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Abstract  
Motivated by high ecological and economical potentials and driven by new laws, remanufacturing is 

receiving increasing attention as a process that puts used products into “as good as new or better” condition. 

Within this process, there are many challenges, which are unknown from manufacturing, such as the 

uncertainties resulting from unknown conditions of the used products. This places special demands on the 

control of the remanufacturing system (RS). To handle these uncertainties an agent-based hybrid control 

architecture comprising centralized and decentralized components is presented. In the former, the scheduling 

takes place including the consideration of the use of automated guided vehicles (AGV) to realize of flexible 

material handling within the RS. The scheduling of machines and AGVs is thereby considered simultaneously 

and not separately, as it is the case in currently available control systems. For the optimization of this 

simultaneous scheduling Constraint Programming (CP) is used. In the decentralized component, all 

participants within the RS will be networked as a cyber-physical system and controlled by respective agents. 

These agents can communicate with each other in order to find solutions. The architecture is implemented as 

a multi-agent system. 

Simulation results, using benchmark instances, show that simultaneous scheduling results in a 19.7% 

reduction of the makespan. Furthermore, the CP-based approach delivers the best results, compared to other 

approaches for simultaneous scheduling, which are also achieved in a significantly shorter computing time.  
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Introduction  
In the domain of remanufacturing many challenges occur, which are special to remanufacturing and not 

known from manufacturing. One of these challenges are the unknown conditions of the used products. The 

product condition can be very different from product to product, depending on the use, which means that 

every product can take a different route through the RS because different remanufacturing processes are 

required. Like shown in Fig 1 even the same product, here Product A, can take a different route through the 

remanufacturing system based on different product condition and therefor different required remanufacturing 

process steps. This leads to stochastic routings of the products through the RS, which requires a flexible 

material handling system on the shop floor like Automated Guided Vehicles (AGVs). AGVs are considered 

as one of the most important enablers of flexible material handling on the shop floor [1]. Fig 1 shows the 

difference between a traditional manufacturing line and a flexible remanufacturing system (FRS). In the 

former, every product of the same type goes through the same workstations (S1-Sx), which are connected by 

a conveyor belts, in the same order. In the FRS on the other hand the products take different routes through 

the available workstations, which are connected through AGVs. This makes the production planning and 

control (PPC) of remanufacturing systems difficult. One reason for this is that the process steps, required 

remanufacturing the product at hand, are only known after an initial inspection. Even after the initial 
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inspection, the product condition is not always completely known and therefore unexpected events may occur 

during the execution of the different remanufacturing processes.  

Therefor the control of the FRA has to be flexible in order to be able to react adequately to the unknown 

condition of a product as well as to unexpected internal and external events. The associated scheduling and 

control of the available AGVs needs to be taken into consideration in the PPC as well. However, the PPC 

systems currently available often do not adequately reflect the complexity and volatility resulting from the 

above-mentioned circumstances [2]. In addition, the PPC systems usually also do not integrate the 

management of AGVs. These are managed via external fleet management software. A holistic approach, 

especially in the area of simultaneous scheduling of machines and AGVs (SSMA), can lead to optimization 

potentials. 
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Traditional manufacturing line

Flexible remanufacturing system

Single route through the manufacturing line: 

Product A: S1 -> S2 -> S3 -> S4 -> S5

Multiple routes through the remanufacturing system for the same product: 

Product A1: S1 -> S2 -> S5 -> S6 -> S7 -> S9

Product A2: S1 -> S4 -> S5 -> S8 -> S9

 
Fig 1: Comparison of a traditional production line with a flexible remanufacturing system and the use of AGVs as material 

handling systems. 

A promising approach to enable the required flexibility of the control system and to control the dynamics 

contained within the FRS is the use of multi-agent technology [3], [4]. This approach defines the various 

resources in the (re-)manufacturing system as intelligent agents that negotiate with each other in order to 

perform dynamic reconfigurations and to achieve high flexibility [5]–[10]. 

The multi-agent technology, which is already around for several decades, is a field of artificial intelligence 

and close to distributed problem solving [11]. A multi-agent system (MAS) consist of several agents with 

different abilities that collaborate with each other in order to complete certain tasks and to achieve certain 

goals [12]. An agent can be a software-technical image of a physical unit as well as a pure virtual unit and is 

defined as a computer system which is located in a certain environment in which it can act autonomously in 

order to achieve its goals [13]. Within a MAS several agents interact and negotiate with each other in order 

to find an optimal solution. They can either pursue different and contradictory goals, or consequently work 

together to achieve a common, superior goal.  

In this paper an agent-based, hybrid control architecture is proposed with the goal to optimize the 

scheduling of the FRS and to handle the stochastic within the FRS. The hybrid architecture consists of a 

centralized, as well as a decentralized component. In the former, the scheduling takes place including the 

consideration of the use of automated guided vehicles (AGV) for flexible material handling. The scheduling 

of machines and AGVs is thereby considered simultaneously and not separately, as it is the case in currently 

available control software. For the optimization of this simultaneous scheduling Constraint Programming 

(CP) is used. In the decentralized component, all participants within the FRS will be networked as a cyber-

physical system and controlled by respective agents. These agents can communicate with each other in order 

to find solutions. The architecture is implemented as a MAS consisting of several agents and agent types. 
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This architecture allows it to master the control of the FRS with the required flexibility for the different routes 

of the products through the FRS.  

The approach will be tested and validated through simulation using benchmark instances as well as the 

implementation of the proposed approach to control a demonstrator.  

 

This paper is structured as follows: in the second part the state-of-the-art regarding the PPC in the domain 

of remanufacturing, MAS in PPC, fleet management for AGVs and SSMA is presented; in the third part the 

architecture and methodology of the proposed agent-based, hybrid control architecture as well as the used CP 

approach regarding the SSMA will be represented; in the fourth part simulation results are presented to show 

the superiority of the proposed approach and in the last part a conclusion will be given and future work will 

be described. 

