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Abstract

We investigate the properties of various notions of volume for convex co-compact
hyperbolic 3-manifolds, and their relations with the geometry of the Teichmiiller
space.

We prove a first order variation formula for the dual volume of the convex
core, as a function over the space of quasi-isometric deformations of a convex
co-compact hyperbolic 3-manifold.

For quasi-Fuchsian manifolds, we show that the dual volume of the convex
core is bounded from above by a linear function of the Weil-Petersson distance
between the pair of hyperbolic structures on the boundary of the convex core.

We prove that, as we vary the convex co-compact structure on a fixed hyper-
bolic 3-manifold with incompressible boundary, the infimum of the dual volume
of the convex core coincides with the infimum of the Riemannian volume of the
convex core.

We study various properties of the foliation by constant Gaussian curvature
surfaces (k-surfaces) of convex co-compact hyperbolic 3-manifolds. We present
a description of the renormalized volume of a quasi-Fuchsian manifold in terms
of its foliation by k-surfaces. We show the existence of a Hamiltonian flow over
the cotangent space of Teichmiiller space, whose flow lines corresponds to the
immersion data of the k-surfaces sitting inside a fixed hyperbolic end, and we
determine a generalization of McMullen’s Kleinian reciprocity, again by means
of the constant Gaussian curvature surfaces foliation.
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Introduction

We investigate the notions of dual and renormalized volume for convex co-com-
pact hyperbolic manifolds and their relations with the geometry of the Teich-
miiller space. The Teichmiiller space of a topological surface with negative Euler
characteristic can be defined as the space of isotopy classes of either conformal
structures, or hyperbolic metrics. The interplay between these two interpreta-
tions makes the Teichmiiller space an extremely fruitful object of study. The
initial approach to the subject via complex analytic methods, developed by
Teichmiiller, Ahlfors, Bers and Weil, among others, has been tremendously ex-
panded by the work of William Thurston in the 1970’s, who further investigated
its connections with the study of the topology of 3-manifolds and their geometric
structures, leading him to his celebrated Geometrization Conjecture (now The-
orem, by Perelman). In this work we will focus our attention on the geometry
of convex co-compact hyperbolic 3-manifolds: these are complete Riemannian
3-manifolds of constant sectional curvature equal to —1, which possess a non-
empty compact convex subset (here we say that a subset C' of a Riemannian
manifold M is convez if, for every pair of points p,q € C and for every geodesic
arc v joining them, ~ in fully contained in C'). The smallest compact convex
subset of a manifold M is called its convex core CM, and it encloses all the
geometric information about such M. An example of a rich class of convex co-
compact hyperbolic manifolds are quasi-Fuchsian manifolds, which are homeo-
morphic to the product a surface times the real line (here surfaces will always
be supposed to be closed and with genus at least 2). Non-closed convex co-
compact hyperbolic manifolds can be quasi-isometrically deformed, and their
deformation spaces are parametrized by the space of conformal structures on
their domain of discontinuity (see e. g. |Ber60|, [Sul81lal).

Non-closed convex co-compact hyperbolic manifolds always have infinite Rie-
mannian volume. However, interesting notions of volumes can be introduced
also in this context, either by looking at their convex core (which is compact),
or by defining suitable renormalization procedures over exhaustions of the man-
ifold, as for the renormalized volume. In Chapter [2| we will study the dual
volume of the convex core Vi, as a function over the deformation space of con-
vex co-compact hyperbolic structures of a given topological type. In particular,
we determine a first order variation formula for V&, called the dual Bonahon-
Schlifli formula. The original Bonahon-Schldfli formula expresses the variation
of the volume of the convex core of a convex co-compact 3-manifold in terms of
the variation of the geometry of its boundary. It takes its name from Schléafli
|Sch58], who developed a variation formula for the volume of convex polyhedra
inside the elliptic space form S?, and from Bonahon |Bon98a|, who generalized
this relation to the context of convex co-compact 3-manifolds. Bonahon’s result

vii



viii INTRODUCTION

states that the directional derivative of the volume of the convex core Vi along
a smooth family of convex co-compact structures (M;); satisfies

dVe (M) 1

=ESEL = Sl
T (£2)

where £,,(f1) denotes the length of the derivative of the bending measure fi :=
%|t:0+ with respect to the hyperbolic metric m of the boundary of the convex
core. Here the presence of the directional derivative %\t:m is crucial, because
the function Vi is not ¢!, but only tangentiable. This statement displays an in-
trinsic complexity in the study of the function Vi, since it involves the variation
of the bending measured lamination j. In Bonahon’s work, the understanding
of this object passes through the notion of transverse Holder distributions, and
its study inherently requires exceptional care.

Surprisingly, these difficulties can be spared in the study of the dual volume
of the convex core V. The notion of the dual volume of a convex set naturally
arises from the polarity correspondence between hyperbolic and de Sitter ge-
ometries. In the case of the convex core, it coincides with V& = Vo — %Em(,u),
where £,, (1) is the hyperbolic length of the bending measured lamination of the
boundary of the convex core. As observed by Krasnov and Schlenker [KS09],
a simple application of Bonahon’s work proves that the variation of the dual
volume satisfies:

Theorem A (Dual Bonahon-Schléfli formula).

AVE(M) = —=

2 dLll (m)7

where L, is the analytic function on the Teichmiiller space of OM that asso-
ciates, with each hyperbolic structure m, the length of the m-geodesic realization
of u, and m is the first order variation of the hyperbolic metric m; on the
boundary of the convex core of M.

In contrast to what happens to the standard hyperbolic volume, the deriva-
tive of the dual volume involves only the variation of the hyperbolic metric on
the convex core, which, at least, does not require exceptional work to be defined.
A natural question that arises from this statement is whether it is possible to
give a proof of the variation formula of the dual volume without involving the
study of the variation of the bending measure.

In Chapter [2| we answer affirmatively to this question. The proof that we
provide does not require the application of the Bonahon-Schlafli formula and
the study of the transverse Holder distribution associated with the variation of
the bending measure. The tools used are quite elementary and the strategy of
the proof leans on purely differential geometric methods. A key ingredient of
the analysis is the so-called differential Schlifli formula, due to Schlenker and
Rivin |[RS99|, which is an analog of the classical Schlifli formula for compact
convex sets with smooth boundary inside Einstein Riemannian (or Lorentzian)
manifolds.

In Chapter (3} the local understanding of the dual volume function V3 given
by the dual Bonahon-Schlafli formula allows us to estimate the growth of V3
over the space of quasi-Fuchsian manifolds. The asymptotic behaviour of the
"standard" Riemannian volume of the convex core of a quasi-Fuchsian manifold
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has been described by Brock [Bro03|. In this work, the author proved that the
volume of the convex core Vo (M) of a quasi-Fuchsian manifold M is coarsely
equivalent to the Weil-Petersson distance between the hyperbolic structures
m*t = m*(M) and m~ = m~ (M) on the two boundary components of the
convex core of M. In particular, for every closed surface ¥ of genus larger than
1, we can find two constants Ky, Ny > 0, depending only on the topology of ¥,
such that every quasi-Fuchsian manifold M homeomorphic to ¥ x R satisfies:

Ky dwp(m™,m™) — Ny, < Vo (M) < Ky, dwp(m™,m™) + Nx.

The original proof of this result guarantees the existence of the constants Ky
and My, but it does not furnish numerical estimates. As anticipated above, the
dual Bonahon-Schlifli formula turns out to be very well-suited to find explicit
constants satisfying the upper bound of Brock’s statement. The first reason
is that the dual Bonahon-Schléfli formula involves exactly the variation of the
hyperbolic metrics on the boundary of the convex core. In addition, the standard
volume and dual volume of the convex core differ by the term ¢,,(x), which is
known to be bounded by a multiple of the Euler characteristic of X, by the work
of Bridgeman [Bri98| (and further developments, see e. g. |BBB19|). These
properties essentially allow us to reduce Brock’s upper bound to the study of
the Weil-Petersson norm of dL,, the differential of the length of the bending
measured lamination. In particular, in Chapter |3| we prove the following result

Theorem B. There exists an explicit universal constant C > 0 such that, for
every quasi-Fuchsian manifold M homeomorphic to 3 X R, we have

V& (M)| < CIx(E)Y? dwp(m™ (M), m™ (M)).

The approach used here is very different from Brock’s original one, which
was more combinatorial and based on the study of the complex of pants of the
surface . In our analysis, the geometric property that plays the main role is
the control of the amount of bending that occurs transversely to the bending
lamination, a phenomenon of incompressible hyperbolic ends already observed
in the work of Epstein and Marden [EMS87].

From its definition V(M) = Vo (M) — 4, (p), it is not clear a priori
whether the dual volume of a convex co-compact 3-manifold is positive or not.
In Chapter [4] we study the infimum of the dual volume function over the space
of convex co-compact hyperbolic manifolds with incompressible boundary. In
particular, we will see:

Theorem C. For every convexr co-compact hyperbolic 3-manifold M with in-
compressible boundary we have
inf V4= inf Vg,
op(m) € op(my ¢
where QD(M) denotes the space of quasi-isometric deformations of M. More-

over, V&(M) = Vo (M) if and only if the boundary of the convex core of M is
totally geodesic.

In particular we deduce that the dual volume of the convex core of a quasi-
Fuchsian manifold is always non-negative, and it vanishes only on the Fuch-
sian locus. The proof that we present follows the same strategy of Bridgeman,
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Brock, and Bromberg |[BBB19|, where they observed that the same occurs for
the renormalized volume function. It is worth to mention that in the same work,
the authors proved that the renormalized volume Vg (M) of a convex co-compact
hyperbolic 3-manifold is always larger or equal to the dual volume of the convex
core V(M) (see in particular [BBB19, Theorem 3.7]), therefore Theorem [C is
actually a strengthening of the analogous result for Vi. The request on M to
have incompressible boundary is necessary, indeed it has been shown by Pallete
|[Pall9] that there exist Schottky groups with negative renormalized volume.

As described by Thurston’s work in the study of 3-dimensional hyperbolic
geometry, convex co-compact hyperbolic 3-manifolds can be characterized either
by the geometric data on the boundary of their convex core, or by the structure
of their boundary at infinity. These two descriptions are performed using two
different approaches: the first is based on the study of hyperbolic structures
and measured laminations over surfaces, while the second has a more "complex-
analytical" flavour, involving Riemann surface structures and holomorphic qua-
dratic differentials. In Chapter [5| we investigate the relations between these two
descriptions through the notion of constant Gaussian curvature surfaces. By
a result of Labourie |[Lab91|, every hyperbolic end FE admits a unique foliation
(3k )k by convex k-surfaces, i. e. surfaces of constant Gaussian curvature k, with
k that varies in (—1,0). The leaves X, of the foliation converge to the pleated
boundary of E as k goes to —1, and they go towards the conformal boundary
at infinity of E when k goes to 0. The k-surface foliations have been used by
Labourie [Lab92b| to construct two families of parametrizations of the space of
hyperbolic ends (®x)x, (¥g)r. The map P, associates with F the conformal
structure of the second fundamental form of ¥, together with a holomorphic
quadratic differential g naturally associated with ¥, while Uy, maps F into a
pair of hyperbolic metrics, coming from the first and third fundamental forms
of ¥ (the third fundamental form can be interpreted as the first fundamental
form of the dual surface of ¥ in the de Sitter space).

The works of Belraouti [Bell7| and Quinn [Qui20] describe the asymptotic
properties of these maps. In particular, we can see that, up to normalization,
the maps ®; converge to the Schwarzian parametrization as k goes to 0, and
the maps W, converge to the Thurston parametrization as k goes to —1. This
phenomenon suggests that the k-surfaces can be the correct notion to interpolate
between the structure of the convex core and the one of the conformal boundaries
at infinity.

Guided by this interpretation, in Chapter [5| we study the notions of dual
volume V' and W-volume W}, of the region of a convex co-compact manifold
M enclosed by its k-surfaces. After having developed analogues of the Schlafli
formulae for these functions, we give a new description of the notion of renor-
malized volume of a convex co-compact hyperbolic manifold M in terms of its
k-surface foliation. More precisely, if M}, denotes the region of M contained be-
tween the k-surfaces of the hyperbolic ends of M, and W (Mj,) is its W-volume,
then:

Theorem D.

Va(M) = lim (W(Mk) — 7x(9M)] arctanh V& + 1) .

This characterization of the renormalized volume has the virtue of being
described in terms of a very natural geometric foliation of M. In particular, it
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does not involve the study of the partial equidistant foliations associated with
the metrics in the conformal class at infinity, which greatly simplifies the original
approach of Krasnov and Schlenker [KS08|.

The Schléfli formulae of V} and W}, turn out to be closely related to the
symplectic structure of T*7 (OM), the cotangent space of the Teichmiiller space.
The maps @, and ¥y, induce two immersions ¢y, and 1y, respectively, of QD(M),
the space of quasi-isometric deformations of a fixed convex co-compact hyper-
bolic 3-manifold M, into T*7T (0M). Then, the pullbacks of the Liouville form A
of T*T (OM) by the maps ¢y and 1)), coincide with the differentials of the func-
tions Wy, and V¥, respectively. This simple observation immediately implies the
following:

Theorem E. The images of the maps ¢r, v : QD(M) — T*T(0M) are La-
grangian submanifolds of (T*T(OM),weot) for every k € (—1,0).

This result extends and generalizes McMullen’s Kleinian reciprocity theorem
[McM98|, replacing the role of the Schwarzian parametrization Sch, appearing
in McMullen’s original result, with Labourie’s parametrizations ®; and V. The
proof of Theorem [E]is extremely simple and it highlights a series of connections
between k-surfaces and the structures of the boundary of the convex core and
of the conformal boundary at infinity, which are summarized in Table

Studying Einstein equations of 3-dimensional spacetimes in a constant mean
curvature (or, briefly, CMC) gauge, Moncrief [Mon89| proved that CMC-folia-
tions determine a (time-dependent) Hamiltonian flow on (77, weot ), the cotan-
gent space to Teichmiiller space with its natural cotangent symplectic structure.
This result was later used by Andersson, Moncrief, and Tromba |[AMT97] to
prove that, if a constant curvature MGHC (maximal globally hyperbolic spa-
tially compact) spacetime in dimension 3 cointains a CMC Cauchy surface, then
it admits a CMC-foliation (the general existence of CMC-foliations — without
assuming the existence of a CMC Cauchy surface — in any dimension has been
extensively studied by Andersson et al. [And+12]).

Using the tools developed for the results described above, we can give an
analogous description of the flow determined by Labourie’s constant Gaussian
curvature foliations of hyperbolic ends. More precisely, if o @;1 denotes the
vector field of T*7 given by %CI);@/ o @;1|k/:k, then:

Theorem F. The k-dependent vector field P, o@,?l is Hamiltonian with respect
to the cotangent symplectic structure of T*T .

Moreover, the role of the area functional as a Hamiltonian function in Mon-
crief’s work here is replaced by the integral of the mean curvature of 3. A very
similar statement holds for the parametrizations W;. The approach used here
is different and more geometric in nature than the one used by Moncrief, which
passes through the ADM formalism for the study of the Einstein’s equations in
3-dimensional vacuum space-time. In our analysis, the result is a direct conse-
quence of the variation formulae of the W}, volumes mentioned above, and their
relations with the symplectic structure of 77 .

Outline of the thesis

The thesis is organized as follows. In Chapter [I] we give an overview of the
preliminary notions that will be used in the rest of the exposition. In Chapter
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On OCM On OM; \ On 0o M |
Conformal str. ¢, = [Ix] Conformal str. ceo
&

Intrinsic metric m

First fund. form I

Bending measure p

Foliation Fi = Hor(gx)
&
Third fund. form I,

Foliation Foo = Hor(geo)

Hyperbolic length L, (m)

Extr. length extr, (ck)
&

Mean curvature faMk H,

Extr. length extr,_ (coo)

Thurston’s param. Th

Parametrization ®g
&

Parametrization Wy

Schwarzian param. Sch

Dual volume V&

W-Volume W (My,)
&
Dual volume V™ (Mjy)

Renormalized volume Vg

Thm [5.2.4F

Wk = 7% dextr, (Ck)

&
Thm 5.2.4

[Sch17, Thm 1.2]
Vi = f%dext}-x (¢so)

dL o Th(QD(M)) Lagr.

Y (QD(M)) Lagrangian

Thm [E
Ve =—1dL, (m) Vi =-1dLg, (Ih)
Thm E McMullen’s Kleinian
¢x(QD(M)) Lagrangian reciprocity [McM98]|
&
[KS09) Thm [E

Table 1: k-surfaces interpolating between 0CM and 0o, M

we develop a proof of the dual Bonahon-Schlifli formula (Theorem for
convex co-compact hyperbolic 3-manifolds. The material of this chapter can be
found in:

Filippo Mazzoli. “The dual Bonahon-Schlifli formula”. arXiv e-prints (Aug.
2018). To appear, Algebr. Geom. Topol., 2020. arXiv: 1808.08936 [math.DG].

Chapter |3|is focused on the derivation of the linear upper bound of the dual
volume of the convex core of quasi-Fuchsian manifolds in terms of the Weil-
Petersson distance between the hyperbolic structures on the boundary of their
convex core (Theorem @ The content of this chapter is in:

Filippo Mazzoli. “The dual volume of quasi-Fuchsian manifolds and the Weil-
Petersson distance”. arXiv e-prints (July 2019). arXiv: [1907.04754 [math.DG].

Chapter {4 focuses on the study of the infimum of the dual volume function
as we vary the convex co-compact hyperbolic structure on a fixed topological 3-
manifold with incompressible boundary (Theorem 7 and it is unpublished at
the time of writing this thesis.


http://arxiv.org/abs/1808.08936
http://arxiv.org/abs/1907.04754
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In Chapter [5| we study the properties of constant Gaussian curvature folia-
tions and how they interpolate the geometry of the boundary of the convex core
and of the conformal boundary at infinity. The reader can find in this chapter
the proofs of Theorems D] [E] and [} which have been described in:

Filippo Mazzoli. “Constant Gaussian curvature foliations and Schlafli formulas
of hyperbolic 3-manifolds”. arXiv e-prints (Oct. 2019). arXiv: [1910.06203
[math.DG].


http://arxiv.org/abs/1910.06203
http://arxiv.org/abs/1910.06203
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Chapter 1

Preliminaries

Outline of the chapter

In this chapter we introduce the objects and the notions that will be used in
the rest of the thesis.

In Section we present the elementary properties (of certain models) of
the hyperbolic and de Sitter spaces H" and dS", and we introduce the notion
of hyperbolic n-manifolds.

Section[1.2]focuses on hyperbolic surfaces (i. e. n = 2), we recall the relations
between conformal and hyperbolic structures on surfaces, and the definition of
the Teichmiiller space. In addition, we describe holomorphic quadratic differen-
tials, measured foliations and their extremal length, on the "Riemann surface"
side, and geodesic laminations and measured laminations, on the "hyperbolic
surface" side. We also briefly recall the notions of harmonic and minimal La-
grangian maps between hyperbolic surfaces, which will be necessary for our
exposition in Chapters [3] and

In Section we introduce our main object of study, namely convez co-
compact hyperbolic 3-manifolds. We describe the structures of the boundary of
their convez core, and of their conformal boundary at infinity.

Section [I.4]investigates the polarity correspondence between hyperbolic and
de Sitter spaces. In particular, we describe the duality between convex sets in
these geometries, and the relations between the geometric data of their bound-
aries. This part of the exposition will be useful for the introduction of the notion
of dual volume, done in Section

Section [L.5] concerns the notion of constant Gaussian curvature surfaces in-
side hyperbolic 3-manifolds. We describe the properties of their fundamental
forms using the tools of the previous section, and how this class of surfaces relate
to the notion of minimal Lagrangian maps.

In Section we recall the geometric structure of (geometrically finite)
hyperbolic ends, and two parametrizations of the deformation of these objects,
namely the Thurston and Schwarzian parametrizations. We also recall Labourie’s
result concerning foliations by constant Gaussian curvature surfaces of hyper-
bolic ends.

Finally, Section [I.7]focuses on volumes of convex subsets inside hyperbolic 3-
manifolds. We first recall the classical Schldfli formula for compact hyperbolic
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polyhedra, and the differential Schlifli formula studied by Rivin and Schlenker
[RS99]. The chapter ends with a description of the properties of the dual volume
for convex bodies in the hyperbolic 3-space. Even if not strictly necessary for
the rest of the exposition, this part is indented to give an intrinsic description
of the dual volume, and to explain how this notion naturally arises from the
duality correspondence between hyperbolic and de Sitter geometries.

1.1 Hyperbolic and de Sitter spaces

Let R™! denote the (n+ 1)-dimensional Minkowski space, i. e. the vector space
R™*! endowed with the Lorentzian scalar product (-, ), ,, defined as

e 2 2 2 2
<’I,.’B>n,1 =yttt T T,

for any x = (21,...,2,41) € R™1. We denote by H; and H_; the subsets of R
given by the vectors z satisfying (z,z),, ;, =1 and (z, ), ; = —1, respectively.

The subset H', := H_y N {x,4+1 > 0} describes a connected n-manifold
embedded in R™! and diffeomorphic to R™. The bilinear form (-, )1 Testricts
on each tangent space T, H fl = ker(zx, '>n,1 to a positive definite scalar prod-
uct, which determines a Riemannian metric on H';. We will denote by H"
the resulting Riemannian manifold. This will be our standard model for the
hyperbolic n-space.

Similarly, H; is diffeomorphic to S"~! x R and it admits a structure of
Lorentzian n-manifold. Indeed, for every point x* € Hj, the restriction of
the scalar product (-, ~)n’1 to the tangent space T, H; = ker(z*, '>n,1 defines a
bilinear form of signature (n — 1,1). The resulting Lorentzian manifold will be
denoted by dS", and it will be called the de Sitter n-space.

Definition 1.1.1. A non-trivial tangent vector v € T, N to a Lorentzian man-
ifold N (e. g. R™! or dS") is called space-like if it satisfies (v,v) > 0, time-like
it (v,v) < 0 and light-like if (v,v) = 0. A time-orientation of N is the datum
of a choice of a connected component of {v € T, N | v time-like} at each point
x of N, depending continuously on =x.

The subgroup O(n, 1)* of isometries of R™! that keep H', invariant obvi-
ously preserves the Riemannian structure of H™. Since this action is transitive
and faithful on the bundles of orthonormal frames of H™, O(n,1)" identifies
with the group of isometries Iso(H") of H"™. The connected component of the
identity O,(n,1) C O(n,1)" consists of the orientation-preserving isometries of
H", and it will be also denoted by Iso™ (H™).

For what concerns the de Sitter n-space, the entire group O(n, 1) acts on dS"™
and it identifies with the group of isometries Iso(dS™). The subgroup O(n,1)"
can be interpreted as the subgroup of Iso(dS™) that preserves a time-orienta-
tion of dS". Similarly, O,(n,1) consists of the orientation-preserving and time-
orientation-preserving isometries of dS".

The hyperbolic space possesses totally geodesic subspaces of any codimen-
sion k € {0,...,n}, and they are all obtained as the intersection of H', with
codimension k vector subspaces of R™! containing a time-like direction. Sim-
ilarly, the codimension k totally geodesic subspaces of dS™ are intersections of
H, with codimension k vector subspaces containing a space-like direction. In
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both cases, a codimension 1 subspace is also called hyperplane (if n = 3 we will
simply call it plane). While in the hyperbolic space all totally geodesic sub-
spaces with the same dimension are (ambient) isometric, in the de Sitter space
two subspaces are (ambient) isometric if and only if their metrics have the same
signature. We say that a subspace of dS™ is space-like if its induced metric is
positive definite. A half-space in dS™ or in H™ is the closure of one of the two
components of the complementary of a hyperplane.

There are several other ways to describe the hyperbolic n-space, which can
be equivalently useful depending on the specific situation. We briefly recall the
other models that we will need in the rest of the exposition, and their properties.

The projective model of H" consists of the open affine subset of the projective
n-space RP™ given by

P{v € R™! | (z,2),, <0}

A peculiarity of this presentation is that, in the affine chart {x, 11 # 0}, the
totally geodesic subspaces of H" are described by euclidean subspaces of R"
intersected with the open ball {v € R™ | 3", v? < 1}. However, the Riemannian
structure of H™ is not conformally equivalent to the flat metric on the affine chart
{zn+1 # 0}. In particular, in the projective model the "hyperbolic angles" do
not coincide with the "euclidean angles".

Conformally flat models for H" are the Poincaré n-disk model

2
n 2 2
{veR™ | vl ::Zviz<1}a <1HUQ Zdvf ;
i B 0

%

and the half-space model

n 1 2
({w:(wl’... ,wy) € R™ | wy, >O}’U172LZdwi>'

In all these presentations, the action of the isometry group of H" extends
(uniquely and faithfully) to the boundary at infinity 0.,H?, which can be re-
spectively described as:

o P{x € R™' | (z,x),, = 0} in the projective model, with the natural
action of PO(n, 1);

e 571 = {v € R" | |jv||, = 1} in the Poincaré n-disk model, with the
natural action of Conf(S”~1), the group of conformal diffeomorphisms of
the standard (n — 1)-sphere;

e R"1U{oo} = {w € R" | w, = 0} U {oo} in the half-space model, again
with the natural action of Conf(S"~!) = Conf(R"~! U {o0}), the group of
conformal diffeomorphisms of the standard (n — 1)-sphere.

We will denote by H” the space H™ UJ.H". Since the hyperbolic n-space is
a complete Riemannian manifold, its distance does not extend to the boundary
at infinity. However, H" possesses a natural topology, which coincides with the
standard Euclidean topology in the Poincaré n-disk model H” = {v € R" |
[vllo <1}
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We will be particularly interested in the cases of dimension 2 and 3, which
have the peculiarity of being intimately related with 1-dimensional complex
analysis. We will always consider the Poincaré 2-disk and the half-plane models
as sitting inside the Riemann sphere CP' = C U {cc}. The first is described by
A :={z e C||z]* < 1}, endowed with the Riemannian metric 4/(1—|z|*)2|dz|?,
while the second coincides with H := {z = x + iy € C | y > 0}, together with
the metric |dz|°/y2. In both these presentations, the group Iso™ (H?2) identifies
with the group of biholomorphisms of A and H, which consist of those M&bius
transformations of CP! that keep them invariant. In particular, in the case of the
half-plane model H, this defines a natural isomorphism Iso™ (H?) = PSLy(R) C
PSLy(C).

Finally, when n = 3, every element of Iso™ (H?) is uniquely determined
by its conformal action of the sphere at infinity d,,H®, which can be again
identified with CP!. Therefore, Iso™ (H?) coincides with the entire group of
Mébius transformations P SLy(C), and its subgroup P SLa(R) can be interpreted
as the set of those orientation-preserving isometries of H? that keep invariant
some fixed totally geodesic plane of H?® (and preserve a fixed choice of a normal
vector field on it).

Definition 1.1.2. A complete hyperbolic n-manifold is a smooth manifold M of
dimension n endowed with a complete Riemannian metric of constant sectional
curvature —1. If M is connected, then it can be equivalently described as the
quotient of the hyperbolic n-space H by the action of a discrete and torsion-free
subgroup T of Iso(H").

The hyperbolic manifold M is orientable if and only if the group I' is con-
tained in Iso* (H™), the group of orientation-preserving isometries of H". In our
exposition we will always consider orientable manifolds.

Definition 1.1.3. A Fuchsian group is a discrete and torsion-free subgroup of
Isot (H?) =2 PSLy(R). A Kleinian group is a discrete and torsion-free subgroup
of Tso* (H?3) = P SLy(C).

1.2 Hyperbolic surfaces

In our exposition ¥ will always be an oriented connected compact smooth surface
with empty boundary and with genus g > 2, unless otherwise stated.

Definition 1.2.1. Let ¥ be a surface. Two Riemannian metrics g, g’ on ¥ are
conformally equivalent if there exists a smooth function v € €°°(3) such that
g/ — 62ug'

A conformal structure ¢ on X is an equivalence class of Riemannian metrics
with respect to the relation above. We will use also the notation ¢ = [g], where
g is a representative of ¢. A surface endowed with a conformal structure is also
called a Riemann surface.

A hyperbolic metric h on ¥ is a Riemannian metric with Gaussian curvature
constantly equal to —1.

Theorem 1.2.2 (Gauss). Let (X,c¢) be a Riemann surface. Then for every
point p € X, there exists a local chart z = x +iy: U — 2z(U) C C around p
satisfying:
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e cvery Riemannian metric g in the conformal class ¢ can be locally expressed
as g = e24|dz|? = e (dz? + dy?), for some smooth function u € €°°();

e the chart z sends the orientation of U C X into the standard orientation

of C.

Local coordinates satisfying the properties above are called conformal coordi-
nates.

Remark 1.2.3. Let (X, c¢) be a Riemann surface. An atlas of conformal coordi-
nates z;: U; — z;(U;) C C satisfies the following property: for every i and j
such that U; N U; # 0, the change of coordinates

Zj o Zi_l : Zz(UZ n U]) — ZJ(U7 n U])

are biholomorphisms between open sets of C. This explains in particular the
equivalence between our definition of conformal structure with the usual one,
which endows ¥ with a maximal atlas of charts with biholomorphic change of
coordinates.

Definition 1.2.4. Let ¥ be a surface. The Teichmiiller space of ¥, denoted by
T (%), is the space of isotopy classes of conformal structures over 3. More pre-
cisely, we say that two conformal structures ¢ and ¢’ are Teichmiiller-equivalent
if there exists a diffeomorphism f of X isotopic to the identity such that f*c¢ =
Here f*¢’ is the conformal structure of f*¢’, where ¢’ is a representative of the
conformal class ¢’

In light of the Uniformization Theorem, the universal cover of a Riemann
surface (3, ¢) with genus g > 2 is biholomorphic to the unit disk A = {z €
C | |z| < 1}. As briefly recalled at the beginning of Section the group
of biholomorphic automorphisms of A coincides with the group of orientation-
preserving isometries of the metric ga = 4/(1 — |z|*)2|dz|?. In particular, every
conformal structure on ¥ uniquely determines a complete hyperbolic metric
h € c. This phenomenon tells us that the Teichmiiller space can be considered
equivalently as the space of isotopy classes of hyperbolic metrics on 3. We will
write T¢(X) (¢ for conformal) when we want to emphasize the first interpretation
via conformal structures, and 7(X) (b for hyperbolic) in latter case.

1.2.1 Holomorphic quadratic diffentials and measured fo-
liations

Definition 1.2.5. Let X = (X, ¢) be a Riemann surface. A holomorphic qua-
dratic differential ¢ on X is a holomorphic section of the bundle T*X ® T* X,
where T*X denotes the holomorphic cotangent bundle of X. Equivalently, ¢
can be represented in conformal coordinates (U, z) as ¢ = f(z)dz?, where f is
a holomorphic function on U.

Given a conformal structure ¢ on ¥, we denote by Q(X,c¢) the space of
holomorphic quadratic differentials of (3, ¢). By the Riemann-Roch theorem,
Q(X, ¢) is a vector space of complex dimension 3g — 3.

Remark 1.2.6. As shown in [Tro92, p. 45-46], a symmetric bilinear tensor o (-, -)
on a Riemannian surface (X, ¢g) is equal to the real part of a holomorphic qua-
dratic differential on (3, [g]) if and only if
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e it is g-traceless, i. e. o(e1,e1)+o(ea, e2) = 0 for every local g-orthonormal
frame eq, eo;

e o is g-divergence-free, i. e. (V¢,0)(e1,)+(Ve,0)(e2,-) = 0 for every local
g-orthonormal frame eq, es.

Every holomorphic quadratic differential ¢ = f(z)dz? on a Riemann surface
X determines a measured foliation Hor(g) outside Z(q), the set of zeros of g,
which we will call the horizontal measured foliation of q. The leaves of the
foliation are the (unoriented) maximal curves of ¥ tangent to the vectors v €
T, 3 satisfying ¢(v, v) € Rsq, for every p € ¥\ Z(q). Every point p ¢ Z(q) admits
a local chart (U,w), with w = u + v € w(U) C C, such that the holomorphic
quadratic differential ¢ is expressed as ¢ = dw? on U. In these coordinates, the
foliation is represented by the lines {y = const} C w(U). Every arc v which
is properly embedded in U and transverse to the foliation carries a measure
~v*|dv|, which records the modulus of the variation of the v-component along
~. Since local charts (U, w) around p satisfying ¢ = dw? are essentially unique
up to post-composition by translations and m-rotations of C, the procedure just
described allow us to define a measure on each arc in ¥\ Z(¢) transverse to
the foliation, simply by combining the locally defined measures v*|dy|. Observe
that, if 4; is a 1-parameter family of curves in X\ Z(q) transverse to F for every
t and such that the endpoints of +; lie on the same leaf of F, then the total
mass of the measures 7} |dv| is independent of ¢.

Definition 1.2.7. The horizontal measured foliation of g, denoted by Hor(q),
is the datum of the foliation and the transverse measure described above.

A general measured foliation on ¥ is a foliation defined outside a finite set
of points {p1,...,pr} endowed with a transverse measure dm that is preserved
by deformations of transverse arcs as described above. We also require that,
around the singular points p;, the foliation is topologically equivalent to the
horizontal foliation of 2" dz? around 0 € C, for some n = n(p;) > 1. Given v a
closed curve of ¥, and F a measured foliation with transverse measure dm, we
define the geometric intersection i(F, ) to be inf. fv’ dm, as ' varies among
the closed curves homotopic to v in 3.

Two measured foliations F and F’ on ¥, with transverse measures dm and
dm/, respectively, are said to be equivalent if for every simple closed curve v of
Y we have i(F,v) = i(F’,v). By the work of Thurston, we know that the space
of equivalence classes of measured foliations of ¥ is homeomorphic to R696,
where g is the genus of X.

Extremal length of a measured foliation

Let ¢ be a conformal structure on X. A measurable conformal metric of (X, ¢)
is a tensor on X of the form p = p(2)2|dz|?, for some locally defined Borel-
measurable function p(z) > 0. We define the p-area of ¥ to be

A, ::/p(z)zdmdy.
by

Moreover, given 7y a simple closed curve on X, we set the p-length of v as follows:

lo(v) = in,f/ p(2)]dz],
Y v’



1.2. HYPERBOLIC SURFACES 7

where ~' varies among the closed curves of ¥ freely homotopic to . Then, the
extremal length of v with respect to the conformal structure c is defined as

2
ext, (c) 1= sup £0) ,
p A

where the supremum is taken over all measurable conformal metrics p of ¢ with
non-zero finite p-area.

Kerckhoff [Ker80, Proposition 3| extended the notion of extremal length to
general measured foliations, using the density of weighted simple closed curves
inside the space of measured foliations. As a final remark, we mention the fol-
lowing relation to express the extremal length with respect to ¢ of the horizontal
foliation of a holomorphic quadratic differential on (X, ¢):

Theorem 1.2.8 ([Ker80]). Let ¢ be a conformal structure of ¥, and let ¢ =
f(2)d2® € Q(X,¢). Then the extremal length of the measured foliation F =
Hor(q) with respect to the conformal structure c satisfies:

extr(e) = [ lal = [ If1dzdy.

1.2.2 Geodesic and measured laminations

Definition 1.2.9. Let (M,g) be a Riemannian manifold. A g-geodesic is a
parametrized curve v: I — M, defined on a open interval I of R, satisfying
V4 = 0, where V denotes the Levi-Civita connection of (M, g). If there is no
ambiguity on the Riemannian metric we are considering on M, we will simply
call v a geodesic of M.

A geodesic v of M is complete if it is defined on the entire real line. A
complete geodesic 7y is simple if either it is globally injective, or if it is periodic
of period T > 0 and injective over [0,T).

Definition 1.2.10. Let (3,h) be a closed surface endowed with a complete
hyperbolic metric. A geodesic lamination X\ of (X, h) is the datum of a closed
subset of ¥, together with a foliation by simple geodesics, called the leaves of
the lamination.

A measured lamination p of (3, k) is the datum of a geodesic lamination A
and of a Borel measure on each arc k transverse to A, so that every homotopy
of arcs (k¢)¢ejo,1), for which k; is transverse to A for every ¢, sends the measure
of kg to the measure of k.

Observe that the invariance of the measures under transverse deformations
implies in particular that the support of the measure associated to an arc k is
contained in the subset kN A.

Remark 1.2.11. The definition of geodesic and measured laminations that we
gave here have the inconvenience of being dependent on the choice of a hyper-
bolic structure h on . In fact, it is possible to describe the datum of a geodesic
lamination on a closed compact surface in a purely topological way, as briefly
summarized in Section We will denote by GL(X) and ML(X) the spaces of
geodesic laminations and of measured laminations of X, respectively.
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1.2.3 Harmonic maps

Definition 1.2.12. Let g, ¢’ be two Riemannian metrics on ¥. The energy of
amap f: (3,9) — (3,¢") is defined as

E(f) = / ldf, I, dag (p),

where [|dfp], , is the operator norm of dfy : (T,%, gp) = (1%, g;,), and dag (p)
is the area form of g. A simple computation shows that the quantity E(f) is
invariant under conformal change of g, in particular it depends only on the
conformal class ¢ = [¢g] and the metric ¢’. A function f is harmonic if it is a
critical point of the energy functional, i. e.

d /
aE(ft: (E,C) - (Zag )) tzoa

for every smooth variation f; of fy = f.

It turns out that a local diffeomorphism f: (X,¢) — (X, ¢’) is harmonic if

and only if the (2,0)-part of f*¢’ with respect to the conformal structure c is
a holomorphic quadratic differential (see e. g. [Sam78]). In such case, we call
Hopf(f) := (f*¢')*°) the Hopf differential of f.
Remark 1.2.13. Given a map f: (X,¢) — (X,¢'), the g-traceless part of f*¢’
coincides with 2Re(f*¢')>9, where (f*¢')* is the (2,0)-part of f*¢’ with
respect to the conformal class ¢ = [g]. Therefore, in light of Remark a
way to verify that a map f: (X,¢) — (%, ¢’) is harmonic is to show that the g-
traceless part of f*¢’ has trivial g-divergence, where g is a representative of c.
If this is the case, then the g-traceless part of f*¢’ is equal to 2 Re Hopf(f).

Theorem 1.2.14 (See e. g. [SamT78|). Let ¢ be a conformal structure on
. Then, for any hyperbolic metric h on X, there exists a unique holomorphic
quadratic differential ¢ € Q(X,c), and a unique diffeomorphism f: (X,c) —
(3, h) isotopic to the identity, such that f is harmonic with Hopf differential
equal to q.

