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Abstract

We investigate the properties of various notions of volume for convex co-compact
hyperbolic 3-manifolds, and their relations with the geometry of the Teichmüller
space.

We prove a first order variation formula for the dual volume of the convex
core, as a function over the space of quasi-isometric deformations of a convex
co-compact hyperbolic 3-manifold.

For quasi-Fuchsian manifolds, we show that the dual volume of the convex
core is bounded from above by a linear function of the Weil-Petersson distance
between the pair of hyperbolic structures on the boundary of the convex core.

We prove that, as we vary the convex co-compact structure on a fixed hyper-
bolic 3-manifold with incompressible boundary, the infimum of the dual volume
of the convex core coincides with the infimum of the Riemannian volume of the
convex core.

We study various properties of the foliation by constant Gaussian curvature
surfaces (k-surfaces) of convex co-compact hyperbolic 3-manifolds. We present
a description of the renormalized volume of a quasi-Fuchsian manifold in terms
of its foliation by k-surfaces. We show the existence of a Hamiltonian flow over
the cotangent space of Teichmüller space, whose flow lines corresponds to the
immersion data of the k-surfaces sitting inside a fixed hyperbolic end, and we
determine a generalization of McMullen’s Kleinian reciprocity, again by means
of the constant Gaussian curvature surfaces foliation.
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Introduction

We investigate the notions of dual and renormalized volume for convex co-com-
pact hyperbolic manifolds and their relations with the geometry of the Teich-
müller space. The Teichmüller space of a topological surface with negative Euler
characteristic can be defined as the space of isotopy classes of either conformal
structures, or hyperbolic metrics. The interplay between these two interpreta-
tions makes the Teichmüller space an extremely fruitful object of study. The
initial approach to the subject via complex analytic methods, developed by
Teichmüller, Ahlfors, Bers and Weil, among others, has been tremendously ex-
panded by the work of William Thurston in the 1970’s, who further investigated
its connections with the study of the topology of 3-manifolds and their geometric
structures, leading him to his celebrated Geometrization Conjecture (now The-
orem, by Perelman). In this work we will focus our attention on the geometry
of convex co-compact hyperbolic 3-manifolds: these are complete Riemannian
3-manifolds of constant sectional curvature equal to �1, which possess a non-
empty compact convex subset (here we say that a subset C of a Riemannian
manifold M is convex if, for every pair of points p, q 2 C and for every geodesic
arc � joining them, � in fully contained in C). The smallest compact convex
subset of a manifold M is called its convex core CM , and it encloses all the
geometric information about such M . An example of a rich class of convex co-
compact hyperbolic manifolds are quasi-Fuchsian manifolds, which are homeo-
morphic to the product a surface times the real line (here surfaces will always
be supposed to be closed and with genus at least 2). Non-closed convex co-
compact hyperbolic manifolds can be quasi-isometrically deformed, and their
deformation spaces are parametrized by the space of conformal structures on
their domain of discontinuity (see e. g. [Ber60], [Sul81a]).

Non-closed convex co-compact hyperbolic manifolds always have infinite Rie-
mannian volume. However, interesting notions of volumes can be introduced
also in this context, either by looking at their convex core (which is compact),
or by defining suitable renormalization procedures over exhaustions of the man-
ifold, as for the renormalized volume. In Chapter 2 we will study the dual
volume of the convex core V ⇤

C
, as a function over the deformation space of con-

vex co-compact hyperbolic structures of a given topological type. In particular,
we determine a first order variation formula for V ⇤

C
, called the dual Bonahon-

Schläfli formula. The original Bonahon-Schläfli formula expresses the variation
of the volume of the convex core of a convex co-compact 3-manifold in terms of
the variation of the geometry of its boundary. It takes its name from Schläfli
[Sch58], who developed a variation formula for the volume of convex polyhedra
inside the elliptic space form S

3, and from Bonahon [Bon98a], who generalized
this relation to the context of convex co-compact 3-manifolds. Bonahon’s result

vii
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states that the directional derivative of the volume of the convex core VC along
a smooth family of convex co-compact structures (Mt)t satisfies

dVC(Mt)

dt

����
t=0+

=
1

2
`m(µ̇),

where `m(µ̇) denotes the length of the derivative of the bending measure µ̇ :=
dµt

dt |t=0+ with respect to the hyperbolic metric m of the boundary of the convex
core. Here the presence of the directional derivative d

dt |t=0+ is crucial, because
the function VC is not C

1, but only tangentiable. This statement displays an in-
trinsic complexity in the study of the function VC , since it involves the variation
of the bending measured lamination µ̇. In Bonahon’s work, the understanding
of this object passes through the notion of transverse Hölder distributions, and
its study inherently requires exceptional care.

Surprisingly, these difficulties can be spared in the study of the dual volume
of the convex core V ⇤

C
. The notion of the dual volume of a convex set naturally

arises from the polarity correspondence between hyperbolic and de Sitter ge-
ometries. In the case of the convex core, it coincides with V ⇤

C
= VC �

1
2`m(µ),

where `m(µ) is the hyperbolic length of the bending measured lamination of the
boundary of the convex core. As observed by Krasnov and Schlenker [KS09],
a simple application of Bonahon’s work proves that the variation of the dual
volume satisfies:

Theorem A (Dual Bonahon-Schläfli formula).

dV ⇤

C
(Ṁ) = �

1

2
dLµ (ṁ),

where Lµ is the analytic function on the Teichmüller space of @M that asso-
ciates, with each hyperbolic structure m, the length of the m-geodesic realization
of µ, and ṁ is the first order variation of the hyperbolic metric mt on the
boundary of the convex core of Mt.

In contrast to what happens to the standard hyperbolic volume, the deriva-
tive of the dual volume involves only the variation of the hyperbolic metric on
the convex core, which, at least, does not require exceptional work to be defined.
A natural question that arises from this statement is whether it is possible to
give a proof of the variation formula of the dual volume without involving the
study of the variation of the bending measure.

In Chapter 2 we answer affirmatively to this question. The proof that we
provide does not require the application of the Bonahon-Schläfli formula and
the study of the transverse Hölder distribution associated with the variation of
the bending measure. The tools used are quite elementary and the strategy of
the proof leans on purely differential geometric methods. A key ingredient of
the analysis is the so-called differential Schläfli formula, due to Schlenker and
Rivin [RS99], which is an analog of the classical Schläfli formula for compact
convex sets with smooth boundary inside Einstein Riemannian (or Lorentzian)
manifolds.

In Chapter 3, the local understanding of the dual volume function V ⇤

C
given

by the dual Bonahon-Schläfli formula allows us to estimate the growth of V ⇤

C

over the space of quasi-Fuchsian manifolds. The asymptotic behaviour of the
"standard" Riemannian volume of the convex core of a quasi-Fuchsian manifold
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has been described by Brock [Bro03]. In this work, the author proved that the
volume of the convex core VC(M) of a quasi-Fuchsian manifold M is coarsely
equivalent to the Weil-Petersson distance between the hyperbolic structures
m+

= m+
(M) and m�

= m�
(M) on the two boundary components of the

convex core of M . In particular, for every closed surface ⌃ of genus larger than
1, we can find two constants K⌃, N⌃ > 0, depending only on the topology of ⌃,
such that every quasi-Fuchsian manifold M homeomorphic to ⌃⇥ R satisfies:

K�1
⌃ dWP(m

+,m�
)�N⌃  VC(M)  K⌃ dWP(m

+,m�
) +N⌃.

The original proof of this result guarantees the existence of the constants K⌃

and M⌃, but it does not furnish numerical estimates. As anticipated above, the
dual Bonahon-Schläfli formula turns out to be very well-suited to find explicit
constants satisfying the upper bound of Brock’s statement. The first reason
is that the dual Bonahon-Schläfli formula involves exactly the variation of the
hyperbolic metrics on the boundary of the convex core. In addition, the standard
volume and dual volume of the convex core differ by the term `m(µ), which is
known to be bounded by a multiple of the Euler characteristic of ⌃, by the work
of Bridgeman [Bri98] (and further developments, see e. g. [BBB19]). These
properties essentially allow us to reduce Brock’s upper bound to the study of
the Weil-Petersson norm of dLµ, the differential of the length of the bending
measured lamination. In particular, in Chapter 3 we prove the following result

Theorem B. There exists an explicit universal constant C > 0 such that, for
every quasi-Fuchsian manifold M homeomorphic to ⌃⇥ R, we have

|V ⇤

C
(M)|  C|�(⌃)|1/2 dWP(m

+
(M),m�

(M)).

The approach used here is very different from Brock’s original one, which
was more combinatorial and based on the study of the complex of pants of the
surface ⌃. In our analysis, the geometric property that plays the main role is
the control of the amount of bending that occurs transversely to the bending
lamination, a phenomenon of incompressible hyperbolic ends already observed
in the work of Epstein and Marden [EM87].

From its definition V ⇤

C
(M) := VC(M) �

1
2`m(µ), it is not clear a priori

whether the dual volume of a convex co-compact 3-manifold is positive or not.
In Chapter 4 we study the infimum of the dual volume function over the space
of convex co-compact hyperbolic manifolds with incompressible boundary. In
particular, we will see:

Theorem C. For every convex co-compact hyperbolic 3-manifold M with in-
compressible boundary we have

inf
QD(M)

V ⇤

C
= inf

QD(M)
VC ,

where QD(M) denotes the space of quasi-isometric deformations of M . More-
over, V ⇤

C
(M) = VC(M) if and only if the boundary of the convex core of M is

totally geodesic.

In particular we deduce that the dual volume of the convex core of a quasi-
Fuchsian manifold is always non-negative, and it vanishes only on the Fuch-
sian locus. The proof that we present follows the same strategy of Bridgeman,
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Brock, and Bromberg [BBB19], where they observed that the same occurs for
the renormalized volume function. It is worth to mention that in the same work,
the authors proved that the renormalized volume VR(M) of a convex co-compact
hyperbolic 3-manifold is always larger or equal to the dual volume of the convex
core V ⇤

C
(M) (see in particular [BBB19, Theorem 3.7]), therefore Theorem C is

actually a strengthening of the analogous result for VR. The request on M to
have incompressible boundary is necessary, indeed it has been shown by Pallete
[Pal19] that there exist Schottky groups with negative renormalized volume.

As described by Thurston’s work in the study of 3-dimensional hyperbolic
geometry, convex co-compact hyperbolic 3-manifolds can be characterized either
by the geometric data on the boundary of their convex core, or by the structure
of their boundary at infinity. These two descriptions are performed using two
different approaches: the first is based on the study of hyperbolic structures
and measured laminations over surfaces, while the second has a more "complex-
analytical" flavour, involving Riemann surface structures and holomorphic qua-
dratic differentials. In Chapter 5 we investigate the relations between these two
descriptions through the notion of constant Gaussian curvature surfaces. By
a result of Labourie [Lab91], every hyperbolic end E admits a unique foliation
(⌃k)k by convex k-surfaces, i. e. surfaces of constant Gaussian curvature k, with
k that varies in (�1, 0). The leaves ⌃k of the foliation converge to the pleated
boundary of E as k goes to �1, and they go towards the conformal boundary
at infinity of E when k goes to 0. The k-surface foliations have been used by
Labourie [Lab92b] to construct two families of parametrizations of the space of
hyperbolic ends (�k)k, ( k)k. The map �k associates with E the conformal
structure of the second fundamental form of ⌃k, together with a holomorphic
quadratic differential qk naturally associated with ⌃k, while  k maps E into a
pair of hyperbolic metrics, coming from the first and third fundamental forms
of ⌃k (the third fundamental form can be interpreted as the first fundamental
form of the dual surface of ⌃k in the de Sitter space).

The works of Belraouti [Bel17] and Quinn [Qui20] describe the asymptotic
properties of these maps. In particular, we can see that, up to normalization,
the maps �k converge to the Schwarzian parametrization as k goes to 0, and
the maps  k converge to the Thurston parametrization as k goes to �1. This
phenomenon suggests that the k-surfaces can be the correct notion to interpolate
between the structure of the convex core and the one of the conformal boundaries
at infinity.

Guided by this interpretation, in Chapter 5 we study the notions of dual
volume V ⇤

k
and W -volume Wk of the region of a convex co-compact manifold

M enclosed by its k-surfaces. After having developed analogues of the Schläfli
formulae for these functions, we give a new description of the notion of renor-
malized volume of a convex co-compact hyperbolic manifold M in terms of its
k-surface foliation. More precisely, if Mk denotes the region of M contained be-
tween the k-surfaces of the hyperbolic ends of M , and W (Mk) is its W -volume,
then:

Theorem D.

VR(M) = lim
k!0

⇣
W (Mk)� ⇡|�(@M)| arctanh

p

k + 1

⌘
.

This characterization of the renormalized volume has the virtue of being
described in terms of a very natural geometric foliation of M . In particular, it
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does not involve the study of the partial equidistant foliations associated with
the metrics in the conformal class at infinity, which greatly simplifies the original
approach of Krasnov and Schlenker [KS08].

The Schläfli formulae of V ⇤

k
and Wk turn out to be closely related to the

symplectic structure of T ⇤
T (@M), the cotangent space of the Teichmüller space.

The maps �k and  k induce two immersions �k and  k, respectively, of QD(M),
the space of quasi-isometric deformations of a fixed convex co-compact hyper-
bolic 3-manifold M , into T ⇤

T (@M). Then, the pullbacks of the Liouville form �
of T ⇤

T (@M) by the maps �k and  k coincide with the differentials of the func-
tions Wk and V ⇤

k
, respectively. This simple observation immediately implies the

following:
Theorem E. The images of the maps �k, k : QD(M) ! T ⇤

T (@M) are La-
grangian submanifolds of (T ⇤

T (@M),!cot) for every k 2 (�1, 0).
This result extends and generalizes McMullen’s Kleinian reciprocity theorem

[McM98], replacing the role of the Schwarzian parametrization Sch, appearing
in McMullen’s original result, with Labourie’s parametrizations �k and  k. The
proof of Theorem E is extremely simple and it highlights a series of connections
between k-surfaces and the structures of the boundary of the convex core and
of the conformal boundary at infinity, which are summarized in Table 1.

Studying Einstein equations of 3-dimensional spacetimes in a constant mean
curvature (or, briefly, CMC) gauge, Moncrief [Mon89] proved that CMC-folia-
tions determine a (time-dependent) Hamiltonian flow on (T ⇤

T ,!cot), the cotan-
gent space to Teichmüller space with its natural cotangent symplectic structure.
This result was later used by Andersson, Moncrief, and Tromba [AMT97] to
prove that, if a constant curvature MGHC (maximal globally hyperbolic spa-
tially compact) spacetime in dimension 3 cointains a CMC Cauchy surface, then
it admits a CMC-foliation (the general existence of CMC-foliations – without
assuming the existence of a CMC Cauchy surface – in any dimension has been
extensively studied by Andersson et al. [And+12]).

Using the tools developed for the results described above, we can give an
analogous description of the flow determined by Labourie’s constant Gaussian
curvature foliations of hyperbolic ends. More precisely, if �̇k ��

�1
k

denotes the
vector field of T ⇤

T given by d
dk0�k0 � �

�1
k

|k0=k, then:

Theorem F. The k-dependent vector field �̇k ��
�1
k

is Hamiltonian with respect
to the cotangent symplectic structure of T ⇤

T .
Moreover, the role of the area functional as a Hamiltonian function in Mon-

crief’s work here is replaced by the integral of the mean curvature of ⌃k. A very
similar statement holds for the parametrizations  k. The approach used here
is different and more geometric in nature than the one used by Moncrief, which
passes through the ADM formalism for the study of the Einstein’s equations in
3-dimensional vacuum space-time. In our analysis, the result is a direct conse-
quence of the variation formulae of the Wk volumes mentioned above, and their
relations with the symplectic structure of T ⇤

T .

Outline of the thesis
The thesis is organized as follows. In Chapter 1 we give an overview of the
preliminary notions that will be used in the rest of the exposition. In Chapter
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On @CM On @Mk On @1M

Conformal str. ck = [IIk] Conformal str. c1

&

Intrinsic metric m First fund. form Ik

Foliation Fk = Hor(qk) Foliation F1 = Hor(q1)

&

Bending measure µ Third fund. form IIIk

Extr. length extFk (ck) Extr. length extF1(c1)

&

Hyperbolic length Lµ(m) Mean curvature
R
@Mk

Hk

Parametrization �k Schwarzian param. Sch

&

Thurston’s param. Th Parametrization  k

W -Volume W (Mk) Renormalized volume VR

&

Dual volume V
⇤
C Dual volume V

⇤
(Mk)

Thm 5.2.4:

Ẇk = � 1
2 d extFk (ċk)

[Sch17, Thm 1.2]

V̇R = � 1
2 d extF1 (ċ1)

&

Thm A

V̇
⇤
C = � 1

2 dLµ (ṁ)

Thm 5.2.8

V̇
⇤
k = � 1

2 dLIIIk (İk)

Thm E McMullen’s Kleinian

�k(QD(M)) Lagrangian reciprocity [McM98]

&

[KS09] Thm E

dL � Th(QD(M)) Lagr.  k(QD(M)) Lagrangian

Table 1: k-surfaces interpolating between @CM and @1M

2 we develop a proof of the dual Bonahon-Schläfli formula (Theorem A) for
convex co-compact hyperbolic 3-manifolds. The material of this chapter can be
found in:

Filippo Mazzoli. “The dual Bonahon-Schläfli formula”. arXiv e-prints (Aug.
2018). To appear, Algebr. Geom. Topol., 2020. arXiv: 1808.08936 [math.DG].

Chapter 3 is focused on the derivation of the linear upper bound of the dual
volume of the convex core of quasi-Fuchsian manifolds in terms of the Weil-
Petersson distance between the hyperbolic structures on the boundary of their
convex core (Theorem B). The content of this chapter is in:

Filippo Mazzoli. “The dual volume of quasi-Fuchsian manifolds and the Weil-
Petersson distance”. arXiv e-prints (July 2019). arXiv: 1907.04754 [math.DG].

Chapter 4 focuses on the study of the infimum of the dual volume function
as we vary the convex co-compact hyperbolic structure on a fixed topological 3-
manifold with incompressible boundary (Theorem C), and it is unpublished at
the time of writing this thesis.

http://arxiv.org/abs/1808.08936
http://arxiv.org/abs/1907.04754
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In Chapter 5 we study the properties of constant Gaussian curvature folia-
tions and how they interpolate the geometry of the boundary of the convex core
and of the conformal boundary at infinity. The reader can find in this chapter
the proofs of Theorems D, E, and F, which have been described in:

Filippo Mazzoli. “Constant Gaussian curvature foliations and Schläfli formulas
of hyperbolic 3-manifolds”. arXiv e-prints (Oct. 2019). arXiv: 1910.06203
[math.DG].

http://arxiv.org/abs/1910.06203
http://arxiv.org/abs/1910.06203
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Chapter 1

Preliminaries

Outline of the chapter

In this chapter we introduce the objects and the notions that will be used in
the rest of the thesis.

In Section 1.1 we present the elementary properties (of certain models) of
the hyperbolic and de Sitter spaces H

n and dS
n, and we introduce the notion

of hyperbolic n-manifolds.
Section 1.2 focuses on hyperbolic surfaces (i. e. n = 2), we recall the relations

between conformal and hyperbolic structures on surfaces, and the definition of
the Teichmüller space. In addition, we describe holomorphic quadratic differen-
tials, measured foliations and their extremal length, on the "Riemann surface"
side, and geodesic laminations and measured laminations, on the "hyperbolic
surface" side. We also briefly recall the notions of harmonic and minimal La-
grangian maps between hyperbolic surfaces, which will be necessary for our
exposition in Chapters 3 and 5.

In Section 1.3 we introduce our main object of study, namely convex co-
compact hyperbolic 3-manifolds. We describe the structures of the boundary of
their convex core, and of their conformal boundary at infinity.

Section 1.4 investigates the polarity correspondence between hyperbolic and
de Sitter spaces. In particular, we describe the duality between convex sets in
these geometries, and the relations between the geometric data of their bound-
aries. This part of the exposition will be useful for the introduction of the notion
of dual volume, done in Section 1.7.

Section 1.5 concerns the notion of constant Gaussian curvature surfaces in-
side hyperbolic 3-manifolds. We describe the properties of their fundamental
forms using the tools of the previous section, and how this class of surfaces relate
to the notion of minimal Lagrangian maps.

In Section 1.6 we recall the geometric structure of (geometrically finite)
hyperbolic ends, and two parametrizations of the deformation of these objects,
namely the Thurston and Schwarzian parametrizations. We also recall Labourie’s
result concerning foliations by constant Gaussian curvature surfaces of hyper-
bolic ends.

Finally, Section 1.7 focuses on volumes of convex subsets inside hyperbolic 3-
manifolds. We first recall the classical Schläfli formula for compact hyperbolic

1
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polyhedra, and the differential Schläfli formula studied by Rivin and Schlenker
[RS99]. The chapter ends with a description of the properties of the dual volume
for convex bodies in the hyperbolic 3-space. Even if not strictly necessary for
the rest of the exposition, this part is indented to give an intrinsic description
of the dual volume, and to explain how this notion naturally arises from the
duality correspondence between hyperbolic and de Sitter geometries.

1.1 Hyperbolic and de Sitter spaces
Let Rn,1 denote the (n+1)-dimensional Minkowski space, i. e. the vector space
R

n+1 endowed with the Lorentzian scalar product h·, ·i
n,1, defined as

hx, xi
n,1 := x2

1 + x2
2 + · · ·+ x2

n
� x2

n+1,

for any x = (x1, . . . , xn+1) 2 R
n,1. We denote by H1 and H�1 the subsets of Rn,1

given by the vectors x satisfying hx, xi
n,1 = 1 and hx, xi

n,1 = �1, respectively.
The subset H+

�1 := H�1 \ {xn+1 > 0} describes a connected n-manifold
embedded in R

n,1 and diffeomorphic to R
n. The bilinear form h·, ·i

n,1 restricts
on each tangent space TxH

+
�1 = kerhx, ·i

n,1 to a positive definite scalar prod-
uct, which determines a Riemannian metric on H+

�1. We will denote by H
n

the resulting Riemannian manifold. This will be our standard model for the
hyperbolic n-space.

Similarly, H1 is diffeomorphic to Sn�1
⇥ R and it admits a structure of

Lorentzian n-manifold. Indeed, for every point x⇤
2 H1, the restriction of

the scalar product h·, ·i
n,1 to the tangent space Tx⇤H1 = kerhx⇤, ·i

n,1 defines a
bilinear form of signature (n� 1, 1). The resulting Lorentzian manifold will be
denoted by dS

n, and it will be called the de Sitter n-space.

Definition 1.1.1. A non-trivial tangent vector v 2 TpN to a Lorentzian man-
ifold N (e. g. R

n,1 or dS
n) is called space-like if it satisfies hv, vi > 0, time-like

if hv, vi < 0 and light-like if hv, vi = 0. A time-orientation of N is the datum
of a choice of a connected component of {v 2 TxN | v time-like} at each point
x of N , depending continuously on x.

The subgroup O(n, 1)+ of isometries of Rn,1 that keep H+
�1 invariant obvi-

ously preserves the Riemannian structure of Hn. Since this action is transitive
and faithful on the bundles of orthonormal frames of H

n, O(n, 1)+ identifies
with the group of isometries Iso(H

n
) of Hn. The connected component of the

identity Oo(n, 1) ⇢ O(n, 1)+ consists of the orientation-preserving isometries of
H

n, and it will be also denoted by Iso
+
(H

n
).

For what concerns the de Sitter n-space, the entire group O(n, 1) acts on dS
n

and it identifies with the group of isometries Iso(dS
n
). The subgroup O(n, 1)+

can be interpreted as the subgroup of Iso(dS
n
) that preserves a time-orienta-

tion of dSn. Similarly, Oo(n, 1) consists of the orientation-preserving and time-
orientation-preserving isometries of dSn.

The hyperbolic space possesses totally geodesic subspaces of any codimen-
sion k 2 {0, . . . , n}, and they are all obtained as the intersection of H+

�1 with
codimension k vector subspaces of Rn,1 containing a time-like direction. Sim-
ilarly, the codimension k totally geodesic subspaces of dSn are intersections of
H1 with codimension k vector subspaces containing a space-like direction. In
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both cases, a codimension 1 subspace is also called hyperplane (if n = 3 we will
simply call it plane). While in the hyperbolic space all totally geodesic sub-
spaces with the same dimension are (ambient) isometric, in the de Sitter space
two subspaces are (ambient) isometric if and only if their metrics have the same
signature. We say that a subspace of dSn is space-like if its induced metric is
positive definite. A half-space in dS

n or in H
n is the closure of one of the two

components of the complementary of a hyperplane.

There are several other ways to describe the hyperbolic n-space, which can
be equivalently useful depending on the specific situation. We briefly recall the
other models that we will need in the rest of the exposition, and their properties.

The projective model of Hn consists of the open affine subset of the projective
n-space RP

n given by

P{v 2 R
n,1

| hx, xi
n,1 < 0}.

A peculiarity of this presentation is that, in the affine chart {xn+1 6= 0}, the
totally geodesic subspaces of H

n are described by euclidean subspaces of R
n

intersected with the open ball {v 2 R
n
|
P

i
v2
i
< 1}. However, the Riemannian

structure of Hn is not conformally equivalent to the flat metric on the affine chart
{xn+1 6= 0}. In particular, in the projective model the "hyperbolic angles" do
not coincide with the "euclidean angles".

Conformally flat models for H
n are the Poincaré n-disk model

0

@{v 2 R
n
| kvk20 :=

X

i

v2
i
< 1},

 
2

1� kvk20

!2X

i

dv2
i

1

A ,

and the half-space model
 
{w = (w1, · · · , wn) 2 R

n
| wn > 0},

1

w2
n

X

i

dw2
i

!
.

In all these presentations, the action of the isometry group of H
n extends

(uniquely and faithfully) to the boundary at infinity @1H
3, which can be re-

spectively described as:

• P{x 2 R
n,1

| hx, xi
n,1 = 0} in the projective model, with the natural

action of PO(n, 1);

• Sn�1
= {v 2 R

n
| kvk0 = 1} in the Poincaré n-disk model, with the

natural action of Conf(Sn�1
), the group of conformal diffeomorphisms of

the standard (n� 1)-sphere;

• R
n�1

[ {1} = {w 2 R
n
| wn = 0} [ {1} in the half-space model, again

with the natural action of Conf(Sn�1
) = Conf(R

n�1
[{1}), the group of

conformal diffeomorphisms of the standard (n� 1)-sphere.

We will denote by H
n the space H

n
[@1H

n. Since the hyperbolic n-space is
a complete Riemannian manifold, its distance does not extend to the boundary
at infinity. However, Hn possesses a natural topology, which coincides with the
standard Euclidean topology in the Poincaré n-disk model H

n ⇠= {v 2 R
n

|

kvk0  1}.
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We will be particularly interested in the cases of dimension 2 and 3, which
have the peculiarity of being intimately related with 1-dimensional complex
analysis. We will always consider the Poincaré 2-disk and the half-plane models
as sitting inside the Riemann sphere CP

1
= C [ {1}. The first is described by

� := {z 2 C | |z|2 < 1}, endowed with the Riemannian metric 4/(1�|z|2)2|dz|2,
while the second coincides with H := {z = x + iy 2 C | y > 0}, together with
the metric |dz|2/y2. In both these presentations, the group Iso

+
(H

2
) identifies

with the group of biholomorphisms of � and H, which consist of those Möbius
transformations of CP1 that keep them invariant. In particular, in the case of the
half-plane model H, this defines a natural isomorphism Iso

+
(H

2
) ⇠= P SL2(R) ⇢

P SL2(C).
Finally, when n = 3, every element of Iso

+
(H

3
) is uniquely determined

by its conformal action of the sphere at infinity @1H
3, which can be again

identified with CP
1. Therefore, Iso

+
(H

3
) coincides with the entire group of

Möbius transformations P SL2(C), and its subgroup P SL2(R) can be interpreted
as the set of those orientation-preserving isometries of H3 that keep invariant
some fixed totally geodesic plane of H3 (and preserve a fixed choice of a normal
vector field on it).

Definition 1.1.2. A complete hyperbolic n-manifold is a smooth manifold M of
dimension n endowed with a complete Riemannian metric of constant sectional
curvature �1. If M is connected, then it can be equivalently described as the
quotient of the hyperbolic n-space H by the action of a discrete and torsion-free
subgroup � of Iso(Hn

).

The hyperbolic manifold M is orientable if and only if the group � is con-
tained in Iso

+
(H

n
), the group of orientation-preserving isometries of Hn. In our

exposition we will always consider orientable manifolds.

Definition 1.1.3. A Fuchsian group is a discrete and torsion-free subgroup of
Iso

+
(H

2
) ⇠= P SL2(R). A Kleinian group is a discrete and torsion-free subgroup

of Iso+(H3
) ⇠= P SL2(C).

1.2 Hyperbolic surfaces
In our exposition ⌃ will always be an oriented connected compact smooth surface
with empty boundary and with genus g � 2, unless otherwise stated.

Definition 1.2.1. Let ⌃ be a surface. Two Riemannian metrics g, g0 on ⌃ are
conformally equivalent if there exists a smooth function u 2 C

1
(⌃) such that

g0 = e2ug.
A conformal structure c on ⌃ is an equivalence class of Riemannian metrics

with respect to the relation above. We will use also the notation c = [g], where
g is a representative of c. A surface endowed with a conformal structure is also
called a Riemann surface.

A hyperbolic metric h on ⌃ is a Riemannian metric with Gaussian curvature
constantly equal to �1.

Theorem 1.2.2 (Gauss). Let (⌃, c) be a Riemann surface. Then for every
point p 2 ⌃, there exists a local chart z = x + iy : U ! z(U) ✓ C around p
satisfying:
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• every Riemannian metric g in the conformal class c can be locally expressed
as g = e2u|dz|2 = e2u(dx2

+ dy2), for some smooth function u 2 C
1
(⌃);

• the chart z sends the orientation of U ✓ ⌃ into the standard orientation
of C.

Local coordinates satisfying the properties above are called conformal coordi-
nates.

Remark 1.2.3. Let (⌃, c) be a Riemann surface. An atlas of conformal coordi-
nates zi : Ui ! zi(Ui) ✓ C satisfies the following property: for every i and j
such that Ui \ Uj 6= ;, the change of coordinates

zj � z
�1
i

: zi(Ui \ Uj) �! zj(Ui \ Uj)

are biholomorphisms between open sets of C. This explains in particular the
equivalence between our definition of conformal structure with the usual one,
which endows ⌃ with a maximal atlas of charts with biholomorphic change of
coordinates.

Definition 1.2.4. Let ⌃ be a surface. The Teichmüller space of ⌃, denoted by
T (⌃), is the space of isotopy classes of conformal structures over ⌃. More pre-
cisely, we say that two conformal structures c and c0 are Teichmüller-equivalent
if there exists a diffeomorphism f of ⌃ isotopic to the identity such that f⇤c0 = c.
Here f⇤c0 is the conformal structure of f⇤g0, where g0 is a representative of the
conformal class c0.

In light of the Uniformization Theorem, the universal cover of a Riemann
surface (⌃, c) with genus g � 2 is biholomorphic to the unit disk � := {z 2

C | |z| < 1}. As briefly recalled at the beginning of Section 1.1, the group
of biholomorphic automorphisms of � coincides with the group of orientation-
preserving isometries of the metric g� = 4/(1� |z|2)2|dz|2. In particular, every
conformal structure on ⌃ uniquely determines a complete hyperbolic metric
h 2 c. This phenomenon tells us that the Teichmüller space can be considered
equivalently as the space of isotopy classes of hyperbolic metrics on ⌃. We will
write T c

(⌃) (c for conformal) when we want to emphasize the first interpretation
via conformal structures, and T

h
(⌃) (h for hyperbolic) in latter case.

1.2.1 Holomorphic quadratic diffentials and measured fo-
liations

Definition 1.2.5. Let X = (⌃, c) be a Riemann surface. A holomorphic qua-
dratic differential q on X is a holomorphic section of the bundle T ⇤X ⌦ T ⇤X,
where T ⇤X denotes the holomorphic cotangent bundle of X. Equivalently, q
can be represented in conformal coordinates (U, z) as q = f(z) dz2, where f is
a holomorphic function on U .

Given a conformal structure c on ⌃, we denote by Q(⌃, c) the space of
holomorphic quadratic differentials of (⌃, c). By the Riemann-Roch theorem,
Q(⌃, c) is a vector space of complex dimension 3g � 3.
Remark 1.2.6. As shown in [Tro92, p. 45-46], a symmetric bilinear tensor �(·, ·)
on a Riemannian surface (⌃, g) is equal to the real part of a holomorphic qua-
dratic differential on (⌃, [g]) if and only if
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• it is g-traceless, i. e. �(e1, e1)+�(e2, e2) = 0 for every local g-orthonormal
frame e1, e2;

• � is g-divergence-free, i. e. (re1�)(e1, ·)+(re2�)(e2, ·) = 0 for every local
g-orthonormal frame e1, e2.

Every holomorphic quadratic differential q = f(z) dz2 on a Riemann surface
X determines a measured foliation Hor(q) outside Z(q), the set of zeros of q,
which we will call the horizontal measured foliation of q. The leaves of the
foliation are the (unoriented) maximal curves of ⌃ tangent to the vectors v 2

Tp⌃ satisfying q(v, v) 2 R>0, for every p 2 ⌃\Z(q). Every point p /2 Z(q) admits
a local chart (U,w), with w = u + iv 2 w(U) ✓ C, such that the holomorphic
quadratic differential q is expressed as q = dw2 on U . In these coordinates, the
foliation is represented by the lines {y = const} ⇢ w(U). Every arc � which
is properly embedded in U and transverse to the foliation carries a measure
�⇤|dv|, which records the modulus of the variation of the v-component along
�. Since local charts (U,w) around p satisfying q = dw2 are essentially unique
up to post-composition by translations and ⇡-rotations of C, the procedure just
described allow us to define a measure on each arc in ⌃ \ Z(q) transverse to
the foliation, simply by combining the locally defined measures �⇤|dy|. Observe
that, if �t is a 1-parameter family of curves in ⌃\Z(q) transverse to F for every
t and such that the endpoints of �t lie on the same leaf of F , then the total
mass of the measures �⇤

t
|dv| is independent of t.

Definition 1.2.7. The horizontal measured foliation of q, denoted by Hor(q),
is the datum of the foliation and the transverse measure described above.

A general measured foliation on ⌃ is a foliation defined outside a finite set
of points {p1, . . . , pk} endowed with a transverse measure dm that is preserved
by deformations of transverse arcs as described above. We also require that,
around the singular points pi, the foliation is topologically equivalent to the
horizontal foliation of zn dz2 around 0 2 C, for some n = n(pi) � 1. Given � a
closed curve of ⌃, and F a measured foliation with transverse measure dm, we
define the geometric intersection i(F , �) to be inf�0

R
�0 dm, as �0 varies among

the closed curves homotopic to � in ⌃.
Two measured foliations F and F

0 on ⌃, with transverse measures dm and
dm0, respectively, are said to be equivalent if for every simple closed curve � of
⌃ we have i(F , �) = i(F 0, �). By the work of Thurston, we know that the space
of equivalence classes of measured foliations of ⌃ is homeomorphic to R

6g�6,
where g is the genus of ⌃.

Extremal length of a measured foliation

Let c be a conformal structure on ⌃. A measurable conformal metric of (⌃, c)
is a tensor on ⌃ of the form ⇢ = ⇢(z)2|dz|2, for some locally defined Borel-
measurable function ⇢(z) � 0. We define the ⇢-area of ⌃ to be

A⇢ :=

Z

⌃
⇢(z)2 dx dy .

Moreover, given � a simple closed curve on ⌃, we set the ⇢-length of � as follows:

`⇢(�) := inf
�0

Z

�0
⇢(z)|dz|,
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where �0 varies among the closed curves of ⌃ freely homotopic to �. Then, the
extremal length of � with respect to the conformal structure c is defined as

ext�(c) := sup
⇢

`⇢(�)2

A⇢
,

where the supremum is taken over all measurable conformal metrics ⇢ of c with
non-zero finite ⇢-area.

Kerckhoff [Ker80, Proposition 3] extended the notion of extremal length to
general measured foliations, using the density of weighted simple closed curves
inside the space of measured foliations. As a final remark, we mention the fol-
lowing relation to express the extremal length with respect to c of the horizontal
foliation of a holomorphic quadratic differential on (⌃, c):

Theorem 1.2.8 ([Ker80]). Let c be a conformal structure of ⌃, and let q =

f(z) dz2 2 Q(⌃, c). Then the extremal length of the measured foliation F =

Hor(q) with respect to the conformal structure c satisfies:

extF (c) =

Z

⌃
|q| =

Z

⌃
|f | dx dy .

1.2.2 Geodesic and measured laminations

Definition 1.2.9. Let (M, g) be a Riemannian manifold. A g-geodesic is a
parametrized curve � : I ! M , defined on a open interval I of R, satisfying
r�̇ �̇ ⌘ 0, where r denotes the Levi-Civita connection of (M, g). If there is no
ambiguity on the Riemannian metric we are considering on M , we will simply
call � a geodesic of M .

A geodesic � of M is complete if it is defined on the entire real line. A
complete geodesic � is simple if either it is globally injective, or if it is periodic
of period T > 0 and injective over [0, T ).

Definition 1.2.10. Let (⌃, h) be a closed surface endowed with a complete
hyperbolic metric. A geodesic lamination � of (⌃, h) is the datum of a closed
subset of ⌃, together with a foliation by simple geodesics, called the leaves of
the lamination.

A measured lamination µ of (⌃, h) is the datum of a geodesic lamination �
and of a Borel measure on each arc k transverse to �, so that every homotopy
of arcs (kt)t2[0,1], for which kt is transverse to � for every t, sends the measure
of k0 to the measure of k1.

Observe that the invariance of the measures under transverse deformations
implies in particular that the support of the measure associated to an arc k is
contained in the subset k \ �.

Remark 1.2.11. The definition of geodesic and measured laminations that we
gave here have the inconvenience of being dependent on the choice of a hyper-
bolic structure h on ⌃. In fact, it is possible to describe the datum of a geodesic
lamination on a closed compact surface in a purely topological way, as briefly
summarized in Section 2.3. We will denote by GL(⌃) and ML(⌃) the spaces of
geodesic laminations and of measured laminations of ⌃, respectively.
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1.2.3 Harmonic maps
Definition 1.2.12. Let g, g0 be two Riemannian metrics on ⌃. The energy of
a map f : (⌃, g) ! (⌃, g0) is defined as

E(f) :=

Z

⌃
kdfpk

2
g,g0 dag (p),

where kdfpkg,g0 is the operator norm of dfp : (Tp⌃, gp) ! (Tp⌃, g0p), and dag (p)
is the area form of g. A simple computation shows that the quantity E(f) is
invariant under conformal change of g, in particular it depends only on the
conformal class c = [g] and the metric g0. A function f is harmonic if it is a
critical point of the energy functional, i. e.

d

dt
E(ft : (⌃, c) ! (⌃, g0))

����
t=0

,

for every smooth variation ft of f0 = f .

It turns out that a local diffeomorphism f : (⌃, c) ! (⌃, g0) is harmonic if
and only if the (2, 0)-part of f⇤g0 with respect to the conformal structure c is
a holomorphic quadratic differential (see e. g. [Sam78]). In such case, we call
Hopf(f) := (f⇤g0)(2,0) the Hopf differential of f .
Remark 1.2.13. Given a map f : (⌃, c) ! (⌃, g0), the g-traceless part of f⇤g0

coincides with 2Re(f⇤g0)(2,0), where (f⇤g0)(2,0) is the (2, 0)-part of f⇤g0 with
respect to the conformal class c = [g]. Therefore, in light of Remark 1.2.6, a
way to verify that a map f : (⌃, c) ! (⌃, g0) is harmonic is to show that the g-
traceless part of f⇤g0 has trivial g-divergence, where g is a representative of c.
If this is the case, then the g-traceless part of f⇤g0 is equal to 2ReHopf(f).

Theorem 1.2.14 (See e. g. [Sam78]). Let c be a conformal structure on
⌃. Then, for any hyperbolic metric h on ⌃, there exists a unique holomorphic
quadratic differential q 2 Q(⌃, c), and a unique diffeomorphism f : (⌃, c) !

(⌃, h) isotopic to the identity, such that f is harmonic with Hopf differential
equal to q.

Theorem 1.2.15 ([Wol89, Theorem 3.1]). Let c be a fixed conformal structure
over a surface ⌃. For every hyperbolic metric h of ⌃, we denote by q(c, h) the
Hopf differential of the unique harmonic diffeomorphism from (⌃, c) to (⌃, h)
isotopic to the identity. Then the function

'c : T
h
(⌃) �! Q(⌃, c)
[h] 7�! q(c, h),

is well defined and it describes a global diffeomorphism between the Teichmüller
space T

h
(⌃) and the space of holomorphic quadratic differentials Q(⌃, c) on

(⌃, c).

1.2.4 Minimal Lagrangian maps
Definition 1.2.16 (See [BMS13, Proposition 1.3]). Let h and h0 be two hyper-
bolic metrics on ⌃. A diffeomorphism f : (⌃, h) ! (⌃, h0

) is minimal Lagrangian
if it is area-preserving, and its graph is a minimal surface inside (⌃

2, h� h0
).
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Equivalently, f : (⌃, h) ! (⌃, h0
) is minimal Lagrangian if there exists a

conformal structure c on ⌃ such that f = u � v�1, where u and v are the unique
harmonic diffeomorphisms isotopic to the identity from (⌃, c) to (⌃, h0

), and
from (⌃, c) to (⌃, h), respectively, and if they satisfy Hopf(u) = �Hopf(v) 2

Q(⌃, c) (with the notation introduced in Definition 1.2.12).

Remark 1.2.17. Using the first description of minimal Lagrangian maps, the
conformal structure c, appearing in the second definition, can be recovered as
the conformal class of the induced metric on the graph of f from the metric
h � h0 (by identifying the graph of f with ⌃ using one of the projections onto
⌃). Moreover, the projections of the graph of f onto (⌃, h) and (⌃, h0

) are
harmonic maps with respect to c.

As we will explain right after the statement, the following theorem can be
interpreted as a result of existence and uniqueness of minimal Lagrangian maps
isotopic to the identity between pairs of hyperbolic surfaces:

Theorem 1.2.18 ([Lab92b], [Sch93]). For every hyperbolic metric h and for
every isotopy class m0

2 T
h
(⌃), there exists a unique hyperbolic metric h0

2 m0

and a unique operator b : T⌃! T⌃ such that:

i) h0
= h(b·, b·);

ii) b is h-self-adjoint and positive definite,

iii) det b = 1;

iv) b is Codazzi with respect to the Levi-Civita connection r of h, i. e.
(rXb)Y = (rY b)X for every X and Y .

A pair of hyperbolic metrics h, h0 for which we can find such an operator b is
called a normalized pair, and b is called their Labourie operator.