 

State-of-the-art  

PPC in remanufacturing 

 
The goal of PPC is the optimization of the entire production system. PPC consist of the three parts, 

planning, scheduling and control. The requirements for PPC-System depend on the type of production system. 

In the manufacturing sector, for example, special solutions for job shop, flexible job shop [14]–[21] or re-

entrant manufacturing systems are necessary and examined by researchers [7], [8], [10], [12], [22]. In the 

field of remanufacturing there are however particular characteristics and challenges for the PPC which are 

not known from manufacturing activities [23]–[28]. Some of these challenges are: 

• Unknown product condition of the used-products due to different stress during their usage 

• Unknown inspection results of the used-products 

• Unknown condition of the disassembled parts 

• Varying processing times 

• Balance between customer demand and return of used-products 

• Stochastic routings for materials and products 

• Unknown arrival time and quantity of used-products   

These characteristics, unique to the domain of remanufacturing, require a different approach for PPC then 

in the field of traditional manufacturing systems [29]. Especially the uncertainties and stochastic routings in 

remanufacturing need to be taken into consideration for the PPC. 

Research activities in the field of PPC for remanufacturing often focus on the disassembly planning and 

scheduling. Junior and Filho [30] proposed a stochastic dynamic programming model to master the 

production scheduling for disassembly in the remanufacturing environment. The proposed model was tested 

and validated on a real case of automotive clutch remanufacturing. Franz [31] proposed a mixed-integer-

program (MIP) to solve the disassembly planning and scheduling. The MIP is based on disassembly process 

graph, which represents parallel and alternative operations. To demonstrate the use of the approach in a real 

disassembly context an industrial case study is presented. Jungbluth et al. [32] proposed an intelligent robot 

assistant for the non-destructive disassembly in remanufacturing, that is controlled using a MAS, whereby 

the tools, robots and workers used are represented by agents. The assistance system carries out the 

disassembly planning on the basis of an extended CAD product model, divides the tasks between man and 

robot and automatically adjusts the disassembly plan if unexpected events occur. In addition, the RAS 

controls the collaborative robot and synchronizes the work between human and robot. To approach was 

successfully test and validated on a demonstrator for the disassembly of electric gear-drives. 

Current research activities are also carried out in the area of production scheduling in remanufacturing. 

He [33] proposed an hybrid algorithm based on a backpropagation neural network and a genetic algorithm 

for the simulation and optimization of remanufacturing production scheduling under uncertainties. The 

approach was validated through simulation. Kim et al. [34] proposed a mixed integer programming model 

for the problem representation and a scheduling approach based on priority rules. Validation of the approach 

was done through simulation on different test instances and a remanufacturing model factory. Wen et al. [35] 

developed a hybrid algorithm using bi-random simulation technique, neural network and genetic algorithms 

to perform and optimize the production planning and control in a remanufacturing system with uncertainties. 

The approach is tested and validated through a case study. 

However all of the above mentioned approaches do not take the SSMA for FRS into account. 
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Multi-agent systems in Production planning and control 

With regard to the use of MAS in the area of PPC, there are many different research focuses. Leusin 

describes a MAS approach [10] for real-time production control in workshop production. Luo et al. presents 

an approach where the complete manufacturing execution system (MES) is modelled by a MAS to realize a 

flexible design of the existing production process [36]. Merdan et al. have developed a distributed, intelligent 

control system based on Automation Agents, which enables an improvement in the response to failures or 

overloading of components [37]. Vojdani et al. use an agent-based approach for detailed production planning 

to improve the calculation of delivery dates by using real-time production data in the simulation [38]. Lima 

et al. develop an agent-based PPC system that dynamically adapts to changes in the production system [39]. 

Scholz-Reiter et al. uses the modelling and simulation of production based on agents for the self-control of 

logistic processes. The product finds its way through the production system itself [40]. He et al. present a 

hierarchical, agent-based tendering mechanism, which is specifically designed for make-to-order production. 

This operates within defined framework conditions and ensures that resources are used in a self-organized 

and cost-efficient manner to fulfil customer orders [41].  

 

Fleet Manager for AGVs 

AGVs are used as flexible material handling systems in the (re-)manufacturing industry and are able to 

move products and materials without pre-defined routes. Commercial available AGVs provide different 

approaches of self-guided navigation in order to find a collision-free path between workstations. If several 

AGVs exist on the shop floor, fleet management systems are used for the scheduling and supervision of the 

AGV fleet. Currently available fleet managers just focus on the localisation and navigation of the AGVs. To 

minimize the transport time of materials just the optimization of routes and the allocation of the best AGV 

for the task at hand is taken into consideration.  

Different fleet managers are developed and available from various manufacturers of AGVs. Mobile 

Industrial Robots for example provides the MiRFleet [42], which allows the collision free routing of various 

robots. The system also provides the ability to assign tasks with priority rules. Furthermore, the system 

monitors the battery charge levels of the AGVs and manages automatically the charging processes. The fleet 

management systems from KUKA AG, the KUKA.NavigationSolution [43], and the AGV Manager from BA 

Systèmes [44] attempt to reduce the overall travel time by taking the production environment, the traffic and 

the required target location into consideration. These systems provide job scheduling and real-time routing 

as outputs. DEMATIC’s E’tricc AGV fleet manager [45] selects the AGVs to the tasks by analysing the 

workflow as well as re-evaluating assignments. An analysis of historical travel routing and operation data is 

implemented in the AGV Supervision system from Sidel [46][43] and the SGV Manager from JBT [47] in 

order to optimise the performance of the AGV fleet in industrial environment. The Vehicle Manager from 

savant automation [48] is able to process inputs from network computer systems, discrete I/O, PLC network 

etc. in order to assign the available AGVs to tasks. Furthermore, the Vehicle Manager achieves and considers 

historical data. 

