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Abstract

In this work, the online printing shop scheduling problem is considered. This challenging real problem,
that appears in the nowadays printing industry, can be seen as a flexible job shop scheduling problem
with sequence flexibility in which precedence constraints among operations of a job are given by an
arbitrary directed acyclic graph. In addition, several complicating particularities such as periods of
unavailability of the machines, resumable operations, sequence-dependent setup times, partial overlapping
among operations with precedence constraints, release times, and fixed operations are also present in the
addressed problem. In the present work, mixed integer linear programming and constraint programming
models for the minimization of the makespan are presented. Modeling the problem is twofold. On the
one hand, the problem is precisely defined. On the other hand, the capabilities and limitations of a
commercial software for solving the models are analyzed. Extensive numerical experiments with small-
, medium-, and large-sized instances are presented. Numerical experiments show that the commercial
solver is able to optimally solve only a fraction of the small-sized instances when considering the mixed
integer linear programming model; while all small-sized and a fraction of the medium-sized instances are
optimally solved when considering the constraint programming formulation of the problem. Moreover,
the commercial solver is able to deliver feasible solutions for the large-sized instances that are of the size
of the instances that appear in practice.

Keywords: Flexible job shop scheduling with sequence flexibility, Resumable operations, Unavailability
of the machines, Sequence-dependent setup time, Mixed integer linear programming, Constraint
programming
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1. Introduction

The online printing shop scheduling problem emerged in the printing industry that nowadays faces
challenges that were unheard of just a couple of years ago. Printing jobs are getting more complex; while
demand is decreasing due to the expanding use of online advertising and the decreasing of the printed
matter. Online printing shops (OPS) commenced taking advantage of the Internet and standardization
towards mass customization to attract more clients and to reduce costs. This new business model en-
ables printers to leave the inquiry and order process to the customer. Alternatively to a small number
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of fixed contracts, online printing shops can reach up to 20k online orders of diverse clients per day.
Through an online system, there are placed orders that can be of various types, such as bags, beer mats,
books, brochures, business cards, calendars, certificates, Christmas cards, envelopes, flyers, folded leaflets,
greeting cards, multimedia CD/DVD, napkins, paper cups, photo books, posters, ring binders, stamps,
stickers, tags, tickets, wristbands, among others. The system guides the user through a standardized
process that defines details including size, orientation, material, finish, color mode, design, among others.

Clearly, products to be manufactured have a different production plan; and the production of all
of them involves a printing operation. When a significant number of orders is reached, looking at the
printing operation of each product and aiming to reduce the production cost, a cutting stock problem
is solved to join the printing operations of different placed orders. These merged printing operations
are known as ganging operations. Orders whose printing operations are ganged constitute a single job.
Thus, jobs of the considered scheduling problem, composed by a heterogeneous set of operations with
arbitrary precedence constraints, have wide diversity. Operations of a job can be categorized into three
major groups: prepress, the preparation of materials and plates for printing; press, the actual printing
process; and postpress, the cutting, folding, binding, embossing (varnishing, laminating, hot foil, etc.),
and trimming of printed sheets into their final form. However, it is important to highlight that not all
jobs have to follow the same route, e.g., not all jobs need a cutting operation, not all jobs present folding
operations, not all jobs present embossing operations, etc. Moreover, the order in which operations
of a job take place differs from job to job, e.g., a job may require a printing operation followed by a
cutting operation and another printing operation. Another job may require embossing before cutting;
while another job may require embossing after cutting or it may require several printing operations in
sequence. Operations can be processed by several machines with varying processing times. Figure 1
schematically shows two possible job topologies. The figure aims to stress that, differently from the
classical linear order, operations of a job have arbitrary precedence constraints represented by a directed
acyclic graph (DAG). The DAG presented in Figure 1a represents the topology of a job with a ganging
operation. The ganging operation (node 2) is disassembled by a cutting operation (node 3) into three
independent sequences. The topology presented in Figure 1b represents, in a very simplified way, the
production of a book. Independent sequences represent the parallel production of the book cover (nodes 1
and 3) and book pages (nodes 2 and 4), later assembled by a binding operation (node 5). Figure 2 presents
a Gantt chart of a toy instance of the OPS scheduling problem. The figure aims to illustrate a small
set of diverse jobs in a complicate system that includes features such as periods of unavailability of
the machines, release times, setup operations, overlapping between operations of a job with precedence
constraints, etc.