Consider h and h0 a normalized pair of hyperbolic metrics with Labourie
operator b, and let c be the conformal class of the metric g := h(b·, ·). The Levi-
Civita connection of g can be expressed as follows:

r
g

X
Y = rXY +

1

2
b�1

(rXb)Y,

where r is the Levi-Civita connection of h. This relation can be proved by
checking that the connection of the right-hand side is compatible with g and
torsion-free. The first property follows from the fact that b is h-self-adjoint,
while the second comes from the fact that b is a Codazzi tensor. Moreover,
using the relation b2 � tr(b) b+ det b1 = 0 and the fact that b is h-self-adjoint,
we can express the g-traceless parts of h and h0 as follows:

h�
trg h

2
g = h

✓✓
1�

tr(b)

2
b

◆
·, ·

◆
, h0

�
trg h0

2
g = h

✓✓
tr(b)

2
b� 1

◆
·, ·

◆
,

which are opposite to each other. Finally, using the expression we described
above for the Levi-Civita connection of g, we can express the g-divergence of
h�

trg h

2 g as

divg

✓
h�

trg h

2
g

◆
= �

1

2
d(ln det b) ,
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which vanishes, since det b = 1. In other words, in light of Remark 1.2.13, the
maps

id : (⌃, [h(b·, ·)]) �! (⌃, h), id : (⌃, [h(b·, ·)]) �! (⌃, h0
)

are harmonic with opposite Hopf differentials, i. e. id : (⌃, h) ! (⌃, h0
) is

minimal Lagrangian. This finally explains the relation between Theorem 1.2.18
and the notion of minimal Lagrangian maps. In light of Theorem 1.2.15, another
way to formulate Theorem 1.2.18 that will be useful later on is the following:

Theorem 1.2.19 ([Lab92b], [Sch93]). The function

H : T ⇤
T

c
(⌃) �! T

h
(⌃)⇥ T

h
(⌃)

(c, q) 7�! ('�1
c

(q),'�1
c

(�q)),

is a diffeomorphism (here 'c denotes the harmonic parametrization of Theorem
1.2.15).

1.3 Convex co-compact hyperbolic 3-manifolds
Definition 1.3.1. Let M be a complete hyperbolic n-manifold. A non-empty
subset C of M is convex if, for every pair of points p, q 2 M (possibly equal)
and for every geodesic segment � of M from p to q, � is fully contained in C.
A hyperbolic n-manifold M is convex co-compact if it possesses a non-empty
compact convex subset.

Remark 1.3.2. If M is simply connected (i. e. M ⇠= H
n), then the condition

above translates into the usual notion of convexity.

Definition 1.3.3. Given M , M 0 hyperbolic n-manifolds, a diffeomorphism
M ! M 0 is a quasi-isometric deformation of M if it globally bi-Lipschitz.
We denote by QD(M) the space of quasi-isometric deformations of M , where
we identify two deformations M ! M 0 and M ! M 00 if their pullback metrics
are isotopic to each other.

Remark 1.3.4. By a Theorem of Thurston [Thu79, Proposition 8.3.4], two hy-
perbolic n-manifolds M and M 0 are quasi-isometric if and only if their funda-
mental groups �, �0 (as subgroups of Iso(Hn

)) are quasi-conformally conjugated,
i. e. there exists a quasi-conformal self-homeomorphism ' of @1H

n such that
'�'�1

= �
0.

1.3.1 The limit set and the convex core
Let M be a complete hyperbolic n-manifold, and let � be a discrete and torsion-
free subgroup of Iso(Hn

) such that M is isometric to H
n/�. We define the limit

set of � to be
⇤� := � · x0 \ @1H

n,

where � · x0 denotes the closure of the �-orbit of x0 in H
n := H

n
[ @1H

n. It
is simple to see that the definition of ⇤� does not depend on the choice of the
basepoint x0 2 H

n. If � is non-elementary (i. e. it does not have any finite
orbit in H

n), then ⇤� can be characterized as the smallest closed �-invariant
subset of @1H

n (see e. g. [Rat06, Chapter 12]). The complementary region ⌦�

of the limit set in @1H
3 is called the domain of discontinuity of �.
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If ⇡ : Hn
! H

n/� ⇠= M stands for the universal cover of M , then a subset
C of M is convex if and only if ⇡�1

(C) is convex in H
n. If � is non-elementary,

then every non-empty �-invariant convex subset of Hn contains the convex hull
C� of �, which consists of the intersection of all half-spaces H of Hn satisfying
H ◆ ⇤� (H stands for the closure of H in H

n). The image CM := ⇡(C�)

describes a convex subset of M , called the convex core of M , which is minimal
among the family of non-empty convex subsets of M .

Let now M be a convex co-compact hyperbolic manifold of dimension 3.
The boundary of the convex core @CM of M is the union of a finite collec-
tion of connected surfaces, each of which is totally geodesic outside a subset of
Hausdorff dimension 1. As described in [CEM06], the hyperbolic metrics on the
totally geodesic pieces (called flat pieces) "merge" together, defining a complete
hyperbolic metric m on @CM . The locus where @CM is not flat is a geodesic
lamination � (see Definition 1.2.10), the bending locus of @CM . The surface
@CM is bent along �, and the amount of bending can be described by a mea-
sured lamination µ, called the bending measure of @CM . The µ-measure along
an arc k transverse to � consists of an integral sum of the exterior dihedral angles
along the leaves that k meets. A simple example to keep in mind arises when µ
is a rational lamination. In this case the geodesic lamination � is the union of a
finite number of disjoint simple closed geodesics �i, and µ can be considered as
a weighted sum

P
i
✓i ��i , where ✓i 2 (0,⇡] is the exterior bending angle along

�i, and ��i is the transverse measure that counts the geometric intersection with
�i. From now on, we will denote the transverse measure ��i simply by �i, with
abuse, so that a rational lamination µ can be represented simply as

P
i
✓i �i

For a more detailed description we refer to [CEM06, Section II.1.11] (see also
Section 2.1 for a description of @CM using the notion of pleated surfaces).

1.3.2 The boundary at infinity

Let � be a Kleinian group, and let ⌦� and C� denote its domain of discontinuity
and its convex hull, respectively. The nearest-point retraction r onto C� extends
continuously to H

3
[ ⌦�, and it is clearly �-invariant. It is not difficult to see

that the existence of such map r implies that the action of � is free and properly
discontinuous on H

3
[ ⌦� (see e. g. [CEM06]). In addition, since the isometry

group Iso
+
(H

3
) acts on the sphere at infinity @1H

3 ⇠= CP
1 by biholomorphisms,

the natural complex structure of the domain of discontinuity ⌦� ⇢ CP
1 is

preserved by �, and therefore it induces a Riemann surface structure over ⌦�/�.
If M denotes the hyperbolic 3-manifold H

3/�. then the surface @1M := ⌦�/�
is called its conformal boundary at infinity.

In fact, the structure of the boundary at infinity @1M is richer than a
standard Riemann surface structure. By construction, @1M comes with a
(P SL2(C),CP1

)-structure, which is also called a complex projective structure.
The space of complex projective structures CP(⌃) over ⌃ has a natural

forgetful map ⇡ over the Teichmüller space T
c
(⌃), which associates to a projec-

tive structure � its underlying Riemann surface structure. Fuchsian hyperbolic
structures are an example of complex projective structures, since they can be
described as quotients of the upper half-plane H

2
⇢ CP

1 by a subgroup of
Iso

+
(H

2
) ⇠= P SL2(R).



12 CHAPTER 1. PRELIMINARIES

Through of the notion of Schwarzian derivative, it is possible to describe the
map ⇡ : CP(⌃) ! T

c
(⌃) as an affine bundle over the Teichmüller space. To see

this, consider two complex projective structures � and �0 over ⌃ that induce the
same Riemann surface structure on ⌃, with developing maps D,D0

: e⌃! CP
1,

respectively. Even if the functions D, D0 may not be globally injective, they
still admit local inverses. In particular, we are locally allowed to consider the
compositions D0

� D�1, which we can assume to be univalent functions over
proper open sets of C ⇢ CP

1 (the holomorphicity comes from the fact that
⇡(�) = ⇡(�0

) 2 T
c
(⌃)). Observe that different choices of the local inverses of

D make the map D0
�D�1 change by pre-composition of elements in P SL2(C).

If f : ⌦ ✓ C ! C is a univalent function, then the Schwarzian derivative of f is
the holomorphic quadratic differential

S(f) :=

 ✓
f 00

f 0

◆0

�
1

2

✓
f 00

f 0

◆2
!
dz2 .

The Schwarzian derivative satisfies:

i) S(f) ⌘ 0 if and only if f is the restriction of a Möbius transformation of
CP

1;

ii) if f and g are two univalent functions for which f � g is well-defined, then

S(f � g) = S(g) + g⇤S(f).

These two simple properties imply the following fact: the holomorphic qua-
dratic differentials (D�1

)
⇤S(D0

� D�1
), defined over small open subsets of e⌃,

the universal cover of ⌃, do not depend on the choices we made of the local
inverses of D. In particular, they define a holomorphic quadratic differential on
the entire surface e⌃, which is invariant by the action of the deck transformations
of e⌃ ! ⌃. Moreover, for any complex projective structure � and for any holo-
morphic quadratic differential q 2 Q(⌃,⇡(�)), there exists a unique complex
projective structure �0 such that S(�0,�) = q (we refer to [Dum09] for a more
detailed exposition on this topic).

With this procedure, we can associate to each pair of complex projective
structures �, �0 on ⌃, belonging to the same fiber of ⇡. a holomorphic quadratic
differential S(�0,�) 2 Q(⌃,⇡(�)). From the same properties above, we see that

S(�00,�) = S(�00,�0
) + S(�0,�) 2 Q(⌃, c),

for every �,�0,�00
2 ⇡�1

(c). In particular, the fibers ⇡�1
(c) of the forgetful map

are naturally endowed with an affine structure over the space of holomorphic
quadratic differentials Q(⌃, c).

Finally, coming back to the context of Kleinian manifolds:

Definition 1.3.5. The Schwarzian at infinity of @1M is the holomorphic qua-
dratic differential q1 := S(�F ,�1), where �1 stands for the natural complex
projective structure of @1M = ⌦�/�, and �F is the Fuchsian uniformization of
the conformal structure at infinity c1 := ⇡(�1) of @1M .
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1.3.3 Quasi-Fuchsian manifolds
Definition 1.3.6. A Kleinian group � is quasi-Fuchsian if its limit set ⇤� is a
Jordan curve in @1H

3 and both components of its domain of discontinuity ⌦�

are invariant under �.

Theorem 1.3.7 ([Mas70]). Let � be a Kleinian group. Then the following are
equivalent:

i) � is quasi-Fuchsian;

ii) The domain of discontinuity ⌦� has exactly 2 connected components, each
of which is invariant under �;

iii) � is quasi-conformally conjugate to a Fuchsian group, i. e. there exists
a quasi-conformal self-homeomorphism ' of CP

1 and a Fuchsian group
�0 < P SL2(R) such that '�'�1

= �0.

Let ⌃ be closed surface of genus g � 2. In light of Remark 1.3.4 and Maskit’s
Theorem, we can define the space of (marked) quasi-Fuchsian manifolds home-
omorphic to ⌃ ⇥ R, denoted by QF(⌃), to be the quasi-isometric deformation
space of H3/�0, for some fixed Fuchsian group �0 isomorphic to ⇡1(⌃). Every
quasi-Fuchsian manifold M 2 QF(⌃) has boundary at infinity homeomorphic
to the disjoint union of two copies of ⌃, which we will call the upper/lower
boundary at infinity @±

1
M of M . Here @+

1
M will denote the component whose

boundary orientation coincides with the one of ⌃, while @�
1
M will be the one

coming with the opposite orientation ⌃. The boundary components @±
1
M are

endowed with two natural complex projective structures �±

1
(see the previous

section for a definition of this notion), and consequently with two induced con-
formal structures c±

1
.

On the other hand, also the boundary of the convex core has two connected
components (unless M is Fuchsian) @±CM , each of which is endowed with a
hyperbolic structure m±

2 T
h
(⌃), and a bending measure µ±

2 ML(⌃) (if M
is Fuchsian, then we set m+

= m� to be the hyperbolic structure of the unique
totally geodesic surface lying inside M , and µ±

= 0).
A well-known result of Bers [Ber60] states that the map

B : QF(⌃) �! T
c
(⌃)⇥ T

c
(⌃)

M 7�! (c+
1
, c�

1
),

which we will call the Bers’ map, is a homeomorphism. In fact B is a biholomor-
phism if we endow QF(⌃) with the complex structure of subset of the character
variety �(⇡1⌃,P SL2(C)), and the natural complex structure of T c

(⌃).
Another natural map on QF(⌃) is the following:

T : QF(⌃) �! T
h
(⌃)⇥ T

h
(⌃)

M 7�! (m+,m�
).

The map T has been conjectured by Thurston to be another parametrization of
the space of quasi-Fuchsian manifolds, and this question is still open. Bonahon
[Bon98b] proved that the map T is C

1 (and actually not C
2), therefore a first

order variation of quasi-Fuchsian structures Ṁ determines a first order variation
of the induced hyperbolic structures ṁ on the convex core.
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1.4 Convexes and hypersurfaces
In this section we describe a duality between closed convex subsets with non-
empty interior and strictly convex hypersurfaces sitting inside the geometric
spaces H

n and dS
n, which can be interpreted as an "oriented" instance of the

polarity of RPn with respect to the quadric P{x2
1 + · · ·+ x2

n
= x2

n+1}.

Given a point x 2 H
n and a unitary vector v 2 T 1

x
H

n, we can associate to
(x, v) a corresponding point (x⇤, v⇤) in the tangent bundle of dSn. To see this,
we observe that the vector v 2 T 1

x
H

n
⇢ R

n,1 verifies hv, vi
n,1 = 1 so, as an

element of Rn,1, it belongs to dS
n. On the other hand, since v is tangent to H

n

at x, we must have hx, vi
n,1 = 0. Therefore x, as element of Rn,1, belongs to

kerhv, ·i
n,1, which is nothing but TvdS

n. In this way, the couple (x⇤, v⇤) := (v, x)

defines a point in T�1
+ dS

n, namely the subset of the unit tangent bundle of dSn
given by the pairs (x⇤, v⇤) of points x⇤

2 dS
n and future-oriented time-like

vectors v⇤ 2 Tx⇤dS
n satisfying hv, vi

n,1 = �1. In the same way, if (x⇤, v⇤) is a
point in T�1

+ dS
n, the couple (x, v) := (v⇤, x⇤

) defines an element in T 1
H

n. This
correspondence T 1

H
n
! T�1

+ dS
n is clearly one-to-one, and it can be interpreted

also as a duality between oriented hyperplanes with basepoint of Hn and future-
oriented space-like hyperplanes with basepoint of dSn. A couple (x, v) 2 T 1

H
n

corresponds to a hyperplane (namely kerhv, ·i
n,1 \H

n) with basepoint x in H
n,

together with the choice of a normal direction v at x. Analogously, a point
(x⇤, v⇤) 2 T�1

+ dS
n is equivalent to the datum of a space-like hyperplane (namely

kerhv⇤, ·i
n,1) with basepoint x⇤

2 dS
n, endowed with its future-directed normal

vector v⇤.
As first observed by Hodgson and Rivin [HR93], this correspondence induces

a duality between closed convex subsets with non-empty interior in the two
geometries. We briefly recall now the definitions and the results of [HR93,
Section 2] that will be useful in the following.

Definition 1.4.1. A convex body in H
n or dS

n is a subset C with non-empty
interior, which can be described as the intersection of a family of closed half-
spaces.

Observe that any convex body is closed. We define a dual operation between
subsets of Hn and dS

n as follows: given C ✓ H
n, we set

C^
:= {v0 2 dS

n
⇢ R

n,1
| 8w 2 C hv0, wi

n,1 � 0}.

In the same way, if C 0
✓ dS

n, then

(C 0
)
^
:= {v 2 H

n
⇢ R

n,1
| 8w0

2 C 0
hv, w0

i
n,1 � 0}.

Lemma 1.4.2 ([HR93, Section 2]). Let C, D be two subsets of H
n (of dS

n).
Then

1. C^ is a convex body;

2. if C ✓ D, then C^
◆ D^;

3. if C is a convex body, then C^^
= C.
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Assuming C to be a convex body with regular boundary, we want to investi-
gate in detail the relations between the hypersurfaces @C and @(C^

). First we
need to introduce some notation.

Let D and D
⇤ denote the Levi-Civita connections of H

n and dS
n, respec-

tively. In what follows, ⌃ will be an orientable smooth manifold of dimension
n � 1 and ◆ : ⌃ ! H

n an immersion of ⌃ in H
n. The first fundamental form I

of ⌃ is given by the restriction of the metric of Hn to the tangent bundle T⌃.
Fixing a unitary normal vector field ⌫ : ⌃ ! T 1

H
n on ⌃, we denote by B its

shape operator, i. e. the endomorphism of T⌃ defined by BU := �DU⌫, for
every tangent vector field U of ⌃. It is simple to see that the shape operator B is
self-adjoint with respect to the first fundamental form I. The trace of the shape
operator will be called the mean curvature of ⌃, and the tensors II := I(B·, ·)
and III := I(B·, B·) the second and third fundamental forms, respectively. If r
is the Levi-Civita connection of (⌃, I), then we have

rUV = DUV � II(U, V ) ⌫,

for any tangent vector fields U , V of ⌃.
Assume now the second fundamental form IIp to be non-degenerate at every

point p 2 ⌃. Then we define the dual pair (◆⇤, ⌫⇤) of (◆, ⌫) to be the datum of two
maps ◆⇤ : ⌃! dS

n and ⌫⇤ : ⌃! T�1
+ dS

n, satisfying (◆⇤(p), ⌫⇤(p)) = (◆(p), ⌫(p))⇤

for every p 2 ⌃, where (◆(p), ⌫(p))⇤ denotes the image of the point (◆(p), ⌫(p))
of T 1

H
n through the duality with T�1

+ dS
n. In this manner, the Gauss map ⌫ of

◆ becomes the immersion of a dual hypersurface ◆⇤ in dS
n, and the immersion ◆

becomes the Gauss map of the immersed hypersurface ◆⇤ (as we will see in the
proof of Proposition 1.4.4, ◆⇤ is an immersion because we assumed II to be non-
degenerate).

Instead of referring to the dual hypersurface as the map ◆⇤, we will often
denote it, with abuse, by ⌃⇤. An immersed hypersurface in dS

n is called space-
like if the restriction I⇤ of the metric of dSn on its tangent bundle is positive
definite. We will see soon that this is always the case when ⌃⇤ arises from the
duality procedure we described above. As in the Riemannian case, I⇤ will be
called the first fundamental form of ⌃⇤. We define the second fundamental form
II⇤ by requiring:

r
⇤

U⇤V ⇤
= D

⇤

U⇤V ⇤
� II⇤(U⇤, V ⇤

) ⌫⇤

for any tangent vector fields U⇤, V ⇤ of ⌃⇤, where r
⇤ is the Levi-Civita connec-

tion of ⌃⇤. Then the shape operator B⇤ is defined as the I⇤-self-adjoint operator
associated to II⇤ (II⇤ is symmetric because both r⇤ and D

⇤ are without torsion).
Since h⌫⇤, ⌫⇤i

n,1 = �1, the shape operator of ⌃⇤ verifies B⇤U⇤
= +D

⇤

U⇤⌫⇤ (the
sign is the opposite of the one in the Riemannian setting). Finally, the third
fundamental form is defined by setting III⇤(·, ·) := I⇤(B⇤

·, B⇤
·).

In the very same way, given a space-like hypersurface ◆⇤ : ⌃⇤
! dS

n with
future-directed normal vector field ⌫⇤ for which II⇤ is everywhere non-degener-
ate, we can construct a dual hypersurface ⌃⇤⇤ in H

3 with non-degenerate second
fundamental form II. The process (·)

⇤ is clearly an involution, since it is so at
the level of T 1

H
n and T�1

+ dS
n.

When a hypersurface in H
n with non-degenerate second fundamental form

arises as the boundary of a convex domain, we will always choose the normal
vector field to point inward (so that the second fundamental is positive definite),
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while for space-like hypersurfaces in dS
n we will always choose the future-ori-

ented normal vector field (the one with positive (n+ 1)-th coordinate in R
n,1).

In this terms, we can restate the analysis done by Hodgson and Rivin as follows:

Lemma 1.4.3 ([HR93, Section 2]). Let C be a convex body in H
n with smooth

boundary and with positive definite second fundamental form. Then the bound-
ary of C^ in dS

n is parametrized by the dual hypersurface associated to @C. In
other words, we have

(@C)
⇤
= @(C^

).

In the same way, if C 0 is a convex body in dS
n with smooth space-like boundary

and with negative definite second fundamental form, then (@C 0
)
⇤
= @(C 0^

).

The following statement describes explicitly the relations between the funda-
mental forms of (◆, ⌫) and (◆⇤, ⌫⇤):

Proposition 1.4.4 ([Sch06, Proposition 1.6]). If ⌃ is an immersed hypersur-
face in H

n with positive definite second fundamental form, then its dual ⌃⇤

is an immersed, space-like hypersurface in dS
n with negative definite second

fundamental form, and viceversa. Moreover, under the duality correspondence
between ⌃ and ⌃⇤, we have that:

• I = III⇤;

• II = �II⇤;

• III = I⇤.

Proof. We denote by ↵ : U ! ⌃ ⇢ H
n a local parametrization of ⌃, where U is

an open set in R
n�1. Let (Ek)k be the orthonormal frame on R

n,1 corresponding
to a fixed orthonormal basis B of R

n,1 (the Ek’s are the sections of TRn,1

associated with B under the identification TpR
n,1 ⇠= R

n,1). For convenience, we
introduce the following notation: if f is a map from U to R

n,1, we denote by Xf

the element of �(↵⇤TRn,1
) defined as Xf =

P
k
fk Ek � ↵, where �(↵⇤TRn,1

)

is the space of sections of the pullback bundle of TRn,1 over ↵.
Let ⌫ 2 �(↵⇤TRn,1

) be the unitary normal vector field of ⌃. Then, by
definition of the duality T 1

H
n
$ T�1

+ dS
n, we can construct a parametrization

↵⇤
: U ! dS

n of ⌃⇤ by requiring that X↵⇤ = ⌫. In other words, the k-th
component of ↵⇤ with respect to B coincides with the k-th component of ⌫ with
respect to the frame (Ek)k, for all k. Analogously we have ⌫⇤ = X↵, where ⌫⇤
is the future-directed normal vector field to ⌃⇤. Since (Ek)k is a orthonormal
frame of parallel vector fields with respect to the Levi-Civita connection D of
R

n,1, for every coordinate vector field @i of ↵ we have

D@i⌫ = D@iX↵⇤ = @⇤
i

(1.1)

and, in the dual hypersurface

D@
⇤
i
⌫⇤ = D@

⇤
i
X↵ = @i, (1.2)

where @⇤
i

is the i-th coordinate vector field of ⌃⇤ associated to the parametriza-
tion ↵⇤. Observe also that the normal direction to H

n at the point ↵(p) is given
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by X↵(p). This implies that, if D is the Levi-Civita connection of Hn, we have

D@i⌫ = D@i⌫ �
hD@i⌫, X↵in,1

hX↵, X↵in,1

X↵

= D@i⌫ + hD@i⌫, X↵in,1 X↵ (hX↵, X↵in,1 = �1)

= D@i⌫ + h@⇤
i
, X↵in,1 X↵ (relation (1.1))

= D@i⌫. (X↵ = ⌫⇤ ? ⌃
⇤)

This equality, combined with relation (1.1), shows that the shape operator B of
⌃ verifies

B @i = �D@i⌫ = �D@i⌫ = �@⇤
i
.

In the same way we see that D
⇤

@
⇤
i
⌫⇤ = D@

⇤
i
⌫⇤, with D

⇤ the connection on dS
n,

so the shape operator B⇤ of ⌃⇤ verifies

B⇤@⇤
i
= +D

⇤

@
⇤
i
⌫⇤ = +D@

⇤
i
⌫⇤ = +@i.

The tangent spaces T◆⌃ and T◆⇤⌃⇤, as linear subspaces of Rn,1, are both orthog-
onal to the 2-plane generated by X↵ and X↵⇤ , so they must coincide. Therefore,
the shape operators B and B⇤ are both endomorphisms of T◆⌃ = T◆⇤⌃⇤ and,
by the relations we just proved, they verify B�1

= �B⇤. All the relations
in the statement can be deduced from this equality, in the following we prove
II = �II⇤, the others are analogous:

II(@i, @j) = hB @i, @jin,1 = �h@⇤
i
, B⇤@⇤

i
i
n,1 = �II⇤(@⇤

i
, @⇤

j
).

1.5 Constant Gaussian curvature surfaces
Let ⌃ be a (space-like) surface immersed in a Riemannian (Lorentzian) 3-man-
ifold M of constant sectional curvature sec(M), with first and second funda-
mental forms I and II, and shape operator B. We denote by Ke its extrinsic
curvature, i. e. Ke = detB, and by Ki its intrinsic curvature, i. e. the Gauss
curvature of the Riemannian metric I. For convenience, we define sgn(M) to
be +1 if M is a Riemannian manifold, and �1 is M is Lorentzian. Then, the
Gauss-Codazzi equations of (⌃, I, II) can be expressed as follows:

Ki = sgn(M)Ke + sec(M),

(rUB)V = (rV B)U 8U, V, (1.3)

where U and V are tangent vector fields to ⌃, and r is the Levi-Civita con-
nection of the metric I. We recall that the third fundamental form of ⌃ is the
symmetric 2-tensor I(B·, B·).

If ⌃ is a surface immersed in a hyperbolic 3-manifold M , then its Gauss
equation has the following form:

Ki = Ke � 1. (1.4)
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If the shape operator of ⌃ is everywhere non-degenerate (equivalently, if Ke

never vanishes), then we can give a geometric interpretation of the third funda-
mental form III applying what observed in Section 1.4. First we lift the immer-
sion of ⌃ in M to an immersion of e⌃, the universal cover of ⌃, into H

3, which
will be equivariant with respect to some representation ⇢ : ⇡1(⌃) ! Oo(3, 1).
Through the polarity correspondence between hyperbolic and de Sitter spaces,
we can construct an immersed dual surface e⌃⇤ in dS

3. Moreover, being e⌃ equiv-
ariant with respect to ⇢, the surface e⌃⇤ can be obtained as the lift of a space-
like surface ⌃⇤, homeomorphic to ⌃, sitting inside a 3-dimensional spacetime
locally modelled over dS

3 and with holonomy ⇢ (see e. g. [Mes07] for details).
Then, the first fundamental form I⇤ of ⌃⇤ coincides with the tensor III, and the
second fundamental forms II⇤ and II are the same up to sign (see Proposition
1.4.4). The Gauss equation of the dual surface (⌃

⇤, I⇤, II⇤) is

K⇤

i
= �K⇤

e
+ 1. (1.5)

Since the shape operator B⇤ of ⌃⇤ coincides with �B�1 (again by Proposition
1.4.4), the surface (⌃, I, II) has extrinsic curvature Ke if and only if (⌃⇤, I⇤, II⇤)
has extrinsic curvature K⇤

e
= K�1

e
.

Definition 1.5.1. Let ⌃ be an immersed surface inside a hyperbolic 3-manifold,
and let k 2 (�1, 0). ⌃ is a k-surface if the intrinsic (or Gaussian) curvature of
its first fundamental form is constantly equal to k.

Assume now ⌃ to be a k-surface. By equation (1.4), its extrinsic curvature
Ke = k+1 is strictly positive, so its shape operator is everywhere non-degener-
ate. Therefore ⌃ has an immersed dual surface ⌃⇤, whose extrinsic curvature is
equal to K⇤

e
= K�1

e
=

1
k+1 . By the Gauss equation (1.5), the intrinsic curvature

of I⇤ = III is equal to 1�K⇤

e
=

k

k+1 , which is constant. In other words, we have:

Lemma 1.5.2. If ⌃ is a k-surface immersed in a hyperbolic 3-manifold M , then
its first and third fundamental forms have constant intrinsic curvature equal to
k and k

k+1 , respectively.

If we define the shape operator of ⌃ using the normal vector field of ⌃ that
points to the convex side of ⌃, then the second fundamental form II of ⌃ has
strictly positive principal curvatures, since detB = Ke = k+1 > 0. Therefore II
is a positive definite symmetric bilinear form or, in other words, a Riemannian
metric.

Lemma 1.5.3. Let ⌃ be a surface immersed in a Riemannian (or Lorentz-
ian) 3-manifold M with constant sectional curvature. Assume that the second
fundamental form II of ⌃ is positive definite. Then, the following are equivalent:

• the surface ⌃ has constant extrinsic curvature;

• the identity map id : (⌃, II) ! (⌃, I) is harmonic.

Proof. The proof of this lemma proceeds similarly to the argument we gave in
Section 1.2.4 to describe the relation between the notion of minimal Lagrangian
maps and Theorem 1.2.18. The Levi-Civita connection r

II of the Riemannian
metric II satisfies

r
II

U
V = rUV +

1

2
B�1

(rUB)V,
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where U and V are tangent vector fields to ⌃, and r is the Levi-Civita connec-
tion of I (this relation is true for any immersed surface ⌃, we do not need to
require the Gaussian curvature to be constant). As observed in Remark 1.2.13,
the map id : (⌃, II) ! (⌃, I) is harmonic if and only if the II-traceless part of
I, which is equal to I � H

2Ke
II, is divergence-free with respect to r

II . Using the
expression of rII above, we can prove that

divII

✓
I �

H

2Ke

II

◆
= �

1

2
d(lnKe) .

From this equation the statement is clear.

As suggested by the proof we gave above, the notion of minimal Lagrangian
maps is intimately related with the properties of constant Gaussian curvature
surfaces. If (⌃, I, II) is a k-surface, we set

h := �k I, h0
:= �

k

k + 1
III, b :=

1
p
k + 1

B.

By construction II = �

p
k+1
k

h(b·, ·), h0
= h(b·, b·) and det b = 1. By the Codazzi

equation, the operator b is Codazzi and, by the choices we made of the mul-
tiplicative constants, the metrics h and h0 have Gaussian curvature constantly
equal to �1. Therefore the pair of metrics h, h0 is normalized, and b is their
Labourie operator, as in Theorem 1.2.18. This shows, by the same argument of
Section 1.2.4, that the identity map

id : (⌃, h) �! (⌃, h0
)

is minimal Lagrangian.
We can summarize what we just showed in the following Proposition:

Proposition 1.5.4. Let k 2 (�1, 0). Every k-surface immersed in a hyperbolic
3-manifold satisfies the following properties:

• the first and third fundamental forms I and III of ⌃ are constant Gaussian
curvature Riemannian metrics of curvature k and k

k+1 , respectively;

• the second fundamental form is everywhere non-degenerate (without loss
of generality, positive definite);

• the maps

id : (⌃, [II]) �! (⌃,�k I), id : (⌃, [II]) �! (⌃,� k

k+1III)

are harmonic, with opposite Hopf differentials. In other words, the map

id : (⌃,�k I) �! (⌃,� k

k+1III)

is minimal Lagrangian (see Definition 1.2.16)
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1.6 Hyperbolic ends
Definition 1.6.1. Given ⌃ a closed surface, a hyperbolic end E of topological
type ⌃ ⇥ [0,1) is a hyperbolic 3-manifold with underlying topological space
⌃⇥ (0,1) and whose metric completion E ⇠= ⌃⇥ [0,1) is obtained by adding
to E a locally concave pleated surface ⌃ ⇥ {0} ⇢ ⌃ ⇥ [0,1) (see Section 2.1
for the definition of pleated surface). We will denote by @E the locally concave
pleated boundary of E.

Two hyperbolic ends E = (⌃⇥(0,1), g) and E0
= (⌃⇥(0,1), g0) are equiv-

alent if there exists an isometry between them that is isotopic to id⌃⇥(0,1). We
set E(⌃) to be the space of equivalence classes of hyperbolic ends of topological
type ⌃⇥ [0,1).

Remark 1.6.2. Typical examples of hyperbolic ends are the connected compo-
nents of M \ CM , where M is a convex co-compact hyperbolic 3-manifold and
CM is its convex core (see Section 1.3 for the definition of this notion and its
properties).

Let E be a hyperbolic end. The manifold E ⇠= ⌃ ⇥ [0,1) can be com-
pactified by adding a topological surface "at infinity" @1E := ⌃ ⇥ {1}. By
the same phenomenon described in Section 1.3.2, the (Iso

+
(H

3
),H3

)-structure
on E naturally extends to a complex projective structure �E

1
2 CP(⌃) on the

boundary at infinity @1E, coming from the action of Iso+(H3
) ⇠= P SL2(C) by

Möbius transformations on @1H
3 ⇠= CP

1.
By a classical construction due to Thurston, it is possible to invert this

process: given a complex projective structure � on a surface ⌃, there exists a
hyperbolic end E of topological type ⌃ ⇥ [0,1) whose induced complex pro-
jective structure on @1E coincides with �. The universal cover eE of E can
be locally described as the envelope of those half-spaces H of H

3 satisfying
H \ @1H

3
= D, where D varies over the developed maximal discs of (e⌃, �̃) in

@1H
3
= CP

1. This construction establishes a one-to-one correspondence be-
tween the space of hyperbolic ends E(⌃) and the deformation space CP(⌃). We
refer to [KT92] for a more detailed exposition of Thurston’s construction.

1.6.1 The Schwarzian parametrization
Let E be a hyperbolic end. Following the notation introduced above, we denote
by c1 = cE

1
the underlying conformal structure of �1 = �E

1
, and by �F the

Fuchsian structure of c1, i. e. the complex projective structure on ⌃ = @1E
determined by the uniformization map of (e⌃, c̃1). The space of complex pro-
jective structures with underlying conformal structure c1 can be interpreted as
an affine space over the space of holomorphic quadratic differentials of (⌃, c1),
and the correspondence sends each element �F ��1 into the Schwarzian deriva-
tive of �F with respect to �1 (see Section 1.3.2 and [Dum09] for details). In
particular, the element �F � �1 determines a unique holomorphic quadratic
differential q1 = qE

1
of (⌃, c1), called the Schwarzian at infinity of E. The

resulting map
Sch : E(⌃) �! T ⇤

T
c
(⌃)

[E] 7�! (cE
1
, qE

1
),

gives a parametrization of the space of hyperbolic ends E(⌃), which we will call
the Schwarzian parametrization.
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1.6.2 The Thurston parametrization
The Schwarzian parametrization of the space of hyperbolic ends E(⌃) uses the
geometric structure of the boundary at infinity @1E of E. In the following we
will describe a analogous construction, due to Thurston (unpublished, described
by Kamishima and Tan in [KT92]), involving the shape of the convex pleated
boundary @E, instead of @1E.

The surface @E is a topologically embedded surface in E, which is almost
everywhere totally geodesic. The set of points where @E is not locally shaped
as an open set of H2 is a closed subset � that is disjoint union of simple (not
necessarily closed) complete geodesics. The path metric of @E is an actual
hyperbolic metric m 2 T

h
(⌃), and the structure of the singular locus � can

be described using the notion of measured lamination. In the simple case of �
composed by disjoint simple closed geodesics, each leaf �i of � has an associated
exterior dihedral angle #i 2 R�0, which measures the bending between the
totally geodesic portions of @E meeting along �i. Given any geodesic arc ↵
transverse to �, we can define the transverse measure µ :=

P
i
#i �i along a

geodesic segment ↵ to be the sum
P

i
#i i(�i,↵), where i(�i,↵) is the geometric

intersection between ↵ and �i. Using an approximation procedure, we can
generalize the construction above to a generic support �, obtaining a measured
lamination µ 2 ML(⌃), which measures the amount of bending that occurs
transversely to �. The datum of the hyperbolic metric h and the measured
lamination µ is actually sufficient to describe the entire hyperbolic end. In
other words, the map

Th : E(⌃) �! T
h
(⌃)⇥ML(⌃)

[E] 7�! (m,µ)

parametrizes the space of hyperbolic ends (for a detailed proof of this result,
see [KT92, Section 2]). We will call Th the Thurston parametrization of E(⌃).
Remark 1.6.3. If E is a connected component of M \ CM , then the data
Th(E) = (m,µ) are exactly the hyperbolic structure and the bending mea-
sure of the component of @CM facing E, as described in Section 1.3.2, and
similarly Sch(E) = (c1, q1) determines the data of the component of @1M to
which E is asymptotic.

However, there are hyperbolic ends in E(⌃) that cannot be realized in such a
way, and it can be easily seen from Thurtson’s parametrization result. Indeed,
the bending measures of those hyperbolic ends that arise as components of
M \ CM , for some convex co-compact hyperbolic manifold M , satisfy certain
geometric constraints. For example, a necessary condition that a measured
lamination of the form ✓ · � (for some simple closed curve �) must satisfy to
be realized as the bending measure of an end of a convex co-compact manifold
is ✓  ⇡ (two half-planes meeting along a geodesic in H

3 have exterior angle
bounded by ⇡). On the other hand, a general hyperbolic end does not have such
constraint (a (not too) heuristic reason to explain this phenomenon is that the
developing map D of the hyperbolic structure of E may be not locally injective
when extended to the pleated boundary of eE, and larger angles can be realized
in this way).

Similar constraints arise also in the Schwarzian description. For instance, if
E is a hyperbolic end realizable as one of the complementary components of the
convex core of a quasi-Fuchsian manifold, then the norm of its Schwarzian at
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infinity q1 (with respect to the hyperbolic metric in cE
1

) is uniformly bounded
by 3/2. This is a simple consequence of Nehari’s bound [Neh49], as described
for instance in [GL00, Chapter 6]. This phenomenon arises more generally for
incompressible hyperbolic ends of geometrically finite hyperbolic 3-manifolds.

1.6.3 Foliations by k-surfaces
We conclude this description of the properties of hyperbolic ends mentioning a
result of Labourie [Lab91], which will play an important role in our study (see
Chapters 3 and 5):

Theorem 1.6.4 ([Lab91, Théorème 2]). Every hyperbolic end E is foliated by
a family of k-surfaces (⌃k)k, with k that varies in (�1, 0). As k goes to �1,
the surface ⌃k converges to the locally concave pleated boundary of E, and as k
goes to 0, ⌃k approaches the conformal boundary at infinity @1E.

In particular, this fact will be our starting point in the investigation of the
properties of k-surfaces that interpolate between the geometries of the local
pleated boundary and the conformal boundary at infinity of hyperbolic ends, as
mentioned in the last part of the introduction.

1.7 Volumes

1.7.1 Classical and differential Schläfli formulae
The classical Schläfli formula expresses the derivative of the volume along a
1-parameter deformation of polyhedra in terms of the variation of its bound-
ary geometry. It was originally proved by Schläfli [Sch58] in the unit 3-sphere
case, and later extended to polyhedra of any dimension sitting inside constant
non-zero sectional curvature space forms of any dimension. Here we recall the
statement in the 3-dimensional hyperbolic space H

3, which will be our case of
interest:

Theorem 1.7.1 ([Sch58],[Mil94],[AVS93]). Let (Pt)t be a 1-parameter family of
convex compact polyhedra in H

3, whose vertices vary smoothly in t, with P = P0.
Assume that the boundaries of the polyhedra Pt share the same combinatorial
structure for t sufficiently close to 0. Then the function t 7! Vt := Vol(Pt)

admits derivative at t = 0, and it verifies

V̇ =
1

2

X

e edge
of P

`(e) ✓̇(e),

where the sum is taken over the set of edges e of P , `(e) denotes the length of
e in P and ✓̇(e) is the variation of the exterior dihedral angle along et in the
family (Pt)t (since the combinatorics of Pt does not change, any edge e of P
has a corresponding et in Pt).

Rivin and Schlenker [RS99] developed a smooth analogue of Theorem 1.7.1
in the context of open domains with smooth boundary. As in the case of the
classical Schläfli, the differential Schläfli formula expresses the variation of the
volume enclosed by a surface in terms of the variation of the geometry of the
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surface itself. We present here two similar statements, the first involving a first
order variation of the boundary of a region in a fixed Riemannian manifold, and
in the second case we keep the region fixed and we vary the ambient metric.

Theorem 1.7.2 ([RS99, Theorem 1]). Let M be a Lorentzian or Riemannian
Einstein manifold of dimension n with scalar curvature R, and consider ⌃ a
closed embedded C

1,1-hypersurface of M which is the boundary of a region N ⇢

M . The choice of a section V of the restriction of TM over ⌃ determines a first
order deformation of ⌃ inside M . We denote by I, II, H the first and second
fundamental forms and the mean curvature of ⌃, respectively, defined selecting
the inward normal vector field of ⌃. If �T denotes the first order variation of
the object T under the deformation, then

R

n
�Vol(N) = �

Z

⌃

✓
�H +

1

2
(�I, II)

◆
da .

Remark 1.7.3. The request of C
1,1-regularity of the boundary is needed here in

order to have a notion of mean curvature. This quantity will be a function in
L1

(⌃), therefore defined almost everywhere. Nevertheless, the relations above
still hold and make sense, since the integrals of H and its variation are well
defined quantities.

Theorem 1.7.4 ([RS99, Theorem 2]). Let M be a compact n-manifold with
smooth non-empty boundary @M , and let gt be a smooth 1-parameter family of
Riemannian Einstein metrics with constant sectional curvature R. Then

R

n

dVol(M, gt)

dt

����
t=0

= �

Z

@M

✓
�H +

1

2
(�g|@M , II)

◆
da .

1.7.2 The dual volume
Thanks to the correspondence between convex bodies in the hyperbolic and de
Sitter geometries, it is possible to define a notion of dual volume for convex
bodies in H

3. In what follows, we will describe different and complementary
ways to introduce this quantity.

Let S be a space-like plane in the de Sitter space dS
3. We denote by

tS : dS
3
! R the signed future-directed time-like distance from the plane S.

Given such a S in dS
3, we can find global coordinates (S ⇥ R, hS) on dS

3 so
that the submanifold S⇥{0}, sitting inside S⇥R, corresponds to the space-like
plane S, and the R-component of the coordinate system is given by the function
tS defined above. Then the Lorentzian metric of dS3 can be written as

hS = � dtS
2
+ cosh

2 tS gS2 ,

where gS2 denotes the standard Riemannian metric on the 2-sphere of radius 1.
Once we fix an orientation on dS

3, we can define !S to be the 2-form given by
✓Z

tS

0
cosh

2 ⇢ d⇢

◆
dvolS2 ,

where we are choosing dvolS2 so that

d! = cosh
2 tS dtS ^ dvolS2 = dvoldS3 .
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Definition 1.7.5. Let C be a compact convex body in H
3 with C

1,1-boundary.

• given a fixed point p in the interior of C, we define:

V ⇤

1 (C) = VoldS3(p
^
\ C^

),

where p^ denotes the convex set of dS3 dual of {p} ⇢ H
3;

• given a fixed space-like plane S in dS
3, we define:

V ⇤

2 (C) = �

Z

@(C^)
!S ,

where (@C)
⇤
= @(C^

) ⇢ dS
3 is future-oriented;

• choosing as normal vector field to @C the one pointing inward, we define:

V ⇤

3 (C) = �VolH3(C) +
1

2

Z

@C

H da .

Remark 1.7.6. Given a point p in H
3, the set p^ coincides with the lower (i.

e. past-directed) half-space bounded by the polar space-like plane of p. If C
is a compact convex body and p lies in the interior of C, then there exists a
radius r > 0 such that the ball Br of radius r centered at p is contained in C. By
Lemma 1.4.2 we deduce that p^ � B^

r
◆ C^. This implies in particular that C^

lies in the interior of p^. The subset p^ \C^ is the region of dS3 bounded from
below by @(C^

) and from above by the polar plane to p. Since C is compact,
we can find a R-ball BR at p containing C. Again by Lemma 1.4.2 we have

p^ \B^

r
✓ p^ \ C^

✓ p^ \B^

R
.

It is immediate to check that p^ \ B^

R
is compact, therefore the same holds for

p^ \C^. This proves that 0 < V ⇤

1 (C) < 1. In fact, the same kind of argument
shows that V ⇤

1 is monotonic increasing with respect to the inclusion. Contrary
to the standard hyperbolic volume, V ⇤

1 is not additive, as one can easily see
by considering, for instance, two simplices glued along a face to build a convex
polytope (see relation (1.8) below).

