuming flexible shear connection on the basis
of Chapter 8.4.

3) Section F.4 presents the calculation of elastic deflections assuming nonlinear shear
connection on the basis of Chapter 8.5.

4) Section F.5 presents the calculation of the plastic moment resistance on the basis of Chapter
9.4.2.

5) Section F.6 presents the simplified calculation of the plastic moment resistance on the basis
of Chapter 9.4.3.

6) Finally, section F.7 presents the summary of the obtained results.

F.2 Initial data

F.2.1 Geometry and loading
The beam in consideration is a simply supported beam subjected to a constant uniformly distributed

load. Propped construction is assumed.

Length: L =16200 mm

Steel beam

Profile: IPE 600

Profile height: h, = 600 mm

Flange width: b =220mm

Flange thickness: tr = 19mm

Web thickness: ty = 12mm

Web height: hy =hqg —2t; =562 mm
Rounding radius: r=24mm
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Cross-sectional area:

Second moment of area:

Centroid measured from the top:

Plastic section modulus
(rounding neglected):

Concrete slab

Total depth:
Profiled sheeting:
Depth:

Width:
Cross-sectional area:

Second moment of area:

Centroid measured from the top:

F.2.2 Material properties
Steel:
Yield strength:
Young’s modulus:
Concrete :
Cube strength:
Young’s modulus:

Modular ratio:

F.2.3 Shear connection

Shear connection type:

Nr. of shear connectors in a row:

Transversal spacing:

Longitudinal spacing

Equivalent longitudinal spacing:

A, = 15598 mm?
I o = 9.208 - 108 mm*
Vo = hg/2 =300mm

Wpiy = 3.376 - 10° mm?3

hior = 150 mm

h,, = 0 mm (solid slab)

he = htor — hy = 150 mm
Besr = 2+L/8 =4050 mm
A, = 607500 mm?

I,y = 1.139-10° mm*

Ve =h./2 =75mm

S355

fy =391 MPa
E, = 200 GPa
C45/55

fc =54 MPa
E. =40.1 GPa

n=E,/E, = 499

P3.3
n, =2
by = 100 mm

s; = 600 mm

Ssceq = Si/My = 300 mm
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Nr. of shear connector rows on n, = L2 _ 135 s0 n, =13
the critical length (L/2): S1

Nr. of shear connectors on the ng =n,-n, =26
critical length (L/2):

160

Load [kN]
el
N B OO ODN D
O O O O O o o

o

0O 1 2 3 4 5 6 7 8 9 10 11 12
Slip [mm]

Figure F.1 Average load-slip curve of shear connection P3.3

F.3  Elastic calculation assuming flexible shear connection (Method EL1)

The shear connection behaviour is approximated by one single stiffness value.

Shear connection stiffness: ke =10.7-09-Pgg/s
Shear resistance at 6 mm: Pre =914 kN
Slipat0.7-0.9 - Pg: s =3.62mm

So the shear connection stiffness is:

0.7-09-P
kg, = % = 15.9 kN/mm (F.1)

Distance between the centroid of the steel and the concrete:

a=h;—Y+hy+y, =150mm—75mm+ 0 mm + 300 mm = 375 mm (F.2)

Second moment of area;

I A./n

= ﬂ ¢ .2 — . 9 4

Lyerr=1yq+ n +1+ A +( E )(E)Z (& a 1.805-10° mm (F.3)
nAa ksc/ssc,eq L n
Auxiliary parameter Si:
a
— — . 6 3

Sk = E, +Ac ey 1.749 - 10° mm

(e )(5)2 A4, (F.4)

Ssceq/ \TT
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Neutral axis of the concrete (measured from the top fibre of the concrete):

hc Tl'Sk

Zeolc = > + = 89.4 mm

c

Neutral axis of the steel (measured from the top fibre of the steel):

Zola =YVs — X —187.9mm
) Aa
Elastic moment resistance (concrete cracking neglected):

Concrete compression:

n-l
Mgy cc = fe ' lyefr _ a4 jNm

Zel,c

Steel compression (top flange):

i
Mgy ¢ = Iy lvetr _ 3756 knm

el,a

Steel tension (bottom flange):

M _ Sy Lyerr

elat = 7 = 1712 kNm

a ~ Zela

The steel bottom flange is decisive. The corresponding elastic moment resistance is:

M, = min(Mel,cc; Mel,ac; Mel,at) = 1712 kNm

The corresponding uniformly distributed load is:

2

Mel " L
Ger = —g—=52.2kN/m

Deflection at Mg:

5 qL*

. =129.7
384 Egl,.pr mm

w =

(F.5)

(F.6)

(F.7)

(F.8)

(F.9)

(F.10)

(F.11)

(F.12)

The comparison of the numerically and analytically obtained results are presented in Figure F.2.
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3000 |

2500 |

2000 | //
- ME'

1500 f

Moment, M [kNm]

1000 f

500 f

0 -’,III 1 1 1 1 1 1 1 1 | T T T TN TR TR TR T T 1 | I TR TR TR S TR N N N 1 1 1 I S TR TR TR TR T T 1
0 L/300 100 200 300 L/50 400

Mid-span deflection, v [mm]

———eNumerical simulation

-------- Deflection (Method EL1)

Figure F.2 Numerically and analytically obtained deflections (Method EL1)

253



Annex F Example calculations

F.4  Elastic calculation with nonlinear connection (Method EL2)

F.4.1 General
The presented example shows the elastic deflection calculation at an arbitrary selected load level
(M < Me)). To obtain the complete moment-deflection curve, the calculation needs to be repeated at

different load levels. This was performed at 30 load levels and the results are summarised in section
F.4.3.

F.4.2 Deflection calculation at 800 kKNm mid-span moment
This section shows the deflection calculation that corresponds to M = 800 KNm mid-span moment. The

elastic calculation with nonlinear connection is an iterative procedure according to Figure F.3.

Assume
end slip §;

Determine the stiffness of
each connector k. ;

Y

Update the Determine the second
end slip moment of area at mid- Calculate the second
5 =541 span 1y_eff‘np » moment of area at each
- shear connector I, o ¢,
A\ 4
Calculate the end slip 5,4 v

Determine the deflection
increments w,,

No

A 4

Determine the
mid-span deflection w

Figure F.3 Flowchart of the iterative procedure
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Step 1: Assume an arbitrary end slip

In this example it is assumed to be 3 mm:

§; =3 mm (F.13)

Step 2: Determine the secant stiffness of each shear connector

In order to be able to determine the secant stiffness values, the occurring slip and the corresponding load

should be determined at each connector.

The slip function is described by a cosine function:

s(x) = 5; - cos (nL_x) (F.14)

where x is the position along the length. For equidistant spacing the equation above can be written as:

_ i-1) =«

s;=5;" cos< " 'S (F.15)
where i is the number of the shear connector counted from the support.
The corresponding shear force can be determined with the help of the load slip curve:

s = Pi (F16)
The secant stiffness of the connectors can be determined as:

P...
ksei == (F.17)
L

Shear connector force,
PSC

sc,i

/
y
/
/
>
/
.
/
p
S
.
p
Ksci
" Ksc,i

Slip, s

Figure F.4 Determining the secant stiffness of the connectors
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The following table summarises the obtained slip, force and stiffness values:

Table F.1  Obtained slip, force and secant stiffness values

i-1) = i-1) =
NEO?‘f“gli‘f:eiar : p : 2 0 <( np : .E> Slip, si Force, Psc,i stif?rfg:‘sr,]tksc,i
[-] [deg] [] [mm] [KN] [N/mm]
1 0.000 1.000 3.00 48.67 16222
2 6.923 0.993 2.98 48.54 16297
3 13.846 0.971 291 48.15 16529
4 20.769 0.935 281 47.50 16934
5 27.692 0.885 2.66 46.61 17547
6 34.615 0.823 2.47 45.49 18425
7 41.538 0.749 2.25 44,15 19662
8 48.462 0.663 1.99 42.62 21424
9 55.385 0.568 1.70 40.91 24007
10 62.308 0.465 1.39 39.06 28016
11 69.231 0.355 1.06 37.08 34857
12 76.154 0.239 0.72 34.82 48499
13 83.077 0.121 0.36 32.44 89721

Step 3: Determine the second moment of area at mid-span

The second moment of area at mid-span can be determined using the following expression:

i I, + ye + a”
veffnp = lya ™~
’ noI Eq : +(Qefra)  (Fas)
g e Hsei L, sin (_ur ) —sin (—(l - 1)7r) Acha
=1 Ssceq T an an

In this formulation there is a part in the denominator which needs to be determined at every shear

connector:

keei L [ i —1
K =—"—- [sin (£> —sin ((l )n)] (F.19)
Ssceq T 2np 2np
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The following table summarises the calculated values of K;:

Table F.2  Auxiliary values for the calculation

Nr. of the shear K;
connector, i [N/mm]
[-]
1 33610
2 33274
3 32754
4 32052
5 31168
6 30104
7 28859
8 27425
9 25780
10 23866
11 21525
12 18146
13 11244
SUM: 349807
p . . Mp
Z Ksei L, [sin <i> —sin <w>] = Z K; = 349807 N/mm (F.20)
i Ssc,eq T 2n,, 2n,, o

The second moment of area at mid-span is then:

Iyeffm, = 1.917-10% - mm* (F.21)

Step 4: Calculation of the end slip

The end slip can be determined with the following expression.