1 2 3

6 9

5 8

4 7

2 4

5 6 7

1 3

(a) Example of a job with a ganging operation. (b) Example of a job with a binding operation.

Figure 1: Directed acyclic graphs representing the precedence constraints between operations of two jobs. Each node
represents an operation and arcs are directed from left to right.

In the OPS scheduling problem, a precedence relation saying that an operation i must be processed
before an operation j is represented by an arc (i, j) in a directed acyclic graph. On the one hand,
operations with a precedence relation may overlap. The extent of this overlapping is limited by a fraction
that defines the proportion of operation i that has to be processed before its successor j can start. On the
other hand, the precedence implies that j can not be completed before i. Several flexible machines are
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Figure 2: Gantt chart of a solution to a simple instance of the considered scheduling problem containing 9 machines and 7
jobs. The 4/0 in the machine description means it is capable of printing 4 colors one side; while 4/4 means 4 colors both
sides. Digital printing operations do not require plate production. Disassembling and assembling operations may occur.
The jobs’ routes through the machines are not the same. Operations of a job are represented with the same color.

available in the OPS. Each operation i can be processed by a subset of machines, with varying processing
times. Before starting processing, the machine must be configured according to the characteristics of
each operation such as color, size, grammage, scheme, etc. The setup time is the time taken to set up a
machine from the current setting to the setting of the next operation to be processed. The length of the
setup time depends on the similarities between the two consecutive operations. The more different the
operations’ settings, the longer the machine setup. Another important feature of the considered problem
is that machines may be unavailable during some planned (i.e., known beforehand) time periods, being
a consequence of pre-scheduling, maintenance, shift patterns, or overlapping of two consecutive time
planning horizons. Operations can be interrupted by one or more unavailable periods, i.e., operations
are resumable. On the other hand, the machine setup cannot be interrupted by unavailable periods;
and the end of the setup must be immediately followed by the beginning of the operation processing.
A note about the interruption of the operations’ processing by periods of unavailability of the machines
is in order. According to Pinedo (Pinedo, 2012, p.16), preemption implies that it is not necessary to
keep an operation on a machine, once started, until its completion. The scheduler is allowed to interrupt
the processing of an operation (preempt) at any point in time and put a different operation on the
machine instead. This is not exactly the case of the OPS scheduling problem. Preemption of this kind
is not allowed. In the OPS scheduling problem, when a machine starts the execution of an operation,
the operation remains on the machine until its completion. This means that the processing may be
interrupted by a period of unavailability of the machine, but the processing of the operation must be
resumed as soon as the machine returns to be available, i.e., the operation must remain on the machine
until completion. Also in order is a note about the fact that setup times can not be interrupted and
that they must be immediately followed by the execution of an operation, with no idle time between
them. A setup operation could be the operation of cleaning a machine; while a period of unavailability
of a machine could correspond to pre-scheduled maintenance. The machine can not be opened and half-
cleaned, the maintenance operation executed, and the cleaning operation completed. This is because
the maintenance operation may ruin the cleaning operation. The same situation occurs if the period of
unavailability corresponds to a night shift during which the store is closed. In this case, the half-cleaned
opened machine could get dirty because of dust or insects during the night. A customer may request to
visit the shop to check her/his order while it is being produced. To meet with the customer’s visiting
schedule, some operations may be fixed at particular resources with a pre-defined starting time. During
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the scheduling optimization, fixed operations cannot be moved or reassigned. Fixed operations are also
useful to include, in the scheduling to be constructed, operations of previous scheduling that are still being
processed in the system. Considering the (final) operations of the previous scheduling as fixed operations
of the new one allows one to adequately take into account the corresponding sequence-dependent setup
times.

