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Fonds National de la Recherche Luxembourg (Grant C18/SC/12677653) and KAKENHI
(Grant 20K01565) is gratefully acknowledged.



1 Introduction

The measurement of income inequality has been an active field of investigation for over
a century, and early classical contributions include those of Lorenz (1905), Gini (1912),
Pigou (1912), and Dalton (1920). While much of the literature focuses on a relative notion
of inequality (that is, on scale-invariant measures), absolute indices (which are translation-
invariant) are examined as well. Centrist or intermediate measures that represent com-
promises between the relative and the absolute approach are discussed in Kolm (1976a,b),
Pfingsten (1986), and Bossert and Pfingsten (1990). The normative approach connects
inequality to welfare and can be traced back to Kolm (1969), Atkinson (1970), and Sen
(1973) in the case of relative measures, and to Kolm (1969) and Blackorby and Donaldson
(1980) if an absolute notion of inequality is adopted. Ethical measures of inequality in an
ordinal setting are analyzed by Blackorby and Donaldson (1984), Ebert (1987), and Dutta
and Esteban (1992).

In this paper, we follow an ordinal approach to inequality measurement and, therefore,
focus on inequality orderings. Our main results provide characterizations of some simple
measures of inequality that are familiar from the literature. The first of these are range-
based measures which perform inequality comparisons by means of the difference between
maximal and minimal income in the absolute case, and the ratio of the maximum and the
minimum in a relative setting. The max-mean orderings use the difference and the ratio of
the maximum and the arithmetic mean and the mean-min measures employ the arithmetic
mean and the minimal income. In addition, we examine inequality orderings that focus
on the income gaps (in the absolute case) or the income shares (for relative measures) of
the top or bottom quantile of an income distribution. All of these inequality orderings
satisfy three standard axioms, namely, S-convexity, continuity, and replication invariance.
However, as far we are aware, they have not been axiomatized yet.

The primary motivation of our analysis is rooted in the observation that many of the
measures discussed here are well-known and well-established in the literature. In spite
of this, there are no characterizations available so far and it seems to us that this gap
ought to be filled. With this objective in mind, it is clear that the properties we employ
in our axiomatizations cannot but reflect the nature of these indices. As a consequence,
whatever perceived shortcomings there are in the comparisons according to these measures
are inevitably mirrored in the corresponding recommendations of (some of) the axioms.

Clearly, the measures discussed here are rather coarse because of their limited use
of income distribution statistics and, therefore, we do not mean to advocate their use
over all competing suggestions. Nevertheless, as discussed by Leigh (2009, p. 162) in the
context of justifying the use of the top income shares, when some data is absent or reliable
estimates of the entire income distribution are not available, they can serve as a useful proxy
for measuring inequality. In particular, in light of the interdependence between different
parts of the income distribution resulting from economic activities, they could be a useful
and easy-to-use tool for drawing inferences about overall inequality from limited data; see
Atkinson (2007, pp. 19–25) and Atkinson, Piketty, and Saez (2011, pp. 7–12) for discussions
regarding top income shares. Alvaredo (2011) examines connections between the Gini
coefficient and top income shares from a theoretical perspective. Therefore, we think that
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it is worthwhile to provide axiomatic characterizations of those inequality orderings. Our
results also clarify under which circumstances we may safely rely on the proxies provided
by our orderings. While some of the axioms we employ may appear to have somewhat
controversial recommendations, they mirror the coarse nature of the underlying inequality
orderings. The analysis carried out in this paper suggests that, in the presence of data
limitations, the relatively coarse measures characterized here are capable of providing quite
close approximations.

Among the orderings we consider, the range-based inequality orderings that compare
the distance between (or the ratio of) the maximal and the minimal income do not utilize
the average income. In this sense, these inequality orderings are coarser than the others.
To present axiomatic characterizations of these inequality orderings, we employ some suit-
ably adapted axioms that appeared in the literature on ranking sets of outcomes under
complete uncertainty. These properties, reformulated in the context of income inequality
measurement, are concerned with how we should rank income distributions when the in-
formation on the realized income levels in the distributions is reliable but that on their
frequency distribution is not. Our characterizations of the other inequality orderings, on
the other hand, rely on properties regarding the composition of progressive and regressive
transfers in addition to standard axioms. The results are established in a coherent and
systematic manner by showing how subsets of the axioms employed successively restrict
the informational basis that can be utilized in measuring inequality.

As is the case for much of the literature on the measurement of income inequality,
we allow the population (and the population size) to vary. However, all the distributions
we consider are finite. Moreover, even if a finite distribution is interpreted as a sample
from an underlying larger distribution, this underlying distribution is also assumed to be
finite (although it may be arbitrarily large). As a consequence, we do not have to be
concerned with potential issues that may arise in the context of finite samples from infinite
distributions.

In addition to presenting their axiomatic characterizations, it is important to empirically
examine the usefulness of these inequality orderings. In analogy with Leigh’s (2007) study of
the relative performance of top income shares in comparison with other inequality measures,
we provide an empirical analysis of the correlation between the range-based and quantile-
based orderings and some classical indices including the Gini coefficient. We find that there
is some surprisingly significant agreement when considering the movements of the measures
and more commonly-employed inequality orderings.

In the following section, we introduce our basic notation and definitions. The range-
based measures, the max-mean orderings, the mean-min ordinal indices, and the quantile
shares and gaps are characterized in Section 3. In each case, axiomatizations of both the
requisite absolute ordering and its relative counterpart are provided. Section 4 contains
our empirical study and Section 5 concludes. The independence of the axioms used in our
characterizations is established in an appendix.
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2 Notation and definitions

2.1 Range-based and related inequality orderings

Let N be the set of positive integers. The sets of all real numbers, all non-negative real
numbers, and all positive real numbers are denoted by R, R+, and R++. For n ∈ N, let 1n

denote the n-dimensional vector consisting of n ones and, for all i ∈ {1, . . . , n}, ei is the ith

unit vector in Rn. For simplicity, we suppress the dependence of this unit vector on n; the
dimension of ei will always be apparent from the context. For all n ∈ N and for all x ∈ Rn,
the arithmetic mean of x is denoted by µ(x); that is, µ(x) =

∑n
i=1 xi/n.

We distinguish two domains that are relevant in this paper. In the context of absolute
inequality orderings, incomes may take on any real value and, analogously, relative inequal-
ity orderings are restricted to positive incomes. Thus, we define the (variable-population)
domains D = ∪n∈NΩn, where Ω ∈ {R,R++}. A vector x ∈ D is interpreted as an income
distribution.

An inequality ordering is an ordering R ⊆ D2 and we write xRy for (x, y) ∈ R. Thus,
the expression xRy means that the income inequality in x is at least as high as the inequality
in y. The asymmetric part of R is P and the symmetric part of R is I.

We begin our axiomatic analysis with two properties that require very little discussion.
The majority of approaches to the measurement of income inequality can be classified as
being either absolute or relative in nature. Notable exceptions are the centrist measures
examined by Kolm (1976a,b); see also Pfingsten (1987) and Bossert and Pfingsten (1990)
for a notion of inequality that is intermediate between the absolute and relative extremes.

An absolute inequality ordering is invariant to equal absolute changes of all incomes.
That is, it is required to satisfy the axiom of translation invariance.

Translation invariance. For all n ∈ N, for all x ∈ Rn, and for all δ ∈ R,

(x+ δ1n)Ix.

Analogously, a relative inequality ordering is invariant to changes in the scaling of all
incomes by a common positive factor.

Scale invariance. For all n ∈ N, for all x ∈ Rn
++, and for all λ ∈ R++,

λxIx.

The first two orderings that we consider in this paper are the absolute range Ra
xn as-

sociated with Ω = R and the relative range Rr
xn with the domain generated by Ω = R++,

defined as follows. For all n,m ∈ N, for all x ∈ Rn, and for all y ∈ Rm, we let

xRa
xny ⇔ max{x1, . . . , xn} −min{x1, . . . , xn} ≥ max{y1, . . . , ym} −min{y1, . . . , ym}.

Cowell (2011, p. 155) refers to a representation of this ordering as the range. The measure
that is obtained by dividing Ra

xn by the mean income µ(x) (which requires the domain to
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be restricted to R++) is what he labels the standardized range. The latter also appears in
Sen (1973, p. 24).

The relative counterpart of the absolute range is the relative range Rr
xn, defined by

xRr
xny ⇔

max{x1, . . . , xn}
min{x1, . . . , xn}

≥ max{y1, . . . , ym}
min{y1, . . . , ym}

for all n,m ∈ N, for all x ∈ Rn
++, and for all y ∈ Rm

++.
The absolute max-mean inequality ordering Ra

xµ is defined by letting, for all n,m ∈ N,
for all x ∈ Rn, and for all y ∈ Rm,

xRa
xµy ⇔ max{x1, . . . , xn} − µ(x) ≥ max{y1, . . . , ym} − µ(y).

The scale-invariant counterpart of Ra
xµ is the relative max-mean inequality ordering Rr

xµ,
defined as

xRr
xµy ⇔

max{x1, . . . , xn}
µ(x)

≥ max{y1, . . . , ym}
µ(y)

for all n,m ∈ N, for all x ∈ Rn
++, and for all y ∈ Rm

++.
The absolute mean-min inequality ordering Ra

µn is given by

xRa
µny ⇔ µ(x)−min{x1, . . . , xn} ≥ µ(y)−min{y1, . . . , ym}

for all n,m ∈ N, for all x ∈ Rn, and for all y ∈ Rm. Chakravarty (2010, p. 34) refers to
a representation of this ordering as the absolute maximin index because of its link to the
maximin social welfare function.

Finally, the relative mean-min inequality ordering Rr
µn is obtained by defining, for all

n,m ∈ N, for all x ∈ Rn
++, and for all y ∈ Rm

++,

xRr
µny ⇔

µ(x)

min{x1, . . . , xn}
≥ µ(y)

min{y1, . . . , ym}

or, equivalently,

xRr
µny ⇔

min{x1, . . . , xn}
µ(x)

≤ min{y1, . . . , ym}
µ(y)

.

Hence, according to Rr
µn, inequality increases if and only if the ratio of the minimum income

to the mean income decreases. In analogy to the absolute case, Chakravarty (2010, p. 24)
uses the term relative maximin index for a representation of Rr

µn.

2.2 Quantile-based inequality orderings

In order to discuss the inequality orderings that are based on top and bottom income
shares and gaps, we need to employ a slightly modified framework. Let q ∈ N with q ≥ 3.
The set D of income distributions considered now is defined by D = ∪n∈NΩnq, where
Ω ∈ {R,R++}. This modification guarantees that q equal-sized groups of individuals in
an income distribution are well-defined. Note that, for any n ∈ N and for any x ∈ Ωnq,
there exists a unique permutation πx of {1, . . . , nq} such that x( ) = (xπx(1), . . . , xπx(nq)) is a
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non-decreasing rearrangement of x and, for all i, j ∈ {1, . . . , nq} with i < j, if xπx(i) = xπx(j)

then πx(i) < πx(j). That is, π−1
x (i) is interpreted as the income rank of individual i from

the bottom in x, where ties of income levels are broken with respect to individual names
represented by numbers. For any n ∈ N, for any x ∈ Ωnq, and for any ` ∈ {1, . . . , q}, we
define G`(x) by

G`(x) = {i ∈ {1, . . . , nq} | (`− 1)n+ 1 ≤ π−1
x (i) ≤ `n},

that is, G`(x) is the group of individuals in the `th q-quantile in x. In this paper, the `th q-
quantile of income distribution x represents the `th worse-off group of individuals according
to the income ranking π−1

x , rather than the `th cut-off point. Therefore, if q = 10, G1(x) is
the group of individuals in the bottom decile and G10(x) is that in the top decile. For all
n ∈ N, for all x ∈ Rnq

++, and for all ` ∈ {1, . . . , q}, we write µ`(x) as the mean income of
the `th q-quantile of x, that is, µ`(x) =

∑
i∈G`(x) xi/n.

According to the modification of the domain of an inequality ordering, we say that
an inequality ordering R on D is absolute if it satisfies the translation invariance axiom
reformulated as follows.

Translation invariance∗. For all n ∈ N, for all x ∈ Rnq, and for all δ ∈ R,

(x+ δ1nq)Ix.

Analogously, an inequality ordering R is said to be relative if it satisfies the following
reformulation of the scale-invariance property.

Scale invariance∗. For all n ∈ N, for all x ∈ Rnq
++, and for all λ ∈ R++,

λxIx.

We define the top income gap inequality ordering Ra
t by letting, for all n,m ∈ N, for all

x ∈ Rnq, and for all y ∈ Rmq,

xRa
t y ⇔ µq(x)− µ(x) ≥ µq(y)− µ(y).

The scale-invariant analogue of Ra
t is the (relative) top income share inequality ordering

Rr
t , defined as follows. For all n,m ∈ N, for all x ∈ Rnq

++, and for all y ∈ Rmq
++,

xRr
ty ⇔

∑
i∈Gq(x) xi∑nq
i=1 xi

≥
∑

i∈Gq(y) yi∑mq
i=1 yi

.

Since the pioneering work by Piketty (2001), top income shares have been widely employed
in the literature on the empirical analysis of inequality in the long run; see, for instance,
Atkinson, Piketty, and Saez (2011) and Leigh (2009). Note that, since

∑
i∈Gq(x) xi/

∑nq
i=1 xi =

µq(x)/(qµ(x)), an ordinally equivalent representation of Rr
t is given by

xRr
ty ⇔

µq(x)

µ(x)
≥ µq(y)

µ(y)
.
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The bottom income gap inequality ordering Ra
b is given by letting, for all n,m ∈ N, for

all x ∈ Rnq, and for all y ∈ Rmq,

xRa
by ⇔ µ(x)− µ1(x) ≥ µ(y)− µ1(y).

Finally, we define a relative analogue of the bottom income gap inequality ordering. The
bottom income share inequality ordering is the inequality ordering Rr

b defined as follows.
For all n,m ∈ N, for all x ∈ Rnq

++, and for all y ∈ Rmq
++,

xRr
by ⇔

∑
i∈G1(x) xi∑nq
i=1 xi

≤
∑

i∈G1(y) yi∑mq
i=1 yi

.

Analogously to the top income share inequality ordering, an ordinally equivalent represen-
tation of Rr

b is given by

xRr
by ⇔

µ(x)

µ1(x)
≥ µ(y)

µ1(y)
.

3 Characterizations

The use of translation invariance is restricted to absolute inequality orderings, whereas
scale invariance is employed in the relative case, and both of these properties are employed
throughout this section to distinguish these two notions of inequality. All other axioms can
be defined for both options, that is, for Ω = R and for Ω = R++. Each of the following
subsections addresses one type of ordering considered in this paper.

The first set of results on range-based measures borrows, to a large extent, from the
literature on ranking sets under uncertainty by adapting some of the axioms that appear
in this area to our framework. The remaining subsections rely on more traditional prop-
erties that are familiar from the theory of social index numbers. The general pattern that
emerges is that, for each category of the remaining inequality orderings, all but one axiom
(or, in the case of quantiles, two axioms) are well-established and the measures are set
apart by the additional property (or properties). In particular, the characterizations of the
inequality orderings that are based on the maximum and the mean rely on properties such
as the well-known principle of progressive transfers, continuity, and replication invariance
as standard requirements; the additional axiom is a principle that prescribes trade-offs
between specific conflicting progressive and regressive transfers to be resolved in a consis-
tent way in different situations. A parallel approach is applied in the case of the mean
and the minimum, with the difference that the resolution of the above-mentioned trade-off
proceeds in a different direction. Finally, for the measures that are based on quantiles,
we again formulate suitably adapted principles that resolves trade-offs in specific ways. In
addition, a neutrality property that ensures an additive structure within quantiles is em-
ployed. Intuitively, a second additional property is necessitated in this case because some
within-quantile structure needs to be established, a requirement that is not present for the
other categories of indices.
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3.1 Range inequality orderings

Our first axiom in this subsection requires that the inequality ordering R is anonymous,
paying no attention to the names of the individuals. Clearly, this is a fundamental equity
property. We acknowledge that, according to some views, a distinction could be made
between individuals on the basis of compensatory notions. However, we are confident that
anonymity constitutes a normatively extremely appealing principle. This is especially the
case if it is assumed (as is done here) that the individual incomes represent the basic
information on which inequality judgments are to be founded.

