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INTRODUCTION

In social stratification and mobility literature, there is a deeply rooted
track of research on the consequences of social mobility, e.g., concerning
attitudes, behaviors and psycho-social conditions (Friedman, 2014).

However, applied researchers faced challenges on corroborating the
theory, due to identification problem (linear dependence of covariates)
which affect estimates specific to origin, destination and mobility.
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To overcome the identification problem, Sobel (1981, 1985) proposed the
Diagonal Reference Model (DRM).

The DRM is considered the first-choice statistical methodology among
sociologists and demographers to investigate consequences of social
mobility (Van der Waal et al., 2017; Billingsley et al., 2018).

Although the number of fields in which the model is gaining interest is
growing, use of the DRM produced a body of null or weak evidences
concerning mobility effects — stark contrast with expectations derived
from theory.

This suggests that also the DRM may still suffer of the
identification problem.
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AIMS OF THE STUDY

GAP
In methodological literature, there is a lack of research on the model

behavior when applied to real world data.

Am
We address this gap through Monte Carlo Simulation (MCS) technique
to assess potential benefits and limitations of the model. Specifically:
1 Evaluate the degree of estimation bias;
2 Evaluate the capability of the model to detect effects existing on the
population.
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THE ROOT OF THE IDENTIFICATION PROBLEM

The most intuitive approach to empirically assess effects of social Origin
(O), Destination (D) and Mobility (M) is to run ANOVA regression
(Blalock 1966, 1967; Duncan 1966; Mason et al. 1973) of the form:

Y:M-FOZ,'O-FﬁjD-l-’YkM-‘rEU

1 is the grand mean of Y

a; is the effect of the i" Origin class

B3; is the effect of being currently in the j* Destination class
Yk is the effect of mobility.
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ONE MODEL, TWO PROBLEMS

We can rewrite the formula in matrix form as y = Xb, where the
dependent variable is y,..; = (1,2, ¥3,---¥a) |, the regressor matrix
X nxp and the matrix of coefficients as bpy 1 = (o, 3,7) 7.

We encounter two problems in this set: one easy, one more complex.

The easy problem concerns the overparameterization of the model, which
I J

K
can be solved by constraining Za = ZB = 27 =0.
k=1

i=1 j=1
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BLUE MONDAY OF ESTIMATORS

Because of linear dependency between O, D and M, the rank (the
number of linearly independent rows/columns) of X, is less than p.

The Best Linear Unbiased Estimator (BLUE) is bors = (X X)Xy,
but if X is rank deficient (and in our case it is), than we cannot find the
inverse of the square matrix

XTX _ n Zgzl Xo
= n n
Zo:l Xo Zo:l Xg

In this case the square matrix X7 X is said to be singular.
We don’t have any unique estimator.

27/08,/2020 7/ 25



THE DRM APPROACH

In ANOVA regression, we decompose y;i in two additive effects: a; for
origin and f3; for destination.

In DRM, yjix can be decomposed in 11, the population means specific to
the it Origin category and 1;, the population means specific to the jt
Destination category. For immobile individuals - diagonals of the mobility

table - Rij = Wi = Hjj-

DRM is a parametrically weighted regression model (Yamaguchi, 2002)
as the means i and 1 are weighted by p and (1 — p). These quantify
relative salience of Origin and Destination on off-diagonal cells mean
values fij;.
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PurTING ALL TOGETHER

w
flij = ppii + (1 — p)py + Z Yw Mijw + €ijic

w=1

— eéi
P= e &b

5;

e?%
=i

i = mean at the i*" origin category;

ftjj = mean at the jth destination class;

Mij,, = Mobility variable(s) with effect magnitude ~,;

p and (1 — p) = relative salience of origin to the current destination;
0; and 0; = parameters to be estimated.
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THE LoGic or THE DRM

Destination

Origin | I 11 \Y; all
| o pui+rp  ppa+rps ppa T ria pra
I pp2 + rpi 2 pp2 + 3 ppo + rpa pL2
1l PU3 + iy pp3 + rip K3 Pz + rig pU3
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all ru rug rus riig I

r=1—p
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SIMULATING WEIGHTED EFFECTS

Now showing mu_ij_1
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MLE AND NLS OoF THE MODEL

Maximum Likelihood Estimation:

Liypro) = H ((27702)5 exp{ — (2(72)*1 X

ijk

(Jk—Zpuu ,—EJ: Pz X wa uw>2}>

j=1

Nonlinear Least Squares:

2
] J w
argmin = Z ()/ijk - Z priXi. — Z(l — p)uiXj— Z Vinjw)
i—1 =1 w=1

flowyio) T
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OUR EXPERIMENTAL DESIGN

SCENARIOS
We have constructed two scenarios:
Identity function: X = u where g(u) = X

Logit function: X3 = In (ﬁ) where g(u) = %

MOBILITY TABLE GENERATION AND COMPUTATION
Demirhan (2016) rTableICC package to generate random contingency

table *.
gnm package for computation of the model (Turner and Firth, 2015).

1Product Multinomial sampling: p(y) = Wiy)[ny(l — )"~ (Agresti, 2018)
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THE TRUE MODEL

ConNTINUOUS D.V.
Yik = ppii + rig + vup Upward + Ydown Downward

LociT D.V.
o exp(ppii + risjj + yup Upward + “ydown Downward)
Y1+ exp(pui + rijj + yup Upward + ~ydown Downward)

Population True Values

14 r ’YUp YDown

070 030 {-0.1,-05} {0.1,0.5}
050 050 {-0.1,-05} {0.1,0.5}
030 070 {-0.1,-05} {0.1,0.5}
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WEIGHTING PARAMETERS

Delta 1
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EMPIRICAL COVERAGE RATES
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Delta 1
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EMPIRICAL COVERAGE RATES
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DI1SCcUSSION

Bias

In both scenarios, findings
suggest mostly unbiased
estimators.

Although greater bias in the
non-linear logistic set.

Severe bias (still to clarify)
affecting weighting parameters
in logistic set.

ECR

ECR in linear scenario within
the accpetable boundaries
(except one case).

ECR in logistic scenario show
under-coverage for upward
mobility estimates.

When salience paremeters are
equivalent, DRM tends to suffer
from over-coverage.
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LIMITS OF THIS STUDY

Possible improvements are:
Include a full-range mobility variable.

Scenarios might include unobserved heterogeneity to simulate a
more realistic dataset.

Test how the model behaves when applied to longitudinal data.
Inclusion of worked examples with real-world data.
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CONCLUSIONS

WHAT IS GOOD
DRM works better when the D.V. is continuous.

WHAT IS BAD
Still methodological concerns when the simulation turns to non-linear
logistic. Here identification problem can still " muddy the waters”.

A LAST NOTE
We should pay attention to the generalization of the results: as this is an
experimentation, results might be specific to this set!
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THANK YOU FOR YOUR TIME!
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