Theorem 1.2.15 ([Wol89, Theorem 3.1]). Let ¢ be a fized conformal structure
over a surface 3. For every hyperbolic metric h of ¥, we denote by q(c,h) the
Hopf differential of the unique harmonic diffeomorphism from (X,c¢) to (X, h)
isotopic to the identity. Then the function

et TUE) — Q(F,¢)
[h]  +— qlc,h),

is well defined and it describes a global diffeomorphism between the Teichmiiller
space T"(X) and the space of holomorphic quadratic differentials Q(3,c) on
(2,0).

1.2.4 Minimal Lagrangian maps

Definition 1.2.16 (See [BMS13| Proposition 1.3]). Let h and h’ be two hyper-
bolic metrics on ¥. A diffeomorphism f: (X, h) — (3, h') is minimal Lagrangian
if it is area-preserving, and its graph is a minimal surface inside (32, h @ h').
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Equivalently, f: (X,h) — (X,h') is minimal Lagrangian if there exists a
conformal structure ¢ on ¥ such that f = uov ™!, where v and v are the unique
harmonic diffeomorphisms isotopic to the identity from (3,¢) to (X,h’), and
from (X, ¢) to (X, h), respectively, and if they satisfy Hopf(u) = — Hopf(v) €
Q(, ¢) (with the notation introduced in Definition [1.2.12).

Remark 1.2.17. Using the first description of minimal Lagrangian maps, the
conformal structure ¢, appearing in the second definition, can be recovered as
the conformal class of the induced metric on the graph of f from the metric
h & k' (by identifying the graph of f with ¥ using one of the projections onto
Y). Moreover, the projections of the graph of f onto (X,h) and (X,h') are
harmonic maps with respect to c.

As we will explain right after the statement, the following theorem can be
interpreted as a result of existence and uniqueness of minimal Lagrangian maps
isotopic to the identity between pairs of hyperbolic surfaces:

Theorem 1.2.18 (|[Lab92b|, [Sch93|). For every hyperbolic metric h and for
every isotopy class m' € TY(X), there exists a unique hyperbolic metric ' € m’
and a unique operator b: TY — T such that:

i) ' = h(b-,b);
i1) b is h-self-adjoint and positive definite,
ii1) detb=1;

i) b is Codazzi with respect to the Levi-Civita connection V of h, i. e.
(Vxb)Y = (Vyb)X for every X and Y.

A pair of hyperbolic metrics h, h’ for which we can find such an operator b is
called a normalized pair, and b is called their Labourie operator.

Consider h and h’ a normalized pair of hyperbolic metrics with Labourie
operator b, and let ¢ be the conformal class of the metric g := h(b-,-). The Levi-
Civita connection of g can be expressed as follows:

1
V&Y =VxY + 3 b1 (Vxb)Y,

where V is the Levi-Civita connection of h. This relation can be proved by
checking that the connection of the right-hand side is compatible with g and
torsion-free. The first property follows from the fact that b is h-self-adjoint,
while the second comes from the fact that b is a Codazzi tensor. Moreover,
using the relation b — tr(b) b+ detb1 = 0 and the fact that b is h-self-adjoint,
we can express the g-traceless parts of h and h’ as follows:

(1)) e () ),

which are opposite to each other. Finally, using the expression we described
above f}(L)r the Levi-Civita connection of g, we can express the g-divergence of
h— % g as

2

try h 1
div, (h rg g) = —5 d(indet ),
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which vanishes, since detb = 1. In other words, in light of Remark [1.2.13] the
maps

are harmonic with opposite Hopf differentials, i. e. id: (X,h) — (3,h') is
minimal Lagrangian. This finally explains the relation between Theorem
and the notion of minimal Lagrangian maps. In light of Theorem[1.2.15] another
way to formulate Theorem that will be useful later on is the following:

Theorem 1.2.19 (|[Lab92b|, [Sch93|). The function

He TTE) —  TE)x T(E)
(e.a) = (' (@), 9 (—a)),

is a diffeomorphism (here . denotes the harmonic parametrization of Theorem

[Z13)

1.3 Convex co-compact hyperbolic 3-manifolds

Definition 1.3.1. Let M be a complete hyperbolic n-manifold. A non-empty
subset C' of M is convez if, for every pair of points p,q € M (possibly equal)
and for every geodesic segment v of M from p to g, -y is fully contained in C.
A hyperbolic n-manifold M is convex co-compact if it possesses a non-empty
compact convex subset.

Remark 1.3.2. If M is simply connected (i. e. M = H"), then the condition
above translates into the usual notion of convexity.

Definition 1.3.3. Given M, M’ hyperbolic n-manifolds, a diffeomorphism
M — M' is a quasi-isometric deformation of M if it globally bi-Lipschitz.
We denote by QD(M) the space of quasi-isometric deformations of M, where
we identify two deformations M — M’ and M — M" if their pullback metrics
are isotopic to each other.

Remark 1.3.4. By a Theorem of Thurston |[Thu79, Proposition 8.3.4], two hy-
perbolic n-manifolds M and M’ are quasi-isometric if and only if their funda-
mental groups T', I (as subgroups of Iso(H™)) are quasi-conformally conjugated,
i. e. there exists a quasi-conformal self-homeomorphism ¢ of J,,H" such that
™t =T".

1.3.1 The limit set and the convex core

Let M be a complete hyperbolic n-manifold, and let I" be a discrete and torsion-
free subgroup of Iso(H™) such that M is isometric to H"/T". We define the limit
set of I" to be

Ar =T 20 NI H",

where T - 2y denotes the closure of the I'-orbit of g in H” := H" U 0, H". It
is simple to see that the definition of Ar does not depend on the choice of the
basepoint g € H". If T is non-elementary (i. e. it does not have any finite
orbit in H"), then Ar can be characterized as the smallest closed I'-invariant
subset of O, H™ (see e. g. [Rat06, Chapter 12]). The complementary region Qp
of the limit set in O, H? is called the domain of discontinuity of T.
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If 7: H* — H"/T' = M stands for the universal cover of M, then a subset
C of M is convex if and only if 7=1(C) is convex in H". If T is non-elementary,
then every non-empty I-invariant convex subset of H" contains the convezr hull
Cr of I, which consists of the intersection of all half-spaces H of H" satisfying
H 2 Ar (H stands for the closure of H in H"). The image CM := 7(Cr)
describes a convex subset of M, called the convex core of M, which is minimal
among the family of non-empty convex subsets of M.

Let now M be a convex co-compact hyperbolic manifold of dimension 3.
The boundary of the convex core JCM of M is the union of a finite collec-
tion of connected surfaces, each of which is totally geodesic outside a subset of
Hausdorff dimension 1. As described in [CEMO6|, the hyperbolic metrics on the
totally geodesic pieces (called flat pieces) "merge" together, defining a complete
hyperbolic metric m on JCM. The locus where 0C M is not flat is a geodesic
lamination A (see Definition , the bending locus of OCM. The surface
OCM is bent along A, and the amount of bending can be described by a mea-
sured lamination y, called the bending measure of 0CM. The p-measure along
an arc k transverse to A consists of an integral sum of the exterior dihedral angles
along the leaves that k meets. A simple example to keep in mind arises when p
is a rational lamination. In this case the geodesic lamination A is the union of a
finite number of disjoint simple closed geodesics 7;, and p can be considered as
a weighted sum )", 6; d,,, where 6; € (0, 7] is the exterior bending angle along
7i, and 0, is the transverse measure that counts the geometric intersection with
7i- From now on, we will denote the transverse measure ¢, simply by 7;, with
abuse, so that a rational lamination ;v can be represented simply as >, 6;7;
For a more detailed description we refer to [CEMO06, Section II1.1.11] (see also
Section for a description of 9C'M using the notion of pleated surfaces).

1.3.2 The boundary at infinity

Let I" be a Kleinian group, and let Qr and Cr denote its domain of discontinuity
and its convex hull, respectively. The nearest-point retraction r onto Cr extends
continuously to H? U Qr, and it is clearly I'-invariant. It is not difficult to see
that the existence of such map r implies that the action of I is free and properly
discontinuous on H3 U Qr (see e. g. [CEMO06]). In addition, since the isometry
group Iso™ (H?3) acts on the sphere at infinity d,,H? 22 CPP! by biholomorphisms,
the natural complex structure of the domain of discontinuity Qr C CP! is
preserved by I, and therefore it induces a Riemann surface structure over Qr /T
If M denotes the hyperbolic 3-manifold H3/T'. then the surface Ooo M := Qr /T
is called its conformal boundary at infinity.

In fact, the structure of the boundary at infinity d.,M is richer than a
standard Riemann surface structure. By construction, d.,.M comes with a
(P SLy(C), CP!)-structure, which is also called a complex projective structure.

The space of complex projective structures CP(X) over ¥ has a natural
forgetful map m over the Teichmiiller space 7°(X), which associates to a projec-
tive structure o its underlying Riemann surface structure. Fuchsian hyperbolic
structures are an example of complex projective structures, since they can be
described as quotients of the upper half-plane H> C CP! by a subgroup of
Iso™ (H?) = PSLy(R).
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Through of the notion of Schwarzian derivative, it is possible to describe the
map 7m: CP(X) — T(X) as an affine bundle over the Teichmiiller space. To see
this, consider two complex projective structures o and ¢’ over X that induce the
same Riemann surface structure on ¥, with developing maps D, D’: ¥ — CP!,
respectively. Even if the functions D, D’ may not be globally injective, they
still admit local inverses. In particular, we are locally allowed to consider the
compositions D’ o D!, which we can assume to be univalent functions over
proper open sets of C C CP! (the holomorphicity comes from the fact that
(o) = w(o’) € T¢(X)). Observe that different choices of the local inverses of
D make the map D’ o D~! change by pre-composition of elements in P SLy(C).
If f: Q@ C C — Cis a univalent function, then the Schwarzian derivative of f is
the holomorphic quadratic differential

on=(5)-35))

The Schwarzian derivative satisfies:

i) S(f) =0 if and only if f is the restriction of a Mobius transformation of
CP!;

ii) if f and g are two univalent functions for which f o g is well-defined, then

S(fog)=5(g) +g"5(f).

These two simple properties imply the following fact: the holomorphic qua-
dratic differentials (D~1)*S(D’ o D71), defined over small open subsets of ¥,
the universal cover of ¥, do not depend on the choices we made of the local
inverses of D. In particular, they define a holomorphic quadratic differential on
the entire surface ¥, which is invariant by the action of the deck transformations
of ¥ — X. Moreover, for any complex projective structure ¢ and for any holo-
morphic quadratic differential ¢ € Q(X, (o)), there exists a unique complex
projective structure ¢’ such that S(¢’,0) = ¢ (we refer to [Dum09| for a more
detailed exposition on this topic).

With this procedure, we can associate to each pair of complex projective
structures o, o’ on X, belonging to the same fiber of . a holomorphic quadratic
differential S(o’,0) € Q(X, 7(c)). From the same properties above, we see that

S(o".0) = 5(0",0") + S(o’,0) € Q(Z, o),

for every 0,0’ 0" € 7=!(c). In particular, the fibers 7=1(c) of the forgetful map
are naturally endowed with an affine structure over the space of holomorphic
quadratic differentials Q(%, ¢).

Finally, coming back to the context of Kleinian manifolds:

Definition 1.3.5. The Schwarzian at infinity of Oso M is the holomorphic qua-
dratic differential g = S(0F,0c), Where o stands for the natural complex
projective structure of .o M = Qr /T, and o is the Fuchsian uniformization of
the conformal structure at infinity cs = T(0x) of s M.
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1.3.3 Quasi-Fuchsian manifolds

Definition 1.3.6. A Kleinian group I' is quasi-Fuchsian if its limit set Ar is a
Jordan curve in O,,H? and both components of its domain of discontinuity Qr
are invariant under I".

Theorem 1.3.7 (|[Mas70]). Let T be a Kleinian group. Then the following are
equivalent:

i) T is quasi-Fuchsian;

it) The domain of discontinuity Qr has exactly 2 connected components, each
of which is invariant under T';

iii) T is quasi-conformally conjugate to a Fuchsian group, i. e. there exists
a quasi-conformal self-homeomorphism ¢ of CP' and a Fuchsian group
g < PSLy(R) such that pT'p~t = T.

Let X be closed surface of genus g > 2. In light of Remark[1.3.4and Maskit’s
Theorem, we can define the space of (marked) quasi-Fuchsian manifolds home-
omorphic to ¥ x R, denoted by QF(X), to be the quasi-isometric deformation
space of H?/T, for some fixed Fuchsian group I'g isomorphic to 7 (X). Every
quasi-Fuchsian manifold M € QF(X) has boundary at infinity homeomorphic
to the disjoint union of two copies of X, which we will call the upper/lower
boundary at infinity 9% M of M. Here X M will denote the component whose
boundary orientation coincides with the one of 3, while 9 M will be the one
coming with the opposite orientation Y. The boundary components 0= M are
endowed with two natural complex projective structures o (see the previous
section for a definition of this notion), and consequently with two induced con-
formal structures cZ .

On the other hand, also the boundary of the convex core has two connected
components (unless M is Fuchsian) 9*C M, each of which is endowed with a
hyperbolic structure m* € 7?(X), and a bending measure u* € ML(X) (if M
is Fuchsian, then we set m™ = m™ to be the hyperbolic structure of the unique
totally geodesic surface lying inside M, and pu* = 0).

A well-known result of Bers [Ber60| states that the map

B: QF(X) — T(X)xT(Y)
M — (¢t e,
which we will call the Bers’ map, is a homeomorphism. In fact B is a biholomor-
phism if we endow QF(X) with the complex structure of subset of the character
variety x(m X, PSLa(C)), and the natural complex structure of 7¢(X).
Another natural map on QF(X) is the following:

T QF(R) — TVE) x T
M — (m*,m™).

The map T has been conjectured by Thurston to be another parametrization of
the space of quasi-Fuchsian manifolds, and this question is still open. Bonahon
|Bon98b| proved that the map T is ¢! (and actually not €2), therefore a first
order variation of quasi-Fuchsian structures M determines a first order variation
of the induced hyperbolic structures 7 on the convex core.
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1.4 Convexes and hypersurfaces

In this section we describe a duality between closed convex subsets with non-
empty interior and strictly convex hypersurfaces sitting inside the geometric
spaces H" and dS™, which can be interpreted as an "oriented" instance of the
polarity of RP" with respect to the quadric P{z? + - + 22 =22, }.

Given a point € H" and a unitary vector v € TXH", we can associate to
(x,v) a corresponding point (z*,v*) in the tangent bundle of dS". To see this,
we observe that the vector v € T;H" C R™" verifies (v,v), ; = 1 so, as an
element of R™!, it belongs to dS™. On the other hand, since v is tangent to H"
at x, we must have (z, ”>n,1 = 0. Therefore z, as element of R™!, belongs to
ker(v, ), ,, which is nothing but T,,dS™. In this way, the couple (z*,v*) := (v, x)
defines a point in T;ldS", namely the subset of the unit tangent bundle of dS™
given by the pairs (z*,v*) of points z* € dS" and future-oriented time-like
vectors v* € T,»dS" satisfying (v,v), ; = —1. In the same way, if (z*,v) is a

n,l?

point in T;ldS", the couple (z,v) := (v*,z*) defines an element in T*H". This
correspondence T H" — T;ldS” is clearly one-to-one, and it can be interpreted
also as a duality between oriented hyperplanes with basepoint of H" and future-
oriented space-like hyperplanes with basepoint of dS". A couple (x,v) € T*H"
corresponds to a hyperplane (namely ker(v, ), ; NH") with basepoint z in H",
together with the choice of a normal direction v at x. Analogously, a point
(z*,0v*) € T;ldS" is equivalent to the datum of a space-like hyperplane (namely
ker(v*, ), ;) with basepoint z* € dS", endowed with its future-directed normal
vector v*.

As first observed by Hodgson and Rivin [HR93|, this correspondence induces
a duality between closed convex subsets with non-empty interior in the two
geometries. We briefly recall now the definitions and the results of [HR93|
Section 2] that will be useful in the following.

Definition 1.4.1. A convex body in H™ or dS™ is a subset C' with non-empty
interior, which can be described as the intersection of a family of closed half-
spaces.

Observe that any convex body is closed. We define a dual operation between
subsets of H™ and dS™ as follows: given C' C H", we set

Chi={v' edS" cR"! |VvweC (v, ,w),, >0}
In the same way, if C/ C dS", then
(CHYN i={veH" cR™ | Vo' € C’ (v,w'), , > 0}.

Lemma 1.4.2 (JHR93, Section 2]). Let C, D be two subsets of H™ (of dS™).
Then

1. C" is a convex body;
2. if C C D, then C" D D"\;

3. if C is a convex body, then C" = C.
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Assuming C' to be a convex body with regular boundary, we want to investi-
gate in detail the relations between the hypersurfaces 9C and 9(C"). First we
need to introduce some notation.

Let D and D* denote the Levi-Civita connections of H" and dS", respec-
tively. In what follows, ¥ will be an orientable smooth manifold of dimension
n—1and ¢: ¥ — H” an immersion of ¥ in H". The first fundamental form I
of ¥ is given by the restriction of the metric of H" to the tangent bundle TX.
Fixing a unitary normal vector field v: ¥ — T'H" on X, we denote by B its
shape operator, i. e. the endomorphism of T3 defined by BU := —Dyv, for
every tangent vector field U of . It is simple to see that the shape operator B is
self-adjoint with respect to the first fundamental form I. The trace of the shape
operator will be called the mean curvature of ¥, and the tensors I := I(B-,)
and Il := I(B-, B-) the second and third fundamental forms, respectively. If V
is the Levi-Civita connection of (X, I), then we have

VoV =DyV — LU, V),

for any tangent vector fields U, V of X.

Assume now the second fundamental form I, to be non-degenerate at every
point p € . Then we define the dual pair (¢*, v*) of (¢, v) to be the datum of two
maps ¢*: ¥ — dS" and v*: ¥ — T 'dS", satisfying (:*(p), v*(p)) = («(p), v(p))*
for every p € X, where (:(p),v(p))* denotes the image of the point (¢(p),v(p))
of T'H™ through the duality with T;ldS". In this manner, the Gauss map v of
¢ becomes the immersion of a dual hypersurface +* in dS™, and the immersion ¢
becomes the Gauss map of the immersed hypersurface t* (as we will see in the
proof of Proposition ¢* is an immersion because we assumed I to be non-
degenerate).

Instead of referring to the dual hypersurface as the map ¢*, we will often
denote it, with abuse, by ¥*. An immersed hypersurface in dS™ is called space-
like if the restriction I'* of the metric of dS™ on its tangent bundle is positive
definite. We will see soon that this is always the case when ¥* arises from the
duality procedure we described above. As in the Riemannian case, I* will be
called the first fundamental form of ¥*. We define the second fundamental form
I'* by requiring:

ViV =Dy V=TI (U*,V*)v*

for any tangent vector fields U*, V* of ¥*, where V* is the Levi-Civita connec-
tion of X*. Then the shape operator B* is defined as the I*-self-adjoint operator
associated to I* (I'* is symmetric because both V, and D* are without torsion).
Since (v*, V*>n,1 = —1, the shape operator of X* verifies B*U* = +Dj;.v* (the
sign is the opposite of the one in the Riemannian setting). Finally, the third
fundamental form is defined by setting II*(-,-) := I*(B*-, B*-).

In the very same way, given a space-like hypersurface +*: X* — dS"™ with
future-directed normal vector field v* for which I'* is everywhere non-degener-
ate, we can construct a dual hypersurface ¥** in H? with non-degenerate second
fundamental form I. The process (-)* is clearly an involution, since it is so at
the level of T'H" and T 'dS™.

When a hypersurface in H" with non-degenerate second fundamental form
arises as the boundary of a convex domain, we will always choose the normal
vector field to point inward (so that the second fundamental is positive definite),
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while for space-like hypersurfaces in dS"™ we will always choose the future-ori-
ented normal vector field (the one with positive (n + 1)-th coordinate in R™1).
In this terms, we can restate the analysis done by Hodgson and Rivin as follows:

Lemma 1.4.3 (JHR93| Section 2|). Let C be a convex body in H™ with smooth
boundary and with positive definite second fundamental form. Then the bound-
ary of C™ in dS™ is parametrized by the dual hypersurface associated to OC. In
other words, we have

(DC)* = a(C™).

In the same way, if C' is a convex body in dS™ with smooth space-like boundary
and with negative definite second fundamental form, then (0C")* = 0(C'").

The following statement describes explicitly the relations between the funda-
mental forms of (¢,v) and (¢*, v*):

Proposition 1.4.4 ([Sch06, Proposition 1.6]). If X is an immersed hypersur-
face in H™ with positive definite second fundamental form, then its dual 3*
is an immersed, space-like hypersurface in dS™ with negative definite second
fundamental form, and viceversa. Moreover, under the duality correspondence
between Y. and X*, we have that:

° I:m'*’
QI:—E*;
o IT =1T1%.

Proof. We denote by a: U — X C H" a local parametrization of X, where U is
an open set in R" . Let (E})x be the orthonormal frame on R™! corresponding
to a fixed orthonormal basis B of R™! (the E.’s are the sections of TR™!
associated with B under the identification 7,R™! =2 R™!). For convenience, we
introduce the following notation: if f is a map from U to R™!, we denote by X
the element of I'(a*TR™!) defined as X; = Y, f* Ej, o a, where I'(a*TR™!)
is the space of sections of the pullback bundle of TR™! over «.

Let v € T'(a*TR™!) be the unitary normal vector field of ¥. Then, by
definition of the duality T'H" < T;ldS”, we can construct a parametrization
a*: U — dS"™ of ©* by requiring that X, = v. In other words, the k-th
component of a* with respect to B coincides with the k-th component of v with
respect to the frame (Ey)g, for all k. Analogously we have v* = X, where v*
is the future-directed normal vector field to ¥*. Since (Ej)x is a orthonormal
frame of parallel vector fields with respect to the Levi-Civita connection D of
R™1!, for every coordinate vector field 9; of o we have

Dailj = DBion* =0 (11)

(2
and, in the dual hypersurface
Da;l/* = Da;Xa = 82-, (1.2)

where 0 is the i-th coordinate vector field of ¥* associated to the parametriza-
tion a*. Observe also that the normal direction to H" at the point «(p) is given
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by X.(p). This implies that, if D is the Levi-Civita connection of H", we have

<D6il/’ Xa>n,1

Dy,v = Dp,v — <Xa,Xa>n’1 X
= Do, + (Do, Xa)y s Xa ((Xar Xa)y = ~1)
= Do,v + (0], Xa), 1 Xa (relation (1.1))
= Dy, v. (Xo=v* L 3%

This equality, combined with relation (|1.1)), shows that the shape operator B of
Y. verifies
B@l = —'Dail/ = —Dail/ = —81*

In the same way we see that Dj.v* = Dy-v*, with D* the connection on dS",
so the shape operator B* of ¥* verifies

B*of = +D5? vt = +Dop; vt = +0;.

The tangent spaces 7,% and T,- X*, as linear subspaces of R™!, are both orthog-
onal to the 2-plane generated by X, and X+, so they must coincide. Therefore,
the shape operators B and B* are both endomorphisms of 7, = T,-¥* and,
by the relations we just proved, they verify B~! = —B*. All the relations
in the statement can be deduced from this equality, in the following we prove
I = —I'*, the others are analogous:

1(8;,9;) = (B8;,0j),, y = =07, B*0;),, y = —I"(9;, 95).

n,l i Yj

1.5 Constant Gaussian curvature surfaces

Let 3 be a (space-like) surface immersed in a Riemannian (Lorentzian) 3-man-
ifold M of constant sectional curvature sec(M), with first and second funda-
mental forms I and I, and shape operator B. We denote by K, its extrinsic
curvature, i. e. K, = det B, and by K; its intrinsic curvature, i. e. the Gauss
curvature of the Riemannian metric I. For convenience, we define sgn(M) to
be +1 if M is a Riemannian manifold, and —1 is M is Lorentzian. Then, the
Gauss-Codazzi equations of (3,1, ) can be expressed as follows:

K; =sgn(M) K, + sec(M),
(VuB)V = (VyB)U VU,V, (1.3)
where U and V are tangent vector fields to X, and V is the Levi-Civita con-

nection of the metric I. We recall that the third fundamental form of ¥ is the
symmetric 2-tensor I(B-, B-).

If ¥ is a surface immersed in a hyperbolic 3-manifold M, then its Gauss
equation has the following form:

Ki=K.—1. (1.4)
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If the shape operator of ¥ is everywhere non-degenerate (equivalently, if K,
never vanishes), then we can give a geometric interpretation of the third funda-
mental form I applying what observed in Section First we lift the immer-
sion of ¥ in M to an immersion of ¥, the universal cover of ¥, into H?, which
will be equivariant with respect to some representation p: 7m1(X) — O,(3,1).
Through the polarity correspondence between hyperbolic and de Sitter spaces,
we can construct an immersed dual surface * in dS°. Moreover, being ) equiv-
ariant with respect to p, the surface ¥* can be obtained as the lift of a space-
like surface ¥*, homeomorphic to ¥, sitting inside a 3-dimensional spacetime
locally modelled over dS® and with holonomy p (see e. g. [Mes07] for details).
Then, the first fundamental form I'* of ¥* coincides with the tensor I, and the
second fundamental forms I* and I are the same up to sign (see Proposition
11.4.4). The Gauss equation of the dual surface (X*, I*, I'*) is

K;=—K*+1. (1.5)

Since the shape operator B* of ¥* coincides with —B~! (again by Proposition
11.4.4)), the surface (X, I, I') has extrinsic curvature K, if and only if (X*, I*, I'*)
has extrinsic curvature K} = K_ 1.

Definition 1.5.1. Let ¥ be an immersed surface inside a hyperbolic 3-manifold,
and let k € (—1,0). ¥ is a k-surface if the intrinsic (or Gaussian) curvature of
its first fundamental form is constantly equal to k.

Assume now X to be a k-surface. By equation , its extrinsic curvature
K. = k+1 is strictly positive, so its shape operator is everywhere non-degener-
ate. Therefore ¥ has an immersed dual surface ¥*, Whose extrinsic curvature is
equal to K = K, 1 = T +1 By the Gauss equation (|1.5)), the intrinsic curvature

of I* = Il isequal to 1 - K} = which is constant. In other words, we have:

k+17

Lemma 1.5.2. If Y is a k-surface immersed in a hyperbolic 3-manifold M, then
its first and third fundamental forms have constant intrinsic curvature equal to

k and k+1’ respectively.

If we define the shape operator of ¥ using the normal vector field of ¥ that
points to the convex side of X, then the second fundamental form I of ¥ has
strictly positive principal curvatures, since det B = K, = k+1 > 0. Therefore I
is a positive definite symmetric bilinear form or, in other words, a Riemannian
metric.

Lemma 1.5.3. Let ¥ be a surface immersed in a Riemannian (or Lorentz-
ian) 3-manifold M with constant sectional curvature. Assume that the second
fundamental form I of ¥ is positive definite. Then, the following are equivalent:

e the surface X has constant extrinsic curvature;
o the identity map id: (X, I) — (2, I) is harmonic.

Proof. The proof of this lemma proceeds similarly to the argument we gave in
Section [[.2.4]to describe the relation between the notion of minimal Lagrangian
maps and Theorem 1.2.18L The Levi-Civita connection V¥ of the Riemannian
metric I satisfies

1
VIV =VyV + 3 B~YVyB)V,
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where U and V are tangent vector fields to X, and V is the Levi-Civita connec-
tion of I (this relation is true for any immersed surface X, we do not need to
require the Gaussian curvature to be constant). As observed in Remark
the map id: (X, ) — (X,I) is harmonic if and only if the I-traceless part of
I, which is equal to I — %][ , is divergence-free with respect to V7. Using the

expression of VI above, we can prove that

. H 1
divy (I — 2K@l[> =-3 d(ln K.).
From this equation the statement is clear. O

As suggested by the proof we gave above, the notion of minimal Lagrangian
maps is intimately related with the properties of constant Gaussian curvature
surfaces. If (X, 1, ) is a k-surface, we set

By construction I = —@ h(b-,-), B’ = h(b-,b-) and det b = 1. By the Codazzi
equation, the operator b is Codazzi and, by the choices we made of the mul-
tiplicative constants, the metrics h and h’ have Gaussian curvature constantly
equal to —1. Therefore the pair of metrics h, h’ is normalized, and b is their
Labourie operator, as in Theorem This shows, by the same argument of
Section that the identity map

id: (3,h) — (3,1)

is minimal Lagrangian.
We can summarize what we just showed in the following Proposition:

Proposition 1.5.4. Let k € (—=1,0). Every k-surface immersed in a hyperbolic
3-manifold satisfies the following properties:

o the first and third fundamental forms I and Il of ¥ are constant Gaussian

curvature Riemannian metrics of curvature k and kiﬂ, respectively;

e the second fundamental form is everywhere non-degenerate (without loss
of generality, positive definite);

e the maps

id: (X, [I]) — (2, -k 1), id: (3, [M]) — (8, — 5 )

are harmonic, with opposite Hopf differentials. In other words, the map

id: (3, =k 1) — (5, — ¢ )

is minimal Lagrangian (see Definition
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1.6 Hyperbolic ends

Definition 1.6.1. Given X a closed surface, a hyperbolic end E of topological
type ¥ X [0,00) is a hyperbolic 3-manifold with underlying topological space
¥ x (0,00) and whose metric completion E 2 ¥ x [0, 00) is obtained by adding
to E a locally concave pleated surface ¥ x {0} C ¥ x [0,00) (see Section
for the definition of pleated surface). We will denote by F the locally concave
pleated boundary of E.

Two hyperbolic ends E = (X x (0,00), g) and E' = (£ x (0, 00), ¢') are equiv-
alent if there exists an isometry between them that is isotopic to idsy (0,00)- We
set £(X) to be the space of equivalence classes of hyperbolic ends of topological
type ¥ x [0, 00).

Remark 1.6.2. Typical examples of hyperbolic ends are the connected compo-
nents of M \ CM, where M is a convex co-compact hyperbolic 3-manifold and
CM is its convex core (see Section for the definition of this notion and its
properties).

Let E be a hyperbolic end. The manifold £ = ¥ x [0,00) can be com-
pactified by adding a topological surface "at infinity" 0, F = X x {co}. By
the same phenomenon described in Section the (Isot (H?), H?)-structure
on E naturally extends to a compler projective structure o € CP(X) on the
boundary at infinity dsF, coming from the action of Iso™ (H?) = P SLy(C) by
Mobius transformations on 0, H? = CP!.

By a classical construction due to Thurston, it is possible to invert this
process: given a complex projective structure o on a surface X, there exists a
hyperbolic end E of topological type ¥ x [0,00) whose induced complex pro-
jective structure on O, F coincides with . The universal cover E of E can
be locally described as the envelope of those half-spaces H of H3 satisfying
H N OxH3 = D, where D varies over the developed maximal discs of (3,5) in
O-sH? = CP!'. This construction establishes a one-to-one correspondence be-
tween the space of hyperbolic ends £(X) and the deformation space CP(X). We
refer to [KT92| for a more detailed exposition of Thurston’s construction.

1.6.1 The Schwarzian parametrization

Let E be a hyperbolic end. Following the notation introduced above, we denote
by coo = cE the underlying conformal structure of o, = 02, and by oF the
Fuchsian structure of c., i. e. the complex projective structure on ¥ = 0o E
determined by the uniformization map of (X,¢é+,). The space of complex pro-
jective structures with underlying conformal structure c,, can be interpreted as
an affine space over the space of holomorphic quadratic differentials of (¥, ¢),
and the correspondence sends each element g — o, into the Schwarzian deriva-
tive of op with respect to 0o (see Section and [Dum09] for details). In
particular, the element op — 0o, determines a unique holomorphic quadratic
differential qoo = ¢Z of (3, cw), called the Schwarzian at infinity of E. The
resulting map
Sch: &%) — TH*T(Y)
[E]  — (&, d%),

OO7qOO

gives a parametrization of the space of hyperbolic ends £(X), which we will call
the Schwarzian parametrization.
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1.6.2 The Thurston parametrization

The Schwarzian parametrization of the space of hyperbolic ends £(X) uses the
geometric structure of the boundary at infinity 0., E of E. In the following we
will describe a analogous construction, due to Thurston (unpublished, described
by Kamishima and Tan in [KT92|), involving the shape of the convex pleated
boundary OF, instead of 0. F.

The surface OF is a topologically embedded surface in E, which is almost
everywhere totally geodesic. The set of points where JF is not locally shaped
as an open set of H? is a closed subset A that is disjoint union of simple (not
necessarily closed) complete geodesics. The path metric of OF is an actual
hyperbolic metric m € T9(X), and the structure of the singular locus A can
be described using the notion of measured lamination. In the simple case of A
composed by disjoint simple closed geodesics, each leaf ; of A has an associated
exterior dihedral angle ¥; € R>(, which measures the bending between the
totally geodesic portions of 0F meeting along ;. Given any geodesic arc «
transverse to A, we can define the transverse measure p = ) . 1J; 7; along a
geodesic segment « to be the sum Y. 9; i(v;, @), where i(v;, ) is the geometric
intersection between « and ;. Using an approximation procedure, we can
generalize the construction above to a generic support A, obtaining a measured
lamination g € ML(X), which measures the amount of bending that occurs
transversely to A. The datum of the hyperbolic metric h and the measured
lamination p is actually sufficient to describe the entire hyperbolic end. In
other words, the map

Th: &£() — T°Z) x ML(X)
[E] — (m, p)

parametrizes the space of hyperbolic ends (for a detailed proof of this result,
see [KT92, Section 2]). We will call Th the Thurston parametrization of £(X).

Remark 1.6.3. If E is a connected component of M \ CM, then the data
Th(E) = (m,u) are exactly the hyperbolic structure and the bending mea-
sure of the component of OCM facing E, as described in Section and
similarly Sch(E) = (¢, goo) determines the data of the component of .M to
which F is asymptotic.

However, there are hyperbolic ends in £(X) that cannot be realized in such a
way, and it can be easily seen from Thurtson’s parametrization result. Indeed,
the bending measures of those hyperbolic ends that arise as components of
M\ CM, for some convex co-compact hyperbolic manifold M, satisfy certain
geometric constraints. For example, a necessary condition that a measured
lamination of the form 6 - v (for some simple closed curve ) must satisfy to
be realized as the bending measure of an end of a convex co-compact manifold
is # < 7 (two half-planes meeting along a geodesic in H? have exterior angle
bounded by 7). On the other hand, a general hyperbolic end does not have such
constraint (a (not too) heuristic reason to explain this phenomenon is that the
developing map D of the hyperbolic structure of E' may be not locally injective
when extended to the pleated boundary of E, and larger angles can be realized
in this way).

Similar constraints arise also in the Schwarzian description. For instance, if
E is a hyperbolic end realizable as one of the complementary components of the
convex core of a quasi-Fuchsian manifold, then the norm of its Schwarzian at
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infinity go. (with respect to the hyperbolic metric in cZ) is uniformly bounded

by 3/2. This is a simple consequence of Nehari’s bound [Neh49|, as described
for instance in |GLOO, Chapter 6]. This phenomenon arises more generally for
incompressible hyperbolic ends of geometrically finite hyperbolic 3-manifolds.

1.6.3 Foliations by k-surfaces

We conclude this description of the properties of hyperbolic ends mentioning a
result of Labourie |[Lab91], which will play an important role in our study (see

Chapters (3| and :

Theorem 1.6.4 ([Lab91, Théoréme 2|). Fvery hyperbolic end E is foliated by
a family of k-surfaces (Xg)r, with k that varies in (—1,0). As k goes to —1,
the surface X converges to the locally concave pleated boundary of E, and as k
goes to 0, 3y approaches the conformal boundary at infinity O E.

In particular, this fact will be our starting point in the investigation of the
properties of k-surfaces that interpolate between the geometries of the local
pleated boundary and the conformal boundary at infinity of hyperbolic ends, as
mentioned in the last part of the introduction.

1.7 Volumes

1.7.1 Classical and differential Schliafli formulae

The classical Schldfli formula expresses the derivative of the volume along a
1-parameter deformation of polyhedra in terms of the variation of its bound-
ary geometry. It was originally proved by Schlafli [Sch58| in the unit 3-sphere
case, and later extended to polyhedra of any dimension sitting inside constant
non-zero sectional curvature space forms of any dimension. Here we recall the
statement in the 3-dimensional hyperbolic space H?, which will be our case of
interest:

Theorem 1.7.1 (|Sch58],[Mil94|,|[AVS93|). Let (P;); be a 1-parameter family of
convex compact polyhedra in H?, whose vertices vary smoothly in t, with P = P,.
Assume that the boundaries of the polyhedra P; share the same combinatorial
structure for t sufficiently close to 0. Then the function t — V; := Vol(F;)
admits derivative at t = 0, and it verifies

V=3 > t(e) b(e),
e edge
of P

where the sum is taken over the set of edges e of P, {(e) denotes the length of
e wn P and 9(6) is the variation of the exterior dihedral angle along ey in the
family (P); (since the combinatorics of P, does not change, any edge e of P
has a corresponding e; in Py).

Rivin and Schlenker [RS99] developed a smooth analogue of Theorem [1.7.1]
in the context of open domains with smooth boundary. As in the case of the
classical Schlifli, the differential Schldfli formula expresses the variation of the
volume enclosed by a surface in terms of the variation of the geometry of the
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surface itself. We present here two similar statements, the first involving a first
order variation of the boundary of a region in a fized Riemannian manifold, and
in the second case we keep the region fixed and we vary the ambient metric.

Theorem 1.7.2 (|[RS99, Theorem 1]). Let M be a Lorentzian or Riemannian
Einstein manifold of dimension n with scalar curvature R, and consider ¥ a
closed embedded €** -hypersurface of M which is the boundary of a region N C
M. The choice of a section V' of the restriction of TM over 3 determines a first
order deformation of ¥ inside M. We denote by I, II, H the first and second
fundamental forms and the mean curvature of 3, respectively, defined selecting
the inward normal vector field of ¥. If 6T denotes the first order variation of
the object T' under the deformation, then

%5\/01(]\7) = —/

(6H + 1(51,1{)) da.
. 2

Remark 1.7.3. The request of €'-regularity of the boundary is needed here in
order to have a notion of mean curvature. This quantity will be a function in
L*°(Y), therefore defined almost everywhere. Nevertheless, the relations above
still hold and make sense, since the integrals of H and its variation are well
defined quantities.