Anonymity. For all n ∈ N and for all x, y ∈ Ωn, if x is a permutation of y, then xIy.

In addition to anonymity, the results of this subsection make use of properties that
involve the comparison of income distributions of different dimensions. The first of these
is straightforward. Equality indifference requires that all equal distributions are equally
unequal, independent of the number of people involved. As is the case for anonymity, the
intuitive appeal of this condition is immediate.

Equality indifference. For all n,m ∈ N and for all α, β ∈ Ω1,

α1nIβ1m.

The first part of the following expansion-dominance axiom is borrowed from the litera-
ture on ranking sets of outcomes in the presence of complete uncertainty; see, for instance,
Kannai and Peleg (1984) and Bossert and Slinko (2006). In contrast to that literature, we
have to allow for incomes being equal within a distribution and, moreover, the role played
by lowest incomes is different from that played by worst elements in a set of possible out-
comes. Thus, our formulation differs from that in the literature on ranking sets. The second
part of the property reflects the coarse nature of the inequality orderings discussed here
by requiring that adding individuals with incomes between the extremes of a distribution
does not increase inequality.

Expansion dominance. (i) For all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm, if
y1 = . . . = ym > max{x1, . . . , xn}, then

(y, x)Px.

(ii) For all n ∈ N, for all x ∈ Ωn, and for all α ∈ [min{x1, . . . , xn},max{x1, . . . , xn}],

xR(x, α).

Part (i) of the above expansion-dominance axiom is based on the observation that if an
income distribution is expanded by adding any number of individuals with a common
income level that is above the highest in the original distribution, the resulting larger
distribution should display a higher level of inequality. Again, this is intuitively plausible
because the new distribution increases maximal income without changing the distribution
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among those who are present prior to the expansion. Part (ii) clearly is more controversial
because it reflects a feature of the range-based measures—namely, that they are insensitive
with respect to expansions of a distribution that leave the extreme values unchanged.

Another modification of a requirement from the literature on choice under complete
uncertainty is the following conditional version of an independence property. Again, the
axiom differs from the corresponding condition for set rankings because of the different
interpretation—primarily because equal income levels within a distribution have to be
accommodated.

Conditional independence. For all n,m ∈ N, for all x ∈ Ωn, for all y ∈ Ωm, and
for all α ∈ Ω1, if xPy, min{x1, . . . , xn} = min{y1, . . . , ym}, α ≥ max{x1, . . . , xn}, and
α > max{y1, . . . , ym}, then

(x, α)R(y, α).

Conditional independence is a robustness condition. Starting with two distributions x and
y (not necessarily of the same population size), if x is considered more unequal than y,
then the addition of an individual whose income exceeds the maximal income in y and is
at least as high as the maximal income in x should not overturn this strict relation.

Our first observation shows that the conjunction of the four axioms of this subsection
implies that an income distribution x of any dimension must be as unequal as the distri-
bution that is composed of the maximal and the minimal values of x. See, for instance,
Kannai and Peleg’s (1984, p. 174) Lemma and Bossert and Slinko’s (2006, pp. 108–109)
Theorem 1 for analogous results in the context of set rankings.

Theorem 1. Let Ω ∈ {R,R++}. If R satisfies anonymity, equality indifference, expansion
dominance, and conditional independence, then, for all n ∈ N and for all x ∈ Ωn,

xI(max{x1, . . . , xn},min{x1, . . . , xn}).

The following theorem characterizes all inequality orderings that satisfy the axioms
defined in this subsection. It turns out that these measures can be expressed by means of
an ordering defined on the pairs of maximal and minimal incomes. Thus, only the extreme
values may be utilized as a consequence of the axioms and, moreover, the ordering of the
pairs must be increasing in the maximal income.

Theorem 2. Let Ω ∈ {R,R++}. R satisfies anonymity, equality indifference, expansion
dominance, and conditional independence if and only if there exists an ordering % (with
asymmetric and symmetric parts � and ∼) on S = {(α, β) ∈ Ω2 | α ≥ β} such that

(i) for all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,

xRy ⇔ (max{x1, . . . , xn},min{x1, . . . , xn}) % (max{y1, . . . , ym},min{y1, . . . , ym});

(ii) (α, α) ∼ (β, β) for all α, β ∈ Ω1;

(iii) % is increasing in its first argument.
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We now state the two main results of this subsection. Adding translation invariance
to the axioms of Theorem 2 characterizes the absolute range, whereas the relative range is
obtained if scale invariance is used in the place of translation invariance.

Theorem 3. Let Ω = R. R satisfies anonymity, equality indifference, expansion domi-
nance, conditional independence, and translation invariance if and only if R = Ra

xn.

As a remark aside, note that Theorems 1, 2, and 3 remain true if Ω = R is replaced
with Ω = R+; this is apparent from inspecting their proofs.

Theorem 4. Let Ω = R++. R satisfies anonymity, equality indifference, expansion domi-
nance, conditional independence, and scale invariance if and only if R = Rr

xn.

3.2 Max-mean inequality orderings

We characterize the absolute and relative max-mean inequality orderings using four axioms
in addition to translation invariance and scale invariance, respectively.

The first of these can be considered the cornerstone of inequality measurement. To
introduce it, we require the definition of a doubly stochastic matrix. For any n ∈ N, an
n×n matrix is doubly stochastic if all its elements are nonnegative and its rows and columns
sum to one. Given n ∈ N and x ∈ Ωn, multiplying x by an n×n doubly stochastic matrix B
yields an income distribution Bx ∈ Ωn that has the same total income and is a smoothening
of x in the sense that each component is a convex combination of x. Indeed, it is known
that for any rank-ordered distribution x ∈ Ωn, Bx can be obtained by a finite sequence of
progressive transfers (Hardy, Littlewood, and Pólya, 1934; Marshall and Olkin, 1979). The
property of Schur-convexity (or S-convexity, for short) asserts that such a smoothening of
an income distribution does not increase inequality.

S-convexity. For all n ∈ N, for all x ∈ Ωn, and for all n × n doubly stochastic matrices
B, xR(Bx).

The property of S-convexity is equivalent to the conjunction of anonymity and the well-
known Pigou-Dalton transfer principle (Pigou, 1912; Dalton, 1920). Clearly, S-convexity
is uncontroversial because the axiom captures the very notion of inequality measurement:
if incomes move closer together, inequality cannot increase.

Our next property, continuity, requires that small changes in incomes do not lead to
large changes in inequality. Thus, the axiom ensures that income measurement is robust
in the sense that a small measurement error does not lead to an excessive change in the
assessment performed by an inequality ordering. This is another standard requirement
commonly imposed on inequality orderings and other (ordinal) social indicators.

Continuity. For all n ∈ N and for all x ∈ Ωn, {y ∈ Ωn | yRx} and {y ∈ Ωn | xRy} are
closed in Ωn.

Replication invariance, which first appeared in Dalton (1920) under the name of the
principle of proportionate additions to persons, requires that inequality be invariant under
any k-fold replica of an income distribution.

9



Replication invariance. For all n, k ∈ N and for all x ∈ Ωn, xI(x, . . . , x︸ ︷︷ ︸
k times

).

Replication invariance ensures that an averaging view is adopted when comparing distri-
butions of different dimension; this is an immediate consequence of the requirement that a
replicated distribution must be as unequal as its original.

Replication invariance in conjunction with translation invariance (if Ω = R) or scale
invariance (in the case Ω = R++) implies equality indifference. To see that this is the
case, let Ω = R, n,m ∈ N, and α, β ∈ Ω1. Translation invariance implies α1nIβ1n.
By replication invariance, we obtain β1nIβ1nm and β1nmIβ1m. Since R is transitive, it
follows that α1nIβ1m. Analogously, it can be verified that replication invariance and scale
invariance together imply equality indifference if Ω = R++.

The only axiom of this subsection that is not entirely standard is the following composite
transfer principle for top income. It prescribes certain consequences of a composition
of rank-preserving progressive and regressive transfers involving three income recipients.
Consider three individuals i, j, and n. Suppose that n is the best-off in the entire population
and i is worse off than j. The axiom asserts that a composition of a progressive transfer
from j to i and a regressive transfer from j to n increases inequality as long as the relative
ranking of all individuals involved is preserved. This axiom strengthens an idea embodied
in the joint transfer axiom in Sen (1974). A crucial feature of the axiom (and of the
inequality orderings that satisfy it) is that a trade-off between two conflicting transfers
(one regressive, one progressive) must always be resolved in the same direction.

Composite transfer principle for top income. For all n ∈ N and for all x, y ∈ Ωn

with xk ≤ xk+1 and yk ≤ yk+1 for all k ∈ {1, . . . , n− 1}, if there exist i, j ∈ {1, . . . , n− 1}
with i < j and δ, ε ∈ R++ such that x− y = δ(ei − ej) + ε(en − ej), then xPy.

The following theorem provides a preliminary result that is analogous to Theorem 1 of
the previous section.

Theorem 5. Let Ω ∈ {R,R++} and suppose that R satisfies S-convexity, continuity, repli-
cation invariance, and the composite transfer principle for top income. For all n,m ∈ N,
for all x ∈ Ωn, and for all y ∈ Ωm, if max{x1, . . . , xn} = max{y1, . . . , ym} and µ(x) = µ(y),
then xIy.

Parallel to Theorem 2, the following result characterizes all inequality orderings that
satisfy the axioms introduced in this subsection. As the theorem shows, these orderings
only utilize the maximum and average incomes and are increasing in the maximum income.

Theorem 6. Let Ω ∈ {R,R++}. R satisfies S-convexity, continuity, replication invariance,
and the composite transfer principle for top income if and only if there exists a continuous
ordering % on S = {(α, β) ∈ Ω2 | α ≥ β} such that

(i) for all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,

xRy ⇔ (max{x1, . . . , xn}, µ(x)) % (max{y1, . . . , ym}, µ(y));
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(ii) % is increasing in its first argument.

The subsection is concluded with characterizations of the absolute and relative max-
mean inequality orderings.

Theorem 7. Let Ω = R. R satisfies S-convexity, continuity, replication invariance, the
composite transfer principle for top income, and translation invariance if and only if R =
Ra
xµ.

Theorem 8. Let Ω = R++. R satisfies S-convexity, continuity, replication invariance, the
composite transfer principle for top income, and scale invariance if and only if R = Rr

xµ.

3.3 Mean-min inequality orderings

We characterize the absolute and relative mean-min inequality orderings using an axiom
dual to the composite transfer principle for top income, which we call the composite transfer
principle for bottom income. Consider again three individuals i, j, and 1. Now suppose
that j is better-off than i and 1 is the worst-off in the entire population. The composite
transfer principle for bottom income asserts that a composition of a progressive transfer
from i to 1 and a regressive transfer from i to j decreases inequality as long as the ranking
of all individuals is preserved. This axiom is similar to the transfer sensitivity axiom in
Shorrocks and Foster (1987); see also Kamaga (2018) and Bossert and Kamaga (2020). In
the context of welfare measurement, the property employed by these authors is implied
by the conjunction of the strong Pareto principle and the well-known axiom of Hammond
equity; see Hammond (1979, p. 1132).

Composite transfer principle for bottom income. For all n ∈ N and for all x, y ∈ Ωn

with xk ≤ xk+1 and yk ≤ yk+1 for all k ∈ {1, . . . , n− 1}, if there exist i, j ∈ {2, . . . , n} with
i < j and δ, ε ∈ R++ such that x− y = δ(e1 − ei) + ε(ej − ei), then yPx.

In analogy to the previous subsections, we begin with a preliminary result. This is
followed by a characterization of all inequality orderings that satisfy the axioms of the
previous subsection when the composite transfer principle for top income is replaced with
the corresponding principle for bottom income.

Theorem 9. Let Ω ∈ {R,R++} and suppose that R satisfies S-convexity, continuity, repli-
cation invariance, and the composite transfer principle for bottom income. For all n,m ∈ N,
for all x ∈ Ωn, and for all y ∈ Ωm, if min{x1, . . . , xn} = min{y1, . . . , ym} and µ(x) = µ(y),
then xIy.

Note that, unlike Theorems 1, 2, and 3, the proof of Theorem 9 does not apply if Ω = R is
replaced with Ω = R+; this is the case because Step 1 of its proof presented in the appendix
cannot be established on this alternative domain. For that reason, we allow for negative
income values in the absolute case.

The following theorem axiomatizes the class of continuous inequality orderings that
only utilize the mean and minimum incomes and are decreasing in the minimum income.
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Theorem 10. Let Ω ∈ {R,R++}. R satisfies S-convexity, continuity, replication invari-
ance, and the composite transfer principle for bottom income if and only if there exists a
continuous ordering % on S = {(α, β) ∈ Ω2 | α ≥ β} such that

(i) for all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,

xRy ⇔ (µ(x),min{x1, . . . , xn}) % (µ(y),min{y1, . . . , ym});

(ii) % is decreasing in its second argument.

Finally, we characterize the absolute and relative mean-min inequality orderings.

Theorem 11. Let Ω = R. R satisfies S-convexity, continuity, replication invariance, the
composite transfer principle for bottom income, and translation invariance if and only if
R = Ra

µn.

Theorem 12. Let Ω = R++. R satisfies S-convexity, continuity, replication invariance, the
composite transfer principle for bottom income, and scale invariance if and only if R = Rr

µn.

3.4 Top income gaps and shares

We begin by presenting the restatements of S-convexity, continuity, and replication invari-
ance defined on the requisite domain; as is the case for the properties introduced in Section
2, this needs to be done because we focus on quantiles in this subsection.

S-convexity∗. For all n ∈ N, for all x ∈ Ωnq, and for all nq×nq doubly stochastic matrices
B, xR(Bx).

Continuity∗. For all n ∈ N and for all x ∈ Ωnq, {y ∈ Ωnq | yRx} and {y ∈ Ωnq | xRy} are
closed in Ωnq.

Replication invariance∗. For all n, k ∈ N and for all x ∈ Ωnq, xI(x, . . . , x︸ ︷︷ ︸
k times

).

There are now two new axioms that play a crucial role in identifying the indices con-
sidered in this subsection. The first of these, transfer neutrality within quantiles, requires
that inequality be invariant with respect to a transfer within a quantile as long as the indi-
viduals involved remain in the same quantile. This an inequality-measurement analogue of
the incremental-equity property introduced by Blackorby, Bossert, and Donaldson (2002)
in the context of welfare measurement. Parallel to Blackorby, Bossert, and Donaldson’s
(2002) characterization of utilitarianism, the axiom is primarily responsible for the linear-
ity inherent in criteria that depend on arithmetic means—in our case, the means of the
quantiles. As alluded to earlier, the reason why an axiom of this nature is required in this
subsection but not earlier is the necessity to address within-quantile issues.

Transfer neutrality within quantiles. For all n ∈ N and for all x, y ∈ Ωnq, if G`(x) =
G`(y) for all ` ∈ {1, . . . , q} and there exist `′ ∈ {1, . . . , q} and i, j ∈ G`′(x) such that
xi − yi = yj − xj and xk = yk for all k ∈ {1, . . . , nq} \ {i, j}, then xIy.
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The following theorem characterizes the class of inequality orderings that satisfy the
four axioms presented above. As the theorem shows, this class consists of all continuous
and S-convex orderings that only utilize the mean incomes of the quantiles.