We will see in Remark 1.7.10 a proof of the independence of V ⇤

1 and V ⇤

2 on
the chosen point p and plane S, respectively. The request of C

1,1-regularity of
the boundary is technical and it will appear later when we will consider variation
formulae. Observe that all the results in the previous subsection hold also in
the C

1,1-case, up to replacing any equality with an equality almost everywhere
whenever order 2 derivatives are involved (e. g. H, B, II and III).

The remainder of this subsection will be dedicated to the proof of the equiv-
alence of these quantities. More precisely, we will see in Proposition 1.7.13 that,
for every compact convex body in H

3 with C
1,1-boundary and with positive

definite second fundamental form, we have

V ⇤

1 (C) = V ⇤

2 (C) = V ⇤

3 (C).

Therefore, combining this with Proposition 1.7.14, we will be allowed to give
the following definition:
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Definition 1.7.7. Let C be a compact convex body in H
3. We define the

dual volume of C to be Vol
⇤
(C) := V ⇤

1 (C). If C has C
1,1-boundary, we can

equivalently set Vol
⇤
(C) := V ⇤

i
(C), i = 1, 2, 3.

Before going through the details, we want to make some remarks about the
convenience of these different descriptions. The definition V ⇤

1 is useful because
it does not require the convex body to have C

1,1-boundary. The expression
V ⇤

2 will be convenient to show the independence of V ⇤

1 on the chosen point p.
Lastly, the third definition gives an explicit link between the notions of dual and
standard volumes in terms of the geometry of the boundary of the domain. In
addition, V ⇤

3 can be trivially extended to the case of convex subsets with regular
boundary sitting inside a general 3-dimensional hyperbolic manifold, as we will
do in Definition 2.2.1.

Lemma 1.7.8. For any choice of space-like planes S, S0 we have:
Z

S

!S0 = 0.

Proof. Let F : dS
3
! dS

3 be the antipodal map, i. e. F (v) = �v for all v 2 dS
3.

Since the subspaces of dS3 are intersections of vector subspaces of R3,1 with dS
3,

every subspace of dS3 is invariant under F . The degree of F as a diffeomorphism
of dS3 is equal to (�1)

4
= 1, while the degree of the restriction of F on a plane

in dS
3 is equal to (�1)

3
= �1. Moreover, we observe that, if tS is the signed

distance from S0, then we have tS0 � F = �tS0 . Then

F ⇤!S0 =

 Z
tS�F

0
cosh

2 ⇢ d⇢

!
F ⇤

dvolS2

=

✓Z
�tS

0
cosh

2 ⇢ d⇢

◆
(�1) dvolS2

= !S0 .

Now, using this relation and the fact that F has degree �1 on S, we get
Z

S

!S0 = �

Z

S

F ⇤!S0 = �

Z

S

!S0 ,

and so
R
S
!S0 = 0, as desired.

Corollary 1.7.9. For every compact convex body C in H
3 with C

1,1-boundary
we have

V ⇤

1 (C) = V ⇤

2 (C).

Proof. The proof goes as follows:

V ⇤

1 (C) :=

Z

p^\C^
dvoldS3 =

Z

p^\C^
d!S

=

Z

@+(p^)t @�(C^)
!S = �

Z

@+(C^)
!S =: V ⇤

2 (C).

The first equality holds by definition of the 2-form !S ; the second one is simply
an application of the Stokes’ Theorem, where the signs + and � stand for future
and past-oriented, respectively; in the third one we are using the fact that @(p^)
is a plane, therefore

R
@+(p^) !S vanishes by Lemma 1.7.8.
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Remark 1.7.10. The chain of equalities in the previous proof shows at the
same time that V ⇤

1 (C) does not depend on the choice of p (since it is equal
to �

R
@(C^) !S), and V ⇤

2 (C) does not depend on the choice of S (since it is equal
to
R
p^\C^ dvoldS3).
In fact, the proof of Corollary 1.7.9 generalizes to H

n, dSn for any n � 3. On
the contrary, the equality between V ⇤

3 and the other two definitions is specific
of the 3-dimensional case (see [SS03] for higher dimensional analogues).

In order to prove that V ⇤

3 coincides with V ⇤

1 = V ⇤

2 , we will use an analytic
approach based on the differential Schläfli formula (see Theorem 1.7.2). In
particular, we will need the following:

Lemma 1.7.11. Let (⌃t)t be a smooth 1-parameter family of embedded surfaces
in H

3, with positive definite second fundamental forms, and let ⌃⇤

t
be the dual

surface of ⌃⇤

t
, obtained following the construction described in Section 1.4. Then

the variation of the volume in dS
3 bounded by the surfaces ⌃⇤

t
can be expressed

as
�VoldS3 =

1

4

Z

⌃
(�I,HI � II) da ,

where ⌃ = ⌃0.

Proof. By Theorem 1.7.2 we have:

�VoldS3 = �
1

2

Z

⌃⇤

✓
�H⇤

+
1

2
(�I⇤, II⇤)⇤

◆
da⇤ .

Here we are using the fact that the de Sitter space has constant sectional curva-
ture equal to +1. To prove the statement, we will apply Proposition 1.4.4 and
we will translate this expression on ⌃⇤ in terms of one on ⌃. By Proposition
1.4.4 we have that H⇤

= � tr
�
B�1

�
= �

H

detB and da⇤ = detB da (detB is
everywhere different from 0 because the second fundamental form is non-de-
generate). Therefore, we can compute the variation of the mean curvature as
follows:

�H⇤
= ��

✓
H

detB

◆
= �

tr(�B)

detB
+

tr(B) tr(B�1�B)

detB

= detB�1
�
tr(B�1�B) tr(B)� tr(�B)

�

= tr(B�1�BB�1
),

where in the last step we used the identity

tr(M�1N) = detM�1
(tr(M) tr(N)� tr(MN)) 8M,N 2 GL(2,R), (1.6)

for M = B and N = B�1�B. Using the relation tr(MN) = tr(NM) and the
fact that B is I-selfadjoint, we see that

(�I⇤, II⇤)⇤ = �2 tr(B�1�BB�1
)� tr(B�1I�1�I).

On the other hand, we have:

(�I,HI � II) = tr(I�1�I I�1
(HI � II))

= tr(B) tr(I�1�I)� tr(I�1�I B)

= detB tr(B�1I�1�I),
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where in the last step we used again the relation (1.6) with M = B and N =

I�1�I. Now, putting these equalities together, we see that

�
1

2

✓
�H⇤

+
1

2
(�I⇤, II⇤)⇤

◆
da⇤ = �

1

2

✓
�
1

2
tr(B�1I�1�I)

◆
da⇤

=
1

4
tr(B�1I�1�I) detB da

=
1

4
(�I,HI � II) da ,

as desired.

Remark 1.7.12. We observe that the variation formula from Lemma 1.7.11,
as the differential Schläfli formulae in Section 1.7.1, actually make sense for
infinite volume domains, as long as their boundary is compact. In such case,
the relations express the variation of the volume, which is still finite.

Proposition 1.7.13. The three definitions of the dual volume given above coin-
cide on all compact convex bodies in H

3 with C
1,1-boundary and positive definite

second fundamental form.

Proof. In order to prove the remaining equality, we first show that V ⇤

1 and V ⇤

3

have the same variation formula. Let Ct be a differentiable family of compact
convex bodies in H

3 with C
1,1-boundary and positive definite second fundamen-

tal forms. If p lies in the interior of C0, then it is an internal point of Ct for small
values of t. In particular p can be used to define V ⇤

1 (Ct) = VoldS3(p
^
\ (Ct)

^
)

whenever t is sufficiently close to 0. Since p is fixed, the only component of the
boundary that is varying is @(C^

t
). Applying Lemma 1.7.11, we get

dV ⇤

1 (Ct)

dt

����
t=0

=
1

4

Z

@C0

(�I,HI � II) da .

On the other side, by Theorem 1.7.2, the variation of V ⇤

3 is

dV ⇤

3 (Ct)

dt

����
t=0

= �
1

2

Z

@C0

✓
�H +

1

2
(�I, II)

◆
da+

1

2

d

dt

Z

@Ct

Ht dat

����
t=0

.

In local coordinates (x1, x2
) the volume form can be written as

p
det((gt)ij) dx1

^

dx2, where det((gt)ij) denotes the determinant of the matrix representing gt
with respect to the basis @1, @2. The differential of the function det at a point
A 2 GL(2,R) verifies d(det)

A
(H) = detA tr(A�1H). Using this expression

combined with the relation (�I, I) = tr(I�1�I), we see that the variation of
Ht dat is given by (�H +

H

2 (�I, I)) da. Therefore we obtain

dV ⇤

3 (Ct)

dt

����
t=0

=
1

4

Z

@C0

(�I,HI � II) da ,

which proves the equality between the derivatives in t of V ⇤

1 (Ct) and V ⇤

3 (Ct).
Assuming that any convex body with C

1,1-boundary and II > 0 can be
differentiably deformed, through convex bodies with C

1,1-boundary and II > 0,
into a small geodesic ball, it would be enough to show that V ⇤

1 and V ⇤

3 coincide
on any geodesic ball of H3.
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A way to prove the first claim is to reduce the problem to the Euclidean
setting, and then perform the deformation using convex combinations. To do
so, we work in the projective model of the hyperbolic space, instead of the
hyperboloid model described at the beginning of Section 1.4. We recall that
the projective model can be described, in a suitable affine chart of RPn, as the
interior of a Euclidean open ball B centered at the origin. In this description,
the half-spaces are nothing but intersections of B with Euclidean half-spaces.
It follows that any compact convex body C of H3 corresponds to an Euclidean
compact convex body lying inside B. Up to acting by isometries of H3, we can
always assume the origin 0 2 B to be contained the interior of C. It is enough to
show that there exists a differentiable deformation of convex C

1,1-surfaces (⌃t)t

such that IIt > 0, ⌃0 = @C and ⌃1 = @Dr, where Dr is a small closed disk of
radius r centered at 0 and contained in the interior of C. To do so, we consider
t 7! NE

tr
((1� t) ·C) (where s ·C := {sx | x 2 C} ⇢ R

3), as t varies in I = [0, 1].
Here NE

"
(X) stands for the "-Euclidean neighborhood of X in R

3. Since the
boundary of (1 � t) · C is C

1,1 and it has positive definite second fundamental
form for all t 6= 1, the same properties hold for boundary of NE

tr
((1 � t) · C).

At time t = 0 we have N0C = C, and at t = 1 NE

r
(0) = Dr. It is not difficult

to see that the boundaries @NE

tr
((1� t) · C) are varying differentiably in t, and

therefore that this deformation satisfies the required conditions.
It remains to show that for any geodesic ball B" = B"(p) of radius " in H

3 we
have V ⇤

1 (B") = V ⇤

3 (B"). Working in the hyperboloid model of H3 introduced at
the beginning of Section 1.4, we can assume p to be equal to e4 2 H

3
⇢ R

3,1. In
what follows, we work in the coordinate system (x, t) 2 S2

⇥R of dS3 introduced
in Section 1.7.2, with S = S2

⇥ {0} ⇢ dS
3 and t = tS . A simple computation

shows that the dual convexes p^ and B^

"
satisfy the following:

p^ = {x 2 dS
3
| t(x) < 0},

B^

"
= {x 2 dS

3
| t(x) < �"}.

Using the equality dvoldS3 = cosh
2 t dvolS2 , we obtain:

V ⇤

1 (B") = VoldS3(p
^
\B^

"
)

=

Z 0

�"

cosh
2 t dt Vol(S

2
)

=
1

2

✓
sinh 2"

2
+ "

◆
Vol(S

2
).

On the other side, choosing the normal vector field on @B" to point inward, we
see that the following relations hold:

I" = sinh
2 " gS2 ,

II" = coth " I",

Vol(B") =

Z
"

0
sinh

2 t dt Vol(S
2
).
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Therefore we have:

V ⇤

3 (B") = �

Z
"

0
sinh

2 t dt Vol(S
2
) +

1

2
(2 coth ") sinh2 " Vol(S

2
)

=
1

2

✓
�
sinh 2"

2
+ "+ sinh 2"

◆
Vol(S

2
),

and therefore V ⇤

1 (B") = V ⇤

3 (B") for every " > 0.

Let CBc denote the family of compact convex bodies of H3 endowed with the
Hausdorff distance dH, defined as:

dH(C,D) := inf{" > 0 | N"C ◆ D and C ✓ N"D},

where N"X stands for the "-neighborhood of X.

Proposition 1.7.14. The function V ⇤

1 : CBc ! R�0 is continuous.

Proof. By definition of the Hausdorff distance, it is enough to prove that, for
any compact convex body C we have

lim
"!0

V ⇤

1 (N"C) = V ⇤

1 (C).

Since (N"C)
^ is the "-neighborhood of C^ with respect to the time-like dis-

tance from C^, the fact follows from the continuity of VoldS3 with respect to
the Hausdorff distance in dS

3. Alternatively, the same argument of [BBB19,
Proposition 3.4] applies, where now the corresponding metric at infinity is de-
fined on the full Riemann sphere CP

1.

Proposition 1.7.14 implies that the dual volume of a compact convex body
can be approximated by the dual volume of strictly convex bodies with C

1,1-
boundary which converge to C with respect to the Hausdorff distance. For the
existence of such a sequence, we can consider Cn := N1/nC, for n 2 N \ {0}, as
observed in Remark 2.1.2. This shows the consistence of the different definitions
V ⇤

i
we gave initially.

1.7.3 The dual Schläfli formula
Applying Proposition 1.7.13, we can easily deduce a dual Schläfli formula (see
[San04] and [Suá00]) for the dual volume of a polyhedron in H

3. Let (Pt)t2(�",")

be a 1-parameter family of convex compact polyhedra, whose vertices are varying
smoothly in t. Consider the convex body N"Pt given by the set of points at
distance  " from Pt (which has C

1,1 boundary). In [RS00] it is proved that:

lim
"!0

Z

(Pt)"

Ht," dat," =
X

et edge
of Pt

`(et) ✓(et). (1.7)

Therefore the integral of the mean curvature can be considered as the analogous,
in the C

1,1-case, of the weighted length of the codimension 1 bending locus of
@P , where the weights are given by the exterior dihedral angles along the edges.
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Using the relation above and the description of the dual volume given by
V ⇤

3 , we deduce that

V ⇤

t
:= Vol

⇤
(Pt) = �Vol(Pt) +

1

2

X

e edge
of Pt

`(et) ✓(et). (1.8)

Now, differentiating this relation in t and applying the classical Schläfli formula
from Theorem 1.7.1, we obtain

V̇ ⇤
= �

1

2

X

e edge
of P

`(e) ✓̇(e) +
1

2

X

e edge
of P

⇣
˙̀(e) ✓(e) + `(e) ✓̇(e)

⌘

=
1

2

X

e edge
of P

˙̀(e) ✓(e).

Therefore, the variation of the dual volume of (Pt)t is in fact the "dual" of
the variation of the hyperbolic volume of (Pt)t, in the sense that, instead of
involving the variation of the angles along the edge e = e0 and the length of e,
we have the variation of the length of e and the angle along e.
Remark 1.7.15. We highlight that the expression found above for V̇ ⇤ holds true
also for variations of polyhedra (Pt)t along which the combinatorial structure
is not preserved. Indeed, if an edge et of Pt collapses into a face at t = 0, its
dihedral angle ✓(e) in P = P0 is 0, and therefore the variation ✓̇(e) does not
contribute to V̇ ⇤.

We summarize the observations above in the following statement:

Theorem 1.7.16 (Dual Schläfli formula). Let (Pt)t be a 1-parameter family of
convex compact polyhedra in H

3, whose vertices vary smoothly in t, with P = P0.
Then the function t 7! V ⇤

t
:= Vol

⇤
(Pt) admits derivative at t = 0, and it verifies

V̇ ⇤
=

1

2

X

e edge
of P

˙̀(e) ✓(e),

where the sum is taken over the set of edges e of P , ✓(e) denotes the exterior
dihedral angle along e in P and ˙̀(e) is the variation of the length of et Pt at
t = 0.



Chapter 2

The dual Bonahon-Schläfli
formula

Outline of the chapter
This chapter is dedicated to the proof of the dual Bonahon-Schläfli formula:

Theorem A. Let (Mt)t be a smooth 1-parameter family of quasi-isometric con-
vex co-compact hyperbolic structures on a fixed underlying topological 3-mani-
fold. Then there exists the derivative of the dual volume of the convex core along
the path (Mt)t, and it satisfies:

dV ⇤

C
(Ṁ) = �

1

2
dLµ (ṁ),

where µ is the bending measure of the boundary of the convex core of M = M0,
and ṁ denotes the variation of the hyperbolic structures on the boundary of the
convex cores of Mt at t = 0.

In the following we describe the strategy of the proof and we outline the
structure of the chapter. The general idea will be to deduce the statement from
the combination of the so-called differential Schläfli formula, proved by Rivin
and Schlenker [RS99], with a careful approximation argument of the boundary
of the convex core by smoother surfaces. As already mentioned in Section 1.3.1,
the boundary of convex core of a convex co-compact hyperbolic manifold M is
far from being smooth, and the understanding of the variation of its geometry is
a subtle problem, which intrinsically involves technical difficulties. In order to
do not go through the same sophisticated (but necessary) analysis of Bonahon
in the study of the standard volume function (see [Bon98a]), it will be essential
to make use of the peculiarities of the dual volume. In particular, we highlight
two phenomena which will play an important role in our argument:

• the dual volume of the "-neighborhood of the convex core Vol
⇤
(N"CM)

satisfies
Vol

⇤
(N"CM)�Vol

⇤
(CM) = O("2),

rather than O("), as happens for the standard hyperbolic volume;

31
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• the variation of the dual volume enclosed by a surface S depends on the
variation of the first fundamental form �I of S, but not on the variation of
its higher order geometric quantities, as the mean curvature, the extrinsic
curvature or the second fundamental form (compare Theorem 1.7.2 or
1.7.4 with Proposition 2.2.5).

The first property is specific of the convex core, and it is due to the fact
that the boundary of the convex core is almost everywhere totally geodesic,
and it is bend along complete geodesics (in particular, there are no "vertices").
The second property is reminiscent of a feature of the dual Schläfli formula,
already highlighted in Remark 1.7.15: if we want to express the variation of
the dual volume of a family of polyhedra (Pt)t, we do not need to require
the combinatorial structure of Pt to be preserved along the deformation. This
suggests a higher flexibility of the dual volume function, which will be useful in
our approximation procedure (see in particular Proposition 3.3.1).

The chapter is organized as follows. In Section 2.1 we will briefly describe the
geometry of equidistant surfaces from a totally geodesic plane and from a line,
which are the basic ingredients to understand the shape of equidistant surfaces
from the boundary of the convex core CM . We will also give a more detailed
description of the geometry of the boundary of the convex core @CM , through
the notion of pleated surfaces. This will allow us to give a fairly technical but
useful procedure to locally approximate @CM by finitely bent surfaces. Section
2.2 is dedicated to the notion of dual volume of convex domains of M , and the
description of its properties. In Section 2.3 we develop a formula that expresses
d
dt`Mt(µ), the derivative of the length of the realization of a fixed measured
lamination µ inside a 1-parameter family (Mt)t of convex co-compact manifolds
(see Proposition 2.3.3).

Section 2.4 is the central part of our proof. Firstly we will approximate
the convex cores CMt by their "-neighborhoods N"CMt. Fixing the underlying
topological space and varying the hyperbolic structures Mt regularly enough, we
will study for which values of " and t the surfaces N"CM0 remain convex with
respect to the structure of Mt. This will allow us to estimate the dual volumes
of the convex cores CMt with the dual volumes of the regions N"CM0 (see
Lemma 2.4.1). Here the key properties that will play a role are the minimality
of the convex core among all convex subsets, and the monotonicity of the dual
volume with respect to the inclusion. In this way we will be able to deduce the
variation of the dual volume of the convex core from the one of a more regular
family of convex regions, on which in particular we will be allowed to apply the
differential Schläfli formula of [RS99]. At this point we will see how the two
properties that we mentioned above will play a role. The final outcome of this
argument will be Proposition 3.3.1, which states that there exists the derivative
of the dual volume function V ⇤

C
(Mt), and it satisfies

dV ⇤

C
(Ṁ) = �

1

2

d`Mt(µ)

dt

����
t=0

,

where µ = µ0 is the bending measure of the boundary of the convex core of
M = M0, and `Mt(µ) represents the length of the realization of µ inside the 3-
manifold Mt. This result will be achieved without making any use of Bonahon’s
Hölder cocycles machinery.
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At the very end, in order to relate the term d
dt`Mt(µ)|t=0 with dLµ (ṁ), i. e.

the differential of the µ-length function over the Teichmüller space T
h
(@CM)

applied to the variation of the hyperbolic structures on @CM , we will need
Bonahon’s results about the C

1-dependence of the hyperbolic metric on the
boundary of the convex core with respect to the convex co-compact structure
of M (see [Bon98b, Theorem 1]).

2.1 Convex co-compact manifolds

In this section, we will state some geometric properties of equidistant surfaces
from planes and lines in H

3, we will introduce the notion of pleated surfaces
and we will describe a procedure to locally approximate the the boundary of
the (lift to H

3 of the) convex core of a convex co-compact hyperbolic manifold
by finitely bent surfaces. These will be useful technical ingredients for the rest
of our exposition. We refer to Section 1.3 for an introduction to the notion
of convex co-compact hyperbolic manifolds and the properties of their convex
cores.

Definition 2.1.1. If A is a subset of a metric space (X, d), the "-neighborhood
of A in X, which will be denoted by N"A, is the set of points of X at distance
 " from A. The "-surface of A in X, which will be denoted by S"A, is the set
of points of X at distance " from A.

Remark 2.1.2. If C is a closed convex subset in H
3, then the surfaces S"C are

strictly convex C
1,1-surfaces. Indeed, the distance function d(C, ·) : H3

! R�0

is continuously differentiable on H
3
\ C (see [CEM06, Lemma II.1.3.6]) and its

gradient is uniformly Lipschitz on

N"C \N"0C

for all " > "0 > 0 (see [CEM06, Section II.2.11]). In particular, the equidistant
surfaces from the convex core of a convex co-compact hyperbolic manifold M
are C

1,1-surfaces.

Given ⌃ an immersed surface inside a hyperbolic 3-manifold M , we denote
by I and II its first and second fundamental forms, respectively, as introduced
in Section 1.4. Wherever we have to deal with surfaces that are boundaries of
domains or with portions of "-surfaces, we will always endow them with the
interior normal vector field pointing towards the domain or the "-neighborhood,
respectively.

Lines and planes in H
3 are 1 and 2-dimensional totally geodesic subspaces

of H
3, respectively. A half-space is the closure on one of the complementary

regions of a plane inside H
3. In the following we recall the geometric data of the

equidistant surfaces from a plane and a line, respectively. For a proof of them,
we refer for instance to [CEM06, Chapter II.2].

Lemma 2.1.3. Let P be a plane in H
3, and fix ⌫ a unit normal vector field on

P . Then the map ⌘" : P ! H
3, defined by

⌘"(p) := exp
p
("⌫(p)),
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parametrizes a connected component of the "-surface from the hyperbolic plane
P in H

3, and in these coordinates we have

I" = cosh
2 " gP ,

II" =
sinh 2"

2
gP = tanh " I",

where we are choosing as unit normal vector field the one pointing towards P .

Lemma 2.1.4. Let �̃ : R ! H
3 be a unit speed complete geodesic, and denote by

e1(s), e2(s) 2 T�̃(s)H
3 the tangent vectors at �̃(s) obtained by parallel transport

of a fixed orthonormal basis e1, e2 of �̃0(0)? ⇢ T�̃(0)H
3. Then the map  " : R⇥

S1
! H

3, defined by

 "(s, e
i✓
) := exp

�̃(s)("(cos ✓ e1(s) + sin ✓ e2(s))),

parametrizes the "-surface from the line �̃ and in these coordinates we have

I" = cosh
2 " ds2 + sinh

2 " d✓2 ,

II" = cosh " sinh " (ds2 + d✓2),

where we are choosing as unit normal vector field the one pointing outwards the
"-neighborhood of �̃.

Let now M denote a convex co-compact hyperbolic 3-manifold with convex
core CM (see Section 1.3). We want to give a more precise description of the
structure of the boundary of the convex core and, to do so, we need to recall
the following notion:

Definition 2.1.5 ([Bon96]). Let S be a topological surface. A (abstract) pleated
surface with topological type S is a pair (f̃, ⇢), where f̃ : eS ! H

3 is a continuous
map from the universal cover eS of S to H

3, and ⇢ : ⇡1(S) ! Iso
+
(H

3
) is a

homomorphism, verifying the following properties:

1. f̃ is ⇢-equivariant;

2. the path metric on eS, obtained by pullback of the metric on H
3 under f̃ ,

induces a hyperbolic metric m on S;

3. there exists a m-geodesic lamination on S such that f̃ sends every leaf of
its preimage �̃ ⇢ eS in a geodesic of H3, and f̃ is totally geodesic embedding
on each complementary region of �̃ in eS.

Let eC be the preimage of the convex core CM inside H
3 ⇠= fM . Its boundary

@ eC is parametrized by a pleated surface f̃ : eS ! H
3 with bending locus �̃, where

eS is the universal cover of @CM , and with holonomy ⇢ given by the composition
of the homomorphism induced by the inclusion @CM ! M and the holonomy
representation of M . In this situation, the pleated surface f̃ is locally convex, in
the sense that the bending occurs always in the same direction, making f̃ locally
bound a convex region (see also [CEM06, Section II.1.11]). In general f̃ is a
covering of @ eC, which is non-trivial whenever CM has compressible boundary.

It will be useful in our analysis to have a way to locally approximate @CM
by finitely bent surfaces. We briefly recall a procedure described in [Bon96,
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Section 7] which is well suited for our purpose. We start by considering an arc k
in eS transverse to the bending lamination �̃, having endpoints in two different
flat pieces P and Q of eS \ �̃. We will assume k to be short enough, so that we
can find an open neighborhood U of k on which f̃ is a topological embedding,
and all the leaves of �̃ meeting U intersect k. When this happens, we say that
f̃ is a nice embedding near k. Let PPQ be the set of those flat pieces in eS \ �̃
that separate P from Q. For every finite subset P of PPQ, we label its elements
by P0, . . . , Pn+1 following the order from P = P0 to Q = Pn+1. Let ⌃i be the
closure of the region in eS which lies between Pi and Pi+1, for i = 0, . . . , n. If
we orient the two leaves �i �0i lying in @⌃i accordingly, so that they can be
deformed continuously from one to the other though oriented geodesics in ⌃i,
then we call diagonals of ⌃i the two unoriented lines in ⌃i that connect two
opposite endpoints of �i and �0

i
.

We denote by �̃P the geodesic lamination of eS obtained from �̃ as follows:
we maintain the geodesic lamination as it is outside

S
i
⌃i and, for every i =

0, . . . , n, we erase all the leaves lying in the interior of the strip ⌃i and we replace
them by one of the two diagonals of ⌃i, say di. Now we define a pleated surface
f̃P : eS ! H

3, with bending locus �̃P , so that it coincides with f̃ outside the
strips, and inside any ⌃i it sends the chosen di in the geodesic of H

3 joining
the endpoints of f̃(@⌃i) corresponding to the endpoints of di. Once we make a
choice of a diagonal di for any i, there is a unique way to extend f̃P on eS so
that is becomes a pleated surface bent along �̃P . Moreover, if the strips ⌃i are
thin enough and if the starting f̃ is locally convex, then we can make a choice
of the diagonals d0, . . . , dn so that the resulting f̃P is still locally convex. Such
f̃P will not be equivariant anymore under the action of the holonomy of f̃ , but
it will approximate the restriction of f̃ on U .

Now, choose a sequence of increasing subsets Pn exhausting PPQ and con-
struct a corresponding sequence of convex pleated surfaces f̃n := f̃Pn as above.
Every such f̃n is finitely bent on the neighborhood U . Following the construc-
tion, we see that, given any P 0 flat piece of eS intersecting k, there exists a large
N 2 N so that f̃n(P 0

) = f̃(P 0
) ⇢ @ eC for every n � N . In particular, the

functions f̃n are approximating f̃ over the open set U . Moreover, following the
proof of [Bon96, Lemma 22], we see that the bending measures µn(k) of f̃n on
the arc k are converging to µ(k), the bending measure of k in @ eC.

Let now r : H3
! eC denote the metric retraction of H3 over the convex set eC

and let d : H3
! R�0 be the distance from eC. We select an open neighborhood

V of k so that V ⇢ U and, fixed ⇢ > 0, we define W = W (V, ⇢) := r�1
(V ) \

N⇢
eC. The surfaces f̃n(U) lie behind f̃(U) ⇢ @ eC if seen from W . Denote by

dn : W ! R�0 the distance function from f̃n(U) on W . Since the surfaces
f̃n(U) are convex, for every point p 2 W there exists a unique qn 2 f̃n(U)

realizing dn(p) = d(p, qn). Therefore, it makes sense to consider the metric
retractions rn : W ! f̃n(U), which will converge to r over the compact sets of
W thanks to the convergence properties previously observed of the f̃n’s. By
the same argument as [CEM06, Lemma II.2.11.1], the distance functions dn are
converging C

1,1-uniformly to d on any compact set of W (i. e. the gradients
grad dn are uniformly Lipschitz and they converge to grad d). This shows that
for every " < ⇢, the surface d�1

(") \ W = S" eC \ W is C
1,1-approximated by

the sequence of surfaces (d�1
n

("))n ⇢ W . Moreover, such surfaces d�1
n

(") ⇢ W
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are the "-equidistant surfaces from finitely bent convex pleated surfaces having
bending measures on k converging to µ(k).

Definition 2.1.6. Given k an arc on which f̃ is a nice embedding, we say that
the sequence f̃n defined above is a standard approximation of @ eC near k and
that the the sequence of surfaces S",n is a standard approximation of S" eC over
k.

2.2 The dual volume of the convex core
This section is devoted to the definition of dual volume on convex sets sitting
inside a convex co-compact 3-manifold, and its main properties.

Definition 2.2.1. Let M be a convex co-compact hyperbolic manifold. If N is
a compact convex subset of M with C

1,1-boundary, we define the dual volume
of N to be

Vol
⇤
(N) := Vol(N)�

1

2

Z

@N

H da .

If N = CM , then we set Vol
⇤
(CM) := Vol(CM)�

1
2`m(µ), where m and µ are

the hyperbolic metric and the bending measure of @CM , respectively.

Remark 2.2.2. When @N is only C
1,1, the mean curvature function is defined

almost everywhere and it belongs to L1
(@N) (here @N is endowed with the

measure induced by the Riemannian volume form of its induced metric), in
particular the integral

R
@N

H da is a well-defined quantity.
Observe that the definition we are using here has opposite sign with respect

to the one in Chapter 1. This choice is intentional, and it is justified by the
following observation. If M ⇠= ⌃⇥R is quasi-Fuchsian, the length of the bending
measure `m(µ) is bounded from above by a constant depending only on the genus
of ⌃ (see Theorem 3.3.5). Consequently, we choose the sign convention in the
definition of the dual volume so that Vol

⇤
(CM), as a function of the space of

quasi-Fuchsian manifolds, is bounded from below (instead than from above).
There is a relation between the notions of dual volume and of W -volume,

defined in [KS08] and used to introduce the renormalized volume of a convex
co-compact hyperbolic manifold. If N is a compact convex subset with C

1,1-
boundary in a convex co-compact manifold M , the W -volume of N is defined
as

W (N) := Vol(N)�
1

4

Z

@N

H da =
1

2
(Vol(N) + Vol

⇤
(N)) .

In addition, we mention that in [BBB19, Lemma 3.3] the authors described a
way to characterize the quantity

R
@N

H da in terms of the metric at infinity ⇢N
associated to the equidistant foliation (S"N)". In this way the definition of dual
volume (and of W -volume) can be given without any regularity assumption on
@N . More precisely, they showed that

Z

@N

H da = Area(⇢N )� 2Area(@N)� 2⇡�(@M).

We recall that the mean curvature here is the trace of the shape operator B,
which is defined using the interior normal vector field to @N ; this explains why
the relation above differ by a factor 2 from the one in [BBB19]. In particular,
the proof of [BBB19, Proposition 3.4] shows also:
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Proposition 2.2.3. The dual volume is continuous on the space of compact
convex subsets of M with the Hausdorff topology.

In light of this fact, the following Proposition, besides its future usefulness,
justifies the definition we gave of Vol⇤(CM).

Proposition 2.2.4. Let M be a convex co-compact hyperbolic manifold, with
convex core CM , bending lamination µ 2 ML(@CM) and hyperbolic metric m
on the boundary of CM . Then, for every " > 0 we have

Vol
⇤
(N"CM) = Vol

⇤
(CM)�

`m(µ)

4
(cosh 2"� 1)�

⇡

2
|�(@CM)|(sinh 2"� 2").

As a consequence, we have

Vol
⇤
(N"CM) = Vol

⇤
(CM) +O(|�(@CM)|, `m(µ); "2).

Proof. First we study Vol(N"CM)� Vol(CM). Let � be the support of µ and
let r0 : N"CM ! CM be the restriction of the metric retraction. We divide
N"CM \ CM in two regions, (r0)�1

(@CM \ �) and (r0)�1
(�).

If F is the interior of a flat piece in @CM , then the portion of N"CM which
retracts onto F through r0 has volume equal to

Z
"

0

Z

F

cosh
2 t dvolH2 dt =

Area(F )

2

✓
sinh 2"

2
+ "

◆
,

where we are making use of the coordinates described in Lemma 2.1.3. Since the
lamination � has Lebesgue measure 0 inside @CM , the sum of the areas of the
flat pieces is Area(@CM) = 2⇡|�(@CM)|. Therefore the region in N"CM \CM
which retracts over @CM \ � has volume ⇡|�(@CM)|

�
sinh 2"

2 + "
�
.

Let D be the closed convex subset in H
3 obtained as the intersection of two

half-spaces whose boundary planes meet with an exterior dihedral angle equal
to ✓0 and select � a geodesic arc lying inside the line along which @D is bent.
Then, the region in N"D which retracts over � has volume equal to

Z
"

0

Z
✓0

0

Z

�

cosh t sinh t d` d✓ dt =
✓0 `(�)

4
(cosh "� 1). (2.1)

An immediate consequence of this relation is that whenever @CM is finitely
bent, the volume of (r0)�1

(�) coincides with `m(µ)
4 (cosh " � 1), where m is the

hyperbolic metric of @CM . In the general case, we can select a suitable cover-
ing of @CM by open sets on which we can apply the standard approximation
argument of Definition 2.1.6. With this procedure, it is straightforward to see
that the relation Vol((r0)�1

(�)) = `m(µ)
4 (cosh "� 1) extends to the general case.

Combining the relations we found, we obtain

Vol(N"CM \ CM) = ⇡|�(@CM)|

✓
sinh 2"

2
+ "

◆
+
`m(µ)

4
(cosh 2"� 1).

Now we want to compute
R
S"CM

H" da". Using Lemmas 2.1.4 and 2.1.3 we
immediately see that, in the finitely bent case the following holds:

Z

S"CM

H" da" = 2⇡|�(@CM)| sinh 2"+ `m(µ) cosh 2".
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The standard approximation procedure (see Definition 2.1.6) allows us again to
prove this relation in the general case, with the only difference that the C

1,1-
convergence is now crucial, because the expression of the mean curvature in
chart involves the second derivatives in the coordinates system. Combining the
relations we proved with the equality Vol

⇤
(CM) = Vol(CM) � `m(µ)/2, we

deduce the relation in the statement.

As we will see in a moment, it will be convenient for us to differentiate the
dual volume enclosed in a differentiable 1-parameter family of C

1,1-surfaces. In
particular, we will make use of the following result, which is a corollary of the
differential Schläfli formulae of Theorems 1.7.2 and 1.7.4:

Proposition 2.2.5. Let Mt = (N, gt) be a smooth 1-parameter family of com-
plete convex co-compact hyperbolic structures on N . Consider C a compact
convex subset of N \ @N with C

1,1-boundary. Then the variation of the dual
volume of C in Mt exists and can be expressed as:

dVol
⇤

Mt
(C)

dt

����
t=0

=
1

4

Z

@C

(�g|@C , II �HI) da ,

where I, II, H are the first and second fundamental forms and the mean curva-
ture of the surface @C, and (·, ·) is the scalar product induced by I on the space
of 2-tensors on @C.

Similarly, if we fix the hyperbolic 3-manifold M = M0 and we consider
a 1-parameter family of convex subsets Ct with C

1,1-boundaries @Ct varying
smoothly in t, then:

dVol
⇤

M
(Ct)

dt

����
t=0

=
1

4

Z

@C

(�I, II �HI) da .

Proof. The strategy used in Proposition 1.7.13 to compute the derivative of V ⇤

3

applies verbatim to both cases, using Theorems 1.7.4 and 1.7.2, respectively.
The difference of sign between these relations and the one for �V ⇤

3 is due to
the different convention in the definition of dual volume, as observed in Remark
2.2.2.

Contrary to the case of the hyperbolic volume, it is not clear whether the
dual volume of a convex set is positive or not. However, Vol⇤ shares with the
usual notion of volume the property of being monotonic (in fact decreasing)
with respect to the inclusion, as we see in the following:

Proposition 2.2.6. Let C, C 0 be two compact convex subsets inside a convex
co-compact manifold M . If C ✓ C 0, then Vol

⇤
(C) � Vol

⇤
(C 0

).

Proof. Thanks to Proposition 2.2.3, up to considering "-neighborhoods and
passing to the limit as " goes to 0, we can assume that C and C 0 are com-
pact convex subsets with C

1,1-boundary. We will make use of the variation
formula of Proposition 2.2.5. Assume that ⌃ : I ⇥ S ! M is a differentiable 1-
parameter family of convex C

1,1-surfaces ⌃t := ⌃(t, ·), which parametrize the
boundaries of an increasing family of compact convex subsets (Ct)t2I inside M .
Let Vt be the infinitesimal generator of the deformation at time t, i. e. Vt is
the vector field over S defined by Vt :=

d⌃t
dt . The tangential component of Vt
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does not contribute to the variation of the dual volume (compare with [RS99,
Theorem 1]). Consequently, in order to compute the derivative of Vol⇤(Ct), we
can assume Vt to be along the interior normal vector field ⌫t of @Ct. Moreover,
since the deformation (Nt)t is increasing with respect to the inclusion, Vt is of
the form ft⌫t, for some ft : S ! R, ft  0. Under this condition, the variation of
the first fundamental form of @Ct is �It = �2ftIIt (again, compare with [RS99,
Theorem 1]). If k1(t), k2(t) denote the principal curvatures of @Ct, we obtain
that

(�It, IIt �HtIt) = �2ft(IIt, IIt �HtIt)

= �2ft(k1(t)
2
+ k2(t)

2
� (k1(t) + k2(t))

2
)

= +4ftk1(t)k2(t)  0,

where, in the last step, we used the fact that the extrinsic curvature Ke(t) =

k1(t)k2(t) is non-negative since @Ct is convex. By Proposition 2.2.5, we deduce
that Vol

⇤ is non-increasing along the deformation (Ct)t.
It remains to show that, if C, C 0 are two convex subsets of M with C

1,1-
boundary and such that C ✓ C 0, we can find a differentiable 1-parameter family,
indexed by t 2 [0, 1], of increasing convex subsets Ct with C

1,1-boundary so that
C0 = C and C1 = C 0. A way to produce such a path is described in the proof
of [Sch13, Lemma 3.14], we briefly recall the ideas involved in the construction.
Given any convex set C with C

1,1-boundary in M , the asymptotic expansion
of the first fundamental forms of the equidistant surfaces from C determines
a unique Riemannian metric hC belonging to the conformal class at infinity of
@1M . Moreover, the surface @C can be recovered from hC as the envelope of a
family of horoballs determined by hC , thanks to a construction due to Epstein
(@C is the so-called Epstein surface associated to the metric hC , see [Eps84]).
This correspondence behaves well with respect to the inclusion, in the sense that
if C and C 0 are convex sets as above and C ✓ C 0, then hC  hC0 . Being hC and
hC0 elements of the same conformal class, there exists a non-negative function u
on @1M such that hC0 = e2uhC . If we set now ht := e2tuhC , then the Epstein
surfaces associated to ht turn out to be the boundaries of an increasing family of
convex subsets Ct satisfying the desired requirements (see [Sch13, Lemma 3.14]
for a more detailed exposition).

2.3 The derivative of the length
From now on, S will be a fixed closed surface of genus g � 2. We briefly
recall the notions of [Bon88] that we will need. Given m a hyperbolic metric
on S, the universal cover eS, endowed with the lifted metric m̃, is isometric to
H

2. As the topological boundary of the Poincaré disk sits at infinity of H
2,

also eS can be compactified by adding a topological circle @1 eS at infinity, and
the resulting space does not depend on the chosen identification between them.
The fundamental group naturally acts by isometries on eS ⇠= H

2, and since the
isometries of H2 extend to @1H

2, the action extends to @1 eS. It turns out that
the topological space @1 eS, together with its action of ⇡1(S), is independent of
the hyperbolic metric m we chose. In particular, all the spaces we are going
to describe are intrinsically associated to the topological surface S, without
prescribing any additional structure. Since a geodesic in eS is determined by its
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(distinct) endpoints in @1 eS, the space G(eS) of unoriented geodesics of eS can be
naturally identified with

(@1 eS ⇥ @1 eS \�)
�
Z2

,

where � denotes the diagonal subspace of (@1 eS)2, and the action of Z2 ex-
changes the two coordinates in (@1 eS)2. Therefore, a geodesic lamination � of S
is identified with a closed, ⇡1(S)-invariant subset e� of disjoint geodesics in G(eS).
In the same spirit, a measured lamination of S corresponds to a ⇡1(S)-invariant,
locally finite Borel measure on G(eS) with support contained in a geodesic la-
mination � of S. We denote by GL(S) and ML(S) the spaces of geodesic
laminations and measured laminations on S, respectively (see also Section 1.2.2
for an alternative description of these objects).

In the following, we recall the notion of length of measured laminations
realized inside a fixed hyperbolic 3-manifold M from [Bon97, Section 7]. As in
the case of S, we can define the space of unoriented geodesics of M , making
use of the natural compactification of H

3. The substantial difference is that
the dynamical properties of the action of ⇡1(M) do depend in general on the
hyperbolic metric we are considering on M . However, our interest will be to
apply these notions to quasi-isometric deformations of hyperbolic manifolds.
In this case, the holonomy representations turn out to be quasi-conformally
conjugated in @1H

3, therefore the qualitative properties of the action of ⇡1(M)

on G(fM) are preserved. Fix now a homotopy class of maps [f0 : S ! M ].

Definition 2.3.1. A geodesic lamination � on S is realizable inside M in the
homotopy class [f0] if there exists a representative f : S ! M of [f0] which
sends each geodesic of � homeomorphically in a geodesic of M . In such case,
we say that � is realized by f .