Besides the listed commercially available software solutions, the subject of fleet management for AGVs 

is also the subject of some current research projects. Srivastava et al. [49] for example present an agent-based 

approach for operation control of an AGV fleet with the goal to find a collision-free and time optimised path 

in the AGV path networks. The simulation functions for evaluating different scenarios within this fleet 

manager provide an efficient and a validated solution for AGVs running in complex flow networks. Regarding 

the fleet management of multiple AGVs in industrial warehouses Cardarelli et al. [50] proposed cooperative 

cloud robotics architecture. Through cooperative data fusion from various sensor systems, a continually 

updated global live view of the environment was achieved. The goal was to provide a collision-free path if 

unexpected obstacles occur in the environment. The methodology was successfully validated in a real 

industrial environment. Yao et al. [51] provides a Smart AGV Management System to optimize the 

scheduling of AGVs in a manufacturing process. The proposed approach uses the combination of real-time 

data analysis and a digital twin model to optimize the schedule. For a proof of concept, the approach was 

successfully tested on demonstrator with a manual assembly station.  

However, none of the listed, available software solutions as well none of the stated research projects 

provides the possibility regarding an integration for the SSMA to optimize the overall scheduling with the 

use of real-time production data [51] 

Simultaneous scheduling for machines and AGVs 

Traditionally, scheduling problems have considered machines as the only important resource, but this is 

no longer true as material handling in an FRS becomes more valuable and transport times contribute to 

machine downtime as machines have to wait for the next part to be machined. Extensive research has been 
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devoted to machine scheduling and vehicle scheduling independently, but the two problems are closely 

linked. Few have directed their research to the SSMA in an FRS. The scheduling in an FRS is conceptually 

similar to Job-Shop Scheduling Problems (JSSP), with the difference that in a JSSP material handling is not 

considered. The goal of the JSSP is to define the processing order for all the operations out of a set of jobs to 

a set of machines while minimizing the makespan. The machine to process a certain operation is predefined 

here. Sequence conditions between the operations of a job and the fact that one machine can only process one 

operation at one time has to be taken into consideration. In the JSSP every operation is processed on one 

specific machine, whereas in the extension of the JSSP the Flexible Job-Shop Scheduling Problem (FJSSP) 

every operation can be processed on at least one or more machines. The JSSP and the FJSSP are NP-hard 

problems [52] and studied by many researchers. An example of a JSSP is shown in Table 1. This JSSP consists 

of three jobs (rows within the table), each consisting of two to three operations (columns) and three available 

machines (M1, M2, M3). The values within the brackets after the respective machines correspond to the 

process time of the corresponding operation on this machine. 

 

  Operations  

Jobs 1 2 2 

Job 1 M1 (16) M2 (8) M3 (4) 

Job 2 M3 (9) M2 (9)  

Job 3 M2 (7) M3 (10) M1 (12) 
Table 1: Example of an JSSP with three jobs, eight operations and three machines. 

The solution to the JSSP problem is a production plan (schedule). An often used form of representing a 

schedule is the Gantt chart (see Fig 2). It shows the available machines on the ordinate axis and the time on 

the abscissa axis. The individual operations of the jobs are entered in the Gantt diagram in the line of the 

assigned machine with the respective start and end times as well as the corresponding process time. The 

second operation of the third job O32 is assigned to machine M3 in Fig 2. The start time of this operation is 

S32 and corresponding to the process time of P32 on this machine the end time is E32. t0 corresponds either to 

time t0 = 0 in the initial scheduling or to the current time when a new execution of the scheduling is executed 

(rescheduling). The schedule in Fig 2 also represents a permitted schedule of the JSSP example from Table 

1. 

O11

O21

O31

O32

O22 O12

O13

O33M1

M2

M3

t
S32 E32

p32
t0

 
Fig 2: One possible schedule for the JSSP example in Table 1. 

In the SSMA, all available machines are considered as well as all available AGVs, which have to transport 

the individual products between the machines. Only few research is done regarding the SSMA. In Table 2 the 

state-of-the-art regarding SSMA is represented. In the left column, the researchers are named and the 

corresponding article is linked. In the column Method the method used in the article to solve the simultaneous 

scheduling is named. The three right columns show whether in the corresponding article the investigation 

was performed in an FJSSP environment, with alternative machine, or in a JSSP environment, without such, 

or whether dynamics was taken into account. Dynamic events can be the arrival of new job, or the breakdown 

of a machine, respectively an AGV, for example. If the according case applies, the corresponding table field 

contains a “✔”, otherwise an “O”. 

 

Article Method Dynamic FJSSP JSSP 

Bilge and Ulusoy [53] 
Non-linear mixed integer 

programming model 
O O ✔ 

Nageswararao et al. [54] 
Binary Paricle Swarm Vehicle 

Heuristic Algorithm (BPSVHA) 
O O ✔ 

Erol et al. [55] Multi-Agent System O O ✔ 

Mousavi et al. [56] 

Hybrid algorithm consisting of 

Genetic Algorithm and Particle 

Swarm Optimization 

O O ✔ 

Chaudhry et al. [57] Genetic Algortihm O O ✔ 
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Fontes and Homayouni 

[58] 

Mixed Integer linear Programming 

model 
O O ✔ 

Lacomme et al. [59] Memetic Algorithm O O ✔ 

Faudi and Murata [60] 
Binary Paricle Swarm 

Optimization 
O O ✔ 

Deroussi and Norre [61] Iterative Local Search (ILS) O ✔ O 

Zhang et al. [20] 

Hybrid algorithm with a 

combination of a Genetic 

Algorithm and a Tabu-Search 

O ✔ O 

Zhang et al. [62] 

Hybrid algorithm with a 

combination of a Genetic 

Algorithm, a Shifting Bottleneck 

Procedure and a Tabu-Search 

O ✔ O 

Kumar et al. [63] 

Hybrid Algorithm with a 

Differential Evolution algorithm a 

Vehicle Assignment Heuristic and 

a Machine Selection Heuristic 

O ✔ O 

Sahin et al. [64] Multi-Agent System ✔ ✔ O 

Lin et al. [65] Simulation-based optimization ✔ ✔ O 

Deroussi et al. [66] 

Hybrid algorithm of Particle 

Swarm Optimization with a 

stochastic Local Search 

O ✔ O 

Nouri et al. [67] 
Hybrid algorithm of a Genetic 

Algorithm and a Tabu-Search 
O ✔ O 

Homayouni and Ponto 

[68] 

Mixed Integer Linear 

Programming model 
O ✔ O 

Table 2: State-of-the-art in SSMA. 