Theorem 13. Let Ω ∈ {R,R++}. R satisfies S-convexity∗, replication invariance∗, continu-
ity∗, and transfer neutrality within quantiles if and only if there exists a continuous and
S-convex ordering %∗ on S∗ = {z ∈ Ωq | z` ≤ z`+1 for all ` ∈ {1, . . . , q − 1}} such that, for
all n,m ∈ N, for all x ∈ Ωnq, and for all y ∈ Ωmq,

xRy ⇔ (µ1(x), . . . , µq(x)) %∗ (µ1(y), . . . , µq(y)). (1)

The second new axiom we use to characterize the top income gap inequality ordering
and its relative counterpart is the composite transfer principle for top quantile. This axiom
parallels the composite transfer principle for top income but the requirement is restricted
to income distributions involving q individuals. Thus, it is logically weaker than the direct
reformulation of the composite transfer principle for top income.

Composite transfer principle for top quantile. For all x, y ∈ Ωq with x` ≤ x`+1 and
y` ≤ y`+1 for all ` ∈ {1, . . . , q − 1}, if there exist δ, ε ∈ R++ and i, j ∈ {1, . . . , q − 1} with
i < j such that x− y = δ(ei − ej) + ε(eq − ej), then xPy.

Adding the composite transfer principle for top quantile to the axioms of Theorem 13, we
obtain the following preliminary result that is analogous to Theorem 5.

Theorem 14. Let Ω ∈ {R,R++} and suppose that R satisfies S-convexity∗, continuity∗,
replication invariance∗, transfer neutrality within quantiles, and the composite transfer
principle for top quantile. For all n,m ∈ N, for all x ∈ Ωnq, and for all y ∈ Ωmq, if
µq(x) = µq(y) and µ(x) = µ(y), then xIy.

The following theorem characterizes all inequality orderings that satisfy the axioms
introduced in this subsection. These inequality orderings only utilize the mean incomes of
the top quantile and the entire population and they are increasing in the mean income of
the top quantile.

Theorem 15. (a) Let Ω = R. R satisfies S-convexity∗, continuity∗, replication invariance∗,
transfer neutrality within quantiles, and the composite transfer principle for top quantile if
and only if there exists a continuous ordering % on S = {(α, β) ∈ Ω2 | α ≥ β} such that

(i) for all n,m ∈ N, for all x ∈ Ωnq, and for all y ∈ Ωmq,

xRy ⇔ (µq(x), µ(x)) % (µq(y), µ(y));

(ii) % is increasing in its first argument.

(b) Let Ω = R++. R satisfies S-convexity∗, continuity∗, replication invariance∗, transfer
neutrality within quantiles, and the composite transfer principle for top quantile if and only
if there exists a continuous ordering % on S = {(α, β) ∈ Ω2 | α ≥ β > α/q} such that
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(i) for all n,m ∈ N, for all x ∈ Ωnq, and for all y ∈ Ωmq,

xRy ⇔ (µq(x), µ(x)) % (µq(y), µ(y));

(ii) % is increasing in its first argument.

Again, adding translation invariance and scale invariance, respectively, to the axioms
of Theorem 15, we obtain characterizations of the top income gap inequality ordering and
the top income share inequality ordering.

Theorem 16. Let Ω = R. R satisfies S-convexity∗, continuity∗, replication invariance∗,
transfer neutrality within quantiles, the composite transfer principle for top quantile, and
translation invariance∗ if and only if R = Ra

t .

Theorem 17. Let Ω = R++. R satisfies S-convexity∗, continuity∗, replication invariance∗,
transfer neutrality within quantiles, the composite transfer principle for top quantile, and
scale invariance∗ if and only if R = Rr

t .

3.5 Bottom income gaps and shares

We characterize the bottom income share inequality ordering and the mean-bottom in-
equality ordering using the composite transfer principle for bottom quantile, which is an
axiom dual to the composite transfer principle for top quantile. The composite transfer
principle for bottom quantile requires the same property as the composite transfer principle
for bottom income but the property applies only to income distributions for q persons.

Composite transfer principle for bottom quantile. For all x, y ∈ Ωq with x` ≤ x`+1

and y` ≤ y`+1 for all ` ∈ {1, . . . , q − 1}, if there exist δ, ε ∈ R++ and i, j ∈ {2, . . . , q} with
i < j such that x− y = δ(e1 − ei) + ε(ej − ei), then yPx.

In analogy to the previous section, we characterize all inequality orderings that satisfy
the axioms of the previous subsection when the composite transfer principle for top quantile
is replaced with the composite transfer principle for bottom quantile. We begin with the
following preliminary result.

Theorem 18. Let Ω ∈ {R,R++} and suppose that R satisfies S-convexity∗, continuity∗,
replication invariance∗, transfer neutrality within quantiles, and the composite transfer prin-
ciple for bottom quantile. For all n,m ∈ N, for all x ∈ Ωnq, and for all y ∈ Ωmq, if
µ1(x) = µ1(y) and µ(x) = µ(y), then xIy.

The following theorem forms the basis of our final two axiomatizations.

Theorem 19. Let Ω ∈ {R,R++}. R satisfies S-convexity∗, continuity∗, replication invari-
ance∗, transfer neutrality within quantiles, and the composite transfer principle for bottom
quantile if and only if there exists a continuous ordering % on S = {(α, β) ∈ Ω2 | α ≥ β}
such that
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(i) for all n,m ∈ N, for all x ∈ Ωnq, and for all y ∈ Ωmq,

xRy ⇔ (µ(x), µ1(x)) % (µ(y), µ1(y));

(ii) % is decreasing in its second argument.

Adding translation invariance and scale invariance, respectively, to the axioms of Theo-
rem 19, we obtain characterizations of the bottom income gap inequality ordering and the
bottom income share inequality ordering.

Theorem 20. Let Ω = R. R satisfies S-convexity∗, continuity∗, replication invariance∗,
transfer neutrality within quantiles, the composite transfer principle for bottom quantile,
and translation invariance∗ if and only if R = Ra

b .

Theorem 21. Let Ω = R++. R satisfies S-convexity∗, continuity∗, replication invariance∗,
transfer neutrality within quantiles, the composite transfer principle for bottom quantile,
and scale invariance∗ if and only if R = Rr

b.

4 Empirical considerations

The measures characterized in this paper are easily understood and computed. They can
be considered somewhat coarse, and the purpose of this empirical section is to explore their
linear correlation with more standard indices of inequality. We proceed by calculating some
of the characterized indices and some standard indices (see below for details) for comparison
purposes, employing a strategy that is inspired by Leigh (2007). In particular, we estimate
the equations

SIneqi,t = α + βIneqi,t + εi,t, (2)

SIneqi,t = α + βIneqi,t + γi + εi,t, (3)

SIneqi,t = α + βIneqi,t + γi + δt + εi,t, (4)

where SIneqi,t is one of several standard indices of inequality in country i in year t. These
alternative measures are given by (i) the absolute Gini coefficient, the variance, and the
Kolm index with parameter values of 10−4 and 5 · 10−4 in the absolute case; and (ii) the
Gini coefficient and the Atkinson index with inequality-aversion parameter values of 0.5 and
1 for the relative measures. The variable Ineqi,t indicates one of the inequality measures
characterized in this paper. Equation (3) also includes a country-specific term γ, allowing us
to estimate the association between indices within countries, while (4) controls for the year
fixed effect δ in addition, to include the effects of common macroeconomic shocks between
countries in specific years. A fourth model that may be estimated adds covariates (such as
GDP growth rates, unemployment, and fertility rates) that could mediate the association
between inequality indices. In addition, non-linear associations among the indices could be
explored. We leave these extensions for future research.

We use all the waves of the Luxembourg Income Study (LIS) datasets that are available
as of May 2019, retaining the countries for which at least four years for the period 1974–
2016 are covered. This leaves us with 36 countries in total and a global sample of 299
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observations; for the countries retained, see Table 7 in the appendix. We follow the LIS
rules for their provision of the key figures since we wish to be of guidance for researchers
that decide to use the indices already available from LIS. In particular, in this specification,
(i) the income measure is disposable household income equivalized by means of the square
root equivalence scale; (ii) the unit of analysis is the individual; (iii) incomes are bottom-
coded at 1% of equivalized mean income and top-coded at ten times mean income; (iv)
missing and zero incomes are excluded. As an alternative, to test the sensitivity of our
results to the LIS top-coding rules, we also provide the results without top coding and
include all the observations on the right tail of the income distribution. The incomes are
expressed in 2011 constant US dollars.

All variables are standardized to Z-scores (that is, to a mean of zero and a standard
deviation of one) to facilitate comparisons of the estimated coefficients. As a result of this
standardization, the slope β of the regression line in (2) is Pearson’s correlation coefficient
among the independent and dependent variables. This equivalence does not hold in the
other two estimated models since these are multivariate regressions. Again, the reference
value is one because an increase in one standard deviation of one index is associated with an
increase of one standard deviation in the other. In the models of equation (3), we includes a
country-specific term γ. Equation (4) also controls for a year fixed effect δ. The β coefficient
in (2), Pearson’s correlation coefficient among the independent and dependent variables,
could be considered a more informative measure to rely upon to evaluate the reliability of
the compared indices for the purpose of inter-country or longitudinal comparisons. Still,
the other two models allow us to analyze the correlation within countries and consider the
effects of common macroeconomic shocks.

Table 1 displays the results for the absolute inequality indices, and Table 2 contains
those for the relative case following the LIS rules, while Tables 3 and 4 contain those
without top-coding. Owing to the presence of high collinearity among the inequality indices
(measured by a Variance Inflation Factor exceeding the reference value of ten by a large
margin), we cannot include all of them simultaneously in the regression. To avoid lengthy
tables, we report the estimation results of pairs of the classical and our inequality measures
in a single column. The classical measure we consider is indicated in the top row and the
inequality measures we characterize are listed in the first column. The equation numbers
(2), (3), and (4) in the top row indicate the three regression models without fixed effects,
with country fixed effects, and with country and year fixed effects, respectively.

All coefficients are positive and significant in the LIS specification, while some coeffi-
cients lose significance without top/bottom coding and also in one case for the Atkinson
index. Let us first focus on the discussion of the results with the full application of the LIS
rules. We observe many correlation coefficients among the indices above 0.9, indicating that
these indices are reliable proxies of each other. For the absolute case, the lowest observed
correlation is never below 0.352 (between the Kolm index with a parameter value of 10−4

and the absolute mean-min indices in Table 1). The correlation coefficients for the relative
measures range between 0.18 (observed between the Gini or the Atkinson index with a
parameter value of 0.5 and the relative mean-min indices in Table 2) and 0.983 (between
the Gini and the top income share indices).

The linear associations between the absolute indices are surprisingly high; see Table 1.
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Values very close to one are observed in all three models between all the absolute standard
measures and the absolute mean-min, top 10% gap, and bottom 10% gap indices; the only
exception is the correlation coefficient with the Kolm index with parameter value 10−4,
reported in the eighth column of the table. The results improve with the introduction of
country and year fixed effects.

For the relative case in all models (Table 2), the value closest to one is observed for
the top 10% income share index, followed by the bottom 10% income share index. The
remaining indices do not perform that well, especially when year and country fixed effects
are incorporated. As we wrote above, this might not be a concern if the purpose is to use
these indices as proxies for international and intertemporal comparisons. It is worth noting
that the values of the coefficient of determination (R-squared) are always above 0.9 as soon
as the country dummies are introduced in the model.

As expected, the full consideration of the highest incomes (see Tables 3 and 4) has an
effect on the results, lowering the correlation coefficients between the standard measures
and the coarser indices, apart from the two that exclude the maximum income from their
definitions (the top 10% gap and share and the bottom 10% gap and share). The absolute
and relative mean-min indices perform well, especially in the absolute case with the absolute
Gini coefficient and the two versions of the Kolm index.
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Table 1: Standard absolute inequality measures and our absolute inequality measures

Dependent
variable

Absolute Gini Variance Kolm (parameter 10−4) Kolm (parameter 5 · 10−4)
(2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4)

Absolute
range

0.838∗∗∗ 0.606∗∗∗ 0.332∗∗∗ 0.809∗∗∗ 0.675∗∗∗ 0.429∗∗∗ 0.493∗∗∗ 0.555∗∗∗ 0.400∗∗∗ 0.869∗∗∗ 0.642∗∗∗ 0.406∗∗∗

(0.037) (0.038) (0.041) (0.055) (0.048) (0.049) (0.054) (0.062) (0.088) (0.025) (0.044) (0.057)
0 .702 0 .910 0 .959 0 .654 0 .875 0 .927 0 .243 0 .687 0 .759 0 .755 0 .879 0 .932

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Absolute
max–mean

0.823∗∗∗ 0.577∗∗∗ 0.306∗∗∗ 0.789∗∗∗ 0.647∗∗∗ 0.402∗∗∗ 0.498∗∗∗ 0.530∗∗∗ 0.374∗∗∗ 0.856∗∗∗ 0.612∗∗∗ 0.375∗∗∗

(0.038) (0.038) (0.040) (0.056) (0.047) (0.048) (0.053) (0.061) (0.085) (0.026) (0.044) (0.055)
0 .677 0 .904 0 .958 0 .638 0 .869 0 .926 0 .249 0 .683 0 .757 0 .732 0 .873 0 .930

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Absolute
mean–min

0.925∗∗∗ 1.167∗∗∗ 1.022∗∗∗ 0.829∗∗∗ 1.155∗∗∗ 0.965∗∗∗ 0.352∗∗∗ 1.031∗∗∗ 0.983∗∗∗ 0.917∗∗∗ 1.244∗∗∗ 1.211∗∗∗

(0.027) (0.026) (0.042) (0.049) (0.063) (0.086) (0.060) (0.089) (0.160) (0.026) (0.033) (0.060)
0 .855 0 .984 0 .988 0 .688 0 .913 0 .939 0 .124 0 .737 0 .777 0 .841 0 .965 0 .971

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Top 10%
gap

0.991∗∗∗ 1.011∗∗∗ 0.930∗∗∗ 0.923∗∗∗ 1.004∗∗∗ 0.890∗∗∗ 0.420∗∗∗ 0.848∗∗∗ 0.724∗∗∗ 0.904∗∗∗ 1.027∗∗∗ 0.938∗∗∗

(0.008) (0.014) (0.024) (0.041) (0.058) (0.074) (0.051) (0.079) (0.145) (0.021) (0.037) (0.062)
0 .982 0 .990 0 .993 0 .851 0 .921 0 .945 0 .176 0 .726 0 .765 0 .817 0 .950 0 .958

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Bottom
10% gap

0.993∗∗∗ 1.060∗∗∗ 1.032∗∗∗ 0.923∗∗∗ 1.071∗∗∗ 1.030∗∗∗ 0.414∗∗∗ 0.880∗∗∗ 0.773∗∗∗ 0.926∗∗∗ 1.078∗∗∗ 1.045∗∗∗

(0.008) (0.012) (0.019) (0.042) (0.056) (0.070) (0.053) (0.080) (0.153) (0.019) (0.034) (0.063)
0 .986 0 .996 0 .997 0 .852 0 .934 0 .953 0 .171 0 .727 0 .765 0 .858 0 .957 0 .962

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Notes. Each column presents the results of the corresponding pairs of classical and our inequality measures according to the estimated
equations (2) without fixed effects, (3) with country fixed effects, and (4) with country and year fixed effects, respectively. Robust standard
errors in parentheses. ∗∗∗, ∗∗, and ∗ denote p < 0.01, p < 0.05, and p < 0.1, respectively. R-squared is in italic.