In order to talk about the realization of a measured lamination µ, we need
to find a way to push-forward the measure µ to a measure on G(fM). Let � be a
geodesic lamination on S realized by a map f , and let ⇢ : ⇡1(S) ! ⇡1(M) be the
homomorphism induced by [f0] on the fundamental groups. Fixed a lift f̃ of f
to the universal covers, we can construct a function r : �̃! G(fM), associating to
each leaf g of �̃ the geodesic f̃(g) sitting inside fM . The map r is ⇢-equivariant
and continuous with respect to the topologies of �̃ as subset of G(eS) and of
G(fM) (compare with [Bon97, Section 7]). It is easy to prove that r depends
only on the homotopy class [f ] and on the choice of a lift of any representative
of [f ] realizing �. To see this, let F0 = f and f1 = f 0 be two such maps in [f ]
homotopic through (Ft)t2I (here I denotes the interval [0, 1]). Once we choose
a lift f̃ of f , there exists a unique lift eFt of the homotopy so that eF0 = f̃ . This
gives a preferred lift of f 0, namely f̃ 0 := eF1. Because of the compactness of S and
the existence of a homotopy eFt between them, the lifts f̃ and f̃ 0 must agree (up
to reparametrization) on any leaf g of �̃, since the geodesics f̃(g) and f̃ 0

(g) are
necessarily at bounded distance in H

3 (see [Thu79, Proposition 8.10.2]). This
implies that the definitions of r obtained using f̃ and f̃ 0 coincide. Moreover,
different choices of lifts f̃ produce maps r, r0 which differ by post-composition
by an element in ⇡1(M). The same argument as above shows that, if �1, �2 are



2.3. THE DERIVATIVE OF THE LENGTH 41

two geodesic laminations realized by the maps f1, f2 respectively, which both
contain the lamination �, then the two realizations f1 and f2 coincide on �.

We are finally ready to describe the definition of the length of the realization
of a measured lamination inside M . Let ↵ be a measured lamination on S with
support contained in �. We denote by ↵̄ := r⇤↵ the push-forward of ↵ under
the map r. ↵̄ is a measure on G(fM) with support r(supp↵), depending only on
↵ 2 ML(S), on the homotopy class [f ] and on the choice of a lift of f . Assume
that f(�) lies inside some compact set K of M and let F , eF denote the geodesic
foliations of the projective tangent bundles PTM , PTfM , respectively. We can
cover the preimage of K in PTM by finitely many F-flow boxes �j : Dj⇥I ! Bj .
Here Dj is some topological space and �j is a homeomorphism sending each
subset {p}⇥ I ⇢ Dj ⇥ I in a subarc of a leaf in F , for any p 2 Dj . In addition,
we fix a collection {⇠j}j of smooth functions with supports supp ⇠j contained in
the interior of Bj for every j, and such that

P
j
⇠j = 1 over the preimage of K in

PTM . If �j is a F-flow box that meets f(supp↵), we can lift it to a eF-flow box
�̃j : Dj ⇥I ! PTfM accordingly with the choice of the lift f̃ . The lift �̃j induces
an identification between the space Dj with a subset in G(fM). Namely, a point
p 2 Dj corresponds to the complete leaf in eF extending the arc �̃j({p} ⇥ I).
Through this identification, it makes sense to integrate the Dj-component of �̃j
with respect to the measure ↵̄ previously defined on G(fM). If �j does not meet
f(supp↵), then we choose an arbitrary lift �̃j . Finally, we select lifts ⇠̃j ’s of the
⇠j ’s according with the choices of the lifts �̃j . The length of the realization of ↵
in M (in the homotopy class [f ]) is

`M (↵) =

ZZ

�

d` d↵ :=

X

j

Z

Dj

Z 1

0
⇠̃j(�̃j(p, s)) d` (s) d↵̄ (p), (2.2)

where d` denotes the length-measure along the leaves of eF .
Remark 2.3.2. By invariance of the length under reparametrization and by lin-
earity of the integral, the choices of the functions {⇠j}j and the chosen F-flow
boxes {�j}j are irrelevant; moreover, different lifts of f produce maps r which
are conjugated by isometries in ⇡1(M). Therefore, the quantity `M (↵) only
depends on the measured lamination ↵, the hyperbolic metric on M and the
homotopy class [f : S ! M ]. The notion makes sense as long as there exists
a realizable geodesic lamination � in the homotopy class [f ] which contains
supp↵. Moreover, by what we observed before, this quantity does not depend
on the specific representable lamination � we chose, but it is determined only
by supp↵.

We are now ready to produce a variation formula for the length of the real-
ization of a measured lamination inside a 1-parameter family of quasi-isometric
convex co-compact hyperbolic manifolds (Mt)t. For convenience, we think of
(Mt)t as a differentiable 1-parameter family of complete hyperbolic metrics
gt on a fixed 3-manifold X, so that the identity map, from M0 = (X, g0) to
Mt = (X, gt), is a quasi-isometric diffeomorphism for any t. Let ↵ 2 ML(S)
be a measured lamination and [f0 : S ! X] a homotopy class of maps. In the
convex co-compact case, all finite laminations are realizable and their realiza-
tions are necessarily contained in the convex core CMt. Therefore, by [CEM06,
Corollary I.5.2.13] and [CEM06, Theorem I.5.3.6], any geodesic lamination on
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S is realizable in the homotopy class [f0], and their realizations lie inside a fixed
compact subset K of X (where K contains CMt for every small t). Let now
� be any geodesic lamination containing supp↵ and assume that it is realized
inside Mt by a certain map ft : S ! Mt, for any t. By the above, we are allowed
to consider the length of the realization of ↵ inside Mt for every t. Let {�j}j ,
{⇠j}j , {�̃j}j , {⇠̃j}j be a collection of functions as in the definition of `M (↵).
Then, in the same notations as above, we set

ZZ

�

d ˙̀d↵ :=

X

j

Z

Dj

Z 1

0
⇠̃j(�̃j(p, s))

ġ (@s�̃j(p, s), @s�̃j(p, s))

2g (@s�̃j(p, s), @s�̃j(p, s))
d` d↵̄ (p),

where @s�̃j =
@�̃j

@s
, g = g0 and ġ =

dg
dt |t=0. The result we want to prove is the

following:

Proposition 2.3.3. Let (gt)t be a 1-parameter family of convex co-compact
hyperbolic metrics on a 3-manifold X, which are quasi-isometric to each other
via the identity map of X. Let ↵ be a measured lamination on a surface S and
let [f : S ! X] be a fixed homotopy class. Then ↵ is realizable in Mt for all
values of t, and the variation of its length verifies

d`Mt(↵)

dt

����
t=0

=

ZZ

�

d ˙̀d↵ , (2.3)

where � is a geodesic lamination of S containing supp↵.

We will prove the Proposition using an approximation argument. Firstly we
deal with the rational case:

Lemma 2.3.4. When ↵ 2 ML(S) is a rational lamination, Proposition 2.3.3
holds.

Proof. Let c be a free homotopy class of simple closed curves in X and assume
that c admits a geodesic representative in M0. Since we are considering a quasi-
isometric deformation of convex co-compact manifolds, the homotopy class c
will admit a geodesic representative for all values of t. Moreover, we can find
parametrizations �t of the geodesic of c in Mt depending smoothly on t, because
of the smooth dependence of the holonomy representation holt(c). In other
words, we can find a smooth map ⌃ : (�", ")⇥ I ! X such that ⌃(t, s) = �t(s)
for every t and s 2 I. Let k·k

t
denote the norm with respect to the metric gt,

and let � = �0. We have

d

dt

��@s�t
��
t

����
t=0

=
ġ(@s�, @s�) + 2g(D@t@s⌃|t=0 , @s�)

2k@s�k0

=
ġ(@s�, @s�)

2k@s�k0
+ g

✓
D@s @t⌃|t=0 ,

@s�

k@s�k0

◆

=
ġ(@s�, @s�)

2k@s�k0
+

d

ds


g

✓
@t⌃|t=0 ,

@s�

k@s�k0

◆�
,

where in the last step we used the fact that � parametrizes a geodesic in M =

M0, and consequently the covariant derivative of @s�

k@s�k0
vanishes. Once we

integrate the last term in t 2 [0, 1] we get 0, because the function of which we
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are taking the derivative coincides at the extremes (since the geodesics �t are
closed). Hence we obtain

d`Mt(c)

dt

����
t=0

=

Z 1

0

ġ(@s�, @s�)

2k@s�k0
ds =

Z 1

0

ġ(@s�, @s�)

2g(@s�, @s�)
d` .

Take now a rational lamination ↵ 2 ML(S), i. e. the measure ↵ is the weighted
sum

P
i
ui �di , where the di are homotopy classes of simple closed curves, the ui

are positive weights, and �di is the transverse measure which counts the geomet-
ric intersection of an arc transverse to di with di. Assume that ↵ is realizable
in M or, equivalently, that the curves ci = f0(di) admit a geodesic representa-
tive �i in M . The same argument given above shows that the lamination ↵ is
realizable in Mt for all t. Applying the definition of `Mt(↵), and denoting by
�t
i
: I ! Mt the geodesic representative of ci, we see that

`Mt(↵) :=
X

i

ui

✓Z 1

0

��@s�t(s)
��
t
ds

◆
.

Hence, taking the derivative in t and using what observed above, we get

d`Mt(↵)

dt

����
t=0

=

X

i

ui

✓Z 1

0

ġ(@s�, @s�)

2k@s�k0
ds

◆
=

ZZ

�

d ˙̀d↵ ,

where � = supp↵ =
S

i
di.

We are now ready to deal with the proof of Proposition 2.3.3:

Proof of Proposition 2.3.3. Let T be a train track in S carrying ↵ and con-
sider a sequence of rational laminations ↵n carried by T and converging to ↵
as measured laminations (see [Thu79, Proposition 8.10.7]). Up to passing to
a subsequence, we can assume that the laminations supp↵n converge in the
Hausdorff topology to a lamination � carried by T . Since ↵n is converging to
↵, we must have � ◆ supp↵. We denote by ft : S ! X a realization of � in the
homotopy class [f ] with respect to the metric gt, and by f̃t : eS ! fM lifts of the
ft’s so that t 7! f̃t is continuous with respect to the compact-open topology of
C

0
(eS, eX).
Let now K be a large compact set of X containing all the convex cores CMt

for small values of t. Then, if Ft is the geodesic foliation of PMt, we can choose
Ft-flow boxes {�t

j
}
j

whose union of images contain the preimage of K in PTMt,
and hence the realizations ft(�). We consequently construct maps {�̃t

j
}
j
, {⇠t

j
}
j
,

{⇠̃t
j
}
j

as in the definition of `Mt(·). We can ask these functions to vary smoothly
in the parameter t, since the hyperbolic metrics depends smoothly in t. Now,
we define

't

j
(·) :=

Z 1

0
⇠̃t
j
(�̃t

j
(·, s)) d`t (s).

In this notation, the length of the realization of ↵n in Mt can be expressed as

`Mt(↵n) =

X

j

Z

Dj

't

j
d↵̄n .
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From this relation is clear that, as n goes to 1, `Mt(↵n) converges uniformly to
`Mt(↵) on a small interval (�", ") of the parameter t. In the same way we see
that

RR
d ˙̀0 d↵n converges to

RR
d ˙̀0 d↵ (here is even easier, because there is no

dependence on t). Thanks to Lemma 2.3.4, the only thing left to conclude the
proof is to show that

lim
n!1

d

dt
`Mt(↵n)

����
t=0

=
d

dt
`Mt(↵)

����
t=0

.

Here we can argue as follows: the length of a homotopy class c of non-parabolic
type can be expressed as the real part of its complex length `C

•
(c) 2 C/2⇡iZ,

which is holomorphic in the holonomy representation. The argument described
above shows that the real lengths `•(↵n) are converging uniformly in a small
neighborhood of hol0 (see also [Sul81b, Theorem 2]). Since the real part of a
holomorphic function determines (up to imaginary constant) the holomorphic
function itself, we deduce that also the complex lengths `C

•
(↵n) are converging

uniformly, and hence C
1-uniformly. In particular this proves the convergence

of the derivatives in t.

2.4 The dual Bonahon-Schläfli formula
In this section we will describe the proof of Theorem A. The first subsection
will be dedicated to the study of the convexity of the equidistant surfaces from
the convex core while we vary the hyperbolic structure. Afterwards we will
introduce an auxiliary function on which we can apply the differential Schläfli
formula (Proposition 2.2.5). This is the step in which the variation of the length
of the bending measure arises (see Proposition 2.4.5). In Proposition 2.4.4 we
will relate this with the actual variation of the dual volume of the convex core.
In the end of the section we will use Bonahon’s results about the dependence
of the metric of the convex core in terms of the convex co-compact hyperbolic
structure to finally prove Theorem A.

Let (Mt)t be a smooth family of quasi-isometric convex co-compact mani-
folds, parametrized by t 2 (�t0, t0). We can choose diffeomorphisms 't : M0 !

Mt so that the following properties hold:

1. 't is a quasi-isometric diffeomorphism for any t, and '0 = id;

2. fixed identifications of the universal covers of Mt with H
3 for every t, we

can find lifts '̃t : H
3
! H

3 of 't so that '̃0 = idH3 and so that the map '̃,
defined by '̃(t, ·) := '̃t(·), is smooth as a map from (�t0, t0)⇥H

3 to H
3.

2.4.1 Convexity of equidistant surfaces

In order to prove Theorem A, it will be important for us to understand for which
values of t and "  "0 the surfaces 't(S"CM0) and '�1

t
(S"CMt) remain convex.

This is the most technical part of our argument and it will require special care.
We want to prove the following fact:
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Lemma 2.4.1. There exist constants K, ⌧ > 0, with 0 < ⌧  t0, which depend
only on the quasi-isometric deformation (Mt)t and on the fixed family of diffeo-
morphims ('t)t, such that, for every t 2 (�⌧, ⌧) the regions 't(NK|t|CM0) and
'�1
t

(NK|t|CMt) are convex in Mt and M0, respectively. As a consequence, we
have

't(NK|t|CM0) � CMt and NK|t|CMt � 't(CM0).

We denote by ⇡t : H3
! Mt the universal cover of Mt, and by eCt ⇢ H

3 the
preimage of the convex core CMt under ⇡t. Fixed q0 a basepoint in H

3, we can
find a large R > 0 so that the metric ball BR = B(q0, R) in H

3 verifies

⇡t'̃t(BR) = 't⇡0(BR) ◆ N"0CMt

and 't(BR) ✓ BR+1, whenever t is small enough. This follows from the fact that
the convex cores CMt are compact and they vary continuously in the parameter
t. Clearly Lemma 2.4.1 reduces to the study of the surfaces '̃t(S" eC0 \BR) and
'̃�1
t

(S" eCt \ BR) in H
3. However, instead of dealing directly with equidistant

surfaces from eC0, which are only C
1,1, we will rather focus our study on the

family of "-surfaces from half-spaces of H3, which are more regular and can be
used as "support surfaces" for S" eC0. The strategy will be to understand how the
convexity of their image under '̃t behave, and from this to deduce the convexity
of the surfaces '̃t(S" eC0 \BR) (and similarly for '̃�1

t
(S" eCt \BR)).

In order to clarify this idea, we need to introduce some notation. Let rt be
the nearest point retraction of H3 onto the convex subset eCt. Given a point q
of S" eCt, we denote by Ht,q the unique support half-space of eCt at rt(q) whose
boundary @Ht,q = Ht,q is orthogonal to the geodesic segment connecting rt(q)

to q (see Figure 2.1). By construction, we have the inclusion N"Ht,q ◆ N"
eCt,

and the surfaces S"Ht,q, S" eCt are tangent to each other at the point q. In other
words, given q 2 S" eCt, the surface S"Ht,q lies outside int(N"

eCt), it approximates
S" eCt at first order at q and it is strictly convex, with second fundamental form
described in Lemma 2.1.3. Therefore, if for every q 2 S" eC0\BR and t 2 (�t0, t0)
the surface '̃t(S"H0,q) remains convex at '̃t(q), then '̃t(S" eC0 \BR) has to be
convex too. Analogously, the convexity of the surfaces '̃�1

t
(S"Ht,q) at '̃�1

(q),
as q varies in S" eCt \BR, implies the convexity of '�1

t
(S"CMt).

In what follows, we state the technical result about equidistant surfaces from
which Lemma 2.4.1 will follow. Given U an open set of H3, we denote by S(U, "0)
the collection of those surfaces embedded in U that are obtained by intersecting
U with an equidistant surface S"H, for some H half-space of H3 meeting U and
for some 0 < "  "0. We remark that, using the notation introduced above, for
every "  "0 and for every q 2 S" eCt, the surface S"Ht,q \ BR belongs to the
family S(BR, "0).

By considering the Poincaré disk model, we can identify H
3 with the open

unit ball � of R3, and functions f : H3
! H

3 as maps from � ⇢ R
3 to itself. If

U is an open set of Rn, K ⇢ U is compact and f : U ! R
m is a smooth map,
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Figure 2.1: A schematic picture of the surface S"H",q

we define

kfkC 0(K) := max
p2K

kf(p)k0,

kfkCk(K) := kfkC 0(K) +

kX

h=1

��Dhf
��

C 0(K)

for k � 1, where k·k0 is the Euclidean (operator) norm and D is the Levi-Civita
connection of the Euclidean metric of Rn (if X =

P
i
Xiei and Y =

P
j
Y jej

are two vector fields, then DXY =
P

i,j
Xi@iY jej). Then we have:

Lemma 2.4.2. Let B be an open ball in H
3, let F : (�t0, t0) ⇥ H

3
! H

3 be
a smooth family of diffeomorphisms Ft = F (t, ·), satisfying F0 = idH3 and
kFkC 4((�t0,t0)⇥B) < 1, and let "0 be a positive number. Given ⌃ 2 S(B, "0),
we denote by I⌃

t
and II⌃

t
the first and second fundamental forms of Ft(⌃), re-

spectively, as t varies in (�t0, t0). Then we can find t00 2 (0, t0] and D > 0,
depending only on the ball B and on kFkC 4((�t0,t0)⇥B), such that, for every
surface ⌃ = S"H \B in S(B, "0), we have

II⌃
t
� tanh " I⌃

t
� �D|t| I⌃

t
, (2.4)

where we are considering the unit normal vector field on Ft(⌃) pointing toward
Ft(N"H \B).

Assuming momentarily this fact, we can prove Lemma 2.4.1:

Proof of Lemma 2.4.1. First we study the surfaces 't(S"CM0). Following the
argument described above, we need to measure the convexity of the surfaces
'̃t(S"H0,q \ BR). We apply Lemma 2.4.2 to Ft := '̃t and B := BR, obtaining
two positive constants t00  t0 and D, which depend only on k'̃kC 4((�t0,t0)⇥BR),
so that the relation (2.4) holds for every ⌃ 2 S(BR, "0). Now we choose K1,
⌧1 > 0, which will depend only on D and t00, so that ⌧1 < t00, K1⌧1  "0 and

tanhK1|t|

2
�D|t| � 0 for every t 2 (�⌧1, ⌧1).
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We want to show that 't(SK1|t|
CM0) is convex for every t 2 (�⌧1, ⌧1). Let t

be in (�⌧1, ⌧1) and consider " = K1|t|. By the choices we made, if q is a point
in SK1|t|

eC0 \ BR, then the surface SK1|t|
H0,q \ BR belongs to S(BR, "0). In

particular, the first and second fundamental forms It, IIt of '̃t(S"H0,q \ BR)

verify the relation (2.4) with " = K1|t|, which can be rewritten as

IIt �
tanhK1|t|

2
It �

✓
tanhK1|t|

2
�D|t|

◆
It.

Because of the choices we made, the right hand side is positive semi-definite.
Therefore we have

IIt �
tanhK1|t|

2
It.

In particular, the surface '̃t(SK1|t|
H0,q \ BR) is strictly convex at the point

'̃t(q). Since the choice of q 2 SK1|t|
eC0 \ BR was arbitrary and the surface

'̃t(SK1|t|
H0,q\BR) locally contains '̃t(SK1|t|

eC0), the argument previously men-
tioned proves the convexity of 't(SK1|t|

CM0) for every t 2 (�⌧1, ⌧1).
Now we have to deal with the case of '�1

t
(S"CMt). Fixed t 2 (�t0, t0), we

define

M (t)
s

:= Mt+s,

 (t)
s

:= 't+s � '
�1
t

: M 0

0 = Mt �! M 0

s
= Mt+s

for every s 2 (�s0, s0), with s0 = s0(t) = t0 � |t|. Then we apply Lemma
2.4.2 to the 1-parameter family of diffeomorphisms ( ̃(t)

s )s, where  ̃(t)
s := '̃t+s �

'̃�1
t

. By construction, the constants s00 and D0 only depend on BR+1 and
k ̃(t)

k C 4((�s0,s0)⇥BR+1)
. Since we can find a uniform upper bound for k ̃(t)

k C 4((�s0,s0)⇥BR+1)
,

we can assume that s00 and D0 are independent of t 2 (�⌧1, ⌧1). Therefore, ap-
plying the argument of the previous case to the 1-parameter deformation (M (t)

s )s

and the diffeomorphisms ( (t)
s )s, we can select ⌧  s00 and K, both independent

of t, so that the surfaces  (t)
s (SK|s|CM (t)

0 ) are convex for every s 2 (�⌧, ⌧).
Moreover, it is not restrictive to ask that ⌧  ⌧1 and K � K1 (this ensures
that K and ⌧ work also for 't(SK|t|CM0)). Therefore, if t 2 (�⌧, ⌧), then
s = �t 2 (�⌧, ⌧) and the surface

 (t)
s
(SK|s|CM (t)

0 )

���
s=�t

= '�1
t

(SK|t|CMt)

is convex, as desired. The second part of the statement follows because of the
minimality of the convex core in the family of convex subsets.

It remains to prove Lemma 2.4.2:

Proof of Lemma 2.4.2. Let ↵ be a curve lying on some surface ⌃ = S"H \B 2

S(B, "0). We denote by ↵t the curve Ft � ↵, by ⌫t the unit normal vector field
of Ft(⌃) pointing toward Ft(N"H \ B), and by k·k and h·, ·i the norm and the
scalar product in the hyperbolic metric of H3.

Assume momentarily that we could find two universal constants C1, C2 > 0

(depending only on the ball B ⇢ H
3) and a t̄0 > 0 (depending only on B and
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on the family (Ft)t), such that
���k↵0

t
k
2
� k↵0

k
2
���  C1k↵

0

t
k
2
kFt � idkC 1(B),

��hD↵0
t
⌫t,↵

0

t
i � hD↵0⌫0,↵

0
i
�� =

���hD↵0
t
⌫t,↵

0

t
i+ tanh " k↵0

k
2
���  C2k↵

0

t
k
2
kFt � idkC 2(B)

for all t 2 (�t̄0, t̄0) (in the last line we used the fact that S"H has second
fundamental form as in Lemma 2.1.3). With such estimates, we deduce that

(II⌃
t
� tanh " I⌃

t
)(↵0

t
,↵0

t
) = �hD↵0

t
⌫t,↵

0

t
i � tanh " k↵0

t
k
2

� tanh " k↵0
k
2
� C2k↵

0

t
k
2
kFt � idkC 2(B) � tanh " k↵0

k
2
+

� C1 tanh " k↵
0

t
k
2
kFt � idkC 1(B)

� �(C1 + C2) kFt � idkC 2(B) I
⌃
t
(↵0

t
,↵0

t
)

and therefore that II⌃
t
� tanh " I⌃

t
� �(C1 + C2) kFt � idkC 2(B) I

⌃
t

for every
t 2 (�t̄0, t̄0). Since the map F is regular in t, where Ft = F (t, ·), we can
find two constants t00 and D, depending only on kFkC 4((�t0,t0)⇥B) and B, for
which the final statement holds (for this it is definitively enough to control the
derivatives of order  2 in t and of order  2 in p 2 B).

The only thing left is to prove the two relations above. Let g0 denote the
Euclidean metric of R3 and g the hyperbolic metric on � ⇠= H

3. Identifying H
3

with an open set of R3, it make sense to compute a tensor Tp at p on vectors
(or forms) lying in the tangent (or cotangent) space at a different point q, via
the identifications TpH

3 ⇠= TpR
3 ⇠= TqR

3 ⇠= TqH
3. Therefore we can write:

���k↵0

t
k
2
� k↵0

k
2
���  |(g � Ft)(D↵0Ft, D↵0Ft)� g(↵0,↵0

)|

 |(g � Ft)(D↵0Ft, D↵0Ft � ↵0
)|+ |(g � Ft)(D↵0Ft � ↵0,↵0

)|+

+ |(g � Ft)(↵
0,↵0

)� g(↵0,↵0
)|

 (kg � Ftk0kD·Ftk0kD·Ft �D·idk0 + kg � Ftk0kD·Ft �D·idk0+

+kg � Ft � gk0) k↵
0
k
2
0,

where k·k0 is the operator norm with respect to the Euclidean metric in R
3.

The terms kD·Ft �D·idk0 and kg � Ft � gk0 can be bounded by some univer-
sal constant multiplied by kFt � idkC 1(B). The terms kg � Ftk0, kD·Ftk0 are
controlled, since Ft is C

1-close to id. Since B is compact and the Ft’s are
diffeomorphisms C

1-close to id, the norms k·k0, kD·Ftk and k·k are uniformly
equivalent between each other on B. Combining these facts together we obtain
the first inequality.

For the second relation, we can proceed similarly decomposing the expression
in the following way:
��hD↵0

t
⌫t,↵

0

t
i � hD↵0⌫0,↵

0
i
�� 

��(g � Ft)(D↵0
t
⌫t,↵

0

t
� ↵0

)
��+
��(g � Ft)(D↵0

t�↵
0⌫t,↵

0
)
��+

+ |(g � Ft)(D↵0⌫t �D↵0⌫0,↵
0
)|+

+ |(g � Ft)(D↵0⌫0,↵
0
)� g(D↵0⌫0,↵

0
)|

 2kg � Ftk0kD·⌫tk0kD·Ft �D·idk0k↵
0
k
2
0+

+ kg � Ftk0kD·⌫t �D·⌫0k0k↵
0
k
2
0+

+ kg � Ft � gk0kD·⌫0k0k↵
0
k
2
0.
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The vector field ⌫0 is the restriction to ⌃ of the gradient grad d of the signed
distance from the plane @H (oriented in the suitable way), independently on ".
We can find two vector fields V1, V2 on a neighborhood of @H so that V1, V2

span the tangent space of the surface S"H for every "  "0. The vector fields
V1, V2 and grad d have covariant derivatives which are uniformly bounded, as
we vary H, since the half-spaces H must meet B. The vector field ⌫t can be
obtained as

(Ft)⇤(V1)⇥ (Ft)⇤(V2)

k(Ft)⇤(V1)⇥ (Ft)⇤(V2)k
,

where ⇥ denotes the vector product. Therefore the first derivatives of ⌫t are
close to the ones of ⌫0 = V1 ⇥ V2/kV1 ⇥ V2k, again uniformly in the half-space
H meeting B. This implies that the terms kD·⌫0k0, kD·⌫tk0 are uniformly con-
trolled, and that kD·⌫t �D·⌫0k0 can be bounded by some universal constant
multiplied by kFt � idkC 2(B). Combining these observations with what previ-
ously done for the first inequality, we deduce the second claimed inequality.

2.4.2 The variation of the dual volume
Given " 2 [0, "0] and t 2 (�t0, t0), we define

v⇤
"
(t) := Vol

⇤

Mt
(N"CMt), u⇤

"
(t) := Vol

⇤

Mt
('t(N"CM0)).

Our proof of Theorem A will be divided in some steps. The function that
needs to be differentiated at t = 0 is V ⇤

C
(Mt) = v⇤0(t), in the notation above.

However, this quantity is not easy to handle directly, because the variation of the
geometric structure of CMt is complicated. To overcome this problem, we will
first study the family of functions u⇤

"
in Lemma 2.4.3, and the limit lim"(u⇤

"
)
0
(0)

in Proposition 2.4.4. Here we will see how the differential of the length of the
bending measure comes into play. Afterwards we will use the properties of the
dual volume to relate lim"(u⇤

"
)
0
(0) to the actual derivative (v⇤0)0(0) in Proposition

2.4.5. In this manner we will conclude that the variation of the dual volume
coincides, up to multiplicative constant, with the variation of the length of the
realization of the bending measure of the convex core µ = µ0. The last part of
this subsection will be dedicated to relating this result with the differential of
the length function of µ over the Teichmüller space.

Lemma 2.4.3. The functions u⇤

"
: (�t0, t0) ! R are smooth in t, and they

converge C
1-uniformly to u⇤

0 as " goes to 0. Moreover, they satisfy

(u⇤

"
)
0
(0) =

1

4

Z

S"CM0

(�I", II" �H"I")" da" ,

where (·, ·)
"

denotes the scalar product on the space of 2-tensors induced by I".

Proof. Let u"(t) be VolMt('t(N"CM0)). Then the functions u⇤

"
can be expressed

as
u⇤

"
(t) = u"(t)�

1

2

Z

't(S"CM0)
H da .

We prove the regularity of u⇤

"
in t by focusing on the two terms separately. By

the choice we made of the family of diffeomorphisms ('t)t at the beginning of
Section 2.4, the pullback '⇤

t
dvolMt of the volume forms of Mt vary smoothly
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in t, and they can be expressed in the form '⇤

t
dvolMt = f(t, ·) dvolM0 , for some

smooth function f : (�t0, t0)⇥M0 ! R. If we denote by A" the subset N"CM0

of M0 for every " 2]0, "0], then the functions u" satisfy:

u"(t) =

Z

M0

1A"f(t, ·) dvolM0 ,

where 1A" stands for the characteristic function of the set A" (i. e. 1A"(p) = 1

if p 2 A", and 1A"(p) = 0 otherwise). Observe that the sets A" are compact
and they decrease, as " goes to 0, to CM0. As a consequence of the regularity of
f in t, a simple application of the Lebesgue’s dominated convergence theorem
(see e. g. [Roy88]) proves the smoothness of the functions u" in t and their C

1-
uniform convergence to u0.

To show the regularity of the second term of u⇤

"
, we will describe a way to

express the integral of the mean curvature as the integral of a suitable 2-form,
from which the dependence in t and " will be clearer.

Consider (M, g) an oriented Riemannian 3-manifold with volume form dvolM .
Given any point (p, v) of the tangent bundle TM , the Levi-Civita connection r

of M determines a natural splitting of the tangent space T(p,v)TM of the form
T(p,v)TM = U(p,v) � W(p,v), where U(p,v) is the vector subspace of T(p,v)TM
tangent to the space of r-parallel vector fields at p, and W(p,v) is the tangent
space at (p, v) to the fiber TpM ⇢ TM , which can be naturally identified with
TpM . The differential of the bundle map TM ! M at (p, v) has kernel equal to
W(p,v), and it restricts to an isomorphism from U(p,v) to TpM . This procedure
determines a natural identification between T(p,v)TM and (TpM)

2, which we
will implicitly use in what follows. We define a 2-form !M over T 1M , the unit
tangent bundle of M , as follows:

(!M )(p,v)((ṗ, v̇), (ṗ
0, v̇0)) := hv, ṗ0 ⇥ v̇ � ṗ⇥ v̇0i

where (p, v) 2 T 1M , (ṗ, v̇), (ṗ0, v̇0) 2 T(p,v)T
1M ⇢ T(p,v)M , and h·, ·i denotes

the scalar product over TpM . If S is an embedded surface in M , then the
choice of a normal vector field on S determines a lift ◆ : S ! T 1M , given by
◆(p) = (p, np). Consider now e1, e2 a local orthonormal frame of S diagonalizing
the shape operator B of S, i. e. Bei = �Dein = �iei for i = 1, 2, and locally
satisfying e1 ⇥ e2 = n. Then we have:

(◆⇤!M )(e1, e2) = !M ((e1, De1n), (e2, De2n))

hn, e2 ⇥ (�Be1)� e1 ⇥ (�Be2)i

= hn,��1 e2 ⇥ e1 + �2 e1 ⇥ e2i

= �1 + �2 = H.

This shows in particular that, given any surface S ⇢ M , the integral of its mean
curvature can be expressed as the integral over S of the 2-form ◆⇤!M , where
◆ is the lift of S to T 1M determined by its normal vector field. Consider now
 : M ! N a diffeomorphism between two Riemannian manifolds M and N ,
and define an induced map on the unit tangent bundles  ̂ : T 1M ! T 1N as
follows:

 ̂(p, v) :=

0

@ (p),
(d �1

)
ad
 (p)(v)���(d( �1)
ad
 (p) (v)

���

1

A ,
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where ad stands for the adjoint map with respect to the scalar products on
TpM and T (p)N . Given v 2 T 1

p
M , the vector (d �1

)
ad
 (p)(v) is orthogonal

(with respect to the metric of N) to the image under d 
p

of the subspace
hvi? ⇢ TpM . This property implies that, if ◆ : S ! M is the lift of S to T 1M ,
then  ̂ � ◆ parametrizes the lift of  (S) in T 1N . In particular, combining this
remark with what previously observed, we see that

Z

 (S)
H da =

Z

S

( ̂ � ◆)⇤!N ,

for every embedded surface S ⇢ M and for every diffeomorphism  : M ! N
(up to sign for the choice of the normal direction).

The claimed regularity of the term in the mean curvature will now follows
from this simple relation. To see this, let E be the subset of T 1M0 given by
the pairs (p, ⌫) where p 2 @CM0 and ⌫ is the exterior normal direction to a
support half-space of CM0 at p. Observe that, if p lies on an atomic leaf of the
bending measured lamination with weight ↵, then there is a 1-parameter family
of unit tangent vectors (⌫#)#2[0,↵] in T 1

p
M0 satisfying (p, ⌫#) 2 E. The subset E

describes a surface in the unit tangent bundle of M0, which in a sense generalizes
the notion of normal bundle to the singular surface @CM0. If exp

t
denotes the

geodesic flow at time t on the unit tangent bundle of M0, then the lifts of
the surfaces S"CM0 in T 1M0 are parametrized by the maps ◆" : E ! T 1M0,
with ◆"(p, ⌫) = exp

"
(p, ⌫) (here the resulting normal vector field is the exterior

one). The lift of a fixed surface S"0CM0 is C
0,1, with Lipschitz constant of

the first derivatives that a priori depends on "0. However, since the geodesic
flow (exp

�"
)""0 is uniformly C

2 over the compact set T 1M0|N2"0CM0 , and
since exp

�"0 �◆" = ◆"�"0 for all "0 < ", the Lipschitz constants of the first-order
derivatives of the lifts of surfaces S"CM0 are uniformly bounded in " 2 [0, "0]
(observe that this is not the case if we look at the second-order derivatives of
S"CM0 before lifting them to the unitary tangent bundle). This remark shows
in particular that the surface E is C

0,1, and that the functions ◆" converge C
0,1-

uniformly to idE as " goes to 0. Let now !t = !Mt denote the natural 2-form
over the manifold T 1Mt described as above. Then, by the formula we showed,
we have:

�

Z

't(S"CM0)
H da =

Z

E

('̂t � ◆")
⇤!t =

Z

E

◆⇤
"
('̂⇤

t
!t).

Since the maps ◆" are uniformly C
0,1, the forms ('̂t � ◆")⇤!t are L1

(⌃, daE)
uniformly in " and smooth in t, for fixed area form daE on E (area forms
on a C

0,1-surface are defined almost everywhere). In particular, by applying
again the Lebesgue’s dominated convergence theorem we see that the quantityR
't(S"CM0)

H da is smooth in t and it converges C
1-uniformly as " goes to 0.

Finally, the first-order variation at t = 0 in the statement is an immediate
consequence of the differential Schläfli formula in Proposition 2.2.5, and the fact
that '0 = id.

Proposition 2.4.4. Assume that (Mt)t is a 1-parameter family of convex co-
compact manifolds as above. Then we have:

(u⇤

0)
0
(0) = lim

"!0
(u⇤

"
)
0
(0) = �

1

2

ZZ

�

d ˙̀dµ ,
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where µ is the bending measure of @CM = @CM0 and � is a geodesic lamination
containing suppµ.

Proof. As already observed, we can divide the surface S"CM = S"CM0 in two
regions:

• the open set Sf

"
:= r�1

(@CM \�)\S"CM (f stands for flat), namely the
portion of S"CM that projects onto the union of the interior of the flat
pieces of @CM ;

• the closed set Sb

"
:= r�1

(�) (b stands for bent), namely the portion of
S"CM that projects onto the bending lamination.

On the portion Sf

"
we have an explicit description of all the geometric quanti-

ties, by Lemma 2.1.3. In particular, we can write the integral in terms of the
hyperbolic metric on the flat parts, obtaining
Z

S
f
"

(�I", II" �H"I")" da" =
X

F⇢@CM0\�

Z

F

((�I",� tanh " I")" � r) cosh
2 " daF

= � sinh " cosh "

Z

@CM0\�

(�I", I")" � r da ,

where the sum is taken over all the flat pieces F in @CM \ �. The variation
of the first fundamental form �I" is the restriction of ġ =

d
dt'

⇤

t
gMt

��
t=0

to the
tangent space of S"CM . In particular, since S"CM lies in a compact set K of
M = M0, the function (�I", I")" is uniformly bounded. In conclusion, we obtain

lim
"!0

Z

S
f
"

(�I", II" �H"I")" da" = � lim
"!0

sinh " cosh "

Z

@CM\µ

(�I", I")" � r da = 0.

Therefore, the only contribution to lim(u⇤

"
)
0
(0) is given by Sb

"
.

For convenience, we lift our study to the universal cover ⇡ : fM ⇠= H
3
! M .

We will first set our notation. The convex subset eC := ⇡�1
(CM) has a metric

projection r̃ : H3
! eC. Its boundary @ eC is bent along the lamination �̃ :=

⇡�1
(�), and it is parametrized by a locally convex pleated surface f̃ : eS ! H

3,
having bending locus f̃�1

(�̃). The preimage ⇡�1
(Sb

"
), which coincides with

S" eC \ r̃�1
(�̃), will be denoted by eSb

"
. Consider a short arc k in eS with a

neighborhood U on which f̃ is a nice embedding and set W := int(r̃�1f̃(U)) ✓

H
3
\ eC. Our actual goal is to compute

lim
"!0

Z

W\eSb
"

(�I", II" �H"I")" da" . (2.5)

We will make use of a construction described in [CEM06, Section II.2.4]: there
the authors illustrate an explicit way to extend the lamination �̃ to a partial
foliation L = L⌘ of @ eC, defined in the ⌘-neighborhood (with respect its hyper-
bolic path metric) of �̃, for any fixed ⌘ < log 3/2. We briefly recall here the idea
of the construction. Let T be an ideal triangle in H

2, and denote by U⌘ the ⌘-
neighborhood of @T in T , with ⌘ small. Then the region of those points in U⌘
that are very close to exactly two edges of T , sharing an ideal vertex v, can be
foliated using geodesic arcs asymptotic to v, while the region of those points that
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are very close to exactly one edge e of T can be foliated by equidistant curves
from e. Defining a proper extension of this foliation in the regions of transition
between these two behaviors in U⌘, we can build a foliation on U⌘ that extends
the geodesic lamination of @T . Applying this construction to each ideal triangle
in the pleated boundary of eC, we can construct the desired extension L (see
[CEM06, Section II.2.4] for a more precise description).

Up to taking a smaller neighborhood U of k, we can assume that f̃(U) ⇢
S
L

and we can choose a continuous orientation of the foliation L \ f̃(U). Analo-
gously to what is done in [CEM06, Section II.2.11], we define three orthonormal
vector fields on W as follows:

1. the first vector field ⌫ is given by the opposite of the gradient of the
distance from eC;

2. the second vector field E1 is defined in terms of the oriented foliation
L \ f̃(U). If p lies in W , its projection r(p) belongs to an oriented leaf
f̃(�) of L \ f̃(U). We denote by w the unitary vector of Tr(p)H

3 tangent
to f̃(�), and we define E1(p) to be the parallel translation of w along the
geodesic arc in H

3 connecting r(p) to p.

3. the last vector field E2 is defined requiring that (E1, E2, ⌫) is a positively
oriented orthonormal frame of TH3 in W (assume we have fixed an orien-
tation of H3 since the beginning).

Observe that the Ei’s are tangent to the surfaces S" eC \ W , since they are
orthogonal to the gradient of the distance. Therefore, they define two orthogonal
oriented foliations on S" eC \W for every ". Moreover, if r(p) 2 �̃, then E1(p)
is a principal direction for the equidistant surface S" eC passing through p. In
particular, we have that II"(E1, E1) ⌘ tanh " (it is a direct consequence of the
relations in Lemma 2.1.4). Expanding the expression (�I", II"�H"I")" in terms
of this orthonormal frame over W \ eSb

"
we have

(�I", II" �H"I")" = �(�I")(E1, E1)II"(E2, E2)� (�I")(E2, E2)II"(E1, E1)

= �(�I")(E1, E1)II"(E2, E2) +O(ġ|K ; ").

Since the area of W \ eSb

"
goes to 0 as " goes to 0, the integral of the term

O(ġ|K ; ") in the expression (2.5) has limit 0. In the end, it remains to study

lim
"!0

Z

W\eSb
"

(�I")(E1, E1)II"(E2, E2) da" = lim
"!0

Z

W\eSb
"

(�I")11(II")22 da" .

We denote by L
1
"
, L2

"
the foliations on eSb

"
\ W tangent to E1, E2, and by

d`1
"
, d`2

"
their length elements, respectively. Then we can write

Z

W\eSb
"

(�I")11(II")22 da" =

Z

L2
"

 Z

L1
"

(�I")11 d`
1
"

!
(II")22 d`

2
"
. (2.6)

Now it is time to see how this expression behaves in the finitely bent case.
Assume that f̃(U) meets a unique geodesic arc � in �̃ with bending angle ✓0.
Then, in the coordinates described in Lemma 2.1.4, the vector fields E1 and
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E2 can be written as E1 = (cosh ")�1@"
s
, E2 = (sinh ")�1@"

✓
. Therefore the

following relations hold

(�I")11 d`
1
"
=

ġ(@"
s
, @"

s
)

cosh
2 "

d(cosh " s) (II")22 d`
2
"
=

cosh "

sinh "
d(sinh " ✓) .

where ġ = ġ0. In particular, the limit as "! 0 of the expression (2.6) becomes

lim
"!0

Z

L2
"

 Z

L1
"

(�I")11 d`
1
"

!
(II")22 d`

2
"
= ✓0

Z

�

ġ(�0, �0) d` = 2

ZZ

�̃\W

d ˙̀dµ .

To prove this relation in the general case, we make use of the standard approxi-
mations of Definition 2.1.6. The bending measures along the arc k of the finitely
bent approximations f̃n weak*-converge to µ along k; the "-surfaces from the
f̃n’s converge C

1,1-uniformly to W \ S" eC; the vector fields E1,n, E2,n and ⌫n,
defined from the surface f̃n(U), converge uniformly to E1, E2 and ⌫ over all
the compact subsets of W . From these properties, the relation we proved in the
finitely bent case extends to the general one.

Finally, a suitable choice of a partition of unity on a neighborhood of the
bending lamination µ, combined with Lemma 2.4.3, proves the statement.

Proposition 2.4.5. Assume (Mt)t is a 1-parameter family of convex co-compact
manifolds as above. Then there exists the derivative of V ⇤

C
(Mt) at t = 0 and it

verifies

dV ⇤

C
(Ṁ) = �

1

2

ZZ

�

d ˙̀dµ .