Based on the manufacturing information system and key features of the production line, a production
schedule should be planned to maximize the production effectiveness so that online printing shops can gain
as much production benefit as possible. The production effectiveness can be represented by an objective
function under the constraint of manufacturing resources (machines, information sources, production
workflows, etc.) A usual objective is to minimize the time that elapses from the start of work to the
end, as in this way enterprises can reduce the cost of labor and electricity while achieving a high quality
of products. In this paper, we study the problem of minimizing the makespan of an OPS scheduling
problem by considering it as a flexible job shop (FJS) scheduling problem in which operations’ precedence
constraints are given by a DAG. The flexibility of representing the precedences with a DAG instead of with
a linear order (i.e. a single sequence) fits within the concept of sequence flexibility. Note that representing
the precedences with a DAG also allows some operations of a job to be processed in parallel. Resumable
operations, periods of unavailability of the machines, sequence-dependent setup times, partial overlapping
among operations with precedence constraints, release times, and fixed operations are additional features
of the considered scheduling problem.

In the classical FJS scheduling problem, each operation can be processed by a subset of machines,
situation known as routing flexibility. A wide range of techniques have been presented in the literature
to deal with the FJS scheduling problem. A mixed integer linear programming (MILP) model for this
problem is given in Fattahi et al. (2007). An alternative model for the FJS scheduling problem is given
in Özgüven et al. (2010). This model also considers the flexibility of the job process plans – while in the
FJS problem a job is given by a set of operations with linear-order precedence constraints; the process
plan flexibility means that each job can be completed by performing one among several alternative sets
of operations, each one with linear-order precedence constraints. A comparison among MILP models for
the FJS scheduling problem is presented in Demir and İşleyen (2013). Constraint programming (CP)
formulations for the FJS scheduling problem are presented in Viĺım et al. (2015) and Laborie (2018).
Numerical results in these works show that the IBM ILOG CP Optimizer (Laborie et al., 2018) improves
best-known results for several classical FJS instances, suggesting that this off-the-shelf solver can compete
with or even outperform specialized algorithms. An extensive literature review of formulations and exact
and heuristic methods developed in the last three decades to approach the FJS scheduling problem and
some extensions is presented in Chaudhry and Khan (2016). On the other hand, only a few works,
mostly inspired by practical applications from the glass, mold, and printing industries, deal with the
FJS scheduling problem with sequence flexibility. The literature review below, presented in chronological
order, focuses on models and practical applications of the FJS scheduling problem with sequence flexibility.
It aims to show that no paper in the literature proposes a model for or describes a practical application of
the FJS scheduling problem with sequence flexibility encompassing all the challenging and complicating
features of the OPS scheduling problem. Moreover, up to the authors’ acknowledge, no paper in the
literature tackles this problem with constraint programming techniques.