While there are still some further publications on the SSMA in the JSSP, to the best of the author's 

knowledge there are only the nine papers presented which were published on the SSMA in the JSSP. 

Concerning the works that include a consideration of dynamics, only two works can be found. In the MAS 

presented by Sahin et al. [64], which is based on pure self-organization through communication and 

negotiation between the agents, dynamics are considered, but the achieved results regarding the optimization 

of throughput time are considerably worse than with other approaches. 

Methodology  
Both centralized and decentralized approaches to production control offer different advantages and 

disadvantages. The decentralized approach to self-organization between different resources offers very high 

flexibility in stochastic environments and in responding to unexpected events but unlike a centralized 

approach, it does not have an overview at the entire (re-)manufacturing system, which reduces the likelihood 

of achieving global optimization of the RS. With a centralized control architecture, it is more likely to achieve 

global optimization, but on the other hand, this approach does not has the flexibility of a decentralized 

approach. In order to combine the advantages of both approaches, to do justice to the stochastic environment 

of a remanufacturing system and nevertheless to achieve a global optimization of the system, a hybrid 

architecture based on multi-agent technology for production control in FRS is presented in the following. The 

presented MAS contains basic elements of the PROSA reference architecture and integrates components of 

the approaches presented in [69], [70]. These approaches are modified in places and extended by the 

introduction of a Transport Agent and an Expert Agent. The Expert Agent enables the integration of the 

workers expert knowledge into the control system, to meet the special requirements in the domain of 

remanufacturing. If, due to unknown product condition, a process can not be executed as plant, the worker 

can look at the problem and decide, based on his expert knowledge, what would be a executable alternative 

process and inform the control system about his alternative decision. Within the Scheduler Agent, a cross-

agent type schedule is created, which is generated using SSMA. The architecture of the MAS for controlling 

remanufacturing is a hierarchical, decentralized architecture, which is shown in Fig 3. Decisions about the 

control of the remanufacturing system can be made at both levels.  
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Fig 3: Architecture for the agent-based PPC in remanufacturing. 

The proposed MAS consists of the agents and agent types listed below and shown in Fig 3: 

• Remanufacturing Agent: Coordinates execution processes, scheduling and, if necessary, 

interactions between other agents; 

• Scheduler Agent: Creates and optimizes simultaneous scheduling of manufacturing resources 

(machines, manual workstations) and AGVs. 

• Order Agents:  Manages separate orders within the remanufacturing system; 

• Product Agents: Contains information about the product and its manufacturing capabilities; 

• Transport Agents: Manages the flexible material handling systems (eg. AGVs) 

• Expert Agents: Integration of the worker into the control system to solve problems when 

unexpected events occur through expert knowledge. 

• Resource Agents: Manage the manufacturing resources (machines and manual workstations); 

 

Constraint programming (CP) is used to carry out SSMA within the Scheduler Agent. This programming 

paradigm is a separate area of artificial intelligence and allows the modelling of the problem at hand through 

constraints and the integration of associated solution mechanisms. The big advantage of the CP is the simple 

adaptation of the problem to new boundary conditions. If complex metaheuristics are used, even small 

changes to the problem can lead to large, required changes. 

The solving of SSMA by constraint programming combines on the one hand the scheduling of the 

machines in the form of a JSSP and on the other hand the associated organization of the necessary transports 

between the individual machines by a limited number of AGVs. The JSSP can be described by two constraints 

in the context of CP: 

 Precedence constraints:  

This constraint results from the condition that, in the case of two consecutive operations within an 

job, the first must be completed before the second can be started. 

 No overlap constraint:  

This constraint describes the condition that a machine can only process one operation at a given time. 

The individual operations of the different jobs are represented by an interval variable. An interval variable 

is used to model a time interval in which a certain property is contained (an activity, eg. operation, is executed, 

a resource is unused by maintenance,...). The interval variable of an operation is described by the associated 

processing time. The individual transport orders are also represented by interval variables, whereby the 

corresponding time interval equals the transport time between the machine on which the next operation of the 

job is executed and the predecessor machine equals. The predecessor machine is the machine on which the 

previous operation of the job at hand was executed. If it is the first operation of a job, the time interval of the 

interval variable corresponds to the transport time between the warehouse and the machine on which the first 

operation of the job is executed. In the case of the last operation of an job, the time interval corresponds to 

the transport time between the machine processing the last operation of the job and the warehouse to which 

the job is transported after completion. The interval variables of the transfer orders created in this way are 

described through the following constraints: 
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 Precedence constraints:  

 An operation cannot be performed until the corresponding transport order has been 

completed; 

 A transport order cannot be executed until the predecessor machine has completed the 

corresponding operation.  

In addition, the empty trips must be modelled and taken into account as well. Empty trips are trips during 

which an AGV is not transporting a product. If, for example, an AGV is at position A after it has completed 

a loaded trip there, and must carry out a material transport from B to C as the next order, than the trip from 

A to B is an empty trip. The time for the necessary empty trips must also be taken into account in the 

scheduling between two loaded trips of an AGV, since the second loaded trip can only be executed after the 

empty trip between the previous loaded trip and the current one has been completed. For a better 

understanding the following example should be considered. If transport order X is a transport (loaded trip) 

from C to A and the subsequent transport order Y is a transport from B to C, the AGV can only process order 

Y after the empty trip from A to B has been performed. These empty trips are modelled by a transition 

distance matrix. This is an n x n matrix, where n corresponds to the number of transport orders necessary for 

the realization of the existing orders. In this matrix, all possible empty trips between the individual transport 

orders are plotted. These empty trips are then taken into account as transition distances within the no overlap 

constraint of the individual AGVs integrated. This constraint describes the fact that transport orders of a AGV 

can not overlap and that the corresponding transition distance, if any, must be present between two 

consecutive transport orders. In addition, each transport order is assigned to all available AGVs and an 

alternative constraint describes that each transport order can be executed by any available AGV, but just one 

of them will be finally assigned to that specific transport order. 