Theorem 1.7.4 ([RS99, Theorem 2]|). Let M be a compact n-manifold with
smooth non-empty boundary OM, and let g, be a smooth 1-parameter family of
Riemannian FEinstein metrics with constant sectional curvature R. Then

B NOLa| [ (51 Lslons 1)) da
=0 oM 2

n de¢
1.7.2 The dual volume

Thanks to the correspondence between convex bodies in the hyperbolic and de
Sitter geometries, it is possible to define a notion of dual volume for convex
bodies in H3. In what follows, we will describe different and complementary
ways to introduce this quantity.

Let S be a space-like plane in the de Sitter space dS®. We denote by
tg: dS® — R the signed future-directed time-like distance from the plane S.
Given such a S in dS?, we can find global coordinates (S x R,hg) on dS* so
that the submanifold S x {0}, sitting inside S x R, corresponds to the space-like
plane S, and the R-component of the coordinate system is given by the function
ts defined above. Then the Lorentzian metric of dS* can be written as

hg = —dtg? + cosh? tg gs2,

where gs2 denotes the standard Riemannian metric on the 2-sphere of radius 1.
Once we fix an orientation on dS*, we can define wg to be the 2-form given by

ts
</ cosh? pdp) dvolgz,
0

where we are choosing dvolg2 so that

dw = cosh? tg dtg A dvolgz = dvolygs .
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Definition 1.7.5. Let C be a compact convex body in H? with ¢’*'!-boundary.

e given a fixed point p in the interior of C, we define:
Vi (C) = Volygs (p" \ C"),
where p”" denotes the convex set of dS® dual of {p} C H3;

e given a fixed space-like plane S in dS?, we define:

V5 (C) = _/8(CA)UJS’

where (0C)* = 9(C") C dS? is future-oriented;
e choosing as normal vector field to 0C the one pointing inward, we define:

V5 (C) = =Volgs (C) + E Hda.
2 Joc

Remark 1.7.6. Given a point p in H3, the set p” coincides with the lower (i.
e. past-directed) half-space bounded by the polar space-like plane of p. If C
is a compact convex body and p lies in the interior of C', then there exists a
radius r > 0 such that the ball B, of radius r centered at p is contained in C. By
Lemma [1.4.2) we deduce that p”* > B/ O C”. This implies in particular that C"
lies in the interior of p*. The subset p" \ C” is the region of dS* bounded from
below by d(C”") and from above by the polar plane to p. Since C' is compact,
we can find a R-ball By at p containing C'. Again by Lemma we have

p"\ B} Cp"\C" Cp"\ By,

It is immediate to check that p™ \ Bj is compact, therefore the same holds for
p” \ C". This proves that 0 < V*(C) < co. In fact, the same kind of argument
shows that V" is monotonic increasing with respect to the inclusion. Contrary
to the standard hyperbolic volume, V;* is not additive, as one can easily see
by considering, for instance, two simplices glued along a face to build a convex
polytope (see relation below).

We will see in Remark a proof of the independence of V;* and V;* on
the chosen point p and plane S, respectively. The request of €!!-regularity of
the boundary is technical and it will appear later when we will consider variation
formulae. Observe that all the results in the previous subsection hold also in
the €''+!-case, up to replacing any equality with an equality almost everywhere
whenever order 2 derivatives are involved (e. g. H, B, Il and ).

The remainder of this subsection will be dedicated to the proof of the equiv-
alence of these quantities. More precisely, we will see in Proposition [[.7.13]that,
for every compact convex body in H? with ¥'!'-boundary and with positive
definite second fundamental form, we have

Vi(C) = V5 (C) = V5(C).

Therefore, combining this with Proposition [1.7.14] we will be allowed to give
the following definition:
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Definition 1.7.7. Let C be a compact convex body in H?. We define the
dual volume of C to be Vol*(C) := V*(C). If C has €"!-boundary, we can
equivalently set Vol*(C') := V*(C),i=1, 2, 3.

Before going through the details, we want to make some remarks about the
convenience of these different descriptions. The definition V;* is useful because
it does not require the convex body to have ¥*'-boundary. The expression
V5" will be convenient to show the independence of V* on the chosen point p.
Lastly, the third definition gives an explicit link between the notions of dual and
standard volumes in terms of the geometry of the boundary of the domain. In
addition, V5" can be trivially extended to the case of convex subsets with regular
boundary sitting inside a general 3-dimensional hyperbolic manifold, as we will
do in Definition 2.2.1]

Lemma 1.7.8. For any choice of space-like planes S, S’ we have:

/ws/ =0.
S

Proof. Let F: dS* — dS® be the antipodal map, i. e. F(v) = —v for all v € dS>.
Since the subspaces of dS® are intersections of vector subspaces of R*! with dS?,
every subspace of dS® is invariant under F. The degree of F as a diffeomorphism
of dS? is equal to (—1)* = 1, while the degree of the restriction of F' on a plane
in dS? is equal to (—1)® = —1. Moreover, we observe that, if tg is the signed
distance from S’, then we have tg: o F' = —tg/. Then

tgoF
Frwg = / cosh? pdp | F* dvols:
0

—tg
= (/ cosh? pdp) (=1) dvolge
0

= Wwgr.

Now, using this relation and the fact that F' has degree —1 on S, we get

/wS/:—/F*U_}S/:—/wsl’
S S S

and so [gqwg =0, as desired. O

Corollary 1.7.9. For every compact convex body C in H? with €1 -boundary
we have
ViH(C) = V5 (C).

Proof. The proof goes as follows:

Vi(C) ::/ dvolygs :/ dwg
pM\CH pAN\CA

:/ wS:—/ wg =: ‘/2*(0)
a4 (pM)LO_(CM) a,(Cn)

The first equality holds by definition of the 2-form wg; the second one is simply
an application of the Stokes’ Theorem, where the signs + and — stand for future
and past-oriented, respectively; in the third one we are using the fact that 9(p")
is a plane, therefore | o, (ph) WS vanishes by Lemmam [
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Remark 1.7.10. The chain of equalities in the previous proof shows at the
same time that V;*(C) does not depend on the choice of p (since it is equal
to — fa(C/\) wg), and V5 (C) does not depend on the choice of S (since it is equal

to pr\CA dvolygs ).

In fact, the proof of Corollary[1.7.9 generalizes to H", dS™ for any n > 3. On
the contrary, the equality between V5" and the other two definitions is specific
of the 3-dimensional case (see |SS03] for higher dimensional analogues).

In order to prove that V3" coincides with Vi = V5, we will use an analytic
approach based on the differential Schléafli formula (see Theorem [1.7.2). In
particular, we will need the following;:

Lemma 1.7.11. Let (3;); be a smooth 1-parameter family of embedded surfaces
in H3, with positive definite second fundamental forms, and let X} be the dual
surface of X7, obtained following the construction described in Section[1.4. Then
the variation of the volume in dS® bounded by the surfaces 3} can be expressed
as

1
0Volygs = Z/((SI,HI—E)da,
b
where ¥ = Y.
Proof. By Theorem we have:

5Volygs = _%/ <6H* + ;(51*,11*)*> da* .

Here we are using the fact that the de Sitter space has constant sectional curva-
ture equal to +1. To prove the statement, we will apply Proposition and
we will translate this expression on ¥* in terms of one on Y. By Proposition
We have that H* = —tr(B™!) = —-- and da" = det Bda (det B is
everywhere different from 0 because the second fundamental form is non-de-
generate). Therefore, we can compute the variation of the mean curvature as
follows:

SH* — —8 ( H ) tr(6B)  tr(B)tr(B~19B)

detB) ~  detB det B

=det B~' (tr(B~'6B) tr(B) — tr(0B))
=tr(B~'§BB™),
where in the last step we used the identity
tr(M~'N) = det M~! (tr(M) tr(N) —tr(MN))  VYM,N € GL(2,R), (1.6)

for M = B and N = B~1§B. Using the relation tr(MN) = tr(NM) and the
fact that B is I-selfadjoint, we see that

(6I*,I*)" = —2tx(B~ 6B B™') — tr(B~117161).
On the other hand, we have:
(6I,HI — ) = tr(I"*61 1" *(HI — I))
= tr(B) tr(I~161) — tr(I~ 81 B)
=det Btr(B~'I7161),
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where in the last step we used again the relation (1.6) with M = B and N =
I7161. Now, putting these equalities together, we see that

1 * 1 * *\ ¥ *__1 _1 —17—1 *
2(5H +2(5I,]T))da = 2( 5 (B 6I)>da

1
1 tr(B~117161) det Bda

1
= (61, HI — I da,

as desired. |

Remark 1.7.12. We observe that the variation formula from Lemma
as the differential Schlifli formulae in Section [1.7.1] actually make sense for
infinite volume domains, as long as their boundary is compact. In such case,
the relations express the variation of the volume, which is still finite.

Proposition 1.7.13. The three definitions of the dual volume given above coin-
cide on all compact convex bodies in H? with €' -boundary and positive definite
second fundamental form.

Proof. In order to prove the remaining equality, we first show that V;* and V5
have the same variation formula. Let C}; be a differentiable family of compact
convex bodies in H? with ¢*!-boundary and positive definite second fundamen-
tal forms. If p lies in the interior of Cy, then it is an internal point of C; for small
values of ¢. In particular p can be used to define Vi*(C;) = Volggs (p™ \ (Cp)")
whenever ¢ is sufficiently close to 0. Since p is fixed, the only component of the
boundary that is varying is 9(C}'). Applying Lemma we get

dVy*(Cy)

dt

1
:f/ (6I,HI — I da.
t=0 9Co

On the other side, by Theorem the variation of V3" is

1

1 1d
=_Z H+ =01, 1 -~ | H
2 /800 <(S + 2(5 y )> da—|— 2 dt o0, tdat

dVs (Cy)

dt

t=0 t=0

In local coordinates (2!, 2%) the volume form can be written as /det((g¢);;) dz' A
dz?, where det((g¢);;) denotes the determinant of the matrix representing g;
with respect to the basis dq, d2. The differential of the function det at a point
A € GL(2,R) verifies d(det), (H) = det Atr(A"'H). Using this expression
combined with the relation (§1,1) = tr(I=*0I), we see that the variation of
H,day is given by (6H + £Z(61,1)) da. Therefore we obtain

dV3 (Cy)

dt

1
:,/ (61, HI — I)da,
4 Jac,

t=0

which proves the equality between the derivatives in ¢ of Vi*(C}) and V5 (Cy).

Assuming that any convex body with ¢’'''-boundary and I > 0 can be
differentiably deformed, through convex bodies with ¢**!-boundary and I > 0,
into a small geodesic ball, it would be enough to show that V;* and V3" coincide
on any geodesic ball of H3.
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A way to prove the first claim is to reduce the problem to the Euclidean
setting, and then perform the deformation using convex combinations. To do
so, we work in the projective model of the hyperbolic space, instead of the
hyperboloid model described at the beginning of Section We recall that
the projective model can be described, in a suitable affine chart of RP™, as the
interior of a Euclidean open ball B centered at the origin. In this description,
the half-spaces are nothing but intersections of B with Euclidean half-spaces.
It follows that any compact convex body C of H? corresponds to an Euclidean
compact convex body lying inside B. Up to acting by isometries of H?, we can
always assume the origin 0 € B to be contained the interior of C'. It is enough to
show that there exists a differentiable deformation of convex ¢!'!-surfaces (3;);
such that I; > 0, ¥y = 9C and ¥; = 9D, where D, is a small closed disk of
radius 7 centered at 0 and contained in the interior of C'. To do so, we consider
t— NE((1—t)-C) (where s-C := {sz | ¥ € C} C R3), as t varies in I = [0, 1].
Here NP(X) stands for the e-Euclidean neighborhood of X in R3. Since the
boundary of (1 —¢)-C is ¥>! and it has positive definite second fundamental
form for all ¢ # 1, the same properties hold for boundary of NE((1 —t)-C).
At time ¢t = 0 we have NoC = C, and at t = 1 NF(0) = D,.. It is not difficult
to see that the boundaries ONE((1 —t) - C) are varying differentiably in ¢, and
therefore that this deformation satisfies the required conditions.

It remains to show that for any geodesic ball B. = B.(p) of radius € in H* we
have V;*(B.) = V5 (B.). Working in the hyperboloid model of H? introduced at
the beginning of Section we can assume p to be equal to e4 € H?> ¢ R*!. In
what follows, we work in the coordinate system (z,t) € S% xR of dS® introduced
in Section with § = §2 x {0} € dS® and t = tg. A simple computation
shows that the dual convexes p™ and BZ satisfy the following:

p={xe ds? | t(x) < 0},
B = {z € dS® | t(z) < —¢}.

Using the equality dvolygs = cosh? ¢t dvolgz, we obtain:

Vi'(Be) = Volggs (p" \ BL)

0
:/ cosh? tdt Vol(S?)

—€

B 1 /sinh2e
) 2

+ g) Vol(S?).

On the other side, choosing the normal vector field on 0B. to point inward, we
see that the following relations hold:

I. = sinh? € gs2,
II. = cothe I,

Vol(B.) = / sinh? tdt Vol(S?).
0
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Therefore we have:

1>
1
Vi(B.) = — /0 sinh® ¢t Vol(8?) + 3 (2cothe) sinh? & Vol(S?)

1 inh 2
== <sm ° 4 &4 sinh 2€> Vol(S?),
2 2
and therefore V*(B.) = V5*(B;) for every € > 0. O

Let CB. denote the family of compact convex bodies of H? endowed with the
Hausdorff distance dy;, defined as:

dy(C,D) :=1inf{e >0 | N.C O D and C C N.D},
where N.X stands for the e-neighborhood of X.

Proposition 1.7.14. The function Vi*: CB, — R>¢ is continuous.

Proof. By definition of the Hausdorff distance, it is enough to prove that, for
any compact convex body C' we have

lim V7" (N.C) = V{'(C).

Since (N.C)" is the e-neighborhood of C” with respect to the time-like dis-
tance from C”, the fact follows from the continuity of Volygs with respect to
the Hausdorff distance in dS*. Alternatively, the same argument of [BBB19,
Proposition 3.4] applies, where now the corresponding metric at infinity is de-
fined on the full Riemann sphere CP!. O

Proposition implies that the dual volume of a compact convex body
can be approximated by the dual volume of strictly convex bodies with €%!-
boundary which converge to C' with respect to the Hausdorff distance. For the
existence of such a sequence, we can consider C, := N;,,C, for n € N\ {0}, as
observed in Remark 2. 1.2] This shows the consistence of the different definitions
V.* we gave initially.

1.7.3 The dual Schlafli formula

Applying Proposition we can easily deduce a dual Schlafli formula (see
[San04] and [Sua00]) for the dual volume of a polyhedron in H?. Let (P)se(—ec.c)
be a 1-parameter family of convex compact polyhedra, whose vertices are varying
smoothly in t. Consider the convex body N.P; given by the set of points at
distance < e from P; (which has "' boundary). In [RS00] it is proved that:

lim Hycdage = Y ) 0(ey). (1.7)
(Pr)e et edge
of P,

Therefore the integral of the mean curvature can be considered as the analogous,
in the ¢’1'-case, of the weighted length of the codimension 1 bending locus of
OP, where the weights are given by the exterior dihedral angles along the edges.
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Using the relation above and the description of the dual volume given by
V3, we deduce that

V= Vol*(P,) = —Vol(P,) + % S tler) Oe). (1.8)

e edge
of Py

Now, differentiating this relation in ¢ and applying the classical Schléfli formula
from Theorem we obtain

V=3 S i)+ Y (U ole) + 1) B(e))

e edge e edge
of P of P
1 .
=3 Z L(e) B(e).
e edge
of P

Therefore, the variation of the dual volume of (P;); is in fact the "dual" of
the variation of the hyperbolic volume of (P;), in the sense that, instead of
involving the variation of the angles along the edge e = ey and the length of e,
we have the variation of the length of e and the angle along e.

Remark 1.7.15. We highlight that the expression found above for V* holds true
also for variations of polyhedra (P;); along which the combinatorial structure
is not preserved. Indeed, if an edge e; of P collapses into a face at ¢ = 0, its
dihedral angle 6(e) in P = Py is 0, and therefore the variation 6(e) does not
contribute to V*.

We summarize the observations above in the following statement:

Theorem 1.7.16 (Dual Schlafli formula). Let (P;): be a 1-parameter family of
convex compact polyhedra in H?, whose vertices vary smoothly in t, with P = P,.
Then the function t — V;* := Vol*(P;) admits derivative at t = 0, and it verifies

e edge
of P

where the sum is taken over the set of edges e of P, 0(e) denotes the exterior
dihedral angle along e in P and {(e) is the variation of the length of e; Py at
t=0.



Chapter 2

The dual Bonahon-Schlafli
formula

Outline of the chapter

This chapter is dedicated to the proof of the dual Bonahon-Schlifli formula:

Theorem Let (M); be a smooth 1-parameter family of quasi-isometric con-
vex co-compact hyperbolic structures on a fixed underlying topological 3-mani-
fold. Then there exists the derivative of the dual volume of the convex core along
the path (My):, and it satisfies:

AV (1) = 5 L, (i),

where [ is the bending measure of the boundary of the convex core of M = My,
and m denotes the variation of the hyperbolic structures on the boundary of the
convez cores of My att = 0.

In the following we describe the strategy of the proof and we outline the
structure of the chapter. The general idea will be to deduce the statement from
the combination of the so-called differential Schlifli formula, proved by Rivin
and Schlenker [RS99|, with a careful approximation argument of the boundary
of the convex core by smoother surfaces. As already mentioned in Section [L.3.1]
the boundary of convex core of a convex co-compact hyperbolic manifold M is
far from being smooth, and the understanding of the variation of its geometry is
a subtle problem, which intrinsically involves technical difficulties. In order to
do not go through the same sophisticated (but necessary) analysis of Bonahon
in the study of the standard volume function (see [Bon98al), it will be essential
to make use of the peculiarities of the dual volume. In particular, we highlight
two phenomena which will play an important role in our argument:

e the dual volume of the e-neighborhood of the convex core Vol*(N.C'M)
satisfies
Vol*(N.CM) — Vol*(CM) = O(?),

rather than O(e), as happens for the standard hyperbolic volume;

31
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e the variation of the dual volume enclosed by a surface S depends on the
variation of the first fundamental form §1 of S, but not on the variation of
its higher order geometric quantities, as the mean curvature, the extrinsic
curvature or the second fundamental form (compare Theorem or

with Proposition |2.2.5).

The first property is specific of the convex core, and it is due to the fact
that the boundary of the convex core is almost everywhere totally geodesic,
and it is bend along complete geodesics (in particular, there are no "vertices").
The second property is reminiscent of a feature of the dual Schliafli formula,
already highlighted in Remark if we want to express the variation of
the dual volume of a family of polyhedra (P;):;, we do not need to require
the combinatorial structure of P; to be preserved along the deformation. This
suggests a higher flexibility of the dual volume function, which will be useful in
our approximation procedure (see in particular Proposition .

The chapter is organized as follows. In Section[2.1]we will briefly describe the
geometry of equidistant surfaces from a totally geodesic plane and from a line,
which are the basic ingredients to understand the shape of equidistant surfaces
from the boundary of the convex core C'M. We will also give a more detailed
description of the geometry of the boundary of the convex core 9C' M, through
the notion of pleated surfaces. This will allow us to give a fairly technical but
useful procedure to locally approximate OC'M by finitely bent surfaces. Section
is dedicated to the notion of dual volume of convex domains of M, and the
description of its properties. In Section we develop a formula that expresses
%E M, (1), the derivative of the length of the realization of a fixed measured
lamination y inside a 1-parameter family (M), of convex co-compact manifolds
(see Proposition [2.3.3).

Section [2.4] is the central part of our proof. Firstly we will approximate
the convex cores C'M; by their e-neighborhoods N.C'M;. Fixing the underlying
topological space and varying the hyperbolic structures M; regularly enough, we
will study for which values of ¢ and ¢ the surfaces N.C'M; remain convex with
respect to the structure of M;. This will allow us to estimate the dual volumes
of the convex cores C'M; with the dual volumes of the regions N.CM; (see
Lemma . Here the key properties that will play a role are the minimality
of the convex core among all convex subsets, and the monotonicity of the dual
volume with respect to the inclusion. In this way we will be able to deduce the
variation of the dual volume of the convex core from the one of a more regular
family of convex regions, on which in particular we will be allowed to apply the
differential Schlafli formula of [RS99|. At this point we will see how the two
properties that we mentioned above will play a role. The final outcome of this
argument will be Proposition which states that there exists the derivative
of the dual volume function V% (M;), and it satisfies

Ve (M) = =3 T) :
t=0

where p = po is the bending measure of the boundary of the convex core of
M = My, and ¢jy, (1) represents the length of the realization of 1 inside the 3-

manifold M;. This result will be achieved without making any use of Bonahon’s
Hélder cocycles machinery.
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At the very end, in order to relate the term $lay, (1)]¢—o With dL,, (), i. e.
the differential of the u-length function over the Teichmiiller space 7°(0C M)
applied to the variation of the hyperbolic structures on dCM, we will need
Bonahon’s results about the ¢'-dependence of the hyperbolic metric on the
boundary of the convex core with respect to the convex co-compact structure
of M (see |Bon98b, Theorem 1]).

2.1 Convex co-compact manifolds

In this section, we will state some geometric properties of equidistant surfaces
from planes and lines in H?, we will introduce the notion of pleated surfaces
and we will describe a procedure to locally approximate the the boundary of
the (lift to H3 of the) convex core of a convex co-compact hyperbolic manifold
by finitely bent surfaces. These will be useful technical ingredients for the rest
of our exposition. We refer to Section for an introduction to the notion
of convex co-compact hyperbolic manifolds and the properties of their convex
cores.

Definition 2.1.1. If A is a subset of a metric space (X, d), the e-neighborhood
of A in X, which will be denoted by N_A, is the set of points of X at distance
< e from A. The e-surface of A in X, which will be denoted by S: A, is the set
of points of X at distance ¢ from A.

Remark 2.1.2. If C is a closed convex subset in H?, then the surfaces S.C are
strictly convex €!-surfaces. Indeed, the distance function d(C,-): H? — Rsq
is continuously differentiable on H3 \ C' (see |CEM06, Lemma 11.1.3.6]) and its
gradient is uniformly Lipschitz on

N.C\N..C

for all € > &’ > 0 (see [CEMO06, Section 11.2.11]). In particular, the equidistant
surfaces from the convex core of a convex co-compact hyperbolic manifold M
are €' '-surfaces.

Given X an immersed surface inside a hyperbolic 3-manifold M, we denote
by I and [ its first and second fundamental forms, respectively, as introduced
in Section [[L41 Wherever we have to deal with surfaces that are boundaries of
domains or with portions of e-surfaces, we will always endow them with the
interior normal vector field pointing towards the domain or the e-neighborhood,
respectively.

Lines and planes in H? are 1 and 2-dimensional totally geodesic subspaces
of H3, respectively. A half-space is the closure on one of the complementary
regions of a plane inside H3. In the following we recall the geometric data of the
equidistant surfaces from a plane and a line, respectively. For a proof of them,
we refer for instance to [CEMO06, Chapter I1.2].

Lemma 2.1.3. Let P be a plane in H?, and fiz v a unit normal vector field on
P. Then the map n.: P — H3, defined by

ne(p) := exp,(ev(p)),
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parametrizes a connected component of the e-surface from the hyperbolic plane
P in H3, and in these coordinates we have

I. = cosh®e gp,

inh 2¢
e = sm2 gp = tanhe I,

where we are choosing as unit normal vector field the one pointing towards P.

Lemma 2.1.4. Let7: R — H? be a unit speed complete geodesic, and denote by
e1(s), ea(s) € Ty H? the tangent vectors at ¥(s) obtained by parallel transport
of a fized orthonormal basis e1, ez of ¥'(0)= C Ty o)H?. Then the map 1. : R x
S — H3, defined by

Ye(s,e?) = exps () (e(cos O eq(s) +sinf ea(s))),
parametrizes the e-surface from the line 4 and in these coordinates we have

I. = cosh? e ds® 4 sinh? e d#?,
II. = coshesinhe (ds® 4 d6?),

where we are choosing as unit normal vector field the one pointing outwards the
e-neighborhood of 7.

Let now M denote a convex co-compact hyperbolic 3-manifold with convex
core C'M (see Section . We want to give a more precise description of the
structure of the boundary of the convex core and, to do so, we need to recall
the following notion:

Definition 2.1.5 (|[Bon96|). Let S be a topological surface. A (abstract) pleated
surface with topological type S is a pair (f, p), where f S — H3 is a continuous

map from the universal cover S of S to H3, and p: m1(S) — Iso™ (H?) is a
homomorphism, verifying the following properties:

1. f is p-equivariant;

2. the path metric on S , obtained by pullback of the metric on H? under f ,
induces a hyperbolic metric m on S;

3. there exists a m-geodesic lamination on S such that f sends every leaf of
its preimage AC Sina geodesic of H?, and f is totally geodesic embedding
on each complementary region of A in S.

Let C be the preimage of the convex core CM inside H? & M. Tts boundary
80 is parametrized by a pleated surface f S — H3 with bending locus A\, where
S is the universal cover of O0CM, and with holonomy p given by the composition
of the homomorphism induced by the inclusion 0CM — M and the holonomy
representation of M. In this situation, the pleated surface f is locally conver, in
the sense that the bending occurs always in the same direction, making f locally
bound a convex region (see also [CEMO06, Section IL.1.11]). In general f is a
covering of oC , which is non-trivial whenever C M has compressible boundary.

It will be useful in our analysis to have a way to locally approximate 0C M
by finitely bent surfaces. We briefly recall a procedure described in [Bon96,
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Section 7| which is well suited for our purpose. We start by considering an arc k
in S transverse to the bending lamination /\ having endpoints in two different
flat pieces P and Q of S\ A. We will assume k to be short enough, so that we
can find an open neighborhood U of k on which f is a topological embedding,
and all the leaves of A meeting U intersect k. When this happens, we say that
f is a nice embedding near k. Let Ppq be the set of those flat pieces in S \ A
that separate P from (). For every finite subset P of Ppg, we label its elements
by Py, ..., Py following the order from P = Py to @ = P,,+1. Let X; be the
closure of the region in S which lies between P; and Py, for i =0,...,n. If
we orient the two leaves «; 7 lying in 9%, accordingly, so that they can be
deformed continuously from one to the other though oriented geodesics in X;,
then we call diagonals of 3; the two unoriented lines in ¥; that connect two
opposite endpoints of v; and ~..

We denote by Ap the geodesic lamination of S obtained from \ as follows:
we maintain the geodesic lamination as it is outside |J; ¥; and, for every i =
0,...,n, we erase all the leaves lying in the interior of the strip ¥; and we replace
them by one of the two diagonals of ¥;, say d;. Now we define a pleated surface
fp S — H3, with bending locus Ap, so that it coincides with f outside the
strips, and inside any ¥; it sends the chosen d; in the geodesic of H? joining
the endpoints of f(9%;) corresponding to the endpoints of d;. Once we make a
choice of a diagonal d; for any i, there is a unique way to extend fp on S so
that is becomes a pleated surface bent along 5\7;-. Moreover, if the strips ; are
thin enough and if the starting f is locally convex, then we can make a choice
of the diagonals dy, ..., d, so that the resulting fp is still locally convex. Such
fp will not be equivariant anymore under the action of the holonomy of f , but
it will approximate the restriction of f on U.

Now, choose a sequence of increasing subsets P,, exhausting Ppg and con-
struct a corresponding sequence of convex pleated surfaces fr = fpn as above.
Every such f, is finitely bent on the neighborhood U. Following the construc-
tion, we see that, given any P’ flat piece of S intersecting k, there exists a large
N € N so that f,(P') = f(P') ¢ dC for every n > N. In particular, the
functions f, are approximating f over the open set U. Moreover, following the
proof of [Bon96, Lemma 22|, we see that the bending measures j, (k) of f, on
the arc k are converging to u(k), the bending measure of k in aC.

Let now r: H3 — C denote the metric retraction of H? over the convex set C
and let d: H® — R>( be the distance from C. We select an open neighborhood
V of k so that V C U and, fixed p > 0, we define W = W(V,p) :=r~ (V) N
N, C. The surfaces f,(U) lie behind f(U) C AC if seen from W. Denote by
dn: W — Rsq the distance function from f,(U) on W. Since the surfaces
fn(U) are convex, for every point p € W there exists a unique ¢, € fn(U)
realizing d,(p) = d(p,qn). Therefore, it makes sense to consider the metric
retractions r,: W — fn(U ), which will converge to r over the compact sets of
W thanks to the convergence properties previously observed of the fn’s. By
the same argument as [CEMO06, Lemma I1.2.11.1], the distance functions d,, are
converging ¢1'!-uniformly to d on any compact set of W (i. e. the gradients
grad d,, are uniformly Lipschitz and they converge to grad d). This shows that
for every € < p, the surface d~*() N W = S.C N W is € '-approximated by
the sequence of surfaces (d;;!(¢)), C W. Moreover, such surfaces d,; () C W
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are the e-equidistant surfaces from finitely bent convex pleated surfaces having
bending measures on k converging to (k).

Definition 2.1.6. Given k an arc on which f is a nice embedding, we say that
the sequence f, defined above is a standard approzimation of OC near k and
that the the sequence of surfaces S; ,, is a standard approzimation of S:C over

k.

2.2 The dual volume of the convex core

This section is devoted to the definition of dual volume on convex sets sitting
inside a convex co-compact 3-manifold, and its main properties.

Definition 2.2.1. Let M be a convex co-compact hyperbolic manifold. If IV is
a compact convex subset of M with €*'-boundary, we define the dual volume
of N to be )
Vol*(N) := Vol(N) — = Hda.
2 Jon
If N = CM, then we set Vol*(CM) := Vol(CM) — 1£,,(11), where m and p are
the hyperbolic metric and the bending measure of dC M, respectively.

Remark 2.2.2. When ON is only €', the mean curvature function is defined
almost everywhere and it belongs to L>°(ON) (here ON is endowed with the
measure induced by the Riemannian volume form of its induced metric), in
particular the integral f on H da is a well-defined quantity.

Observe that the definition we are using here has opposite sign with respect
to the one in Chapter This choice is intentional, and it is justified by the
following observation. If M = 3 x R is quasi-Fuchsian, the length of the bending
measure £,, (1) is bounded from above by a constant depending only on the genus
of ¥ (see Theorem . Consequently, we choose the sign convention in the
definition of the dual volume so that Vol*(CM), as a function of the space of
quasi-Fuchsian manifolds, is bounded from below (instead than from above).

There is a relation between the notions of dual volume and of W -volume,
defined in |[KS08| and used to introduce the renormalized volume of a convex
co-compact hyperbolic manifold. If N is a compact convex subset with ¢1-
boundary in a convex co-compact manifold M, the W-volume of N is defined
as

W(N) := Vol(N) — i Hda = £ (Vol(N) + Vol* (V).

1

ON 2

In addition, we mention that in [BBB19, Lemma 3.3] the authors described a

way to characterize the quantity f on H da in terms of the metric at infinity pn

associated to the equidistant foliation (SeN).. In this way the definition of dual

volume (and of W-volume) can be given without any regularity assumption on
ON. More precisely, they showed that

H da = Area(py) — 2 Area(ON) — 2mx(OM).
ON
We recall that the mean curvature here is the trace of the shape operator B,
which is defined using the interior normal vector field to ON; this explains why
the relation above differ by a factor 2 from the one in [BBB19|. In particular,
the proof of [BBB19, Proposition 3.4] shows also:
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Proposition 2.2.3. The dual volume is continuous on the space of compact
conver subsets of M with the Hausdorff topology.

In light of this fact, the following Proposition, besides its future usefulness,
justifies the definition we gave of Vol*(C'M).

Proposition 2.2.4. Let M be a convex co-compact hyperbolic manifold, with
convex core CM , bending lamination p € ML(OCM) and hyperbolic metric m
on the boundary of CM. Then, for every e > 0 we have

Vol* (N.CM) = Vol*(CM) — émiu) (cosh2e — 1) — g|x(8CM)|(sinh 2e — 2¢).
As a consequence, we have
Vol*(N.CM) = Vol*(CM) + O(|x(0CM)|, £ (11); €%).

Proof. First we study Vol(N.CM) — Vol(CM). Let A be the support of v and
let v': N.CM — CM be the restriction of the metric retraction. We divide
N.CM \ CM in two regions, (r')~1(0CM \ \) and (r')~1(N).

If F is the interior of a flat piece in C' M, then the portion of N.C'M which
retracts onto F' through r’ has volume equal to

¢ Area(F inh 2
/ / cosh? tdvolye dt = rea(F) (sm c + 5> ,
o Jr 2 2

where we are making use of the coordinates described in Lemma[2.1.3] Since the
lamination A has Lebesgue measure 0 inside 0C' M, the sum of the areas of the
flat pieces is Area(0C M) = 27|x(0CM)|. Therefore the region in N.CM \ CM
which retracts over 0CM \ A has volume 7|x(0CM)]| (8222 4 ¢).

Let D be the closed convex subset in H? obtained as the intersection of two
half-spaces whose boundary planes meet with an exterior dihedral angle equal
to Ay and select v a geodesic arc lying inside the line along which 0D is bent.
Then, the region in N_D which retracts over v has volume equal to

€ (90
/ / / coshtsinhtdédfdt = b () (coshe —1). (2.1)
0 JO vy

4

An immediate consequence of this relation is that whenever 0C'M is finitely
bent, the volume of (r)~1(\) coincides with e’"T(“)(coshE — 1), where m is the
hyperbolic metric of JC' M. In the general case, we can select a suitable cover-
ing of 9CM by open sets on which we can apply the standard approximation
argument of Definition With this procedure, it is straightforward to see
that the relation Vol((r')~1(\)) = Z’@l&(coshs —1) extends to the general case.
Combining the relations we found, we obtain

VOl(N.CM \ CM) = |x(dCM)| <s1n}21 2% 4 e> + gmi” ) (cosh 2 — 1).

Now we want to compute fs oy He dae. Using Lemmas and we
immediately see that, in the finitely bent case the following holds:

/ H.da. = 2r|x(0CM)| sinh 2e + £,,(p) cosh 2¢.
5.CM
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The standard approximation procedure (see Definition allows us again to
prove this relation in the general case, with the only difference that the €1'-
convergence is now crucial, because the expression of the mean curvature in
chart involves the second derivatives in the coordinates system. Combining the
relations we proved with the equality Vol*(CM) = Vol(CM) — £, (u)/2, we
deduce the relation in the statement. O

As we will see in a moment, it will be convenient for us to differentiate the
dual volume enclosed in a differentiable 1-parameter family of €*'-surfaces. In
particular, we will make use of the following result, which is a corollary of the
differential Schlifli formulae of Theorems [1.7.2] and [[.7.4

Proposition 2.2.5. Let M; = (N, g;) be a smooth 1-parameter family of com-
plete convex co-compact hyperbolic structures on N. Consider C' a compact
convex subset of N \ ON with €11-boundary. Then the variation of the dual
volume of C' in M, exists and can be expressed as:

dVoly,, (C)

dt 4

1
27/ (5g|ac,I—HI)da,
t=0 oC

where I, I, H are the first and second fundamental forms and the mean curva-
ture of the surface OC, and (-,-) is the scalar product induced by I on the space
of 2-tensors on OC.

Similarly, if we fiz the hyperbolic 3-manifold M = My and we consider
a 1-parameter family of convex subsets C; with €1'-boundaries 0C; varying
smoothly in t, then:

dVol’, (Cy)
dt

:1/ (61,0 — HI)da.
4 oC

t=0

Proof. The strategy used in Proposition to compute the derivative of V'
applies verbatim to both cases, using Theorems and respectively.
The difference of sign between these relations and the one for §V5" is due to
the different convention in the definition of dual volume, as observed in Remark

222 O

Contrary to the case of the hyperbolic volume, it is not clear whether the
dual volume of a convex set is positive or not. However, Vol* shares with the
usual notion of volume the property of being monotonic (in fact decreasing)
with respect to the inclusion, as we see in the following:

Proposition 2.2.6. Let C, C' be two compact convex subsets inside a convex
co-compact manifold M. If C C C’, then Vol*(C) > Vol*(C").

Proof. Thanks to Proposition up to considering e-neighborhoods and
passing to the limit as € goes to 0, we can assume that C' and C’ are com-
pact convex subsets with €!-boundary. We will make use of the variation
formula of Proposition Assume that ¥: I x S — M is a differentiable 1-
parameter family of convex €!'!-surfaces ¥; := ¥(t,-), which parametrize the
boundaries of an increasing family of compact convex subsets (Cy)icy inside M.
Let V; be the infinitesimal generator of the deformation at time ¢, i. e. V; is

the vector field over S defined by V; := dd%t. The tangential component of V;
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does not contribute to the variation of the dual volume (compare with [RS99,
Theorem 1]). Consequently, in order to compute the derivative of Vol*(Cy), we
can assume V; to be along the interior normal vector field v; of 0C;. Moreover,
since the deformation (Ny); is increasing with respect to the inclusion, V; is of
the form f;1y, for some f;: S — R, f; < 0. Under this condition, the variation of
the first fundamental form of 9C; is 61, = —2f,II; (again, compare with [RS99]
Theorem 1]). If kq(¢), ko(t) denote the principal curvatures of 9Cy, we obtain
that

(614, Iy — Hely) = —=2f (I, Iy — Hily)

= =2fi(k1(t)* + ko (£)* — (ka1 (t) + k2(1))?)
= +4fik1(t)k2(t) <0,

where, in the last step, we used the fact that the extrinsic curvature K.(t) =
k1(t)k2(t) is non-negative since C} is convex. By Proposition we deduce
that Vol* is non-increasing along the deformation (Cj);.