Proof. The left-hand side is nothing but the limit of the incremental ratio of
the function v⇤0 at t = 0. Let K, ⌧ be the constants furnished by Lemma 2.4.1.
We split our incremental ratio as follows:

v⇤0(t)� v⇤0(0)

t
=

u⇤

K|t|
(t)� u⇤

K|t|
(0)

t| {z }
term 1

+

v⇤
K|t|

(0)� v⇤0(0)

t| {z }
term 2

�

u⇤

K|t|
(t)� v⇤0(t)

t| {z }
term 3

,

where we used the fact that u⇤

"
(0) = v⇤

"
(0) for all " > 0. In Lemma 2.4.3,

we showed that the functions u⇤

"
are smooth in t and that they converge C

1-
uniformly to u⇤

0 as " goes to 0. Using the first-order expansion of u⇤

"
at t = 0

and evaluating for " = K|t|, we have:

u⇤

K|t|
(t)� u⇤

K|t|
(0)

t
= (u⇤

K|t|
)
0
(0) +O((uK|t|)

00
(⇠t); t),

where the constant involved in the O(t) depends a priori on the value of (u⇤

K|t|
)
00

in a point ⇠t close to 0. However, thanks to the C
1-uniform convergence of

the functions (u⇤

"
)", the second derivatives (u⇤

"
)
00 can be bounded uniformly in

" over a small neighborhood of 0, so the term O((uK|t|)
00
(⇠t); t) is an actual

O(t). By Proposition 2.4.4 we conclude that the limit of the first term in the
decomposition above is equal to �

1
2

RR
�
d ˙̀dµ. In what follows we will show

that the second and third terms of the splitting of the incremental ratio are
converging to 0 as t goes to 0.
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By Proposition 2.2.4 applied to the 3-manifold Ms, for every " > 0 we have

v⇤
"
(s)� v⇤0(s) = Vol

⇤

Ms
(N"CMs)�Vol

⇤

Ms
(CMs) = O(`ms(µs),�(@CMs); "

2
).

(2.7)
In particular, for s = 0 and " = K|t|, this relation proves that the second term
goes to 0.

Let L > 1 be a constant so that all the diffeomorphisms 't are L-Lipschitz
on a large compact set in M0 containing the convex core CM0. It is immediate
to see that the following properties hold:

't(N"CM0) ✓ NL"'t(CM0) for every " > 0,

N"0N"CMt ✓ N"0+"CMt for every "0, " > 0.

Applying Lemma 2.4.1 to the 3-manifold Mt and using the inclusion relations
above, we obtain the following chain:

CMt ✓ 't(NK|t|CM0) ✓ NLK|t|'t(CM0) ✓ NLK|t|NKtCMt ✓ N(L+1)K|t|CMt.

for all t 2 (�⌧, ⌧). All the submanifolds involved are compact convex subsets of
Mt, hence we are allowed to consider their dual volumes. Using the monotonicity
of Vol⇤

Mt
, proved in Proposition 2.2.6, we get

v⇤0(t) � u⇤

K|t|
(t) � v⇤(L+1)K|t|

(t) for all t 2 (�⌧, ⌧).

Applying this to estimate the third term, we obtain

0 �

u⇤

K|t|
(t)� v⇤0(t)

t
�

v⇤(L+1)K|t|
(t)� v⇤0(t)

t
. (2.8)

Since the constants K and L only depend on the family ('t)t, if we apply the
equation (2.7) with s = t and " = (L+ 1)K|t|, we get

v⇤(L+1)K|t|
(t)� v⇤0(t) = O(('t)t, `mt(µt),�(@CMt); t

2
).

Consequently, the right side in the inequality (2.8) goes to 0 as t goes to 0, and
so does the third term, which concludes the proof.

Given µ 2 ML(S), we define the length function of µ as the map Lµ : T (S) !
R�0 from the Teichmüller space of S to R�0 which associates to the hyperbolic
metric m 2 T (S) the length of µ with respect to the metric m. The functions
Lµ are real-analytic, since they are restrictions of holomorphic functions over
the set of quasi-Fuchsian groups (see [Ker85, Corollary 2.2]).

The dependence of the geometry of the convex core CM on the hyperbolic
structure of M is a subtle problem. In [KS95] the authors established the
continuity of the hyperbolic metric and the bending measure of @CM with
respect to the structure of M . A much more sophisticated analysis, involving
the notion of Hölder cocycles, allowed Bonahon to describe more precisely the
regularity of these maps, as done in [Bon98b]. In the following, we recall a
parametrization result from [Bon96], which was an essential tool in the study
of [Bon98b].

Fixed a maximal lamination � on a surface S, we say that a representation ⇢
of ⇡1(S) in Iso

+
(H

3
) realizes � if there exists a pleated surface f̃ with holonomy
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⇢ and pleating locus contained in �. Let R(�) be the set of conjugacy classes
of homomorphisms realizing �, which is open in the character variety of ⇡1(S)
and in bijection with the space of pleated surfaces with bending locus �, up to
a natural equivalence relation. [Bon96, Theorem 31] describes a biholomorphic
parametrization of R(�) in terms of the hyperbolic metric and the bending
cocycle of the pleated surface realizing ⇢ 2 R(�). In particular, we denote
by  � : R(�) ! T (S) the map associating to [⇢] the hyperbolic metric of the
pleated surface with holonomy ⇢.

Now, let M be a hyperbolic convex co-compact manifold. Denote by QD(M)

the space of quasi-isometric deformations of M , and by R(@CM) the represen-
tation variety of ⇡1(@CM) in Iso

+
(H

3
). We have a natural map R : QD(M) !

R(@CM) which associates to a convex co-compact hyperbolic structure M 0 on
M the conjugacy class of the holonomy [⇢0] of @CM 0. If � is a maximal lamina-
tion of @CM 0 extending the support of the bending measure of @CM 0, then  �
is defined on a open neighborhood of [⇢0], therefore we are allowed to consider
the map  � �R. The result of [Bon98b] we need is the following:

Theorem 2.4.6 ([Bon98b, Theorem 1]). Let M be a hyperbolic convex co-
compact manifold and denote by QD(M) the space of quasi-isometric deforma-
tions of M . Then the map Q : QD(M) ! T (@CM) associating to the structure
M 0 the hyperbolic metric on @CM 0, is continuously differentiable. Moreover,
given any maximal lamination extending the support of the bending measure of
CM 0, the differential of Q at M 0 coincides with the differential of the map  ��R
at M 0.

We are finally ready to prove the variation formula for the dual volume of
the convex core of a convex co-compact hyperbolic manifold:

Theorem A. Let (Mt)t be a smooth 1-parameter family of quasi-isometric hy-
perbolic convex co-compact manifolds, with M0 = M . Denote by µ 2 ML(@CM)

the bending measure of the convex core of M and let t 7! mt 2 T (@CM) be the
family of hyperbolic metrics mt associated to the boundary of the convex core
CMt at the time t. Then the dual volume of the convex core V ⇤

C
(Mt) admits

derivative at t = 0, and it verifies

dV ⇤

C
(Ṁ) = �

1

2
dLµ (ṁ).

Proof. By Proposition 2.4.5, the derivative of V ⇤

C
(Mt) at t = 0 exists and it

coincides with lim"(u⇤

"
)
0
(0). By Proposition 2.4.4, we have the equality

dV ⇤

C
(Ṁ) = �

1

2

ZZ

�

d ˙̀dµ ,

where � = suppµ. By Theorem 2.4.6, given a maximal lamination � containing
� = suppµ, the variation of the hyperbolic metric m̃t of the pleated surface
in Mt realizing � coincides with the variation of the hyperbolic metric mt on
the boundary of the convex core CMt. By definition, the quantity

RR
d ˙̀dµ

coincides with d
dtLµ(m̃t)|t=0. Therefore, we obtain that

dLµ (ṁ) =

ZZ

�

d ˙̀dµ ,

which proves the statement.



Chapter 3

The dual volume of quasi-
Fuchsian manifolds and the
Weil-Petersson distance

Outline of the chapter
The aim of this Chapter is to prove Theorem B, which we recall here for conve-
nience:

Theorem B. There exists an explicit positive constant C ⇡ 7.3459 such that,
for every quasi-Fuchsian manifold M homeomorphic to ⌃⇥ R, we have

|V ⇤

C
(M)|  C (g � 1)

1/2 dWP(m
�
(M),m+

(M)),

where V ⇤

C
(M) denotes the dual volume of the convex core CM of M , and m±

(M)

are the hyperbolic structures on the upper/lower components of CM .

Before describing the structure of the chapter, we remark some consequences
and observations concerning this statement. The dual volume and the hyper-
bolic volume of the convex core differ by the term 1

2Lµ(m), which is bounded
by 6⇡|�(⌃)|, as shown in [BBB19]. Moreover, the structures m±

(M) and the
conformal structures at infinity c±(M) of M are at bounded Weil-Petersson dis-
tance from each other, by the works of Linch [Lin74] and Sullivan [Sul81b] (see
also Epstein and Marden [CEM06, Part II]). Therefore, Theorem B can be used
to give an alternative proof of Brock’s upper bound in [Bro03] and to exhibit
explicit constants satisfying the inequality, with a fairly simple argument.

Our way to proceed is analogous to the one used by Schlenker [Sch13] to ob-
tain a bound of the renormalized volume VR(M) in terms of the Weil-Petersson
distance between the conformal structures at infinity of M . The key ingredients
in the work [Sch13] are the variation formula of the renormalized volume VR(M)

and the Nehari’s bound of the norm of the Schwarzian derivative of the complex
projective structures at infinity of @1M . In particular, the author showed that,
for every quasi-Fuchsian manifold M , we have:

VR(M)  3
p
⇡(g � 1)

1/2 dWP(c
+
(M), c�(M)). (3.1)

57
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We remark that the multiplicative constant C appearing in our statement is
larger than the one obtained using the renormalized volume, 3

p
⇡ ⇡ 5.3174 <

7.3459 ⇡ C. Therefore, the inequality (3.1) is more efficient in terms of coarse
estimates.

Nevertheless, Theorem B carries more information than its implications con-
cerning the coarse Weil-Petersson geometry, in particular when we consider
quasi-Fuchsian structures that are close to the Fuchsian locus. In this case,
Theorem B and the inequality (3.1) furnish complementary insights, since they
involve the Weil-Petersson distance between the hyperbolic structures, on one
side, and the conformal structures at infinity on the other. Moreover, Proposi-
tion 3.2.4 and its application for the bound of the dual volume show that the
multiplicative constant in Theorem B can be improved if we have a better con-
trol of Lµ(m) than the one from [BBB19], exactly as the inequality (3.1) can
be improved if we have a better control of the L1-norm of the Schwarzian at
infinity than the Nehari’s bound.

The chapter is organized as follows. In Section 3.1 we recall the description
of the tangent and cotangent bundles of the Teichmüller space T (⌃) of a surface
⌃, first using Beltrami differentials and holomorphic quadratic differentials, and
afterwards, following [Tro92], using traceless and divergence free (also called
transverse traceless) symmetric tensors. The Section ends with a simple Lemma
describing the relation between the two equivalent interpretations and between
their natural norms.

Section 3.2 is dedicated to the proof of Proposition 3.2.4, in which we produce
a uniform bound of the differential of Lµ : T

h
(⌃) ! R, the hyperbolic length

function of a measured lamination µ over the Teichmüller space. This is the
main "quantitative" ingredient for the proof of Theorem B. The proof proceeds
as follows. We represent a variation of hyperbolic metrics ṁ as the real part of a
holomorphic quadratic differential q. Using standard properties of holomorphic
functions, the pointwise norm of q at x can be bounded by the Lp-norm of q
over some embedded geodesic ball in ⌃ centered at x. The variation of Lµ can
be expressed as an integral over the support of µ of the product of the variation
of the length measure of ṁ times the transverse measure of µ. Then the result
will follow using the pointwise estimation and a Fubini’s exchange of integration
over a suitable finite cover of ⌃.

In Section 3.3 we obtain a uniform control of the differential of V ⇤

C
, the dual

volume of the convex core function over the space of quasi-Fuchsian manifolds,
in terms of the norm of the variation of the hyperbolic metrics on @CM . To do
so, we will apply the works of Bridgeman, Canary, and Yarmola [BCY16] and
Bridgeman, Brock, and Bromberg [BBB19], which give universal controls of the
bending measure of the convex core. These results are to the dual volume as the
Nehari’s bound of the norm of the Schwarzian derivative is to the renormalized
volume (the bounds obtained in [BBB19] are actually proved using Nehari’s
bound). The dual Bonahon-Schläfli formula (Theorem A) relates the variation
of V ⇤

C
with the differential of the length of the bending measured lamination, and

the mentioned universal bounds combined with Proposition 3.2.4 will produce
the desired control of dV ⇤

C
(see Corollary 3.3.6).

In Section 3.4 we will finally give a proof of Theorem B. Contrary to what
happens for the conformal structures at infinity, the hyperbolic structures on
@CM are only conjecturally thought to give a parametrization of the space of
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quasi-Fuchsian manifolds. Because of this, proving Theorem B from Corollary
3.3.6 is not as immediate as it is for the renormalized volume using its varia-
tion formula. Our procedure to overcome to this difficulty passes through the
foliation of hyperbolic ends by constant Gaussian curvature surfaces ⌃k, with
k 2 (�1, 0), and the notion of landslide, which is a "smoother" analogue of
earthquakes between hyperbolic metrics on ⌃ introduced by Bonsante, Mon-
dello, and Schlenker [BMS13] (see also [BMS15]). By the work of Schlenker
[Sch06] and Labourie [Lab92a], the data of the metrics on the surfaces ⌃k pa-
rametrize the space of quasi-Fuchsian manifolds (see Theorem 3.4.1). Therefore,
the strategy will roughly be to:

i) approximate the dual volume of the convex core V ⇤

C
(M) by the dual volume

of the region enclosed by the k-surfaces of M , which we denote by V ⇤

k
(M);

ii) prove that the differentials of the functions V ⇤

k
converge to the differential

of V ⇤

C
as k goes to �1, i. e. as the surfaces ⌃k get closer to the convex

core CM ;

iii) use the parametrization result for the metrics of ⌃k to deduce the state-
ment of Theorem B via an approximation argument.

For point (ii), which is the most delicate part of our argument, we will highlight
a connection between the differential of the functions V ⇤

k
and the infinitesimal

smooth grafting, introduced in [BMS13]. As described by McMullen [McM98],
the earthquake map can be complexified using the notion of grafting along a
measured lamination. In the same way the landslide admits a complex extension
via the smooth grafting map. Moreover, the complex earthquake can be actually
recovered by a suitable limit of complex landslides. Using this convergence
procedure, we will be able to show that dV ⇤

C
is the limit of the differentials dV ⇤

k
,

in the sense described by Proposition 3.4.2. The rest of the proof of Theorem
B will be an elementary application of the results from the previous section,
similarly to what done in [Sch13] for the renormalized volume.

3.1 The Weil-Petersson metric
In the following, we will recall the definition of the Weil-Petersson Rieman-
nian metric on the Teichmüller space (see Section 1.2 for the definition of the
Teichmüller space).

Let X be a Riemann structure on ⌃. A Beltrami differential on X is a (1, 1)-
tensor ⌫ that can be expressed in local coordinates as ⌫ = n @z ⌦ dz̄, where n
is a measurable complex-valued function. If h = ⇢|dz|2 is the unique hyperbolic
metric in the conformal class c, then for any p 2 [1,1) we define the Lp-norm
of the Beltrami differential ⌫ = n @z ⌦ dz̄ to be

k⌫k
B,p

:=

✓Z

⌃
|n|p⇢ dx dy

◆1/p

.

When p = 1, we set k⌫k
B,1

:= ess sup⌃ |n|. We will denote by B(X) the
space of Beltrami differentials of X with finite L1-norm. Observe that the
norm k·k

B,2 on B(X) is induced by the hermitian scalar product

h⌫, µi
B,2 =

Z

⌃
n̄m ⇢ dx dy ,
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where ⌫ = n @z ⌦ dz̄ and µ = m @z ⌦ dz̄.
A holomorphic quadratic differential on X is a symmetric 2-covariant tensor

that can be locally written as q = f dz2, where f is holomorphic. In analogy to
what was done above, for every p 2 [1,1) we define the Lp-norm of q to be

kqk
Q,p

:=

✓Z

⌃

|f |p

⇢p�1
dx dy

◆1/p

.

When p = 1, we set kqk
Q,1

:= ess sup⌃ |f |/⇢. When p = 2, the norm k·k
Q,2

is induced by a scalar product, defined as follows:

hq, q0i
Q,2 :=

Z

⌃

ff̄ 0

⇢
dx dy .

There is a natural pairing between the space of bounded Beltrami differen-
tials B(X) and the space of holomorphic quadratic differentials Q(X): given
a Beltrami differential ⌫ = n @z ⌦ dz̄ and a holomorphic quadratic differential
q = f dz2, we define

(q, ⌫) :=

Z

⌃
fn dx dy .

A Beltrami differential ⌫ 2 B(X) is harmonic if there exists a holomorphic
quadratic differential q = f dz2 such that ⌫ = f̄/⇢ @z ⌦ dz̄. We denote by
Bh(X) the space of harmonic Beltrami differentials on X.

Let N(X) be the subspace of B(X) of those Beltrami differentials ⌫ verify-
ing (q, ⌫) = 0 for every q 2 Q(X). As described in [GL00], the space Bh(X)

and N(X) are in direct sum, and the quotient of B(X) by the subspace N(X)

identifies with the tangent space to the Teichmüller space TXT
c
(⌃) (here we

denote by X the isotopy class of the conformal structure, with abuse). More-
over, the pairing (·, ·) determines a natural isomorphism between the dual of
TXT

c
(⌃) and the space of holomorphic quadratic differentials Q(X), which is

consequently identified with the cotangent space T ⇤

X
T

c
(⌃). The scalar product

gWP on TXT
c
(⌃) induced by Reh·, ·i

B,2 defines the Weil-Petersson metric of
the Teichmüller space T

c
(⌃), and Reh·, ·i

Q,2 determines the corresponding met-
ric on the cotangent bundle to Teichmüller space. The skew-symmetric bilinear
form !WP := Reh·, i·i

B,2 is actually a symplectic structure, i. e. d!WP = 0 (see
e. g. [Ahl61]) or, in other words, the complex manifold (T

c
(⌃), gWP,!WP) is

Kähler.

Lemma 3.1.1. For every q 2 Q(X) we have:

kqk
Q,2 = sup

⌫2B(X)\{0}

|(q, ⌫)|

k⌫k
B,2

= sup

⌫2Bh(X)\{0}

|(q, ⌫)|

k⌫k
B,2

.

Proof. By the Cauchy-Schwarz inequality we have |(q, ⌫)|  kqk
Q,2k⌫kB,2, with

equality realized by the harmonic Beltrami differential ⌫q, which satisfies (q, ⌫q) =
kqk2

Q,2 = k⌫qk
2
B,2. Therefore we get:

kqk
Q,2 � sup

⌫2B(X)\{0}

|(q, ⌫)|

k⌫k
B,2

� sup

⌫2Bh(X)\{0}

|(q, ⌫)|

k⌫k
B,2

� kqk
Q,2.

The first inequality holds because of Cauchy-Schwarz, the second one because
Bh(X) ⇢ B(X), and the last one by taking ⌫ = ⌫q.
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We recall now the Riemannian description of the Teichmüller space as de-
veloped in [Tro92]. Let S2

(⌃) be the bundle of symmetric 2-tensors on ⌃, and
let �(S2

(⌃)) denote the space of its smooth sections, which is an infinite di-
mensional vector space. The space M of smooth Riemannian metrics on ⌃
identifies with an open convex subset of �(S2

(⌃)). Therefore, given any Rie-
mannian metric g on ⌃, the tangent space TgM is canonically isomorphic to
�(S2

(⌃)). The metric g determines a scalar product on TgM, which can be
expressed as (�, ⌧)

g
:= gikgjh�ij⌧kh, for �, ⌧ in �(S2

(⌃)). The norm induced
by this scalar product will be denoted by k�k2

g
:= h�,�i

g
. Given � 2 �(S2

(⌃)),
we define the g-divergence of � to be the 1-form (divg �)(V ) := trg(r⇤�)(⇤, V ),
for any V tangent vector field to ⌃. Now we set

S2
tt
(⌃, g) := {h 2 �(S2

(⌃)) | � is g-traceless and divg � = 0}.

An element of S2
tt
(⌃, g) is usually called a tranverse traceless tensor (with respect

to the metric g). As shown in [Tro92], every element of S2
tt
(⌃, g) can be written

(uniquely) as the real part of a holomorphic quadratic differential q 2 Q(⌃, [g]),
and vice versa for every q, the tensor Re q belongs to S2

tt
(⌃, g). In particular,

the space S2
tt
(⌃, g) depends only on the conformal class of the metric g. If g is

a hyperbolic metric, then S2
tt
(⌃, g) is tangent to the space M�1 of hyperbolic

metrics on ⌃, and it is transverse to the orbit of g by the action of the group
of diffeomorphisms isotopic to the identity. Therefore, the tangent space of the
Teichmüller space at the isotopy class of g can be identified with S2

tt
(⌃, g).

For any open set ⌦ ✓ ⌃ and any p 2 [1,1), the Fischer-Tromba p-norm of
� 2 S2

tt
(⌃, g) is defined as

k�k
FT,Lp(⌦) :=

✓Z

⌦
k�kp

g
dvolg

◆1/p

,

where dvolg is the area form induced by g. When p = 1, we set k�k
FT,L1(⌦) :=

sup⌦ khk
g
. If ⌦ = ⌃, we simply write k·k

FT,p
.

Let now m be a point of the Teichmüller space, and let g be a hyperbolic
metric in the equivalence class m, with associated Riemann surface structure
X.

Lemma 3.1.2. The vector spaces Bh(X) and S2
tt
(⌃, g) are identified to TXT

c
(⌃) ⇠=

TmT
h
(⌃) through the linear isomorphism

Bh(X) �! S2
tt
(⌃, g)

⌫q 7�! 2Re q.

Moreover, for every q 2 Q(X) we have

k⌫qkB,p
=

1

2
p
2
k2Re qk

FT,p
.

Proof. Let gt = ⇢t|dzt|
2 be a smooth 1-parameter family of Riemannian metrics

on ⌃, with g0 = g, and let q = f dz0
2 be a holomorphic quadratic differential

on the Riemann surface X = (⌃, [g]). If we require the identity map (⌃, g) !
(⌃, gt) to be quasi-conformal with harmonic Beltrami differential

⌫0
tq

:=
tf̄

⇢0
@z0 ⌦ dz̄0 ,
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then the Riemannian metric gt can be expressed as

gt = ⇢t

����
@zt
@z0

����
2

|dz0|
2
+ 2t⇢t

����
@zt
@z0

����
2

Re

✓
f

⇢0
dz0

2

◆
+O(t2).

Therefore the first order variation of gt at t = 0 coincides with

ġ =

 
d

dt
⇢t

����
@zt
@z0

����
2
�����
t=0

|dz0|
2

!
+ 2Re q.

The quantity ġ identifies with a tangent vector to the space M of Riemannian
metrics over ⌃ at the point g. The first term in the expression above is conformal
to the Riemannian metric g, hence it is tangent to the conformal class [g] ⇢ M.
The remaining term 2Re q is a symmetric, g-traceless and divergence-free tensor,
so it lies in the subspace S2

tt
(⌃, g) of TgM.

The computation above proves that the harmonic Beltrami differential ⌫q,
seen as an element of TXT

c
(⌃), corresponds to 2Re q 2 S2

tt
(⌃, g) ⇠= TmT

h
(⌃).

Finally, an explicit computation shows the relation between the norms k·k
B,p

and k·k
FT,p

.

3.2 A bound of the differential of the length

Let ML(⌃) denote the space of measured laminations of ⌃ (see Section 1.2.2
and Section 2.3 for the definition of this notion). The aim of this section is to
produce, given µ 2 ML(⌃), a quantitative upper bound of the differential of the
length function Lµ : T

h
(⌃) ! R, which associates to every class of hyperbolic

metrics m 2 T
h
(⌃) the length of the m-geodesic realization of µ. This estimate

is the content of Proposition 3.2.4, which will be our main technical ingredient
to produce the upper bound of the dual volume in terms of the Weil-Petersson
distance between the hyperbolic metrics on the convex core of a quasi-Fuchsian
manifold.

We briefly sketch the structure of this section: Lemma 3.2.1 describes a
natural way to express the differential of Lµ applied to a first order variation of
hyperbolic metrics ġ. Lemma 3.2.2 uses the properties of holomorphic functions
to bound the pointwise value of a holomorphic quadratic differential at x 2 ⌃

with its Lp-norm on the ball centered at x. Then Proposition 3.2.4 will follow
by selecting a first order variation ġ in S2

tt
(⌃, g) and then carefully applying the

bound of Lemma 3.2.2 in the expression found in Lemma 3.2.1.

Let m 2 T
h
(⌃) and µ 2 ML(⌃). Given a hyperbolic metric g in the

equivalence class m, we identify the measured lamination µ with its g-geodesic
realization inside (⌃, g). If � is a g-geodesic lamination of ⌃ containing the
support of µ, we can cover � by finitely many flow boxes �j : I ⇥ I ! Bj , where
I = [0, 1] and �j is a homeomorphism verifying ��1

j
(�) = Dj ⇥ I, for some

closed subset Dj of I. We select also a collection {⇠j}j of smooth functions with
supports contained in the interior of Bj for every j, and such that

P
j
⇠j = 1

over �. Since the arcs �j(I⇥{s}) are transverse to �, it makes sense to integrate
the first component of �j with respect to the measure µ. We set the length of
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µ with respect to m to be the quantity

Lµ(m) :=

X

j

Z

Dj

Z 1

0
⇠j(�j(p, ·)) d`(·) dµ (p),

where d`(s) = k@s�j(p, s)kg ds. More generally, given a measurable function f
defined on a neighborhood of �, we define

ZZ

�

f d` dµ :=

X

j

Z

Dj

Z 1

0
⇠j(�j(p, ·))f(�j(p, ·)) d`(·) dµ (p).

The quantity Lµ(m) does not depend on the choices we made of �j , ⇠j and the
hyperbolic metric g in the equivalence class m 2 T

h
(⌃) (see e. g. [Bon96]).

Therefore, any measured lamination µ of ⌃ determines a positive function Lµ

on the Teichmüller space T
h
(⌃), which associates to any m 2 T

h
(⌃) the length

of the geodesic realization of µ in m.
Similarly, if (gt)t is a smooth 1-parameter family of hyperbolic metrics on

⌃, with g0 = g and ġ0 = ġ, we set
ZZ

�

d ˙̀dµ :=
1

2

X

j

Z

Dj

Z 1

0
⇠j(�j(p, ·))

ġ (@s�j(p, ·), @s�j(p, ·))

g (@s�j(p, ·), @s�j(p, ·))
d`(·) dµ (p).

Lemma 3.2.1. Let µ be a measured lamination of ⌃, and let (mt)t be a smooth
path in T

h
(⌃) verifying m0 = m and ṁ0 = ṁ 2 TmT

h
(⌃). Then we have

d(Lµ)m (ṁ) =

ZZ

�

d ˙̀dµ ,

where
RR
�
d ˙̀dµ is defined as above by selecting a smooth path t 7! gt of hyper-

bolic metrics representing t 7! mt.

Proof. First we prove the statement when µ is a weight 1 simple closed curve �
in ⌃. Let �t : [0, 1] ! ⌃ denote a parametrization of the geodesic representative
of � with respect to the hyperbolic metric gt, which can be chosen to depend
differentiably in t. Then the length of �t with respect to the metric gt can be
expressed as

L�(mt) =

Z 1

0

p
gt(�0t(s), �

0
t
(s)) ds .

Now, by taking the derivative of this expression in t and using the fact that
r�̇0 ⌘ 0 (with r being the Levi-Civita connection of g0), we obtain that

d

dt
L�(mt)

����
t=0

=
1

2

Z 1

0

ġ0(�00(s), �
0

0(s))p
g0(�00(s), �

0

0(s))
ds ,

which coincides with the quantity
RR
�
d ˙̀dµ. By linearity we deduce the state-

ment for any rational lamination µ =
P

i
ai�i.

Now, if µ is a general measured lamination, we select a sequence of rational
laminations (µn)n converging to µ. As shown in [Ker85], the functions Lµn are
real analytic over T h

(⌃) and they converge in the C
1-topology on compact sets

to Lµ. In particular the terms d(Lµn)m (ṁ) converge to d(Lµ)m (ṁ). Since the
expression

RR
�
d ˙̀dµ can be proved to be continuous in the measured lamination

µ 2 ML(⌃), the statement follows by an approximation argument.
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Before stating Lemma 3.2.2, we define for convenience the following quanti-
ties: for every p 2 [1,1) and r > 0, we set

C(r, p) :=

✓
2p� 1

4⇡

(cosh(r/2))4p�2

(cosh(r/2))4p�2 � 1

◆1/p

. (3.2)

When p = 1, we define C(r,1) := 1 for every r > 0.

Lemma 3.2.2. Let (⌃, g) be a hyperbolic surface. Given x 2 ⌃ and r <
injrad

g
(x), we denote by Br(x) the metric ball of radius r centered at x 2 ⌃.

Then, for every p 2 [1,1] and for every holomorphic quadratic differential on
(⌃, [g]), we have

kRe q(x)k  C(r, p) kRe qk
FT,Lp(Br(x))

.

where kRe q(x)k is the pointwise norm of the tensor Re q at x.

Proof. If p = 1, the statement is clear. Consider p < 1. By passing to the
universal cover, we can assume the surface to be � = {z 2 C | |z| < 1} and x
to be 0 2 �. The hyperbolic metric of � is of the form

g� =

 
2

1� |z|2

!2

|dz|2,

where z 2 � is the natural coordinate of � ⇢ C. In what follows, we will denote
by k·k the norm induced by the hyperbolic metric, and by k·k0 the one induced
by the standard Euclidean metric |dz|2.

If q = f dz2 is a holomorphic quadratic differential, then for any ⇢ 2 (0, 1)
the residue theorem tells us that

f(0) =
1

2⇡i

Z

@BE
⇢

f(z)

z
dz ,

where BE

⇢
= BE

⇢
(0) = {z 2 � | |z| < ⇢} (here E stands for "Euclidean"). In

particular we have

|f(0)|p 

✓
1

2⇡

Z 2⇡

0
|f(⇢ei✓)| d✓

◆p


1

2⇡

Z 2⇡

0
|f(⇢ei✓)|

p

d✓ , (3.3)

where in the last step we used the Hölder inequality. At z = ⇢ei✓, the hyperbolic
norm of Re q(z) can be expressed as follows:

kRe q(z)k =
1
p
2
|f(⇢ei✓)|

✓
2

1� ⇢2

◆�2 ��dz2
��
0
.

It is easy to check that the metric ball Br centered at 0 with respect to the
hyperbolic distance coincides with BE

tanh(r/2), and that the hyperbolic volume
form dvol is given by ⇢(2/(1� ⇢2))2 d⇢ d✓. Combining all these facts, if we mul-
tiply the inequality (3.3) by ⇢(2/(1� ⇢2))2�2p and we integrate in

R tanh r/2
0 d⇢,
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we deduce that
Z

Br

kRe qkp dvol = 2
�p/2

��dz2
��p
0

Z tanh r/2

0
⇢

✓
2

1� ⇢2

◆2�2p Z 2⇡

0
|f(⇢ei✓)|

p

d✓ d⇢

� 2⇡|f(0)|p 2
�p/2�2(p�1)

��dz2
��p
0

Z tanh r/2

0
⇢(1� ⇢2)2(p�1)

d⇢

= 4⇡kRe q(0)kp
1

2p� 1

✓
1�

1

(cosh(r/2))4p�2

◆

= C(r, p)�p
kRe q(0)kp,

which proves the assertion.

We state here another useful fact that we will use in the proof of Proposition
3.2.4:

Lemma 3.2.3. Let (⌃, g) be a hyperbolic surface and let µ be a measured la-
mination on ⌃. Then, for every L1-function f : Nr(µ) ! R defined on the r-
neighborhood of µ in ⌃, we have

ZZ

�

 Z

Br(·)
f dvolg

!
d` dµ =

Z

⌃

 ZZ

�\Br(·)
d` dµ

!
f dvolg .

Proof. Assume that µ is a 1-weighted simple closed curve � : [0, 1] ! ⌃, and
let f̃ denote the extension of the function f to ⌃ verifying f̃(x) = 0 for all
x 2 ⌃ \ Nr(�). We set ⇠ : ⌃2

! R to be the function taking value ⇠(x, y) = 1

if the distance between x and y is less than r, and ⇠(x, y) = 0 otherwise. Then
the integral on the left can be expressed as

Z 1

0

Z

⌃
f̃(x) ⇠(x, �(t)) dvolg(x) d`(t) .

Applying Fubini’s theorem we obtain
Z 1

0

Z

⌃
f̃(x)⇠(x, �(t)) dvolg(x) d`(t) =

Z

⌃

Z 1

0
⇠(x, �(t)) d`(t) f̃(x) dvolg(x)

=

Z

⌃

 Z

��1(Br(x))
d`(t)

!
f̃(x) dvolg(x).

The last term coincides with the right term of the equality in the statement
in the case µ = �. By linearity we deduce the statement when µ a rational
lamination, and by continuity of the two integrals in the statement with respect
to µ we obtain the result for any general measured lamination.

Let m 2 T
h
(⌃) and µ 2 ML(⌃), and select a hyperbolic metric g in the

equivalence class m. If (e⌃, g̃) denotes the universal cover of (⌃, g), we define

D(m,µ, r) := sup

x̃2e⌃

ZZ

�̃\Br(x̃)
d˜̀dµ̃ < 1.

where �̃ denotes the support of the measured lamination µ̃. In other words,
D(m,µ, r) is the supremum, over the points x̃ in the universal cover e⌃, of the
length of the portion of µ̃ contained in the ball centered at x̃ of radius r.
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Proposition 3.2.4. For any r > 0 and for any p 2 [1,1] we have
��d(Lµ)m (ṁ)

��  Lµ(m)
1/p C(r, p0) D(m,µ, r)1/p

0
k⌫k

B,p0 ,

where p and p0 are conjugate exponents, i. e. 1
p
+

1
p0 = 1, and ⌫ denotes the

harmonic Beltrami differential representing the tangent direction ṁ 2 TmT
h
(⌃).

In particular, for p = 2, we have
��d(Lµ)m

��
Q,2

 C(r, 2)
q
Lµ(m) D(m,µ, r).

Proof. As described in [Tro92], there exists a unique symmetric transverse-trace-
less tensor � 2 S2

tt
(⌃, g) representing the tangent vector ṁ 2 TmT

h
(⌃), which

is of the form Re q = � for some holomorphic quadratic differential q on (⌃, [g]).
We start by making use of Lemma 3.2.1. From the definition of

RR
�
d ˙̀dµ and

the inequality |�(v, v)|  1
p
2
k�k

g
kvk2

g
, we see that

��d(Lµ)m (ṁ)
�� =

����
ZZ

�

d ˙̀dµ

���� 
1

2
p
2

ZZ

�

k�k
g
d` dµ .

By applying the Hölder inequality on the right-side integral, we get

��d(Lµ)m (ṁ)
��  1

2
p
2

ZZ

�

k�k
g
d` dµ 

Lµ(m)
1/p

2
p
2

✓ZZ

�

k�kp
0

g
d` dµ

◆1/p0

.

(3.4)
Now we estimate the integral

RR
�
k�kp

0

g
d` dµ by lifting it to a suitable covering

of ⌃, and then applying Lemma 3.2.2. More precisely, let (b⌃, ĝ) ! (⌃, g) be a
N -index covering so that injrad(b⌃, ĝ) > r, for some N 2 N. We denote by •̂ the
lift of the object • on b⌃. It is immediate to check that the following relation
holds ZZ

�

k�kp
0

g
d` dµ =

1

N

ZZ

�̂

k�̂kp
0

ĝ
dˆ̀dµ̂ .

Then, by applying Lemma 3.2.2 on the surface (b⌃, ĝ) and at each point x̂ 2 �̂,
we get

ZZ

�

k�kp
0

g
d` dµ =

1

N

ZZ

�̂

k�̂kp
0

ĝ
dˆ̀dµ̂


C(r, p0)p

0

N

ZZ

�̂

k�̂kp
0

FT,Lp0 (Br(·))
dˆ̀dµ̂

=
C(r, p0)p

0

N

ZZ

�̂

 Z

Br(·)
k�̂kp

0

ĝ
dvolĝ

!
dˆ̀dµ̂ .

Using Lemma 3.2.3 and the definition of D(m,µ, r), we obtain
ZZ

�̂

 Z

Br(·)
k�̂kp

0

ĝ
dvolĝ

!
dˆ̀dµ̂ =

Z

b⌃

 ZZ

�̂\Br(·)
dˆ̀dµ̂

!
k�̂kp

0

ĝ
dvolĝ

 D(m,µ, r)

Z

b⌃
k�̂kp

0

ĝ
dvolĝ

= N D(m,µ, r) k�kp
0

FT,p0 ,
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where, in the last step, we are using again the fact that (⌃, g) ! (b⌃, ĝ) is a N -
index covering. Combining the last two estimates, we obtain

ZZ

�

k�kp
0

g
d` dµ  C(r, p0)p

0
D(m,µ, r) k�kp

0

FT,p0 . (3.5)

Using the inequalities (3.4) and (3.5), we have shown that

��d(Lµ)m (ṁ)
��  Lµ(m)

1/p C(r, p0) D(m,µ, r)1/p
0

2
p
2

k�k
FT,p0 .

Finally, by applying Lemma 3.1.2, we obtain
��d(Lµ)m (ṁ)

��  Lµ(m)
1/p C(r, p0) D(m,µ, r)1/p

0
k⌫k

B,p0 .

The last assertion follows from the estimate we just proved for p = 2 and from
Lemma 3.1.1.

3.3 The differential of the dual volume
Let V ⇤

C
: QF(⌃) ! R denote the function that associates, to each quasi-Fuchsian

manifold M homeomorphic to ⌃ ⇥ R, the dual volume of its convex core (see
Section 2.2 for the definition of dual volume). The aim of this section is to
produce a uniform bound of the differential of V ⇤

C
in terms of the Weil-Petersson

norm of the variation of the hyperbolic metric on the boundary of the convex
core.

An immediate consequence of Proposition 3.2.4 and Theorem A is the fol-
lowing:

Proposition 3.3.1. Let (Mt)t be a smooth 1-parameter family of quasi-Fuch-
sian manifolds, with M = M0. Then for every r > 0 and for every p 2 [1,1]

we have
���dV ⇤

C
(Ṁ)

��� 
1

2
Lµ(m)

1/p C(r, p0) D(m,µ, r)1/p
0
k⌫k

B,p0 ,

where C(r, p0) and D(m,µ, r) are the constants defined in the previous section,
p and p0 are conjugated exponents, and ⌫ denotes the harmonic Beltrami differ-
ential representing the variation of the hyperbolic metric of the boundary of the
convex core of M .

Let M be a quasi-Fuchsian manifold, obtained as the quotient of the hyper-
bolic space H3 by the action of a discrete and torsion-free subgroup of isometries.
As described in Section 1.3, the lift of the boundary of the convex core of M
to H

3 is the union of two embedded locally bent pleated planes H±. This prop-
erty turns out to determine uniform upper bounds of the quantities Lµ(m) and
D(m,µ, r) appearing in the statement of Proposition 3.2.4. The first results in
this direction have been developed by Epstein and Marden in [CEM06, Part II].
In our exposition, we will recall and make use of the works of Bridgeman, Brock,
and Bromberg [BBB19] and Bridgeman, Canary, and Yarmola [BCY16], which
will give us separate bounds for Lµ(m) and D(m,µ, r), respectively. We will
also require r to be less than ln(3)/2. This restriction simplifies our argument
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in the proof of Corollary 3.3.4. However, we do not exclude the possibility that
a joint study of the quantity Lµ(m)

1/pD(m,µ, r)1/p
0

and a careful choice of r
might improve the multiplicative constants obtained here.

First we focus on the term D(m,µ, r), which we defined before the statement
of Proposition 3.2.4. Let �̃ denote the geodesic lamination in e⌃ given by the lift
of the support of the measured lamination µ. Let Q be a component of e⌃ \ �̃
and let l1, l2, l3 be three boundary components of Q. We will use the following
fact:

Lemma 3.3.2 ([CEM06, Corollary II.2.4.3]). Let r < ln(3)/2 = arcsinh(1/
p
3),

and suppose we have a point x 2 Q which is at distance  arcsinh(e�r
) from

both l2 and l3. Then its distance from l1 is > r.

Following [BCY16], given µ̃ a measured lamination on H
2, we denote by

kµ̃k
s

the supremum over ↵ of the transverse measure of µ̃ along ↵, where ↵
varies among the geodesic arcs in H

3 of length s > 0 which are transverse to
the support of µ̃.

Theorem 3.3.3 ([BCY16]). Let s 2 (0, 2 arcsinh 1) and let µ̃ be a measured
lamination of H2 so that the pleated plane with bending measure µ̃ is embedded
inside H

3. Then
kµ̃k

s
 2 arccos (� sinh(s/2)) .

Corollary 3.3.4. Let µ 2 ML(⌃) and m 2 T
h
(⌃) be the bending measure

and the hyperbolic metric, respectively, of the boundary of an incompressible
hyperbolic end inside a hyperbolic convex co-compact 3-manifold. Then for every
r < ln(3)/2 we have

D(m,µ, r)  4r arccos (� sinh r) .

Moreover, for every " > 0 there exists m" 2 T
h
(⌃) and µ" 2 ML(⌃) as above

verifying
D(m", µ", r) � 2(⇡ � ")r 8r > 0.

Proof. Let g be a hyperbolic metric in the equivalence class m 2 T
h
(⌃). We

denote by (e⌃, g̃) ! (⌃, g) the Riemannian universal cover of (⌃, g) and by �̃ the
support of the lift µ̃ of the measured lamination µ to e⌃. Given a point x̃ in e⌃
and a positive r < ln(3)/2, we are looking for an upper bound of the length of
µ̃ \Br(x̃), where Br(x̃) denotes the metric ball of radius r at x̃.

The convenience of considering r < ln(3)/2 comes from Lemma 3.3.2: under
this hypothesis, any plaque Q of �̃ at distance less than r from x has at most
two components of its boundary intersecting Br(x). A simple argument proves
that, if this happens, we can find a geodesic path ↵ of length < 2r that intersects
all the leaves of �̃ \ Br(x̃). Each leaf of �̃ \ Br(x̃) has length < 2r, therefore
the length of µ̃ \ Br(x̃) is bounded by 2r (the length of each leaf) times the
total mass µ̃(↵), which can be estimated applying Theorem 3.3.3 with s = 2r <
ln 3 < 2 arcsinh 1. This proves the first part of the statement1.

For what concerns the last part of the assertion, we fix a simple closed curve
� and we assign it the weight ⇡� ". By the work of Bonahon and Otal [BO04],
we can find a quasi-Fuchsian manifold M" realizing (⇡ � ")� as the bending

1See Remark 3.3.8.
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lamination of the upper component of the boundary of the convex core @+CM".
It is immediate to check that, if m" is the hyperbolic metric of @+CM", then
D(m", µ", r) � 2(⇡ � ")r for all r > 0.

For the bound of the term Lµ(m), we will apply the following result:

Theorem 3.3.5 ([BBB19, Theorem 2.16]). Let µ 2 ML(⌃) and m 2 T
h
(⌃)

be the bending measure and the hyperbolic metric, respectively, of the boundary
of an incompressible hyperbolic end inside a hyperbolic convex co-compact 3-
manifold. Then

Lµ(m)  6⇡|�(⌃)|.

Finally, given p 2 (1,1) and r < ln(3)/2, we set

K(r, p) :=
1

2
(24⇡)1/p C(r, p0) (4r arccos(� sinh r))1/p

0

=
1

2
(24⇡)1/p

 
2p0 � 1

⇡

(cosh(r/2))4p
0
�2

(cosh(r/2))4p0�2 � 1
r arccos(� sinh r)

!1/p0

,

where C(r, p0) was defined in equation (3.2), and p0 is the conjugate exponent
of p. We define also

K(r, 1) = 12⇡, K(r,1) =
r arccos(� sinh r)

2⇡ tanh2(r/2)
.