In Gan and Lee (2002), an FJS scheduling problem with sequence flexibility and process plan flexibility
is considered. The problem is based on a practical application in a mold manufacturing shop; and it is
tackled with a branch and bound algorithm. The simultaneous optimization of the process plan and
the scheduling problem is uncommon in the literature. On the other hand, no model is presented and
none of the additional features of the OPS scheduling problem appear in the mold manufacturing shop
application. In Kim et al. (2003), the integrated problem considered in Gan and Lee (2002) is also
addressed; and a symbiotic evolutionary algorithm is proposed. In comparison to the problem addressed
in the present work, the problem appears not to be directly related to a practical application, no model is
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proposed, and none of the additional features of the OPS scheduling problem are considered. In Alvarez-
Valdés et al. (2005), an FJS scheduling problem with sequence flexibility issued from the glass industry is
addressed. A heuristic algorithm combining priority rules and local search is proposed. The considered
problem includes extensions such as overlapping among operations, operations that can be processed
simultaneously, and fixed intervals of unavailability of the machines. However, the problem does not
include all the OPS scheduling problem’s features and no model is given. In Vilcot and Billaut (2008), a
problem issued from the printing industry, where some operations can be carried out at the same time, is
addressed. In the considered problem, operations precedence constraints are such that each operation may
have one or more predecessor but it can not have more than one successor, i.e., ganging operations like
the ones depicted in Figure 1a are not considered. A bi-objective genetic algorithm based on the NSGA II
is proposed to tackle the problem. The problem comes from the printing industry, as the OPS scheduling
problem, and, in consequence, it includes some of the features of the OPS scheduling problem. However,
no model is presented and a limited type of sequence flexibility is considered. In Lee et al. (2012), an
FJS scheduling problem with AND/OR precedence constraints in the operations is considered. Thus, the
problem corresponds to an FJS scheduling problem with sequence flexibility and process plan flexibility
as the one considered in Kim et al. (2003) and in Gan and Lee (2002). A MILP model and genetic and
tabu search algorithms are proposed. Release times for the jobs are considered, but none of the other
additional features of the OPS scheduling problem are addressed. In Birgin et al. (2014), a MILP model
for the FJS scheduling problem in which precedence constraints between operations are described by an
arbitrary directed acyclic graph is introduced; and the model for the FJS scheduling problem introduced
in Özgüven et al. (2010) is extended to include sequence flexibility. List scheduling and beam search
algorithms for the same problem are introduced in Birgin et al. (2015). None of the additional features of
the OPS scheduling problem are considered in Birgin et al. (2014, 2015), where the considered problem is
a simplification of a real problem coming from the printing industry. The scheduling of repairing orders
and allocation of workers in an automobile collision repair shop is addressed in Andrade-Pineda et al. (to
appear). The underlying scheduling problem is a dual-resource flexible job shop scheduling problem with
sequence flexibility that aims to minimize a combination of makespan and mean tardiness. The authors
extend the MILP formulation proposed in Birgin et al. (2014) and propose a constructive iterated greedy
heuristic. Table 1 summarizes the main features of the FJS scheduling problem with sequence flexibility
addressed in each one of the cited references.

The purpose of this work is to tackle a challenging real scheduling problem; so presenting the problem
formulation in a precise and universal language (MILP formulation) is the first goal of the work. Since
the problem is NP-hard – it is a generalization of the job shop scheduling problem, known to be NP-
hard (Garey et al., 1976), it is well-known that only small-sized instances can be solved with a certificate
of optimality. Numerical experiments in this work show that this is exactly the case when the MILP
formulation is tackled with an exact commercial solver (IBM ILOG CPLEX Optimization Studio, 2020).
On the other hand, the commercial solver IBM ILOG CP Optimizer (Laborie et al., 2018), that applies to
CP formulations, is presented in the literature (Viĺım et al., 2015) as a half-heuristic-half-exact method
that, when it is not able to produce a solution with a guarantee of optimality, it produces a good quality
solution in a reasonable amount of time. Verifying the size of the instances that IBM ILOG CP Optimizer
can solve to optimality in comparison to IBM ILOG CPLEX is a second goal of the manuscript. As a
side effect, both models (MILP and CP) can be validated and analyzed comparatively; and a benchmark
set with known optimal solutions can be built. As a third goal, this works aims to analyze the capability
of IBM ILOG CP Optimizer to find good quality solutions when applied to large-sized instances that
are of the size of the instances of the OPS scheduling problem that appear in practice. As a whole, it is
expected the present work to provide in-depth knowledge of the OPS scheduling problem that leverages
the future development of ad-hoc heuristic methods to be applied in practice.

The paper is structured as follows. In Section 2, the considered problem is described in detail; and its
precise formulation is presented through a MILP formulation. Anticipating that, due to its complexity,
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Gan and Lee (2002) X X X X
Kim et al. (2003) X X X

Alvarez-Valdés et al. (2005) X X X X X X
Vilcot and Billaut (2008) X X X

Lee et al. (2012) X X X X X X
Birgin et al. (2014) X X X
Birgin et al. (2015) X X X

Andrade-Pineda et al. (to appear) X X X X
Current work X X X X X X X X X X X

Table 1: Summary of the literature review considering works that deal with formulations and/or practical applications of
the FJS scheduling problem with sequence flexibility. (By definition, all mentioned works have a checkmark in the columns
related to routing and sequence flexibilities.)