The constraint program described above is implemented in Java using the IBM ILOG CPLEX 

Optimization Studio 12.8.0 API. The Solver CP Optimizer is used to solve the problem. The metaheuristic 

algorithm Large Neighbourhood Search (LNS) is used to optimize the simultaneous scheduling. This 

procedure is an iterative improvement algorithm. This procedure starts the improvement of the solution based 

on a solution generated by simple design procedures. Within the individual iterations, individual fragments 

of the solution (operations) within a defined neighbourhood are interchanged to create a new solution. The 

selection of the fragments to be swapped is usually stochastic, so that different fragments of the solution are 

swapped at each iteration step. This can destroy the schedule by violating sequence or overlap conditions. 

For this reason, after a new solution has been created, it is repaired. The solution is changed until all boundary 

conditions are met again. The neighbourhood N(x) of a solution x is defined as the set of solutions which can 

be reached by using the swapping of fragments and the subsequent repair of the new solution. The basic idea 

of the LNS is that the large neighbourhood makes it possible to move easily in the solution space, even if the 

problem is strongly limited by boundary conditions. Approaches based on small neighbourhoods, on the other 

hand, have much more difficulties in searching the solution space [168]. 

Results 
The verification of the advantages resulting from SSMA compared to the sequential scheduling of these 

resources is carried out through simulation using the benchmark instances developed by Bilge and Ulusoy 

[53]. The benchmark instances used consist of four layout variants, which differ with regard to the 

arrangement of the individual machines and the associated travel times between the machines (see Fig 

5Fehler! Verweisquelle konnte nicht gefunden werden. respectively Table 3) as well as ten job sets, which 

can be seen in Fig 4. Each of the ten job sets consist of four to eight jobs and 13 to 21 associated operations, 

which are executed on four machines and transported by two AGVs. Combining the four layouts with the ten 

job sets results in 40 different test instances. The job sets shown in Fig 4 are to be read in such a way that the 

value in brackets after the respective machine, which is represented by M1 to M4, indicates the process time 

of the corresponding operation on this machine. The number of transport jobs corresponds to the number of 

operations, since each job is transported in the first step from the L/U station (load/unload) to the machine 

that performs the first operation of the job and then between the machine processing the current operation 

and the machine processing the successor operation. These benchmark instances all have a t/p ratio (transport 

time/process time) of t/p > 0.25. This ratio has a great influence on the extent to which the material transport 

influences the scheduling with regard to the machines [53]. To consider a further t/p ratio, a new set of 

instances is generated by halving the travel times and multiplying the process times by a factor of two or 

three. A t/p < 0.25 results for all 42 benchmark instances obtained in this way. A total of 82 instances are thus 

available. An additional listing of the processing times of the jobs obtained in this way or of the transport 

times for the four layout variants is not provided here for the sake of clarity. 



9 

 

 
Fig 4: Data concerning the job sets used as test problems. 

Each of the four layout variants has a different arrangement of the four machines and the L/U station, resulting 

in different travel distances and therefor times between the individual machines (see Fig 5). M1 to M4 

correspond to the respective processing machines and L/U (Load/Unload) represents the station where all 

jobs have to be picked up before their first processing. This is comparable to an goods-reception store. 

M1 M2 M3 M4

L/U

M1 M2

M3 M4

L/U

Layout 1 Layout 2

Layout 3 Layout 4

M1

M2 M3

M4

L/U

M1 M2

M3 M4

L/U

 
Fig 5: Different layouts within the benchmark from Bilge and Ulusoy [53]. 
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The travel times between the individual machines are represented in the form of a transport time matrix (see 

Table 3). This transport time matrix is to be read in such a way that the transport time from a machine in the 

left column to a machine in the upper row corresponds to the value at which the respective row and column 

crosses. The transport times are unit less and given in the benchmark from [53]. 

 

 L/U M1 M2 M3 M4 

Layout 1   

L/U 0 6 8 10 12 

M1 12 0 6 8 10 

M2 10 6 0 6 8 

M3 8 8 6 0 6 

M4 6 10 8 6 0 

Layout 2  
L/U 0 4 6 8 6 

M1 6 0 2 4 2 

M2 8 12 0 2 4 

M3 6 10 12 0 2 

M4 4 8 10 12 0 

Layout 3  
L/U 0 2 4 10 12 

M1 12 0 2 8 10 

M2 10 12 0 6 8 

M3 4 6 8 0 2 

M4 2 4 6 12 0 

Layout 4  
L/U 0 4 8 10 14 

M1 18 0 4 6 10 

M2 20 14 0 8 6 

M3 12 8 6 0 6 

M4 14 14 12 6 0 
Table 3: Transport time matrix for the test problem according to Bilge and Ulusoy [53]. 

The problem, based on these benchmark, can be described as follows. There are a number of machines as 

well as AGVs and a number of jobs to be processed. Each job has a number of precedence constraints and 

each machine can process at most one operation at a time. It is assumed that the setup times are included in 

the process times and that operation cannot be interrupted after the start of processing. 

The following assumptions are taken into account in this study.  

 The fleet size is two AGVs. 

 Processing, set-up and loading times are deterministic. 

 All AGVs are identical in terms of speed and performance. 

 AGVs transport only one product per trip. 

 Problems such as traffic control, congestion, machine failure or downtimes, rejects, rework and 

vehicle disposition for battery charging are not taken into account here.  

 The loading and unloading of jobs on the machine is only carried out by the AGVs.  

 The AGVs are reliable and free from any malfunctions in operation. 

 

The optimization criterion, respectively the target function, of the used benchmark is the makespan, which is 

the timespan to complete all jobs within a certain job set.  

This simultaneous scheduling approach of machines and AGVs is compared with the sequential scheduling, 

currently used in the industry, to assess possible advantages with regard to a reduction in makespan as a result. 