18



Table 2: Standard relative inequality measures and our relative inequality measures

Dependent
variables

Gini Atkinson (parameter 0.5) Atkinson (parameter 1)
(2) (3) (4) (2) (3) (4) (2) (3) (4)

Relative
range

0.327∗∗∗ 0.123∗∗∗ 0.078∗∗∗ 0.335∗∗∗ 0.108∗∗∗ 0.066∗∗∗ 0.341∗∗∗ 0.112∗∗∗ 0.070∗∗

(0.044) (0.019) (0.023) (0.042) (0.018) (0.022) (0.043) (0.021) (0.027)
0 .107 0 .957 0 .967 0 .112 0 .954 0 .964 0 .116 0 .941 0 .953

Obs. 299 299 299 299 299 299 299 299 299

Relative
max–mean

0.334∗∗∗ 0.093∗∗∗ 0.051∗∗∗ 0.342∗∗∗ 0.078∗∗∗ 0.038∗ 0.331∗∗∗ 0.070∗∗∗ 0.025
(0.050) (0.020) (0.023) (0.048) (0.018) (0.022) (0.050) (0.021) (0.026)
0 .111 0 .954 0 .966 0 .117 0 .951 0 .963 0 .110 0 .937 0 .952

Obs. 299 299 299 299 299 299 299 299 299

Relative
mean–min

0.180∗∗∗ 0.097∗∗∗ 0.059∗∗∗ 0.180∗∗∗ 0.090∗∗∗ 0.054∗∗∗ 0.208∗∗∗ 0.110∗∗∗ 0.073∗∗

(0.025) (0.018) (0.018) (0.022) (0.016) (0.016) (0.022) (0.019) (0.020)
0 .032 0 .954 0 .967 0 .032 0 .952 0 .964 0 .043 0 .941 0 .954

Obs. 299 299 299 299 299 299 299 299 299

Top 10%
share

0.983∗∗∗ 0.822∗∗∗ 0.763∗∗∗ 0.969∗∗∗ 0.814∗∗∗ 0.770∗∗∗ 0.965∗∗∗ 0.888∗∗∗ 0.857∗∗∗

(0.010) (0.040) (0.039) (0.016) (0.045) (0.046) (0.018) (0.049) (0.056)
0 .965 0 .981 0 .987 0 .939 0 .979 0 .984 0 .932 0 .972 0 .978

Obs. 299 299 299 299 299 299 299 299 299

Bottom
10% share

0.892∗∗∗ 0.547∗∗∗ 0.471∗∗∗ 0.918∗∗∗ 0.620∗∗∗ 0.554∗∗∗ 0.927∗∗∗ 0.671∗∗∗ 0.615∗∗∗

(0.118) (0.149) (0.141) (0.108) (0.144) (0.141) (0.099) (0.155) (0.156)
0 .792 0 .971 0 .979 0 .843 0 .976 0 .982 0 .860 0 .968 0 .976

Obs. 299 299 299 299 299 299 299 299 299

Notes. Each column presents the results of the corresponding pairs of classical and our inequality measures
according to the estimated equations (2) without fixed effects, (3) with country fixed effects, and (4) with
country and year fixed effects, respectively. Robust standard errors in parentheses. ∗∗∗, ∗∗, and ∗ denote
p < 0.01, p < 0.05, and p < 0.1, respectively. R-squared is in italic.
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Table 3: Standard absolute inequality measures and our absolute inequality measures (without top-coding)

Dependent
variable

Absolute Gini Variance Kolm (parameter 10−4) Kolm (parameter 5 · 10−4)
(2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4)

Absolute
range

0.025 0.064∗∗∗ 0.015 0.562∗∗∗ 0.576∗∗∗ 0.561∗∗∗ 0.088∗∗ 0.065∗∗∗ 0.003 0.067 0.063∗∗∗ 0.011
(0.035) (0.024) (0.012) (0.084) (0.069) (0.067) (0.044) (0.016) (0.020) (0.043) (0.019) (0.012)
0 .001 0 .775 0 .937 0 .316 0 .547 0 .648 0 .008 0 .584 0 .735 0 .005 0 .736 0 .906

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Absolute
max–mean

0.023 0.064∗∗∗ 0.015 0.561∗∗∗ 0.576∗∗∗ 0.561∗∗∗ 0.087∗∗ 0.064∗∗∗ 0.003 0.066 0.062∗∗∗ 0.011
(0.034) (0.024) (0.012) (0.084) (0.069) (0.067) (0.044) (0.016) (0.020) (0.041) (0.019) (0.011)
0 .001 0 .775 0 .937 0 .315 0 .547 0 .648 0 .008 0 .584 0 .735 0 .004 0 .736 0 .906

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Absolute
mean–min

0.917∗∗∗ 1.179∗∗∗ 1.044∗∗∗ 0.467∗∗∗ 0.872∗∗∗ 0.829∗∗∗ 0.355∗∗∗ 1.025∗∗∗ 0.974∗∗∗ 0.917∗∗∗ 1.240∗∗∗ 1.207∗∗∗

(0.028) (0.028) (0.045) (0.050) (0.162) (0.203) (0.060) (0.088) (0.159) (0.026) (0.032) (0.059)
0 .841 0 .981 0 .986 0 .218 0 .385 0 .473 0 .126 0 .739 0 .778 0 .840 0 .965 0 .971

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Top 10%
gap

0.981∗∗∗ 1.016∗∗∗ 0.904∗∗∗ 0.431∗∗∗ 0.584∗∗∗ 0.237 0.413∗∗∗ 0.852∗∗∗ 0.720∗∗∗ 0.901∗∗∗ 1.033∗∗∗ 0.929∗∗∗

(0.013) (0.020) (0.034) (0.033) (0.100) (0.187) (0.051) (0.080) (0.144) (0.021) (0.038) (0.064)
0 .963 0 .979 0 .985 0 .186 0 .339 0 .445 0 .170 0 .726 0 .766 0 .811 0 .947 0 .956

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Bottom
10% gap

0.990∗∗∗ 1.070∗∗∗ 1.053∗∗∗ 0.498∗∗∗ 0.812∗∗∗ 0.882∗∗∗ 0.420∗∗∗ 0.870∗∗∗ 0.756∗∗∗ 0.927∗∗∗ 1.070∗∗∗ 1.031∗∗∗

(0.009) (0.013) (0.021) (0.040) (0.143) (0.201) (0.052) (0.079) (0.149) (0.019) (0.034) (0.061)
0 .981 0 .995 0 .996 0 .248 0 .399 0 .483 0 .176 0 .728 0 .766 0 .859 0 .957 0 .962

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Notes. Each column presents the results of the corresponding pairs of classical and our inequality measures according to the estimated
equations (2) without fixed effects, (3) with country fixed effects, and (4) with country and year fixed effects, respectively. Robust standard
errors in parentheses. ∗∗∗, ∗∗, and ∗ denote p < 0.01, p < 0.05, and p < 0.1, respectively. R-squared is in italic.
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Table 4: Standard relative inequality measures and our relative inequality measures (without
top-coding)

Dependent
variables

Gini Atkinson (parameter 0.5) Atkinson (parameter 1)
(2) (3) (4) (2) (3) (4) (2) (3) (4)

Relative
range

0.057 0.023∗ 0.012 0.079 0.021 0.014 0.064 0.014 0.009
(0.116) (0.013) (0.012) (0.127) (0.015) (0.015) (0.118) (0.013) (0.014)
0 .003 0 .944 0 .962 0 .006 0 .936 0 .954 0 .004 0 .931 0 .949

Obs. 299 299 299 299 299 299 299 299 299

Relative
max–mean

0.056 0.023∗ 0.011 0.077 0.021 0.013 0.062 0.013 0.008
(0.115) (0.013) (0.012) (0.125) (0.015) (0.015) (0.116) (0.012) (0.014)
0 .003 0 .944 0 .962 0 .006 0 .936 0 .954 0 .004 0 .931 0 .949

Obs. 299 299 299 299 299 299 299 299 299

Relative
mean–min

0.230∗∗∗ 0.100∗∗∗ 0.058∗∗∗ 0.229∗∗∗ 0.089∗∗∗ 0.049∗∗∗ 0.255∗∗∗ 0.112∗∗∗ 0.072∗∗∗

(0.026) (0.018) (0.018) (0.023) (0.016) (0.018) (0.023) (0.018) (0.075)
0 .053 0 .949 0 .963 0 .052 0 .936 0 .955 0 .065 0 .937 0 .963

Obs. 299 299 299 299 299 299 299 299 299

Top 10%
share

0.948∗∗∗ 0.600∗∗∗ 0.529∗∗∗ 0.909∗∗∗ 0.519∗∗∗ 0.455∗∗∗ 0.927∗∗∗ 0.637∗∗∗ 0.528∗∗∗

(0.022) (0.063) (0.064) (0.031) (0.076) (0.079) (0.027) (0.070) (0.075)
0 .899 0 .962 0 .973 0 .827 0 .949 0 .962 0 .858 0 .951 0 .963

Obs. 299 299 299 299 299 299 299 299 299

Bottom
10% share

0.896∗∗∗ 0.564∗∗∗ 0.484∗∗∗ 0.916∗∗∗ 0.659∗∗∗ 0.583∗∗∗ 0.927∗∗∗ 0.673∗∗∗ 0.610∗∗∗

(0.117) (0.146) (0.138) (0.109) (0.147) (0.143) (0.100) (0.152) (0.152)
0 .803 0 .969 0 .978 0 .839 0 .970 0 .977 0 .860 0 .967 0 .974

Obs. 299 299 299 299 299 299 299 299 299

Notes. Each column presents the results of the corresponding pairs of classical and our inequality measures
according to the estimated equations (2) without fixed effects, (3) with country fixed effects, and (4) with
country and year fixed effects, respectively. Robust standard errors in parentheses. ∗∗∗, ∗∗, and ∗ denote
p < 0.01, p < 0.05, and p < 0.1, respectively. R-squared is in italic.

One explanation behind our results could be that the income distributions of the coun-
tries in our sample are broadly similar among themselves. To better explore this issue,
we follow the suggestion of an anonymous referee, and replace the income distributions
of the countries by randomly generating the distributions via the Stata package of van
Kerm (2017). An alphabetical list of the LIS original countries by years is provided first,
including 322 cases (of which we analyze 299 in our regressions). We simulate the first
110 as generalized beta of the second kind (GB2) distributions with the usual parameters
a, b, p, q. The following 110 are generated as Singh-Maddala distributions with parameters
a, b, q. For the remainder, we employ Dagum distributions with parameters a, b, p.

In our simulations, the parameters are random draws from uniform distributions, U ,
with different bounds. In particular, for a we use U = (1.5, 7), for p the distribution is
U = (0.5, 25), and for q we employ U = (0.6, 5). The bands for b differ between distributions
and are U = (90, 400) but for the Dagum were U = (1, 7). We arbitrarily choose these
bounds around those that are commonly found for income distributions (see, for example,
Chotikapanich, Griffiths, Hajargasht, Karunarathne, and Rao, 2018, for the case of the
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generalized beta of the second kind and the help file of the van Kerm, 2017, package).
From each GB2 distribution, we then extract randomly incomes of 10,000 individuals and
use these for the calculation of the inequality indices. The resulting income distributions are
quite varied among themselves. To give a rough and concise idea of the main differences
between the simulated distributions, we report some of the most well-known reference
points: the Gini coefficient ranges between 0.04 and 0.91; the median and mean have values
respectively between 1.21/1.44 and 3407.78/35069.55; the absolute Range varies between
8.23 and 7.46e+07.

We run our regressions on this simulated sample, without top/bottom coding, and report
the results in Tables 5 and 6. The linear associations are even higher than before in all cases.
For the absolute regression models, all coefficients are very close to the reference value of
one. When we consider relative indices, the positive linear associations are considerably
higher than in the LIS sample and always significant.

This simple simulation exercise leads us to conclude this empirical application offering
some confidence to scholars who do not have access to individual and household micro-data:
the crude indices they are able to compute are very good proxies of the ideal inequality
measures.
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Table 5: Standard absolute inequality measures and our absolute inequality measures (simulated samples)

Dependent
variable

Absolute Gini Variance Kolm (parameter 10−4) Kolm (parameter 5 · 10−4)
(2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4)

Absolute
range

0.966∗∗∗ 0.954∗∗∗ 0.956∗∗∗ 0.964∗∗∗ 0.952∗∗∗ 0.951∗∗∗ 0.974∗∗∗ 0.964∗∗∗ 0.964∗∗∗ 0.978∗∗∗ 0.969∗∗∗ 0.969∗∗∗

(0.054) (0.058) (0.058) (0.109) (0.108) (0.111) (0.095) (0.095) (0.097) (0.084) (0.084) (0.086)
0 .933 0 .949 0 .957 0 .929 0 .937 0 .940 0 .949 0 .954 0 .956 0 .956 0 .961 0 .963

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Absolute
max–mean

0.966∗∗∗ 0.954∗∗∗ 0.956∗∗∗ 0.964∗∗∗ 0.952∗∗∗ 0.951∗∗∗ 0.974∗∗∗ 0.964∗∗∗ 0.964∗∗∗ 0.977∗∗∗ 0.969∗∗∗ 0.969∗∗∗

(0.055) (0.058) (0.059) (0.109) (0.108) (0.111) (0.095) (0.095) (0.097) (0.084) (0.084) (0.086)
0 .932 0 .949 0 .956 0 .929 0 .937 0 .940 0 .948 0 .954 0 .956 0 .955 0 .960 0 .963

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Absolute
mean–min

0.974∗∗∗ 1.021∗∗∗ 1.029∗∗∗ 0.880∗∗∗ 0.943∗∗∗ 0.960∗∗∗ 0.901∗∗∗ 0.967∗∗∗ 0.984∗∗∗ 0.920∗∗∗ 0.988∗∗∗ 1.003∗∗∗

(0.087) (0.057) (0.053) (0.210) (0.164) (0.157) (0.187) (0.141) (0.133) (0.164) (0.119) (0.111)
0 .948 0 .974 0 .978 0 .774 0 .852 0 .874 0 .812 0 .885 0 .903 0 .847 0 .913 0 .928

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Top 10%
gap

0.955∗∗∗ 0.977∗∗∗ 0.994∗∗∗ 0.829∗∗∗ 0.862∗∗∗ 0.890∗∗∗ 0.858∗∗∗ 0.894∗∗∗ 0.922∗∗∗ 0.885∗∗∗ 0.923∗∗∗ 0.950∗∗∗

(0.139) (0.118) (0.113) (0.274) (0.238) (0.232) (0.248) (0.212) (0.204) (0.221) (0.186) (0.178)
0 .913 0 .936 0 .946 0 .688 0 .764 0 .796 0 .736 0 .805 0 .835 0 .784 0 .845 0 .870

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Bottom
10% gap

0.996∗∗∗ 1.005∗∗∗ 1.008∗∗∗ 0.927∗∗∗ 0.947∗∗∗ 0.957∗∗∗ 0.946∗∗∗ 0.968∗∗∗ 0.978∗∗∗ 0.962∗∗∗ 0.985∗∗∗ 0.994∗∗∗

(0.030) (0.023) (0.021) (0.143) (0.120) (0.115) (0.121) (0.098) (0.092) (0.098) (0.076) (0.072)
0 .992 0 .995 0 .996 0 .859 0 .897 0 .912 0 .894 0 .927 0 .939 0 .925 0 .952 0 .960

Obs. 299 299 299 299 299 299 299 299 299 299 299 299

Notes. Each column presents the results of the corresponding pairs of classical and our inequality measures according to the estimated
equations (2) without fixed effects, (3) with country fixed effects, and (4) with country and year fixed effects, respectively. Robust standard
errors in parentheses. ∗∗∗, ∗∗, and ∗ denote p < 0.01, p < 0.05, and p < 0.1, respectively. R-squared is in italic.
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Table 6: Standard relative inequality measures and our relative inequality measures (simulated
samples)

Dependent
variables

Gini Atkinson (parameter 0.5) Atkinson (parameter 1)
(2) (3) (4) (2) (3) (4) (2) (3) (4)