only small-sized instances would be solved applying a commercial solver to the MILP formulation, a CP
formulation is presented in Section 3. A short discussion comparing both models is given in Section 4.
In Section 5, extensive numerical experiments are presented. First, small-sized instances of the MILP
and CP Optimizer formulations are solved using IBM ILOG CPLEX (IBM ILOG CPLEX Optimization
Studio, 2020) and IBM ILOG CP Optimizer (Laborie et al., 2018), respectively. Then, in order to
assert the capacity of the CP Optimizer solver for finding optimal solutions, medium-sized instances are
considered; and several alternative models and resolution strategies are analyzed. Finally, in order to
evaluate the applicability of the CP Optimizer solver in reality, numerical experiments are conducted
with large-sized instances. Conclusions and lines for future research are given in Section 6.

2. Mixed integer linear programming formulation

The FJS scheduling problem with sequence flexibility considered in Birgin et al. (2014) generalizes the
classical FJS scheduling problem in the sense that the linear order of the operations of a job is replaced
by arbitrary precedence constraints given by a directed acyclic graph. The OPS scheduling problem
considered in the present work generalizes problem considered in Birgin et al. (2014) in three relevant
ways: (a) the concept of precedence among operations of a job is redefined allowing some overlapping;
(b) operations are resumable since their processing may be interrupted by periods of unavailability of
the machines; and (c) sequence-dependent setup times must be considered. Other than that, operations’
release times are considered; and some operations may have pre-defined machines and starting times for
execution.

Note that the concept of “job” is indirectly addressed in the considered problem. It is assumed
that a job is composed of a set of operations and that precedence relations may exist between operations
belonging to the same job; while operations belonging to different jobs have no precedence relations among
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them. Once the set of precedence relations has been defined (as the union of the precedence relations
of each individual job), the number n of jobs plays no explicit role in the problem definition anymore.
Let o and m be, respectively, the number of operations and machines. Let V = {1, 2, . . . , o}. For each
operation i ∈ V , let ∅ 6= F (i) ⊆ {1, 2, ...,m} be the subset of machines that can process operation i and
let pik (i ∈ V , k ∈ F (i)) be the corresponding processing times. Furthermore, let A be a set of operations
pairs (i, j) representing precedence relations. (Note that, by definition, directed arcs in A correspond to
independent directed acyclic graphs (DAG), each one representing the precedence relations among the
operations of a job.) Each operation i ∈ V is associated with a quantity θi ∈ (0, 1] that represents the
fraction of operation i that must be completed before starting the execution of any operation j such
that (i, j) ∈ A. In addition, the existence of the pair (i, j) in A implies that operation j can not be
completed before the completion of operation i. For each i ∈ V and k ∈ F (i), let γFik be the setup time
for the case in which operation i is assigned to machine k and it is the first operation to be executed (the
supra-index “F” stands for first); and, for each pair of operations i and j and k ∈ F (i)∩F (j), let γIijk be
the setup time for the case in which both operations are assigned to machine k with operation i being the
immediate predecessor of operation j (the supra-index “I” stands for in between). For each machine k
(k = 1, . . . ,m), let qk be the number of periods of unavailability, given by [uk1 , ū

k
1 ], . . . , [ukqk , ū

k
qk

]. For each
operation i ∈ V , let ri be its release time. Finally, let T ⊆ V be the set of operations with pre-defined
starting times s̄i for all i ∈ T . The pre-assignment of an operation i ∈ T to a machine k̄i does not deserve
a special treatment since it can be expressed by simply defining F (i) = {k̄i} for all i ∈ T , i.e., the set
F (i) of machines that can process an operation i ∈ T being a singleton with k̄i as its sole element. The
problem consists of assigning each operation i ∈ V to a machine k ∈ F (i) and determining its starting
processing time si to satisfy all the problem constraints. A machine can not process more than one
operation at a time. The processing of an operation can only be interrupted by periods of unavailability
of the machine to which it was assigned. A setup operation can not be interrupted and its completion
must coincide with the beginning of the associated operation. The objective is to minimize the makespan.