In the sequential scheduling approach, the first step is to optimize the schedule regarding the jobs and their 

operations to be processed on the assigned machines. Subsequently, a fleet management system assigns the 

individual available AGVs to the transport orders resulting from the schedule regarding the machines like 

shown in Fig 6.  
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Shop Floor

MES

ERP

 

Fleet 
management 

software

Schedule for 
machines

Schedule for AGV

Status information 
regarding the AGV 
and its transport 

orders

 
Fig 6: Sequential scheduling using MES and Fleet Management Software. 

The benchmark instances presented above are used for this purpose. In order to ensure the comparability of 

the results, the simultaneous and sequential scheduling of machines and AGVs is implemented as a constraint 

program in Java and solved with the Solver CP Optimizer from IBM. The constraint programs described in 

previous chapter, for modelling the JSSP and SSMA, are implemented. 

By using CP Optimizer it is possible to find the optimum for the JSSP and the SSMA, including verifications. 

In simultaneous scheduling, the JSSP and the assignment of transport orders are considered together and 

optimized with regard to minimizing the makespan, including the consideration of transport times. Sequential 

scheduling involves first optimizing the makespan for the JSSP and then, based on the best solution found for 

the JSSP, assigning the AGV to the transport orders. The assignment of the AGVs to the individual transport 

orders, normally done by the fleet management software, is done by the Vehicle Assignment Heuristic (VAH) 

presented in [63]. The VAH proceeds as follows when assigning the available AGVs: 

1. Identification of the position (current AGV location) and the time at which the AGV is available 

again (VRT). 

2. Calculation of the travel time from the current position of the AGV to the machine on which the 

job (the product) is currently located. 

3. Addition of the travel time to the VRT to calculate the completion time of the empty trip (VET).  

4. Check whether the current operation of the job is completed or not; if necessary, the AGV waits 

until the operation is completed.  

5. Compare the completion time of the operation and the VET, for further calculations the higher of 

these two times will be used.  

6. Calculation of the travel time between the machine on which the job is currently located and the 

machine on which the next operation of the job will be executed. 

7. Add this travel time to the value obtained in step 5 resulting in the end time of the loaded trip 

(VLT). 

8. As soon as the loaded trip is finished, the vehicle is ready for its next assignment and the VLT of 

the current trip becomes the VRT for the next trip. The heuristic selects the vehicle with the lowest 

VLT value.  

The VAH is implemented in Java. The JSSP solution found by the CP Optimizer Solver is imported into Java 

via the Java API of IBM ILOG CPLEX Optimization Studio 12.8.0 in order to assign the AGVs to the 

resulting transport orders through the VAH. 

In addition to the simultaneous and sequential scheduling of machines and AGVs, the approach of self-

organization using MAS, which was presented in [55], was also included in the comparison. The results for 

the benchmark instances regarding self-organization were extracted from the publication of Erol et al. [55]. 

The average results can be found in Fig 7 and the exact results, concerning the individual test instances, can 

be found in Table 13 (Appendix). The comparison shows that the SSMA results in a reduction of the average 

makespan of 19.7 %. The comparison between sequential scheduling and self-organization using a MAS 

shows an increase of 10.4 % regarding the makespan. 
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Fig 7: Results of the comparison between simultaneous, sequential and self-organizing [55] scheduling of machines and AGVs for 

benchmark instances with a t/p ratio > 0.25. 

Related to the results for the instances with a t/p ratio < 0.25, it can be seen that the optimization potential 

is lower here due to simultaneous scheduling. This result in an average reduction of the makespan due to 

simultaneous scheduling of 7.1 % compared to sequential scheduling. The use of a self-organizing system, 

on the other hand, results in a 4.9 % worse result compared to sequential scheduling. 

 

 
Fig 8: Results of the comparison between simultaneous, sequential and self-organizing [71] scheduling of machines and AGVs for 

benchmark instances with a t/p ratio < 0.25. 

The optimization potential regarding the reduction of the makespan through SSMA is significantly higher 

with a t/p > 0.25 than with a t/p < 0.25. This is because the transport time with a t/p < 0.25 has a lower share 

of the total makespan than with a t/p > 0.25, whereby the scheduling of the transport tasks also has a low 

share of the overall performance of the system. Nevertheless, a reduction of the makespan can be achieved 

by using simultaneous scheduling. In both t/p ratios examined, no significant improvement can be achieved 

by self-organization using a MAS. In relation to the instances with a t/p < 0.25, there is even a deterioration 

compared to sequential scheduling. The reason for this is that the omission of a central unit in this application 

means that there is no overall overview of the system, making global optimization unlikely. This has a 

particular effect on instances with t/p < 0.25, since the scheduling for the machines was optimally planned 

here and the subsequent transport orders assigned by the VHA have only a minor influence on the overall 

system due to the low t/p ratio.  

In the previous study it can be seen that the optimization potential regarding the makespan reduction 

through simultaneous scheduling, in comparison to sequential scheduling, is higher for the benchmark 

instances with a t/p > 0.25 than for the instances with a t/p < 0.25. To further investigate if and to what extent 

there is a relationship between the t/p ratio and the percentage optimization potential for makespan reduction 

by means of simultaneous scheduling, the achieved makespan reduction over the corresponding t/p ratio for 

all benchmark instances is shown in Fig 9 (t/p < 0.25) and Fig 10 (t/p < 0.25). Each blue dot represents one 

of the 82 benchmark instances with the corresponding perecentage makespan reduction (ordinate) and the 

corresponding t/p ratio (abscissa). The dashed line to be seen in each case is the trend line, which is calculated 

using a simple linear regression. This shows in both tables that an increase in the t/p ratio is accompanied by 

an increase in the reduction of the makespan through SSMA. 
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Fig 9: Percentage makespan reduction through simultaneous scheduling in comparison to sequential scheduling for benchmark 

instances with t/p < 0.25. 

 
Fig 10: Percentage makespan reduction through simultaneous scheduling in comparison to sequential scheduling for benchmark 

instances with t/p > 0.25. 