It remains to show that, if C, C’ are two convex subsets of M with €%!-
boundary and such that C' C C”, we can find a differentiable 1-parameter family,
indexed by ¢ € [0, 1], of increasing convex subsets C; with ¢’*''-boundary so that
Cop = C and C; = C’. A way to produce such a path is described in the proof
of [Sch13, Lemma 3.14], we briefly recall the ideas involved in the construction.
Given any convex set C' with €"'-boundary in M, the asymptotic expansion
of the first fundamental forms of the equidistant surfaces from C' determines
a unique Riemannian metric h¢ belonging to the conformal class at infinity of
OsoM . Moreover, the surface OC' can be recovered from h¢ as the envelope of a
family of horoballs determined by h¢, thanks to a construction due to Epstein
(0C is the so-called Epstein surface associated to the metric he, see |Eps84]).
This correspondence behaves well with respect to the inclusion, in the sense that
if C and C" are convex sets as above and C' C C’, then h¢ < her. Being he and
hc: elements of the same conformal class, there exists a non-negative function u
on O, M such that her = e2*he. If we set now h; := e*"h¢, then the Epstein
surfaces associated to h; turn out to be the boundaries of an increasing family of
convex subsets C} satisfying the desired requirements (see [Sch13, Lemma 3.14]
for a more detailed exposition). O

2.3 The derivative of the length

From now on, S will be a fixed closed surface of genus g > 2. We briefly
recall the notions of [Bon88| that we will need. Given m a hyperbolic metric
on S, the universal cover S , endowed with the lifted metric m, is isometric to
H2. As the topological boundary of the Poincaré disk sits at infinity of H?,
also S can be compactified by adding a topological circle J,,S at infinity, and
the resulting space does not depend on the chosen identification between them.
The fundamental group naturally acts by isometries on S = H?2, and since the
isometries of H? extend to O-.H2, the action extends to 9,,5. It turns out that
the topological space 05,5, together with its action of m1(.5), is independent of
the hyperbolic metric m we chose. In particular, all the spaces we are going
to describe are intrinsically associated to the topological surface S, without
prescribing any additional structure. Since a geodesic in S is determined by its
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(distinct) endpoints in 5.5, the space G(S) of unoriented geodesics of S can be
naturally identified with

(908 % 98\ A)/ZQ’

where A denotes the diagonal subspace of (Oso §)2, and the action of Zg ex-
changes the two coordinates in (oo S )2. Therefore, a geodesic lamination X of S
is identified with a closed, 71 (S)-invariant subset A of disjoint geodesics in G(S).

In the same spirit, a measured lamination of S corresponds to a m (S)-invariant,
locally finite Borel measure on G (§ ) with support contained in a geodesic la-
mination A of S. We denote by GL(S) and ML(S) the spaces of geodesic
laminations and measured laminations on S, respectively (see also Section
for an alternative description of these objects).

In the following, we recall the notion of length of measured laminations
realized inside a fixed hyperbolic 3-manifold M from |Bon97, Section 7]. As in
the case of S, we can define the space of unoriented geodesics of M, making
use of the natural compactification of H3. The substantial difference is that
the dynamical properties of the action of 71 (M) do depend in general on the
hyperbolic metric we are considering on M. However, our interest will be to
apply these notions to quasi-isometric deformations of hyperbolic manifolds.
In this case, the holonomy representations turn out to be quasi-conformally
conjugated in 0, H?, therefore the qualitative properties of the action of (M)

on G (]Tf ) are preserved. Fix now a homotopy class of maps [fo: S — M].

Definition 2.3.1. A geodesic lamination A on S is realizable inside M in the
homotopy class [fo] if there exists a representative f: S — M of [fo] which
sends each geodesic of A homeomorphically in a geodesic of M. In such case,
we say that A is realized by f.

In order to talk about the realization of a measured lamination i, we need
to find a way to push-forward the measure p to a measure on G(M). Let A be a
geodesic lamination on S realized by a map f, and let p: m1(S) — 71 (M) be the
homomorphism induced by [fo] on the fundamental groups. Fixed a lift f of f
to the universal covers, we can construct a function r: A — G(M ) associating to
each leaf ¢ of A the geodesic f (g) sitting inside M. The map 7 is p-equivariant
and continuous with respect to the topologies of A as subset of g(§) and of
G(M) (compare with [Bon97, Section 7]). It is easy to prove that r depends
only on the homotopy class [f] and on the choice of a lift of any representative
of [f] realizing A. To see this, let Fy = f and f; = f’ be two such maps in [f]
homotopic through (F}):cr (here I denotes the interval [0,1]). Once we choose
a lift f of f, there exists a unique lift ﬁtN of the homotopy so that ﬁo = f . This
gives a preferred lift of f/, namely f":= Fy. Because of the compactness of S and
the existence of a homotopy F; between them, the lifts f and f f' must agree (up
to reparametrization) on any leaf g of A, since the geodesics f(g) and f'(g) are
necessarily at bounded distance in H3 (see [Thu79! Proposition 8.10.2]). This
implies that the definitions of 7 obtained using f and f’ coincide. Moreover,
different choices of lifts f produce maps r, r’ which differ by post-composition
by an element in 7 (M). The same argument as above shows that, if A1, Ao are
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two geodesic laminations realized by the maps f1, fo respectively, which both
contain the lamination A, then the two realizations f; and fy coincide on A.
We are finally ready to describe the definition of the length of the realization
of a measured lamination inside M. Let o be a measured lamination on S with
support contained in A\. We denote by & := 7.« the push-forward of o under
the map r. & is a measure on G(M) with support r(supp «), depending only on
a € ML(S), on the homotopy class [f] and on the choice of a lift of f. Assume
that f(\) lies inside some compact set K of M and let F, F denote the geodesic
foliations of the projective tangent bundles PT'M, PT M , respectively. We can
cover the preimage of K in PT'M by finitely many F-flow boxes 0;: D;xI — B;.
Here D; is some topological space and o; is a homeomorphism sending each
subset {p} x I C D; x I in a subarc of a leaf in F, for any p € D;. In addition,
we fix a collection {¢;}; of smooth functions with supports supp¢; contained in
the interior of B; for every j, and such that Zj &; = 1 over the preimage of K in

PTM. If o; is a F-flow box that meets f(supp «), we can lift it to a F-flow box
it DyjxI— PTM accordingly with the choice of the lift f. The lift 0; induces
an identification between the space D; with a subset in G (M ). Namely, a point
p € Dj corresponds to the complete leaf in F extending the arc a;i({p} x I).
Through this identification, it makes sense to integrate the D;j-component of ;
with respect to the measure & previously defined on G (M ). If o; does not meet
f(supp «), then we choose an arbitrary lift 5;. Finally, we select lifts éj’s of the
&;’s according with the choices of the lifts ¢;. The length of the realization of o
in M (in the homotopy class [f]) is

tufe) = [[ataa =3 [ / o)Al dap),  (22)

where d¢ denotes the length-measure along the leaves of F.

Remark 2.3.2. By invariance of the length under reparametrization and by lin-
earity of the integral, the choices of the functions {¢;} ; and the chosen F-flow
boxes {0;} ; are irrelevant; moreover, different lifts of f produce maps r which
are conjugated by isometries in 71 (M). Therefore, the quantity £y(c) only
depends on the measured lamination «, the hyperbolic metric on M and the
homotopy class [f: S — M]. The notion makes sense as long as there exists
a realizable geodesic lamination A in the homotopy class [f] which contains
supp «. Moreover, by what we observed before, this quantity does not depend
on the specific representable lamination A we chose, but it is determined only
by supp a.

We are now ready to produce a variation formula for the length of the real-
ization of a measured lamination inside a 1-parameter family of quasi-isometric
convex co-compact hyperbolic manifolds (M;);. For convenience, we think of
(M) as a differentiable 1-parameter family of complete hyperbolic metrics
gt on a fixed 3-manifold X, so that the identity map, from My = (X, go) to
M; = (X, ¢:), is a quasi-isometric diffeomorphism for any ¢. Let « € ML(S)
be a measured lamination and [fy: S — X] a homotopy class of maps. In the
convex co-compact case, all finite laminations are realizable and their realiza-
tions are necessarily contained in the convex core CM;. Therefore, by [CEMOG,
Corollary 1.5.2.13] and [CEMO06, Theorem 1.5.3.6], any geodesic lamination on



42 CHAPTER 2. THE DUAL BONAHON-SCHLAFLI FORMULA

S is realizable in the homotopy class [fy], and their realizations lie inside a fixed
compact subset K of X (where K contains CM; for every small ¢). Let now
A be any geodesic lamination containing supp « and assume that it is realized
inside M; by a certain map f;: S — M, for any ¢t. By the above, we are allowed
to consider the length of the realization of « inside M, for every t. Let {0},

{&t: {5} {éj}j be a collection of functions as in the definition of £y ().
Then, in the same notations as above, we set

; L ! E (5. s g(asa—j(pv 8)7885j(p73)) a
///\ dtda ._zj:/pj/o §(0i(p,%)) 29 (056(p, s), 055 (p. 5)) dtda (p),

where 0,6; = %, g =go and ¢ = i—‘t}\tzo. The result we want to prove is the
following:

Proposition 2.3.3. Let (g¢): be a l-parameter family of convex co-compact
hyperbolic metrics on a 3-manifold X, which are quasi-isometric to each other
via the identity map of X. Let a be a measured lamination on a surface S and
let [f: S — X] be a fixzed homotopy class. Then « is realizable in My for all
values of t, and the variation of its length verifies

s, () - / A déda, (2.3)

where A\ is a geodesic lamination of S containing supp «.

dt

We will prove the Proposition using an approximation argument. Firstly we
deal with the rational case:

Lemma 2.3.4. When o € ML(S) is a rational lamination, Proposition[2.3.3
holds.

Proof. Let ¢ be a free homotopy class of simple closed curves in X and assume
that ¢ admits a geodesic representative in Mj. Since we are considering a quasi-
isometric deformation of convex co-compact manifolds, the homotopy class ¢
will admit a geodesic representative for all values of ¢t. Moreover, we can find
parametrizations ¢ of the geodesic of ¢ in M; depending smoothly on ¢, because
of the smooth dependence of the holonomy representation hol;(c). In other
words, we can find a smooth map X: (—¢,¢) x I — X such that X(¢,s) = v'(s)
for every t and s € I. Let [-||, denote the norm with respect to the metric g,
and let v = 7v°. We have

gHa ,ytH _ 9(0s7,0s7) +29(D8¢682|t:07887)
dt oo 2[|19s71lo
9(0s7,057) < Jsy >
=" +9g( Do, OX|,_¢s 7
21071, - 9 %lmo 1501
§(0s7,0sy)  d [ ( D5y )}
="+ —|g| O], ,
Moty s [\ 2= o

where in the last step we used the fact that  parametrizes a geodesic in M =
My, and consequently the covariant derivative of Hg;';y\l vanishes. Once we
sYllo

integrate the last term in ¢ € [0, 1] we get 0, because the function of which we
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are taking the derivative coincides at the extremes (since the geodesics 7! are
closed). Hence we obtain

1 . 1 .
t=0 o 209s7ll 0 29(057,057)

dgM,, (C)
dt

Take now a rational lamination o € ML(S), i. e. the measure « is the weighted
sum ), u; dq,, where the d; are homotopy classes of simple closed curves, the u;
are positive weights, and §4, is the transverse measure which counts the geomet-
ric intersection of an arc transverse to d; with d;. Assume that « is realizable
in M or, equivalently, that the curves ¢; = fo(d;) admit a geodesic representa-
tive v; in M. The same argument given above shows that the lamination « is
realizable in M; for all t. Applying the definition of ¢y, («), and denoting by
vt I — M, the geodesic representative of ¢;, we see that

O (@) =) (/01 H@wt(s)ths) .

%

Hence, taking the derivative in ¢ and using what observed above, we get

dgM (a) (/ g(as’)’a ) //
S P zl: 0 2H86’Y||0
where X\ = supp o = |, d;. O

We are now ready to deal with the proof of Proposition [2.3.3}

Proof of Proposition[2.3.3. Let T be a train track in S carrying o and con-
sider a sequence of rational laminations «,, carried by T and converging to «
as measured laminations (see |[Thu79, Proposition 8.10.7]). Up to passing to
a subsequence, we can assume that the laminations supp «, converge in the
Hausdorff topology to a lamination A carried by T'. Since «,, is converging to
a, we must have A 2 supp a. We denote by f;: S — X a realization of A in the
homotopy class [f] with respect to the metric g¢, and by fi: S — M lifts of the

ft’s so that ¢ — f; is continuous with respect to the compact-open topology of
€°(S, X).

Let now K be a large compact set of X containing all the convex cores C'M;
for small values of t. Then, if F; is the geodesic foliation of PM;, we can choose
Fi-flow boxes {a§ } ; whose union of images contain the preimage of K in PT M,
and hence the realizations f;(\). We consequently construct maps {54}, {€5};,
{éjt }; as in the definition of £y, (-). We can ask these functions to vary smoothly
in the parameter t, since the hyperbolic metrics depends smoothly in ¢. Now,

we define
/ E(3L () d ().

In this notation, the length of the realization of «,, in M; can be expressed as

fMt(an):Z/ cpz-ddn.
i 7P
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From this relation is clear that, as n goes to oo, £y, (o) converges uniformly to
lpr, (o) on a small interval (—¢,e) of the parameter t. In the same way we see
that [f dly da,, converges to I dly do (here is even easier, because there is no
dependence on t). Thanks to Lemma the only thing left to conclude the
proof is to show that

d
- EZMt (Oé)

N
e g el

t=0 t=0

Here we can argue as follows: the length of a homotopy class ¢ of non-parabolic
type can be expressed as the real part of its complex length ($(c) € C/2miZ,
which is holomorphic in the holonomy representation. The argument described
above shows that the real lengths £e(a,) are converging uniformly in a small
neighborhood of holy (see also [Sul81b, Theorem 2]). Since the real part of a
holomorphic function determines (up to imaginary constant) the holomorphic
function itself, we deduce that also the complex lengths ¢S (a,,) are converging
uniformly, and hence ¥ °°-uniformly. In particular this proves the convergence
of the derivatives in . O

2.4 The dual Bonahon-Schlafli formula

In this section we will describe the proof of Theorem [A] The first subsection
will be dedicated to the study of the convexity of the equidistant surfaces from
the convex core while we vary the hyperbolic structure. Afterwards we will
introduce an auxiliary function on which we can apply the differential Schlafli
formula (Proposition. This is the step in which the variation of the length
of the bending measure arises (see Proposition . In Proposition we
will relate this with the actual variation of the dual volume of the convex core.
In the end of the section we will use Bonahon’s results about the dependence
of the metric of the convex core in terms of the convex co-compact hyperbolic
structure to finally prove Theorem [A]

Let (M;): be a smooth family of quasi-isometric convex co-compact mani-
folds, parametrized by t € (—to,t0). We can choose diffeomorphisms ¢;: My —
M; so that the following properties hold:

1. ¢y is a quasi-isometric diffeomorphism for any ¢, and ¢y = id;

2. fixed identifications of the universal covers of M, with H3 for every ¢, we
can find lifts @¢;: H? — H? of ¢; so that Py = idys and so that the map @,
defined by ¢(t,-) := @¢(-), is smooth as a map from (—tg,ty) x H? to H?>.

2.4.1 Convexity of equidistant surfaces

In order to prove Theorem [A] it will be important for us to understand for which
values of ¢ and € < g¢ the surfaces ¢;(S:CMp) and <pt_1(SEC'Mt) remain convex.
This is the most technical part of our argument and it will require special care.
We want to prove the following fact:
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Lemma 2.4.1. There exist constants K, 7 > 0, with 0 < 7 < tg, which depend
only on the quasi-isometric deformation (M;); and on the fized family of diffeo-
morphims (@y)s, such that, for everyt € (—7,7) the regions @i (N |C M) and
cpt_l(NK‘t‘C’Mt) are convex in M; and My, respectively. As a consequence, we
have

gOt(NK|t|CMO) D) CMt and NK\t|CMt D) gOt(CM())

We denote by 7, : H> — M, the universal cover of M,, and by @ C H? the
preimage of the convex core CM; under 7;. Fixed ¢ a basepoint in H?, we can
find a large R > 0 so that the metric ball B = B(qo, R) in H? verifies

Wt@t(BR) = @tWO(BR) 2 NEOCMt

and o;(Br) C Br,1, whenever t is small enough. This follows from the fact that
the convex cores C' M; are compact and they vary continuously in the parameter
t. Clearly Lemma reduces to the study of the surfaces @;(S.Co N Bgr) and
@7 1(S-Cy N Bg) in H3. However, instead of dealing directly with equidistant
surfaces from 50, which are only %!, we will rather focus our study on the
family of e-surfaces from half-spaces of H?3, which are more regular and can be
used as "support surfaces" for S.Cy. The strategy will be to understand how the
convexity of their image under ¢; behave, and from this to deduce the convexity
of the surfaces ¢;(S-Co N Br) (and similarly for ¢; *(S.C; N Bg)).

In order to clarify this idea, we need to introduce some notation. Let r; be
the nearest point retraction of H3 onto the convex subset Ct Given a point ¢
of S Ct, we denote by H; , the unique support half-space of C’t at r¢(q) whose
boundary 0H; , = Ht ¢ is orthogonal to the geodesic segment connecting rt( )
to ¢ (see Figure |2.1). By construction, we have the inclusion N.H; 4 2 N, Ct,
and the surfaces S ’Ht a5 Se C, are tangent to each other at the point g. In other
words, given q € S, Ct, the surface S, H; 4 lies outside int (V. Ct) it approximates
SgCt at first order at ¢ and it is strictly convex, with second fundamental form
described in Lemma Therefore, if for every g € SgégﬁBR and t € (—to, to)
the surface @.(S:Ho,q) remains convex at @;(g), then @(5850 N Bg) has to be
convex too. Analogously, the convexity of the surfaces ¢; 1(557-[157(1) at 7 1(q),

as ¢ varies in S.C, N Bpg, implies the convexity of go;l(SEC'Mt).

In what follows, we state the technical result about equidistant surfaces from
which Lemmal[2.4.1|will follow. Given U an open set of H*, we denote by S(U, o)
the collection of those surfaces embedded in U that are obtained by intersecting
U with an equidistant surface S.H, for some #H half-space of H? meeting U and
for some 0 < ¢ < g9. We remark that, using the notation introduced above, for
every € < gg and for every ¢ € S.C4, the surface ScH: 4 N Br belongs to the
family S(Bg,ep).

By considering the Poincaré disk model, we can identify H? with the open
unit ball A of R3, and functions f: H?® — H? as maps from A C R3 to itself. If
U is an open set of R™, K C U is compact and f: U — R™ is a smooth map,
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Figure 2.1: A schematic picture of the surface S.H. 4

we define

IFlloqsey = max £ @)l

k
1 e ey = 1 lgo iy + D D" Fllogsey
h=1

for k > 1, where ||-||, is the Euclidean (operator) norm and D is the Levi-Civita
connection of the Euclidean metric of R" (if X = Y, X’¢; and YV = > Yie;

are two vector fields, then DxY =37, - X'9;Y7e;). Then we have:

Lemma 2.4.2. Let B be an open ball in H3, let F: (—tg,tg) x H® — H® be
a smooth family of diffeomorphisms F, = F(t,-), satisfying Fy = idgs and
[ F g ((—tg,10)xB) < 0» and let €9 be a positive number. Given ¥ € S(B, &),
we denote by IT> and I} the first and second fundamental forms of Fy (%), re-
spectively, as t varies in (—to,tp). Then we can find tj, € (0,tg] and D > 0,
depending only on the ball B and on 1 F [ e((—to,t0)xB)» Such that, for every
surface ¥ = ScH N B in S(B, &), we have

I —tanheI” > —DI|t| I7, (2.4)

where we are considering the unit normal vector field on F(X) pointing toward
Fy(N.HNB).

Assuming momentarily this fact, we can prove Lemma [2.4.1

Proof of Lemma[2.4.1. First we study the surfaces ¢;(S:CMy). Following the
argument described above, we need to measure the convexity of the surfaces
&¢(SeHo,q N Br). We apply Lemma to Fy := ¢, and B := Bpg, obtaining
two positive constants ¢ < to and D, which depend only on |l ((— ¢, 10)xBr):
so that the relation holds for every ¥ € S(Bg,&0). Now we choose K7,
71 > 0, which will depend only on D and ¢, so that 7, < t,, K171 < &g and

tanh K7 |¢|

) —DJt| >0 for every ¢ € (—711,71).
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We want to show that o;(Sk,;|CMo) is convex for every t € (—71,71). Let ¢
be in (—71,71) and consider € = K;|t|. By the choices we made, if ¢ is a point
in SKl\t|5O N Bg, then the surface Sk, |,Ho,q N Br belongs to S(Bg,c). In
particular, the first and second fundamental forms I;, I, of @(ScHoq N Br)
verify the relation with e = K;|t|, which can be rewritten as

tanh K|t tanh K|t
][t _ LlH]t > <an21|| —Dt|) 1.

5 2>
Because of the choices we made, the right hand side is positive semi-definite.
Therefore we have

tanh K [¢|
¢ > ——— 1.

2

In particular, the surface @:(Sk, ¢/ Ho,q N Br) is strictly convex at the point
?1(q). Since the choice of ¢ € SKl\t|éO N Br was arbitrary and the surface
@¢(Sk, 1t/ Ho,qNBr) locally contains ¢;(Sk, ¢ Co), the argument previously men-
tioned proves the convexity of o;(Sk,+|CMo) for every t € (—71,71).

Now we have to deal with the case of go{l(SgCMt). Fixed t € (—to,to), we
define

M = My,
i = a0t My = My — MY = My,

for every s € (—so,50), with sg = so(t) = to — |¢t|]. Then we apply Lemma
to the 1-parameter family of diffeomorphisms (z/;gt))s, where 1/32“ ‘= Pty 0

@; . By construction, the constants s; and D’ only depend on Bryi and
9@ @1 ((—s0,50)xBrss)- Since we can find a uniform upper bound for @] 1
we can assume that s; and D’ are independent of ¢ € (—71,71). Therefore, ap-

plying the argument of the previous case to the 1-parameter deformation (Ms(t))S

and the diffeomorphisms ( S))S, we can select 7 < 56 and K, both independent

of t, so that the surfaces z/Jgt)(SKMCMét)) are convex for every s € (—7,7).
Moreover, it is not restrictive to ask that 7 < 7y and K > K; (this ensures
that K and 7 work also for ¢;(Sk(CMp)). Therefore, if t € (—7,7), then
s = —t € (—7,7) and the surface

VO S CM)| = o7 (SwuC M)
is convex, as desired. The second part of the statement follows because of the
minimality of the convex core in the family of convex subsets. O

It remains to prove Lemma [2.4.2

Proof of Lemma[2.4.2. Let a be a curve lying on some surface ¥ = S.H N B €
S(B,ep). We denote by «a; the curve F} o v, by v, the unit normal vector field
of F;(X) pointing toward F;(N.H N B), and by ||-|| and (-, -) the norm and the
scalar product in the hyperbolic metric of H?.

Assume momentarily that we could find two universal constants C7, Cy > 0
(depending only on the ball B C H?) and a #; > 0 (depending only on B and

—50,50)XBRy1)’
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on the family (F}):), such that
2 2 2 .
ol = 1’1 < CallaIP 1P = idls -
2 2 .
[(Dayvi,a4) = (Darto, o)| = |(Dagi, 0f) + tanhe o' || < Calla 1 Fs = idl o

for all t € (—to,top) (in the last line we used the fact that S.H has second
fundamental form as in Lemma [2.1.3)). With such estimates, we deduce that

(I;" — tanhe I7°) (o, oy) = —(Dgr 14, ) — tanhe losy]?
> tanhe ||| — Collof|*||F — id]| g ) — tanhe [[o/|*+
— Cy tanhe || ||*| By — id]l 41 5,
> —(C1 + Ca) | Fy — id]| g 5 1 (0}, })

and therefore that I — tanhe I7 > —(Cy + Cy) ||Fy — id|| 42 ) I7 for every
t € (—to,tp). Since the map F is regular in t, where F; = F(t,-), we can
find two constants t; and D, depending only on ||F'l|qa_y, 1)< and B, for
which the final statement holds (for this it is definitively enough to control the
derivatives of order < 2 in ¢ and of order < 2 in p € E).

The only thing left is to prove the two relations above. Let gy denote the
Euclidean metric of R? and g the hyperbolic metric on A = H3. Identifying H3
with an open set of R?, it make sense to compute a tensor 7}, at p on vectors
(or forms) lying in the tangent (or cotangent) space at a different point ¢, via
the identifications T,H? = T,R® 2 T,R3 = T, H3. Therefore we can write:

o |1* = |/ |I*| < (g © F)(Dar Fr, Dar Fy) — gl o)
<|(goFy)(DaFy, Do Fy — )|+ |(g 0 Fy) (Do Fy — o, &) |+
+(go F)(e,a') — g(a/, )]
<(llgo FtHOHD-Ft”oHD-Ft - D-id”o +1lgo Ft”o”D-Ft - D~idHo+
+lgo F = gllo) /1,

where |-, is the operator norm with respect to the Euclidean metric in R3.
The terms || D.F; — D.id||, and [|g o F}; — gl|, can be bounded by some univer-
sal constant multiplied by [|F; — id||4: 7). The terms [|go Fiflo, [|[D.Fi, are

controlled, since Fy is €'-close to id. Since B is compact and the F}’s are
diffeomorphisms ¢*-close to id, the norms |[|-||,, ||D.F}|| and [|-|| are uniformly
equivalent between each other on B. Combining these facts together we obtain
the first inequality.

For the second relation, we can proceed similarly decomposing the expression
in the following way:

’(Da;Vt7Oé:g> - (Dazyo,a’)| < ‘(g 0 F)(Doy vy, a — O/)’ + ‘(g o Ft)(Daé,a/yt,a’)’—i—
+ (g0 Ft)(Darvy — Darvg, o) |+
+1(g 0 F)(Darvo, o) — g(Darvo, )|
< 2|lg o Fillo|D.vnllol| D.F, — D.idllof|o’ |5+
+llg 0 Fillgl|1D.ve — Dovollylle’ [+
+ g © Fr — gllg| Dol -
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The vector field vy is the restriction to ¥ of the gradient gradd of the signed
distance from the plane OH (oriented in the suitable way), independently on e.
We can find two vector fields Vi, V4 on a neighborhood of O0H so that Vi, V5
span the tangent space of the surface S.H for every ¢ < g9. The vector fields
Vi, Vo and grad d have covariant derivatives which are uniformly bounded, as
we vary H, since the half-spaces H must meet B. The vector field v, can be

obtained as
(F2) (V1) x (F1)«(V2)
[(F) (V1) x (Fy)«(V2)|l”

where x denotes the vector product. Therefore the first derivatives of v; are
close to the ones of vy = V] x V5/||V1 x V3||, again uniformly in the half-space
H meeting B. This implies that the terms ||D.vg]|,, || D.v4||, are uniformly con-
trolled, and that ||D.v; — D.ig||, can be bounded by some universal constant
multiplied by [|F; — id||¢2 7). Combining these observations with what previ-
ously done for the first inequality, we deduce the second claimed inequality. [

2.4.2 The variation of the dual volume

Given ¢ € [0,e0] and ¢t € (—tg,to), we define
v (t) := Vol (N.CM,), u?(t) := Voly, (¢t (N-CMy)).

Our proof of Theorem [A] will be divided in some steps. The function that
needs to be differentiated at ¢ = 0 is VA (M;) = v§(¢), in the notation above.
However, this quantity is not easy to handle directly, because the variation of the
geometric structure of C'M; is complicated. To overcome this problem, we will
first study the family of functions u? in Lemma[2.4.3] and the limit lim. (u})’(0)
in Proposition 2.4.4] Here we will see how the differential of the length of the
bending measure comes into play. Afterwards we will use the properties of the
dual volume to relate lim, (u})’(0) to the actual derivative (v§)’(0) in Proposition
2435 In this manner we will conclude that the variation of the dual volume
coincides, up to multiplicative constant, with the variation of the length of the
realization of the bending measure of the convex core . = pg. The last part of
this subsection will be dedicated to relating this result with the differential of
the length function of u over the Teichmiiller space.

Lemma 2.4.3. The functions ul: (—to,t9) — R are smooth in t, and they
converge € -uniformly to ug as € goes to 0. Moreover, they satisfy

1
(u?)'(0) = 1/ (0I.,I. — H.I.)_da.,
S.C My
where (-,-). denotes the scalar product on the space of 2-tensors induced by I..

Proof. Let uc(t) be Volpy, (¢:(NeCMy)). Then the functions u? can be expressed

as
uZ(t):uE(t)—f/ Hda.
2 0t (S:CMpy)

We prove the regularity of u? in ¢ by focusing on the two terms separately. By
the choice we made of the family of diffeomorphisms (¢;); at the beginning of
Section the pullback ¢} dvolys, of the volume forms of M; vary smoothly
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in ¢, and they can be expressed in the form ¢} dvolys, = f(¢,-) dvolyy,, for some
smooth function f: (—to,to) X My — R. If we denote by A, the subset N.C M,
of My for every € €]0, ], then the functions u. satisfy:

uc(t) = /M Laf(t,) dvolys,

where 1 4_ stands for the characteristic function of the set A. (i. e. 14,.(p) =1
if p e A, and 14_(p) = 0 otherwise). Observe that the sets A. are compact
and they decrease, as € goes to 0, to C'My. As a consequence of the regularity of
f in t, a simple application of the Lebesgue’s dominated convergence theorem
(see e. g. |[Roy88|) proves the smoothness of the functions u. in ¢ and their ¢>°-
uniform convergence to uyg.

To show the regularity of the second term of u}, we will describe a way to
express the integral of the mean curvature as the integral of a suitable 2-form,
from which the dependence in ¢ and ¢ will be clearer.

Consider (M, g) an oriented Riemannian 3-manifold with volume form dvoly,.
Given any point (p,v) of the tangent bundle TM, the Levi-Civita connection V
of M determines a natural splitting of the tangent space 1{,, .,,)TM of the form
Tip,)TM = Ugp ) @ Wiy 0y, where U, oy is the vector subspace of T, ,\TM
tangent to the space of V-parallel vector fields at p, and W, , is the tangent
space at (p,v) to the fiber T,M C TM, which can be naturally identified with
T, M. The differential of the bundle map TM — M at (p,v) has kernel equal to
W0y, and it restricts to an isomorphism from Uy, .,y to T;, M. This procedure
determines a natural identification between T\, ., TM and (T,M)?, which we
will implicitly use in what follows. We define a 2-form wys over T M, the unit
tangent bundle of M, as follows:

(wM)(p,'U)((pa 1.})7 (p/’i)/)) = <U,p/ X0 —p X i)/>

where (p,U) € TIM, (pa @)7 (plvi)/) € T(p,v)TlM c T(p,v)Ma and <7> denotes
the scalar product over T,M. If S is an embedded surface in M, then the
choice of a normal vector field on S determines a lift .: S — T'M, given by
t(p) = (p,np). Consider now eq, ez a local orthonormal frame of S diagonalizing
the shape operator B of S, i. e. Be; = —D¢,n = A\;je; for ¢ = 1,2, and locally
satisfying e; X es = n. Then we have:

(tFwar)(er,ea) = war((er, De,n), (€2, De,n))
(n,eq x (—Bey) —e1 x (—Bea))
=(n,—A1 e2 X e1 + A2 €1 X €3)
=1+ X =H.

This shows in particular that, given any surface S C M, the integral of its mean
curvature can be expressed as the integral over S of the 2-form +*wy;, where
¢ is the lift of S to 7'M determined by its normal vector field. Consider now
¥: M — N a diffeomorphism between two Riemannian manifolds M and N,
and define an induced map on the unit tangent bundles ﬁ: T'M — T'N as
follows:

(dv ) ()
(@@=, @) )

&(pa v) = | ¥(p), H
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where ad stands for the adjoint map with respect to the scalar products on
T,M and Ty N. Given v € T} M, the vector (dw_l)ﬁp) (v) is orthogonal
(with respect to the metric of N) to the image under de,, of the subspace
(v)*+ € T,M. This property implies that, if t: S — M is the lift of S to T'M,
then 1[) o ¢ parametrizes the lift of ¥(S) in T*N. In particular, combining this
remark with what previously observed, we see that

/w(S)Hda:/stL)*wN’

for every embedded surface S C M and for every diffeomorphism ¢: M — N
(up to sign for the choice of the normal direction).

The claimed regularity of the term in the mean curvature will now follows
from this simple relation. To see this, let E be the subset of T' M, given by
the pairs (p,v) where p € 9CM, and v is the exterior normal direction to a
support half-space of C'M, at p. Observe that, if p lies on an atomic leaf of the
bending measured lamination with weight «, then there is a 1-parameter family
of unit tangent vectors (vy)ge[o,q] in TZ}MO satisfying (p,vy) € E. The subset E
describes a surface in the unit tangent bundle of M, which in a sense generalizes
the notion of normal bundle to the singular surface 9CMy. If exp, denotes the
geodesic flow at time ¢ on the unit tangent bundle of My, then the lifts of
the surfaces S.CM, in T'M, are parametrized by the maps t.: E — T M,
with ¢ (p,v) = exp.(p,v) (here the resulting normal vector field is the exterior
one). The lift of a fixed surface S.,CM, is €', with Lipschitz constant of
the first derivatives that a priori depends on ¢y3. However, since the geodesic
flow (exp_,)c<c, is uniformly € over the compact set T"Mo|n,. cns,, and
since exp_,: ot = t._ for all €’ < g, the Lipschitz constants of the first-order
derivatives of the lifts of surfaces S.C My are uniformly bounded in e € [0, &¢]
(observe that this is not the case if we look at the second-order derivatives of
S.C My before lifting them to the unitary tangent bundle). This remark shows
in particular that the surface E is ¥%!, and that the functions ¢, converge ¢'-
uniformly to idg as € goes to 0. Let now w; = wys, denote the natural 2-form
over the manifold 7' M, described as above. Then, by the formula we showed,

we have:
-/ Haa= [ (oo = [ ).
©¢(S:CMp) E 2

Since the maps ¢, are uniformly %!, the forms ($; o tc)*w; are L*>(%, dag)
uniformly in ¢ and smooth in ¢, for fixed area form dagp on E (area forms
on a ¢%l-surface are defined almost everywhere). In particular, by applying
again the Lebesgue’s dominated convergence theorem we see that the quantity
fw(SECMo) H da is smooth in ¢ and it converges € °°-uniformly as € goes to 0.
Finally, the first-order variation at ¢ = 0 in the statement is an immediate
consequence of the differential Schléfli formula in Proposition and the fact

that o = id. O

Proposition 2.4.4. Assume that (M;); is a 1-parameter family of convex co-
compact manifolds as above. Then we have:

(1) (0) = limy(u2)(©) = — [ ai,

e—=0
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where p is the bending measure of 0CM = 0C My and X is a geodesic lamination
containing supp p.

Proof. As already observed, we can divide the surface S.CM = S.CMj in two
regions:

e the open set S/ := 771 (OCM \ \)NS.CM (f stands for flat), namely the
portion of S.CM that projects onto the union of the interior of the flat
pieces of OCM;

e the closed set S? := r~1(\) (b stands for bent), namely the portion of
S.C'M that projects onto the bending lamination.

On the portion Stf we have an explicit description of all the geometric quanti-
ties, by Lemma In particular, we can write the integral in terms of the
hyperbolic metric on the flat parts, obtaining

/f(éL.;,][E — H.I.) da. = Z / I.,—tanhel.), or)cosh edap
S8z FCOCMo\A
:fsinhacoshs/ (01, 1)  or da,
AC Mo\

where the sum is taken over all the flat pieces F' in O0CM \ A. The variation
of the first fundamental form §I. is the restriction of ¢ = %goz‘th |t=0 to the
tangent space of S.C'M. In particular, since S.CM lies in a compact set K of
M = My, the function (1., I.). is uniformly bounded. In conclusion, we obtain

lim (0I, . — H.I.)_da. = — lim sinh e coshe / (0Ic,1.). or da = 0.
e—0 sz e—0 OCM\p

Therefore, the only contribution to lim(u})’(0) is given by SP.

For convenience, we lift our study to the universal cover m: M~ H? — M.
We will first set our notation. The convex subset C' := 7~ 1(C'M) has a metric
projection 7: H® — C. Its boundary dC is bent along the lamination A
771(\), and it is parametrized by a locally convex pleated surface f S = ]HI3
having bending locus fﬁl()\). The preimage 7~1(S?), which coincides Wlth
S.C N7 1(N), will be denoted by Sb Consider a short arc k in S with a
neighborhood U on which f is a nice embedding and set W := int(f_lf(U)) C

H3 \ C. Our actual goal is to compute

lim (1., I — H.I.), da, . (2.5)
e=0 Jywnge

We will make use of a construction described in [CEMO06, Section I1.2.4]: there
the authors illustrate an explicit way to extend the lamination A to a partial
foliation £ = L, of C, defined in the n-neighborhood (with respect its hyper-
bolic path metric) of A, for any fixed < log 3 /2. We briefly recall here the idea
of the construction. Let T be an ideal triangle in H?, and denote by U, the 7-
neighborhood of 9T in T, with 1 small. Then the region of those points in U,
that are very close to exactly two edges of T', sharing an ideal vertex v, can be
foliated using geodesic arcs asymptotic to v, while the region of those points that
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are very close to exactly one edge e of T can be foliated by equidistant curves
from e. Defining a proper extension of this foliation in the regions of transition
between these two behaviors in Uy, we can build a foliation on U, that extends
the geodesic lamination of 97'. Applying this construction to each ideal triangle
in the pleated boundary of C, we can construct the desired extension L (see
|CEMO06, Section I1.2.4] for a more precise description).

Up to taking a smaller neighborhood U of k, we can assume that f(U) C |J £
and we can choose a continuous orientation of the foliation £ N f(U). Analo-
gously to what is done in [CEMO06, Section 11.2.11], we define three orthonormal
vector fields on W as follows:

1. the first vector field v is given by the opposite of the gradient of the
distance from C

2. the second vector field E; is defined in terms of the oriented foliation
LN f(U) If p lies in W, its projection r(p) belongs to an oriented leaf
f(y) of LN f(U). We denote by w the unitary vector of T, (»H? tangent
to f (7), and we define E;(p) to be the parallel translation of w along the
geodesic arc in H® connecting r(p) to p.

3. the last vector field Fs is defined requiring that (E7, Es,v) is a positively
oriented orthonormal frame of TH® in W (assume we have fixed an orien-
tation of H® since the beginning).