M-a

Sj+1 = ; ;
T np Ksei L [ (im) . ((=Dn A, +nA, (F.22)
lyerrn, <L Ea+ 22 Ssceq T sin <2np) sin ( 2n, ( AA, )

In this equation the summation in the denominator is the same as equation (F.20).

The calculated end slip is:

§j+1=2.44mm (F.23)
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Step 5: Verifying the initial assumption

The discrepancy in our initially assumed and then later calculated end slip can be determined as:

Sj+1 1 2.44 mm

A=1 — = 0.1858 = 18.58% (F.24)
5; 3mm
Step 6: Updating the end slip
If A > 0.01, update the end slip:
SEE (F.25)
Iteration

Repeat the calculations from Step 2 to Step 6 (equations (F.15)- (F.25)) until the error becomes less than
1% (until A < 0.01).

In this example, after 5 iterations the discrepancy decreased below 1%:

Table F.3 Iterations and discrepancy in the end slip

Iteration 5; 541 A
0 3.00 244 0.1858
1 244 2.22 0.0929
2 2.22 211 0.0487
3 2.11 2.05 0.0261
4 2.05 2.02 0.0142
5 2.02 2.01 0.0077

Step 7: Calculate the second moment of area at each shear connector

The second moment of area at shear connector m can be calculated using the following expression:

I a
_ ye
Lyerrm = o +1,+

I m Fsei L [Sin ( 3 ) o ((i = 1)7[)] + (ACAt,;laAa) (720

=1 Ssceq T

Where m is the number of shear connectors (or pairs of shear connectors) until the section in

consideration.

The previous equation takes a simpler form if we use equation (F.19):
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L. a?
Iyerrm = ot Iya+  mn
Eq - sin(5— (F.27)
U Ny N (AC + nAa)
L m K A4,
The following table summarises the determined second moment of area values:
Table F.4  Second moment of area at each shear connector
Nr. of the shear Z K;
connector, i Ki =1 ly.effm
[-] [N/mm] [N/mm] [mm2]
1 43845 43845 1.935E+09
2 43433 87278 1.936E+09
3 42836 130115 1.939E+09
4 42052 172167 1.943E+09
5 41078 213245 1.950E+09
6 39912 253157 1.958E+09
7 38545 291702 1.967E+09
8 36960 328662 1.979E+09
9 35117 363779 1.992E+09
10 32884 396663 2.008E+09
11 29961 426625 2.025E+09
12 25697 452322 2.042E+09
13 16266 468588 2.056E+09
Step 8: Calculating the deflection increments between the sections
The deflection increments for uniformly distributed load is given by the following equation:
q
W, =—————-[L3(A—B) + 2L(B3 — A%) + A* — B%] F.28
mn 24E.1y erfm ( )
Where:
A= m-L
2n,,
m—1)L
g m-DL
2n,,
The uniformly distributed load that corresponds to 800 kNm bending moment is:
=
q= =244 kN/m (F.29)
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The calculated deflection increments are summarised in the following table:

Table F.5 Deflection increments

Nr. of the section in

consideration, m Wm
[-] [mm]
1 6.94
2 6.81
3 6.58
4 6.24
5 5.80
6 5.29
7 4.70
8 4.06
9 3.37
10 2.64
11 1.89
12 1.14
13 0.38

Step 9: Calculating the total deflection

Finally, the total mid-span deflection can be calculated as the sum of the deflection increments:

Np
w= Z w,, = 55.82 mm (F.30)

m=1
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F.4.3 Summary of the results
The calculation presented in the previous section was repeated for 30 equally spaced load increments

between 0 and Mg given by equation (F.10) . The following table summarises the obtained results:

Table F.6  Mid-span deflection at different load steps

Step Moment Deflection
[KNm] [mm]
0 0 0
1 57.1 2.68
2 114.2 5.35
3 171.2 8.03
4 228.3 10.71
5 285.4 13.39
6 342.5 16.10
7 399.5 19.14
8 456.6 22.90
9 513.7 27.69
10 570.8 33.09
11 627.9 38.60
12 684.9 44.25
13 742.0 49.85
14 799.1 55.37
15 856.2 60.95
16 913.2 66.39
17 970.3 71.90
18 1027.4 76.92
19 1084.5 81.57
20 1141.6 86.12
21 1198.6 90.64
22 1255.7 95.10
23 1312.8 99.58
24 1369.9 104.06
25 1426.9 108.52
26 1484.0 112.99
27 1541.1 117.45
28 1598.2 121.90
29 1655.3 126.35
30 1712.3 130.80
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The comparison of the analytically and numerically obtained deflections is presented in the following

figure:

3000 [

2500 f

2000 [ /
_ Mg

1500 f

Moment, M [kKNm]

1000 f

500 f

O V. . . . I I I I | S T T TR TN TR T R T 1 | S TR T TR TN TR T T T 1 I T T TR T W T T 1
0 L/300 100 200 300 L/50 400

Mid-span deflection, v [mm]

——=eNumerical simulation

—— Deflection (Method EL2)

Figure F.5 Comparison of the analytically and the numerically obtained results (Method EL2)

262



Annex F Example calculations

F.5 Plastic moment resistance calculation (Method PL1)
For the determination of the plastic moment resistance, it is necessary to assume an end slip and a slip

distribution function.

The assumed slip distribution function is a cosine function:
_ T X
s(x) =5-cos (T) (F.31)

The end slip that can be taken into account can be approximated with the following formulation:

s=minf i) (F32)

Where:
6, = 9.7mm is the slip capacity of the shear connection.

In the equation below & = 0 because of propped construction and a = 2/3 for a uniformly distributed

load.

L 15-f,—o hc+h
Suito = a- Jy (1+ c_P

2 0.5 hy,

5 E, ) = 23.8mm (F.33)

The degree of interaction can be calculated as:

I
y,c
Iyerr — (Iy,a + T)

)= . (F.34)

y,C
Iy,rigid - <Iy,a + T)

The effective second moment of area has been determined by equation (F.3):
Iyers = 1.809 - 10° mm* (F.35)

The second moment of area for rigid connection is:

I AA
Yy.c ctla
Iy rigia = Iya + o m' a® =3.093-10° mm* (F.36)
The degree of interaction is then:
1809 — (0921 + @)
Y= 499/ — 0.34
3003 - (0921 +5%) (F.37)
' ' 499
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The end slip to be taken into account:

e S : 9.7
§ = min {Sult,o (1- 1/))} = min {23.8 (- 0.34)} =9.7mm (F.38)

It is now possible to determine the occurring slip at each shear connector, and to calculate the
corresponding shear forces:

1T Tf T T T 1T-T T ‘L. 1T Shear connector force,
1 i no Psc
i. - N
_-assumed s(x)
m (D)
N4
{ Slip, s
Snp S S
Figure F.6 Determination of the shear connector forces using the load-slip curve
Table F.1  Obtained slip and force values
Nr. of the shear -1 = cos ((i - .E)
connector, i n, 2 no 2 Slip, si Force, Pci

[ [deg] [ [mm] [kN]
1 0.000 1.000 9.73 144.40
2 6.923 0.993 9.66 143.39
3 13.846 0.971 9.45 140.38
4 20.769 0.935 9.10 135.41
5 27.692 0.885 8.62 128.56
6 34.615 0.823 8.01 119.92
7 41.538 0.749 7.29 109.63
8 48.462 0.663 6.45 97.82
9 55.385 0.568 5.53 84.67
10 62.308 0.465 4.52 70.35
11 69.231 0.355 3.45 55.09
12 76.154 0.239 2.33 44.65
13 83.077 0.121 1.17 37.74
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The effective shear connection force is defined as the average shear force:
Mp

1
PR,eff = E Pg.; = 100.9 kN (F.39)

=1
The maximum normal force that can be taken by the steel beam:

Npia = Ag - f; = 6099 kN (F.40)

The maximum normal force that can be taken by the flanges:

Nps=2-b-tr"f, = 4369 kN (F.41)

The maximum normal force that can be taken by the web:
Npiw = (hg —2-t) "ty - f, = 2637 kN (F.42)
The maximum normal force that can be taken by the concrete:

Nemax = Ac - 0.85 - f, = 27884 kN (F.43)

The normal force in case of full connection:

N,; = min(Npyq; Nemax) = 6099 kN (F.44)

The normal force that develops in the concrete:

The degree of shear connection:

c

=0.43
N, s (F.46)

}7 =
The minimum degree of shear connection:

355
Mmin =1 = <f—> (0.75 - 0.03L,) = 0.44 (F.47)
y

Note: In this example, the requirement for the minimum degree of shear connection (equation (F.47)) is

not taken into account.