Relative
range

0.383∗∗∗ 0.402∗∗∗ 0.408∗∗∗ 0.496∗∗∗ 0.523∗∗∗ 0.524∗∗∗ 0.476∗∗∗ 0.503∗∗∗ 0.507∗∗∗

(0.121) (0.105) (0.109) (0.152) (0.131) (0.136) (0.139) (0.120) (0.125)
0 .146 0 .333 0 .430 0 .246 0 .382 0 .468 0 .226 0 .366 0 .455

Obs. 299 299 299 299 299 299 299 299 299

Relative
max–mean

0.684∗∗∗ 0.687∗∗∗ 0.725∗∗∗ 0.824∗∗∗ 0.829∗∗∗ 0.875∗∗∗ 0.766∗∗∗ 0.775∗∗∗ 0.820∗∗∗

(0.107) (0.101) (0.127) (0.110) (0.111) (0.140) (0.113) (0.113) (0.142)
0 .468 0 .596 0 .659 0 .679 0 .735 0 .778 0 .586 0 .664 0 .716

Obs. 299 299 299 299 299 299 299 299 299

Relative
mean–min

0.418∗∗∗ 0.445∗∗∗ 0.450∗∗∗ 0.484∗∗∗ 0.522∗∗∗ 0.525∗∗∗ 0.498∗∗∗ 0.536∗∗∗ 0.537∗∗∗

(0.160) (0.138) (0.144) (0.155) (0.139) (0.147) (0.170) (0.150) (0.157)
0 .174 0 .362 0 .456 0 .234 0 .383 0 .468 0 .248 0 .394 0 .479

Obs. 299 299 299 299 299 299 299 299 299

Top 10%
share

0.936∗∗∗ 0.951∗∗∗ 0.955∗∗∗ 0.801∗∗∗ 0.846∗∗∗ 0.856∗∗∗ 0.862∗∗∗ 0.902∗∗∗ 0.912∗∗∗

(0.031) (0.035) (0.040) (0.052) (0.058) (0.066) (0.044) (0.049) (0.056)
0 .877 0 .902 0 .913 0 .642 0 .719 0 .751 0 .743 0 .794 0 .818

Obs. 299 299 299 299 299 299 299 299 299

Bottom
10% share

0.901∗∗∗ 0.885∗∗∗ 0.866∗∗∗ 0.948∗∗∗ 0.952∗∗∗ 0.937∗∗∗ 0.956∗∗∗ 0.957∗∗∗ 0.941∗∗∗

(0.102) (0.079) (0.081) (0.083) (0.067) (0.071) (0.083) (0.065) (0.067)
0 .811 0 .863 0 .884 0 .899 0 .929 0 .940 0 .914 0 .937 0 .947

Obs. 299 299 299 299 299 299 299 299 299

Notes. Each column presents the results of the corresponding pairs of classical and our inequality measures
according to the estimated equations (2) without fixed effects, (3) with country fixed effects, and (4) with
country and year fixed effects, respectively. Robust standard errors in parentheses. ∗∗∗, ∗∗, and ∗ denote
p < 0.01, p < 0.05, and p < 0.1, respectively. R-squared is in italic.

5 Concluding remarks

In this paper, we characterize some inequality measures that are based on simple summary
statistics such as the minimum, the maximum, and the mean of an income distribution.
Although most of these indices are well-known, there do not appear to be any axiomatiza-
tions available. Our theoretical results are supplemented with an empirical analysis that
is intended to show that there may be more to our contribution than merely filling a gap
in the literature. Especially in the case of some absolute measures, it turns out that there
are some strong correlations between these indices and inequality orderings that are of a
more complex nature. This latter observation, along with Leigh’s (2007) analysis, suggests
that there is a surprisingly high level of agreement across indices when it comes to practical
applications.

These findings are particularly reassuring for applications to countries and time periods
where detailed information on the individual and household incomes are not available, such
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as those studies on the long-run and historical trends of inequality between and within
countries.

Appendix A: Proofs of the theorems

Proof of Theorem 1. Let n ∈ N and x ∈ Ωn. If x1 = . . . = xn, the result follows from
equality indifference. Now suppose that there exist i, j ∈ {1, . . . , n} such that xi 6= xj.
Because of anonymity, without loss of generality, we can assume that x1 = max{x1, . . . , xn}
and xn = min{x1, . . . , xn}. If there exists j ∈ {1, . . . , n − 1} such that xj = xn, let y be
the vector consisting of all components xj such that xj = xn. By equality indifference, it
follows that

yI(xn) = (min{x1, . . . , xn}).
If there are more than two different levels of income, successively augment y with the
components of x that correspond to the next-highest income level, except those at the
top level x1 = max{x1, . . . , xn}. Let z be the vector of incomes that includes all levels
strictly between x1 and xn. Repeated application of part (i) of expansion dominance and
anonymity, along with transitivity, implies that we must have

(y, z)P (xn).

If there exists i ∈ {2, . . . , n} such that xi = x1 = max{x1, . . . , xn}, let w be the vector
consisting of those incomes except for x1 itself. Augmenting the distribution (z, y) by w, it
follows that, by definition, (w, z, y) = (x2, . . . , xn). Using part (i) of expansion dominance,
anonymity, and transitivity again, we obtain

(x2, . . . , xn)P (xn).

By conditional independence, it follows that

x = (x1, . . . , xn)R(x1, xn) = (max{x1, . . . , xn},min{x1, . . . , xn}). (5)

Part (ii) of expansion dominance and anonymity (applied repeatedly if necessary) together
imply

(max{x1, . . . , xn},min{x1, . . . , xn})Rx
and, combined with (5), it follows that

xI(max{x1, . . . , xn},min{x1, . . . , xn}),

as was to be established.

Proof of Theorem 2. ‘If.’ Anonymity follows from (i) in the theorem statement. Further,
equality indifference follows from combining (i) and (ii).

To prove that part (i) of expansion dominance is satisfied, suppose that n,m ∈ N,
x ∈ Ωn, and y ∈ Ωm are such that y1 = . . . = ym > max{x1, . . . , xn}. It follows that

max{x1, . . . , xn, y1, . . . , ym} = y1 > max{x1, . . . , xn}
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and
min{x1, . . . , xn, y1, . . . , ym} = min{x1, . . . , xn}

so that, by (i) in the theorem statement and the increasingness of % in its first argument
(see (iii) in the theorem statement), it follows that (x, y)Px.

Next, we prove part (ii) of expansion dominance. Suppose that n ∈ N, x ∈ Ωn, and
α ∈ [min{x1, . . . , xn},max{x1, . . . , xn}]. This implies that

max{x1, . . . , xn, α} = max{x1, . . . , xn} and min{x1, . . . , xn, α} = min{x1, . . . , xn}.

Thus, because % is reflexive, part (i) of the theorem statement implies that xR(x, α).
To conclude the proof of the ‘if’ part, we show that conditional independence is satisfied.

To that end, suppose that n,m ∈ N, x ∈ Ωn, y ∈ Ωm, and α ∈ Ω1 are such that xPy,
min{x1, . . . , xn} = min{y1, . . . , ym}, α ≥ max{x1, . . . , xn}, and α > max{y1, . . . , ym}. It
follows that

max{x1, . . . , xn, α} = max{y1, . . . , ym, α} = α

and

min{x1, . . . , xn, α} = min{x1, . . . , xn} = min{y1, . . . , ym} = min{y1, . . . , ym, α}

so that

(max{x1, . . . , xn, α},min{x1, . . . , xn, α}) % (max{y1, . . . , ym, α},min{y1, . . . , ym, α})

because % is reflexive. By part (i), it follows that (x, α)R(y, α).

‘Only if.’ Suppose that R satisfies the axioms in the theorem statement. Define the
relation % by letting, for all (α, β), (α′, β′) ∈ S,

(α, β) % (α′, β′)

if and only if there exist n,m ∈ N, x ∈ Ωn, and y ∈ Ωm such that xRy and

α = max{x1, . . . , xn}, β = min{x1, . . . , xn}, α′ = max{y1, . . . , ym}, β′ = min{y1, . . . , ym}.

By Theorem 1 and the transitivity of R, this relation is a well-defined ordering, and property
(i) of the theorem statement follows by definition.

To establish that property (ii) is satisfied, suppose that α, β ∈ Ω1. By equality indiffer-
ence, it follows that α1nIβ1m for all n,m ∈ N and, by property (i), it follows that

(α, α) ∼ (β, β).

Finally, we prove property (iii). Suppose that α, α′, β ∈ Ω1 are such that α > α′ ≥ β.
Let x = (α, α′, β) and y = (α′, β). Thus,

max{x1, x2, x3} = α > α′ = max{y1, y2} and min{x1, x2, x3} = β = min{y1, y2}.
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By part (i) of expansion dominance, it follows that xPy and, by property (i), we obtain
(α, β) � (α′, β) so that % is increasing in its first argument.

Because the ‘if’ parts of the proofs of Theorems 3 and 4 are straightforward, we only
establish the reverse implications. The same remark applies to analogous results later in
the appendix.

Proof of Theorem 3. Let n ∈ N and x ∈ Ωn. Translation invariance with δ =
−min{x1, . . . , xn} requires that

(x1 −min{x1, . . . , xn}, . . . , xn −min{x1, . . . , xn})Ix

and, by Theorem 2,

(max{x1, . . . , xn} −min{x1, . . . , xn}, 0) ∼ (max{x1, . . . , xn},min{x1, . . . , xn}).

Now let n,m ∈ N, x ∈ Ωn, and y ∈ Ωm. Using Theorem 2, it follows that

xRy ⇔ (max{x1, . . . , xn}−min{x1, . . . , xn}, 0) % (max{y1, . . . , ym}−min{y1, . . . , ym}, 0)

and, because % is increasing in its first argument, this is equivalent to

xRy ⇔ max{x1, . . . , xn} −min{x1, . . . , xn} ≥ max{y1, . . . , ym} −min{y1, . . . , ym}
⇔ xRa

xny.

Proof of Theorem 4. Let n ∈ N and x ∈ Ωn. Scale invariance with λ = 1/min{x1, . . . , xn}
requires that (

x1

min{x1, . . . , xn}
, . . . ,

xn
min{x1, . . . , xn}

)
Ix

and, by Theorem 2,(
max{x1, . . . , xn}
min{x1, . . . , xn}

, 1

)
∼ (max{x1, . . . , xn},min{x1, . . . , xn}) .

Now let n,m ∈ N, x ∈ Ωn, and y ∈ Ωm. Using Theorem 2, we obtain

xRy ⇔
(

max{x1, . . . , xn}
min{x1, . . . , xn}

, 1

)
%

(
max{y1, . . . , ym}
min{y1, . . . , ym}

, 1

)
and, because % is increasing in its first argument, this is equivalent to

xRy ⇔ max{x1, . . . , xn}
min{x1, . . . , xn}

≥ max{y1, . . . , ym}
min{y1, . . . , ym}

⇔ xRr
xmy.

Proof of Theorem 5. Step 1. Let n ∈ N with n ≥ 3 and x, y ∈ Ωn be such that
xk ≤ xk+1 and yk ≤ yk+1 for all k ∈ {1, . . . , n − 1}, and suppose that there exist δ ∈ R++

and i, j ∈ {1, . . . , n− 1} with i < j such that x− y = δ(ei − ej). We show that xRy.
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Suppose, by way of contradiction, that xRy does not hold. Since R is complete, yPx
holds. It follows from the completeness and continuity of R that {z ∈ Ωn | yPz} is open
and x ∈ {z ∈ Ωn | yPz}. Thus, there exists ε ∈ R++ such that Uε(x) ⊆ {z ∈ Ωn | yPz},
where Uε(x) is the open ball with center at x and radius ε.

Let ξ = min{δ, ε}/2. Define z̄ ∈ Ωn by z̄i = xi − ξ, z̄j = xj + ξ/2, z̄n = xn + ξ/2, and
z̄k = xk for all k ∈ {1, . . . , n} \ {i, j, n}. Note that z̄− y = (δ− ξ)(ei− ej) + (ξ/2)(en− ej).
Furthermore, z̄k ≤ z̄k+1 for all k ∈ {1, . . . , n−1}. By the composite transfer principle for top
income, we obtain z̄Py. However, this is a contradiction since z̄ ∈ Uε(x) ⊆ {z ∈ Ωn | yPz}.

Step 2. Let n ∈ N with n ≥ 2 and x, y ∈ Ωn, and suppose that max{x1, . . . , xn} >
max{y1, . . . , yn} and µ(x) = µ(y). We show that xRy.

Since S-convexity implies anonymity and R is transitive, we can without loss of gener-
ality assume that xi ≤ xi+1 and yi ≤ yi+1 for all i ∈ {1, . . . , n − 1}. We distinguish two
cases.

(i) n = 2. Let δ = x2 − y2. Since y − x = δ(e1 − e2), we obtain xRy by S-convexity.

(ii) n ≥ 3. First, we define x̄ ∈ Ωn by x̄n = xn and x̄i =
∑n−1

i=1 xi/(n − 1) for all
i ∈ {1, . . . , n− 1}. It follows from S-convexity that

xRx̄.

We show that x̄Ry, which proves that xRy because R is transitive. For any z ∈ Ωn, we
define

B(z) = {i ∈ {1, . . . , n− 1} | zi > yi}
and

W (z) = {i ∈ {1, . . . , n− 1} | zi < yi}.
Note that W (x̄) 6= ∅ since x̄n = xn > yn and µ(x̄) = µ(x) = µ(y). We further distinguish
two cases.

(a) B(x̄) = ∅. Since x̄n > yn and µ(x̄) = µ(y), x̄Ry follows from S-convexity.

(b) B(x̄) 6= ∅. Note that there exist m,m ∈ {1, . . . , n− 1} with m < m such that

B(x̄) = {i | 1 ≤ i ≤ m} and W (x̄) = {i | m ≤ i ≤ n− 1}.

For all i ∈ W (x̄), let

ri =
yi − x̄i∑

j∈W (x̄)(yj − x̄j)
.

We define x̃ ∈ Ωn by x̃i = x̄i for all i ∈ {1, . . . , n − 1}\W (x̄), x̃i = x̄i + ri(xn − yn) for all
i ∈ W (x̄), and x̃n = yn. It follows from S-convexity that

x̄Rx̃.

Note that B(x̃) = B(x̄) and W (x̃) = W (x̄) since µ(x̄) = µ(y) and B(x̄) 6= ∅. Further,
x̃i ≤ x̃i+1 for all i ∈ {1, . . . , n− 1}. Since∑

i∈B(x̃)∪W (x̃)

x̃i =
∑

i∈B(x̃)∪W (x̃)

yi,
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y is obtained from x̃ by a finite sequence of rank-preserving regressive transfers from indi-
viduals in B(x̃) to individuals W (x̃) choosing individuals in B(x̃) in ascending order and
those in W (x̃) in descending order, respectively. Thus, it follows from Step 1 and the
transitivity of R that

x̃Ry.

Since R is transitive, we obtain x̄Ry.

Step 3. Let n ∈ N and x, y ∈ Ωn, and suppose that max{x1, . . . , xn} = max{y1, . . . , yn}
and µ(x) = µ(y). We show that xIy.

Again, from S-convexity and the transitivity of R, it follows that we can without loss
of generality assume that xi ≤ xi+1 and yi ≤ yi+1 for all i ∈ {1, . . . , n− 1}.

If n = 1, xIy follows from the reflexivity of R.
Now consider the case where n ≥ 2. If xn = x1, then x = y = (µ(x), . . . , µ(x)). Thus,

it follows from the reflexivity of R that xIy.
In what follows, we assume that xn > x1, which implies yn > y1 as well. Suppose, by way

of contradiction, that xIy does not hold. Without loss of generality, we assume yPx. Since
R is complete and satisfies continuity, {z ∈ Ωn | yPz} is open and x ∈ {z ∈ Ωn | yPz}.
Thus, there exists ε ∈ R++ such that Uε(x) ⊆ {z ∈ Ωn | yPz}. We define z̄ ∈ Ωn by
z̄1 = x1 − ε/2, z̄n = xn + ε/2, and z̄i = xi for all i ∈ {2, . . . , n− 1}. Note that z̄i ≤ z̄i+1 for
all i ∈ {1, . . . , n− 1}. Furthermore, z̄n > xn = yn and µ(z̄) = µ(x) = µ(y). Thus, it follows
from Step 2 that z̄Ry. However, this is a contradiction since z̄ ∈ Uε(x) ⊆ {z ∈ Ωn | yPz}.