Looking at real manufacturing systems, this correlation shows that even higher optimization potentials 

are realistic than in the benchmark instances used. The reason for this is that the t/p ratio in real manufacturing 

systems is higher than the t/p ratio of the instances used. The makespan of a real job shop production is 

composed of the following time components [71]: 

 Idle/waiting time: 70%. 

 Transport time:  20%. 

 Processing time:  10%. 

This corresponds to a t/p ratio of 2.0. 

After examine the potential of makespan reduction through SSMA, compared to the currently used 

sequential scheduling, within the next part the CP approach presented is compared to other known works and 

methods for solving this simultaneous scheduling problem. 

Regarding the scheduling, especially in the context of production control, not only the quality of the 

solution found is decisive, but also various other criteria. One important criterion here is the computational 

time of the used optimization algorithm. This indicates how long the algorithm takes to find a solution. 

Especially in real manufacturing systems, in which unpredicted events such as machine failures, other 

malfunctions or planning changes frequently occur, it is essential that the optimization algorithm used for 

scheduling can deliver a good, new solution within an appropriate time. For this reason, in this simulation 

study, not only the makespan is used as an evaluation criterion, but also the computational time (referred to 

as CPU time) for comparing the different optimization algorithms is considered. However, the computational 

times are not given in all works considered for comparison. The benchmark instances from [149] already 

presented serve also as a basis for this comparison.  
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The presented approach of constraint programming was implemented in Java and solved using the Solvers 

CP Optimizer from IBM. The hardware used is an Intel® Core™ i5-7200U CPU with 2.50 GHz and 8.00 GB 

RAM. For comparison, the hardware used by Chaudhy and Shami [153] and Huang [170] is also listed below: 

 Chaudhy [153]: PIV CPU with 1.7 GHz and 128 MB RAM 

 Huang [170]:  Intel Xeon CPU with 2.40 GHz and 16 GB RAM 

The different test instances with t/p > 0.25 are described by "EX" followed by two numbers (see Table 4). 

The first number represents the job set and the second number the layout used. The test instances with a t/p 

< 0.25 (see Table 5) are also designated by "EX", but are now followed by three numbers. Analogous to the 

previous scheme, the first number represents the order set used, the second number the layout used and the 

third number added represents the factor by which the process times were multiplied. This number is 0 if the 

process times have been multiplied by two and 1 if the process times have been multiplied by three. This 

creates 42 additional test instances, making a total of 82 test instances. The listed results, the methods used 

for comparison, are taken from the respective publications and all refer to the application of the respectively 

presented method to the benchmark instances of Bilge and Ulusoy [53]. The method used for comparison is 

Erol et al. [55] which proposes an approach based on multi-agents, whereby a pure self-organization was 

realized. Lin et al. [65] use an approach of simulation-based optimization (SBO). (Meta-)heuristic methods 

are used by Zheng et al. [72] (tabu search) and by Chaudhry et al. [73] (genetic algorithm). Huang [74] uses 

MILP to solve the scheduling problem as a representative of the exact procedures. In the investigations of  

[65], [55] and [72] there is no consideration of computational time. In order to verify the performance of the 

presented constraint programming method, the best solution found within 1 sec computational time is 

displayed (CPU < 1s) for instances where our algorithm took longer than 1 sec to find the presented solution. 

 

  

Erol Lin Zheng Chaudry  Huang Groß 

MAS SBO TS GA MILP CP 

Instance MS MS MS MS CPU  MS CPU  MS CPU CPU < 1s 

EX11 130 96 96 96 7 96 30,58 96 0,05   

EX21 143 100 100 100 113 100 730,77 100 0,41   

EX31 142 100 99 99 34 99 176,83 99 0,85   

EX41 198 114 112 112 193 112 50803,3 112 0,97   

EX51 130 87 87 87 68 87 136,43 87 0,05   

EX61 153 118 118 118 1260 118 7927,26 118 0,51   

EX71 129 111 111 115 104  - - 111 529,3 127 

EX81 196 161 161 161 13 161 27,79 161 0,03   

EX91 178 116 116 116 41 116 22,09 116 0,02   

EX101 188 153 146 150 75 146 7138,1 146 0,48   

EX12 98 82 82 82 6 82 4,34 82 0,02   

EX22 86 76 76 76 18 76 5,44 76 0,02   

EX32 114 85 85 85 15 85 8,3 85 0,02   

EX42 129 86 87 88 54 87 3118,96 87 0,34   

EX52 98 69 69 69 10 69 17,82 69 0,19   

EX62 123 98 98 98 120 98 10,18 98 0,91   

EX72 92 79 79 81 240 79 11915 79 3,58 84 

EX82 172 151 151 151 4 151 14,77 151 0,02   

EX92 123 102 102 102 20 102 9,69 102 0,23   

EX102 154 135 135 141 300 135 161,63 135 0,03   

EX13 109 84 84 84 18 84 8,14 84 0,03   

EX23 98 86 86 86 7 86 95,98 86 0,04   

EX33 103 86 86 86 54 86 6,68 86 0,03   

EX43 155 89 89 89 25 89 3997,25 89 0,03   

EX53 109 74 74 74 45 74 83,23 74 0,04   

EX63 128 103 103 104 1200 103 23,33 103 0,03   

EX73 93 82 83 90 300 83 33725,1 83 6,38 89 
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EX83 172 153 153 153 5 153 14,45 153 0,03   