In addition to the real problem constraints, three modeling assumptions are being done. In Assump-
tion A1, it is assumed that the starting time of an operation can not coincide with the beginning nor
belong to the interior of a period of unavailability of the machine to which the operation has been assigned.
Note that the situations being avoided correspond to the case in which the actual operation’s starting
time coincides with the end of the unavailability period; so all the forbidden cases can be represented by
the latter one without loss of generality. In an analogous way, in Assumption A2, it is assumed that
the completion time of an operation can no coincide with the end nor belong to the interior of a period
of unavailability of the machine to which the operation has been assigned. The situations being avoided
correspond to the case in which the actual operation’s completion coincides with the beginning of the
unavailability period; and the forbidden situations can be represented by the latter one without loss of
generality. The third modeling assumption serves to the purpose of modeling Assumptions A1 and A2.
Assumption A3, in complete accordance with practice, says that all constants that define the problem
(processing times, beginning and end of periods of unavailability, starting times of fixed operations, etc.)
are rational numbers. Moreover, without loss of generality, by a change of scale or units of measure,
it can be assumed that all these constants are integer numbers. With the help of Assumption A3, the
constraint in Assumption A1 can be modeled requesting that between the starting time of an operation
and the beginning of a forthcoming period of unavailability there must be at least a unit of time. In
an analogous way, with the help of Assumption A3, the constraint in Assumption A2 can be modeled
requesting that between the end of a period of unavailability and a forthcoming completion time (of an
operation that started to be executed before the period of unavailability) there must be at least a unit
of time.

Ignoring the three relevant generalizations listed at the beginning of the current section and named
(a), (b), and (c), the OPS scheduling problem can be modeled as a mixed integer linear programming
with minor modifications to the MILP model for the FJS scheduling problem with sequence flexibility
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in Birgin et al. (2014). The model considers binary variables xik (i ∈ V , k ∈ F (i)) to indicate whether
operation i is assigned to machine k (xik = 1) or not (xik = 0). It also considers binary variables yij
(i, j ∈ V , i 6= j, F (i)∩F (j) 6= ∅) to indicate, whenever two operations are assigned to the same machine,
which one is processed first. (If i is processed before j, we have yij = 1 and yji = 0; while if j is processed
before i, we have yji = 1 and yij = 0.) Finally, the model uses real variables si (i ∈ V ) to denote the
starting time of operation i and a variable Cmax to represent the makespan. With these variables, the
modified MILP model can be written as follows:

Minimize Cmax (1)

subject to∑
k∈F (i)

xik = 1 i ∈ V, (2)

p′i =
∑

k∈F (i)

xikpik i ∈ V, (3)

si + p′i ≤ Cmax i ∈ V, (4)

si + p′i ≤ sj (i, j) ∈ A, (5)

yij + yji ≥ xik + xjk − 1 i, j ∈ V, i 6= j, k ∈ F (i) ∩ F (j), (6)

si + p′i − (1− yij)M ≤ sj i, j ∈ V, i 6= j, F (i) ∩ F (j) 6= ∅, (7)

si ≥ ri i ∈ V, (8)

si = s̄i i ∈ T. (9)

The objective function (1) minimizes the makespan Cmax. Constraints (2) say that each operation
must be assigned to exactly one machine; and constraints (3) define p′i as the processing time of operation i
(that depends on the machine to which it was assigned.) Constraints (4) ensure that every operation is not
completed later than Cmax. Constraints (5) represent the classical meaning of a precedence constraint,
saying that, independently of the machine by which they are being processed, if operation i precedes
operation j, then i must be completed before j can be started. (The meaning of “precedence” will be
redefined in Section 2.1.) Constraints (6) and (7) deal with pairs of operations i and j that are assigned
to the same machine k. On the one hand, constraints (6) say that if i and j were assigned to the same
machine k, then i must be processed before j or j must be processed before i, i.e., an order must be
established. On the other hand, constraints (7) say that if i and j were assigned to the same machine k
and i is processed before j, then between the starting times of i and j there must be enough time to
process i. Constraints (8) say that each operation i can not start to be processed before its release time;
and constraints (9) fix the start time of the operations whose start times are already pre-determined.

A summary of the constants and sets that define an instance of the problem as well as of the model’s
variables can be found in Table 2. The table can be use as a reference for the forthcoming sections as
well.