Plastic neutral axis of the concrete (measured from the top fibre of the concrete):
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N¢
- —141
“rte =B, 085 f, mm (F.48)

Location of the plastic neutral axis of the steel:

If Npi.a > Nc > Npiw, the plastic neutral axis is in the flange. (F.49)
If Npw > N, the plastic neutral axis is in the web. (F.50)
Npiw = 2637 KN > N¢ =2624 kN, so the plastic neutral axis is in the web.

The corresponding stress distribution:

Z,a in the web

0.851,

o
)M L=

° f

y

=

Figure F.7 Stress distribution according to the partial shear theory
Location of the plastic neutral axis of the steel from the equilibrium equation (measured from the top
fibre of the concrete):

N. —N,
_ 'plw c . . _
Zpl,a = m (ha -2 tf) + htot + tf =170.4 mm (F51)

The plastic moment resistance from the moment equation

Z I, V4 [ tf
Mpiy = Npla (htot +Ya— —pz C) — N5 (hwt - % + E)
Zpia = Neot — tf Zy), (F.52)
— Z(Zpl,a — htot — tf)twfy <% + htot + tf _ pZC
My, = 2201 kNm

Figure F.8 shows the calculated moment capacity on the moment-deflection curve obtained by

numerical simulation.
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Figure F.8 Comparison of the numerically and analytically obtained plastic moment resistance
(Method PL1)
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F.6  Simplified calculation of the plastic moment resistance (Method PL2).

The simplified calculation method uses a shear connector specific krex reduction factor that was
determined based on the assumptions presented in chapter 9.4.3.

The reduction factor that belongs to shear connection type P3.3 is krex = 0.756. The effective shear
connector resistance is:

Prefr = Kfiex - Pre = 0.756 - 91.4 kN = 69.1 kN (F.53)

The normal force that develops in the concrete:

N, = min(N, f; g * Press) = min(6099 kN; 26 - 69.1 kN) = 830 kN

(F.54)
The degree of shear connection:
N 014
T=N, (F.55)

Note: In this example, the requirement for the minimum degree of shear connection (equation (F.47)) is

not taken into account.
Plastic neutral axis of the concrete (measured from the top fibre of the concrete):

N
Zpie = — ¢ —45mm (F.56)

Location of the plastic neutral axis of the steel:

If Npia > Nc > Npiw, the plastic neutral axis is in the flange. (F.57)
If Npiw > N, the plastic neutral axis is in the web. (F.58)
Npiw = 2637 KN > N =830 kN, so the plastic neutral axis is in the web.

The corresponding stress distribution:

Z,a in the web

| 0851,
ok

Figure F.9 Stress distribution according to the partial shear theory
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Location of the plastic neutral axis of the steel from the equilibrium equation (measured from the top
fibre of the concrete):

Nyiw— N
_ 'plw c . o _
Zpla = (ha —2-tf) + heor + tr = 3601.6 mm (F.59)
plw
The plastic moment resistance from the moment equation
Zpl,c Zpl,c tf
Mpl,n = (Npl,a (htot + Yo — T) - Npl,f (htot - T + E)
F.60
Zpla — htot - tf Zpl,c ( )
- Z(Zpl,a - htot - ztf)twfy f + htot + tf - 2

My, = 1741 kNm

The following figure shows the calculated moment capacity on the moment-deflection curve obtained
by numerical simulation:
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——=eNumerical simulation

—— M.pl,n,sim.

Figure F.10 Comparison of the numerically and analytically obtained plastic moment resistance
(Method PL2)
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F.7

Summary of the results

The following figure summarises the results of the presented calculation example:

Moment, M [kNm]

3000 [
2500
2000 |
1500 |
1000
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My, (Method PL1)

M,,, (Method PL2)

MEI

200 300 L/50 400
Mid-span deflection, v [mm]

———eNumerical simulation
-------- Deflection (Method EL1)
Deflection (Method EL2)

Figure F.11 Comparison of the numerically and analytically obtained results
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Annex G  Analytical calculations vs. experimental measurements

The calculations presented in Annex F were performed for the tested beams (Chapter 5) and the results

of the calculations were compared to the experimental measurements. The following figure shows the
obtained moment-deflection curves.
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Figure G.1 Comparison of the experimentally and analytically obtained results (Beam B7)
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Figure G.2 Comparison of the experimentally and analytically obtained results (Beam B8)
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