Observe that the E;’s are tangent to the surfaces 5.C N W, since they are
orthogonal to the gradient of the distance. Therefore, they define two orthogonal
oriented foliations on S.C' N'W for every . Moreover, if 7(p) € A, then E(p)
is a principal direction for the equidistant surface Ssé passing through p. In
particular, we have that I.(FE;, E1) = tanhe (it is a direct consequence of the
relations in Lemma. Expanding the expression (61, I — H.I.), in terms

of this orthonormal frame over W N §g we have

(5[8,H8 — I‘[EIE)8 = —(5[8)(E1,E1)H8(E2,E2) — (5]8)(E2,E2)H5(E1,E1)
= —(0L)(Ey, B1)I(E2, E2) + O(g|k; €)-

Since the area of W N §£3 goes to 0 as € goes to 0, the integral of the term
O(g|k;¢€) in the expression (2.5) has limit 0. In the end, it remains to study

lim/ ~ (5[5)(E1,E1)I5(E2,E2) das = lim (5_[5)11(.”5)22 das .
e—0 Wﬂsg

e—=0 Wﬂgg

We denote by L1, £2 the foliations on §g N W tangent to Fy, E9, and by
d¢l, d¢? their length elements, respectively. Then we can write

/ngg(éfe)n(][a)zz da. = /Lg </Lg(616)11 df;) (II.)90 di?. (2.6)

Now it is time to see how this expression behaves in the finitely bent case.
Assume that f(U) meets a unique geodesic arc v in A with bending angle 6;.
Then, in the coordinates described in Lemma the vector fields F; and
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E5 can be written as F; = (coshe) ™19, By = (sinhe)"'95. Therefore the
following relations hold

1 9095.05) 4cos o _ coshe .
(61c)11 dl; = cosh? d(coshe s) (Ic)22 dlZ = T d(sinhe6).

where § = go. In particular, the limit as e — 0 of the expression (2.6) becomes

lim / (61.)11 el | (I2)92 d€2 = 6y / g,y de = 2// dldp.
=0 /2 \Jr1 5 Anw

To prove this relation in the general case, we make use of the standard approxi-
mations of Definition The bending measures along the arc k of the finitely
bent approximations f,, weak*-converge to p along k; the e-surfaces from the
fu’s converge € -uniformly to W N S.C; the vector fields B ,,, Fa,, and vy,
defined from the surface fn(U), converge uniformly to F;, Fs and v over all
the compact subsets of W. From these properties, the relation we proved in the
finitely bent case extends to the general one.

Finally, a suitable choice of a partition of unity on a neighborhood of the
bending lamination p, combined with Lemma proves the statement. [

Proposition 2.4.5. Assume (M;); is a 1-parameter family of convex co-compact
manifolds as above. Then there exists the derivative of Vi(My) att =0 and it

verifies
avg (M):J//dédu.
2/

Proof. The left-hand side is nothing but the limit of the incremental ratio of
the function v at t = 0. Let K, 7 be the constants furnished by Lemma [2.4.1]
We split our incremental ratio as follows:

t t t t ’

term 1 term 2 term 3

vh(t) = v5(0) Wiy (t) — ey (0) N Vicjo) (0) = vg(0)  wjepyy(8) — v5(t)

where we used the fact that u*(0) = v*(0) for all £ > 0. In Lemma
we showed that the functions u} are smooth in ¢ and that they converge € >°-
uniformly to ug as € goes to 0. Using the first-order expansion of u} at ¢ = 0
and evaluating for ¢ = K|t|, we have:

“}qt\(t) - u;ﬂt\(O)
t

= (uie) (0) + O((ugye)” (€e)i 1),

where the constant involved in the O(t) depends a priori on the value of (u*K‘ " )
in a point & close to 0. However, thanks to the ¥ *°-uniform convergence of
the functions (u})., the second derivatives (u*)” can be bounded uniformly in
e over a small neighborhood of 0, so the term O((ugjy)”(&);t) is an actual
O(t). By Proposition we conclude that the limit of the first term in the
decomposition above is equal to —3 [, dédp. In what follows we will show
that the second and third terms of the splitting of the incremental ratio are

converging to 0 as ¢ goes to 0.
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By Proposition [2.2.4] applied to the 3-manifold Mj, for every € > 0 we have

v2(s) = vg(s) = Voly, (N.CM,) — Vol (CM,) = Ol (ps), x(0CM); €%).
(2.7)
In particular, for s = 0 and ¢ = K]|¢|, this relation proves that the second term
goes to 0.
Let L > 1 be a constant so that all the diffeomorphisms ¢; are L-Lipschitz
on a large compact set in My containing the convex core C'My. It is immediate
to see that the following properties hold:

©t(N.CMy) C Nrepi(CMy) for every e > 0,
NoN.CM; C N.,.CM,; for every €', € > 0.

Applying Lemma to the 3-manifold M; and using the inclusion relations
above, we obtain the following chain:

CM; C @i(NgpCMo) € Npgpe:(CMo) € Npgg Nxt C My € Nip41yk1t)C M.

for all t € (—7, 7). All the submanifolds involved are compact convex subsets of
M, hence we are allowed to consider their dual volumes. Using the monotonicity

of Voly,,, proved in Proposition we get
05 () = Wi (6) > V{p 41y () for all t € (—7,7).

Applying this to estimate the third term, we obtain

u}qt‘(t) — v (t) > U€L+1)K\t|(t) — v (t)

0>
- t - t

(2.8)
Since the constants K and L only depend on the family ()¢, if we apply the
equation (2.7) with s =t and e = (L 4+ 1)K|t|, we get

V(i (B — v5(t) = O(@)e; b, (pe), X (OC My); £%).

Consequently, the right side in the inequality (2.8) goes to 0 as ¢ goes to 0, and
so does the third term, which concludes the proof. O

Given € ML(S), we define the length function of j as the map L, : T(S) —
R>g from the Teichmiiller space of S to R>o which associates to the hyperbolic
metric m € T(S) the length of p with respect to the metric m. The functions
L,, are real-analytic, since they are restrictions of holomorphic functions over
the set of quasi-Fuchsian groups (see |Ker85, Corollary 2.2]).

The dependence of the geometry of the convex core CM on the hyperbolic
structure of M is a subtle problem. In [KS95] the authors established the
continuity of the hyperbolic metric and the bending measure of 0CM with
respect to the structure of M. A much more sophisticated analysis, involving
the notion of Hdélder cocycles, allowed Bonahon to describe more precisely the
regularity of these maps, as done in [Bon98b|. In the following, we recall a
parametrization result from |[Bon96|, which was an essential tool in the study
of [Bon98b].

Fixed a maximal lamination A on a surface S, we say that a representation p
of m1(S) in Iso™ (H?) realizes A if there exists a pleated surface f with holonomy
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p and pleating locus contained in A. Let R(\) be the set of conjugacy classes
of homomorphisms realizing A, which is open in the character variety of 71 (5)
and in bijection with the space of pleated surfaces with bending locus A, up to
a natural equivalence relation. [Bon96, Theorem 31| describes a biholomorphic
parametrization of R(\) in terms of the hyperbolic metric and the bending
cocycle of the pleated surface realizing p € R(A). In particular, we denote
by ¥x: R(A) — T(S) the map associating to [p] the hyperbolic metric of the
pleated surface with holonomy p.

Now, let M be a hyperbolic convex co-compact manifold. Denote by QD (M)
the space of quasi-isometric deformations of M, and by R(OC M) the represen-
tation variety of 71 (0C M) in Iso™ (H?). We have a natural map R: QD(M) —
R(OC M) which associates to a convex co-compact hyperbolic structure M’ on
M the conjugacy class of the holonomy [p'] of 9CM’. If A is a maximal lamina-
tion of OC' M’ extending the support of the bending measure of 9CM’, then )
is defined on a open neighborhood of [p'], therefore we are allowed to consider
the map 1 o R. The result of [Bon98b| we need is the following:

Theorem 2.4.6 (|Bon98b, Theorem 1|). Let M be a hyperbolic convex co-
compact manifold and denote by QD(M) the space of quasi-isometric deforma-
tions of M. Then the map Q: QD(M) — T(OCM) associating to the structure
M’ the hyperbolic metric on OCM’, is continuously differentiable. Moreover,
giwen any mazximal lamination extending the support of the bending measure of
CM', the differential of Q at M’ coincides with the differential of the map yoR
at M.

We are finally ready to prove the variation formula for the dual volume of
the convex core of a convex co-compact hyperbolic manifold:

Theorem Let (My); be a smooth 1-parameter family of quasi-isometric hy-
perbolic convex co-compact manifolds, with My = M. Denote by u € ML(OCM)
the bending measure of the convex core of M and let t — my € T(OCM) be the
family of hyperbolic metrics m; associated to the boundary of the convex core
CM,; at the time t. Then the dual volume of the convex core Vi(M,;) admits
derivative at t = 0, and it verifies

AVg (M) = —= dL,, (m).

Proof. By Proposition the derivative of V(M) at ¢ = 0 exists and it
coincides with lim,(u})’(0). By Proposition [2.4.4] we have the equality

) 1 i
v (M) = _i/A didy,

where A\ = supp p. By Theorem given a maximal lamination A containing
A = supp i, the variation of the hyperbolic metric 7, of the pleated surface
in M; realizing A\ coincides with the variation of the hyperbolic metric m; on
the boundary of the convex core CM;. By definition, the quantity [[ dédu
coincides with %Lu(rhtﬂt:o. Therefore, we obtain that

dL, (m)://Adéd/h

which proves the statement. O



Chapter 3

The dual volume of quasi-
Fuchsian manifolds and the
Weil-Petersson distance

Outline of the chapter

The aim of this Chapter is to prove Theorem [B, which we recall here for conve-
nience:

Theorem [B. There exists an explicit positive constant C' =~ 7.3459 such that,
for every quasi-Fuchsian manifold M homeomorphic to ¥ X R, we have

VE(M)| < C (g =12 dwp(m™ (M), m* (M),

where V(M) denotes the dual volume of the convex core CM of M, and m™ (M)
are the hyperbolic structures on the upper/lower components of CM.

Before describing the structure of the chapter, we remark some consequences
and observations concerning this statement. The dual volume and the hyper-
bolic volume of the convex core differ by the term %L, (m), which is bounded
by 67|x(X)|, as shown in [BBB19]. Moreover, the structures m* (M) and the
conformal structures at infinity ¢* (M) of M are at bounded Weil-Petersson dis-
tance from each other, by the works of Linch |Lin74| and Sullivan [Sul81b| (see
also Epstein and Marden [CEMOG6, Part I1]). Therefore, Theorem B can be used
to give an alternative proof of Brock’s upper bound in [Bro03| and to exhibit
explicit constants satisfying the inequality, with a fairly simple argument.

Our way to proceed is analogous to the one used by Schlenker [Sch13] to ob-
tain a bound of the renormalized volume Vi (M) in terms of the Weil-Petersson
distance between the conformal structures at infinity of M. The key ingredients
in the work [Sch13] are the variation formula of the renormalized volume Vg (M)
and the Nehari’s bound of the norm of the Schwarzian derivative of the complex
projective structures at infinity of J,, M. In particular, the author showed that,
for every quasi-Fuchsian manifold M, we have:

Ve(M) <3vr(g = D)'? dwp(ct (M), ¢ (M)). (3.1)

57
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We remark that the multiplicative constant C' appearing in our statement is
larger than the one obtained using the renormalized volume, 3/7 ~ 5.3174 <
7.3459 =~ C'. Therefore, the inequality is more efficient in terms of coarse
estimates.

Nevertheless, Theorem [B carries more information than its implications con-
cerning the coarse Weil-Petersson geometry, in particular when we consider
quasi-Fuchsian structures that are close to the Fuchsian locus. In this case,
Theorem B and the inequality furnish complementary insights, since they
involve the Weil-Petersson distance between the hyperbolic structures, on one
side, and the conformal structures at infinity on the other. Moreover, Proposi-
tion [3.2.4] and its application for the bound of the dual volume show that the
multiplicative constant in Theorem [B can be improved if we have a better con-
trol of L, (m) than the one from [BBB19|, exactly as the inequality can
be improved if we have a better control of the L°°-norm of the Schwarzian at
infinity than the Nehari’s bound.

The chapter is organized as follows. In Section we recall the description
of the tangent and cotangent bundles of the Teichmiiller space 7 (X) of a surface
¥, first using Beltrami differentials and holomorphic quadratic differentials, and
afterwards, following |Tro92|, using traceless and divergence free (also called
transverse traceless) symmetric tensors. The Section ends with a simple Lemma
describing the relation between the two equivalent interpretations and between
their natural norms.

Section[3.2]is dedicated to the proof of Proposition[3.2.4] in which we produce
a uniform bound of the differential of L,: 7"(X) — R, the hyperbolic length
function of a measured lamination g over the Teichmiiller space. This is the
main "quantitative" ingredient for the proof of Theorem [B. The proof proceeds
as follows. We represent a variation of hyperbolic metrics m as the real part of a
holomorphic quadratic differential ¢q. Using standard properties of holomorphic
functions, the pointwise norm of ¢ at x can be bounded by the LP-norm of ¢
over some embedded geodesic ball in X centered at x. The variation of L, can
be expressed as an integral over the support of u of the product of the variation
of the length measure of 7 times the transverse measure of . Then the result
will follow using the pointwise estimation and a Fubini’s exchange of integration
over a suitable finite cover of X.

In Section we obtain a uniform control of the differential of V%, the dual
volume of the convex core function over the space of quasi-Fuchsian manifolds,
in terms of the norm of the variation of the hyperbolic metrics on dC M. To do
so, we will apply the works of Bridgeman, Canary, and Yarmola [BCY16| and
Bridgeman, Brock, and Bromberg |[BBB19|, which give universal controls of the
bending measure of the convex core. These results are to the dual volume as the
Nehari’s bound of the norm of the Schwarzian derivative is to the renormalized
volume (the bounds obtained in |[BBB19| are actually proved using Nehari’s
bound). The dual Bonahon-Schlifli formula (Theorem [A) relates the variation
of V& with the differential of the length of the bending measured lamination, and
the mentioned universal bounds combined with Proposition will produce
the desired control of dV{ (see Corollary .

In Section we will finally give a proof of Theorem [Bl Contrary to what
happens for the conformal structures at infinity, the hyperbolic structures on
OCM are only conjecturally thought to give a parametrization of the space of
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quasi-Fuchsian manifolds. Because of this, proving Theorem [B from Corollary
3.3.6] is not as immediate as it is for the renormalized volume using its varia-
tion formula. Our procedure to overcome to this difficulty passes through the
foliation of hyperbolic ends by constant Gaussian curvature surfaces ¥y, with
k € (—1,0), and the notion of landslide, which is a "smoother" analogue of
earthquakes between hyperbolic metrics on ¥ introduced by Bonsante, Mon-
dello, and Schlenker [BMS13] (see also [BMS15|). By the work of Schlenker
|[Sch06] and Labourie |[Lab92a|, the data of the metrics on the surfaces ¥ pa-
rametrize the space of quasi-Fuchsian manifolds (see T heorem. Therefore,
the strategy will roughly be to:

i) approximate the dual volume of the convex core V(M) by the dual volume
of the region enclosed by the k-surfaces of M, which we denote by V;*(M);

ii) prove that the differentials of the functions V;* converge to the differential
of V% as k goes to —1, i. e. as the surfaces ¥ get closer to the convex
core CM;

iii) use the parametrization result for the metrics of ¥ to deduce the state-
ment of Theorem |E via an approximation argument.

For point (ii), which is the most delicate part of our argument, we will highlight
a connection between the differential of the functions V' and the infinitesimal
smooth grafting, introduced in [BMS13|. As described by McMullen [McM98§],
the earthquake map can be complexified using the notion of grafting along a
measured lamination. In the same way the landslide admits a complex extension
via the smooth grafting map. Moreover, the complex earthquake can be actually
recovered by a suitable limit of complex landslides. Using this convergence
procedure, we will be able to show that dV is the limit of the differentials dV}},
in the sense described by Proposition The rest of the proof of Theorem
B will be an elementary application of the results from the previous section,
similarly to what done in [Sch13| for the renormalized volume.

3.1 The Weil-Petersson metric

In the following, we will recall the definition of the Weil-Petersson Rieman-
nian metric on the Teichmiiller space (see Section for the definition of the
Teichmiiller space).

Let X be a Riemann structure on X. A Beltrami differential on X is a (1,1)-
tensor v that can be expressed in local coordinates as v = n 9, ® dz, where n
is a measurable complex-valued function. If h = p|dz|2 is the unique hyperbolic
metric in the conformal class ¢, then for any p € [1,00) we define the LP-norm
of the Beltrami differential v = n 9, ® dz to be

1/p
Wl = ( [ nPpasar)

When p = oo, we set ||v|| 5 = esssupy|n|. We will denote by B(X) the
space of Beltrami differentials of X with finite L°°-norm. Observe that the
norm ||-|| 5 , on B(X) is induced by the hermitian scalar product

<V7M>372 = /Zﬁm Pdffd%
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where v =n 9, ® dZ and p =m 0, ® dz.

A holomorphic quadratic differential on X is a symmetric 2-covariant tensor
that can be locally written as ¢ = f dz?, where f is holomorphic. In analogy to
what was done above, for every p € [1,00) we define the LP-norm of ¢ to be

Hii e
lallg, = (/E e dxdy) .

When p = oo, we set ||q||g ., = ess supy |f[/p. When p = 2, the norm |||, ,
is induced by a scalar product, defined as follows:

(0.4 g0 = /Z % dzdy.

There is a natural pairing between the space of bounded Beltrami differen-
tials B(X) and the space of holomorphic quadratic differentials Q(X): given
a Beltrami differential v = n 0, ® dz and a holomorphic quadratic differential
q = fdz?, we define

(q,v) ::/Efndxdy.

A Beltrami differential v € B(X) is harmonic if there exists a holomorphic
quadratic differential ¢ = fdz* such that v = f /p 0. ® dz. We denote by
Bp(X) the space of harmonic Beltrami differentials on X.

Let N(X) be the subspace of B(X) of those Beltrami differentials v verify-
ing (¢,v) = 0 for every ¢ € Q(X). As described in |GLO0|, the space Bp(X)
and N(X) are in direct sum, and the quotient of B(X) by the subspace N (X)
identifies with the tangent space to the Teichmiiller space Tx T (%) (here we
denote by X the isotopy class of the conformal structure, with abuse). More-
over, the pairing (-,-) determines a natural isomorphism between the dual of
TxT¢(X) and the space of holomorphic quadratic differentials Q(X), which is
consequently identified with the cotangent space T% T ¢(2). The scalar product
gwp on TxT¢(X) induced by Re(:,-) 5 , defines the Weil-Petersson metric of
the Teichmiiller space T¢(X), and Re(-, i) 0.2 determines the corresponding met-
ric on the cotangent bundle to Teichmiiller space. The skew-symmetric bilinear
form wwp := Re(:,i-) g , is actually a symplectic structure, i. e. dwwp = 0 (see
e. g. [ALI61]) or, in other words, the complex manifold (T%(X), gwp, wwp) is
Kahler.

Lemma 3.1.1. For every q € Q(X) we have:

_ (g, )| (g, V)]
||QHQ,2 = sup o sup .
veBx\0} Wlga vem.cxngoy  IVIBa

Proof. By the Cauchy-Schwarz inequality we have [(q,v)| < ||qllg ol[V[ 5 o, With

equality realized by the harmonic Beltrami differential v, which satisfies (q, ) =
2 2
lallg 2 = Vgl 5- Therefore we get:

lalgn> swp AL o, @Vl

> llgllg.2-
veBx\0y  Wlg2 ~ veBnnioy  IYllp2 @2

The first inequality holds because of Cauchy-Schwarz, the second one because
B (X) C B(X), and the last one by taking v = 1. O
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We recall now the Riemannian description of the Teichmiiller space as de-
veloped in |Tro92]. Let S?(X) be the bundle of symmetric 2-tensors on %, and
let T'(S?(X)) denote the space of its smooth sections, which is an infinite di-
mensional vector space. The space M of smooth Riemannian metrics on X
identifies with an open convex subset of I'(S?(X)). Therefore, given any Rie-
mannian metric g on ¥, the tangent space TyM is canonically isomorphic to
I'(S?(¥)). The metric g determines a scalar product on T, M, which can be
expressed as (0,7), = g*g1" a1, for o, 7 in T(S?(¥)). The norm induced
by this scalar product will be denoted by ||a||§ = (0,0),. Given o € r(s3(x)),
we define the g-divergence of o to be the 1-form (div, 0)(V) := try (Vo) (%, V),
for any V tangent vector field to ¥. Now we set

S2(%,9) == {h € T(S*(X)) | o is g-traceless and div, o = 0}.

An element of S% (3, g) is usually called a tranverse traceless tensor (with respect
to the metric g). As shown in [Tro92|, every element of SZ (3, g) can be written
(uniquely) as the real part of a holomorphic quadratic differential ¢ € Q(X, [g]),
and vice versa for every ¢, the tensor Req belongs to S (3, g). In particular,
the space S%(3, g) depends only on the conformal class of the metric g. If g is
a hyperbolic metric, then S% (X, g) is tangent to the space M _; of hyperbolic
metrics on X, and it is transverse to the orbit of g by the action of the group
of diffeomorphisms isotopic to the identity. Therefore, the tangent space of the
Teichmiiller space at the isotopy class of g can be identified with SZ (3, g).

For any open set 2 C ¥ and any p € [1,00), the Fischer-Tromba p-norm of
o € SZ(,g) is defined as

1/p
TP ( / ||a||§;dvolg) ,

where dvoly is the area form induced by g. When p = oo, we set ||0|| pr 1 () =
supg, [|h[],. If @ =X, we simply write ||-[|pp -
Let now m be a point of the Teichmiiller space, and let g be a hyperbolic

metric in the equivalence class m, with associated Riemann surface structure
X.

Lemma 3.1.2. The vector spaces By (X) and S%(X, g) are identified to Tx T (%) =
T TO(X) through the linear isomorphism

Bu(X) — Si(%,9)
Vg —  2Regq.

Moreover, for every q € Q(X) we have

1
v = ——||2Re .
I#4ll5,, = 5512 Redler,

Proof. Let g; = pt|dzt|2 be a smooth 1-parameter family of Riemannian metrics
on X, with go = ¢, and let ¢ = f dz? be a holomorphic quadratic differential
on the Riemann surface X = (¥, [g]). If we require the identity map (3, g) —
(%, g¢) to be quasi-conformal with harmonic Beltrami differential

o ._tf

tq = % 820®d20,
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then the Riemannian metric g; can be expressed as

’ f
Re < dz02> +O(t?).
Po

azt

dz0

8Zt

2
2 dzo | 4 2t
820 | ZO| + Pt

gt = Pt

Therefore the first order variation of g; at ¢t = 0 coincides with

(4
g = dtpt

The quantity ¢ identifies with a tangent vector to the space M of Riemannian
metrics over X at the point g. The first term in the expression above is conformal
to the Riemannian metric g, hence it is tangent to the conformal class [g] C M.
The remaining term 2 Re ¢ is a symmetric, g-traceless and divergence-free tensor,
so it lies in the subspace S%(X, g) of T, M.

The computation above proves that the harmonic Beltrami differential v,
seen as an element of Tx7*(X), corresponds to 2Req € S3(%,9) 2 T,, T ().
Finally, an explicit computation shows the relation between the norms |||z,

and ||| o,

2

Oz
620

|dzo|2> +2Req.
t=0

3.2 A bound of the differential of the length

Let ML(X) denote the space of measured laminations of ¥ (see Section [L.2.2]
and Section for the definition of this notion). The aim of this section is to
produce, given u € ML(X), a quantitative upper bound of the differential of the
length function L, : 7"(3) — R, which associates to every class of hyperbolic
metrics m € 77 (%) the length of the m-geodesic realization of . This estimate
is the content of Proposition which will be our main technical ingredient
to produce the upper bound of the dual volume in terms of the Weil-Petersson
distance between the hyperbolic metrics on the convex core of a quasi-Fuchsian
manifold.

We briefly sketch the structure of this section: Lemma describes a
natural way to express the differential of L, applied to a first order variation of
hyperbolic metrics g. Lemma|3.2.2| uses the properties of holomorphic functions
to bound the pointwise value of a holomorphic quadratic differential at z € %
with its LP-norm on the ball centered at x. Then Proposition will follow
by selecting a first order variation ¢ in SZ (X, g) and then carefully applying the
bound of Lemma [3.2.2|in the expression found in Lemma [3.2.1

Let m € T%(%) and p € ML(Z). Given a hyperbolic metric g in the
equivalence class m, we identify the measured lamination p with its g-geodesic
realization inside (X,g). If A\ is a g-geodesic lamination of ¥ containing the
support of u, we can cover A by finitely many flow boxes o;: I x I — B;, where
I = [0,1] and o¢; is a homeomorphism verifying 0‘;1()\) = D; x I, for some
closed subset D; of I. We select also a collection {¢; }; of smooth functions with
supports contained in the interior of B; for every j, and such that ) ;&G =1
over A. Since the arcs o;(I x {s}) are transverse to )\, it makes sense to integrate
the first component of ¢; with respect to the measure . We set the length of
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w with respect to m to be the quantity

Lum) =3 [ [ oy ) dn ),

where d{(s) = [|050;(p, s)||,ds. More generally, given a measurable function f
defined on a neighborhood of A, we define

//Afdzd” :ZZ/Dj /Olfj(aj(pa'))f(Uj(pr))dﬁ(-)du(p),

The quantity L,(m) does not depend on the choices we made of o}, &; and the
hyperbolic metric ¢ in the equivalence class m € T9(X) (see e. g. |Bon96|).
Therefore, any measured lamination i of ¥ determines a positive function L,
on the Teichmiiller space 77(X), which associates to any m € 77(X) the length
of the geodesic realization of p in m.

Similarly, if (g¢); is a smooth 1-parameter family of hyperbolic metrics on
>, with go = g and gg = g, we set

) ._1 ' (o . g(asdj(p,-),asaj(p7~)) .
Jf aran= Z/D/ S 0,000,000,y O

Lemma 3.2.1. Let p be a measured lamination of ¥, and let (my); be a smooth
path in T"(X) verifying mo = m and rhg = 1m € T,, TV (X). Then we have

(L), i) = [ dia,

where ff)\ dldu is defined as above by selecting a smooth path t — g, of hyper-
bolic metrics representing t — my.

Proof. First we prove the statement when p is a weight 1 simple closed curve ~
in 3. Let v;: [0,1] — X denote a parametrization of the geodesic representative
of v with respect to the hyperbolic metric g;, which can be chosen to depend
differentiably in ¢. Then the length of 4; with respect to the metric g; can be

expressed as
1
L (my) = / 0 (®) ds.
0

Now, by taking the derivative of this expression in ¢ and using the fact that
V4o = 0 (with V being the Levi-Civita connection of gg), we obtain that

d

_ 1t go((s), ()
Lm) =5 =00

=0 2Jo Vg0(75(5),75(s))

which coincides with the quantity | fv dfdp. By linearity we deduce the state-
ment for any rational lamination p =, a;v;.

Now, if i is a general measured lamination, we select a sequence of rational
laminations (f, ), converging to x. As shown in [Ker85|, the functions L, are
real analytic over 79 (%) and they converge in the €' >*-topology on compact sets
to L,. In particular the terms d(Ly,),, (1) converge to d(L,), (). Since the
expression f f A dé dp can be proved to be continuous in the measured lamination
uw € ML(Y), the statement follows by an approximation argument. O
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Before stating Lemma we define for convenience the following quanti-
ties: for every p € [1,00) and r > 0, we set

2p—1 (cosh(r/2))®=2 \'?
1) ' (3.2)

C =
(r.) ( 47 (cosh(r/2))4r—2 —
When p = oo, we define C(r, 00) := 1 for every r > 0.

Lemma 3.2.2. Let (3,g9) be a hyperbolic surface. Given x € ¥ and r <
injrad,(x), we denote by B,(z) the metric ball of radius r centered at x € X.
Then, for every p € [1,00] and for every holomorphic quadratic differential on
(3, [g]), we have

[Req(z)| < C(r,p) [Re |l pr o (5, (2))-

where |[Re q(z)|| is the pointwise norm of the tensor Req at x.

Proof. If p = oo, the statement is clear. Consider p < co. By passing to the
universal cover, we can assume the surface to be A = {z € C| |2|] < 1} and =
to be 0 € A. The hyperbolic metric of A is of the form

2
2 2
ga= | ——= | |dz|7,

where z € A is the natural coordinate of A C C. In what follows, we will denote
by ||-|| the norm induced by the hyperbolic metric, and by ||-||, the one induced
by the standard Euclidean metric |dz|2.
If ¢ = fdz? is a holomorphic quadratic differential, then for any p€(0,1)
the residue theorem tells us that
0= [ 1&g,

2mi Jopr  Z
P

where BY = BJ(0) = {z € A | |z| < p} (here E stands for "Euclidean"). In
particular we have

p 2m

10r < (52 [ Weeao) <o [Tiseena, e

27 0

where in the last step we used the Hélder inequality. At z = pe®?, the hyperbolic
norm of Re¢(z) can be expressed as follows:

IRea(a)l = 5loe)| (12)  lla=,

It is easy to check that the metric ball B, centered at 0 with respect to the
hyperbolic distance coincides with Bfmh(r /2> and that the hyperbolic volume

form dvol is given by p(2/(1 — p?))? dpdf. Combining all these facts, if we mul-
tiply the inequality (3.3) by p(2/(1 — p?))?~2P and we integrate in fotanh r/2 dp,
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we deduce that

) P tanhr/2 ) 2-2p p2rm —
[ rearaoi =22 a2 [ ((25) 0 [ et aa
B, 0 —p 0

tanhr/2
> 2| f(O)F 277272 D)[dz2 |0 / p(1—p*)*P~Vdp
0

p 1 !
= 47||Re ¢(0)]] 2 — 1 <1 - (cosh(T/Q))4p2)

= O(r,p) 7P| Req(0)|,

which proves the assertion. O]

We state here another useful fact that we will use in the proof of Proposition

3.2.4

Lemma 3.2.3. Let (X, g) be a hyperbolic surface and let p be a measured la-
mination on ¥. Then, for every L'-function f: N,.(u) — R defined on the r-
neighborhood of p in %, we have

///\ (/BT(') fdvolg) dedp :/z <//)\F1B,,,(») dédu> f dvol, .

Proof. Assume that p is a 1-weighted simple closed curve v: [0,1] — 3, and
let f denote the extension of the function f to X verifying f(z) = 0 for all
x € L\ Ny(7). We set £: 32 — R to be the function taking value &(z,y) = 1
if the distance between x and y is less than r, and £(z,y) = 0 otherwise. Then
the integral on the left can be expressed as

/ /f (t)) dvoly(x) de(t) .

Applying Fubini’s theorem we obtain

/ / @ }) dvol, () de(t) = /E /O " £ 2(1)) d6(t) F) dvol, (2)
- /E ( L I(BT(m))df(t)> F() dvol, (x).

The last term coincides with the right term of the equality in the statement
in the case 4 = . By linearity we deduce the statement when p a rational
lamination, and by continuity of the two integrals in the statement with respect
to p we obtain the result for any general measured lamination. O

Let m € T9(2) and p € ML(E), and select a hyperbolic metric g in the
equivalence class m. If (3, g) denotes the universal cover of (X, g), we define

D(m, p,r) := sup // dldp < oo.
zes ANB;-(Z)

where A denotes the support of the measured lamination fi. In other words,
D(m, p,r) is the supremum, over the points Z in the universal cover X, of the
length of the portion of fi contained in the ball centered at & of radius r.
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Proposition 3.2.4. For any r > 0 and for any p € [1, 00] we have
’d(Lu)m (m)’ < Lu(m)l/p C(r,p/) D(mvl’é’r)l/p HVHB,p”

where p and p' are conjugate exponents, i. e. % + 1% =1, and v denotes the

harmonic Beltrami differential representing the tangent direction i € T, T9(X).
In particular, for p = 2, we have

14(L) .5 < COn2)\/Lu(m) D).

Proof. As described in [Tro92|, there exists a unique symmetric transverse-trace-
less tensor o € S3(X, g) representing the tangent vector 1 € T, 7" (%), which
is of the form Re ¢ = o for some holomorphic quadratic differential ¢ on (%, [g]).
We start by making use of Lemma From the definition of [, \ d¢dp and

the inequality |o(v,v)| < %HJHgHng, we see that

|d(L,),, ()| = ’/Adédu‘ < %/AHUHQdﬁdM.

By applying the Holder inequality on the right-side integral, we get

), 0] < o [[ ol v < B ([ oy deu)l/p/(é .

Now we estimate the integral [, [|o|/" " dp by lifting it to a suitable covering

of ¥, and then applying Lemma More precisely, let (£,§) = (X, g) be a
N-index covering so that injrad(X, §) > r, for some N € N. We denote by e the
lift of the object e on X. It is immediate to check that the following relation

holds )
pl o N pl ~ N
J[ el atau =5 [[ 161 aia.

Then, by applying Lemma on the surface (3, ) and at each point & € A,

we get
ol acdn =~ ([ 112 aia;
A all, W= N /s all; i
C(T7p/)p/ A p/ 2 1A
S N //5\ HO-HFT,LP'(BT,(»)) dﬁd,u
C(r,p")¥ // / 1 df
= — o||s dvols | dédf .
N 5\ BT() || ||g g

Using Lemma and the definition of D(m, p,7), we obtain

// (/ ||&||g’dvolg> dédﬂ:/ (// déd,z> 612 dvol,
A\IB-() b ANB.()
SD(m,M,r)[ 1612 dvol,
b

=N D(m,/ﬁﬂ") HUH%T,p”



3.3. THE DIFFERENTIAL OF THE DUAL VOLUME 67

where, in the last step, we are using again the fact that (X,¢9) — (f], g)isa N-
index covering. Combining the last two estimates, we obtain

/ / ol dedu < Cr,p)y" Dm, 1) ol (3.5)

Using the inequalities (3.4) and (3.5), we have shown that

: Ly (m)"/? C(r,p') D(m, p,r)"/"
|d(Ly),, ()] < = 2v3 ol prp-

Finally, by applying Lemma |3.1.2] we obtain
|A(L),,, (70)| < Lyu(m) /2 O, ') Dam, )P [0 -

The last assertion follows from the estimate we just proved for p = 2 and from

Lemma B.1.1] O

3.3 The differential of the dual volume

Let V4 : QF(X) — R denote the function that associates, to each quasi-Fuchsian
manifold M homeomorphic to ¥ x R, the dual volume of its convex core (see
Section for the definition of dual volume). The aim of this section is to
produce a uniform bound of the differential of V4 in terms of the Weil-Petersson
norm of the variation of the hyperbolic metric on the boundary of the convex
core.

An immediate consequence of Proposition and Theorem [A] is the fol-
lowing:

Proposition 3.3.1. Let (M;); be a smooth 1-parameter family of quasi-Fuch-
sian manifolds, with M = My. Then for every r > 0 and for every p € [1, 0]
we have

Ve (V)] < 5 Lu(m) /7 Crp') D, )7 (] g,

DN =

where C(r,p") and D(m, u,r) are the constants defined in the previous section,
p and p’ are conjugated exponents, and v denotes the harmonic Beltrami differ-
ential representing the variation of the hyperbolic metric of the boundary of the
convez core of M.

Let M be a quasi-Fuchsian manifold, obtained as the quotient of the hyper-
bolic space H? by the action of a discrete and torsion-free subgroup of isometries.
As described in Section the lift of the boundary of the convex core of M
to H3 is the union of two embedded locally bent pleated planes H*. This prop-
erty turns out to determine uniform upper bounds of the quantities L,,(m) and
D(m, u,r) appearing in the statement of Proposition The first results in
this direction have been developed by Epstein and Marden in [CEMO06, Part II].
In our exposition, we will recall and make use of the works of Bridgeman, Brock,
and Bromberg [BBB19| and Bridgeman, Canary, and Yarmola [BCY16|, which
will give us separate bounds for L,(m) and D(m, u,r), respectively. We will
also require r to be less than In(3)/2. This restriction simplifies our argument
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in the proof of Corollary However, we do not exclude the possibility that
a joint study of the quantity Lu(m)l/pD(m,uﬂ“)l/p/ and a careful choice of r
might improve the multiplicative constants obtained here.

First we focus on the term D(m, u1, 1), which we defined before the statement
of Proposition Let A denote the geodesic lamination in D given by the lift
of the support of the measured lamination u. Let @ be a component of ¥\ A
and let Iy, I, I3 be three boundary components of Q). We will use the following
fact:

Lemma 3.3.2 (|CEMO06, Corollary 11.2.4.3]). Letr < In(3)/2 = arcsinh(1/v/3),
and suppose we have a point x € Q which is at distance < arcsinh(e™") from
both lo and l3. Then its distance from ly is > r.

Following |BCY16|, given ji a measured lamination on H?, we denote by
Iz, the supremum over « of the transverse measure of ji along ¢, where «
varies among the geodesic arcs in H? of length s > 0 which are transverse to
the support of f.

Theorem 3.3.3 (|[BCY16]). Let s € (0,2arcsinh1) and let i be a measured
lamination of H? so that the pleated plane with bending measure [i is embedded
inside H®. Then

|||, < 2arccos (—sinh(s/2)).

Corollary 3.3.4. Let p € ML(X) and m € T"(X) be the bending measure
and the hyperbolic metric, respectively, of the boundary of an incompressible
hyperbolic end inside a hyperbolic convex co-compact 3-manifold. Then for every
r < In(3)/2 we have

D(m, p,7) < 4rarccos (—sinhr).

Moreover, for every e > 0 there exists m. € TY(X) and p. € ML(X) as above
verifying
D(me, pre,r) > 2(m —e)r  Vr>0.

Proof. Let g be a hyperbolic metric in the equivalence class m € T9(X). We
denote by (i §) — (2, g) the Riemannian universal cover of (X, g) and by X the
support of the lift i of the measured lamination p to Y. Given a point Z in ¥
and a positive r < In(3)/2, we are looking for an upper bound of the length of
N B.(Z), where B,(Z) denotes the metric ball of radius r at Z.

The convenience of considering r < In(3)/2 comes from Lemma [3.3.2} under
this hypothesis, any plaque Q of A at distance less than r from z has at most
two components of its boundary intersecting B,.(z). A simple argument proves
that, if this happens, we can find a geodesic path « of length < 2r that intersects
all the leaves of A N B,.(Z). Each leaf of A N B,.(Z) has length < 2r, therefore
the length of i N B,(Z) is bounded by 2r (the length of each leaf) times the
total mass fi(«), which can be estimated applying Theorem with s = 2r <
In3 < 2arcsinh 1. This proves the first part of the statement|'|

For what concerns the last part of the assertion, we fix a simple closed curve
~ and we assign it the weight 7 — . By the work of Bonahon and Otal [BO04],
we can find a quasi-Fuchsian manifold M, realizing (r — €)y as the bending

1See Remark[3.3.8.
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lamination of the upper component of the boundary of the convex core 9+ CM..
It is immediate to check that, if m. is the hyperbolic metric of 8*CM,, then
D(mg, pe,r) > 2(m — &)r for all r > 0. O

For the bound of the term L, (m), we will apply the following result:

Theorem 3.3.5 (|[BBB19, Theorem 2.16]). Let u € ML(X) and m € T(%)
be the bending measure and the hyperbolic metric, respectively, of the boundary
of an incompressible hyperbolic end inside a hyperbolic convexr co-compact 3-
manifold. Then

Ly (m) < 67[x(2)].