Corollary 3.3.6. In the same notations of Proposition 3.3.1, for every p 2

[1,1] we have ���dV ⇤

C
(Ṁ)

���  K(p)(g � 1)
1/p

k⌫k
B,p0 ,

where K(p) := K(ln(3)/2, p) and ⌫ denotes the harmonic Beltrami differential
representing the variation of the hyperbolic metrics on the boundary of the convex
core @CM of M . We have in particular that K(2) ⇡ 10.3887.

Proof. We combine Proposition 3.3.1, Corollary 3.3.4 and Theorem 3.3.5 on the
upper and lower components of @CM = @CM0, and then we take the limit as
r goes to ln(3)/2.

We can compare this statement with the analogous bound for the differential of
the renormalized volume:

Theorem 3.3.7 ([Sch13]). Let VR : QF(⌃) ! R denote the function associating
to each quasi-Fuchsian manifold M its renormalized volume VR(M). Then for
every p 2 [1,1] we have

dVR (Ṁ)  H(p)(g � 1)
1/p

kċk
B,p0 ,

where ċ denotes the variation of the conformal structures at infinity of M , and
H(p) := 3

2 (8⇡)
1/p.

Remark 3.3.8. From the first part of the proof of Corollary 3.3.4 it is clear that
our estimate of the constant D(m,µ, r) is far from being optimal. However, using
the second part of the assertion, it is easy to see that the possible improvement of
the constant K(2) is not enough to make the multiplicative constant in Theorem
B to be less than 3

p
⇡, which is the one appearing in the analogous statement

for the renormalized volume. Because of this, we preferred to present a simpler
but rougher argument.
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3.4 Dual volume and Weil-Petersson distance
This section is dedicated to the proof of the linear upper bound of the dual
volume of a quasi-Fuchsian manifold M in terms of the Weil-Petersson distance
between the hyperbolic structures on the boundary of its convex core CM .
As we mentioned in Section 1.3, the data of the hyperbolic metrics of @CM
is only conjectured to give a parametrization of the space of quasi-Fuchsian
manifolds, contrary to what happens with the conformal structures at infinity.
In particular, the same strategy used in [Sch13] to bound the renormalized
volume cannot be immediately applied.

In order to overcome this problem, we will take advantage of the foliation
by k-surfaces of M \ CM , described in Section 1.6.3 (see also Remark 3.4.9).
The space of hyperbolic structures with strictly convex boundary on ⌃⇥ [0, 1] is
parametrized by the data of the metrics on its boundary, as proved in [Sch06].
In particular, the Teichmüller classes of the metrics of the upper and lower k-
surfaces parametrize the space of quasi-Fuchsian structures of topological type
⌃⇥R (see Theorem 3.4.1). Moreover, the first order variation of the dual volume
of the region Mk encosed between the two k-surfaces is intimately related to the
notion of landslide, which was first introduced and studied in [BMS13], [BMS15].
This connection will be very useful to relate the first order variation of V ⇤

C
(M)

and of V ⇤

k
(M) := Vol

⇤
(Mk), as k goes to �1, allowing us to prove Theorem

B using an approximation argument, together with the bounds obtained in the
previous Section.

3.4.1 Constant Gaussian curvature surfaces
In every quasi-Fuchsian manifold M , the subset M \ CM has exactly two con-
nected components E+ and E�, each of which is homeomorphic to ⌃⇥ (0,1)

(these are the hyperbolic ends of M , as in Definition 1.6.1). By Theorem 1.6.4,
the sets E± are foliated by k-surfaces (⌃±

k
)k, with k that varies in (�1, 0). The

surfaces ⌃±

k
approach the pleated boundaries @±CM of the convex core of M

as k goes to �1, and the conformal boundaries at infinity @±
1
M as k goes to 0.

We denote by m±

k
(M) 2 T

h
(⌃) the isotopy classes of the hyperbolic metrics

(�k) I±
k

, where I±
k

is the first fundamental form of the upper/lower k-surface
⌃

±

k
of M . Then for every k 2 (�1, 0) we have maps

Tk : QF(⌃) �! T
h
(⌃)⇥ T

h
(⌃)

M 7�! (m+
k
(M),m�

k
(M)).

The family of functions (Tk)k is clearly related to the maps T and B that we
introduced in Section 1.3. As k goes to �1, Tk(M) converges to T (M), and
as k goes to 0, Tk(M) converges to B(M). The convenience in considering
the foliation by k-surfaces relies in the following result, based on the works of
Labourie [Lab92a] and Schlenker [Sch06]:

Theorem 3.4.1. The map Tk is a C
1-diffeomorphism for every k 2 (�1, 0).

Proof. Let (N, @N) be a compact connected 3-manifold admitting a hyperbolic
structure with convex boundary. Schlenker [Sch06] proved that any Rieman-
nian metric with Gaussian curvature > �1 on @N is uniquely realized as the
restriction to the boundary of a hyperbolic metric on N with smooth strictly
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convex boundary. In other words, if G and H denote the spaces of isotopy
classes of metrics on N with strictly convex boundary and of metrics on @N
with Gaussian curvature > �1, respectively, then the restriction map

r : G �! H

[g] 7�! [g|@N ]

is a homeomorphism. The surjectivity had already been showed by Labourie
in [Lab92a], therefore the proof proceeds by showing the local injectivity of r.
To do so, the strategy in [Sch06] is to apply the Nash-Moser implicit function
theorem.

Let us fix now a k 2 (�1, 0), and consider N = ⌃⇥ I. If Gk is the space of
hyperbolic structures on N with boundary having constant Gaussian curvature
equal to k, then Gk identifies with the space of quasi-Fuchsian manifolds QF(⌃),
thanks to Theorem 1.6.4 and the fact that any hyperbolic structure with con-
vex boundary on N uniquely extends to a quasi-Fuchsian structure (see e. g.
[CEM06, Theorem I.2.4.1]). In addition, the space Hk of constant k Gaussian
curvature structures on @N clearly identifies with the product of two copies of
the Teichmüller space Th(⌃), one for each component of @N . Therefore the
function r restricts to rk : Gk ! Hk, which can be identified with Tk thanks to
what we just observed. The map rk is now a function between finite dimen-
sional differential manifolds. The fact that r verifies the hypotheses to apply
the Nash-Moser inverse function theorem implies in particular that rk verifies
the hypotheses to apply the ordinary inverse function theorem between finite
dimensional manifolds. In particular, this shows that rk is a C

1-diffeomorphism,
for any k 2 (�1, 0), as desired.

3.4.2 The proof of Theorem B

In the following we outline the proof of Theorem B. Let V ⇤

k
(M) denote the dual

volume of the convex subset enclosed by the two k-surfaces in the quasi-Fuchsian
manifold M . With abuse, we will continue to denote by V ⇤

k
the composition

V ⇤

k
� T�1

k
: T

h
(⌃)

2
! R. An immediate corollary of Theorem 3.4.1 is that the

function V ⇤

k
is C

1 for every k 2 (�1, 0).

Fix now a quasi-Fuchsian manifold M , with hyperbolic structures m±

k
=

m±

k
(M) on its k-surfaces. Since the Teichmuller space endowed with the Weil-

Petersson metric is a unique geodesic space [Wol87], there exists a unique Weil-
Petersson geodesic �k : [0, 1] ! T

h
(⌃) verifying �k(0) = m�

k
and �k(1) = m+

k
.

We set �k to be the path in T
h
(⌃)

2 given by �k(t) = (�k(t),m
�

k
). By construc-

tion T�1
k

(�k(0)) is a Fuchsian manifold for every k 2 (�1, 0) and T�1
k

(�k(1)) =
M . We decompose the differential of the function V ⇤

k
as follows

dV ⇤

k
= dV ⇤,+

k
+ dV ⇤,�

k
2 T ⇤

T
h
(⌃)� T ⇤

T
h
(⌃).
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Now we observe that

|V ⇤

k
(�k(1))� V ⇤

k
(�k(0))| =

����
Z 1

0

d

dt
V ⇤

k
(�k(t)) dt

����



Z 1

0
kdV ⇤,+

k
k
�k(t)

k�0

k
(t)k dt

 max
t2[0,1]

kdV ⇤,+
k

k
�k(t)

`WP(�k)

= max
t2[0,1]

kdV ⇤,+
k

k
�k(t)

dWP(m
+
k
,m�

k
),

where k·k
x

denotes the Weil-Petersson norm on T ⇤

x
T

h
(⌃). The step from the

first to the second line follows from the fact that the second component of the
curve �k does not depend on t, and in the last step we used that �WP is a
Weil-Petersson geodesic. Since the dual volume of the convex core of a Fuchsian
manifold vanishes, we have that

lim
k!�1

V ⇤

k
(�k(1))� V ⇤

k
(�k(0)) = V ⇤

C
(M).

By Theorem 1.6.4 we have

lim
k!�1

dWP(m
+
k
,m�

k
) = dWP(m

+,m�
)

where m+, m� are the hyperbolic metrics of the upper and lower components of
@CM , respectively. Therefore, taking the limit as k goes to �1 of the inequality
above we obtain

|V ⇤

C
(M)|  lim inf

k!�1
max
t2[0,1]

kdV ⇤,+
k

k
�k(t)

dWP(m
+,m�

). (3.6)

If ⇡+
: T

h
(⌃)

2
! T

h
(⌃) denotes the projection onto the first component

(the one concerning the upper k-surface ⌃+
k
), then the function dV ⇤,+

k
� Tk is a

section of the bundle (⇡+
� Tk)

⇤
(T ⇤

T
h
(⌃)). In order to simplify the notation,

we will set dLµ+ to be the map

QF(⌃) 3 M 7�! d(Lµ+(M))⇡+�T (M)
2 T ⇤

T
h
(⌃).

Assuming that the sections (dV ⇤,+
k

� Tk)k converge to dLµ+ uniformly over
compact sets of QF(⌃) as k goes to �1, then Theorem B easily follows:

Proof of Theorem B. The paths T�1
k

(�k) considered above lie inside a common
compact subset of QF(⌃). Following the proof of Corollary 3.3.6, we observe
that kdLµ+k is bounded by K(2)/

p
2 (the factor 1/

p
2 appears because we

consider only the upper component of the bending measure). Therefore, by
uniform convergence we have

lim inf
k!�1

max
t2[0,1]

kdV ⇤,+
k

k
�k(t)

 K(2)/
p

2 ⇡ 7.3459,

which, combined with the inequality (3.6), implies the statement.

Therefore, the last ingredient left to prove is the following:
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Proposition 3.4.2. The sections (dV ⇤,+
k

� Tk)k converge uniformly to dLµ+

over compact sets of QF(⌃) as k goes to �1

We will deduce this fact from the dual differential Schläfli formula, stated in
Proposition 2.2.5, and from the connection between the first order variation of
the volumes V ⇤

k
and the notion of landslides introduced in [BMS13], [BMS15].

3.4.3 Earthquakes and landslides
We briefly recall the definition of landslide flow, introduced in Bonsante, Mon-
dello, and Schlenker [BMS13], and the properties that we will need for the proof
of Proposition 3.4.2. Landslides are described by a map

L : S1
⇥ T

h
(⌃)

2
�! T

h
(⌃)

2

(ei✓,m,m0
) 7�! Lei✓ (m,m0

).

The first component of Lei✓ (m,m0
), which we will denote by L

1
ei✓

(m,m0
), is

called the landslide of m with respect to m0 with parameter ei✓. The map L

is defined through the existence and uniqueness of minimal Lagrangian maps,
as described in Theorems 1.2.18 and 1.2.19. We refer to Section 1.2.4 for the
relative terminology. In the following, we will identify, with abuse, a pair of
isotopy classes m, m0

2 T
h
(⌃) with a pair of hyperbolic metrics h, h0 satisfying

the conclusions of Theorem 1.2.18. Given ✓ 2 R/2⇡Z and two metrics h, h0 with
Labourie operator b, we denote by b✓ the endomorphism cos(✓/2)1+sin(✓/2)Jb,
where J is the almost complex structure of h, and we set h✓ := h(b✓·, b✓·). Then
the function L is defined as follows:

Lei✓ (h, h
0
) := (h✓, h⇡+✓).

It turns out that, for any ✓, the metric h✓ is hyperbolic, and L actually defines
a flow, in the sense that it satisfies Lei✓ � L

ei✓
0 = L

ei(✓+✓0) for all ✓, ✓0.
Bonsante, Mondello, and Schlenker [BMS13] proved that, as earthquakes

extend to complex earthquakes (see [McM98]), a similar phenomenon happens
for landslides. More precisely, fixed h, h0

2 T
h
(⌃), the map L

1
•
(h, h0

) extends to
a holomorphic function C•(h, h0

) defined on a open neighborhood of the closure
of the unit disc � in C. If ⇣ = exp(s+ i✓) 2 �, then C⇣ can be written as

C⇣(h, h
0
) = sgr

s
�Lei✓ (h, h

0
),

where sgr
s
: T

h
(⌃)

2
! T

c
(⌃) is called the smooth grafting map, first introduced

and described in [BMS13]. If s = 0, then sgr0 �Lei✓ = L
1
ei✓

. We mentioned the
existence of this complex extension for completeness, but we will not need to
describe the smooth grafting map for the rest of our exposition, the interested
reader can find its definition and properties in [BMS13, Section 5].

Fixed h0, we set l1(h, h0
) to be the infinitesimal generator of the landslide

flow with respect to the hyperbolic metric h0 at the point h 2 T
h
(⌃). In other

words,

l1(h, h0
) :=

d

d✓
L

1
ei✓

(h, h0
)
��
✓=0

2 ThT
h
(⌃).

Landslides extend the notion of earthquake in the sense explained by the fol-
lowing Theorem:
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Theorem 3.4.3 ([BMS13, Proposition 6.8]). Let (hn)n and (h0

n
)n be two se-

quences of hyperbolic metrics on ⌃ such that (hn)n converges to h 2 T
h
(⌃), and

(h0

n
)n converges to a projective class of measured lamination [µ] in the Thurston

boundary of Teichmüller space. If (✓n)n is a sequence of positive numbers such
that ✓n`h0

n
converges to ◆(µ, ·), then L

1
ei✓n

(hn, h0

n
) converges to the left earth-

quake Eµ/2(h), and ✓n · l1(hn, h0

n
)|
hn

converges to 1
2eµ|h =

d
dtEtµ/2(h).

Remark 3.4.4. The last part of the assertion follows from the fact that the
functions ei✓ 7! L

1
ei✓

(h, h0
) extend to holomorphic functions ⇣ 7! C⇣(h, h0

),
where ⇣ varies in a neighborhood of �. In particular, the uniform convergence
of the complex landslides C•(hn, h0

n
) to the complex earthquake map implies

uniform convergence in the C
1-topology with respect to the complex parameter

⇣.
In order to prove the relation between the differential of V ⇤

k
and the landslide

flow, it will be useful to have an explicit expression to compute the variation
of the hyperbolic length of a simple closed curve ↵ of ⌃ along the infinitesimal
landslide l1(h, h0

).

Lemma 3.4.5. Let ↵ be a simple closed curve in ⌃. Then we have

d

d✓
L↵(L

1
ei✓

(h, h0
))
��
✓=0

= �

Z

↵

h(b↵0, J↵0
)

2k↵0k
2
h

d`h ,

where J is the complex structure of h and b is the Labourie operator of the pair
h, h0.

Proof. With abuse, we denote the h-geodesic realization of ↵ by ↵ itself. By
definition of landslide we have

d

d✓
L

1
ei✓

(h, h0
)(↵0,↵0

)
��
t=0

= ḣ(↵0,↵0
) = h(↵0, Jb↵0

).

Since J is h-skew-symmetric, we deduce that ḣ(↵0,↵0
) = �h(b↵0, J↵0

). Com-
bining this relation with Proposition 3.2.1 we obtain the statement.

We recall, from Section 1.5, that both the first and third fundamental forms
of a k-surface immersed in a hyperbolic 3-manifold are Riemannian metrics with
constant Gaussian curvature (the curvature of the first fundamental form is k,
while the curvature of the third is k

k+1 ). In what follows, we will denote by

h±

k
:= �k I±

k
, h0

k

±
:= �

k

k + 1
III±

k

the hyperbolic metrics associated to first and third fundamental forms of the k-
surfaces ⌃±

k
sitting inside a quasi-Fuchsian manifold M .

The relation between landslides and the dual volume of the region enclosed
by the two k-surfaces is described by the following statement:

Proposition 3.4.6. For every k 2 (�1, 0) and for every quasi-Fuchsian mani-
fold M we have

dV ⇤

k
� Tk(M) =

r
�
k + 1

k
!̂WP(l

1
(h+

k
, h0

k

+
)� l1(h�

k
, h0

k

�
), ·) 2 T ⇤

Tk(M)T
h
(⌃)

2,

where !̂WP = !WP � !WP is the direct sum of the Weil-Petersson symplectic
structures on T

h
(⌃)

2.
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Proof. In order to simplify the notation, we will denote by hk the hyperbolic
metric h+

k
t h�

k
on ⌃k := ⌃

+
k
t ⌃

�

k
, and similarly for h0

k
.

Given a simple closed curve ↵ in ⌃k, let e↵ be the infinitesimal generator
of the left earthquake flow along ↵ on T

h
(⌃k) = T

h
(⌃)

2. We will prove the
statement by showing that, for every simple closed curve ↵, we have:

d(V ⇤

k
)
Tk(M) (e↵) =

r
�
k + 1

k
!̂WP(l

1
(hk, h

0

k
), e↵). (3.7)

Since the constant k will be fixed, from now on we will not write the dependence
on k in the objects involved in the argument. By Theorem 3.4.1, for every first
order variation of metrics �I on ⌃+

t⌃
�, we can find a variation �g of hyperbolic

metrics on M satisfying �g|⌃ = �I. Our first step will be to construct an explicit
variation �I corresponding to the vector field e↵, and then to apply Proposition
3.4.2 to compute dV ⇤

k
(e↵).

We will identify the curve ↵ with its I-geodesic parametrization of length
L↵ and at speed 1. Let J denote the almost complex structure of I, and set V
to be the vector field along ↵ given by �J↵0. We can find a " > 0 so that the
map

⇠ : R/L↵Z⇥ [0, "] �! ⌃

(s, r) 7�! exp
↵(s)(rV (s))

is a diffeomorphism onto its image (here exp is the exponential map with respect
to I). The image of ⇠ is a closed cylinder in ⌃ having ↵ as left boundary
component. Observe that the metric I equals dr2+cosh

2 r ds2 in the coordinates
defined by ⇠�1. We also choose a smooth function ⌘ : [0, "] ! [0, 1] that coincides
with 1 in a neighborhood of 0, and with 0 in a neighborhood of ". Now define

ft : R/L↵Z⇥ [0, "] �! R/L↵Z⇥ [0, "]
(s, r) 7�! (s+ t⌘(r), r).

The maps ut := ⇠ � ft � ⇠�1 give a smooth isotopy of the strip Im ⇠ adjacent to
↵, with u0 = id. Finally we set

�I :=

(
d
dtu

⇤

t
I
��
t=0

= 2⌘0(r) cosh2 r dr ds inside Im ⇠,

0 elsewhere,

where here 2 ds dr = ds⌦ dr+dr⌦ ds. Thanks to our choice of the function ⌘,
�I is a smooth symmetric tensor of ⌃k that represents the first order variation
of I along the infinitesimal left earthquake e↵. By Proposition 3.4.2, we have
that

dV ⇤

k
(�g) =

1

4

Z

⌃k

(�g|⌃k , HI � II) da = �
1

4

Z
L↵

0

Z
"

0
(�I, II) cosh r dr ds ,

where the last step follows from the fact that �I is I-traceless. Let r denote the
Levi-Civita connection of I. Then the coordinate vector fields of ⇠�1 satisfy:

r@r@r = 0, r@s@r = r@r@s = tanh r @s, r@s@s = � sinh r cosh r @r.
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By definition, (�I, II) = 2 Irr Iss �Irs IIrs = 2⌘0 IIrs. If we set f(r) :=
R
L↵

0 IIrs ds,
then, integrating by parts and recalling that ⌘(") = 0, we get

dV ⇤

k
(�g) = �

1

2

Z
"

0
⌘0(r)f(r) cosh r dr

=
1

2
f(0) +

1

2

Z
"

0
⌘(r)(f 0

(r) cosh r + f(r) sinh r) dr (?)

Being the shape operator a Codazzi tensor, we have (r@rII)rs = (r@sII)rr. Us-
ing the expressions of the connection given above, this relation can be rephrased
as @rIIrs = @sIIrr � tanh r IIsr. Hence we deduce

f 0
(r) =

Z
L↵

0
(@sIIrr � tanh r IIsr) ds = � tanh r f(r),

where the first summand vanishes because ↵ is a closed curve. Therefore the
integral in the relation (?) equals 0, and we end up with the equation

dV ⇤

k
(�g) =

1

2

Z
L↵

0
IIrs ds = �

1

2

Z
L↵

0
I(B↵0, J↵0

) ds (3.8)

since @r|r=0 = V = �J↵0 and @s|r=0 = ↵0.
Now we apply Lemma 3.4.5 to ↵, the hyperbolic metrics h = �k I, h0

=

�
k

k+1 III and the operator b =
1

p
k+1

B (here B is the shape operator of ⌃k),
obtaining

d(L↵)h (l
1
(h, h0

)) = �
1

2

r
�

k

k + 1

Z
L↵

0
I(B↵0, J↵0

) ds .

This relation, combined with (3.8), proves that

dV ⇤

k
(�g) =

r
�
k + 1

k
d(L↵)h (l

1
(h, h0

))

By the work of Wolpert [Wol83], we have dL↵ = !̂WP(·, e↵), which proves
relation (3.7), and therefore the statement.

Since the complex landislide is holomorphic with respect to the complex struc-
ture of T h

(⌃)
2, an equivalent way to state Proposition 3.4.6 is the following:

Proposition 3.4.7. Let M be a quasi-Fuchsian manifold and let hk, h0

k
denote

the hyperbolic metrics �k Ik and �k(k + 1)
�1 IIIk on ⌃

+
k
t ⌃

�

k
. Then the

Weil-Petersson gradient of V ⇤

k
coincides, up to a multiplicative factor, with the

infinitesimal grafting with respect to the couple (hk, h0

k
). In other words,

gradWP V ⇤

k
=

r
�
k + 1

k

d

ds
sgr

s
(hk, h

0

k
)|
s=0 .

The behavior of the third fundamental forms IIIk of the k-surfaces, as k
approaches �1, is well understood and described by the following Theorem:

Theorem 3.4.8. Let (En)n be a sequence of hyperbolic ends converging to a
hyperbolic end E homeomorphic to ⌃ ⇥ R�0, and let (kn)n be any decreasing
sequence of numbers converging to �1. Then `IIIn converges to ◆(µ, ·), where
IIIn denotes the third fundamental form of the kn-surface of En, and µ is the
bending measured lamination of the concave boundary of E.
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Remark 3.4.9. Theorem 3.4.8 is in fact a restatement of [Bel17, Theorem 2.10].
In [Bel17] the author works with maximal global hyperbolic spatially compact
(MGHC) de Sitter spacetimes, which connect to the world of hyperbolic ends
through the duality between the de Sitter and the hyperbolic space-forms de-
scribed in Section 1.4 (see also Theorem 5.1.4 and its proof). In particular, this
phenomenon allowed Barbot, Béguin, and Zeghib [BBZ11] to give an alternative
proof of the existence of the foliation by k-surfaces.

Finally, we have all the elements to give a proof of Proposition 3.4.2:

Proof of Proposition 3.4.2. Let (Mn)n be a sequence of quasi-Fuchsian mani-
folds converging to M , and let (kn)n be a decreasing sequence converging to
�1. We denote my mn and m0

n
the isotopy classes of the hyperbolic metrics

hn := �knIkn , h0

n
:= �

kn
1 + kn

IIIkn ,

where Ikn and IIIkn are the first and second fundamental forms of the kn-surface
⌃

+
kn

t⌃
�

kn
sitting inside Mn. The kn-surface is at distance < arctanh(

p
kn + 1)

from the convex core of Mn (apply the same argument of [BMS13, Lemma 6.14]
in the hyperbolic setting), therefore the metrics mn converge to the metric m
on the boundary of the convex core of M . If we take

✓n :=

r
�
1 + kn
kn

,

then, by Theorem 3.4.8, the length spectrum of ✓n`m0
n

converges to the bending
measure µ of the boundary of the convex core of M . Therefore, applying Theo-
rem 3.4.3 we obtain that l1(mn,m0

n
)|Tkn (Mn) converges to 1/2 eµ|m. Combining

this with Proposition 3.4.6, we prove that

lim
n!1

dV ⇤

kn
� Tkn(Mn) =

1

2
!̂WP(eµ, ·) = �

1

2
d(Lµ)m (·),

where the last step follows from [Wol83]. This concludes the proof.
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Chapter 4

The infimum of the dual
volume

Outline of the chapter
The aim of this chapter is to study the infimum of the dual volume of the
convex core as we vary the convex co-compact hyperbolic structure on a fixed
underlying topological 3-manifold with incompressible boundary. In particular,
we will see that:

Theorem C. For every convex co-compact hyperbolic 3-manifold M with in-
compressible boundary we have

inf
QD(M)

V ⇤

C
= inf

QD(M)
VC .

Moreover, V ⇤

C
(M) = VC(M) if and only if the boundary of the convex core of

M is totally geodesic.

This statement is the analogue for the dual volume of a result due to Bridge-
man, Brock, and Bromberg [BBB19], where the authors studied the infimum of
the renormalized volume function. More precisely, they showed:

Theorem ([BBB19, Theorem 3.10]). For every convex co-compact hyperbolic
3-manifold M with incompressible boundary we have

inf
QD(M)

VR = inf
QD(M)

VC .

Moreover, VR(M) = VC(M) if and only if the boundary of the convex core of
M is totally geodesic.

Dual volume, renormalized volume and Riemannian volume of the convex
core are related by the following chain of inequality:

V ⇤

C
(M) := VC(M)�

1

2
`m(µ)  VR(M)  VC(M)�

1

4
`m(µ).

Here the upper bound is originally due to Schlenker [Sch02], and the lower
bound is proved again in [BBB19, Theorem 3.7]. In particular, Theorem C can
be considered as a strengthening of [BBB19, Theorem 3.10].

79
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The proof we will present is analogous to the one developed in [BBB19] but,
as happened already in the previous Chapter, we will need to pass through an
approximation procedure, using the properties of constant Gaussian curvature
surfaces. The necessity of this process is due to the fact that, in contrast to the
conformal structures at infinity, the hyperbolic metrics on the boundary of the
convex core are not known to parametrize the space of quasi-isometric convex
co-compact structures of M .

To be more precise, we need to introduce some notation. Let Mk denote the
compact region of M enclosed by the k-surface on M , which has one connected
component in each end on M . We define the map

Tk : QD(M) �! T
h
(@M)

M 0
7�! mk(M 0

),

which associates, to each convex co-compact structure M 0, the isotopy class
mk(M 0

) of the hyperbolic metric hk = (�k)Ik on the k-surface @Mk of M . By
the works of Labourie [Lab92a] and Schlenker [Sch06], if M has incompressible
boundary the function Tk is a diffeomorphism for every k 2 (�1, 0) (the same
argument presented in Theorem 3.4.1 applies to this more general setting). For
every hyperbolic structure m 2 T

h
(@M), we define V ⇤

k
(m) to be the dual volume

of the region M 0

k
of M 0

= T�1
k

(m) enclosed by its k-surface.
We briefly summarize the strategy of the proof. Given any k 2 (�1, 0), we

will estimate the infimum of V ⇤

k
by moving along the flow of its Weil-Petersson

gradient gradWP V ⇤

k
. In order to prove the existence of such flow for every

time, we will show that the L1-norm of gradWP V ⇤

k
is uniformly bounded over

T
h
(@M). The technical estimates for this purpose will be developed in Section

4.1. From the uniform control of kgradWP V ⇤

k
k
1

, the existence of the flow will
easily follow (see Corollary 4.2.6).

The second key ingredient will be a bound from below of the Weil-Petersson
norm of gradWP V ⇤

k
in terms of the integral of the mean curvature of @Mk. This

will be achieved in Section 4.2, and in particular in Lemma 4.2.4. Through
these observations, in the last section we will follow the same formal procedure
of [BBB19, Theorem 3.10] to determine a bound from below of the functions V ⇤

k
.

Then the final statement of Theorem C will be achieved by taking a limit for k
that goes to �1, concluding the approximation procedure of the dual volume of
the convex core V ⇤

C
through the functions V ⇤

k
.

4.1 Some useful estimates
In this section we develop estimates for the solution uk : @Mk ! R of a certain
elliptic PDE (see relation (4.1)) over the k-surface @Mk of a convex co-com-
pact hyperbolic 3-manifold M with incompressible boundary. The function uk

will be involved in the description of the Weil-Petersson gradient gradWP V ⇤

k
of

Proposition 4.2.2.
As already observed by Bonsante et al. [Bon+19], the incompressibility of

the boundary @Mk determines (non-explicit) bounds on the mean curvature
function Hk depending only on the curvature k 2 (�1, 0) and, in particular, not
on the geometry of M . Being the function uk determined by a simple equation
involving Hk, these controls will imply uniform bounds on the C

2-norms of uk.
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First we introduce some notation. If (N, g) is a Riemannian manifold, we
denote by Hn

(N, dag) the Sobolev space of real-valued functions f on M with
L2

(N, dag)-integrable weak derivatives (
g
r)

if for all i  n, where g
r and dag

are the Levi-Civita connection and the volume form of (N, g), respectively. The
space Hn

(N, dag) is a Hilbert space if endowed with the scalar product

(f, f 0
) :=

nX

i=0

Z

N

((
g
r)

if, (gr)
if 0

)
g
dag , f, f 0

2 Hn
(N, dag).

Finally, given f : N ! R a C
n-function, we define its C

n
(N, g)-norm as

kfkCn(N,g) :=

nX

i=0

sup
p2N

��� (gr)
if
��
p

���
g

.

In the following, we will denote by k
r and�k the Levi-Civita connection and

the Laplace-Beltrami operator�ku = trhk(
k
r

2u) with respect to the hyperbolic
metric hk := (�k)Ik on the k-surface @Mk. We define the following linear
differential operator:

Lku := (�k � 21)u = �ku� 2u.

Let A be the symmetric bilinear form over the Hilbert space H1
(@Mk, dak)

given by

A(u, u) :=

Z

⌃
(kduk2

k
+ 2u2

) dak ,

where k·k
k

and dak denote the norm and the area form of hk, respectively. A
simple application of the Lax-Milgram’s theorem (see e. g. [Bre11, Corollary
5.8]) applied to the Sobolev space H1

(@Mk, dak) and to the coercive symmetric
bilinear form A shows that, for every f 2 L2

(@Mk, dak), there exists a unique
weak solution u 2 H1

(@Mk, dak) of the equation Lku = f . We will denote by
uk the solution of the equation

Lkuk = �k�1Hk , �Ikuk + 2kuk = Hk, (4.1)

where Hk denotes the mean curvature function tr
�
I�1
k

IIk
�

of the k-surface @Mk.
We will always consider the second fundamental form defined by the normal
vector field on @Mk pointing towards Mk, so that IIk is positive definite, and
Hk is a positive function.

By the classical regularity theory for linear elliptic PDE’s (see e. g. [Eva98,
Section 6.3]), the smoothness of the mean curvature Hk and the compactness of
@Mk imply that the function uk is smooth and it is a strong solution of equation
(4.1).

It has been shown by Rosenberg and Spruck [RS94, Theorem 4] that, for
every Jordan curve c in @1H

3, there exist exactly two k-surfaces e⌃±

k
(c) asymp-

totic to c. A fundamental property of k-surfaces, which will crucial in Lemma
4.1.3, is the following:

Proposition 4.1.1 ([Bon+19, Proposition 3.8]). Let k 2 (�1, 0) and n 2 N.
Then there exists a constant Nk,n > 0 such that, for every Jordan curve c

in @1H
3, the mean curvature Hc,k of the k-surface e⌃k(c) = e⌃+

k
(c) t e⌃�

k
(c)

asymptotic to c satisfies

kHc,kkCn(e⌃k(c))
 Nn,k.
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Proof. For completeness, we briefly recall here the proof of this statement. k-
surfaces satisfy the following compactness criterion:

Proposition 4.1.2 ([Bon+19, Proposition 3.6]). Let k 2 (�1, 0), and consider
fn : H2

k
! H

3 a sequence of proper isometric embeddings of the hyperbolic plane
H

2
k

with constant Gaussian curvature k. If there exists a point p 2 H
2 such that

(fn(p))n is precompact, then there exists a subsequence of (fn)n that converges
C

1-uniformly on compact sets to an isometric immersion f : H2
k
! H

3.

Fixed k 2 (�1, 0) and n 2 N, assume by contradiction that there exists a
sequence of Jordan curves (cm)m such that the mean curvatures Hm = Hcm,k of
the k-surface e⌃k(cm) satisfy kHmkCn(e⌃k(cm)) > m. Up to extract a subsequence,
there exists an i  n such that for every m 2 N

sup

e⌃k(cm)

��(kr)
iHm

�� >
m

n+ 1
= Cn m.

Now choose qm 2 e⌃k(cm) for which the norm of (
k
r)

iHm at qm is � Cn m.
Since each component of e⌃k(cm) is embedded and isometric to the hyperbolic
plane H

2
k

(which is homogeneous), we can find a sequence of proper isometric
embeddings fm : H

2
k
! H

3, parametrizing a component of e⌃k(cm), such that
fm(p̄) = qm for some fixed basepoint p̄ 2 H

2
k
. Up to post-composing fm by an

isometry of H3, we can assume that fm(p̄) = q̄ is fixed. In this way, we have
found a sequence of proper isometric embeddings fm : H

2
k
! H

3 satisfying

• fm(p̄) = q̄ 2 H
3 is independent of m 2 N;

• the mean curvature of the surfaces fm(H
2
k
) at q̄ has some i-th order deriva-

tive that is unbounded as m goes to 1.

This clearly contradicts the compactness criterion mentioned above.

From this result we can now obtain a uniform control on uk:

Lemma 4.1.3. Let M be a convex co-compact hyperbolic 3-manifold with in-
compressible boundary. Then, the function uk : @Mk ! R, solution of (4.1),
satisfies

max@Mk Hk

2k
 uk 

min@Mk Hk

2k
=

p
k + 1

k
< 0.

Moreover, if M has incompressible boundary, then there exists a constant Ck > 0

depending only on the intrinsic curvature k 2 (�1, 0), and in particular not on
the hyperbolic structure of M , such that

max
@Mk

��kr2uk

��
k
 Ck.

Proof. The first assertion is an immediate consequence of the maximum princi-
ple applied to uk as a solution of the PDE (4.1). Moreover, since the product
of the principal curvatures (i. e. the eigenvalues of the shape operator) of a k-
surface is everywhere equal to k+1, the trace of the shape operator is bounded
from below by 2

p
k + 1 (see also Remark 4.1.5 below).

The proof of the second part of the assertion requires more care. Let ⌃k

be a connected component of the k-surface @Mk, and let fM ⇠= H
3 denote the
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universal cover of M . Since M is a convex co-compact hyperbolic 3-manifold
with incompressible boundary, every component e⌃k of the preimage of ⌃k in fM
is stabilized by a subgroup � ⇠= ⇡1(⌃k) of the fundamental group of M , acting
by isometries on fM . Each of these subgroups � is quasi-Fuchsian (see e. g.
[Kap09, Corollary 4.112 and Theorem 8.17] for a proof of this assertion), and the
surface e⌃k is a k-surface asymptotic to some Jordan curve in @1fM ⇠= @1H

3. In
particular, by Proposition 4.1.1, we can find a universal constant Nk = N2,k > 0

that satisfies
kH̃kk C 2(e⌃k)

 Nk. (4.2)

Here we stress that the constant Nk does not depend on the hyperbolic structure
of M , or ⌃k, but only on the value of k 2 (�1, 0).

Our goal is now to make use of this control to obtain a uniform bound of the
norm of the Hessian of uk. For this purpose, we will need the following classical
result of regularity for linear elliptic differential equations:

Theorem 4.1.4 ([Eva98, Theorem 2, page 314]). Let m,n 2 N and U ⇢ R
n a

bounded open set. We consider a differential operator L of the form:

Lf = �

nX

i,j=1

aij(x) @2
xi,xj

f +

nX

i=0

bi(x) @xif + c(x)f,

where aij = aji, bi, c 2 C
m+1

(U,R). Assume that L is uniformly elliptic, i. e.
there exists a constant " > 0 such that

P
i,j

aij(x)vivj � "kvk2 for all v 2 R
n.

If f 2 H1
(U) is a weak solution of the equation Lf = �, for some � 2 Hm

(U),
then for every bounded open set V with closure contained in U , there exists a
constant C, depending only on m, U , V and the functions aij , bi, c, such that

kfk
Hm+2(V )  C(k�k

Hm(U) + kfk
L2(U)).

The surface e⌃k endowed with the lift of the hyperbolic metric hk of ⌃k is
isometric to the hyperbolic plane H

2. In the following, we will identify e⌃k with
the Poincaré disk model H2 := (B1, gP ), where B1 is the Euclidean ball of radius
1 and center 0 in C, and

gP =

 
2

1� |z|2

!2

|dz|2.

Now we choose U and V to be the gP -geodesic balls of center 0 2 B1 and
hyperbolic radius equal to 2 and 1, respectively. The lift of the operator �Lk

over U is clearly uniformly elliptic, because of the compactness of U and because
of the following expression in coordinates:

�Lkf = �gij
P
(@2

ij
f � �

h

ij
(gP ) @hf) + 2f,

where �h
ij
(gP ) denote the Christoffel symbols of gP . Again by the compactness

of U and V , the norms of the Sobolev spaces k·k
Hj(U) and k·k

Hj(V ), computed
with respect to the flat connection of B1 ⇢ R

2 and the Euclidean volume form,
are equivalent to the norms of the corresponding Sobolev spaces defined using
the Levi-Civita connection of gP and the gP -volume form. Moreover, the bi-
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Lipschitz constants involved in the equivalence only depend on a bound of the
C

j+1-norm of gP over U , therefore they can be chosen to depend only on j 2 N.
From now on, we will always consider the norms on the spaces Hj

(U) and
Hj

(V ) to be defined using the metric gP and its connection.
Now we apply Theorem 4.1.4 to m = n = 2, the operator �Lk and the

functions f = ũk, � = �k�1H̃k, where F̃ denotes the lift of the function F over
e⌃k. Therefore we can find a universal constant C > 0 (depending only on the
open sets U , V , that we chose once for all, and on the metric gP |U ) such that:

kũkkH4(V )  C(�k�1
kH̃kkH2(U) + kũkkL2(U)).

By the first part of the Lemma 4.1.3, kũkkC 0(U)  �(2k)�1
kH̃kk C 0(H2). In

addition, we have:

kũkkL2(U)  Area(U, gP )
1/2

kũkkC 0(U)  �(2k)�1
Area(U, gP )

1/2
kH̃kk C 0(H2),

and
kH̃kkH2(U)  Area(U, gP )

1/2
kH̃kk C 2(H2).

In conclusion, we deduce that

kũkkH4(V )  �2k�1C Area(U, gP )
1/2

kH̃kk C 2(H2).

By the Sobolev embedding theorem (see e. g. [Bre11, Corollary 9.13, page
283]), given W an open set satisfying 0 2 W ⇢ W ⇢ V , the C

2
(W )-norm of ũk

(again, computed with respect to the Levi-Civita connection of gP ) is controlled
by a multiple of its H4-norm over V , and the multiplicative factor depends only
on W and V . Therefore, if we choose for instance W = BH2(0, 1/2) we get:

k
k
rũkk C 0(W )  C 0

(k) kH̃kk C 2(H2).

Now the desired statement easily follows. From relation (4.2) and the last
inequality, we obtain a uniform bound of the Hessian of ũk over W 3 0. Let
now q be any other point of H2, and choose a gP -isometry 'q : B1 ! B1 such
that 'q(0) = q. If we replace ũk and H̃k with ũk �'q and H̃k �'q, respectively,
the exact same argument above applies, since the operator Lk and the norms
k·k

Hj , k·kC l are invariant under the action of the isometry group of H2 (and
since kH̃kk C 2(H2) = kH̃k � 'qk C 2(H2) ). In particular, this gives us a control of
the norm of k

rũk over 'q(W ) for any point q 2 H
2, and the last part of our

assertion follows.

Remark 4.1.5. The minimum of the mean curvature 2
p
k + 1 is always re-

alized. As described in Section 1.5, whenever we have a k-surface ⌃k with
first and second fundamental forms Ik and IIk, respectively, the identity map
id : (⌃k, IIk) ! (⌃k, Ik) is harmonic, with Hopf differential  k satisfying

2Re k = Ik �
Hk

2(k + 1)
IIk.

Its squared norm with respect to IIk can be expressed as follows

k2Re kk
2
IIk

=
H2

k
� 4(k + 1)

(k + 1)2
.
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In particular, at each zero of  k (which necessarily exist because �(⌃k) < 0) we
have Hk = 2

p
k + 1.

We stress that, even if the maximum of the mean curvature Hk will clearly
depend on the hyperbolic structure of M , Proposition 4.1.1 guarantees that
maxHk is controlled by a function of k independent on the geometry of M , as
long as @M is incompressible.

We will make use of the upper bound uk 

p
k+1
k

in Lemma 4.2.4, where we
will determine a lower bound of the Weil-Petersson norm of the differential of
V ⇤

k
in terms of the integral of the mean curvature.

4.2 The gradient of the dual volume
The aim of this section is to describe the gradient of the dual volume function
V ⇤

k
with respect to the Weil-Petersson metric on the Teichmüller space of @M

in terms of the function uk studied in the previous section.

First we introduce the necessary notation for the "Riemannian geometric
tools" that will be used. Let (N, g) be a Riemannian manifold, and consider
(ei)i a local g-orthonormal frame. Given S 2 �(S2

(N)) a symmetric 2-tensor,
we define the g-divergence of S as the 1-form divg S defined by:

(divg S)(X) :=

X

i

(
g
reiS)(ei, X),

for every tangent vector field X. Similarly, the g-divergence of a vector field X
is the function

divg X =

X

i

g(greiX, ei).

The Laplace-Beltrami operator can be expressed as �gf = divg gradg f . Given
two symmetric tensors S, T , their scalar product is defined as

(S, T )
g
:= gij ghk Sih Tjk = tr

�
g�1Sg�1T

�
.

In particular, we set trg S := (g, S)
g
= tr

�
g�1S

�
. It will also be useful to keep

in mind the way that these operators change if with replace g with �g, for some
positive constant �:

div�g S = ��1
divg S, ��gf = ��1

�gf, da�g = �n/2 dag ,

(S, T )
�g

= ��2
(S, T )

g
, tr�g S = ��1

trg S,

if dimN = n.
We recall that, by the dual differential Schläfli formula (see Proposition

2.2.5), we have:

Proposition 4.2.1.

d(V ⇤

k
� Tk) (Ṁ) =

1

4

Z

@Mk

(İk, IIk �HkIk)Ik daIk

=
1

4

Z

@Mk

(ḣk, IIk + k�1Hkhk)hk
dahk ,
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where İk = �k�1ḣk is the first order variation of the first fundamental form on
@Mk along the variation Ṁ , and Tk : QD(M) ! T

h
(@M) is the diffeomorphism

introduced at the beginning of the chapter.

From this variation formula, we can give an explicit description of the Weil-
Petersson gradient of the dual volume functions V ⇤

k
, which will turn out to be

useful for the study of its flow.

Proposition 4.2.2. The vector field gradWP V ⇤

k
is represented by the harmonic

Beltrami differential associated to �k, where �k is the (unique) holomorphic
quadratic differential satisfying

Re�k = IIk �
k
r

2uk + ukhk,

where uk denotes the solution of equation (4.1).