EX93 119 105 105 105 21 105 10,17 105 0,37   

EX103 158 139 137 140 83 137 290,78 137 0,74   

EX14 168 103 103 103 23 103 27,67 103 0,84   

EX24 169 108 108 108 11 108 3698,61 108 0,66   

EX34 167 110 111 111 18 111 832,66 111 35,5 112 

EX44 242 126 121 126 68 121 22554,1 121 0,82   

EX54 168 96 96 96 29 96 176,06 96 2,3 98 

EX64 189 120 120 122 12 120 1760,19 120 2,17 122 

EX74 156 126 126 130 32 -  - 127 2,36 133 

EX84 251 163 163 163 38 163 4681,18 163 0,08   

EX94 181 122 120 120 42 120 61,69 120 0,19   

EX104 246 159 157 159 161 157 79885 157 2,23 169 

Avg. 148,9 108,8 108,4 109,4 122,2 107,8 6162,9 108,4 14,8 

  Median         36   116,2   0,29 
Table 4: Comparison of the results of various optimization methods for SSMA with t/p > 0.25. MS = makespan; CPU = computational 

time 

In the results of [74] it should be noted that this procedure has not found a solution for all instances, which 

is indicated by a "-" in the corresponding line. This circumstance also results in a better average makespan 

compared to other methods, because if only the results for the individual instances are compared, it can be 

stated that no better result could be found for any instance. Apart from the fact that the exact procedure does 

not find a solution for all instances, the computational times for finding a solution are very high. For example, 

instance EX41 requires more than 14 hours finding a solution. The advantage of this method is that the 

solutions found are the optimal solution to the problem at hand. The results presented by Erol [55] are 

significantly behind those of the other approaches. The approaches of Lin [65], Zheng [72] and Chaudhry et 

al. [73] each provide similarly good results. The computational times of [73], with an average value of 122.2s 

and a median of 36s, are clearly below the values of [74] with an average computational time of 6162.9s and 

a median of 116.2s for the instances, respectively. 

 

  

Erol Chaudry Groß 

MAS GA CP 

Instance MS MS MS CPU CPU < 1s 

EX110 135 126 126 0,02   

EX210 157 148 148 0,02   

EX310 154 150 150 0,07   

EX410 211 119 119 0,05   

EX510 118 102 102 0,02   

EX610 204 186 186 0,12   

EX710 138 137 137 0,07   

EX810 330 292 292 0,03   

EX910 191 176 176 0,08   

EX1010 269 238 238 0,6   

EX120 127 123 123 0,02   

EX220 151 143 143 0,02   

EX320 144 145 145 0,09   

EX420 161 114 114 0,07   

EX520 110 100 100 0,01   

EX620 196 181 181 0,03   

EX720 132 136 136 0,02   
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EX820 319 287 287 0,03   

EX920 187 173 173 0,04   

EX1020 266 236 236 15,92 237 

EX130 134 122 122 0,02   

EX230 151 146 146 0,02   

EX330 129 146 146 0,01   

EX430 228 114 114 0,02   

EX530 111 99 99 0,01   

EX630 198 182 182 0,08   

EX730 132 137 137 0,03   

EX830 273 288 288 0,03   

EX930 187 174 174 0,04   

EX1030 266 237 237 1,03 238 

EX140 137 124 124 0,02   

EX241 230 217 217 0,02   

EX340 155 151 151 0,04   

EX341 227 221 221 0,05   

EX441 344 172 172 0,04   

EX541 158 148 148 0,03   

EX640 211 184 184 0,23   

EX740 158 137 137 0,02   

EX741 206 203 203 0,03   

EX840 331 293 293 0,02   

EX940 195 175 175 0,06   

EX1040 276 240 240 32,06 241 

      

Avg. 196,1 173,7 173,7 1,3   

Median       0,03   
Table 5: Comparison of the results of various optimization methods for SSMA with t/p < 0.25. MS = makespan; CPU = computational 

time 

The approach presented in this paper provides the best results in terms of both makespan and 

computational time. With an average makespan of 108.4, it provides the same results as Zheng [72]. Relative 

to computational time, the approach [73] and [74] with an average makespan of 14.8s and a median of 0.29s 

is clearly superior. Regarding the instances with t/p < 0.25, the presented approach achieves an average 

makespan of 1.3s, as well as a median of 0.03s. For all instances where the computaional time was more than 

one second, it can be seen that the approach is able to find solutions close to the optimum within one second. 

Conclusions  
The paper at hand presents an agent-based hybrid control architecture for the special demands in the 

domain of remanufacturing. A centralized scheduling algorithm was proposed which also takes the scheduling 

of AGVs into consideration to enable the often-required flexible material handling within a remanufacturing 

system. In contrast to currently available control and fleet management software the scheduling of machines 

and AGVs is not executed sequential, but simultaneously. Because these both scheduling problems depend 

and influence each other, the simultaneous scheduling approach generates better results regarding the 

makespan optimization then the sequential approach. Simulation studies using benchmark instances show 

that the simultaneous scheduling approach generates on average results with a 19.7 % reduced makespan 

compared to sequential scheduling. Furthermore the simultaneous approach was compared to self-

organisation using MAS with the result of an on average 27.2 % lower makespan for the simultaneous 

approach. This also shows why the use of a hybrid control architecture is advantageous, as significantly better 

scheduling plans can be achieved compared to the pure, decentralized self-organization. It was also shown, 

using the same benchmark instances, that the higher the t/p ratio the higher the percentage makespan reduction 
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through simultaneous scheduling. With benchmark instances varying from a t/p ration between 0,11 and 1,14 

and an percentage makespan reduction between 1 % and 49 % and the fact that real manufacturing systems 

have a t/p ration of around 2,00 it can be assumed that the optimization potential in real remanufacturing 

systems is even higher than for the used benchmark instances. 

Furthermore, the proposed optimization approach for the SSMA using Constraint Programming was 

compared to other state-of-the-art works in the field of simultaneous scheduling. It could be shown that our 

approach produces the schedules with the best makespan and this within the shortest computational time of 

the compared approaches. 

In further work, the simultaneous scheduling approach will also be test with real data from an 

remanufacturing plant to verify the superiority of simultaneous scheduling in a real world scenario. In 

addition, the behavior of the approach will be investigated when unexpected events such as machine failures 

and new orders occur. A new schedule adapted to the changed boundary conditions will be created. In addition 

to the investigations by simulation studies, the approach will be also implemented in a demonstrator. This 

demonstrator has already been implemented in part, among other things the control of an AGV by the 

simultaneously generated schedule. 
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