Finally, given p € (1,00) and r < In(3)/2, we set

K(r,p) = %(24@1/1) C(r,p') (4r arccos(— sinh r))'/?

’ 1/p’
1 1/p (20" =1 (cosh(r/2))* 2 )
= 5(247r) ( T Tcosh(r/2)) W2 1 r arccos(— sinh r) ,

where C(r,p’) was defined in equation (3.2), and p’ is the conjugate exponent
of p. We define also

rarccos(— sinh )
2 tanh?(r/2)

Corollary 3.3.6. In the same notations of Proposition for every p €
[1,00] we have

K(r,1) =12, K(r,00) =

Ve < Kp)g = 171Vl

where K(p) := K(In(3)/2,p) and v denotes the harmonic Beltrami differential
representing the variation of the hyperbolic metrics on the boundary of the convex
core 0CM of M. We have in particular that K(2) =~ 10.3887.

Proof. We combine Proposition [3.3.1] Corollary and Theorem [3.3.5]on the
upper and lower components of 0CM = dC M, and then we take the limit as
r goes to In(3)/2. O

We can compare this statement with the analogous bound for the differential of
the renormalized volume:

Theorem 3.3.7 (|Sch13|). Let Vg: QF(X) — R denote the function associating
to each quasi-Fuchsian manifold M its renormalized volume Vgr(M). Then for
every p € [1,00] we have

AV (M) < H(p)(g = D)'l1éll g,

where ¢ denotes the variation of the conformal structures at infinity of M, and

H(p) = ()17

Remark 3.3.8. From the first part of the proof of Corollary it is clear that
our estimate of the constant D(m, p,r) is far from being optimal. However, using
the second part of the assertion, it is easy to see that the possible improvement of
the constant K (2) is not enough to make the multiplicative constant in Theorem
|E to be less than 31/7, which is the one appearing in the analogous statement
for the renormalized volume. Because of this, we preferred to present a simpler
but rougher argument.
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3.4 Dual volume and Weil-Petersson distance

This section is dedicated to the proof of the linear upper bound of the dual
volume of a quasi-Fuchsian manifold M in terms of the Weil-Petersson distance
between the hyperbolic structures on the boundary of its convex core C'M.
As we mentioned in Section the data of the hyperbolic metrics of 0CM
is only conjectured to give a parametrization of the space of quasi-Fuchsian
manifolds, contrary to what happens with the conformal structures at infinity.
In particular, the same strategy used in |Schl3] to bound the renormalized
volume cannot be immediately applied.

In order to overcome this problem, we will take advantage of the foliation
by k-surfaces of M \ CM, described in Section (see also Remark [3.4.9).
The space of hyperbolic structures with strictly convex boundary on ¥ x [0, 1] is
parametrized by the data of the metrics on its boundary, as proved in [Sch06].
In particular, the Teichmiiller classes of the metrics of the upper and lower k-
surfaces parametrize the space of quasi-Fuchsian structures of topological type
Y xR (see Theorem[3.4.1). Moreover, the first order variation of the dual volume
of the region M}, encosed between the two k-surfaces is intimately related to the
notion of landslide, which was first introduced and studied in [BMS13|, [BMS15|.
This connection will be very useful to relate the first order variation of V(M)
and of V(M) := Vol*(My), as k goes to —1, allowing us to prove Theorem
[B using an approximation argument, together with the bounds obtained in the
previous Section.

3.4.1 Constant Gaussian curvature surfaces

In every quasi-Fuchsian manifold M, the subset M \ CM has exactly two con-
nected components ET and E~, each of which is homeomorphic to 3 x (0, c0)
(these are the hyperbolic ends of M, as in Definition . By Theorem m
the sets EF are foliated by k-surfaces (XF), with k that varies in (—1,0). The
surfaces Zf approach the pleated boundaries 9 CM of the convex core of M
as k goes to —1, and the conformal boundaries at infinity £ M as k goes to 0.

We denote by mkjE (M) € T"(2) the isotopy classes of the hyperbolic metrics
(k) I ,;t, where I ,;t is the first fundamental form of the upper/lower k-surface
¥if of M. Then for every k € (—1,0) we have maps

T.: QF(X) —  THZ)xTHE)
M — (mf(M),mg (M)).

The family of functions (T})x is clearly related to the maps 7' and B that we
introduced in Section As k goes to —1, Tp(M) converges to T(M), and
as k goes to 0, Tx(M) converges to B(M). The convenience in considering
the foliation by k-surfaces relies in the following result, based on the works of
Labourie [Lab92a] and Schlenker [SchO06]:

Theorem 3.4.1. The map T}, is a €*-diffeomorphism for every k € (—1,0).

Proof. Let (N,0N) be a compact connected 3-manifold admitting a hyperbolic
structure with convex boundary. Schlenker [Sch06] proved that any Rieman-
nian metric with Gaussian curvature > —1 on JN is uniquely realized as the
restriction to the boundary of a hyperbolic metric on N with smooth strictly
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convex boundary. In other words, if 4 and J# denote the spaces of isotopy
classes of metrics on N with strictly convex boundary and of metrics on N
with Gaussian curvature > —1, respectively, then the restriction map

r: 94 —
lg9] — lglon]

is a homeomorphism. The surjectivity had already been showed by Labourie
in |Lab92a|, therefore the proof proceeds by showing the local injectivity of r.
To do so, the strategy in [Sch06] is to apply the Nash-Moser implicit function
theorem.

Let us fix now a k € (—1,0), and consider N = ¥ x I. If 4 is the space of
hyperbolic structures on N with boundary having constant Gaussian curvature
equal to k, then ¥, identifies with the space of quasi-Fuchsian manifolds Q.F (%),
thanks to Theorem and the fact that any hyperbolic structure with con-
vex boundary on N uniquely extends to a quasi-Fuchsian structure (see e. g.
|[CEMO06, Theorem 1.2.4.1]). In addition, the space 5%, of constant k Gaussian
curvature structures on N clearly identifies with the product of two copies of
the Teichmiiller space T,(X), one for each component of ON. Therefore the
function r restricts to ry: % — 4., which can be identified with T} thanks to
what we just observed. The map ry is now a function between finite dimen-
sional differential manifolds. The fact that r verifies the hypotheses to apply
the Nash-Moser inverse function theorem implies in particular that ry verifies
the hypotheses to apply the ordinary inverse function theorem between finite
dimensional manifolds. In particular, this shows that ry, is a ¢*-diffeomorphism,
for any k € (—1,0), as desired. O

3.4.2 The proof of Theorem

In the following we outline the proof of Theorem B. Let V;*(M) denote the dual
volume of the convex subset enclosed by the two k-surfaces in the quasi-Fuchsian
manifold M. With abuse, we will continue to denote by V;* the composition
VioT b :T"%)? » R. An immediate corollary of Theorem is that the
function V;* is ¢! for every k € (—1,0).

Fix now a quasi-Fuchsian manifold M, with hyperbolic structures m,f =
mf(M ) on its k-surfaces. Since the Teichmuller space endowed with the Weil-
Petersson metric is a unique geodesic space [Wol87]|, there exists a unique Weil-
Petersson geodesic £ [0,1] — TY(X) verifying B4(0) = m, and Bx(1) = m; .
We set 75, to be the path in 79(X)? given by v (t) = (8k(t), m;, ). By construc-
tion 7T}, ' (7%(0)) is a Fuchsian manifold for every k € (—1,0) and T}, ' (y(1)) =
M. We decompose the differential of the function V; as follows

AV =dvet + AV T e T TR @ T T (D).
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Now we observe that
ta
VE (D) = Ve OnlO)] = | [ VGl

1
< [ 1Vl Ikl at

< .t
< max AV, ) £we(Br)

— *,+ + B
el 1AV dwe(myg,mi),

where |-||, denotes the Weil-Petersson norm on T;7Y(X). The step from the
first to the second line follows from the fact that the second component of the
curve 7y, does not depend on t, and in the last step we used that Syp is a
Weil-Petersson geodesic. Since the dual volume of the convex core of a Fuchsian
manifold vanishes, we have that

kl_i)n_% Vir (v (1)) = Vi (7(0)) = V&(M).

By Theorem [1.6.4] we have

. + — _ + —
Jm dwp(my;,my) = dwp(m™,m™)
where m™, m™ are the hyperbolic metrics of the upper and lower components of
OCM, respectively. Therefore, taking the limit as k goes to —1 of the inequality
above we obtain

V) < mint s 14V durn” om0 30

If 77: 79(X)%2 — T9(2) denotes the projection onto the first component
(the one concerning the upper k-surface E;r), then the function de*’+ oTy is a
section of the bundle (7% o T},)*(T*7"(X)). In order to simplify the notation,
we will set dL,+ to be the map

QF(2) 5 M+ d(L,+(ar) e T*TH(D).

ntoT (M)

Assuming that the sections (de*’+ o T} ) converge to dL,+ uniformly over
compact sets of QF(X) as k goes to —1, then Theorem [B] easily follows:

Proof of Theorem|[B. The paths T} '(4%) considered above lie inside a common
compact subset of QF(X). Following the proof of Corollary we observe
that ||dL,+| is bounded by K(2)/v2 (the factor 1/v/2 appears because we
consider only the upper component of the bending measure). Therefore, by
uniform convergence we have

im i ot < ~ 7.
hkggftr&gﬁ] AV, ) < K(2)/V2 & 7.3459,

which, combined with the inequality (3.6]), implies the statement. O

Therefore, the last ingredient left to prove is the following:
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Proposition 3.4.2. The sections (de*’Jr o Ty)r converge uniformly to dL,+
over compact sets of QF (X) as k goes to —1

We will deduce this fact from the dual differential Schlifli formula, stated in
Proposition and from the connection between the first order variation of
the volumes V;* and the notion of landslides introduced in [BMS13|, [BMS15].

3.4.3 Earthquakes and landslides

We briefly recall the definition of landslide flow, introduced in Bonsante, Mon-
dello, and Schlenker [BMS13|, and the properties that we will need for the proof
of Proposition Landslides are described by a map

L St xTh®)? — Th(%)?
(€ m,m') s ZLie(m,m').

The first component of Z,ie(m,m’), which we will denote by Z%,(m,m’), is
called the landslide of m with respect to m' with parameter €. The map &
is defined through the existence and uniqueness of minimal Lagrangian maps,
as described in Theorems [[L2.18] and [L2.791 We refer to Section [[.2.4] for the
relative terminology. In the following, we will identify, with abuse, a pair of
isotopy classes m, m’ € T9(X) with a pair of hyperbolic metrics h, b’ satisfying
the conclusions of Theorem [[.2.18] Given ¢ € R/27Z and two metrics h, h’ with
Labourie operator b, we denote by b’ the endomorphism cos(#/2)1 +sin(6/2).Jb,
where J is the almost complex structure of h, and we set h? := h(b%,4-). Then
the function .Z is defined as follows:

Loio(h,B') = (h?, h™9).

It turns out that, for any 6, the metric h? is hyperbolic, and . actually defines
a flow, in the sense that it satisfies Z,i0 0 Z,.00 = ZL,io40r) for all 6,6’
Bonsante, Mondello, and Schlenker [BMS13| proved that, as earthquakes
extend to complex earthquakes (see [McM98|), a similar phenomenon happens
for landslides. More precisely, fixed h, h' € T?(X), the map £} (h, h’) extends to
a holomorphic function C,(h, h’) defined on a open neighborhood of the closure

of the unit disc A in C. If ( = exp(s +if) € A, then C; can be written as
C¢(h,h') = sgr, 0% (h, h'),

where sgr,: 79(2)2 — T¢(X) is called the smooth grafting map, first introduced
and described in [BMS13|. If s = 0, then sgryo.Z.ie = £%,. We mentioned the
existence of this complex extension for completeness, but we will not need to
describe the smooth grafting map for the rest of our exposition, the interested
reader can find its definition and properties in [BMS13, Section 5].

Fixed h'/, we set [1(h,h’) to be the infinitesimal generator of the landslide
flow with respect to the hyperbolic metric k' at the point A € 77(X). In other
words,

(1) = % L (b,

e

gy € THT ().

Landslides extend the notion of earthquake in the sense explained by the fol-
lowing Theorem:
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Theorem 3.4.3 (|[BMS13| Proposition 6.8|). Let (hy), and (hl), be two se-
quences of hyperbolic metrics on' ¥ such that (hy), converges to h € T9(3), and
(h!,)n converges to a projective class of measured lamination [p] in the Thurston
boundary of Teichmiller space. If (0,)n is a sequence of positive numbers such
that 0,0y, converges to u(p,-), then L%, (hn,hl,) converges to the left earth-

quake &,/2(h), and 0, - ll(hn,h’n)\h" converges to %e“h = %é‘}u/z(h).

Remark 3.4.4. The last part of the assertion follows from the fact that the
functions € — Z%,(h,h’) extend to holomorphic functions ¢ ~ C¢(h,h'),
where ¢ varies in a neighborhood of A. In particular, the uniform convergence
of the complex landslides Co(hy, h]) to the complex earthquake map implies
uniform convergence in the €*°-topology with respect to the complex parameter
C.

In order to prove the relation between the differential of V;* and the landslide
flow, it will be useful to have an explicit expression to compute the variation

of the hyperbolic length of a simple closed curve a of 3 along the infinitesimal
landslide 1! (h, b').

Lemma 3.4.5. Let a be a simple closed curve in . Then we have

d h(bo/, Jo!
@ La(gelie (hah/))’9:0 = _/ Q

5 h
2[lo’1;

where J is the complex structure of h and b is the Labourie operator of the pair
h, h'.

Proof. With abuse, we denote the h-geodesic realization of o by « itself. By
definition of landslide we have

d .

T Llo(h, 1) (o, a)|,_y = h(e/, ) = h(e, Jba).
Since J is h-skew-symmetric, we deduce that h(a/,a) = —h(ba/, Ja'). Com-
bining this relation with Proposition we obtain the statement. O

We recall, from Section that both the first and third fundamental forms
of a k-surface immersed in a hyperbolic 3-manifold are Riemannian metrics with
constant Gaussian curvature (the curvature of the first fundamental form is k,
while the curvature of the third is kL_H) In what follows, we will denote by

k
— =
k+1"F
the hyperbolic metrics associated to first and third fundamental forms of the k-
surfaces Zf sitting inside a quasi-Fuchsian manifold M.

The relation between landslides and the dual volume of the region enclosed
by the two k-surfaces is described by the following statement:

hE =k I,  RhE =

Proposition 3.4.6. For every k € (—1,0) and for every quasi-Fuchsian mani-
fold M we have

* k + 1 A — — *
AV;? o Ty(M) = /=" Gwp(l (1) & 1 1)) € T oy TV (92,
where Owp = wwp B wwp is the direct sum of the Weil-Petersson symplectic

structures on T"(%)2.
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Proof. In order to simplify the notation, we will denote by h; the hyperbolic
metric h;r Uh, on X = Ez U X, , and similarly for hj.

Given a simple closed curve « in Y, let e, be the infinitesimal generator
of the left earthquake flow along o on 7"(3x) = 7"(X)2. We will prove the
statement by showing that, for every simple closed curve «, we have:

. E+1 |
d(Vy )Tk(M) (ea) = T E @wp(l (hi, by, €a)- (3.7)

Since the constant k will be fixed, from now on we will not write the dependence
on k in the objects involved in the argument. By Theorem for every first
order variation of metrics §7 on X1 1LIY. ", we can find a variation dg of hyperbolic
metrics on M satisfying dg|s; = 6. Our first step will be to construct an explicit
variation 61 corresponding to the vector field e, and then to apply Proposition
to compute AV} (eq).

We will identify the curve a with its I-geodesic parametrization of length
L, and at speed 1. Let J denote the almost complex structure of I, and set V'
to be the vector field along o given by —Ja’. We can find a € > 0 so that the
map

&: R/L,Z x[0,e] — by
(5,7) > exXpage(TV(s))

is a diffeomorphism onto its image (here exp is the exponential map with respect
to I). The image of £ is a closed cylinder in ¥ having a as left boundary
component. Observe that the metric I equals dr?+cosh? r ds® in the coordinates
defined by £ ~. We also choose a smooth function 7: [0, ] — [0, 1] that coincides
with 1 in a neighborhood of 0, and with 0 in a neighborhood of . Now define

fi: R/LLZ x[0,e] — R/LLZ x [0,¢]
(s,71) —  (s+tn(r),r).

The maps u; := £ o f; 0 €71 give a smooth isotopy of the strip Im ¢ adjacent to
a, with ug = id. Finally we set

d, *
ol = agur !
0 elsewhere,

1.2 S
— = 2n'(r) cosh®r drds inside Im¢,

where here 2dsdr = ds ® dr + dr ® ds. Thanks to our choice of the function 7,
61 is a smooth symmetric tensor of 3 that represents the first order variation
of I along the infinitesimal left earthquake e,. By Proposition [3.4.2] we have
that

Lg 5
de*((Sg):i/Z (5g|gk,HI—ZI)da:—i/O /()(cSI,H)coshrdrds7
k

where the last step follows from the fact that 61 is I-traceless. Let V denote the
Levi-Civita connection of I. Then the coordinate vector fields of £~! satisfy:

Vs, 0r =0, Vo,0r = Vg, 05 = tanhr Os, V,0s = —sinhrcoshr O,.



76 CHAPTER 3. THE DUAL VOLUME AND THE WP-DISTANCE

By definition, (61, 1) = 21" I*¢ 61,5 I.s = 21’ I.s. lf we set f(r) := fOL“ I, ds,
then, integrating by parts and recalling that n(e) = 0, we get

dv (69) = —% /05 n'(r)f(r) coshrdr

1 1 /¢
= 5f(O) + 3 / n(r)(f'(r)coshr + f(r)sinhr)dr (%)
0
Being the shape operator a Codazzi tensor, we have (Vg I).s = (Vo I)pp. Us-

ing the expressions of the connection given above, this relation can be rephrased
as 0,4 = O.II,., — tanhr I,,. Hence we deduce

La
F(r) = / (9,0, — tanhy @) ds = — tanhr f(r),
0

where the first summand vanishes because « is a closed curve. Therefore the
integral in the relation (x) equals 0, and we end up with the equation

1 [La 1 [La
dvy (dg) = 3 /0 I.,ds= —3 /0 I(Bd', Ja')ds (3.8)

since Op|r=0 =V = —Ja' and 9s|,—0 = .
Now we apply Lemma to «, the hyperbolic metrics h = —k I, b’ =
k_ I and the operator b = \/klﬁB (here B is the shape operator of 3j),

T kF1L
ALy @) = 3~ [ " (Bat, Jol) ds
alp 5 9 k+1 0 ) .

obtaining
This relation, combined with (3.8), proves that

AV; (59) = /=" (L), (0, ))

By the work of Wolpert |Wol83|, we have dL, = @wp(-,eq), which proves
relation (3.7)), and therefore the statement. O

Since the complex landislide is holomorphic with respect to the complex struc-
ture of 79(X)?, an equivalent way to state Proposition is the following:

Proposition 3.4.7. Let M be a quasi-Fuchsian manifold and let hy,, h), denote
the hyperbolic metrics —k Iy and —k(k + 1)~ I}, on S} U X, . Then the
Weil-Petersson gradient of V' coincides, up to a multiplicative factor, with the
infinitesimal grafting with respect to the couple (hy, h)). In other words,

. k+1 d
gradyp Vi = \/7 s sgry (b, hy)|4—g -

The behavior of the third fundamental forms Il of the k-surfaces, as k
approaches —1, is well understood and described by the following Theorem:

Theorem 3.4.8. Let (E,), be a sequence of hyperbolic ends converging to a
hyperbolic end E homeomorphic to ¥ X Rx>q, and let (k,), be any decreasing
sequence of numbers converging to —1. Then Cg, converges to v(u,-), where
II,, denotes the third fundamental form of the k,-surface of E,, and u is the
bending measured lamination of the concave boundary of E.
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Remark 3.4.9. Theorem is in fact a restatement of [Bell7, Theorem 2.10].
In [Bell7| the author works with mazimal global hyperbolic spatially compact
(MGHC) de Sitter spacetimes, which connect to the world of hyperbolic ends
through the duality between the de Sitter and the hyperbolic space-forms de-
scribed in Section [1.4] (see also Theorem and its proof). In particular, this
phenomenon allowed Barbot, Béguin, and Zeghib [BBZ11] to give an alternative
proof of the existence of the foliation by k-surfaces.

Finally, we have all the elements to give a proof of Proposition
Proof of Proposition[3.4.2. Let (M,), be a sequence of quasi-Fuchsian mani-

folds converging to M, and let (k,), be a decreasing sequence converging to
—1. We denote my m,, and m!, the isotopy classes of the hyperbolic metrics

k
hy = —kn Iy, ho=——""1 ,
kn n 1+ k, kn

where I}, and Il are the first and second fundamental forms of the k,-surface
E;ﬂ U, sitting inside M. The kn-surface is at distance < arctanh(+/k,, + 1)
from the convex core of M,, (apply the same argument of [BMS13, Lemma 6.14]
in the hyperbolic setting), therefore the metrics m,, converge to the metric m
on the boundary of the convex core of M. If we take

o 1+kn
On =4/ o

then, by Theorem (3.4.8, the length spectrum of 6,,/,,, converges to the bending
measure 4 of the boundary of the convex core of M. Therefore, applying Theo-
remwe obtain that Iy (m,, my,)|r, (a,) converges to 1/2 e, |,,. Combining
this with Proposition we prove that

. « 1. 1
lim dV o Ty, (M) = iwwp(e#, )= —3 d(Ly),, ()

n—oo

where the last step follows from [Wol83|. This concludes the proof. O
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Chapter 4

The infimum of the dual
volume

Outline of the chapter

The aim of this chapter is to study the infimum of the dual volume of the
convex core as we vary the convex co-compact hyperbolic structure on a fixed
underlying topological 3-manifold with incompressible boundary. In particular,
we will see that:

Theorem For every convexr co-compact hyperbolic 3-manifold M with in-
compressible boundary we have

inf V4= inf V.
o €~ ab(uy ©

Moreover, Vi(M) = Vo (M) if and only if the boundary of the convex core of
M is totally geodesic.

This statement is the analogue for the dual volume of a result due to Bridge-
man, Brock, and Bromberg |[BBB19|, where the authors studied the infimum of
the renormalized volume function. More precisely, they showed:

Theorem (|[BBB19, Theorem 3.10]). For every convex co-compact hyperbolic
3-manifold M with incompressible boundary we have

inf Vp= inf V.
QD (M) oD(M)

Moreover, Vr(M) = Vo(M) if and only if the boundary of the convex core of
M s totally geodesic.

Dual volume, renormalized volume and Riemannian volume of the convex
core are related by the following chain of inequality:

" 1 1
VAM) = V(M) ~ 20 () < V(M) < Vo(M) ~ ().
Here the upper bound is originally due to Schlenker [Sch02|, and the lower

bound is proved again in [BBB19, Theorem 3.7]. In particular, Theorem Ecan
be considered as a strengthening of [BBB19, Theorem 3.10].

79
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The proof we will present is analogous to the one developed in [BBB19| but,
as happened already in the previous Chapter, we will need to pass through an
approximation procedure, using the properties of constant Gaussian curvature
surfaces. The necessity of this process is due to the fact that, in contrast to the
conformal structures at infinity, the hyperbolic metrics on the boundary of the
convex core are not known to parametrize the space of quasi-isometric convex
co-compact structures of M.

To be more precise, we need to introduce some notation. Let M} denote the
compact region of M enclosed by the k-surface on M, which has one connected
component in each end on M. We define the map

T,: QD(M) — TYdM)
M’ — mk(M'),

which associates, to each convex co-compact structure M’, the isotopy class
myg(M’) of the hyperbolic metric hy = (—k)Ij on the k-surface OM} of M. By
the works of Labourie [Lab92a] and Schlenker [Sch06], if M has incompressible
boundary the function T} is a diffeomorphism for every k € (—1,0) (the same
argument presented in Theorem applies to this more general setting). For
every hyperbolic structure m € T?(0M), we define V;*(m) to be the dual volume
of the region Mj, of M’ = T} " (m) enclosed by its k-surface.

We briefly summarize the strategy of the proof. Given any k € (—1,0), we
will estimate the infimum of V' by moving along the flow of its Weil-Petersson
gradient gradypV,". In order to prove the existence of such flow for every
time, we will show that the L*-norm of grady,p V}* is uniformly bounded over
T9(OM). The technical estimates for this purpose will be developed in Section
From the uniform control of ||grady,p V7|, the existence of the flow will
easily follow (see Corollary .

The second key ingredient will be a bound from below of the Weil-Petersson
norm of gradyp V,* in terms of the integral of the mean curvature of 9Mj,. This
will be achieved in Section and in particular in Lemma [4.2.4] Through
these observations, in the last section we will follow the same formal procedure
of [BBB19, Theorem 3.10] to determine a bound from below of the functions V;*.
Then the final statement of Theorem [C will be achieved by taking a limit for &
that goes to —1, concluding the approximation procedure of the dual volume of
the convex core V7 through the functions V.

4.1 Some useful estimates

In this section we develop estimates for the solution uy: OM — R of a certain
elliptic PDE (see relation (1)) over the k-surface M), of a convex co-com-
pact hyperbolic 3-manifold M with incompressible boundary. The function uy
will be involved in the description of the Weil-Petersson gradient grad,p V)" of
Proposition

As already observed by Bonsante et al. [Bon+19|, the incompressibility of
the boundary OMj, determines (non-explicit) bounds on the mean curvature
function Hy, depending only on the curvature k € (—1,0) and, in particular, not
on the geometry of M. Being the function u; determined by a simple equation
involving Hj,, these controls will imply uniform bounds on the €?-norms of wuy.
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First we introduce some notation. If (NN, g) is a Riemannian manifold, we
denote by H"(N,da,) the Sobolev space of real-valued functions f on M with
L*(N,dagy)-integrable weak derivatives (¢V)'f for all i < n, where 9V and da,
are the Levi-Civita connection and the volume form of (V, g), respectively. The
space H"(N,da,) is a Hilbert space if endowed with the scalar product

(1) i= 3 [(OVFFOV) ) day, £ € HY(N.day)
i=0 /N

Finally, given f: N — R a ¥™-function, we define its €™ (N, g)-norm as

n =) sup ” IV) )

1 leg(2v.g) EN C9) S|

In the following, we will denote by #*V and Ay, the Levi-Civita connection and

the Laplace-Beltrami operator Apu = try, (FV2u) with respect to the hyperbolic

metric hy = (—k)I; on the k-surface M. We define the following linear
differential operator:

Liyu:= (Ap —21)u = Agu — 2u.

Let A be the symmetric bilinear form over the Hilbert space H'(OMj,day)
given by

Alu,u) = / (ldull? + 2u?) day,
P

where ||-|[, and daj denote the norm and the area form of hy, respectively. A
simple application of the Lax-Milgram’s theorem (see e. g. |Brell, Corollary
5.8]) applied to the Sobolev space H'(0Mjy,day) and to the coercive symmetric
bilinear form A shows that, for every f € L?(0Mj,day), there exists a unique
weak solution u € H'(OMj,day) of the equation Lyu = f. We will denote by
uy the solution of the equation

Liyug = —k‘_lHk & A ug + 2kuy, = Hy, (4.1)

where Hj, denotes the mean curvature function tr (I 5 i k) of the k-surface OMj,.
We will always consider the second fundamental form defined by the normal
vector field on M) pointing towards My, so that [} is positive definite, and
H, is a positive function.

By the classical regularity theory for linear elliptic PDE’s (see e. g. [Eva98|
Section 6.3]), the smoothness of the mean curvature Hj, and the compactness of
OM]}, imply that the function uy is smooth and it is a strong solution of equation
().

It has been shown by Rosenberg and Spruck [RS94, Theorem 4| that, for
every Jordan curve ¢ in O, H3, there exist exactly two k-surfaces if(c) asymp-
totic to ¢. A fundamental property of k-surfaces, which will crucial in Lemma

is the following:

Proposition 4.1.1 (|Bon+19, Proposition 3.8]). Let k € (—1,0) and n € N.
Then there exists a constant Ny, > 0 such that, for every Jordan curve c

in O H?, the mean curvature H.y of the k-surface Si(c) = iﬁ(c) U i;(c)
asymptotic to c satisfies

[ Hek

€ (Zk(c)) < Nn,k-
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Proof. For completeness, we briefly recall here the proof of this statement. k-
surfaces satisfy the following compactness criterion:

Proposition 4.1.2 (|[Bon+19, Proposition 3.6]). Let k € (—1,0), and consider
fn: Hﬁ — H3 a sequence of proper isometric embeddings of the hyperbolic plane
Hi with constant Gaussian curvature k. If there exists a point p € H? such that
(fn(p))n is precompact, then there exists a subsequence of (fn)n that converges
€ -uniformly on compact sets to an isometric immersion f: Hi — H3.

Fixed k € (—1,0) and n € N, assume by contradiction that there exists a
sequence of Jordan curves (¢, ) such that the mean curvatures H,, = H,,  of

the k-surface Xy (¢, ) satisfy HHchgn(gk(cm)) > m. Up to extract a subsequence,
there exists an ¢ < n such that for every m € N

sup H(kV)’HmH > - Cp,m.
= n

Si(em)

Now choose ¢,, € ik(cm) for which the norm of (*V)'H,, at g, is > C, m.
Since each component of ik(cm) is embedded and isometric to the hyperbolic
plane H? (which is homogeneous), we can find a sequence of proper isometric
embeddings fi,: Hi — H3, parametrizing a component of ik(cm), such that
fm(P) = qm for some fixed basepoint p € Hi. Up to post-composing f,, by an
isometry of H®, we can assume that f,,,(p) = ¢ is fixed. In this way, we have
found a sequence of proper isometric embeddings f,,: H — H? satisfying

e f.(p) = @ € H? is independent of m € N;

e the mean curvature of the surfaces f,,(H3) at ¢ has some i-th order deriva-
tive that is unbounded as m goes to co.

This clearly contradicts the compactness criterion mentioned above. O
From this result we can now obtain a uniform control on wu:

Lemma 4.1.3. Let M be a convexr co-compact hyperbolic 3-manifold with in-
compressible boundary. Then, the function ug: OMy — R, solution of (4.1),
satisfies

maxgn,, H; < < mina]wk Hy, _ vVE+1 <0
2% "7 2k k ‘

Moreover, if M has incompressible boundary, then there exists a constant Cy, > 0
depending only on the intrinsic curvature k € (—1,0), and in particular not on
the hyperbolic structure of M, such that

max ||V 2ug |, < Cy.

Proof. The first assertion is an immediate consequence of the maximum princi-
ple applied to u; as a solution of the PDE . Moreover, since the product
of the principal curvatures (i. e. the eigenvalues of the shape operator) of a k-
surface is everywhere equal to k + 1, the trace of the shape operator is bounded
from below by 2v/k + 1 (see also Remark below).

The proof of the second part of the assertion requires more care. Let 3y
be a connected component of the k-surface M}, and let M = H3 denote the
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universal cover of M. Since M is a convex co-compact hyperbolic 3-manifold
with incompressible boundary, every component Y of the preimage of ¥ in M
is stabilized by a subgroup I' 2 m1(X) of the fundamental group of M, acting
by isometries on M. Each of these subgroups T is quasi-Fuchsian (see e. g.
[Kap09, Corollary 4.112 and Theorem 8.17] for a proof of this assertion), and the
surface ik is a k-surface asymptotic to some Jordan curve in (“)OOM >~ O oH3. In
particular, by Proposition we can find a universal constant N = N j, > 0
that satisfies ~

| H| €2(S) < Ng. (4.2)

Here we stress that the constant Nj does not depend on the hyperbolic structure
of M, or X, but only on the value of k € (—1,0).

Our goal is now to make use of this control to obtain a uniform bound of the
norm of the Hessian of uy. For this purpose, we will need the following classical
result of regularity for linear elliptic differential equations:

Theorem 4.1.4 (|Eva98| Theorem 2, page 314]). Let m,n € N and U C R" q
bounded open set. We consider a differential operator L of the form:

n

Lf=="a¥@) @, f+ > b(@) 0 +c()f,
1=0

ij=1

where a¥ = a’* b, c € €T (U,R). Assume that L is uniformly elliptic, i. e.
there exists a constant € > 0 such that }_, ; a(z)vv; > el[v||* for all v € R™,
If f € HY(U) is a weak solution of the equation Lf = X, for some A € H™(U),
then for every bounded open set V with closure contained in U, there exists a
constant C, depending only on m, U, V and the functions a¥,b’, ¢, such that

1l sz vy < CUM pmwy + 11l 22 @r))-

The surface ik endowed with the lift of the hyperbolic metric hy of Xy is

isometric to the hyperbolic plane H?. In the following, we will identify ¥ with
the Poincaré disk model H? := (By, gp), where By is the Euclidean ball of radius

1 and center 0 in C, and
) 2
2
i (1 - |z|2> 44

Now we choose U and V to be the gp-geodesic balls of center 0 € B; and
hyperbolic radius equal to 2 and 1, respectively. The lift of the operator — Ly
over U is clearly uniformly elliptic, because of the compactness of U and because
of the following expression in coordinates:

—Lf = —g3 0% f —Tl(gp) Onf) + 2f,

where F?j (gp) denote the Christoffel symbols of gp. Again by the compactness
of U and V, the norms of the Sobolev spaces V75 oy @and |[-[| 7753y, computed

with respect to the flat connection of B; C R? and the Euclidean volume form,
are equivalent to the norms of the corresponding Sobolev spaces defined using
the Levi-Civita connection of gp and the gp-volume form. Moreover, the bi-
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Lipschitz constants involved in the equivalence only depend on a bound of the
%7+ norm of gp over U, therefore they can be chosen to depend only on j € N.
From now on, we will always consider the norms on the spaces H7(U) and
H7(V) to be defined using the metric gp and its connection.

Now we apply Theorem f.1.4] to m = n = 2, the operator —L; and the
functions f = dy, A = —k~ LH,., where F denotes the lift of the function F over
Y. Therefore we can find a universal constant C' > 0 (depending only on the
open sets U, V, that we chose once for all, and on the metric gp|y) such that:

HakHH4(V) < C(—k71‘|gk|| H2(U) + ”ﬂ'k“LQ(U))'

By the first part of the Lemma u ||Uk||<go < —(2k) Y| Hy| gome)- I
addition, we have:

il ooy < Area(U, gp) Yk gogry < —(2k) ™ Area(U, gp) /[ Hil 4o ey

and ~ ~
||Hk|| H2(U) < AI‘G&(U, gP)1/2||Hk7|| €2 (H?)"

In conclusion, we deduce that
1k gravry < —2k71C Area(U, gp) "2 [ Hyl o2 gz2y -

By the Sobolev embedding theorem (see e. g. [Brell, Corollary 9.13, page
283]), given W an open set satisfying 0 € W C W C V, the €?(W)-norm of i,
(again, computed with respect to the Levi-Civita connection of gp) is controlled
by a multiple of its H*-norm over V, and the multiplicative factor depends only
on W and V. Therefore, if we choose for instance W = By2=(0,1/2) we get:

(kavary| wow) < C' (k) || Hy | €2 (H2)"

Now the desired statement easily follows. From relation and the last
inequality, we obtain a uniform bound of the Hessian of @ over W 3 0. Let
now ¢ be any other point of H?, and choose a gp- 1sometry ¢q: B1 — By such
that ¢4 (0) = g. If we replace u and Hj, with @ o 0, and Hyo g, respectively,
the exact same argument above applies, since the operator L and the norms
[lg755 ||/l are invariant under the action of the isometry group of H? (and
since || Hy|| @2 (H2) = = ||Hy 0 ¢, @2 (H2) ). In particular, this gives us a control of

the norm of ¥V, over ¢, (W) for any point ¢ € H?, and the last part of our
assertion follows. O

Remark 4.1.5. The minimum of the mean curvature 2v/k + 1 is always re-
alized. As described in Section whenever we have a k-surface Xj with
first and second fundamental forms I and I, respectively, the identity map
id: (X, I) — (Xg, I) is harmonic, with Hopf differential 1, satisfying

Hy

2Rewk:_[k;— m

1.

Its squared norm with respect to [ can be expressed as follows

HE —4(k+1)

2
||2Rewk||ll;C = (k—|—1)2
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In particular, at each zero of ¢, (which necessarily exist because x(Xj) < 0) we
have H, = 2vk + 1.

We stress that, even if the maximum of the mean curvature Hj will clearly
depend on the hyperbolic structure of M, Proposition guarantees that
max Hj, is controlled by a function of k independent on the geometry of M, as
long as OM is incompressible.

We will make use of the upper bound u; < @ in Lemma where we
will determine a lower bound of the Weil-Petersson norm of the differential of
V¥ in terms of the integral of the mean curvature.

4.2 The gradient of the dual volume

The aim of this section is to describe the gradient of the dual volume function
V' with respect to the Weil-Petersson metric on the Teichmiiller space of OM
in terms of the function wu; studied in the previous section.

First we introduce the necessary notation for the "Riemannian geometric
tools" that will be used. Let (N, g) be a Riemannian manifold, and consider
(e:); a local g-orthonormal frame. Given S € I'(S%(N)) a symmetric 2-tensor,
we define the g-divergence of S as the 1-form div, S defined by:

(divy S)(X) =D (“Ve,5)(ei, X),

7

for every tangent vector field X. Similarly, the g-divergence of a vector field X
is the function

divg X = " g("Ve, X, ;).

The Laplace-Beltrami operator can be expressed as A f = div, grad, f. Given
two symmetric tensors S, T, their scalar product is defined as

(Sv T)g = gij ghk Sin Tjk = tr(g_ISg_lT)'

In particular, we set try S = (g, S)g = tr(g_ls’). It will also be useful to keep
in mind the way that these operators change if with replace g with Ag, for some
positive constant \:
divag S = A1 divy S, Anf=ATTAf, day, = A2 day,
(S7T))\g :)\_Q(S,T)g, trag S =A"1tr, S,
if dim N = n.
We recall that, by the dual differential Schlafli formula (see Proposition

2.2.5)), we have:
Proposition 4.2.1.

d(Vi oTy) (M) = / (Ir, I — Hely), dar,

a

Q

(h, I + k™" Hihy),, dap,
My,

)
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where I, = —k~Yhy, is the first order variation of the first fundamental form on
OMy, along the variation M, and Ty,: QD(M) — T"(OM) is the diffeomorphism
introduced at the beginning of the chapter.

From this variation formula, we can give an explicit description of the Weil-
Petersson gradient of the dual volume functions V', which will turn out to be
useful for the study of its flow.