Step 4. We complete the proof. Let n,m ∈ N, x ∈ Ωn, and y ∈ Ωm. Suppose that
max{x1, . . . , xn} = max{y1, . . . , ym} and µ(x) = µ(y). Let ` = nm and define z, w ∈ R` by

z = (x, . . . , x︸ ︷︷ ︸
m times

) and w = (y, . . . , y︸ ︷︷ ︸
n times

).

Note that

max{z1, . . . , z`} = max{x1, . . . , xn} = max{y1, . . . , ym} = max{w1, . . . , w`}

and
µ(z) = µ(x) = µ(y) = µ(w).

It follows from Step 3 that zIw. Since R satisfies replication invariance, we obtain xIz and
yIw. Because R is transitive, xIy follows.

Proof of Theorem 6. ‘If.’ Suppose that there exists a continuous ordering % on S
satisfying properties (i) and (ii) in the theorem statement.

From property (i), R satisfies replication invariance.
Further, by properties (i) and (ii), R satisfies the composite transfer principle for top

income.
To show that R satisfies S-convexity, let n ∈ N, x ∈ Ωn, and B be an n × n doubly

stochastic matrix. Since

max{(Bx)1, . . . , (Bx)n} ≤ max{x1, . . . , xn} and µ(Bx) = µ(x),
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it follows from properties (i) and (ii) that xR(Bx).
Next, to show that R satisfies continuity, let n ∈ N and x ∈ Ωn. We show that

{y ∈ Ωn | yRx} is closed in Ωn. Let 〈zt〉t∈N be a sequence of vectors in {y ∈ Ωn | yRx} and
suppose that 〈zt〉t∈N converges to z. From property (i), it follows that, for all t ∈ N,

(max{zt1, . . . , ztn}, µ(zt)) % (max{x1, . . . , xn}, µ(x)).

Since
lim
t→∞

max{zt1, . . . , ztn} = max{z1, . . . , zn} and lim
t→∞

µ(zt) = µ(z),

it follows from the continuity of % that

(max{z1, . . . , zn}, µ(z)) % (max{x1, . . . , xn}, µ(x)).

From property (i), we obtain zRx. The proof that {y ∈ Ωn | xRy} is closed in Ωn is
analogous.

‘Only if.’ Define the binary relation % on S by letting, for all (α, β), (α′, β′) ∈ S,

(α, β) % (α′, β′)

if and only if there exist n,m ∈ N, x ∈ Ωn, and y ∈ Ωm such that xRy and

α = max{x1, . . . , xn}, β = µ(x), α′ = max{y1, . . . , ym}, β′ = µ(y).

To show that property (i) is satisfied, let n,m ∈ N, x ∈ Ωn, and y ∈ Ωm. By the definition
of %,

xRy ⇒ (max{x1, . . . , xn}, µ(x)) % (max{y1, . . . , ym}, µ(y)).

To show that the converse implication is true, suppose that

(max{x1, . . . , xn}, µ(x)) % (max{y1, . . . , ym}, µ(y)).

By the definition of %, there exist ñ, m̃ ∈ N, x̃ ∈ Ωñ, and ỹ ∈ Ωm̃ such that x̃Rỹ and

max{x1, . . . , xn} = max{x̃1, . . . , x̃ñ} and µ(x) = µ(x̃),

max{y1, . . . , ym} = max{ỹ1, . . . , ỹm̃} and µ(y) = µ(ỹ).

By Theorem 5, xIx̃ and yIỹ. Since R is transitive, we obtain xRy. Thus, % satisfies
property (i).

Next, we show that % is an ordering on S. To this end, we show that, for any (α, β) ∈ S,
there exist n ∈ N and x ∈ Ωn such that

max{x1, . . . , xn} = α and µ(x) = β. (6)

Let (α, β) ∈ S and n ∈ N with n ≥ 2. We define x ∈ Rn by

xn = α and xi =
nβ − α
n− 1

= β − α− β
n− 1

for all i ∈ {1, . . . , n− 1}.
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Note that x satisfies (6). It is straightforward that x ∈ Ωn if Ω = R. We now suppose that
Ω = R++. Assuming that n is sufficiently large so that it satisfies

β >
α

n
,

it follows that, for all i ∈ {1, . . . , n− 1},

xi =
nβ − α
n− 1

>
α− α
n− 1

= 0.

Since α ≥ β, we obtain xn > 0. Thus, x ∈ Ωn. Since R is an ordering and % satisfies
property (i), % is an ordering on S.

Now we prove that % is continuous. Let (α, β) ∈ S and consider any sequence
〈(αt, βt)〉t∈N in {(α′, β′) ∈ S | (α′, β′) % (α, β)} that converges to (α∗, β∗) ∈ S. Let
n ∈ N with n ≥ 2. We define the sequence 〈xt〉t∈N in Rn by

xtn = αt and xti =
nβt − αt

n− 1
for all i ∈ {1, . . . , n− 1}.

Similarly, define x, x∗ ∈ Rn by

xn = α and xi =
nβ − α
n− 1

for all i ∈ {1, . . . , n− 1}

and

x∗n = α∗ and x∗i =
nβ∗ − α∗

n− 1
for all i ∈ {1, . . . , n− 1}.

It follows that

max{x1, . . . , xn} = α, µ(x) = β, max{x∗1, . . . , x∗n} = α∗, µ(x∗) = β∗,

and, for all t ∈ N,
max{xt1, . . . , xt2} = αt and µ(xt) = βt.

First, we suppose that Ω = R. Then, 〈xt〉t∈N is a sequence in Ωn and x, x∗ ∈ Ωn. Since
(αt, βt) % (α, β) for all t ∈ N, it follows from property (i) of % that xtRx for all t ∈ N.
Since 〈xt〉t∈N converges to x∗ and R satisfies continuity, we obtain x∗Rx. From property
(i) of %, we obtain (α∗, β∗) % (α, β). Thus, {(α′, β′) ∈ S | (α′, β′) % (α, β)} is closed. The
proof that {(α′, β′) ∈ S | (α, β) % (α′, β′)} is closed is analogous.

Now suppose that Ω = R++. Since 〈(αt, βt)〉t∈N converges to (α∗, β∗), there exist t∗ ∈ N
and a sufficiently small ε ∈ R++ such that, for all t ≥ t∗,

α∗ − ε < αt < α∗ + ε and 0 < β∗ − ε < βt < β∗ + ε.

Let

λ∗ =
α∗ + ε

β∗ − ε
and λ =

α

β
.
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Further, let Λ = max{λ∗, λ}. Note that

α

β
≤ Λ and

α∗

β∗
≤ Λ

and, for all t ≥ t∗,
αt

βt
≤ Λ.

Thus, assuming that n is sufficiently large so that it satisfies n > Λ, it follows that
xti, xi, x

∗
i ∈ R++ for all i ∈ {1, . . . , n − 1} and for all t ≥ t∗. Therefore, 〈xt∗+`〉`∈N is a

sequence in Ωn and x, x∗ ∈ Ωn. Since (αt, βt) % (α, β) for all t ∈ N, it follows from prop-
erty (i) of % that xt

∗+`Rx for all ` ∈ N. Since 〈xt∗+`〉`∈N converges to x∗ and R satisfies
continuity, we obtain x∗Rx. From property (i) of %, we obtain (α∗, β∗) % (α, β). Thus,
{(α′, β′) ∈ S | (α′, β′) % (α, β)} is closed. The proof that {(α′, β′) ∈ S | (α, β) % (α′, β′)}
is closed is analogous.

Finally, to show that % satisfies property (ii), let (α, β), (α′, β) ∈ S and suppose α > α′.
Let n ∈ N with n ≥ 3. We define x, y ∈ Rn by

xn = α and xi =
nβ − α
n− 1

= β − α− β
n− 1

for all i ∈ {1, . . . , n− 1}

and

yn = α′ and yi =
nβ − α′

n− 1
= β − α′ − β

n− 1
for all i ∈ {1, . . . , n− 1}.

Note that xi ≤ xi+1 and yi ≤ yi+1 for all i ∈ {1, . . . , n − 1} because α > α′ ≥ β. Let
δ = α− α′ > 0. Then, for all i ∈ {1, . . . , n− 1},

y` − x` =
δ

n− 1
.

Since max{x1, . . . , xn} = α, max{y1, . . . , yn} = α′, µ(x) = µ(y) = β, and % satisfies
property (i), it suffices to show that x, y ∈ Ωn and xPy.

First, we assume that Ω = R. To show that xPy, let ε ∈ R++ be such that

ε <
δ

n− 1

and define z ∈ Rn by

zn = yn +
1

2

(
n− 2

n− 1
δ + ε

)
= xn −

1

2

(
n

n− 1
δ − ε

)
< xn,

zn−1 = yn−1 +
1

2

(
n− 2

n− 1
δ + ε

)
= xn−1 +

1

2

(
n

n− 1
δ + ε

)
> xn−1,

z1 = y1 −
δ

n− 1
− ε = x1 − ε < x1,

z` = y` −
δ

n− 1
= x` for all ` ∈ {2, . . . , n− 2}.


(7)
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Note that z ∈ Ωn and zi ≤ zi+1 for all i ∈ {1, . . . , n− 1}. Furthermore,
∑n

i=1 yi =
∑n

i=1 zi.
From S-convexity, it follows that zRy. Since

x− z = ε(e1 − en−1) +
1

2

(
n

n− 1
δ − ε

)
(en − en−1),

it follows from the composite transfer principle for top income that xPz. Since R is
transitive, we obtain xPy.

Next, we suppose that Ω = R++. Assuming that n is sufficiently large so that it satisfies

β >
α

n
,

it follows that x, y ∈ Ωn. Let ε ∈ R++ be such that

ε < min

{
δ

n− 1
, x1

}
and define z ∈ Rn by (7). By the same argument as in the case where Ω = R, we obtain
xPy.

Proof of Theorem 7. From Theorem 6, it follows that there exists a continuous ordering
% on S satisfying properties (i) and (ii) in Theorem 6. Thus, we can prove that R = Ra

xµ

applying the same argument as in the proof of Theorem 3 using δ = −µ(x) instead of
δ = −min{x1, . . . , xn}.

Proof of Theorem 8. The proof that R = Rr
xµ is analogous to the proof of Theorem 7

using the same argument as in the proof of Theorem 4.

Proof of Theorem 9. Step 1. Let n ∈ N with n ≥ 3 and x, y ∈ Ωn be such that xk ≤ xk+1

and yk ≤ yk+1 for all k ∈ {1, . . . , n − 1}. Suppose there exist i, j ∈ {2, . . . , n} with i < j
and ε ∈ R++ such that x− y = ε(ej − ei). We show that yRx.

Suppose, by way of contradiction, that yRx does not hold. Since R is complete, we
obtain xPy. It follows from the completeness and continuity of R that {z ∈ Ωn | xPz} is
open and y ∈ {z ∈ Ωn | xPz}. Thus, there exists δ ∈ R++ such that Uδ(y) ⊆ {z ∈ Ωn |
xPz}.

Let ξ = min{δ, ε}/2. Define z̄ ∈ Ωn by z̄1 = y1 − ξ/2, z̄i = yi − ξ/2, z̄j = yj + ξ, and
z̄k = yk for all k ∈ {1, . . . , n}\{1, i, j}. Note that x− z̄ = (ξ/2)(e1 − ei) + (ε− ξ)(ej − ei).
Furthermore, z̄k ≤ z̄k+1 for all k ∈ {1, . . . , n− 1}. By the composite transfer principle for
bottom income, we obtain z̄Px. However, this is a contradiction since z̄ ∈ Uδ(y) ⊆ {z ∈
Ωn | xPz}.

Step 2. Let n ∈ N with n ≥ 2 and x, y ∈ Ωn. We suppose that min{x1, . . . , xn} >
min{y1, . . . , yn} and µ(x) = µ(y) and show that yRx.

Since S-convexity implies anonymity and R is transitive, we assume that x and y are
arranged in ascending order, so that min{x1, . . . , xn} = x1 and min{y1, . . . , yn} = y1.

If n = 2, we immediately obtain yRx from S-convexity.
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Now assume that n ≥ 3. We define ȳ ∈ Ωn by ȳ1 = y1 and ȳi =
∑n

j=2 yj/(n− 1) for all
i ∈ {2, . . . , n}. From S-convexity, it follows that

yRȳ.

For any z ∈ Ωn, we define B(z) and W (z) by

B(z) = {i ∈ {2, . . . , n} | zi > xi}

and

W (z) = {i ∈ {2, . . . , n} | zi < xi}.

Note that B(ȳ) 6= ∅ since x1 > ȳ1 and µ(x) = µ(ȳ). We distinguish two cases.

(a) W (ȳ) = ∅. It follows from S-convexity that ȳRx. Since R is transitive, we obtain
yRx.

(b) W (ȳ) 6= ∅. Then there exist m,m ∈ {2, . . . , n} with m < m such that

B(ȳ) = {i | 2 ≤ i ≤ m} and W (ȳ) = {i | m ≤ i ≤ n}.

For each i ∈ B(ȳ), define ri by

ri =
ȳi − xi∑

j∈B(ȳ)(ȳj − xj)
.

We define ỹ ∈ Ωn by ỹi = ȳi for all i ∈ {2, . . . , n}\B(ȳ), ỹi = ȳi−ri(x1−y1) for all i ∈ B(ȳ),
and ỹ1 = x1. From S-convexity, we obtain

ȳRỹ.

Note that B(ỹ) = B(ȳ) and W (ỹ) = W (ȳ). Further, ỹk ≤ ỹk+1 for all k ∈ {1, . . . , n − 1}.
By the construction of ỹ, x is obtained from ỹ by a finite sequence of regressive transfers
from individuals in B(ỹ) to individuals in W (ỹ) choosing individuals in B(ỹ) in ascending
order and those in W (ỹ) in descending order, respectively. Thus, it follows from Step 1
and the transitivity of R that

ỹRx.

Since R is transitive, we obtain yRx.

Step 3. Let n ∈ N and x, y ∈ Ωn, and suppose that min{x1, . . . , xn} = min{y1, . . . , yn}
and µ(x) = µ(y). We show that xIy.

We prove this claim by employing the same argument as in Step 3 of the proof of
Theorem 5. Specifically, by the definition of z̄ ∈ Ωn in Step 3 of the proof of Theorem 5,
we obtain z̄1 < x1 = y1 and µ(z̄) = µ(x) = µ(y). Thus, using Step 2, the proof is analogous
to Step 3 of the proof of Theorem 5.

Step 4. Let n,m ∈ N, x ∈ Ωn, y ∈ Ωm, and suppose that min{x1, . . . , xn} =
min{y1, . . . , ym} and µ(x) = µ(y). Applying the same argument as in Step 4 of the proof
of Theorem 5, it follows that xIy.
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Proof of Theorem 10. ‘If.’ Suppose that there exists a continuous ordering % on S
satisfying properties (i) and (ii) in the theorem statement. From properties (i) and (ii), R
satisfies the composite transfer principle for bottom income. Further, R satisfies S-convexity
since for any n ∈ N, any x ∈ Ωn, and any n× n doubly stochastic matrix B,

min{(Bx)1, . . . , (Bx)n} ≥ min{x1, . . . , xn} and µ(Bx) = µ(x).

The proof that R satisfies continuity and replication invariance is analogous to the proof
of Theorem 6.