Proof. Let ṁk denote a tangent vector to the Teichmüller space of @M at mk.
As described by Tromba [Tro92], given any hyperbolic metric hk representing
the isotopy class mk 2 T

h
(@M), we can find a unique symmetric tensor ḣk rep-

resenting ṁk that is hk-traceless and hk-divergence-free (also called transverse
traceless). This analytic condition turns out to be equivalent to ask that the
tensor ḣk coincides with the real part of a holomorphic quadratic differential
(see Remark 1.2.6).

Assume for a moment that we can find a decomposition of the symmetric
tensor IIk + k�1Hkhk of the following form:

IIk + k�1Hkhk = Stt + LXhk + �hk,

where Stt is a transverse traceless tensor with respect to hk, X is a vector field
and � is a smooth function on @M . Then, by Proposition 4.2.1, we could express
the variation of the dual volume V ⇤

k
along a transverse traceless variation ḣk as

follows:
dV ⇤

k
(ḣk) =

1

4

Z

@Mk

(ḣk, Stt + LXhk + �hk)hk
dahk .

Since ḣk is traceless, the scalar product (ḣk, hk) = trhk(ḣk) vanishes identically.
Moreover, the L2-scalar product between ḣk and LXhk vanishes too, because
the condition of being hk-divergence-free is equivalent to be L2-orthogonal to
the vector space {LXhk | X 2 �(T@M)} (see [Tro92, Theorem 1.4.2] or relation
(4.6) for a proof of this last assertion). In particular, we must have

dV ⇤

k
(ḣk) =

1

4

Z

@Mk

(ḣk, Stt)hk
dahk .

On the other hand, if �k is the holomorphic quadratic differential associated
to the harmonic Beltrami differential representing gradWP V ⇤

k
, then by Lemma

3.1.2 we have
dV ⇤

k
(ḣk) =

1

8

Z

@Mk

(ḣk, 2Re�k)hk
dahk .

Therefore, by varying the tangent vector ṁk 2 TmkT (@M), we deduce that the
tensor Stt and the holomorphic quadratic differential �k must satisfy Re�k =

Stt.
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In conclusion, this argument shows us that, in order to prove our assertion,
we need to determine a decomposition of the tensor IIk+k�1Hkhk of the form we
described above, with Stt = IIk �

k
r

2uk + ukhk. For this purpose, we consider
the following expression:

IIk + k�1Hkhk = (IIk �
k
r

2uk + ukhk) +
k
r

2uk + (k�1Hk � uk)hk

= (IIk �
k
r

2uk + ukhk) +
1

2
Lgradhk

ukhk + (k�1Hk � uk)hk,

where we used the relation Lgradhk
ukhk = 2

k
r

2uk. In this expression, the
second term of the sum is of the type LXhk, while the third term has the form
�hk. Then, it is enough to show that the first term is hk-traceless and hk-
divergence-free. The trace of IIk �

k
r

2uk + ukhk satisfies

trhk(IIk �
k
r

2uk + ukhk) = �k�1Hk ��kuk + 2uk.

This expression vanishes because uk is a solution of equation (4.1). In order to
compute the divergence of our tensor, we will need the following relations:

divhk IIk = �k�1
dHk , divg(

g
r

2f) = d(�gf) + Ricg(gradg f, ·).

The first equality follows from the Codazzi equation (
k
rXBk)Y = (

k
rY Bk)X

satisfied by the shape operator Bk of @Mk (the Levi-Civita connections of hk and
the first fundamental form Ik are the same, since they differ by a multiplicative
constant). The second relation is true for any Riemannian metric g, and we will
apply it in the case g = hk and f = uk. Since hk is a hyperbolic metric on a 2-
manifold, we have Richk = �hk. Therefore

divhk(IIk �r
2
k
uk + ukhk) = �k�1

dHk � d(�kuk) + duk + duk

= d
�
�k�1Hk ��kuk + 2uk

�
,

where we used the relation divg(f g) = df . Again, the expression above vanishes
because uk solves equation (4.1). Then we have shown that IIk � k

r
2uk + ukhk

is a transverse traceless tensor, as desired.

Remark 4.2.3. In fact, the decomposition we presented for the tensor IIk +

k�1Hkhk is related to the orthogonal decomposition of the space of symmetric
tensors due to Fischer and Marsden [FM75]. Given g a hyperbolic metric, every
symmetric tensor S admits an orthogonal decomposition of the following form:

S = Stt + LXg + ((��gf + f)g + g
r

2f),

where

• Stt is transverse traceless with respect to g;

• Stt + LXg is tangent to the space of Riemannian metrics with constant
Gaussian curvature equal to �1. In other words, if g0 7! K(g0) denotes
the operator that associates to the Riemannian metric g0 its Gaussian
curvature, then Stt + LXg 2 ker dKg;

• (��gf + f)g + g
r

2f lies in the L2-orthogonal of ker dKg.
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Then, the expression

IIk + k�1Hkhk = (IIk �
k
r

2uk + ukhk) + 0 + ((k�1Hk � uk)hk +
k
r

2uk)

= (IIk �
k
r

2uk + ukhk) + 0 + ((��kuk + uk)hk +
k
r

2uk)

is the Fischer-Marsden decomposition of IIk + k�1Hkhk, where f = uk, X = 0

and Stt = (IIk �
k
r

2uk + ukhk).
Using this explicit description of the Weil-Petersson gradient of the dual

volume function V ⇤

k
, we can determine a lower bound of its norm in terms of

the integral of the mean curvature:

Lemma 4.2.4. For every k 2 (�1, 0) we have

kdV ⇤

k
k
2
WP � �

p
k + 1

2k

Z

@Mk

Hk daIk �
2⇡(k + 1)

k2
|�(@M)|.

Proof. In what follows, we will prove the following expression:
��IIk �r

2
k
uk + ukhk

��2
Ik

= kukHk � 2(k + 1) + divIk W, (4.3)

for some tangent vector field W on @Mk. Assuming for the moment this relation,
we deduce that

kdV ⇤

k
k
2
WP =

1

2

Z

@Mk

kRe�kk
2
hk

dahk (Prop. 4.2.2 and Lemma 3.1.2)

=
1

2

Z

@Mk

(�k)�2
kRe�kk

2
Ik

(�k) daIk

= �
1

2k

Z

@Mk

(kukHk � 2(k + 1)) daIk , (relation (4.3))

where we used the relation hk = (�k)Ik, and that the integral of the term
divIk W vanishes by the divergence theorem. By Lemma 4.1.3, we have uk 
p
k+1
k

, therefore we obtain

kdV ⇤

k
k
2
WP � �

p
k + 1

2k

Z

@Mk

Hk daIk �
2⇡(k + 1)

k2
|�(@M)|,

where we applied the Gauss-Bonnet theorem to say that the area of @Mk with
respect to Ik is equal to �2⇡k�1

|�(@M)|.
The only ingredient left to prove is relation (4.3). For this computation, we

will use the Bochner’s formula (see e. g. [Lee18, page 223]):

1

2
�gkdfk

2
g
=
��gr2f

��2
g
+ g(grad

g
f, grad

g
�gf) + Ricg(gradg f, gradg f), (4.4)

and the following expressions:

divg(fX) = g(grad
g
f,X) + f divg X, (4.5)

1

2
(LXg, T )

g
= �(divg T )(X) + divg Y, (4.6)

where X is a tangent vector field, f is a smooth function, T is a symmetric 2-
tensor, and Y = T (X, ·)] is the vector field defined by requiring that g(Y, Z) =
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T (X,Z) for all vector fields Z. From now on, we will omit everywhere the
dependence of the connections, norms, and the Laplace-Beltrami operator on
the Riemannian metric g, and everything has to be interpreted as associated to
g = Ik. Observe also that the Levi-Civita connection of Ik and hk are equal,
since these metrics differ by the multiplication by a constant and, in particular,
the hk- and Ik-Hessians coincide. Then we have:
��IIk �r

2uk + ukhk

��2 =
��IIk �r

2uk � k ukIk
��2

= kIIkk
2
+
��r2uk

��2 + k2 u2
k
kIkk

2
� 2(IIk,r

2uk)+

� 2k uk(IIk, Ik) + 2k uk(r
2uk, Ik).

(4.7)

First we focus our attention on the terms
��r2uk

��2 and (IIk,r2uk). In order
to simplify the notation, we say that two functions a and b on @Mk are equal
"modulo divergence", and we write a ⌘div b, if their difference coincides with
the divergence of some smooth vector field. Then, we have:

��r2uk

��2 =
1

2
�kdukk

2
� hgraduk, grad�uki � kkdukk

2 (relation (4.4))

⌘div �hgraduk, grad�uki � kkdukk
2 (�gf = divg gradg f)

= � div(�uk graduk) + (�uk)
2
� kkdukk

2 (relation (4.5))
⌘div (�uk)

2
� k div(uk graduk) + kuk�uk (relation (4.5))

⌘div �uk(�uk + kuk),

(IIk,r
2uk) =

1

2
(IIk,LgradukIk) (Lgradg f g = 2

g
r

2f)

⌘div �(div IIk)(graduk) (relation (4.6))
= �hgradHk, graduki (div IIk = dHk)
= � div(Hk graduk) +Hk�uk (relation (4.5))
⌘div Hk�uk.

The other terms in equation (4.7) are simpler to handle. In particular we have:

kIIkk
2
= H2

k
� 2(k + 1),

kIkk
2
= 2,

(IIk, Ik) = Hk,

(r
2uk, Ik) = �uk.

Replacing all the relations we found in equation (4.7), we obtain:
��IIk �r

2uk + ukhk

��2 ⌘div H2
k
� 2(k + 1) +�uk(�uk + kuk) + 2k2u2

k
+

� 2Hk�uk � 2kukHk + 2kuk�uk

= H2
k
� 2(k + 1) + 2k2u2

k
� 2kukHk+

+�uk(�uk + 3kuk � 2Hk)
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Finally, by replacing the expression of �uk = �Ikuk from equation (4.1) in the
equality above, we find that:

��IIk �r
2uk + ukhk

��2 ⌘div kukHk � 2(k + 1),

which is equivalent to relation (4.3).

Since the Weil-Petersson metric of the Teichmüller space is non-complete,
a control from above of the quantity kdV ⇤

k
kWP would not suffice to guarantee

the existence of the flow for every time. For this purpose, we rather study the
L1-norm of the Beltrami differentials equivalent to gradWP V ⇤

k
, which gives a

control with respect to the Teichmüller metric (that is complete). At this point,
the estimates determined in Lemma 4.1.3 will play an essential role.

Proposition 4.2.5. There exists a constant Dk > 0 depending only on the
intrinsic curvature k 2 (�1, 0) such that

kgradWP V ⇤

k
k
T
 Dk,

where k·k
T

denotes the Teichmüller norm on TT (@M).

Proof. Let mk be a point of the Teichmüller space T
h
(@M), interpreted as an

isotopy class of hyperbolic metrics on @Mk. The Teichmüller norm of a tangent
vector ṁk 2 TmkT (@M) is the infimum of the L1-norms of the Beltrami differ-
entials representing ṁk. In Proposition 4.2.2, we showed that the vector field
gradWP V ⇤

k
at a point mk 2 T

h
(@M) is represented by the harmonic Beltrami

differential associated to �k. Let now hk denote a representative of the isotopy
class of hyperbolic metrics mk, and let ⌫�k be the harmonic Beltrami differen-
tial on (@Mk, hk) associated to the holomorphic quadratic differential �k from
Proposition 4.2.2. Therefore, by Lemma 3.1.2, we have that

kgradWP V ⇤

k
k
T
 k⌫�kkB,1

=
1
p
2
kRe�kkFT,1

=
1
p
2
sup
@Mk

kRe�kkhk
.

Therefore it is enough to show that the norm
��IIk �

k
r

2uk + ukhk

��
hk

is uni-
formly bounded by a constant depending only on k. The norm of IIk is equal to
�k�1

p
H2

k
� 2(k + 1), and kukhkkhk

=
p
2 |uk|. Therefore we have

��IIk �
k
r

2uk + ukhk

��
hk

 �k�1
q

kHkk
2
C 0 � 2(k + 1)+

��kr2uk

��
hk
+

p

2 kukkC 0 .

Our assertion is now an immediate consequence of Proposition 4.1.1 and of
Lemma 4.1.3.

Corollary 4.2.6. The flow ⇥t of the vector field � gradWP V ⇤

k
over T (@M) is

defined for all times t 2 R.

Proof. The assertion follows from the fact that the Teichmüller distance is com-
plete, and on the bound shown in Proposition 4.2.5.
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4.3 The proof of Theorem C
The last ingredient that we will need for the study of the infimum of the dual
volume is the existence of some lower bound for the dual volume on the space
of quasi-isometric deformations QD(M) of M . To do so, we will make use of
the properties of the dual volume proved in Chapter 2, and of the upper bound
described by Bridgeman, Brock, and Bromberg [BBB19] for the length of the
bending measure of the boundary of the convex core of a convex co-compact
manifold with incompressible boundary, which we recalled in Theorem 3.3.5.

Lemma 4.3.1. For every k 2 (�1, 0) and for every convex co-compact hyper-
bolic 3-manifold M with incompressible boundary we have:

V ⇤

k
(M) � F (k,�(@M)),

where F is an explicit function of the curvature k 2 (�1, 0) and the Euler
characteristic of @M .

Proof. Since the k-surfaces foliate the complementary of the convex core CM , a
simple application of the geometric maximum principle (see for instance [Lab00,
Lemme 2.5.1]) shows that the k-surface @Mk is contained in N"kCM , the "k-
neighborhood of the convex core CM , for "k = arctanh

p
k + 1. Moreover, by

Proposition 2.2.6, the dual volume is a decreasing function with respect to the
inclusion, therefore the quantity V ⇤

k
(M) is bounded from below by the dual

volume of the "k-neighborhood of the convex core. We showed in Proposition
2.2.4 that, for every " > 0, we have

Vol
⇤
(N"CM) = Vol(CM)�

`m(µ)

4
(cosh 2"+ 1)�

⇡

2
|�(@CM)|(sinh 2"� 2"),

where `m(µ) denotes the length of the bending measured lamination on the
boundary of the convex core of M . By Theorem 3.3.5, the term `m(µ) is less or
equal to 6⇡|�(@M)|. Combining these observations, we deduce that

V ⇤

k
(M) � Vol

⇤
(N"kCM)

= Vol(CM)�
`m(µ)

4
(cosh 2"k + 1)�

⇡

2
|�(@CM)|(sinh 2"k � 2"k)

� �
`m(µ)

4
(cosh 2"k + 1)�

⇡

2
|�(@CM)|(sinh 2"k � 2"k)

� �
⇡

2
|�(@M)|(3 cosh "k + 3 + sinh 2"k � 2"k),

which proves the desired inequality.

We are finally ready to present the proof of Theorem C:

Proof of Theorem C. Let M be a convex co-compact hyperbolic 3-manifold with
incompressible boundary. We denote by Mt := ⇥t(M) the hyperbolic 3-man-
ifold obtained by following the flow of the vector field � gradWP V ⇤

k
, which is

defined for every t 2 R in light of Corollary 4.2.6. In order to simplify the
notation, we will continue to denote by V ⇤

k
the k-dual volume as a function

over the space of quasi-isometric deformations of M . This abuse is justified by
the fact that, for every k 2 (�1, 0), a convex co-compact manifold is uniquely
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determined by the hyperbolic structures on its k-surfaces, as mentioned at the
beginning of the chapter. We have

V ⇤

k
(M)� V ⇤

k
(Mt) =

Z
t

0
kdV ⇤

k
k
2
Ms

ds .

By Lemma 4.3.1, the left hand side of the relation is bounded from above with
respect to t. In particular, the integral on the right side has to converge as t
goes to +1. Therefore we can find an unbounded increasing sequence (tn)n for
which the Weil-Petersson norm kdV ⇤

k
k
2 evaluated at Mtn goes to 0 as n goes to

1. Then, by Lemma 4.2.4, we have

lim sup
n!1

Z

@Mtn,k

Hk daIk  �4⇡k�1
p

k + 1|�(@M)|,

where Mtn,k stands for (Mtn)k, the region of Mtn enclosed by its k-surfaces.
Therefore we deduce:

V ⇤

k
(M) � lim

n!1

V ⇤

k
(Mtn) = lim

n!1

 
Vk(Mtn)�

1

2

Z

@Mtn.k

Hk daIk

!

� inf
M 02QD(M)

Vk(M
0
)�

1

2
lim inf
n!1

Z

@Mtn,k

Hk daIk

� inf
M 02QD(M)

Vk(M
0
) + 2⇡k�1

p

k + 1|�(@M)|,

where Vk(M 0
) denotes the Riemannian volume of the region M 0

k
of M 0 en-

closed by its k-surface. Observe that the term 2⇡k�1
p
k + 1|�@M | is equal to

�
1
2

R
@M

0
k
Hk daIk when the boundary of the convex core of M 0 is totally geodesic.

Finally, by taking the limit as k goes to (�1)
+, we obtain that V ⇤

C
(M) �

infM 0 VC(M 0
) for every convex co-compact structure M . This proves that

inf
QD(M)

V ⇤

C
� inf

QD(M)
VC .

On the other hand, the dual volume V ⇤

C
(M) := VC(M) �

1
2`m(µ) is always

smaller or equal to VC(M), so the other inequality between the infima is clearly
satisfied.

If V ⇤

C
(M) = VC(M), then the length of the bending measured lamination µ

of the convex core of M has to vanish, therefore µ = 0 or, in other words, @CM
is totally geodesic.



Chapter 5

Constant Gaussian curvature
surfaces in hyperbolic 3-
manifolds

Outline of the chapter

The aim of this chapter is to investigate the properties of constant Gaussian
curvature surfaces inside hyperbolic ends, and to show how their geometry in-
terpolates the structure of the locally pleated boundary on one side, and of the
conformal boundary at infinity on the other. We refer to Sections 1.5 and 1.6
for the necessary background concerning these notions.

In Section 5.1 we recall the definitions of two families of parametrizations
of the space of hyperbolic ends (�k)k, ( k)k, taking values into the cotangent
space to Teichmüller space T (⌃), and constructed in terms of the geometric
data of the k-surface foliations (see Section 1.6.3). These maps have been firstly
introduced by Labourie [Lab92b], and further investigated by Bonsante, Mon-
dello, and Schlenker [BMS13], [BMS15]. Our first goal will be to determine the
relations between the asymptotic of the families (�k)k, ( k)k and the classical
Schwarzian and Thurston parametrizations Sch and Th, respectively (see Sec-
tions 1.6.1 and 1.6.2 for their definitions), and it will be achieved in Corollary
5.1.3 and Proposition 5.1.6. The proof of these facts will be based on the works
of Quinn [Qui20] and Belraouti [Bel17], which describe the limits of the geo-
metric quantities associated to the k-surfaces as they approach the conformal
boundary at infinity, and the locally concave pleated boundary, respectively.

Section 5.2 focuses on the variation formulae of two notions of volumes for
quasi-Fuchsian manifolds M . The first, that will be denoted by V ⇤

k
(M), coin-

cides with the dual volume of the region Mk of M bounded by its k-surfaces,
and similarly Wk(M) is equal to the W -volume of Mk. As shown in Lemma
5.2.2 and Theorem 5.2.8, these Schläfli formulae are closely related to the vari-
ation formulae of the renormalized volume VR and of the dual volume of the
convex core V ⇤

C
, respectively. As a corollary of these relations and the connec-

tion between the parametrizations �k and Sch, we will obtain a new and simple
description of the renormalized volume function of M in terms of the foliation

93
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by k-surfaces of its hyperbolic ends:

Theorem D. For every quasi-Fuchsian manifold M , the renormalized volume
VR(M) can be expressed as follows:

VR(M) = lim
k!0

✓
Vol(Mk)�

1

4

Z

@Mk

Hk dak � ⇡|�(@M)| arctanh

p

k + 1

◆
.

As highlighted by the work of Krasnov and Schlenker [KS09], the Schläfli-
type variation formulae of the dual volume V ⇤

C
and the renormalized volume VR

have strong implications with respect to the symplectic geometry of the spaces
T ⇤

T
c
(⌃) and T ⇤

T
h
(⌃), endowed with the symplectic structures !c and !h of

cotangent manifolds, respectively. Here we develop the same ideas applied to the
volumes V ⇤

k
and W ⇤

k
, and the Labourie’s parametrizations �k and  k through

their Schläfli formulae. In particular, in Section 5.4 we will prove:

Theorem G. For every k, k0 2 (�1, 0), the function

�k � 
�1
k0 : (T ⇤

T
h
(⌃),!h

) ! (T ⇤
T

c
(⌃), 2!c

)

is a symplectomorphism.

Another surprisingly simple consequence of the variation formulae of the
volumes Wk and V ⇤

k
is the following generalization of (Krasnov and Schlenker’s

reformulation from [KS09] of) McMullen’s Kleinian reciprocity Theorem:

Theorem E. Let M be a convex co-compact hyperbolic 3-manifold, and denote
by QD(M) the space of quasi-isometric deformations of M . We set

�k : QD(M) �! T ⇤
T

c
(@M),  k : QD(M) �! T ⇤

T
h
(@M)

to be the maps that associate, to a convex co-compact hyperbolic structure M 0,
the points of T ⇤

T (@M) given by the vectors (�k(Ei))i and ( k(Ei))i, respec-
tively, where Ei varies among the set of hyperbolic ends of M 0. Then, for every
k 2 (�1, 0), the images �k(QD(M)) and  k(QD(M)) are Lagrangian subman-
ifolds of (T ⇤

T
c
(@M),!c

) and (T ⇤
T

h
(@M),!h

), respectively.

In Section 5.4.1 we will discuss the relations between the original McMullen’s
formulation of the quasi-Fuchsian reciprocity (in terms of adjoint maps) and the
statement we have presented here.

In Section 5.5, as last application of the tools developed here, we prove
that the k-surface foliations of hyperbolic ends correspond to integral curves of
k-dependent Hamiltonian vector fields on T ⇤

T (⌃). This phenomenon can be
interpreted as the analogous of what observed by Moncrief [Mon89] for constant
mean curvature foliations in 3-dimensional Lorenzian space-times. If

.
�k and

.
 k

denote the vector fields d
dk�k and d

dk k, respectively, then we will prove:

Theorem F. The k-dependent vector fields �̇k ��
�1
k

and  ̇k � 
�1
k

are Hamil-
tonian with respect to the cotangent symplectic structure of T ⇤

T (⌃).

We will observe that the role of the area functional in [Mon89] as Hamilto-
nian function here is replaced by the integral of the mean curvature, up to a
multiplicative constant depending only of the curvature k.
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5.1 Foliations by k-surfaces
This Section is mainly devoted to the description of two families of parame-
trizations of the space of hyperbolic ends E(⌃), denoted by (�k)k and ( k)k,
firstly introduced by Labourie [Lab92b], and further investigated by Bonsante,
Mondello and Schlenker in [BMS13] and [BMS15]. Our main goal will be to
establish a connection between the asymptotic of these maps and the classical
Schwarzian and Thurston parametrizations (described in Section 1.6), applying
the recent works of Quinn [Qui20] and Belraouti [Bel17], respectively.

In order to define the maps (�k)k and ( k)k, we need to introduce some
notation. By Theorem 1.6.4, every hyperbolic end E (see Definition 1.6.1)
admits a foliation by k-surfaces (⌃k)k, with intrinsic curvature k 2 (�1, 0). Let
Ik, IIk and IIIk denote the first, second and third fundamental forms of the k-
surface ⌃k of E. We set hk and h0

k
to be the hyperbolic metrics �k Ik and

�
k

k+1 IIIk, respectively, and ck to be the conformal class of IIk. As observed in
Section 1.5, the identity maps

id : (⌃k, ck) ! (⌃k, hk), id : (⌃k, ck) ! (⌃k, h
0

k
)

are harmonic with opposite Hopf differentials (see Definition 1.2.12). We will
denote by qk the holomorphic quadratic differential

�
2
p
k + 1

k
Hopf((⌃k, ck) ! (⌃k, hk)) =

2
p
k + 1

k
Hopf((⌃k, ck) ! (⌃k, h

0

k
)).

The choice of the multiplicative constant in the definition of qk may look arbi-
trary at this point of the exposition, but it will be crucial in the following (see
for instance Corollary 5.1.3 and Remark 5.5.3). The holomorphic quadratic
differential qk satisfies

2Re qk = 2

p

k + 1

✓
Ik �

Hk

2(k + 1)
IIk

◆
= �

2
p
k + 1

✓
IIIk �

Hk

2
IIk

◆
. (5.1)

For future references, we also observe that the area forms with respect to Ik and
IIk differ by a multiplicative constant, as follows:

daIk =
1

p
detBk

daIIk =
1

p
k + 1

daIIk . (5.2)

5.1.1 The parametrizations �k

The first class of parametrizations described by Labourie [Lab92b] is given by
the following maps: for every k 2 (�1, 0) we define the function

�k : E(⌃) �! T ⇤
T (⌃)

c

[E] 7�! (ck, qk),

which associates, to every hyperbolic end E, the point of the cotangent space
to Teichmüller space (ck, qk) determined by the unique k-surface ⌃k contained
in E, as above. We have:

Theorem 5.1.1 ([Lab92b, Théorème 3.1]). The function �k is a diffeomor-
phism for every k 2 (�1, 0).
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In the following we will see how the maps �k relate to the Schwarzian pa-
rametrization Sch, defined in Section 1.6.1. Using the hyperbolic Gauss map
(see e. g. [Lab91]), we can think about the families (Ik)k, (IIk)k and (IIIk)k
as paths in the space of symmetric 2-tensors over the surface @1E, which does
not depend on k. In this way we can study the asymptotic of these geometric
quantities as k goes to 0.

In a recent work [Qui20], Quinn introduced the notion of asymptotically
Poincaré families of surfaces inside a hyperbolic end E, and he determined
a connection between their geometric properties and the complex projective
structure at infinity of E. The foliation by k-surfaces is an example of such
families and the asymptotic of their fundamental forms is understood. In order
to do not introduce more notions, we specialize the results of [Qui20] in the form
that we will need:

Theorem 5.1.2 ([Qui20]). For every hyperbolic end E 2 E(⌃) we have

lim
k!0�

hk = lim
k!0�

(�k)IIk = h1,

where h1 is the hyperbolic metric in the conformal class at infinity c1 of E.
Moreover

dhk

dk

����
k=0�

= �Re q1,
d

dk
(�k)IIk

����
k=0�

=
1

2
h1,

where q1 is the Schwarzian at infinity of E (see Section 1.6.1).

Corollary 5.1.3. The maps (�k)k converge to Sch C
1-uniformly over compact

subsets, as k goes to 0.

Proof. First we prove the pointwise convergence. Let E be a hyperbolic end,
and consider the path (�k(E))k in T ⇤

T
c
(⌃). We define gk := (�k)IIk. Then,

the relations of Theorem 5.1.2 can be rewritten as follows:

lim
k!0�

gk = h1,
dhk

dk

����
k=0�

= �Re q1,
dgk
dk

����
k=0�

=
1

2
h1.

The first relation proves that the conformal classes ck converge to the conformal
structure of @1E. We need to show that the holomorphic quadratic differentials
qk converge to the Schwarzian differential q1. This is a simple application of
the relations above, we briefly summarize the steps in the following. First we
observe that

lim
k!0�

2Re qk = lim
k!0�

�
2
p
k + 1

k

✓
hk �

trgk(hk)

2
gk

◆

= lim
k!0�

�2

p

k + 1
hk � h1

k
+

p

k + 1
trgk(hk) gk � 2h1

k

= �2
dhk

dk

����
k=0�

+
d

dk
trgk(hk) gk

����
k=0�

,

where, in the last step, we are using that limk!0� trgk(hk) gk = 2h1. Applying
the relations in Theorem 5.1.2, we see that d

dk trgk(hk)|k=0 = �1. Combining
this with the relation above we obtain

lim
k!0�

2Re qk = �2(�Re q1)� h1 + 2
dgk
dk

����
k=0�

= 2Re q1,
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which was our claim.
In [Qui20], the author gave an alternative proof of the existence of the k-

surface foliation, for k close to 0. The strategy of his proof is to apply the
Banach implicit function theorem to a function

F : (�1, 0]⇥ Conf
s
(⌃, c) �! Conf

s
(⌃, c),

which satisfies F (k, ⌧) = 0 if and only if ⌧ is (a proper multiple of) the metric
at infinity associated to the k-surface. Here Conf

s
(⌃, c) denotes the space of

Sobolev metrics in the conformal class c (see [Qui20, Theorem 5.1] for details).
The map F depends smoothly on k and also on the complex projective structure
at infinity (c, q). In particular, the implicit function theorem guarantees the
smooth regularity of the metric at infinity ⌧k, associated to the k-surface ⌃k,
with respect to k 2 (�1, 0] and (c, q) 2 T ⇤

T
c
(⌃). Since the tensors Ik and IIk

are smooth functions of ⌧k and (c, q), the function �(k; c, q) := �k�Sch
�1

(c, q) is
smooth in all its arguments. This properties imply the higher order convergence.

5.1.2 The parametrizations  k

The diffeomorphism H from Theorem 1.2.19 allows us to convert the family of
parametrizations (�k)k, which take values in T ⇤

T
c
(⌃), into a family of param-

etrizations ( ̂k)k with values in T
h
(⌃)

2. Indeed, the functions

 ̂k := H � �k : E(⌃) �! T
h
(⌃)

2

[E] 7�! (hk, h0

k
),

associate to each hyperbolic end E, the pair of hyperbolic metrics hk = (�k)Ik
and h0

k
= �

k

k+1IIIk coming from the first and third fundamental forms of the k-
surface ⌃k of E. This expression for the map  ̂k follows from the definition of
the map H (see Theorem 1.2.19) and the link between k-surfaces and minimal
Lagrangian maps, observed at the end of Section 1.5.

The maps  ̂k have been the main object of study of Bonsante, Mondello,
and Schlenker in [BMS13], [BMS15]. In these works, the authors introduced
the notions of landslide flow and of smooth grafting SGr

0

s
, and studied their

convergence to the classical earthquake flow and grafting map Gr. Our functions
 ̂k are actually the inverses of the maps SGr

0

s
, in the notation of [BMS13] (the

relation between our parameter k and the s used in [BMS13] is k = �
1

cosh2(s/2) ).
As the Schwarzian parametrization can be recovered from the limit of the

maps �k when k ! 0, the Thurston parametrization, defined in Section 1.6.2,
can be recovered from the limit of the maps  ̂k when k ! �1. Indeed, we have:

Theorem 5.1.4. The maps  ̂k converge to Th, as k goes to �1, in the following
sense: if E is a hyperbolic end, then the length spectrum of IIIk converges to
◆(·, µ), where ◆(·, ·) denotes the geometric intersection of currents. Moreover,
the first fundamental forms Ik converge to the hyperbolic metric of the locally
concave pleated boundary @E.

Proof. Let E be a fixed hyperbolic end. The convergence of the first fundamen-
tal forms Ik is a direct consequence of Theorem 1.6.4.
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By the correspondence between hyperbolic ends and maximal global hyper-
bolic spatially compact (MGHC) de Sitter spacetimes (see e. g. [Mes07] and
the duality described in Section 1.4), the foliation by k-surfaces of E determines
a constant curvature surfaces foliation of the MGHC de Sitter spacetime E⇤

dual of E. Through this correspondence, the third fundamental form IIIk of the
leaf ⌃k in E can be interpreted as the first fundamental form of its dual surface
⌃

⇤

k
in E⇤, which has constant intrinsic curvature equal to k

k+1 . Moreover, the
initial singularity of E⇤ is dual of the bending measured lamination µ of the
pleated boundary @E, as shown by Benedetti and Bonsante [BB09, Chapter 3].

In [Bel17], the author studied the intrinsic metrics of families of surfaces
which foliate a neighborhood of the initial singularity in E⇤. In particular, Bel-
raouti [Bel17, Theorem 2.10] proved that, for a wide class of such foliations, the
intrinsic metrics of the surfaces converge, with respect to the Gromov equivari-
ant topology, to the real tree dual of the measured lamination µ, as the surfaces
approach the initial singularity of E⇤. By applying this result to the constant
curvature foliation of E⇤, and interpreting IIIk as the first fundamental forms of
its leaves, we deduce the convergence of the length spectrum of IIIk to ◆(·, µ).

5.1.3 Hyperbolic length functions
Following [BMS15], we define

j : T
h
(⌃)

2
�! R

(h, h0
) 7�!

R
⌃ tr b dah ,

which associates, to a normalized pair of hyperbolic metrics h, h0 with Labourie
operator b : T⌃ ! T⌃ (see Theorem 1.2.18), the integral of the trace of b
with respect to the area measure of h (here we are identifying, with abuse, the
hyperbolic metrics h and h0 with their isotopy classes). The quantity j(h, h0

)

satisfies

j(h, h0
) = 2 E(id : (⌃, c) ! (⌃, h)) = 2 E(id : (⌃, c) ! (⌃, h0

)),

where c is the conformal class of h(b·, ·), and E(·) denotes the energy functional
(see [BMS15, Section 1.2]). This shows in particular that j is symmetric, i. e.
j(h, h0

) = j(h0, h).
For any hyperbolic metric h0, we define Lh0 : T

h
(⌃) ! R to be Lh0(h) :=

j(h, h0
). The functions Lh0 , which are real analytic by [BMS15, Proposition 1.2],

can be interpreted as generalizations of length functions, in light of the following
fact:

Proposition 5.1.5. Let (hn)n, (h0

n
)n be two sequences of hyperbolic metrics.

Suppose that (hn)n converges to h 2 T
h
(⌃), and that there exists a sequence

of positive numbers (#n)n such that the length spectrum of "2
n
h0

n
converges to

◆(·, µ), for some measured lamination µ 2 ML(⌃). Then

lim
n!1

"n Lh0
n
(hn) = Lµ(h).

Proof. Using the interpretation via k-surfaces, we can easily prove this state-
ment, which is purely 2-dimensional, using 3-dimensional hyperbolic geometry.

First we observe that, since the injectivity radius of h0

n
is going to 0, the

sequence "n must converge to 0. In particular, the limit of kn := �(cosh
2 "n)�1
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is equal to �1, as n goes to infinity. In [BMS13, Proposition 6.2], the au-
thors proved that, under our hypotheses, the sequence of hyperbolic ends (En)n

given by En :=  ̂
�1
kn

(hn, h0

n
) (which, in the notation of [BMS13], coincides with

SGr
0

2"n(hn, h0

n
)), converges to E := Grµ(h). Recalling the definitions of hn, h0

n
,

we see that
Lh0

n
(hn) = �

kn
p
kn + 1

Z

⌃kn

Hkn daIkn
,

where ⌃kn is the kn-surface inside En, and Ikn and Hkn are its first fundamental
form and mean curvature, respectively.

Since En goes to E = Grµ(h), and kn goes to �1, the intrinsic metrics of
the surfaces ⌃kn converge to the hyperbolic metric h of the pleated boundary
@E, and the bending measures of @En converge to µ. In particular, the integral
of the mean curvature of ⌃kn converges to Lµ(h), the length of the bending
measure of @E (see for instance Section 2.2). From the relation between kn and
"n, we see that

lim
n!1

"n

✓
�

kn
p
kn + 1

◆
= 1.

The combination of these two facts implies the statement.

As done in [BMS15], instead of working directly with  ̂k, we we will intro-
duce a family of maps ( k)k that have the advantage of taking values in the
cotangent space T ⇤

T
h
(⌃). This will be more convenient for the rest of our pa-

per, since we investigate the properties of these parametrizations with respect
to the cotangent symplectic structure of T ⇤

T
h
(⌃) and T ⇤

T
c
(⌃). The functions

 k are defined as follows:

 k : E(⌃) �! T ⇤
T

h
(⌃)

[E] 7�! (hk,�
p
k+1
k

d(Lh
0
k
)
hk
),

where d(Lh
0
k
)
hk

denotes the differential of the function Lh
0
k
, defined as before,

at the point hk. We also consider the function

dL : T
h
(⌃)⇥ML(⌃) �! T ⇤

T
h
(⌃)

(h, µ) 7�! (h, d(Lµ)h).

Proposition 5.1.6. The functions

dL � Th : E(⌃) �! T ⇤
T

h
(⌃) and  k : E(⌃) ! T ⇤

T
h
(⌃)

are C
1 diffeomorphisms, for every k 2 (�1, 0). Moreover, the functions  k

converge pointwisely to dL � Th as k goes to �1.

Proof. A proof of the C
1-regularity of dL�Th can be found in [KS09, Lemma 1.1].

The smoothness of the maps  ̂k follows from the original work of Labourie
[Lab92b]. Up to scalar multiplication in the fiber, the functions  k are equal to
the composition of the  ̂k’s with the map

T
h
(⌃)⇥ T

h
(⌃) �! T ⇤

T
h
(⌃)

(h, h0
) �! (h, d(Lh0)

h
).

This function has been proved to be a diffeomorphism in [BMS15, Proposi-
tion 1.10]. This shows that  k is a diffeomorphism for every k 2 (�1, 0). The
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pointwise convergence of the functions  k follows from Theorem 5.1.4, Propo-
sition 5.1.5 and the analyticity of the functions Lh0 , established in [BMS15,
Proposition 1.2].

5.2 Volumes and Schläfli formulae
In this section we define two families of volume functions for convex co-compact
hyperbolic 3-manifolds: the Wk-volumes, related to the notion of W -volume
introduced in [KS08], and the V ⇤

k
-volumes, related the notion of dual volume

introduced in [KS09]. For both these families we will prove a Schläfli-type
variation formula, involving the extremal length, in the case of Wk, and the
hyperbolic length functions Lh0 introduced in the previous section, in the case
of V ⇤

k
(see also Section 3.4). We also describe a simple way to compute the

renormalized volume VR of a convex co-compact hyperbolic manifold using the
volumes Wk.

5.2.1 Wk-volumes

Let M be a convex co-compact hyperbolic 3-manifold and let QD(M) denote
the space of quasi-isometric deformations of M (introduced in Section 2.1). We
define

Wk(M
0
) := W (M 0

k
) = Vol(M 0

k
)�

1

4

Z

@M
0
k

H 0

k
daI0

k
,

where M 0

k
denotes the compact region of M 0

2 QD(M) bounded by the union
of the k-surfaces sitting inside the ends of M 0. The quantities Ik, IIk, IIIk, ck
and qk of @Mk are defined using the conventions of the previous section.

First we need a way to express the variation of the W -volume:

Proposition 5.2.1. Let (N, g) be a compact hyperbolic 3-manifold with smooth
boundary @N having positive definite second fundamental form, and let (gt)t be
a smooth 1-parameter family of hyperbolic metrics on N , with g0 = g. Then we
have:

dW (N, gt)

dt

����
t=0

=
1

4

Z

@N

✓✓
�II, III �

H

2
II

◆

II

+
�Ke

2Ke

H

◆
daI ,

where �II, �Ke denote the variations of the second fundamental form and of the
extrinsic curvature of @N , respectively, and (·, ·)

II
denotes the scalar product

induced by II on the space of (2, 0)-tensors on @N .

Proof. We will apply the same strategy used in Proposition 1.7.13 to compute
the variation formula of V ⇤

3 . From the definition of W -volume and Theorem
1.7.4 we have:

dW (N, gt)

dt

����
t=0

=
dVol(N, gt)

dt

����
t=0

�
1

4

d

dt

Z

@N

H daI

����
t=0

=
1

2

Z

@N

✓
�H +

1

2
(�I, II)

I

◆
daI �

1

4

Z

@N

(�H daI +H�(daI)) .
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Since I = II B�1, we have �I = �II B�1
� II B�1 �B B�1. Therefore

(�I, II)
I
= tr

�
I�1 �I I�1 II

�

= tr
�
B II�1

(�II B�1
� II B�1 �B B�1

)B II�1 II
�

= tr
�
B II�1 �II

�
� tr(�B)

= tr
�
II�1 III II�1 �II

�
� �H

= (III, �II)
II
� �H.

Using the expression in local coordinates dag =
p

det(gij) dx
1
^ dx2, we find

�(dag) =
1
2 (�g, g)g dag. Hence we have:

� (daI) = �

✓
daII
p
Ke

◆

= �
�Ke

2(Ke)
3/2

daII +
1

2
p
Ke

(�II, II)
II
daII

=

✓
�
�Ke

2Ke

+
1

2
(�II, II)

II

◆
daI .

Combining the relations above, we obtain:

dW (N, gt)

dt

����
t=0

=
1

2

Z

@N

✓
�H +

1

2
(�I, II)

I

◆
daI �

1

4

Z

@N

(�H daI +H�(daI))

=
1

4

Z

@N

✓
2�H + (III, �II)

II
� �H � �H �H

✓
�
�Ke

2Ke

+
1

2
(�II, II)

II

◆◆
daI

=
1

4

Z

@N

✓✓
�II, III �

H

2
II

◆

II

+
�Ke

2Ke

H

◆
daI ,

which proves the statement.

An alternative way to express the variation of the W -volume can be found
in [KS08, Relation (7)]. The expression we found in Proposition 5.2.1 is very
convenient when applied to variations of metrics (gt)t for which the boundary
@N has constant extrinsic curvature Ke independent of t, as displayed by the
following Lemma:

Lemma 5.2.2. The function Wk : QD(M) ! R satisfies

dWk(�M) = �Rehqk, �cki,

where �ck denotes the variation of the conformal class ck along the variation
�M .

Proof. We apply the variation formula of the W -volume, proved in Proposition
5.2.1. Since the boundary of Mk is a k-surface for every convex co-compact
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structure M , the term involving �Ke vanishes. Therefore we have:

dWk(�M) =
1

4

Z

@Mk

✓
�IIk, IIIk �

Hk

2
IIk

◆

IIk

daIk

=
1

4
p
k + 1

Z

@Mk

✓
�IIk, IIIk �

Hk

2
IIk

◆

IIk

daIIk (eq. (5.2))

= �
1

8

Z

@Mk

(�IIk, 2Re qk)IIk daIIk (eq. (5.1))

= �Rehqk, �cki. (Lemma 5.3.1)

Starting from Lemma 5.2.2, the proof of the Schläfli formula for the volumes
Wk proceeds in analogy to what done by Schlenker [Sch17] for the Schläfli
formula for the renormalized volume, thanks to the following result:

Theorem 5.2.3 (Gardiner’s formula, [Gar84, Theorem 8]). Let (⌃, c) be a Rie-
mann surface, and let F denote the horizontal foliation of a homorphic quadratic
differential q of (⌃, c). Then the extremal length function extF : T

c
(⌃) ! R sat-

isfies
d extF (�c) = 2Rehq, �ci.

The combination of Lemma 5.2.2 and the Gardiner’s formula immediately
implies:

Theorem 5.2.4 (Schläfli formula for Wk). The differential of the function Wk

can be expressed as follows:

dWk(�M) = �
1

2
d extFk(�ck),

where Fk denotes the horizontal foliation of the holomorphic quadratic differen-
tial qk.

5.2.2 The renormalized volume
The definition of renormalized volume VR(M) of a conformally compact Ein-
stein manifold M is motivated by the AdS/CFT correspondence of string the-
ory [Wit98], [Gra00]. Krasnov and Schlenker [KS08] enlightened its geometrical
meaning in the context of convex co-compact hyperbolic 3-manifolds, describing
a regularization procedure based on equidistant foliations from convex subsets
of M . In relation with the study of the geometry of the Teichmüller space, the
renormalized volume furnishes a Kähler potential for the Weil-Petersson met-
ric of the Teichmüller space, and it allows to give a remarkably simple proof
of McMullen’s Kleinian reciprocity (see [KS08] and Section 5.4). Moreover, its
variation formula has been used by Schlenker [Sch13] to give a quantitative ver-
sion of Brock’s upper bound of the volume of the convex core of a quasi-Fuchsian
manifold in terms of the Weil-Petersson distance between the hyperbolic metrics
on the boundary of the convex core.