Proposition 4.2.2. The vector field grad ,p V,* is represented by the harmonic
Beltrami differential associated to ¢y, where ¢y is the (unique) holomorphic
quadratic differential satisfying

Re ¢y = I, — *V2uy, + ughy,
where uy, denotes the solution of equation (4.1)).

Proof. Let my, denote a tangent vector to the Teichmiiller space of OM at my.
As described by Tromba [Tro92|, given any hyperbolic metric hy representing
the isotopy class my € T?(OM), we can find a unique symmetric tensor hy, rep-
resenting vy that is hy-traceless and hy-divergence-free (also called transverse
traceless). This analytic condition turns out to be equivalent to ask that the
tensor hy coincides with the real part of a holomorphic quadratic differential
(see Remark [1.2.6)).

Assume for a moment that we can find a decomposition of the symmetric
tensor I, + k~'Hyhy, of the following form:

I, + k™ YHyhy = S + Lxhy + A ha,

where Sy; is a transverse traceless tensor with respect to hy, X is a vector field
and A is a smooth function on M. Then, by Proposition we could express
the variation of the dual volume V;* along a transverse traceless variation hj as

follows: )
AV (hy) = 7/ (hiy St + Lxhy, + Ahy), dap, .
4 Jou, »

Since hy, is traceless, the scalar product (hk, hi) = trp, (hk) vanishes identically.
Moreover, the L?-scalar product between hi, and Lxhy vanishes too, because
the condition of being hj-divergence-free is equivalent to be L2?-orthogonal to
the vector space {Lxhy | X € T(TOM)} (see [Tro92, Theorem 1.4.2] or relation
for a proof of this last assertion). In particular, we must have

de* (hk) = Z /8M (hk)Stt)hk dahk .
k

On the other hand, if ¢, is the holomorphic quadratic differential associated
to the harmonic Beltrami differential representing grad,p V,*, then by Lemma

[3.1.2] we have

L 1 .

de (hk) = g/ (hk,2Re ¢k)hk dahk_ .
OMy,

Therefore, by varying the tangent vector my, € Ty, T (OM), we deduce that the

tensor Sy and the holomorphic quadratic differential ¢ must satisfy Re ¢ =

St
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In conclusion, this argument shows us that, in order to prove our assertion,
we need to determine a decomposition of the tensor I, +k~ ! H}hy, of the form we
described above, with Sy = I, — ¥V2uy, + uihy. For this purpose, we consider
the following expression:

I, + k™ Hyhy = (I — *V2up, 4 uphy) + 5V2uy, + (K7 Hy, — ug) hy

1
= (][k _ kvz”U,k + ukhk) + iﬁgradhk ukhk + (kilHk — uk.)hk,

where we used the relation Egradhk w Pk = 25V2y,. In this expression, the
second term of the sum is of the type Lxhi, while the third term has the form
Ahg. Then, it is enough to show that the first term is hg-traceless and hy-
divergence-free. The trace of I, — kV2ui, + ughy, satisfies

try, (Hk — kVQuk + ukhk) = —k_lHk — Apug + 2uy.

This expression vanishes because uy, is a solution of equation (4.1). In order to
compute the divergence of our tensor, we will need the following relations:

divy, I, = k' dH,, divg(gvgf) =d(Agf) + Ric,(grad, f, ).

The first equality follows from the Codazzi equation (*VxBy)Y = (*Vy B;)X
satisfied by the shape operator By, of 9M}, (the Levi-Civita connections of hy and
the first fundamental form I; are the same, since they differ by a multiplicative
constant). The second relation is true for any Riemannian metric g, and we will
apply it in the case g = hy and f = uy. Since hy is a hyperbolic metric on a 2-
manifold, we have Ricy, = —hg. Therefore

divp, (Z[k — V%uk + ukhk) =k ! dH;, — d(Akuk) + duy + duy
=d(—k™"Hy, — Apuy + 2u) |
where we used the relation div,(f g) = df. Again, the expression above vanishes

because uy, solves equation (4.1). Then we have shown that I — N 2us, + uphy
is a transverse traceless tensor, as desired. O]

Remark 4.2.3. In fact, the decomposition we presented for the tensor I +
k=Y H}hy, is related to the orthogonal decomposition of the space of symmetric
tensors due to Fischer and Marsden [FM75|. Given g a hyperbolic metric, every
symmetric tensor S admits an orthogonal decomposition of the following form:

S=Su+Lxg+ ((=Dgf+ fg+V?f),
where

e Sy is transverse traceless with respect to g;

e Si + Lxg is tangent to the space of Riemannian metrics with constant
Gaussian curvature equal to —1. In other words, if ¢’ — K(g') denotes
the operator that associates to the Riemannian metric ¢’ its Gaussian
curvature, then Sy + Lxg € kerdK;

o (—Ayf+ f)g+9V2f lies in the L?-orthogonal of ker dK,.
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Then, the expression
I, + k_lHkhk = (][k: - kVQuk + ukhk) + 0+ ((k_lHk - uk)hk + kVQUk)
= (ﬂk — kVQUk + ukhk) + 0+ ((—Akuk + uk)hk + kVQ’u;C)

is the Fischer-Marsden decomposition of I, + k~!Hhy, where f = up, X =0
and Stt = (Ek — kv2Uk + Ukhk).

Using this explicit description of the Weil-Petersson gradient of the dual
volume function V;*, we can determine a lower bound of its norm in terms of
the integral of the mean curvature:

Lemma 4.2.4. For every k € (—1,0) we have

N vEk+1 2r(k+1)
[[dVy; ||2WP > - o out Hy day, — T|X(8M)|-
k

Proof. In what follows, we will prove the following expression:
[, — V3ur + urhi||; = kugHy, — 20k +1) + divy, W, (4.3)

for some tangent vector field W on 0Mj,. Assuming for the moment this relation,
we deduce that

1
Hdvk*||2VVP — 5 ‘/aM ||Re ¢kHik da‘hk (PI‘Op. and Lemma '
k
1 _
=5 [ (R Reaul, () das,
k
1
= (kupHy — 2(k + 1)) day, (velation (4.3))
8Mk

where we used the relation hy = (—k)I, and that the integral of the term

divy, W vanishes by the divergence theorem. By Lemma we have uy <

—”?’17 therefore we obtain

. Vk+1 2n(k+1)
AVl 5yp > — % Jour Hy day, — T|X(3M)|7
k

where we applied the Gauss-Bonnet theorem to say that the area of M) with
respect to I is equal to —27k~t|x(OM)].

The only ingredient left to prove is relation . For this computation, we
will use the Bochner’s formula (see e. g. |Leel8, page 223]):

%Angfo] = ||gv2fuj + g(grad,, f,grad, A, f) + Ricy(grad,, f,grad, f), (4.4)
and the following expressions:
divy(fX) = g(grad, f, X) + fdiv, X, (4.5)
%(Exg, 1), = —(divg T)(X)+div, Y, (4.6)

where X is a tangent vector field, f is a smooth function, T" is a symmetric 2-
tensor, and Y = T(X, -)? is the vector field defined by requiring that g(Y, Z) =
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T(X,Z) for all vector fields Z. From now on, we will omit everywhere the
dependence of the connections, norms, and the Laplace-Beltrami operator on
the Riemannian metric g, and everything has to be interpreted as associated to
g = I. Observe also that the Levi-Civita connection of I and hj are equal,
since these metrics differ by the multiplication by a constant and, in particular,
the hi- and I,-Hessians coincide. Then we have:

H‘”k — VQUk + UkthQ = H.l[k — VQ’U,k — kukaHQ
— [Tk + || V2us||* + #2 | Tl* = 2T, V2ug)+

- Qkuk(ﬂk, Ik) + 2kuk(V2uk,Ik).
(A7)

First we focus our attention on the terms ||V2uk||2 and (Ek,VQUk). In order
to simplify the notation, we say that two functions a and b on OM} are equal
"modulo divergence", and we write a =q;y b, if their difference coincides with
the divergence of some smooth vector field. Then, we have:

1
HVQukH2 = §A||duk||2 — (grad uy, grad Auy) — k|duy||* (relation (4.4)

)
=aqiv —(grad uy, grad Aug) — k||dug|| (Ayf = divy grad, f)
= — div(Aug grad ug) + (Aug)? — k|| dug | (relation (4.5))
=aiv (Aug)? — kdiv(uy grad ug) + kug Auy, (relation (4.5))

=div Auk(Auk + kuk),

(B V) = 5T, Lyrad 1) (Carad, 19 = 299°1)
=giv —(div I)(grad uy) (relation )
= —(grad Hy, grad uy) (div I, = dHy)
= —div(Hy grad uy) + HpAuy, (relation )
=aiv HpAuy.

The other terms in equation (4.7)) are simpler to handle. In particular we have:

1Tk ||* = HE - 2(k + 1),
I12]* =2,
(Mg, I) = Hy,
(VZup, Iy) = Aug.

Replacing all the relations we found in equation (4.7)), we obtain:
||][k — V2uk -+ ukthz =div le — Q(k —+ 1) —+ Auk(Auk —+ kuk) =+ 2k2ui+
— 2H Auy, — 2kup Hy, + 2kug Auy,

= HE — 2(k + 1) + 2k*u} — 2kuy, Hy,+
+ Auk(Auk + 3kuk — 2Hk)
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Finally, by replacing the expression of Auy = Ay, uy from equation (4.1)) in the
equality above, we find that:

| I — VZuy + Ukhk||2 =aiv kugH, — 2(k + 1),

which is equivalent to relation (4.3)). O

Since the Weil-Petersson metric of the Teichmiiller space is non-complete,
a control from above of the quantity ||dV}*||,,, would not suffice to guarantee
the existence of the flow for every time. For this purpose, we rather study the
L*°-norm of the Beltrami differentials equivalent to grady,p V;*, which gives a
control with respect to the Teichmiiller metric (that is complete). At this point,
the estimates determined in Lemma [4.1.3| will play an essential role.

Proposition 4.2.5. There exists a constant Dy > 0 depending only on the
intrinsic curvature k € (—1,0) such that

lgrad ywp Vi ll+ < Dy,
where ||-|| - denotes the Teichmiiller norm on T'T (OM).

Proof. Let my, be a point of the Teichmiiller space 7"(0M), interpreted as an
isotopy class of hyperbolic metrics on OMj. The Teichmiiller norm of a tangent
vector my, € Ty, T (OM) is the infimum of the L>-norms of the Beltrami differ-
entials representing my. In Proposition we showed that the vector field
grad y,p Vi at a point my € T"(OM) is represented by the harmonic Beltrami
differential associated to ¢y. Let now hj denote a representative of the isotopy
class of hyperbolic metrics my, and let v4, be the harmonic Beltrami differen-
tial on (OMy, hi) associated to the holomorphic quadratic differential ¢ from
Proposition Therefore, by Lemma, we have that

. 1 1
lgradwp Vil < Vs, llp o = ﬁllRe@cllpT,oo = 5o IRe ¢k, -
k

Therefore it is enough to show that the norm Hllk — V20, + ukthhk is uni-

formly bounded by a constant depending only on k. The norm of I is equal to
HZ —2(k+1), and [lugh|l, = v2|uk|. Therefore we have

|0 = Vg + wih ], <~k /|1

o = 2(k + D+ V2ur |, +V2|lu

o

Our assertion is now an immediate consequence of Proposition [4.1.1] and of

Lemma [4.1.3 O

Corollary 4.2.6. The flow ©; of the vector field — grad,p V)" over T(OM) is
defined for all times t € R.

Proof. The assertion follows from the fact that the Teichmiiller distance is com-
plete, and on the bound shown in Proposition [4.2.5 O
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4.3 The proof of Theorem [C

The last ingredient that we will need for the study of the infimum of the dual
volume is the existence of some lower bound for the dual volume on the space
of quasi-isometric deformations QD(M) of M. To do so, we will make use of
the properties of the dual volume proved in Chapter [2| and of the upper bound
described by Bridgeman, Brock, and Bromberg [BBB19| for the length of the
bending measure of the boundary of the convex core of a convex co-compact
manifold with incompressible boundary, which we recalled in Theorem [3.3.5

Lemma 4.3.1. For every k € (—1,0) and for every convex co-compact hyper-
bolic 3-manifold M with incompressible boundary we have:

V(M) = F(k, x(0M)),

where F is an explicit function of the curvature k € (—1,0) and the Euler
characteristic of OM .

Proof. Since the k-surfaces foliate the complementary of the convex core CM, a
simple application of the geometric maximum principle (see for instance |[Lab00,
Lemme 2.5.1]) shows that the k-surface M, is contained in N, CM, the €j-
neighborhood of the convex core CM, for ¢, = arctanh vk + 1. Moreover, by
Proposition the dual volume is a decreasing function with respect to the
inclusion, therefore the quantity V(M) is bounded from below by the dual
volume of the ei-neighborhood of the convex core. We showed in Proposition
that, for every € > 0, we have

Vol*(N.CM) = Vol(CM) — fmiu) (cosh2e +1) — g|x(BCM)|(Sinh 2e — 2e¢),

where ¢, () denotes the length of the bending measured lamination on the
boundary of the convex core of M. By Theorem [3.3.5] the term £, () is less or
equal to 67|y (0M)|. Combining these observations, we deduce that

V¥ (M) > Vol*(N., CM)
_ En() o ul -
= Vol(CM) — 1 (cosh2ey + 1) — 5 Ix(OCM)|(sinh 2¢y, — 2¢},)

L (1)
4

> —g|x(8M)|(3 coshey + 3 + sinh 2ey, — 2¢y,),

v

(cosh2e + 1) — g\x(aCM)Ksinh 2e) — 2¢y)

which proves the desired inequality. O
We are finally ready to present the proof of Theorem [C:

Proof of Theorem[C. Let M be a convex co-compact hyperbolic 3-manifold with
incompressible boundary. We denote by M; := 0©;(M) the hyperbolic 3-man-
ifold obtained by following the flow of the vector field — grad,p V;*, which is
defined for every t € R in light of Corollary In order to simplify the
notation, we will continue to denote by V;* the k-dual volume as a function
over the space of quasi-isometric deformations of M. This abuse is justified by
the fact that, for every k € (—1,0), a convex co-compact manifold is uniquely



92 CHAPTER 4. THE INFIMUM OF THE DUAL VOLUME

determined by the hyperbolic structures on its k-surfaces, as mentioned at the
beginning of the chapter. We have

t
V(M) - Vi (My) = / 1AV 2, ds.

By Lemma the left hand side of the relation is bounded from above with
respect to t. In particular, the integral on the right side has to converge as ¢
goes to +00. Therefore we can find an unbounded increasing sequence (t,,), for

which the Weil-Petersson norm ||dV;*||* evaluated at M;, goes to 0 as n goes to
00. Then, by Lemma we have

n—oo

limsup/ Hy daj, < —4rk™ "k +1|x(0M)|,
OMy,, k

where M, j stands for (M, )k, the region of M, enclosed by its k-surfaces.
Therefore we deduce:

1
V(M) > lim V(M )= lim (Vk(Mtn) — 5/ dea1k>
OMy,, .k

n—oo n—oo
. ’ 1 . .
> inf Vie(M") — = lim inf Hy dar,
M'eQD(M) 2 n—oo M., &

> inf V(M) + 27k 'VE 4 1|x(0M)],
M’€QD(M)
where Vj,(M’) denotes the Riemannian volume of the region M, of M’ en-
closed by its k-surface. Observe that the term 27k~1v/k + 1|xdM]| is equal to
—% /. an] Hj, daj, when the boundary of the convex core of M’ is totally geodesic.
Finally, by taking the limit as k goes to (—1)*, we obtain that V(M) >
infpp Vo (M') for every convex co-compact structure M. This proves that

inf V&> inf Ve
QD(M) QD(M)

On the other hand, the dual volume V(M) = Vo(M) — 54y, (p) is always
smaller or equal to Vo (M), so the other inequality between the infima is clearly
satisfied.

If VA(M) = Vo (M), then the length of the bending measured lamination
of the convex core of M has to vanish, therefore u = 0 or, in other words, 0C' M
is totally geodesic. O



Chapter 5

Constant Gaussian curvature
surfaces in hyperbolic 3-
manifolds

Outline of the chapter

The aim of this chapter is to investigate the properties of constant Gaussian
curvature surfaces inside hyperbolic ends, and to show how their geometry in-
terpolates the structure of the locally pleated boundary on one side, and of the
conformal boundary at infinity on the other. We refer to Sections and
for the necessary background concerning these notions.

In Section [5.1] we recall the definitions of two families of parametrizations
of the space of hyperbolic ends (®)g, (Vk)k, taking values into the cotangent
space to Teichmiiller space T (X), and constructed in terms of the geometric
data of the k-surface foliations (see Section[L.6.3). These maps have been firstly
introduced by Labourie [Lab92b]|, and further investigated by Bonsante, Mon-
dello, and Schlenker [BMS13|, [BMS15]. Our first goal will be to determine the
relations between the asymptotic of the families (Px )k, (Uk)r and the classical
Schwarzian and Thurston parametrizations Sch and Th, respectively (see Sec-
tions and for their definitions), and it will be achieved in Corollary
and Proposition The proof of these facts will be based on the works
of Quinn |Qui20| and Belraouti [Bell7|, which describe the limits of the geo-
metric quantities associated to the k-surfaces as they approach the conformal
boundary at infinity, and the locally concave pleated boundary, respectively.

Section [£.2] focuses on the variation formulae of two notions of volumes for
quasi-Fuchsian manifolds M. The first, that will be denoted by V*(M), coin-
cides with the dual volume of the region M of M bounded by its k-surfaces,
and similarly Wy (M) is equal to the W-volume of M. As shown in Lemma
and Theorem these Schlifli formulae are closely related to the vari-
ation formulae of the renormalized volume Vi and of the dual volume of the
convex core V¢, respectively. As a corollary of these relations and the connec-
tion between the parametrizations ®; and Sch, we will obtain a new and simple
description of the renormalized volume function of M in terms of the foliation

93
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by k-surfaces of its hyperbolic ends:

Theorem D} For every quasi-Fuchsian manifold M, the renormalized volume
Vir(M) can be expressed as follows:

. 1
Vr(M) = lim (VOl(Mk) 1

Hy, day, — w|x(0M)| arctanh vk + 1> .
OM;y,

As highlighted by the work of Krasnov and Schlenker [KS09|, the Schlafli-
type variation formulae of the dual volume V% and the renormalized volume Vg
have strong implications with respect to the symplectic geometry of the spaces
T*T¢(¥) and T*TY(2), endowed with the symplectic structures w® and w" of
cotangent manifolds, respectively. Here we develop the same ideas applied to the
volumes V' and W}, and the Labourie’s parametrizations ®; and ¥j, through
their Schlafli formulae. In particular, in Section we will prove:

Theorem G. For every k, k' € (—1,0), the function
o U (THTY(8),w") — (T*T(D), 2w")
is a symplectomorphism.

Another surprisingly simple consequence of the variation formulae of the
volumes W), and V}* is the following generalization of (Krasnov and Schlenker’s
reformulation from |[KS09| of) McMullen’s Kleinian reciprocity Theorem:

Theorem Let M be a convex co-compact hyperbolic 3-manifold, and denote
by QD(M) the space of quasi-isometric deformations of M. We set

¢ s QD(M) — T*T(OM), oy : QD(M) — T*T"(9M)

to be the maps that associate, to a convex co-compact hyperbolic structure M’,
the points of T*T(OM) given by the vectors (Pr(E;)); and (Vi (E;));, respec-
tively, where E; varies among the set of hyperbolic ends of M'. Then, for every
k € (—1,0), the images ¢(QD(M)) and ¢¥i(QD(M)) are Lagrangian subman-
ifolds of (T*T*(OM),w*) and (T*TY(OM),w"), respectively.

In Section [5.4.1] we will discuss the relations between the original McMullen’s
formulation of the quasi-Fuchsian reciprocity (in terms of adjoint maps) and the
statement we have presented here.

In Section as last application of the tools developed here, we prove
that the k-surface foliations of hyperbolic ends correspond to integral curves of
k-dependent Hamiltonian vector fields on 7*7(3). This phenomenon can be
interpreted as the analogous of what observed by Moncrief [Mon89] for constant
mean curvature foliations in 3-dimensional Lorenzian space-times. If ®; and ¥},
denote the vector fields f—kék and %\I/k, respectively, then we will prove:

Theorem E The k-dependent vector fields b0 @,;1 and Uy, 0 \Ilgl are Hamil-
tonian with respect to the cotangent symplectic structure of T*T ().

We will observe that the role of the area functional in [Mon89] as Hamilto-
nian function here is replaced by the integral of the mean curvature, up to a
multiplicative constant depending only of the curvature k.
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5.1 Foliations by k-surfaces

This Section is mainly devoted to the description of two families of parame-
trizations of the space of hyperbolic ends £(X), denoted by (®x)r and (),
firstly introduced by Labourie |[Lab92b]|, and further investigated by Bonsante,
Mondello and Schlenker in [BMS13| and [BMS15|. Our main goal will be to
establish a connection between the asymptotic of these maps and the classical
Schwarzian and Thurston parametrizations (described in Section , applying
the recent works of Quinn [Qui20| and Belraouti [Bell7|, respectively.

In order to define the maps (®y)r and (¥y)x, we need to introduce some
notation. By Theorem every hyperbolic end E (see Definition
admits a foliation by k-surfaces (Xj)g, with intrinsic curvature k € (—1,0). Let
Iy, I, and IM; denote the first, second and third fundamental forms of the k-
surface X of E. We set hy and h?c to be the hyperbolic metrics —k I and

k

— T Iy, respectively, and ci to be the conformal class of I;. As observed in

Section the identity maps
id: (Zk,ck) — (Ek,hk), id : (Ek,ck) — (Zk,h%)

are harmonic with opposite Hopf differentials (see Definition |1.2.12). We will
denote by g the holomorphic quadratic differential

2vk+1 2vE+1
2 HopH (S ) = (Si ) =~ —

k Hopf ((Xg, cx) = (Xk, hy,)).

The choice of the multiplicative constant in the definition of ¢; may look arbi-
trary at this point of the exposition, but it will be crucial in the following (see
for instance Corollary and Remark . The holomorphic quadratic
differential ¢, satisfies

Hy, 2 Hy,
2Reqp =2vVk+ 1|1y — /——I} | = ——F—= (W, — — I ). 5.1
€ qk < k 2(k+1) k) \/m ( k 2 k) ( )

For future references, we also observe that the area forms with respect to I and
Iy, differ by a multiplicative constant, as follows:

1

\/ﬁdalk . (52)

daj, = ——day, =

vV det Bk

5.1.1 The parametrizations ¢,

The first class of parametrizations described by Labourie [Lab92b] is given by
the following maps: for every k € (—1,0) we define the function

Dp: EX) — THT(X)
[E] — (Ck7 Qk)a
which associates, to every hyperbolic end E, the point of the cotangent space

to Teichmiiller space (cg, gx) determined by the unique k-surface ¥j contained
in E, as above. We have:

Theorem 5.1.1 ([Lab92b, Théoréme 3.1]). The function @y is a diffeomor-
phism for every k € (—1,0).
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In the following we will see how the maps ®; relate to the Schwarzian pa-
rametrization Sch, defined in Section [1.6.1] Using the hyperbolic Gauss map
(see e. g. |Lab9l]), we can think about the families (Iy)g, (Ix)r and (@)
as paths in the space of symmetric 2-tensors over the surface 0, F, which does
not depend on k. In this way we can study the asymptotic of these geometric
quantities as k goes to 0.

In a recent work |Qui20|, Quinn introduced the notion of asymptotically
Poincaré families of surfaces inside a hyperbolic end E, and he determined
a connection between their geometric properties and the complex projective
structure at infinity of E. The foliation by k-surfaces is an example of such
families and the asymptotic of their fundamental forms is understood. In order
to do not introduce more notions, we specialize the results of |[Qui20] in the form
that we will need:

Theorem 5.1.2 (|Qui20|). For every hyperbolic end E € £(X) we have

lim hg = lim (—k)Ix = heo,
k—0— k—0—

where hoo is the hyperbolic metric in the conformal class at infinity co, of E.
Moreover

dhy d 1
S\ Rege, (k)| = she,
T ARl

where oo 18 the Schwarzian at infinity of E (see Section m)

Corollary 5.1.3. The maps (®y), converge to Sch € -uniformly over compact
subsets, as k goes to 0.

Proof. First we prove the pointwise convergence. Let E be a hyperbolic end,
and consider the path (®5(E)); in T*T(X). We define gi := (—k)I. Then,
the relations of Theorem [5.1.2] can be rewritten as follows:

g
dk

dgr

1
dk = glee:

= —Re (oo
k=0— 2

k=0—

lim 9k = h<X>7
k—0—

The first relation proves that the conformal classes ¢i converge to the conformal
structure of 0, E. We need to show that the holomorphic quadratic differentials
qr converge to the Schwarzian differential g.,. This is a simple application of
the relations above, we briefly summarize the steps in the following. First we
observe that

lim 2Reqr = lim —
k—0—

2\/ k +1 tI‘glC (hk)
e K

k—0— 2
— tim oy T hee g Hac(k) 9 — 2heo
k—0— k k
dhy, d
— 9 &% <
dk |,_y- + dk trg, (hk) gk o

where, in the last step, we are using that limy_,- trg, (hx) gx = 2he. Applying
the relations in Theorem m we see that - trg, (hx)|,_, = —1. Combining
this with the relation above we obtain

lim 2Reqr = —2(—Regoo) — hoo +2 —=
k—0—
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which was our claim.

In |Qui20|, the author gave an alternative proof of the existence of the k-
surface foliation, for k£ close to 0. The strategy of his proof is to apply the
Banach implicit function theorem to a function

F:(-1,0] x Conf*(%, ¢) — Conf*(%, ¢),

which satisfies F'(k,7) = 0 if and only if 7 is (a proper multiple of) the metric
at infinity associated to the k-surface. Here Conf®(X,c¢) denotes the space of
Sobolev metrics in the conformal class ¢ (see |[Qui20, Theorem 5.1] for details).
The map F' depends smoothly on k£ and also on the complex projective structure
at infinity (¢, q). In particular, the implicit function theorem guarantees the
smooth regularity of the metric at infinity 7, associated to the k-surface Xy,
with respect to k € (—1,0] and (¢, q) € T*T*(X). Since the tensors I, and Iy
are smooth functions of 73, and (¢, ¢), the function ®(k; ¢, q) := ®,0Sch™ (¢, q) is
smooth in all its arguments. This properties imply the higher order convergence.

O

5.1.2 The parametrizations ¥,

The diffeomorphism H from Theorem [1.2.19] allows us to convert the family of
parametrizations (@), which take values in 7*7¢(X), into a family of param-
etrizations (), with values in 79(X)2. Indeed, the functions

Up:=Hody: E£3) — THD)?
[E] > (A, hy),

associate to each hyperbolic end F, the pair of hyperbolic metrics hy = (—k)Ij
and hy, = —¢ +1ﬂ[ r coming from the first and third fundamental forms of the k-

surface ¥ of E. This expression for the map \1/;C follows from the definition of
the map H (see Theorem and the link between k-surfaces and minimal
Lagrangian maps, observed at the end of Section

The maps W), have been the main object of study of Bonsante, Mondello,
and Schlenker in [BMS13|, [BMS15]. In these works, the authors introduced
the notions of landslide flow and of smooth grafting SGr’, and studied their
convergence to the classical earthquake flow and grafting map Gr. Our functions
U}, are actually the inverses of the maps SGr’, in the notation of [BMS13| (the
relation between our parameter k and the s used in [BMS13| is k = m)

As the Schwarzian parametrization can be recovered from the limit of the
maps ¢, when £ — 0, the Thurston parametrization, defined in Section [1.6.2]
can be recovered from the limit of the maps ¥, when k — —1. Indeed, we have:

Theorem 5.1.4. The maps ¥}, converge to Th, as k goes to —1, in the following
sense: if E is a hyperbolic end, then the length spectrum of I converges to
(-, p), where i(-,-) denotes the geometric intersection of currents. Moreover,
the first fundamental forms Iy converge to the hyperbolic metric of the locally
concave pleated boundary OF.

Proof. Let E be a fixed hyperbolic end. The convergence of the first fundamen-
tal forms I}, is a direct consequence of Theorem
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By the correspondence between hyperbolic ends and maximal global hyper-
bolic spatially compact (MGHC) de Sitter spacetimes (see e. g. |[Mes07| and
the duality described in Section7 the foliation by k-surfaces of E determines
a constant curvature surfaces foliation of the MGHC de Sitter spacetime E*
dual of E. Through this correspondence, the third fundamental form Il of the
leaf 3 in ' can be interpreted as the first fundamental form of its dual surface
7 in E*, which has constant intrinsic curvature equal to kiﬂ Moreover, the
initial singularity of E* is dual of the bending measured lamination p of the
pleated boundary OF, as shown by Benedetti and Bonsante [BB09, Chapter 3].

In [Bell7], the author studied the intrinsic metrics of families of surfaces
which foliate a neighborhood of the initial singularity in £*. In particular, Bel-
raouti |[Bell7, Theorem 2.10| proved that, for a wide class of such foliations, the
intrinsic metrics of the surfaces converge, with respect to the Gromov equivari-
ant topology, to the real tree dual of the measured lamination u, as the surfaces
approach the initial singularity of E*. By applying this result to the constant
curvature foliation of £*, and interpreting Il as the first fundamental forms of
its leaves, we deduce the convergence of the length spectrum of Iy, to ¢(-, ). O

5.1.3 Hyperbolic length functions
Following |[BMS15|, we define

ji T - R
(h,h')  +—  [gtrbday,

which associates, to a normalized pair of hyperbolic metrics h, h’ with Labourie
operator b: TY. — TX (see Theorem , the integral of the trace of b
with respect to the area measure of h (here we are identifying, with abuse, the
hyperbolic metrics h and h’ with their isotopy classes). The quantity j(h, k')
satisfies

G(hB) =2 E(id: (2,¢) — (2, h)) = 2 E(id: (Z,¢) — (2, 1)),

where ¢ is the conformal class of h(b-,-), and E(-) denotes the energy functional
(see [BMSI15| Section 1.2]). This shows in particular that j is symmetric, i. e.
J(h, 1) = §(h', h).

For any hyperbolic metric /', we define Ly : T?(X) — R to be Ly/(h) =
j(h,h"). The functions Ly, which are real analytic by [BMS15| Proposition 1.2],
can be interpreted as generalizations of length functions, in light of the following
fact:

Proposition 5.1.5. Let (hy)n, (hl,)n be two sequences of hyperbolic metrics.
Suppose that (hy,)n, converges to h € T"(X), and that there exists a sequence
of positive numbers (9,,),, such that the length spectrum of €2 h!, converges to
(-, ), for some measured lamination p € ML(X). Then
nh_)n;@ en Lpt (hy) = Lyu(h).

Proof. Using the interpretation via k-surfaces, we can easily prove this state-
ment, which is purely 2-dimensional, using 3-dimensional hyperbolic geometry.

First we observe that, since the injectivity radius of h], is going to 0, the
sequence &, must converge to 0. In particular, the limit of k,, := —(cosh2 en) 1



5.1. FOLIATIONS BY K-SURFACES 99

is equal to —1, as n goes to infinity. In [BMS13| Proposition 6.2|, the au-
thors proved that, under our hypotheses, the sequence of hyperbolic ends (E,, )y,
given by E,, := \ill;nl(hn, h.) (which, in the notation of [BMS13], coincides with
SGry, (hn,hl,)), converges to E := Gry(h). Recalling the definitions of hy,, hl,,
we see that

Ky,
where Xy, is the k,,-surface inside E,,, and Iy, and Hy,, are its first fundamental
form and mean curvature, respectively.

Since E,, goes to E = Gr,(h), and k,, goes to —1, the intrinsic metrics of
the surfaces ¥, converge to the hyperbolic metric h of the pleated boundary
OF, and the bending measures of OF,, converge to u. In particular, the integral
of the mean curvature of ¥, converges to L,(h), the length of the bending
measure of OF (see for instance Section. From the relation between k,, and
En, We see that

lim e kn

im —— | =

n—ooo A /k;n +1

The combination of these two facts implies the statement. O

As done in |[BMS15|, instead of working directly with U, we we will intro-
duce a family of maps (V) that have the advantage of taking values in the
cotangent space 7*7Y(X). This will be more convenient for the rest of our pa-
per, since we investigate the properties of these parametrizations with respect
to the cotangent symplectic structure of 7*79 (%) and T*7(X). The functions
W, are defined as follows:

Uy o E(X) T*TY(%)

—
[E] — (hlﬁ_%d(l’h;ﬂ)hk%

where d(Lh;C) N denotes the differential of the function Ly, defined as before,
k
at the point hx. We also consider the function

dL: TYZ)x ML(Z) — T*TO(%)
(h, 1) — (b, d(Ly)y,)-
Proposition 5.1.6. The functions
dLoTh: &%) — T*TN(Y) and ¥y :E(%) = T*T(X)

are €1 diffeomorphisms, for every k € (—1,0). Moreover, the functions ¥y,
converge pointwisely to dL o Th as k goes to —1.

Proof. A proof of the ¢!-regularity of d LoTh can be found in [KS09, Lemma 1.1].
The smoothness of the maps U, follows from the original work of Labourie
|Lab92b|. Up to scalar multiplication in the fiber, the functions ¥y, are equal to
the composition of the U),’s with the map

TVE)xTHE) —  T*TYE)
(h,h") — (h,d(Ln)y,)-

This function has been proved to be a diffeomorphism in [BMS15, Proposi-
tion 1.10]. This shows that Uy is a diffeomorphism for every k € (—1,0). The
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pointwise convergence of the functions Wy, follows from Theorem [5.1.4] Propo-
sition and the analyticity of the functions Ly, established in [BMS15|
Proposition 1.2]. O

5.2 Volumes and Schlafli formulae

In this section we define two families of volume functions for convex co-compact
hyperbolic 3-manifolds: the Wjy-volumes, related to the notion of W-volume
introduced in [KSO08|, and the V;*-volumes, related the notion of dual volume
introduced in [KS09|. For both these families we will prove a Schlifli-type
variation formula, involving the extremal length, in the case of Wy, and the
hyperbolic length functions L/ introduced in the previous section, in the case
of V¥ (see also Section . We also describe a simple way to compute the
renormalized volume Vg of a convex co-compact hyperbolic manifold using the
volumes Wi.

5.2.1 W,-volumes

Let M be a convex co-compact hyperbolic 3-manifold and let QD(M) denote
the space of quasi-isometric deformations of M (introduced in Section [2.1). We

define
1

Wi(M') := W (M) = Vol(M},) — = Hj day ,
4 Jour g
where M}, denotes the compact region of M’ € QD(M) bounded by the union
of the k-surfaces sitting inside the ends of M’. The quantities Iy, Iy, m}, cy
and g of OMj, are defined using the conventions of the previous section.
First we need a way to express the variation of the W-volume:

Proposition 5.2.1. Let (N, g) be a compact hyperbolic 3-manifold with smooth
boundary ON having positive definite second fundamental form, and let (gi): be
a smooth 1-parameter family of hyperbolic metrics on N, with gg = g. Then we

have:
iy ((orm-57), + 500)
= - o, m—-—n) + H )dayr,
i—o 4 Jon 2 1 2K,

where 01, K. denote the variations of the second fundamental form and of the
extrinsic curvature of ON, respectively, and (-,-)y denotes the scalar product
induced by I on the space of (2,0)-tensors on ON.

dW(N, gt)
dt

Proof. We will apply the same strategy used in Proposition [1.7.13|to compute
the variation formula of V3*. From the definition of W-volume and Theorem

[L7.4] we have:

dW(Na gt)
dt

dVol(N, gt)
dt

1d
- = = Hda;
o 4 dt Jon

t=0
1 1 1

1 / <5H + 1, 17)1) daj— 1 / (6H day + H(day)).
2 Jon 2 4 Jon
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Since I = II B~', we have 61 = 6l B! — I B~ 6B B~!'. Therefore

(61,0); =tx(I~" 61 17" 1)
=tr(BI "I B'—I B 'éBB ")BI'I)
=tr(B I ' 0I) — tr(0B)
=tr(I' I I 60)—6H
= (Il,6I); — 6H.

Using the expression in local coordinates day, = \/det(g;;) dz! A dz?, we find
d(day) = %(6g,g)g day. Hence we have:

day
0 (dar) =9
dar) <ﬂ<e>
0K, 1
:7wdaﬂ+ﬁ(5ﬂ-,][)ldaﬂ

oK. 1
= (—2K€ + 2(6”’H)I> da] .

Combining the relations above, we obtain:

N 1 1 1
AW(N.ge) | _ f/ (6H + (51,1[),) dar — f/ (6H da; + H5(day))
dt =0 2Jon 2 4 Jon
1 0K, 1
= Z/BN (25H+(ﬂl75ﬂ)ﬂ —6H —-0H—-H <_2Ke + 5(511[)],
:1/ 5]1,]117511 +6KGH day ,
4 Jon 2 ), 2K.
which proves the statement. O

An alternative way to express the variation of the W-volume can be found
in [KS08, Relation (7)]. The expression we found in Proposition is very
convenient when applied to variations of metrics (g:); for which the boundary
ON has constant extrinsic curvature K. independent of ¢, as displayed by the
following Lemma:

Lemma 5.2.2. The function Wy: QD(M) — R satisfies
dWy(6M) = — Re(qk, dcr),

where dcg, denotes the variation of the conformal class ¢, along the variation
oM.

Proof. We apply the variation formula of the W-volume, proved in Proposition
5.2.1] Since the boundary of Mj is a k-surface for every convex co-compact

)
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structure M, the term involving § K, vanishes. Therefore we have:

1 H
AW, (5M) = = / (Mlk, I, — 2’“1@) day,
OMjy, Iy

1 H,
_ ST My — 21| d B2
Ty, (B ) don (0 D)

Iy,
1
=73 / (6Ik, 2Re qv) 5, dar, (eq. (B-1))
8 Jom, ¥
= —Re{gg, ock). (Lemma [5.3.1)

O

Starting from Lemma |5.2.2] the proof of the Schldfli formula for the volumes
Wy proceeds in analogy to what done by Schlenker [Schl7]| for the Schlafli
formula for the renormalized volume, thanks to the following result:

Theorem 5.2.3 (Gardiner’s formula, [Gar84, Theorem 8]). Let (X, ¢) be a Rie-
mann surface, and let F denote the horizontal foliation of a homorphic quadratic
differential q of (X,c). Then the extremal length function extz: T¢(X) — R sat-
isfies

dextz(dc) = 2Re(q, dc).