‘Only if.’ The proof of the existence of the binary relation % on S satisfying property
(i) is analogous to the proof of Theorem 6.

To show that % satisfies property (ii), let (α, β), (α, β′) ∈ S and suppose that β > β′.
Let n ∈ N with n ≥ 3. We define x, y ∈ Rn by

x1 = β and xi =
nα− β
n− 1

= α +
α− β
n− 1

for all i ∈ {2, . . . , n}

and

y1 = β′ and yi =
nα− β′

n− 1
= α +

α− β′

n− 1
for all i ∈ {2, . . . , n}.

Note that x, y ∈ Ωn, xi ≤ xi+1, and yi ≤ yi+1 for all i ∈ {1, . . . , n−1}. Since min{x1, . . . , xn} =
β, min{y1, . . . , yn} = β′, µ(x) = µ(y) = α, and % satisfies property (i), it suffices to show
that yPx.

Let δ = β − β′ > 0. Then, for all i ∈ {2, . . . , n},

yi − xi =
δ

n− 1
.

Let ε ∈ R++ be such that

ε <
δ

n− 1
.

We define z ∈ Rn by

z1 = x1 −
1

2

(
n− 2

n− 1
δ + ε

)
= y1 +

1

2

(
n

n− 1
δ − ε

)
> y1,

z2 = x2 −
1

2

(
n− 2

n− 1
δ + ε

)
= y2 −

1

2

(
n

n− 1
δ + ε

)
< y2,

zn = xn +
δ

n− 1
+ ε = yn + ε > yn,

and

zi = xi +
δ

n− 1
= yi

for all i ∈ {3, . . . , n − 1}. Note that z ∈ Ωn and zi ≤ zi+1 for all i ∈ {1, . . . , n − 1}. It
follows from S-convexity that

zRx.
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Since

z − y =
1

2

(
n

n− 1
δ − ε

)
(e1 − e2) + ε(en − e2),

it follows from the composite transfer principle for bottom income that yPz. Since R is
transitive, we obtain yPx.

In either case (that is, Ω = R or Ω = R++), for any (α, β) ∈ S and for any n ∈ N with
n ≥ 2, the vector x ∈ Rn defined by x1 = β and xi = (nα−β)/(n−1) for all i ∈ {2, . . . , n}
satisfies x ∈ Ωn, µ(x) = α, and min{x1, . . . , xn} = β. Therefore, the proof that % is a
continuous ordering on S is analogous to the corresponding proof in Theorem 6 presented
for the case where Ω = R.

Proof of Theorem 11. From Theorem 10, it follows that there exists a continuous
ordering % on S satisfying properties (i) and (ii) in Theorem 10. Applying the same
argument as in the proof of Theorem 3 using δ = −µ(x) instead of δ = −min{x1, . . . , xn},
we obtain that, for any n,m ∈ N, for any x ∈ Ωn, and for any y ∈ Ωm,

xRy ⇔ (0,min{x1, . . . , xn} − µ(x)) % (0,min{y1, . . . , ym} − µ(y)).

Since % is decreasing in its second argument, this is equivalent to

xRy ⇔ min{x1, . . . , xn} − µ(x) ≤ min{y1, . . . , ym} − µ(y)

⇔ µ(x)−min{x1, . . . , xn} ≥ µ(y)−min{y1, . . . , ym}
⇔ xRa

µny.

Proof of Theorem 12. From Theorem 10, it follows that there exists a continuous
ordering % on S satisfying properties (i) and (ii) in Theorem 10. Applying the same
argument as in the proof of Theorem 4 using λ = 1/µ(x) instead of λ = 1/min{x1, . . . , xn},
we obtain that, for any n,m ∈ N, for any x ∈ Ωn, and for any y ∈ Ωm,

xRy ⇔
(

1,
min{x1, . . . , xn}

µ(x)

)
%

(
1,

min{y1, . . . , ym}
µ(y)

)
.

Since % is decreasing in its second argument, this is equivalent to

xRy ⇔ min{x1, . . . , xn}
µ(x)

≤ min{y1, . . . , ym}
µ(y)

⇔ µ(x)

min{x1, . . . , xn}
≥ µ(y)

min{y1, . . . , ym}
⇔ xRr

µny.

Proof of Theorem 13. ‘If.’ Suppose that there exists a continuous and S-convex ordering
%∗ on S∗ satisfying (1). First, we show that R satisfies S-convexity∗. Let n ∈ N and
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x, y ∈ Ωnq. Suppose that there exists an nq × nq doubly stochastic matrix B such that
y = Bx. We show that xRy. Since y = Bx, it follows that, for all k ∈ {1, . . . , nq},

k∑
i=1

x(i) ≤
k∑
i=1

y(i) and

nq∑
i=1

x(i) =

nq∑
i=1

y(i);

see, for example, Hardy, Littlewood, and Pólya (1934), Marshall and Olkin (1979), and
Dasgupta, Sen, and Starrett (1973). Thus, we obtain that, for all k ∈ {1, . . . , q},

k∑
`=1

µ`(x) ≤
k∑
`=1

µ`(y) and

q∑
`=1

µ`(x) =

q∑
`=1

µ`(y),

which implies that there exists a q × q doubly stochastic matrix B∗ such that

B∗(µ1(x), . . . , µq(x)) = (µ1(y), . . . , µq(y)).

Since %∗ is S-convex, we obtain

(µ1(x), . . . , µq(x)) %∗ (µ1(y), . . . , µq(y)).

From (1), xRy follows.
Next, we show that R satisfies continuity∗. Let n ∈ N and x ∈ Ωnq. We show that

{y ∈ Ωnq | yRx} is closed in Ωnq. Let 〈zt〉t∈N be a sequence of vectors in {y ∈ Ωnq | yRx}
and suppose that 〈zt〉t∈N converges to z. Since ztRx for all t ∈ N, it follows from (1) that,
for all t ∈ N,

(µ1(zt), . . . , µq(z
t)) %∗ (µ1(x), . . . , µq(x)).

Since, for each ` ∈ {1, . . . , q},
lim
t→∞

µ`(z
t) = µ`(z),

it follows from the continuity of %∗ that

(µ1(z∗), . . . , µq(z
∗)) %∗ (µ1(x), . . . , µq(x)).

From (1), we obtain zRx. The proof that {y ∈ Ωnq | xRy} is closed in Ωnq is analogous.
Next, to show that R satisfies replication invariance∗, let n, k ∈ N, x ∈ Rnq

++, and

y = (x, . . . , x︸ ︷︷ ︸
k times

) ∈ Rknq
++ . Note that for all ` ∈ {1, . . . , q}, µ`(x) = µ`(y). Thus, we obtain

(µ1(x), . . . , µq(x))I(µ1(y), . . . , µq(y)), and xIy follows from (1).
Finally, we show that R satisfies transfer neutrality within quantiles. Let n ∈ N and

x, y ∈ Rnq
++. Suppose that G`(x) = G`(y) for all ` ∈ {1, . . . , q} and there exist `′ ∈ {1, . . . , q}

and i, j ∈ G`′(x) such that xi − yi = yj − xi and xk = yk for all k ∈ {1, . . . , nq} \ {i, j}.
Then, again, µ`(x) = µ`(y) for all ` ∈ {1, . . . , q}. Thus, from the same argument as above,
xIy follows.

‘Only if.’ Step 1. We show that, for any n ∈ N and for any x, y ∈ Rnq
++, xIy if

(y(`−1)n+1, . . . , y`n) = (µ`(x), . . . , µ`(x)) for all ` ∈ {1, . . . , q}. This follows immediately
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if n = 1 because R satisfies anonymity. Now assume that n ≥ 2, and let x ∈ Rnq
++.

Since R satisfies anonymity, without loss of generality, we assume x = x( ). Hence, for all
` ∈ {1, . . . , q}, G`(x) = {(`− 1)n+ 1, . . . , `n}. For all ` ∈ {1, . . . , q}, we define the subsets
B`(x) and W`(x) of G`(x) by

B`(x) = {i ∈ G`(x) | xi > µ`(x)}

and
W`(x) = {i ∈ G`(x) | xi < µ`(x)}.

Further, define y ∈ Rnq
++ by (y(`−1)n+1, . . . , y`n) = (µ`(x), . . . , µ`(x)) for all ` ∈ {1, . . . , q}.

Note that G`(y) = G`(x) for all ` ∈ {1, . . . , q}. If B`(x) = ∅ for all ` ∈ {1, . . . , q}, then
x = y. Thus, we obtain xIy. We now suppose that there exists ` ∈ {1, . . . , q} such that
B`(x) 6= ∅. Note that for all ` ∈ {1, . . . , q}, B`(x) 6= ∅ implies W`(x) 6= ∅. Furthermore,∑

i∈B`(x)(xi − µ`(x)) =
∑

i∈W`(x)(µ`(x) − xi). Thus, y can be obtained from x by a finite

sequence of progressive transfers from individuals in B`(x) to those in W`(x). Since none
of these transfers change the quantile to which the donor and recipient belong, we obtain
xIy by transfer neutrality within quantiles and the transitivity of R.

Step 2. To complete the proof, let n,m ∈ N, x ∈ Rnq
++, and y ∈ Rmq

++. We define x̄ ∈ Rnq
++

and ȳ ∈ Rmq
++ by

(x̄(`−1)n+1, . . . , x̄`n) = (µ`(x), . . . , µ`(x))

and
(ȳ(`−1)m+1, . . . , ȳ`m) = (µ`(y), . . . , µ`(y))

for all ` ∈ {1, . . . , q}. Since R is transitive, it follows from Step 1 that

xRy ⇔ x̄Rȳ.

Since R satisfies replication invariance, we obtain

x̄I(µ1(x), . . . , µq(x))

and
ȳI(µ1(y), . . . , µq(y)).

Therefore, by the transitivity of R, we obtain

xRy ⇔ (µ1(x), . . . , µq(x))R(µ1(y), . . . , µq(y)).

We define the ordering %∗ on S∗ by the restriction of R to S∗ ⊂ D. Then, %∗ satisfies (1).
Further, since R satisfies S-convexity∗ and continuity∗, %∗ is continuous and S-convex on
S∗.

Proof of Theorem 14. From Theorem 13, there exists a continuous and S-convex ordering
%∗ on S∗ that satisfies (1). Note that for any n ∈ N and for any x ∈ Ωnq,

µ(x) = µ ((µ1(x), . . . , µq(x))) .
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Thus, from Theorem 13, it suffices to show that, for all x, y ∈ S∗, if xq = yq and µ(x) = µ(y),
then x ∼∗ y. Note that this claim is analogous to the claim of Step 3 of the proof of Theorem
5. Further, Steps 1, 2, and 3 of the proof of Theorem 5 were established using vectors in
{x ∈ Ωn | xi ≤ xi+1 for all i ∈ {1, . . . , n − 1}}. Thus, letting n = q, we can prove the
claim by employing the same argument as in the proof of Theorem 5.

Proof of Theorem 15. (a) ‘If.’ Suppose that there exists a continuous ordering % on
S satisfying properties (i) and (ii). We define the ordering %∗ on S∗ = {z ∈ Ωq | z` ≤
z`+1 for all ` ∈ {1, . . . , q − 1}} as follows. For all x, y ∈ S∗,

x %∗ y ⇔ (xq, µ(x)) % (yq, µ(y)).

Since % satisfies property (i) and µ(x) = µ((µ1(x), . . . , µq(x))) for all n ∈ N and for all
x ∈ Ωnq, %∗ satisfies (1) in Theorem 13. By the continuity of %, %∗ is continuous on
S∗. Since % satisfies property (ii), %∗ is S-convex. Thus, from Theorem 13, R satisfies
S-convexity∗, replication invariance∗, continuity∗, and transfer neutrality within quantiles.
Furthermore, from properties (i) and (ii), R satisfies the composite transfer principle for
top quantile.

‘Only if.’ We define the binary relation % on S by letting, for all (α, β), (α′, β′) ∈ S,

(α, β) % (α′, β′)

if and only if there exist n,m ∈ N, x ∈ Ωnq, and y ∈ Ωmq such that xRy and

α = µq(x), β = µ(x), α′ = µq(y), β′ = µ(y).

We can prove that % satisfies property (i) by the same argument as in the corresponding
proof of Theorem 6 using Theorem 14 instead of Theorem 5.

For any (α, β) ∈ S and for any q ∈ N with q ≥ 3, the vector x ∈ Rq defined by

xq = α and x` =
qβ − α
q − 1

for all ` ∈ {1, . . . , q − 1}

satisfies µq(x) = α and µ(x) = β. Further, x ∈ Ωn follows; note that if Ω = R++, (α, β) ∈ S
satisfies β > α/q. Therefore, we can prove that % is a continuous ordering by letting n = q
and applying the same argument as in the corresponding proof in Theorem 6 presented for
the case where Ω = R. Further, letting n = q, the proof that % is increasing in its first
argument is analogous to the corresponding proof in Theorem 6.

The proof of part (b) is analogous.

Proof of Theorem 16. Let n ∈ N and x ∈ Ωnq. Translation invariance with δ = −µ(x)
requires that

(x1 − µ(x), . . . , xnq − µ(x))Ix

and, by Theorem 15,
(µq(x)− µ(x), 0) ∼ (µq(x), µ(x)).
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Now let n,m ∈ N, x ∈ Ωnq, and y ∈ Ωmq. Analogously to the proof of Theorem 7, using
Theorem 15, it follows that

xRy ⇔ (µq(x)− µ(x), 0) % (µq(y)− µ(y), 0)

⇔ µq(x)− µ(x) ≥ µq(y)− µ(y)

⇔ xRa
t y.

Proof of Theorem 17. Let n ∈ N and x ∈ Ωnq. Scale invariance with λ = 1/µ(x) requires
that (

x1

µ(x)
, . . . ,

xnq
µ(x)

)
Ix

and, by Theorem 15, (
µq(x)

µ(x)
, 1

)
∼ (µq(x), µ(x)).

Now let n,m ∈ N, x ∈ Ωnq, and y ∈ Ωmq. Analogously to the proof of Theorem 8, using
Theorem 15, we obtain

xRy ⇔
(
µq(x)

µ(x)
, 1

)
%

(
µq(y)

µ(y)
, 1

)
⇔ µq(x)

µ(x)
≥ µq(y)

µ(y)

⇔ xRr
ty.

Proof of Theorem 18. From Theorem 13, there exists a continuous and S-convex ordering
%∗ on S∗ that satisfies (1). Thus, it remains to show that, for any x, y ∈ S∗, if x1 = y1

and µ(x) = µ(y), then x ∼∗ y. Analogously to the proof of Theorem 14, we can prove this
claim by letting n = q and applying the same argument as in Steps 1, 2, and 3 of the proof
of Theorem 9.

Proof of Theorem 19. ‘If.’ Suppose that there exists a continuous ordering % on S
satisfying properties (i) and (ii). From properties (i) and (ii), R satisfies the composite
transfer principle for bottom quantile. The proof that R satisfies the other axioms is
analogous to the proof of Theorem 15.

‘Only if.’ The proof of the existence of the binary relation % on S satisfying property
(i) is analogous to the proof of Theorem 15.

In either case (that is, Ω = R or Ω = R++), for any (α, β) ∈ S and for any q ∈ N with
q ≥ 3, the vector x ∈ Rq defined by

x1 = β and x` =
qβ − α
q − 1

for all ` ∈ {2, . . . , q}

satisfies x ∈ Ωn, µ1(x) = β, and µ(x) = α. Therefore, we can prove that % is a continuous
ordering satisfying property (ii) by letting n = q and applying the same argument as in the
corresponding proof in Theorem 10.
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Proof of Theorem 20. From Theorem 19, it follows that there exists a continuous
ordering % on S satisfying properties (i) and (ii) in Theorem 19. Applying the same
argument as in the proof of Theorem 16 using δ = −µ(x), we obtain that, for all n,m ∈ N,
for all x ∈ Ωnq, and for all y ∈ Ωmq,

xRy ⇔ (0, µ1(x)− µ(x)) % (0, µ1(y)− µ(x)).