The aim of this Section is to describe a new and simpler way to define the
renormalized volume of a quasi-Fuchsian manifold in terms of the asymptotic
of its foliation by k-surfaces.

First we recall the Schläfli-type formula of the renormalized volume:
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Theorem 5.2.5 ([KS08, Lemmas 8.3, 8.5], [Sch17, Theorem 1.2]). The differ-
ential of the renormalized volume VR : QD(M) ! R can be expressed as follows:

dVR(�M) = �Rehq1, �c1i = �
1

2
d extF1(�c1).

The combination of Corollary 5.1.3 and Theorem 5.2.4 allows us to give the
following description of the renormalized volume VR(M):

Theorem D. The renormalized volume of a quasi-Fuchsian manifold M satis-
fies

VR(M) = lim
k!0�

⇣
Wk(M)� ⇡|�(@M)| arctanh

p

k + 1

⌘
.

Proof. Let fWk(M) := Wk(M) � ⇡|�(@M)| arctanh
p
k + 1. We will prove the

assertion by showing the following facts:

i) the differentials of the functions fWk converge, uniformly over compact
subsets of QF(⌃), to the differential of the renormalized volume VR;

ii) the limit, as k goes to 0, of fWk(M) coincides with VR(M) whenever M is
Fuchsian.

Then the assertion will follow from the connectedness of the space QF(⌃).
The first step easily follows from our previous observations. By Corollary

5.1.3 and Theorem 5.2.4, dfWk = dWk converges, uniformly over compact subsets
of QF(⌃), to �

1
2d extF1(�c1), where F1 is the horizontal foliation of the

Schwarzian differential at infinity q1, and �c1 is the variation of the conformal
structure of @1M . By Theorem 5.2.5, this coincides with dVR.

It remains to prove the second part of the statement. Let M be a Fuch-
sian manifold. The equidistant surfaces from the convex core of M at distance
"(k) := arctanh

p
k + 1 are the two k-surfaces of M . Their fundamental forms

can be expressed as follows:

Ik = �
1

k
h, IIk = �

k
p
k + 1

h, IIIk = �
k

k + 1
h,

where h is the hyperbolic metric on the totally geodesic surface sitting inside
M . From here, we easily see that
Z

⌃k

Hk daIk = 2⇡|�(@M)| sinh 2"(k), V (Mk) = ⇡|�(@M)|

✓
sinh 2"(k)

2
+ "(k)

◆
.

In particular, for every Fuchsian manifold M , we have

Wk(M) = V (Mk)�
1

4

Z

⌃k

Hk daIk = ⇡|�(@M)| arctanh

p

k + 1.

Therefore the functions fWk vanish identically over the Fuchsian locus, and the
same happens for VR(M). This concludes the proof of the second step, and
therefore of the statement.

Remark 5.2.6. The quantity arctanh
p
k + 1 is equal to the distance of the k-

surface from the convex core in the Fuchsian case. For a generic quasi-Fuchsian
manifold M , the geometric maximum principle [Lab00, Lemme 2.5.1] shows that
the k-surface is at distance less or equal than arctanh

p
k + 1 from the convex

core CM .
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In the proof that we gave above, we assumed the existence of the renormal-
ized volume function VR and we proved the convergence of the functions Wk to
VR. In fact, with some additional work, it is possible to show that the sequence
of functions (fWk)k is convergent without assuming the existence of the function
VR. In other words, we can define the renormalized volume VR(M) of a quasi-
Fuchsian manifold M as the limit of the sequence (fWk(M))k.

5.2.3 V ⇤
k -volumes

In analogy to what done for the Wk-volumes, we define

V ⇤

k
(M 0

) := Vol
⇤
(M 0

k
) = Vol(M 0

k
)�

1

2

Z

@M
0
k

H 0

k
daI0

k
,

for every M 0
2 QD(M). The Schläfli formula for V ⇤

k
is a direct consequence of

the variation formula for the dual volume (Proposition 2.2.5) and the following
expression for the variation of the length function Lh0 :

Lemma 5.2.7 ([BMS15, Lemma 7.9]).

d(Lh0) (�h) = �
1

2

Z

⌃
(�h, h(b·, ·)� tr(b)h)

h
dah .

In order to simplify the next statement, we extend the definition of the func-
tion j to constant curvature metrics, not necessarily hyperbolic. In particular,
if g and g0 are Riemannian metrics of with constant Gaussian curvatures K and
K 0, then we set j(g, g0) to be (KK 0

)
�1/2j((�K)g, (�K 0

)g0) (observe that (�K)g
and (�K 0

)g0 are hyperbolic). In this way, the function j is 1/2-homogeneous in
both its arguments, As before, Lg will denote the function j(g, ·).

Theorem 5.2.8 (Schläfli formula for V ⇤

k
). The differential of the function V ⇤

k

can be expressed as follows:

dV ⇤

k
(�M) = �

1

2
dLIIIk (�Ik).

Proof. By Proposition 2.2.5, the variation of V ⇤

k
verifies

dV ⇤

k
(�M) =

1

4

Z

⌃k

(�Ik, IIk �HkIk)Ik daIk .

Using the definitions of hk, h0

k
, we can rephrase the expression above as follows:

dV ⇤

k
(�M) = �

p
k + 1

4k

Z

⌃k

(�hk, hk(bk·, ·)� tr(bk)hk)hk
dahk ,

where bk =
1

p
k+1

Bk is the Labourie operator between hk and h0

k
(see Theorem

1.2.18 and Section 1.5). By Lemma 5.2.7, the expression above is equal to
p
k + 1

2k
dLh

0
k
(�hk) = �

1

2
dLIIIk (�Ik),

which proves the statement.

We introduced the notation in order to emphasize the similarities between
the Schläfli formula of V ⇤

k
and the dual Bonahon-Schläfli formula from Theorem

A. Observe in particular that formally Theorem A can be obtained as the limit
of the relation of Theorem 5.2.8, in light of Proposition 5.1.5.
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5.3 Volumes and symplectomorphisms
The aim of this section is to study the properties of the maps �k and  k0 .
In particular, we will prove that the diffeomorphisms �k �  

�1
k0 : T ⇤

T
h
(⌃) !

T ⇤
T

c
(⌃) are symplectic with respect to the cotangent symplectic structures

of T ⇤
T

h
(⌃) and T ⇤

T
c
(⌃), up to a multiplicative factor. This fact extends the

results of Krasnov and Schlenker [KS09] and Bonsante, Mondello, and Schlenker
[BMS15] concerning the grafting map Gr and the smooth grafting map SGr,
respectively.

5.3.1 Relative volumes
Let E be a hyperbolic end (see Definition 1.6.1). In light of Theorem 1.6.4, we
denote by Ek the portion of E that is in between the concave pleated boundary
@E and the k-surface ⌃k of E. Now we define

wk(E) := Vol(Ek)�
1

4

Z

⌃k

Hk dak +
1

2
Lµ(m),

where Hk and dak are the mean curvature and the Ik-area form of ⌃k, and
Lµ(m) is the length of the bending measure µ with respect to the hyperbolic
metric m of @E. Similarly, we define

v⇤
k
(E) := Vol(Ek)�

1

2

Z

⌃k

Hk dak +
1

2
Lµ(m).

The functions wk and v⇤
k

can be considered as the relative versions of the Wk-
volume and V ⇤

k
-volume, respectively.

5.3.2 Cotangent symplectic structures
Let M be a smooth n-manifold, with cotangent bundle ⇡ : T ⇤M ! M . The
Liouville form � of T ⇤M is the 1-form defined by:

�(p,↵)(v) := ↵(d⇡(p,↵) (v))

for every (p,↵) 2 T ⇤M and v 2 T(p,↵)T
⇤M . The 2-form ! := d� is non-

degenerate and it defines a natural symplectic structure on the total space T ⇤M .

In the following, �h, �c will denote the Liouville forms of T ⇤
T

h
(⌃), T ⇤

T
c
(⌃),

respectively, and !h, !c their associated symplectic forms. As before, Th stands
for the Thurston parametrization, defined in Section 1.6.2. The reader can find
the necessary notation concerning the geometry of k-surfaces in Section 2.1, and
the definitions of the parametrizations �k and  k in Sections 5.1.1 and 5.1.2,
respectively.

The first step of our analysis will be to describe the pullback of the Liouville
forms �c and �h by the maps �k and dL � Th,  k, respectively. First we will
need the following technical lemma:

Lemma 5.3.1. Let (gt)t be a 1-parameter family of Riemannian metrics on
⌃, with conformal classes ct = [gt]. If �c denotes the Beltrami differential
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representing the variation of the conformal classes (ct)t, and �g the variation of
the Riemannian metrics (gt)t, then we have

Rehq, �ci =
1

4

Z

⌃
(�g,Re q)

g
dag .

Proof. Let (gt)t be a smooth 1-parameter family of metrics so that the conformal
class of g = g0 is equal to c = c0, and the derivative at t = 0 of the conformal
class ct of gt coincides with �c. If Xt is an object that depends on t, then �X will
denote its derivative with respect to t at t = 0. Let Jt be the almost complex
structure of gt for every t. As shown in [BMS15, Section 2.1], the Beltrami
differential ⌫t of the map id : (⌃, c) ! (⌃, ct) satisfies

⌫t = (1� JtJ)
�1

(1 + JtJ),

In particular its derivative �⌫ can be expressed as 1
2�J J . The almost complex

structure Jt of gt is characterized by the relation dat (·, ·) = gt(Jt·, ·), where dat
is the area form of the metric gt. Taking the derivative of this identity, and
using the fact that dag =

p
det(gij) dx

1
^ dx2 in local coordinates, we obtain

1

2
(�g, g)

g
da =

1

2
tr
�
g�1�g

�
da = �(dat) = �(gt(Jt·, ·)) = �g(J ·, ·) + g(�J ·, ·).

If �g = g(A·, ·), with A g-self-adjoint, then from the relation above we see that

�J J = A�
1

2
tr(A)1 = A0,

where A0 stands for the traceless part of A. In particular, this proves that �⌫ =
1
2A0. The pairing between Beltrami differentials and holomorphic quadratic
differentials can be described as follows:

hq, µi :=

Z

⌃
q • µ,

where q • µ is the C-valued 2-form given by

(q • µ)(u,w) :=
1

2i
(q(µ(u), w)� q(u, µ(w))).

Again, we refer to [BMS15, Section 2.1] for a more detailed description. Let
now B be the traceless and g-self-adjoint operator satisfying Re q(·, ·) = g(B·, ·).
Given any unit vector u, the basis u, Ju is orthonormal and positive oriented. In
particular, since q • �⌫ is a multiple of the volume form dag (⌃ is a 2-manifold),
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we must have q • �⌫ = (q • �⌫)(u, Ju) dag. Now we observe:

Re(q • �⌫)(u, Ju) = Re
1

2i
(q(�⌫(u), Ju)� q(u, �⌫(Ju)))

= Re
1

2i
(iq(�⌫(u), u) + q(J2u, �⌫(Ju)))

(q C-linear and J2
= �1)

= Re
1

2
(q(�⌫(u), u) + q(�⌫(Ju), Ju)) (q C-linear)

=
1

4
(g(BA0u, u) + g(BA0Ju, Ju))

(def. of B and �⌫ =
1
2A0)

=
1

4
tr(BA0) (u, Ju orthon. basis)

=
1

4
tr(BA) (B traceless)

=
1

4
(Re q, �g) (def’s of A and B)

Combining what we have proved so far, we obtain that

Rehq, �ci =

Z

⌃
Re q • �⌫ =

1

4

Z

⌃
(Re q, �g) dag ,

which is our desired relation.

We are now ready to study the pullback of the Liouville forms under the
maps �k, dL � Th and  k:

Lemma 5.3.2. The following relations hold:

�
⇤

k
�c(�E) =

1

4

Z

⌃k

(�IIk,Re qk)IIk daIIk , (5.3)

(dL � Th)
⇤�h(�E) = dLµ (�m), (5.4)

 
⇤

k
�h(�E) = �

1

2

Z

⌃k

(�Ik, IIk �HkIk)Ik daIk , (5.5)

where �Ik and �IIk represent the variations of the first and second fundamental
forms of the k-surface, respectively.

Proof. The Liouville form �c of T ⇤
T

c
(⌃) satisfies

(�
⇤

k
�c)E(�E) = �c(ck,qk)(d(�k)E (�E)) = Rehqk, �cki,

where �ck is the Beltrami differential representing the variation of ck as we
deform the hyperbolic end along the direction �E. Then relation (5.3) follows
from Lemma 5.3.1.

Relation (5.4) has been originally shown by Krasnov and Schlenker in the
proof of [KS09, Theorem 1.2]. First observe that the 1-form (dL � Th)

⇤�h is
well defined since the function dL � Th is C

1 (see Proposition 5.1.6). Similarly
to what done above, we see that

((dL � Th)
⇤�h)E(�E) = �h(m,d(Lµ)m)(d(dL � Th)

E
(�E)) = d(Lµ)m (�m),
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where �m denotes the first order variation of the hyperbolic metric of the concave
pleated surface @E along the direction �E.

Finally, the Liouville form �h satisfies

( 
⇤

k
�h)E(�E) = �

p
k + 1

k
d(Lh

0
k
)
hk

(�hk).

Therefore, relation (5.5) follows from Lemma 5.2.7 by backtracking the multi-
plicative factors involved in the definitions of all the quantities.

Similarly to what done in Section 5.2, we can describe the first order variation
of the relative volume functions wk and v⇤

k
as follows:

Lemma 5.3.3. The relative volumes wk and v⇤
k

satisfy:

dwk (�E) =
1

4

Z

⌃k

✓
�IIk, IIIk �

Hk

2
IIk

◆

IIk

daIk +
1

2
dLµ (�m),

dv⇤
k
(�E) =

1

4

Z

⌃k

(�Ik, IIk �HkIk)Ik daIk +
1

2
dLµ (�m).

Proof. Both the relations can be proved by applying the same strategy of [KS09,
Proposition 4.3]. Let (gt)t be a differentiable 1-parameter family of hyperbolic
metrics on ⌃ ⇥ (0,1) so that the first order variation of Et = (⌃ ⇥ (0,1), gt)
coincides with �E. For any t, we choose an embedded surface S in ⌃ ⇥ (0,1)

that lies below the k-surface of Et (i. e. it is contained in the interior of the
region (Et)k) for all small values of t. Now we decompose the quantity wk(E)

in two terms:

wk(E) =

 
Vol(N(S,⌃t,k))�

1

4

Z

⌃t,k

Ht,k dak,t

!
+

✓
Vol(N(@Et, S)) +

1

2
Lµt(mt)

◆

where ⌃t,k is the k-surface of Et, and N(S0, S00
) denotes the region of E bounded

by S0 from below and S00 from above.
Following step by step the proof of Proposition 5.2.1, we see that the varia-

tion of the first term equals

1

4

Z

⌃k

✓
�IIk, IIIk �

Hk

2
IIk

◆

IIk

daIk +
1

2

Z

S

✓
�H +

1

2
(�I, II)

◆
da ,

where the mean curvature H and the second fundamental form II of S are
defined with respect to the normal vector field of S pointing towards the k-
surface ⌃k.

The variation formula of the right term can be computed with the exact same
argument of Chapter 2, the only difference is that we are looking at a region
bounded by a smooth surface and a locally concave pleated surface, while in
Chapter 2 we were considering the convex core, which is a region bounded by
convex pleated surfaces. This leads to the following variation:

1

2
d(Lµ)m (�m) +

1

2

Z

S

✓
�(�H)�

1

2
(�I,�II)

◆
da .

The signs multiplying H and II are due to the fact that we need to consider
the mean curvature and the second fundamental form defined with the normal
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vector field pointing inside N(@E,S), which is the opposite of the one considered
above. In particular, when we look at the sum of the two terms, the integrals
over S simplify, and we are left with the first relation of our statement.

The second relation follows by an analogous argument, replacing the use of
Proposition 5.2.1 with Proposition 2.2.5.

Lemma 5.3.4. For every k 2 (�1.0), we have

dwk = ��
⇤

k
�c +

1

2
(dL � Th)

⇤�h,

dv⇤
k
= �

1

2
 

⇤

k
�h +

1

2
(dL � Th)

⇤�h.

Proof. The statement is a direct consequence of Lemma 5.3.2 and Lemma 5.3.3.

Taking the differential of the identities in Lemma 5.3.4, and remembering
that d

2
= 0, we immediately conclude the following:

Theorem 5.3.5. For every k 2 (�1.0), the maps

�k � (dL � Th)
�1

: (T ⇤
T

h
(⌃),!h

) �! (T ⇤
T

c
(⌃), 2!c

),

 k � (dL � Th)
�1

: (T ⇤
T

h
(⌃),!h

) �! (T ⇤
T

h
(⌃),!h

)

are symplectomorphisms.

Observe that Theorem G is a direct consequence of what we just observed.

Remark 5.3.6. Theorem 5.3.5, combined with Corollary 5.1.3, implies that the
map

Sch �(dL � Th)
�1

: (T ⇤
T

h
(⌃),!h

) �! (T ⇤
T

c
(⌃), 2!c

)

is a symplectomorphism, which has been originally shown in [KS09, Theo-
rem 1.2]. In addition, [KS09, Theorem 1.2] and Theorem G imply also [BMS15,
Theorem 1.11], which states that the function

Sch � 
�1
k

: (T ⇤
T

h
(⌃),!h

) �! (T ⇤
T

c
(⌃), 2!c

)

is a symplectomorphism for every k 2 (�1, 0). Finally, by applying Theorem G
to the case k = k0, and taking care of the multiplicative factors involved in the
definitions of �k and  k, we deduce that the function

Ĥ : (T ⇤
T

c
(⌃),!c

) �! (T ⇤
T

h
(⌃),!h

)

(c, q) �! (h(c, q), d(Lh(c,�q)))

is a symplectomorphism, where h(c,±q) = '�1
c

(±q) is the hyperbolic metric
of ⌃ for which the identity map (⌃, c) ! (⌃, h(c,±q)) is harmonic with Hopf
differential equal to ±q (see Theorem 1.2.15).



110 CHAPTER 5. CGC-SURFACES IN HYPERBOLIC 3-MANIFOLDS

5.4 Kleinian reciprocities
Let M be a convex co-compact hyperbolic 3-manifold and let QD(M) denote
the space of quasi-isometric deformations of M . Any isotopy class of hyperbolic
metrics [g] 2 QD(M) has a collection of k-surfaces, each one sitting inside a
hyperbolic end Ei of (M, g). In this way, we can define a function

�k : QD(M) �! T ⇤
T

c
(@M),

which associates to any class [g] the data (�k(Ei))i of its k-surfaces. Similarly,
we define the function  k : QD(M) ! T ⇤

T
h
(@M), sending [g] into the data

( k(Ei))i.

Theorem E. For every k 2 (�1, 0), the image �k(QD(M)) (resp.  k(QD(M)))
is a Lagrangian submanifold of T ⇤

T
c
(@M) (resp. T ⇤

T
h
(@M)).

Proof. The statement is a consequence of Lemma 5.3.4 and of the variation
formula of the dual volume of a convex co-compact hyperbolic manifold. To see
this, first we apply Lemma 5.3.4 to each end of M :

dwk,i (�Ei) = ��
⇤

k,i
�c
i
(�Ei) +

1

2
(dLi � Thi)

⇤�h
i
(�Ei).

By the dual Bonahon-Schläfli formula (Theorem A), we have that

dV ⇤

C
(�M) = �

1

2

X

i

dLµi (�mi) = �
1

2

X

i

(dLi � Thi)
⇤�h

i
(�Ei).

Therefore we deduce that

d

 
X

i

wk,i + V ⇤

C

!
=

X

i

dwk,i + dV ⇤

C
= �

X

i

�
⇤

k,i
�c
i
= ��⇤

k
�c.

The function
P

i
wk,i + V ⇤

C
is in fact equal to the W -volume of Mk, the portion

of M contained in the union of the k-surfaces of the ends (Ei)i. Indeed:

X

i

wk,i(Ei) + V ⇤

C
(M) =

X

i

 
Vol(Ek,i)�

1

4

Z

⌃k,i

Hk,i dak,i +
1

2
Lµi(mi)

!
+

+Vol(CM)�
1

2
Lµ(m)

= Vol(CM) +

X

i

Vol(Ek,i)�
1

4

X

i

Z

⌃k,i

Hk,i dak,i +

+
1

2
Lµ(m)�

1

2
Lµ(m)

= Vol(Mk)�
1

4

Z

@Mk

Hk dak

= Wk(M).

Therefore we have proved that dWk = ��⇤
k
�c. Taking the differential of this

identity we obtain that �⇤
k
!c

= 0. This implies the statement, since �k is an
embedding and 2 dimQD(M) = dimT ⇤

T
c
(@M).
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In an analogous manner we can prove that  ⇤

k
�h = �2 dV ⇤

k
. To see this, it is

enough to replace the role of the relative W -volumes wk,i with the dual volumes
v⇤
k,i

and then proceed in the exact same way. Again, by taking the differential
of the identity  ⇤

k
�h = �2 dV ⇤

k
, we obtain the second part of the statement.

Theorem E is a generalization of Krasnov and Schlenker’s reformulation of
McMullen’s Kleinian reciprocity Theorem [KS09, Theorem 1.5], and their result
can be recovered by taking the limit of the identity �⇤

k
!c

= 0 and applying
Corollary 5.1.3 to each hyperbolic end of M . Moreover, Krasnov and Schlenker
[KS09, Theorem 1.4] proved that the image of the function dL�Th is Lagrangian
inside (T ⇤

T
h
(⌃),!h

). Since the map dL � Th is the limit of the  k’s, the part
of the statement concerning the maps  k can be similarly seen as an extension
of Krasnov and Schlenker’s original result.

5.4.1 Quasi-Fuchsian reciprocities

In this section we present a generalization of McMullen’s quasi-Fuchsian reci-
procity Theorem in its original formulation from [McM98]. First we will recall
McMullen’s original statement, and then we will see how to formulate Theorem
E is a similar manner. We define the Bers’ embeddings to be the maps:

�X : T
c
(⌃) �! T ⇤

X
T

c
(⌃)

Y 7�! Sch(Q(X,Y ))
+

�Y : T
c
(⌃) �! T ⇤

Y
T

c
(⌃)

Y 7�! Sch(Q(X,Y ))
�

where Q(X,Y ) denotes the unique quasi-Fuchsian manifold with conformal
classes at infinity (X,Y ), and Sch(Q(X,Y ))

± are the Schwarzian differentials
at infinity on the upper and lower boundaries at infinity. McMullen’s original
formulation of the quasi-Fuchsian reciprocity Theorem is the following:

Theorem 5.4.1 ([McM98, Theorem 1.6]). Given (X,Y ) 2 T
c
(⌃)⇥ T

c
(⌃), the

differentials of the Bers’ embeddings

d(�X)Y : TY T
c
(⌃) �! T ⇤

X
T

c
(⌃), d(�Y )X : TXT

c
(⌃) �! T ⇤

Y
T

c
(⌃)

are adjoint linear operators. In other words, d(�X)Y = d(�Y )⇤X .

We want to describe analogous statements in the case in which Sch is replaced
by �k or  k. For every k 2 (�1, 0), let Bk and Tk be the maps

Bk : QF(⌃) �! T
c
(⌃)⇥ T

c
(⌃)

M 7�! (c+
k
, c�

k
)

Tk : QF(⌃) �! T
h
(⌃)⇥ T

h
(⌃)

M 7�! (h+
k
, h�

k
)

where c±
k

are the conformal classes of the second fundamental forms of the
upper and lower k-surface of M , respectively, and h±

k
are the hyperbolic metrics

(�k)I±
k

of the upper and lower k-surface of M , respectively.
A consequence of Labourie and Schlenker’s works [Lab92a], [Sch06] (see The-

orem 3.4.1) is that the function Tk is a diffeomorphism for every k 2 (�1, 0).
We do not know if the same is true for Bk, we will assume this to be true for
the rest of this section. In analogy to Bers’ embeddings, we define the following
maps:
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�k,X : T
c
(⌃) �! T ⇤

X
T

c
(⌃)

Y 7�! �+
k
�B�1

k
(X,Y )

�k,Y : T
c
(⌃) �! T ⇤

Y
T

c
(⌃)

Y 7�! ��
k
�B�1

k
(X,Y )

⌧k,X : T
h
(⌃) �! T ⇤

X
T

h
(⌃)

Y 7�!  +
k
� T�1

k
(X,Y )

⌧k,Y : T
h
(⌃) �! T ⇤

Y
T

h
(⌃)

Y 7�!  �

k
� T�1

k
(X,Y )

where:

a) B�1
k

(X,Y ) is the conjecturally unique quasi-Fuchsian manifold whose up-
per and lower k-surfaces have X and Y as conformal classes of their second
fundamental forms, respectively;

b) T�1
k

(X,Y ) is the unique quasi-Fuchsian manifold whose upper and lower
k-surfaces have X and Y as hyperbolic structures induced by their first
fundamental forms, respectively;

c) �±
k

� B�1
k

(X,Y ) are the holomorphic quadratic differentials q±
k

on the
upper and lower k-surfaces (as defined in Section 5.1.1);

d)  ±

k
� T�1

k
(X,Y ) are the 1-forms d(L

III
±
k
)
I
±
k

on the upper and lower k-
surfaces (as defined in Section 5.1.2).

Now that we have introduced all the notation, we are ready to state the for-
mulations of the quasi-Fuchsian reciprocity Theorems that follow from Theorem
E:

Theorem 5.4.2. For every (X,Y ) 2 T
h
(⌃) ⇥ T

h
(⌃), the differentials of the

maps

d(⌧k,X)
Y
: TY T

h
(⌃) �! T ⇤

X
T

h
(⌃), d(⌧k,Y )X : TXT

h
(⌃) �! T ⇤

Y
T

h
(⌃)

are adjoint linear operators.

Theorem 5.4.3. If the map Bk is a diffeomorphism, then for every (X,Y ) 2

T
c
(⌃)⇥ T

c
(⌃) , the differentials of the maps

d(�k,X)
Y
: TY T

c
(⌃) �! T ⇤

X
T

c
(⌃), d(�k,Y )X : TXT

c
(⌃) �! T ⇤

Y
T

c
(⌃)

are adjoint linear operators.

Proof of Theorems 5.4.2 and 5.4.3. Let F : N+
⇥ N�

! T ⇤
(N+

⇥ N�
) be a

smooth function satisfying ⇡ � F = id, where ⇡ : T ⇤
(N+

⇥N�
) ! N+

⇥N� is
the cotangent bundle projection. For every X in N+, we set F+

X
: N�

! T ⇤

X
N+

to be F+
X
(Y ) := F (X,Y )

+, where F (X,Y )
+ is the component of F (X,Y ) in

the fiber T ⇤

X
N+, and, for every Y 2 N�, we set F�

Y
: N+

! T ⇤

Y
N� to be

F�

Y
(X) := F (X,Y )

�, where F (X,Y )
� is the component of F (X,Y ) in the

fiber T ⇤

Y
N�. Then, the following relation holds:

hd(F�

Y
)
X
(u), vi � hd(F+

X
)
Y
(v), ui = (F ⇤!)(X,Y )((u, 0), (0, v)),

for all (X,Y ) 2 N+
⇥ N�, u 2 TXN+, v 2 TY N�. A proof of this relation

can be found in [KS12, Section 5.2.1] for the function F = Sch, the proof of
the general case is formally identical. Now, using this relation for the maps
F = �k � B�1

k
and F =  k � T�1

k
, and applying Theorem E, we obtained the

desired statement.
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5.5 The k-flows are Hamiltonian
In this section we show that the k-surface foliation of a hyperbolic end can be
described as the integral curve of a time-dependent Hamiltonian vector field
with respect to the symplectic structure 2�

⇤

k
!c

=  
⇤

k
!h on E(⌃), which does

not depend on k in light of Theorem G. The vector fields we will look at are
defined in terms of the diffeomorphisms (�k)k and ( k)k as follows:

Xk :=
d

dh
�k+h � �

�1
k

��
h=0

2 �(TT ⇤
T

c
(⌃)),

Yk :=
d

dh
 k+h � 

�1
k

��
h=0

2 �(TT ⇤
T

h
(⌃)).

In order to simplify the notation, whenever we have an object X that depends
on the curvature k, we will denote by Ẋ its derivative with respect to k. We
denote by mk : E(⌃) ! R the function

mk(E) :=

Z

⌃k

Hk daIk .

Lemma 5.5.1. For every k 2 (�1, 0), we have

�c(Xk) � �k = �ẇk +
1

8(k + 1)
mk, (5.6)

�h(Yk) � k = �2v̇⇤
k
+

1

k
mk. (5.7)

Proof. Let E be a fixed hyperbolic end. If (ck, qk) denotes the point �k(E) 2

T ⇤
T

c
(⌃), then the Liouville form �c satisfies

�c(Xk) � �k(E) = (�c)�k(E)

✓
d

dh
�k+h(E)|

h=0

◆
= Rehqk, ċki.

By Proposition 5.2.1, we have

ẇk(E) =
1

4

Z

⌃k

 ✓
İIk, IIIk �

Hk

2
IIk

◆

IIk

+
Hk

2(k + 1)

!
daIk

= �Rehqk, ċki+
1

8(k + 1)

Z

⌃k

Hk daIk

= �Rehqk, ċki+
1

8(k + 1)
mk(E).

Combining these two relations we obtain the first part of the statement. Simi-
larly, we see that

�h(Yk) � k(E) = �

p
k + 1

k
d(Lh

0
k
)
hk

(ḣk).

By definition of hk, we have ḣk = �Ik � k İk. Using Lemma 5.2.7, we obtain

�h(Yk) � k(E) =
1

2k

Z

⌃k

(�Ik � k İk, IIk �HkIk)Ik daIk

= �
1

2

Z

⌃k

(İk, IIk �HkIk)Ik daIk +
1

k

Z

⌃k

Hk daIk

= �2v̇⇤
k
(E) +

1

k
mk(E),
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where, in the last step, we used Proposition 2.2.5.

Lemma 5.5.2. Let M and N be a n- and a 2n-manifold, respectively, and
let 't : N ! T ⇤M be a 1-parameter family of diffeomorphisms, indexed by a
variable t varying in an open interval J of R. Denote by � the Liouville form
of T ⇤M , and set Vt to be the vector field of T ⇤M given by

Vt :=
d

dh
't+h � '�1

t

��
h=0

,

for any t 2 J . Then we have

('�1
t

)
⇤

✓
d

dt
'⇤

t
�

◆
= ◆Vt! + d(◆Vt�) ,

for every t 2 J .

Proof. The statement is a consequence of Cartan formula. The time-dependent
family of vector fields (Vt)t corresponds to a ordinary vector field Ṽ on the
manifold J ⇥ T ⇤M , by setting

Ṽ (t, ·) := @t + Vt(·) 2 TtJ ⇥ T·(T
⇤M) ⇠= T(t,·)(J ⇥ T ⇤M).

An intergral curve � = �(t) of (Vt)t in T ⇤M corresponds to the integral curve
t 7! (t, �(t)) of Ṽ in J ⇥T ⇤M . Let ⇡ denote the projection of J ⇥T ⇤M onto its
second component. We apply Cartan formula to the 1-form ⇡⇤� and the vector
field Ṽ , obtaining

L
Ṽ
⇡⇤� = ◆

Ṽ
d(⇡⇤�) + d(◆

Ṽ
⇡⇤�) , (5.8)

where L
Ṽ
⇡⇤� denotes the Lie derivative of the 1-form ⇡⇤� along the vector field

Ṽ . A straightforward computation proves the following relations:

◆
Ṽ
d(⇡⇤�)|(t,·) = ⇡⇤

(◆Vtd�)|(t,·) ,

(◆
Ṽ
⇡⇤�)(t, ·) = (◆Vt� � ⇡)(t, ·),

('�1
t

� ⇡)⇤
✓

d

dt
'⇤

t
�

◆����
(t,·)

= L
Ṽ
⇡⇤�|(t,·) .

Replacing these expressions in the equation (5.8), we obtain that, for every t 2 J

⇡⇤

✓
('�1

t
)
⇤

✓
d

dt
'⇤

t
�

◆
� ◆Vt! � d(◆Vt�)

◆����
(t,·)

= 0.

Since d⇡(t,·) is surjective, the pullback by ⇡ at (t, ·) is injective on k-forms. In
particular, for every t 2 J we must have

('�1
t

)
⇤

✓
d

dt
'⇤

t
�

◆
� ◆Vt! � d(◆Vt�) = 0,

which proves the statement.

Theorem F. For every k 2 (�1, 0), the vector field Xk of T ⇤
T

c
(⌃) is Hamil-

tonian with respect to the symplectic structure !c, with Hamiltonian function
�

1
8(k+1) mk��

�1
k

. Similarly, the vector field Yk of T ⇤
T

h
(⌃) is Hamiltonian with

respect to the symplectic structure !h, with Hamiltonian function �
1
k
mk � 

�1
k

.
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Proof. From Lemma 5.3.4 we see that

d

dk
�

⇤

k
�c =

d

dk


� dwk +

1

2
(dL � Th)

⇤�h
�
= � dẇk . (5.9)

Applying Lemma 5.5.2 to N = E(⌃), M = T
c
(⌃) and 't = �k, we get

(�
�1
k

)
⇤

✓
d

dk
�

⇤

k
�c
◆

= ◆Xk!
c
+ d(◆Xk�

c
) . (5.10)

Now, putting everything together, we obtain

◆Xk!
c
= (�

�1
k

)
⇤

✓
d

dk
�

⇤

k
�c
◆
� d(◆Xk�

c
) (eq. (5.10))

= �(�
�1
k

)
⇤
dẇk � d

✓
�ẇk � �

�1
k

+
1

8(k + 1)
mk � �

�1
k

◆

(eq (5.6) and (5.9))

= � d
�
ẇk � �

�1
k

�
+ d
�
ẇk � �

�1
k

�
�

1

8(k + 1)
d
�
mk � �

�1
k

�

= �
1

8(k + 1)
d
�
mk � �

�1
k

�
,

which proves the first part of the statement. With the exact same strategy we
can prove the assertion concerning the vector fields (Yk)k.

Remark 5.5.3. It can be easily checked that the choice of the multiplicative
constant in the definition of qk, and consequently of �k, becomes relevant for
Theorem F to hold. The same holds for the multiplicative constant in the
definition of  k.
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Possible developments

In the following, we describe a series of questions that are related to (or that
arise from) our results, on which we hope to work on in the near future.

Prescriptions on k-surfaces
In Chapter 3, and more specifically in the proof of Theorem 3.4.1, we made use
of a deep result, due to Labourie and Schlenker, which we recall here:

Theorem 5.5.4 ([Lab92a], [Sch06]). Let g be a hyperbolic metric on a compact
3-manifold M with smooth and strictly convex boundary. Then the induced
metric I on @M has Gaussian curvature > �1. Every Riemannian metric on
@M with Gaussian curvature > �1 is realized as the induced metric on @M by
a unique hyperbolic metric on M with strictly convex boundary.

In [Sch06], it is also presented a similar result concerning the third funda-
mental forms on @M :

Theorem 5.5.5 ([Sch06]). Let g be a hyperbolic metric on a compact 3-manifold
M with smooth and strictly convex boundary. Then the third fundamental form
III on @M has curvature < �1, and its closed geodesics which are contractible
in M have length > 2⇡. Moreover, every such metric is realized by a unique g.

In particular, these results imply that, for every k 2 (�1, 0), we have:

• for every smooth metric on @M with constant Gaussian curvature k, there
exists a unique hyperbolic metric on M with such first fundamental form
on its boundary (see Theorem 3.4.1);

• for every smooth metric on @M with constant Gaussian curvature k

k+1 ,
and such that its closed geodesics which are contractible in M have length
> 2⇡, there exists a unique hyperbolic metric on M with such third fun-
damental form on its boundary.

Theorems 5.5.4 and 5.5.5 are related to two questions, asked by William
Thurston:

Conjecture 1 (Thurston). Is the space of quasi-Fuchsian manifolds QF(⌃)

parametrized by the hyperbolic metrics (m+,m�
) 2 T

h
(⌃)

2 on the boundary of
the convex core?

117
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It is known that every pair of hyperbolic metrics can be realized as the
hyperbolic structures on the boundary of the convex core of a quasi-Fuchsian
manifold, but the uniqueness has not been proved (or disproved) yet.

Let FML<⇡(⌃) denote the subset of ML(⌃)
2 given by the pairs of measured

laminations that are filling ⌃ and without simple closed curves with weight � ⇡.

Conjecture 2 (Thurston). Is the space of quasi-Fuchsian manifolds QF(⌃)

parametrized by the bending measured laminations (µ+, µ�
) 2 FML<⇡(⌃) on

the boundary of the convex core?

It has been proved by Bonahon and Otal [BO04] that every pair of filling
measured laminations in FML<⇡(⌃) is realizable, and that the uniqueness
holds for pairs of rational laminations lying in FML<⇡(⌃).

In light of the analogies between k-surfaces, the boundary at infinity and
the boundary of the convex core that we observed in the introduction, a natural
question that arises is the following:

Question 1. Let k 2 (�1, 0). Is the space of quasi-Fuchsian manifolds QF(⌃)

parametrized by the conformal structures of the second fundamental forms of its
k-surfaces?

An affirmative answer to this question would extend the classical work of
Bers [Ber60], which states that the space of quasi-Fuchsian manifolds is param-
etrized by the pair of conformal structures at infinity. Similarly we can ask:

Question 2. Let k 2 (�1, 0). Is it possible to prescribe the pair of measured
foliations of the Hopf differentials qk associated to the k-surfaces of a quasi-
Fuchsian manifold?

Even in the case of the boundary at infinity, it is not known whether the pair
of measured foliations of the Schwarzian at infinity are filling, and which are the
candidate necessary and sufficient conditions of the foliations to be realized.

Constant curvature foliations
In [Mon89], Moncrief proved the existence of a Hamiltonian flow correspond-
ing to constant mean curvature (briefly CMC) foliations in constant sectional
curvature Lorentzian spacetimes. His method is based on the ADM formal-
ism (named after its authors Arnowitt, Deser and Misner), which describes a
Hamiltonian formulation of the general theory of relativity [ADM59].

Question 3. Is it possible to show that the CMC-flow in de-Sitter, Minkowski,
and anti-de Sitter spacetimes is Hamiltonian through the study of suitable no-
tions of volumes?

Moncrief’s results were later used by Andersson, Moncrief, and Tromba
[AMT97] to develop a proof of the existence of CMC-foliations for those MGHC
spacetimes that contain at least one CMC Cauchy surface.

Question 4. Is it possible to prove the existence of constant Gaussian curvature
foliations for de-Sitter, Minkowski, and anti-de Sitter spacetimes, originally due
to Barbot, Béguin and Zeghib [BBZ11], using the Hamiltonian k-surface flow
described in Section 5.5?
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Such results would clarify the similarities between CMC and constant Gaus-
sian curvature foliations, and they would furnish a simple and unified strategy
to approach these problems.

A modification of the argument used in Theorem F proves the existence of a
Hamiltonian flow over the space of germs of CMC-surfaces satisfying a suitable
natural bound of their principal curvatures. Since a generic quasi-Fuchsian
manifold M may possess several minimal surfaces (see [HW13, Section 4]), there
is no hope to have a natural and unique foliation by constant mean curvature for
any quasi-Fuchsian structure. However, this question, first asked by Thurston,
still makes sense when we restrict ourselves to the space of almost Fuchsian
manifolds, which possess a unique minimal surface with principal curvatures
contained in (�1, 1):

Conjecture 3 (Thurston). Is an almost-Fuchsian manifold foliated by CMC-
surfaces?

A natural question that arises from this picture is whether an approach sim-
ilar to the one of Andersson, Moncrief, and Tromba [AMT97] in the Lorentzian
context could be developed in the hyperbolic setting, at least to determine suf-
ficient conditions for the existence of CMC-foliations, based on bounds on the
geometry of the minimal surfaces.

Extensions to higher Teichmüller theories
A general powerful tool in the study of representations of surface groups is to
determine equivariant immersions of surfaces that are natural, in some sense,
with respect to the geometry to the target space. A typical "natural condition"
to require for these maps is to be minimal. However, there are cases in which
the study through minimal surfaces displays complications, as it happens for
quasi-Fuchsian manifolds, which many contain several minimal surfaces.

The same phenomenon does not occur for constant Gaussian curvature sur-
faces: every hyperbolic end possesses exactly one k-surface for every k 2 (�1, 0).
Equivalently, for every complex projective structure � on ⌃ there exists a unique
k-surface that is equivariant by the action of the holonomy of �, which takes
value into P SL2(C). A possible analogous of k-surfaces for convex projective
structures (so for the Hitchin component of SL(3,R)) that seem to be promising
are affine spheres and constant affine curvature surfaces, as described by the
works of Labourie [Lab07], and independently of Loftin [Lof01]. A general in-
teresting question is to investigate the connections between these notions, and
possibly to determine a proper general framework for such classes of surfaces in
higher rank Lie groups.

Para-quaternionic structures on the space of AdS
manifolds
A celebrated result by Donaldson [Don03] asserts that the space of almost-
Fuchsian manifolds admits a natural hyper-Kähler structure, invariant under
the action of the mapping class group. Donaldson’s construction proceeds by
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applying an infinite-dimensional version of the symplectic reduction on the space
of sections of a certain bundle over ⌃, which possess a formal natural hyper-
Kähler structure.

An interesting problem, on which I am working together with Andrea Seppi
and Andrea Tamburelli, is to understand whether a similar phenomenon occurs
for the space of globally hyperbolic maximal compact Anti-de-Sitter spacetimes.
In this setting, the promising notion to look at is the one of para-hyperKähler
structure, in which a complex structure (J2

1 = �id) coexists with a pair of para-
complex structures (J2

2 = J2
3 = id) and a pseudo-Riemannian metric, verifying

certain compatibility relations.



Notation

⌃ : oriented connected compact smooth surface with empty boundary and
of genus g � 2 (⌃ if endowed with the opposite orientation);

H
n : the hyperbolic space of dimension n;

dS
n : the de Sitter space of dimension n;

AdS
n : the anti de Sitter space of dimension n;

T (⌃) : the Teichmüller space of ⌃ (T h for hyperbolic structures, T c for confor-
mal structures);

I, II, III : the first, second and third fundamental forms;

`m : the length function over ML(⌃) with respect to the hyperbolic metric
m;

Lµ : the length function over T
h
(⌃) of the measured lamination µ;

CM : the convex convex core of M ;

N"X : the "-neighbourhood of X;

S"X : the "-equidistant surface from X;

1 : the identity endomorphism;

MCG(⌃) : the mapping class group of ⌃;

GL(⌃) : the space of geodesic laminations of ⌃;

ML(⌃) : the space of measured geodesic laminations of ⌃;

QD(M) : the space of quasi-isometric deformations of a complete hyperbolic 3-
manifold M ;

QF(⌃) : the space of quasi-Fuchsian manifolds homeomorphic to ⌃⇥ R;

E(⌃) : the space of hyperbolic ends homeomorphic to ⌃⇥ (0,1);

VR : the renormalized volume function;

VC : the volume of the convex core function;

V ⇤

C
: the dual volume of the convex core function;
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Sch : the Schwarzian parametrization of E(⌃);

Th : the Thurston parametrization of E(⌃);

extF : the extremal length function of the measured foliation F .
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