The combination of Lemma and the Gardiner’s formula immediately
implies:

Theorem 5.2.4 (Schléfli formula for Wy). The differential of the function Wy,
can be expressed as follows:

1
dWi(6M) = —§d extr, (dck),

where Fy, denotes the horizontal foliation of the holomorphic quadratic differen-
tial qk -

5.2.2 The renormalized volume

The definition of renormalized volume Vi(M) of a conformally compact Ein-
stein manifold M is motivated by the AdS/CFT correspondence of string the-
ory [Wit98|, [Gra00]. Krasnov and Schlenker [KS08| enlightened its geometrical
meaning in the context of convex co-compact hyperbolic 3-manifolds, describing
a regularization procedure based on equidistant foliations from convex subsets
of M. In relation with the study of the geometry of the Teichmiiller space, the
renormalized volume furnishes a Kéahler potential for the Weil-Petersson met-
ric of the Teichmiiller space, and it allows to give a remarkably simple proof
of McMullen’s Kleinian reciprocity (see [KS08| and Section [5.4). Moreover, its
variation formula has been used by Schlenker [Sch13| to give a quantitative ver-
sion of Brock’s upper bound of the volume of the convex core of a quasi-Fuchsian
manifold in terms of the Weil-Petersson distance between the hyperbolic metrics
on the boundary of the convex core.

The aim of this Section is to describe a new and simpler way to define the
renormalized volume of a quasi-Fuchsian manifold in terms of the asymptotic
of its foliation by k-surfaces.

First we recall the Schlifli-type formula of the renormalized volume:
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Theorem 5.2.5 (|[KS08, Lemmas 8.3, 8.5], [Sch17, Theorem 1.2]). The differ-
ential of the renormalized volume Vig: QD(M) — R can be expressed as follows:

1
dVR(6M) = —Re(¢oo, 0Co0) = —idext]:w(écoo).

The combination of Corollary and Theorem allows us to give the
following description of the renormalized volume Vg (M):

Theorem The renormalized volume of a quasi-Fuchsian manifold M satis-

fies
Va(M) = lim (Wk(M) — 7|x(8M)]| arctanh V& + 1) .

Proof. Let Wy(M) := Wi(M) — w|x(dM)| arctanh vk + 1. We will prove the
assertion by showing the following facts:

i) the differentials of the functions Wk converge, uniformly over compact
subsets of QF(X), to the differential of the renormalized volume Vpg;

ii) the limit, as k goes to 0, of Wj,(M) coincides with V(M) whenever M is
Fuchsian.

Then the assertion will follow from the connectedness of the space QF (¥).

The first step easily follows from our previous observations. By Corollary
and Theorem dWj = dWj, converges, uniformly over compact subsets
of QF(X), to —idextr_(dcs), where Fo, is the horizontal foliation of the
Schwarzian differential at infinity ¢, and dcs is the variation of the conformal
structure of ..M. By Theorem this coincides with dV.

It remains to prove the second part of the statement. Let M be a Fuch-
sian manifold. The equidistant surfaces from the convex core of M at distance
e(k) := arctanh vk + 1 are the two k-surfaces of M. Their fundamental forms
can be expressed as follows:

1 k k
Iy = —=h, I, = — h, my, = ———h,
T VR P k1
where h is the hyperbolic metric on the totally geodesic surface sitting inside
M. From here, we easily see that

. Hy day, = 2m|x(OM)|sinh2e(k), V(M) = w|x(OM)] <81nh225(k) + s(kj)> .

In particular, for every Fuchsian manifold M, we have

1
Wi (M) =V (M) — 1)s Hy day, = 7|x(OM)| arctanh vk + 1.
k

Therefore the functions Wk vanish identically over the Fuchsian locus, and the
same happens for Vix(M). This concludes the proof of the second step, and
therefore of the statement. O

Remark 5.2.6. The quantity arctanh vk 4+ 1 is equal to the distance of the k-
surface from the convex core in the Fuchsian case. For a generic quasi-Fuchsian
manifold M, the geometric maximum principle [Lab00, Lemme 2.5.1] shows that
the k-surface is at distance less or equal than arctanh vk + 1 from the convex
core C'M.
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In the proof that we gave above, we assumed the existence of the renormal-
ized volume function Vi and we proved the convergence of the functions W to
Vg. In fact, with some additional work, it is possible to show that the sequence
of functions (W), is convergent without assuming the existence of the function
Vg. In other words, we can define the renormalized volume Vg(M) of a quasi-
Fuchsian manifold M as the limit of the sequence (Wj(M))y.

5.2.3 V/-volumes

In analogy to what done for the Wj-volumes, we define
1
V¥ (M'") := Vol*(M},) = Vol(M},) — 3 Hj day, ,
oM,

for every M’ € QD(M). The Schléfli formula for V;* is a direct consequence of
the variation formula for the dual volume (Proposition [2.2.5) and the following
expression for the variation of the length function Ly:

Lemma 5.2.7 (|BMS15, Lemma 7.9]).
(L) (5h) = —% / (6h, h(b-,-) — tr(B)h), dan .
b

In order to simplify the next statement, we extend the definition of the func-
tion j to constant curvature metrics, not necessarily hyperbolic. In particular,
if g and ¢’ are Riemannian metrics of with constant Gaussian curvatures K and
K’, then we set j(g,¢') tobe (KK')~/2j((—=K)g, (—K')g') (observe that (—K)g
and (—K')g’ are hyperbolic). In this way, the function j is 1/2-homogeneous in
both its arguments, As before, L, will denote the function j(g, ).

Theorem 5.2.8 (Schléfli formula for V,*). The differential of the function V;*
can be expressed as follows:

1
dVy (6M) = —3 dLu, (O1).

Proof. By Proposition [2.2.5] the variation of V} verifies
1
de* (5M) = Z/ (5Ik,ﬂk — Hk[k?)lk da[k .
Sk

Using the definitions of hy, h},, we can rephrase the expression above as follows:

« vk+1
A% ((SM) = — 1 /E (6hk, hk(bk-, ) — tr(bk)hk:)hk dap,, ,
k

where by, = \/ﬁ By, is the Labourie operator between hj and hjc (see Theorem

1.2.18]and Section [L.5). By Lemma the expression above is equal to

vEk+1
2k
which proves the statement. O

1
dLp (8hx) = =5 dLum, (61%),

We introduced the notation in order to emphasize the similarities between
the Schléfli formula of V,* and the dual Bonahon-Schléfli formula from Theorem
[A] Observe in particular that formally Theorem [A] can be obtained as the limit
of the relation of Theorem [5.2.8] in light of Proposition [5.1.5
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5.3 Volumes and symplectomorphisms

The aim of this section is to study the properties of the maps ®; and Wy .
In particular, we will prove that the diffeomorphisms ®; o \I/,;,lz T*T%%) —
T*T¢(X) are symplectic with respect to the cotangent symplectic structures
of T*T%(X) and T*T*(X), up to a multiplicative factor. This fact extends the
results of Krasnov and Schlenker [KS09] and Bonsante, Mondello, and Schlenker
[BMS15] concerning the grafting map Gr and the smooth grafting map SGr,
respectively.

5.3.1 Relative volumes

Let E be a hyperbolic end (see Definition [1.6.1). In light of Theorem we
denote by Fj the portion of E that is in between the concave pleated boundary
OF and the k-surface X;, of E. Now we define

1 1
wk(E) = VO](Ek) - Z g Hy dag + 5 Lu(m),
k

where Hj and daj are the mean curvature and the [ -area form of Xj, and
L,(m) is the length of the bending measure p with respect to the hyperbolic
metric m of OF. Similarly, we define

1 1
’UZ(E) = VO](Ek) 3 : Hydag + 5 Lﬂ(m).
k

The functions wy and v}, can be considered as the relative versions of the W-
volume and V}’-volume, respectively.

5.3.2 Cotangent symplectic structures

Let M be a smooth n-manifold, with cotangent bundle 7: T*M — M. The
Liowville form X\ of T*M is the 1-form defined by:

Ap,a) (0) = a(d7 .0y ()

for every (p,a) € T*M and v € T(, o) T*M. The 2-form w := dA is non-
degenerate and it defines a natural symplectic structure on the total space T* M.

In the following, A", ¢ will denote the Liouville forms of T*7T?(X), T*T*(X%),
respectively, and w9, w® their associated symplectic forms. As before, Th stands
for the Thurston parametrization, defined in Section |1.6.2] The reader can find
the necessary notation concerning the geometry of k-surfaces in Section 2.1} and
the definitions of the parametrizations ®; and ¥y in Sections and
respectively.

The first step of our analysis will be to describe the pullback of the Liouville
forms A\¢ and A? by the maps ®; and dL o Th, U}, respectively. First we will
need the following technical lemma:

Lemma 5.3.1. Let (g¢); be a 1-parameter family of Riemannian metrics on
Y, with conformal classes ¢; = [gi]. If dc denotes the Beltrami differential
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representing the variation of the conformal classes (¢i)t, and dg the variation of
the Riemannian metrics (g¢)i, then we have

1
Re(q,b0) = | [ (69 Rea), da,
b

Proof. Let (g¢): be a smooth 1-parameter family of metrics so that the conformal
class of g = gg is equal to ¢ = ¢, and the derivative at ¢ = 0 of the conformal
class ¢; of g; coincides with dc. If X; is an object that depends on ¢, then 6 X will
denote its derivative with respect to ¢ at t = 0. Let J; be the almost complex
structure of g; for every ¢. As shown in |[BMS15| Section 2.1|, the Beltrami
differential v; of the map id: (X, c¢) = (X, ¢;) satisfies

vi =1 = JJ)" N1+ JiJ),

In particular its derivative dv can be expressed as %(U J. The almost complex
structure J; of g; is characterized by the relation da (-, -) = g¢(J¢-, ), where da;
is the area form of the metric g;. Taking the derivative of this identity, and
using the fact that da, = /det(g;;) dz* A dz? in local coordinates, we obtain

1 1
5(09.9)gda = 5 tr(g7'dg) da = 5(dar) = 6(gu(Ji-,-)) = 0g(J-,-) + g(3.]-,-).
If 6g = g(A-,+), with A g-self-adjoint, then from the relation above we see that
1
0J J=A—- §tr(A)]l = Ay,

where Aj stands for the traceless part of A. In particular, this proves that dv =
%AO. The pairing between Beltrami differentials and holomorphic quadratic
differentials can be described as follows:

(g, 1) rz/zqou,

where g i1 is the C-valued 2-form given by

(g0 1)) = o (q(ua(), w) — q(u, p(w)).

T2

Again, we refer to [BMS15, Section 2.1] for a more detailed description. Let
now B be the traceless and g-self-adjoint operator satisfying Req(-,-) = g(B-,-).
Given any unit vector u, the basis u, Ju is orthonormal and positive oriented. In
particular, since g e 0v is a multiple of the volume form da, (X is a 2-manifold),
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we must have ¢ e 6v = (g ® 0v)(u, Ju) day. Now we observe:
1
Re(q @ 0v)(u, Ju) = Re o-(¢(dv(u), Ju) — q(u, 6v(Ju)))
1
= Re o (iq(9v(u), u) + ¢(T*u, ov/(Ju)))
(q C-linear and J? = —1)

= Re %(q(&/(u), u) + q(ov(Ju), Ju)) (¢ C-linear)

1
= E(Q(BAOM u) + g(BAgJu, Ju))

(def. of B and dv = 1 4,)

= %tr(BAO) (u, Ju orthon. basis)
— itr(BA) (B traceless)
_ i(Re ¢.59) (def’s of A and B)

Combining what we have proved so far, we obtain that

1
Re{g, dc) :/Reqoél/:f/(Req,ég)dag,
b 4 Js

which is our desired relation. O

We are now ready to study the pullback of the Liouville forms under the
maps Py, dL o Th and Wy:

Lemma 5.3.2. The following relations hold:

1
DIN(SE) = Z/ (6@, Re q) g, da, , (5.3)
3k
(AL o Th)*A\°(0E) = dL,, (6m), (5.4)
1
\I/;;/\h(éE) = —5/ ((5Ik,ﬂk — H]glk)lk da[k 5 (55)
3k

where 61, and I represent the variations of the first and second fundamental
forms of the k-surface, respectively.

Proof. The Liouville form A\ of T*7¢(X) satisfies

(PRA)B(0E) = Ale, 40 (d(Pk) 5 (OF)) = Re{gr, dck),

(ck»qr)

where dc¢i is the Beltrami differential representing the variation of ¢, as we
deform the hyperbolic end along the direction d . Then relation follows
from Lemma [5.3.1]

Relation @ has been originally shown by Krasnov and Schlenker in the
proof of [KS09, Theorem 1.2]. First observe that the 1-form (dL o Th)*\Y is
well defined since the function dL o Th is ¢! (see Proposition . Similarly
to what done above, we see that

((AL o Th)*A") g (6E) = AP

D vty (AL 0 Th) , (OF)) = d(L,),, (5m),
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where dm denotes the first order variation of the hyperbolic metric of the concave
pleated surface OF along the direction JF.
Finally, the Liouville form A" satisfies

vk+1

(TN p(OE) = — : d(Lny),, (5hi).
Therefore, relation (5.5)) follows from Lemma by backtracking the multi-
plicative factors involved in the definitions of all the quantities. O

Similarly to what done in Section[5.2] we can describe the first order variation
of the relative volume functions wy and v} as follows:

Lemma 5.3.3. The relative volumes wy, and v}, satisfy:

1

H 1
dwy, (0F) = 1/ <5][k,lﬂk - ;Ek> day, + 3 dL, (6m),
3k I,

1 1
Qv (5F) = § / (514, Ty~ HyLi), dag, + 5 L, (5m).

2k
Proof. Both the relations can be proved by applying the same strategy of [KS09,
Proposition 4.3]. Let (g:): be a differentiable 1-parameter family of hyperbolic
metrics on X x (0,00) so that the first order variation of E; = (X x (0,00), g¢)
coincides with §E. For any ¢, we choose an embedded surface S in 3 x (0, 00)
that lies below the k-surface of F; (i. e. it is contained in the interior of the
region (Ey)) for all small values of t. Now we decompose the quantity wy(E)
in two terms:

wi(E) = (Vol(N(S7 Sik)) — i . Hy da;m) —i—(Vol(N(@Et, S)) + %Lm (mt))

where ¥, i, is the k-surface of Ey, and N(S’,5"”) denotes the region of E bounded
by S’ from below and S” from above.

Following step by step the proof of Proposition we see that the varia-
tion of the first term equals

1\/ <5ﬂk,ﬂk—mﬂk> da1k+1/ <5H+1(§I,E)> da,
4 )y, 2 1. 2 /s 2

where the mean curvature H and the second fundamental form I of S are
defined with respect to the normal vector field of S pointing towards the k-
surface Y.

The variation formula of the right term can be computed with the exact same
argument of Chapter [2] the only difference is that we are looking at a region
bounded by a smooth surface and a locally concave pleated surface, while in
Chapter [2| we were considering the convex core, which is a region bounded by
convex pleated surfaces. This leads to the following variation:

%d(Lu)m (6m) + %/5 (5(—H) - %(51, —JI)> da.

The signs multiplying H and I are due to the fact that we need to consider
the mean curvature and the second fundamental form defined with the normal
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vector field pointing inside N(OFE, S), which is the opposite of the one considered
above. In particular, when we look at the sum of the two terms, the integrals
over S simplify, and we are left with the first relation of our statement.

The second relation follows by an analogous argument, replacing the use of
Proposition with Proposition [2.2.5] O

Lemma 5.3.4. For every k € (—1.0), we have
*\ € 1 *1h
dw, = —Pp A" + §(dLo Th)*\?,
1 1
dv} = _5\1/;;” +5(dLo Th)*AP.
Proof. The statement is a direct consequence of Lemma[5.3.2]and Lemmal5.3.3
O

Taking the differential of the identities in Lemma [5.3.4] and remembering
that d? = 0, we immediately conclude the following:

Theorem 5.3.5. For every k € (—1.0), the maps

By o (AL o Th)™" £ (T*T (), &) — (T°T%(%), 25),
Uy 0 (dLoTh)™t: (T*TY(2),w") — (T*TH(2),w?)

are symplectomorphisms.

Observe that Theorem [G]is a direct consequence of what we just observed.

Remark 5.3.6. Theorem combined with Corollary implies that the
map

Scho(dL o Th) ™! : (T*T(%),w") — (T*T(L), 2w°)

is a symplectomorphism, which has been originally shown in |[KS09, Theo-
rem 1.2]. In addition, [KS09, Theorem 1.2] and Theorem [Gimply also [BMS15]
Theorem 1.11], which states that the function

SchoW, ! : (T*TY(2),w") — (T*T(L), 2w°)

is a symplectomorphism for every k € (—1,0). Finally, by applying Theorem
to the case k = &k, and taking care of the multiplicative factors involved in the
definitions of ®; and V¥, we deduce that the function

He (T'TE(2),w) — (TT"(E),0")
(Cv Q) — (h(c’ Q)v d(Lh(c,—q)))
is a symplectomorphism, where h(c,+q) = .1 (£q) is the hyperbolic metric

of ¥ for which the identity map (X,¢) — (X, h(c, £¢)) is harmonic with Hopf
differential equal to ¢ (see Theorem |1.2.15).
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5.4 Kleinian reciprocities

Let M be a convex co-compact hyperbolic 3-manifold and let QD(M) denote
the space of quasi-isometric deformations of M. Any isotopy class of hyperbolic
metrics [g] € OD(M) has a collection of k-surfaces, each one sitting inside a
hyperbolic end E; of (M, g). In this way, we can define a function

¢ : QD(M) — T*T(OM),

which associates to any class [g] the data (®(FE;)); of its k-surfaces. Similarly,
we define the function 1: QD(M) — T*T9(OM), sending [g] into the data

(Ui (E;))i-

Theorem [E| For every k € (—1,0), the image ¢,(QD(M)) (resp. ¢ (QD(M)))
is a Lagrangian submanifold of T*T*(OM) (resp. T*T9(OM)).

Proof. The statement is a consequence of Lemma and of the variation
formula of the dual volume of a convex co-compact hyperbolic manifold. To see
this, first we apply Lemma to each end of M:

1
dwy,; (0F;) = @} A (OE:) + 5 (dL; o Thy)* A} (0).
By the dual Bonahon-Schlifli formula (Theorem , we have that

dvg (OM) ZdLHI (6m;) = Z(dL o Thy)* AV (6 E;).

7

Therefore we deduce that

d(thﬁvg) Zdw;“+dvcf Z@klﬁqu;;x.

The function ), wy; + V¢ is in fact equal to the W-volume of Mj,, the portion
of M contained in the union of the k-surfaces of the ends (E;);. Indeed:

Zwm )+ V(M) = Z(Vol(Em)i

%

1
Hy;dag; + =Ly, (m;) | +
Yk, 2

+Vol(CM) — %Lu(m)
1

= Vol(CM) + ) " Vol(E;) — 12 Hyi dag,; +
p Yk
1 1
+ §Lu(m) — 5Lu(m)

1
= VOl(Mk) - 1 Hk dak
= Wy (M).

Therefore we have proved that dWj, = —¢;A°. Taking the differential of this
identity we obtain that ¢;w® = 0. This implies the statement, since ¢;, is an
embedding and 2dim QD(M) = dimT*T*(OM).
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In an analogous manner we can prove that zb,’;)\b = —2dV}’. To see this, it is
enough to replace the role of the relative W-volumes wy, ; with the dual volumes
vj,; and then proceed in the exact same way. Again, by taking the differential

of the identity wZ)\" = —2dV}}, we obtain the second part of the statement. [

Theorem [E] is a generalization of Krasnov and Schlenker’s reformulation of
McMullen’s Kleinian reciprocity Theorem |[KS09, Theorem 1.5], and their result
can be recovered by taking the limit of the identity ¢;w® = 0 and applying
Corollary to each hyperbolic end of M. Moreover, Krasnov and Schlenker
|KS09, Theorem 1.4] proved that the image of the function dLoTh is Lagrangian
inside (T*79(X),wY). Since the map dL o Th is the limit of the 1;’s, the part
of the statement concerning the maps v, can be similarly seen as an extension
of Krasnov and Schlenker’s original result.

5.4.1 Quasi-Fuchsian reciprocities

In this section we present a generalization of McMullen’s quasi-Fuchsian reci-
procity Theorem in its original formulation from [McM98|. First we will recall
McMullen’s original statement, and then we will see how to formulate Theorem
is a similar manner. We define the Bers’ embeddings to be the maps:

Bx: TE) —  IXT(®)  By: T — LT
Y  — Sch(Q(X,Y))*t Y  +— Sch(Q(X,Y))”

where Q(X,Y) denotes the unique quasi-Fuchsian manifold with conformal
classes at infinity (X,Y), and Sch(Q(X,Y))* are the Schwarzian differentials
at infinity on the upper and lower boundaries at infinity. McMullen’s original
formulation of the quasi-Fuchsian reciprocity Theorem is the following:

Theorem 5.4.1 (|]McM98, Theorem 1.6]). Given (X,Y) € T¢(X) x T(X), the
differentials of the Bers’ embeddings

dBx)y 1Ty T (2) — TXT(2),  d(By)x : TxT (%) — Ty T*(%)
are adjoint linear operators. In other words, d(Bx)y = d(By)%-

We want to describe analogous statements in the case in which Sch is replaced
by ¢ or v. For every k € (—1,0), let By and T} be the maps

Br: QF(X) — T X)xTY(X) Tr: QF(X) — TYZ)xT'D)
M= () Mo = (R )
where Cf are the conformal classes of the second fundamental forms of the
upper and lower k-surface of M, respectively, and hki are the hyperbolic metrics
(=k)I ,;t of the upper and lower k-surface of M, respectively.

A consequence of Labourie and Schlenker’s works [Lab92al, [Sch06] (see The-
orem is that the function T} is a diffeomorphism for every k € (—1,0).
We do not know if the same is true for By, we will assume this to be true for
the rest of this section. In analogy to Bers’ embeddings, we define the following
maps:
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Brx: TUZ) — T T (%) Bey: TH(E) — Ty TE(%)
Y — ¢ o B Y(X,Y) Y — ¢ o B N(X,Y)
x: TVE) — TLTH(D) eyt TYU(Z) — TsTY(X)
Y o gl o T X, Y) Y o+ 4y o T N(X,Y)
where:

a) B, '(X,Y) is the conjecturally unique quasi-Fuchsian manifold whose up-
per and lower k-surfaces have X and Y as conformal classes of their second
fundamental forms, respectively;

b) T, 1(X,Y) is the unique quasi-Fuchsian manifold whose upper and lower
k-surfaces have X and Y as hyperbolic structures induced by their first
fundamental forms, respectively;

c) ¢f o B 1(X, Y) are the holomorphic quadratic differentials q;t on the
upper and lower k-surfaces (as defined in Section [5.1.1);

d) ¢ o T71(X,Y) are the 1-forms d(ng:)Ig: on the upper and lower k-
surfaces (as defined in Section [5.1.2).

Now that we have introduced all the notation, we are ready to state the for-
mulations of the quasi-Fuchsian reciprocity Theorems that follow from Theorem

[E}

Theorem 5.4.2. For every (X,Y) € TY(X) x TY(X), the differentials of the
maps

A7, x)y Ty TUE) — TTE), dmey) g IxTUE) — T3 T()
are adjoint linear operators.

Theorem 5.4.3. If the map By, is a diffeomorphism, then for every (X,Y) €
T(X) x TYX) , the differentials of the maps

d(Brx)y 1 Ty T(E) — TXT(X),  d(Bry)x : IxT(E) — Iy T*(X)
are adjoint linear operators.

Proof of Theorems[5.4.2 and[5.4.3. Let F: N* x N~ — T*(N* x N7) be a
smooth function satisfying 7 o F' = id, where m: T*(NtT x N™) - Nt x N~ is
the cotangent bundle projection. For every X in NT, we set F’ ; N~ - TxNT
to be FY(Y) := F(X,Y)", where F(X,Y)" is the component of F(X,Y) in
the fiber T% N*t, and, for every Y € N_, we set Fy,: Nt — Ty N~ to be
Fy(X) := F(X,Y)", where F(X,Y)™ is the component of F'(X,Y) in the
fiber Ty, N~. Then, the following relation holds:

(d(Fy) x (w),v) = (d(Fx)y (v),u) = (F*w)(x,v)((1,0), (0,0)),

for all (X,Y) € NT x N", ue TxN", v e TyN-. A proof of this relation
can be found in |KS12, Section 5.2.1] for the function F' = Sch, the proof of
the general case is formally identical. Now, using this relation for the maps
F=¢ro Bk_1 and F' = ¢ o Tk_l, and applying Theorem [E| we obtained the
desired statement. O
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5.5 The k-flows are Hamiltonian

In this section we show that the k-surface foliation of a hyperbolic end can be
described as the integral curve of a time-dependent Hamiltonian vector field
with respect to the symplectic structure 2@;w® = ¥iw" on £(X), which does
not depend on k in light of Theorem [G] The vector fields we will look at are
defined in terms of the diffeomorphisms (®)x and (V) as follows:

d

Xpi= o ®hyno o, _, eD(IT*TE(S)),
d - *
Yii= o Wipn o Uy Y,y EDETT T ().

In order to simplify the notation, whenever we have an object X that depends
on the curvature k, we will denote by X its derivative with respect to k. We
denote by my: £(X) — R the function

mk(E) = . dea]k.
k

Lemma 5.5.1. For every k € (—1,0), we have

)\C(Xk) o®p = —wy + (56)

1
Stkr1)
1
N(Y) o Uy = =207 + T e (5.7)
Proof. Let E be a fixed hyperbolic end. If (¢, qx) denotes the point @ (E) €
T*T¢(X), then the Liouville form A° satisfies

N 0 B(E) = WY ) ( 5 Prrn(B)lcg ) = Relaw, ),

By Proposition we have

. 1 } H; H;.
W (E) 1 /Ek (( &, M, 5 k)llk + 72(1@—1— 1)> day,

1
= —Relqr, k) + —— Hy day,
(s Ck) skt 1) Jy, kdarg,
1
= —Re(qy, ¢ —_— E).
e(qr, ) + ST D) my,(E)
Combining these two relations we obtain the first part of the statement. Simi-
larly, we see that

Rt :
= d(Luy),, ().

By definition of hj, we have he = —I — k 1. Using Lemma we obtain

MN(V,) o Up(E) = —

1 .
N0 (Vi) 0 Ui(E) = ﬁ/z (=1 — k Iy, I, — Hyly),, dar,
"
1 . 1
:_5 (Ik7—”k_Hka)]k dalk +% dea[k
o o

1
= —205(E) + T mg(E),



114 CHAPTER 5. CGC-SURFACES IN HYPERBOLIC 3-MANIFOLDS

where, in the last step, we used Proposition [2.2.5 O

Lemma 5.5.2. Let M and N be a n- and a 2n-manifold, respectively, and
let op: N — T*M be a 1-parameter family of diffeomorphisms, indexed by a
variable t varying in an open interval J of R. Denote by A the Liouville form
of T*M, and set V; to be the vector field of T*M given by

d —1
Vii= g Pren © @1 lheo

for any t € J. Then we have

—1\* d *
(o) (i) = s+ ),

for every t € J.

Proof. The statement is a consequence of Cartan formula. The time-dependent
family of vector fields (V;); corresponds to a ordinary vector field V' on the
manifold J x T*M, by setting

V(t,) =0+ Vi(-) € ToJ x T.(T*M) 2 Ty .y (J x T*M).

An intergral curve v = ~(t) of (V3); in T*M corresponds to the integral curve
t (t,y(t)) of V in J x T*M. Let 7 denote the projection of .J x T*M onto its
second component. We apply Cartan formula to the 1-form 7*A and the vector
field V, obtaining

Lo\ =15 d(m*X) +d(epm™A), (5.8)

where Ly 7* X denotes the Lie derivative of the 1-form 7*\ along the vector field
V. A straightforward computation proves the following relations:

Ly d(ﬂ*)\)|(t,.) = W*(L\/td)\”(t,_),
(g m* N(E) = (v X o m)(E ),
_ D
(¢ ! o) (dt% /\)

Replacing these expressions in the equation (5.8, we obtain that, for every ¢t € J

w (e (i) - - )

Since dm(, . is surjective, the pullback by 7 at (t,-) is injective on k-forms. In
particular, for every ¢t € J we must have

= Lom* A, -
(tv')

=0.
(t,~)

—1y\* d *
(o) (g2) = i~ o) =
which proves the statement. O

Theorem [F. For every k € (—1,0), the vector field Xy, of T*T*(X) is Hamil-
tonian with respect to the symplectic structure w®, with Hamiltonian function
—% myo®, . Similarly, the vector field Yy, of T*TY(X) is Hamiltonian with

respect to the symplectic structure w", with Hamiltonian function —% mg o \Ilgl.
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Proof. From Lemma we see that

d d 1
N\ — | - *ybh| _ .
qu)k)\ i [ dwy, + 2(dLOTh) A ] = —duy . (5.9)

Applying Lemma to N =£&(2), M =T¢2) and ¢; = Dy, we get

TR A< BN . .
(‘bkl) (dk(I)kA ) =1x,w" +d(ex, A9). (5.10)

Now, putting everything together, we obtain

—1y\x d * ¢ c
Lt = (01 (qu’k)\ > —d(ex, A) (eq. (5.10))
1
= — q)_l * A — i (b_l (I)_l
(@, )" duig, d< Wy o D +78(k+1) my o P
(cq (50) and (59))
. _ . _ 1 _
:7d(wko¢kl)+d(wk0®kl)78(k,7_i_1)d(mk0®kl)
1
- ot
8(k+1)d(m’“o e )

which proves the first part of the statement. With the exact same strategy we
can prove the assertion concerning the vector fields (Yx)g- O

Remark 5.5.3. It can be easily checked that the choice of the multiplicative
constant in the definition of g, and consequently of ®, becomes relevant for
Theorem [E] to hold. The same holds for the multiplicative constant in the
definition of ¥.
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Possible developments

In the following, we describe a series of questions that are related to (or that
arise from) our results, on which we hope to work on in the near future.

Prescriptions on k-surfaces

In Chapter[3] and more specifically in the proof of Theorem we made use
of a deep result, due to Labourie and Schlenker, which we recall here:

Theorem 5.5.4 ([Lab92a|, [Sch06]). Let g be a hyperbolic metric on a compact
3-manifold M with smooth and strictly convex boundary. Then the induced
metric I on OM has Gaussian curvature > —1. Every Riemannian metric on
OM with Gaussian curvature > —1 is realized as the induced metric on OM by
a unique hyperbolic metric on M with strictly convex boundary.

In [Sch06], it is also presented a similar result concerning the third funda-
mental forms on OM:

Theorem 5.5.5 (|Sch06]|). Let g be a hyperbolic metric on a compact 3-manifold
M with smooth and strictly convex boundary. Then the third fundamental form
I on OM has curvature < —1, and its closed geodesics which are contractible
in M have length > 2mw. Moreover, every such metric is realized by a unique g.

In particular, these results imply that, for every k € (—1,0), we have:

e for every smooth metric on M with constant Gaussian curvature k, there
exists a unique hyperbolic metric on M with such first fundamental form

on its boundary (see Theorem [3.4.1));

e for every smooth metric on M with constant Gaussian curvature kiﬂ,
and such that its closed geodesics which are contractible in M have length
> 27, there exists a unique hyperbolic metric on M with such third fun-
damental form on its boundary.

Theorems and are related to two questions, asked by William
Thurston:

Conjecture 1 (Thurston). Is the space of quasi-Fuchsian manifolds QF (X)
parametrized by the hyperbolic metrics (m*,m™) € T?(X)? on the boundary of
the convex core?

117
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It is known that every pair of hyperbolic metrics can be realized as the
hyperbolic structures on the boundary of the convex core of a quasi-Fuchsian
manifold, but the uniqueness has not been proved (or disproved) yet.

Let FML_,(X) denote the subset of ML(X)? given by the pairs of measured
laminations that are filling 3 and without simple closed curves with weight > .

Conjecture 2 (Thurston). Is the space of quasi-Fuchsian manifolds QF (X)
parametrized by the bending measured laminations (u*, ;=) € FML (X) on
the boundary of the convex core?

It has been proved by Bonahon and Otal [BO04| that every pair of filling
measured laminations in FML. () is realizable, and that the uniqueness
holds for pairs of rational laminations lying in FML . (X).

In light of the analogies between k-surfaces, the boundary at infinity and
the boundary of the convex core that we observed in the introduction, a natural
question that arises is the following:

Question 1. Let k € (—1,0). Is the space of quasi-Fuchsian manifolds QF (X)
parametrized by the conformal structures of the second fundamental forms of its
k-surfaces?

An affirmative answer to this question would extend the classical work of
Bers [Ber60|, which states that the space of quasi-Fuchsian manifolds is param-
etrized by the pair of conformal structures at infinity. Similarly we can ask:

Question 2. Let k € (—1,0). Is it possible to prescribe the pair of measured
foliations of the Hopf differentials qi, associated to the k-surfaces of a quasi-
Fuchsian manifold?

Even in the case of the boundary at infinity, it is not known whether the pair
of measured foliations of the Schwarzian at infinity are filling, and which are the
candidate necessary and sufficient conditions of the foliations to be realized.

Constant curvature foliations

In [Mon89|, Moncrief proved the existence of a Hamiltonian flow correspond-
ing to constant mean curvature (briefly CMC) foliations in constant sectional
curvature Lorentzian spacetimes. His method is based on the ADM formal-
ism (named after its authors Arnowitt, Deser and Misner), which describes a
Hamiltonian formulation of the general theory of relativity [ADMS59].

Question 3. Is it possible to show that the CMC-flow in de-Sitter, Minkowski,
and anti-de Sitter spacetimes is Hamiltonian through the study of suitable no-
tions of volumes?

Moncrief’s results were later used by Andersson, Moncrief, and Tromba
|[AMT97] to develop a proof of the existence of CMC-foliations for those MGHC
spacetimes that contain at least one CMC Cauchy surface.

Question 4. Is it possible to prove the existence of constant Gaussian curvature
foliations for de-Sitter, Minkowski, and anti-de Sitter spacetimes, originally due
to Barbot, Béguin and Zeghib [BBZ11], using the Hamiltonian k-surface flow
described in Section[5.57
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Such results would clarify the similarities between CMC and constant Gaus-
sian curvature foliations, and they would furnish a simple and unified strategy
to approach these problems.

A modification of the argument used in Theorem [F] proves the existence of a
Hamiltonian flow over the space of germs of CMC-surfaces satisfying a suitable
natural bound of their principal curvatures. Since a generic quasi-Fuchsian
manifold M may possess several minimal surfaces (see [HW13| Section 4]), there
is no hope to have a natural and unique foliation by constant mean curvature for
any quasi-Fuchsian structure. However, this question, first asked by Thurston,
still makes sense when we restrict ourselves to the space of almost Fuchsian
manifolds, which possess a unique minimal surface with principal curvatures
contained in (—1,1):

Conjecture 3 (Thurston). Is an almost-Fuchsian manifold foliated by CMC-
surfaces?

A natural question that arises from this picture is whether an approach sim-
ilar to the one of Andersson, Moncrief, and Tromba [AMT97] in the Lorentzian
context could be developed in the hyperbolic setting, at least to determine suf-
ficient conditions for the existence of CMC-foliations, based on bounds on the
geometry of the minimal surfaces.

Extensions to higher Teichmiiller theories

A general powerful tool in the study of representations of surface groups is to
determine equivariant immersions of surfaces that are natural, in some sense,
with respect to the geometry to the target space. A typical "natural condition"
to require for these maps is to be minimal. However, there are cases in which
the study through minimal surfaces displays complications, as it happens for
quasi-Fuchsian manifolds, which many contain several minimal surfaces.

The same phenomenon does not occur for constant Gaussian curvature sur-
faces: every hyperbolic end possesses exactly one k-surface for every k € (—1,0).
Equivalently, for every complex projective structure o on X there exists a unique
k-surface that is equivariant by the action of the holonomy of o, which takes
value into PSLo(C). A possible analogous of k-surfaces for convex projective
structures (so for the Hitchin component of SL(3,R)) that seem to be promising
are affine spheres and constant affine curvature surfaces, as described by the
works of Labourie [Lab07|, and independently of Loftin |[Lof01]. A general in-
teresting question is to investigate the connections between these notions, and
possibly to determine a proper general framework for such classes of surfaces in
higher rank Lie groups.

Para-quaternionic structures on the space of AdS
manifolds
A celebrated result by Donaldson [Don03] asserts that the space of almost-

Fuchsian manifolds admits a natural hyper-Kéhler structure, invariant under
the action of the mapping class group. Donaldson’s construction proceeds by
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applying an infinite-dimensional version of the symplectic reduction on the space
of sections of a certain bundle over ¥, which possess a formal natural hyper-
Kahler structure.

An interesting problem, on which I am working together with Andrea Seppi
and Andrea Tamburelli, is to understand whether a similar phenomenon occurs
for the space of globally hyperbolic maximal compact Anti-de-Sitter spacetimes.
In this setting, the promising notion to look at is the one of para-hyperKdhler
structure, in which a complex structure (J? = —id) coexists with a pair of para-
complex structures (J3 = J3 = id) and a pseudo-Riemannian metric, verifying
certain compatibility relations.



Notation

¥ : oriented connected compact smooth surface with empty boundary and
of genus g > 2 (X if endowed with the opposite orientation);

H™ : the hyperbolic space of dimension n;
dS"™ : the de Sitter space of dimension n;
AdS"™ : the anti de Sitter space of dimension n;

T(X) : the Teichmiiller space of X (7Y for hyperbolic structures, 7°¢ for confor-
mal structures);

I, II, T : the first, second and third fundamental forms;

Ly, : the length function over ML(X) with respect to the hyperbolic metric
m;

L, : the length function over 79(X) of the measured lamination p;
CM : the convex convex core of M,
N.X : the e-neighbourhood of X;
S:X : the e-equidistant surface from X;

1 : the identity endomorphism;

MCG(Y) : the mapping class group of X;
GL(X) : the space of geodesic laminations of ¥;
ML(X) : the space of measured geodesic laminations of ¥;
)

: the space of quasi-isometric deformations of a complete hyperbolic 3-
manifold M;

QF(X) : the space of quasi-Fuchsian manifolds homeomorphic to ¥ x R;
E(X) : the space of hyperbolic ends homeomorphic to 3 x (0, c0);
Vg : the renormalized volume function;
Ve ¢ the volume of the convex core function;

V& ¢ the dual volume of the convex core function;
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Sch : the Schwarzian parametrization of £(X);
Th : the Thurston parametrization of £(X);

extr : the extremal length function of the measured foliation F.
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