Since % is decreasing in its second argument, this is equivalent to

xRy ⇔ µ1(x)− µ(x) ≤ µ1(y)− µ(x)

⇔ µ(x)− µ1(x) ≥ µ(y)− µ1(y)

⇔ xRa
by.

Proof of Theorem 21. From Theorem 19, it follows that there exists a continuous
ordering % on S satisfying properties (i) and (ii) in Theorem 19. Applying the same
argument as in the proof of Theorem 17 using λ = 1/µ(x), we obtain that, for all n,m ∈ N,
for all x ∈ Ωnq, and for all y ∈ Ωmq,

xRy ⇔
(

1,
µ1(x)

µ(x)

)
%

(
1,
µ1(y)

µ(y)

)
.

Since % is decreasing in its second argument, this is equivalent to

xRy ⇔ µ1(x)

µ(x)
≤ µ1(y)

µ(y)

⇔ µ(x)

µ1(x)
≥ µ(y)

µ1(y)

⇔ xRr
by.

Appendix B: Independence of the axioms

Independence of the axioms in Theorems 2, 3, and 4

First, let Ω = R and define the inequality ordering R as follows. For all n,m ∈ N, for all
x ∈ Ωn, and for all y ∈ Ωm, if max{x1, . . . , xn} = min{x1, . . . , xn} and max{y1, . . . , ym} =
min{y1, . . . , ym},

xRy ⇔ n ≤ m,

and if max{x1, . . . , xn} > min{x1, . . . , xn} or max{y1, . . . , ym} > min{y1, . . . , ym},

xRy ⇔ xRa
xny.

We show that R is a well-defined ordering on D. To show that R is complete, let n,m ∈
N, x ∈ Ωn, and y ∈ Ωm. First, suppose that max{x1, . . . , xn} = min{x1, . . . , xn} and
max{y1, . . . , ym} = min{y1, . . . , ym}. Then, it follows that xRy or yRx since n ≤ m or
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n ≥ m. Next, suppose that max{x1, . . . , xn} > min{x1, . . . , xn} or max{y1, . . . , ym} >
min{y1, . . . , ym}. Then, it follows from the completeness of Ra

nx that xRy or yRx.
Next, to show that R is transitive, let n,m, ` ∈ N, x ∈ Ωn, y ∈ Ωm, and z ∈ Ω`. Suppose

that xRy and yRz. We distinguish two cases.

(i) max{y1, . . . , ym} = min{y1, . . . , ym}. If max{z1, . . . , z`} > min{z1, . . . , z`}, we obtain
a contradiction to yRz. Thus, yRz implies

max{z1, . . . , z`} = min{z1, . . . , z`} and m ≤ `.

If max{x1, . . . , xn} = min{x1, . . . , xn}, xRy implies n ≤ m ≤ ` and we obtain xRz. If
max{x1, . . . , xn} > min{x1, . . . , xn}, xRz follows since xP a

xnz.

(ii) max{y1, . . . , ym} > min{y1, . . . , ym}. If max{x1, . . . , xn} = min{x1, . . . , xn}, we
obtain a contradiction to xRy. Thus,

max{x1, . . . , xn} −min{x1, . . . , xn} ≥ max{y1, . . . , ym} −min{y1, . . . , ym} > 0.

Since yRz implies

max{y1, . . . , ym} −min{y1, . . . , ym} ≥ max{z1, . . . , z`} −min{z1, . . . , z`},

we obtain xRa
nxz, which implies xRz since max{x1, . . . , xn} −min{x1, . . . , xn} > 0.

The inequality ordering R defined above satisfies the axioms of Theorem 2 and 3 except
for equality indifference.

If Ω = R++, define the inequality ordering R as follows. For all n,m ∈ N, for all
x ∈ Ωn, and for all y ∈ Ωm, if max{x1, . . . , xn} = min{x1, . . . , xn} and max{y1, . . . , ym} =
min{y1, . . . , ym},

xRy ⇔ n ≤ m,

and if max{x1, . . . , xn} > min{x1, . . . , xn} or max{y1, . . . , ym} > min{y1, . . . , ym},

xRy ⇔ xRr
nxy.

That R is an ordering on D can be proven by employing the same argument as that used
in the case Ω = R. This inequality ordering satisfies the axioms of Theorem 2 and 4 except
for equality indifference.

Second, let Ω = R and define the ordering R as follows. For all n,m ∈ N, for all x ∈ Ωn,
and for all y ∈ Ωm,

xRy ⇔ x1 −min{x1, . . . , xn} ≥ y1 −min{y1, . . . , ym}.

This inequality ordering satisfies the axioms of Theorems 2 and 3 except for anonymity.

If Ω = R++, define the ordering R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for
all y ∈ Ωm,

xRy ⇔ x1

min{x1, . . . , xn}
≥ y1

min{y1, . . . , ym}
.
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This inequality ordering satisfies the axioms of Theorems 2 and 4 except for anonymity.

Third, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm,

xRy ⇔ yRa
xnx.

This inequality ordering satisfies the axioms of Theorems 2 and 3 except for expansion
dominance.

If Ω = R++, define the ordering R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for
all y ∈ Ωm,

xRy ⇔ yRr
xnx.

This inequality ordering satisfies the axioms of Theorems 2 and 4 except for expansion
dominance.

Fourth, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm, xRy if and only if

(i) xP a
xny or

(ii) xIaxny and
max{x1, . . . , xn} −min{x1, . . . , xn}

n
≥ max{y1, . . . , ym} −min{y1, . . . , ym}

m
.

This inequality ordering satisfies the axioms of Theorems 2 and 3 except for conditional
independence.

If Ω = R++, define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,
xRy if and only if

(i) xP r
xny or

(ii) xIrxny and

(
max{x1, . . . , xn}
min{x1, . . . , xn}

) 1
n

≥
(

max{y1, . . . , ym}
min{y1, . . . , ym}

) 1
m

.

This inequality ordering satisfies the axioms of Theorems 2 and 4 except for conditional
independence.

Fifth, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm,

xRy ⇔ (max{x1, . . . , xn})2−(min{x1, . . . , xn})2 ≥ (max{y1, . . . , ym})2−(min{y1, . . . , ym})2.

This inequality ordering satisfies the axioms of Theorem 3 except for translation invariance.

Finally, define R as the restriction of Ra
xn to ∪n∈NRn

++. This ordering satisfies the
axioms of Theorem 4 except for scale invariance.
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Independence of the axioms in Theorems 6, 7, and 8

From Theorems 10, 11, and 12, the composite transfer principle for top income is indepen-
dent of the other axioms in Theorems 6, 7, and 8. To prove that the axioms in Theorems
6, 7, and 8 are independent, consider the following examples.

First, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm,

xRy ⇔ max{x1, . . . , xn}+ min{x1, . . . , xn} − 2µ(x)

≥ max{y1, . . . , ym}+ min{y1, . . . , ym} − 2µ(y).

This inequality ordering satisfies the axioms of Theorems 6 and 7 except for S-convexity.

If Ω = R++, define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,

xRy ⇔ max{x1, . . . , xn}min{x1, . . . , xn}
µ(x)2

≥ max{y1, . . . , ym}min{y1, . . . , ym}
µ(y)2

.

This inequality ordering satisfies the axioms of Theorems 6 and 8 except for S-convexity.

Second, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm, xRy if and only if

(i) xP a
xµy or

(ii) xIaxµy and xRa
µny.

This inequality ordering satisfies the axioms of Theorems 6 and 7 except for continuity.

If Ω = R++, define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,
xRy if and only if

(i) xP r
xµy or

(ii) xIrxµy and xRr
µny

This inequality ordering satisfies the axioms of Theorems 6 and 8 except for continuity.

Third, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm,

xRy ⇔ n(max{x1, . . . , xn} − µ(x)) ≥ m(max{y1, . . . , ym} − µ(y)).

This inequality ordering satisfies the axioms of Theorems 6 and 7 except for replication
invariance.

If Ω = R++, define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,

xRy ⇔
(

max{x1, . . . , xn}
µ(x)

)n
≥
(

max{y1, . . . , ym}
µ(y)

)m
.
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This inequality ordering satisfies the axioms of Theorems 6 and 8 except for replication
invariance.

Fourth, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm,

xRy ⇔ max{x1, . . . , xn}+ µ(x) ≥ max{y1, . . . , ym}+ µ(y).

This inequality ordering satisfies the axioms of Theorem 7 except for translation invariance.

Finally, consider the restriction of Ra
xµ to ∪n∈NRn

++. This ordering satisfies the axioms
of Theorem 8 except for scale invariance.

Independence of the axioms in Theorems 10, 11, and 12

From Theorems 6, 7, and 8, the composite transfer principle for bottom income is indepen-
dent of the other axioms in Theorems 10, 11, and 12. To prove that the other axioms in
Theorems 10, 11, and 12 are independent, consider the following examples.

First, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm,

xRy ⇔ max{x1, . . . , xn}+ min{x1, . . . , xn} − 2µ(x)

≤ max{y1, . . . , ym}+ min{y1, . . . , ym} − 2µ(y).

This inequality ordering satisfies the axioms of Theorems 10 and 11 except for S-convexity.

If Ω = R++, define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,

xRy ⇔ max{x1, . . . , xn}min{x1, . . . , xn}
µ(x)2

≤ max{y1, . . . , ym}min{y1, . . . , ym}
µ(y)2

.

This inequality ordering satisfies the axioms of Theorems 10 and 12 except for S-convexity.

Second, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm, xRy if and only if

(i) xP a
µny or

(ii) xIaµny and xRa
xµy.

This inequality ordering satisfies the axioms of Theorems 10 and 11 except for continuity.

If Ω = R++, define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,
xRy if and only if

(i) xP r
µny or

(ii) xIrµny and xRr
xµy.
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This inequality ordering satisfies the axioms of Theorems 10 and 12 except for continuity.

Third, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm,

xRy ⇔ n(µ(x)−min{x1, . . . , xn}) ≥ m(µ(y)−min{y1, . . . , ym}).

This inequality ordering satisfies the axioms of Theorems 10 and 11 except for replication
invariance.

If Ω = R++, define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all y ∈ Ωm,

xRy ⇔
(

µ(x)

min{x1, . . . , xn}

)n
≥
(

µ(y)

min{y1, . . . , ym}

)m
.

This inequality ordering satisfies the axioms of Theorems 10 and 12 except for replication
invariance.

Fourth, let Ω = R and define R as follows. For all n,m ∈ N, for all x ∈ Ωn, and for all
y ∈ Ωm,

xRy ⇔ min{x1, . . . , xn}+ µ(x) ≤ min{y1, . . . , ym}+ µ(y).

This inequality ordering satisfies the axioms of Theorem 11 except for translation invari-
ance.

Finally, consider the restriction of Ra
µn to ∪n∈NRn

++. This ordering satisfies the axioms
of Theorem 12 except for scale invariance.

Independence of the axioms in Theorems 13, 15, 16, 17, 19, 20,
and 21

Transfer neutrality within quantiles is independent of the other axioms in Theorems 13,
15, 16, and 17 because the restriction of Ra

xµ to ∪n∈NRnq (or ∪n∈NRnq
++) satisfy the other

axioms of Theorems 13, 15, and 16 and the restriction of Rr
xµ to ∪n∈NRnq

++ satisfies the
other axioms of Theorem 17. Using Ra

µn and Rr
µn, the same argument applies to Theorems

19, 20, and 21.
The independence of the composite transfer principle for top quantile in Theorems 15,

16, and 17 follows from Theorems 19, 20, and 21.
The examples that show the independence of the other axioms of Theorems 15, 16,

and 17 are analogous to those that we used for checking that the corresponding axioms
of Theorems 6, 7, and 8 are independent. Specifically, the examples are given by replac-
ing max{x1, . . . , xn} (respectively min{x1, . . . , xn}) with µq(x) (respectively µ1(x)) in the
previous examples for Theorems 6, 7, and 8.

Likewise, replacing min{x1, . . . , xn} (respectively max{x1, . . . , xn}) with µ1(x) (respec-
tively µq(x)) in the previous examples for Theorems 10, 11, and 12, the examples showing
the independence of the other axioms of Theorems 19, 20, and 21 are analogous to those
that we used for the corresponding axioms of Theorems 10, 11, and 12.
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Appendix C: Data description

As noted in Section 4, we used all the waves of the LIS dataset and retained the countries
for which at least four years for the period 1974–2016 are covered. The countries retained
in the dataset are listed in Table 7.
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Table 7: Countries and years covered in the dataset

Australia Germany Poland
(1981, 1985, 1989, 1995, 2001,

2003, 2004, 2008, 2010, 2014)

(1981, 1983, 1984, 1987, 1989,

1991, 1994, 1995, 1998,

2000–2015)

(1986, 1992, 1995, 1999, 2004,

2007, 2010, 2013, 2016)

Austria Greece Republic of Korea
(1987, 1994, 1995, 1997, 2000,

2004, 2007, 2010, 2013, 2016)

(1995, 2000, 2004, 2007, 2010,

2013)

(2006, 2008, 2010, 2012)

Belgium Hungary Russia
(1985, 1988, 1992, 1995, 1997,

2000)

(1991, 1994, 1999, 2005, 2007,

2009, 2012, 2015)

(2000, 2004, 2007, 2010,

2013–2016)

Brazil Ireland Serbia
(2006, 2009, 2011, 2013, 2016) (1987, 1994–1996, 2000,

2004, 2007, 2010)

(2006, 2010, 2013, 2016)

Canada Israel Slovakia
(1981, 1987, 1991, 1994, 1997,

1998, 2000, 2004, 2007, 2010,

2013)

(1979, 1986, 1992, 1997, 2001,

2005, 2007, 2010, 2012, 2014,

2016)

(1996, 2004, 2007, 2010, 2013)

Chile Italy Slovenia
(1990, 1992, 1994, 1996, 1998,

2000, 2003, 2006, 2009, 2011,

2013, 2015)

(1986, 1987, 1989, 1991, 1993,

1995, 1998, 2000, 2004, 2008,

2010, 2014)

(1997, 1999, 2004, 2007, 2010,

2012)

Colombia Luxembourg Spain
(2004, 2007, 2010, 2013, 2016) (1985, 1991, 1994, 1997, 2000,

2004, 2007, 2010, 2013)

(1980, 1985, 1990, 1995, 2000,

2004, 2007, 2010, 2013, 2016)

Czech Republic Mexico Sweden
(1996, 2002, 2004, 2007, 2010,

2013)

(1984, 1989, 1992, 1994, 1996,

1998, 2000, 2002, 2004, 2008,

2010, 2012)

(1981, 1987, 1992, 1995, 2000,

2005)

Denmark Netherlands Switzerland
(1987, 1992, 1995, 2000, 2004,

2007, 2010, 2013)

(1983, 1987, 1990, 1993, 1999,

2004, 2007, 2010, 2013)

(1982, 1992, 2000, 2002, 2004,

2007, 2010, 2013)

Estonia Norway United Kingdom
(2000, 2004, 2007, 2010, 2013) (1979, 1986, 1991, 1995, 2000,

2004, 2007, 2010, 2013)

(1991, 1994, 1995, 1999, 2004,

2007, 2010, 2013, 2016)

Finland Paraguay United States
(1987, 1991, 1995, 2000, 2004,

2007, 2010, 2013, 2016)

(2000, 2004, 2007, 2010, 2013,

2016)

(1974, 1979, 1986, 1991, 1994,

1997, 2000, 2004, 2007, 2010,

2013, 2016)

France Peru Uruguay
(1978, 1984, 1989, 1994, 2000,

2005, 2010)

(2004, 2007, 2010, 2013) (2004, 2007, 2010, 2013, 2016)

Note. The years covered in the dataset appear in parentheses.
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