2.1. Modeling partial overlap

The simplest feature to be added to model (1–9) is the redefinition of precedence. The modification
consists in substituting (5) by

p̄′i =
∑

k∈F (i)

xikdθipike, (i, j) ∈ A, (10)

si + p̄′i ≤ sj , (i, j) ∈ A, (11)

and
si + p′i ≤ sj + p′j , (i, j) ∈ A. (12)
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Table 2: Description of the constants, sets, and variables in the MILP formulations of the OPS scheduling problem. Section 2
corresponds to the basic model. In Section 2.1 the partial overlapping feature is included. Machines’ periods of unavailability
are included in Section 2.2 and sequence-dependent setup times are included in Section 2.3.

Problem data (constants and sets)

§2

o number of operations
m number of machines
V = {1, 2, . . . , o} set of operations
T ⊆ V set of fixed operations
F (i) ⊆ {1, 2, . . . ,m}, i ∈ V set of machines that can process operation i
A ⊆ V × V set of operations’ precedence relations
s̄i, i ∈ T starting time for the fixed operation i
ri, i ∈ V release time of operation i
pik, i ∈ V , k ∈ F (i) processing time of operation i on machine k

§2.1 θi ∈ (0, 1], i ∈ V fraction of operation i that must be processed before an
operation j can start to be processed if (i, j) ∈ A

§2.2
qk, k ∈ {1, 2, . . . ,m} number of periods of unavailability of machine k

uk
` and ūk

` , ` ∈ {1, . . . , qk} begin and end of the `th unavailability period of machine k

§2.3
γI
ijk, i, j ∈ V , i 6= j, k ∈ F (i) ∩ F (j)

setup time to process operation j right after operation i on
machine k

γF
ik, i ∈ V , k ∈ F (i)

setup time to process operation i as the first operation to
be processed on machine k

Bk = {i ∈ V |k ∈ F (i)}, k ∈ {1, 2, . . . ,m} set of operations that can be processed on machine k (auxil-
iar set that simplifies the presentation of some constraints)

MILP models’ variables

§2

xik ∈ {0, 1}, i ∈ V , k ∈ F (i) xik = 1 if and only if operation i is assigned to machine k

yij ∈ {0, 1}, i, j ∈ V , i 6= j, F (i) ∩ F (j) 6= ∅ yij = 1 if operations i and j are assigned to the same
machine and i is processed before j

p′i, i ∈ V
processing time of operation i (its value depends on the
machine to which operation i is assigned)

si, i ∈ V
starting time of operation i (it must coincide with s̄i if
i ∈ T )

Cmax makespan

§2.1 p̄′i, i ∈ V
processing time of operation i that must be completed be-
fore an operation j can start to be processed if (i, j) ∈ A
(its value coincides with dθip′ie)

§2.2

ci, i ∈ V completion time of operation i

c̄i, i ∈ V
instant at which p̄′i units of time of operation i has been
processed

vik`, wik`, w̄ik` ∈ {0, 1}, i ∈ V , k ∈ F (i), ` ∈ {1, . . . , qk}
auxiliar variables to model constraints on si, ci, and c̄i with
respect to the machines’ unavailability periods

ui, i ∈ V
amount of time the machine k(i) to which operation i is
assigned is unavailable between si and ci

ūi, i ∈ V
amount of time the machine k(i) to which operation i is
assigned is unavailable between si and c̄i

§2.3
yijk ∈ {0, 1}, i, j ∈ V , i 6= j, k ∈ F (i) ∩ F (j)

yijk = 1 if and only if operations i and j are assigned to
machine k and i is the immediate predecessor of j (these
variables substitute variables yij from §2)

ξ̂ik, ξ̄ik, i ∈ V , k ∈ F (j)
auxiliar variables to model the sequence-dependent setup
time

ξi, i ∈ V sequence-dependent setup time of operation i

Constraints (10) define new variables p̄′i (i ∈ V ) whose values coincide, by definition, with dθip′ie. Con-
straints (11) say that, if there exists a precedence constraint saying that operation i must precede opera-
tion j, it means that operation j can not start before 100%×dθip′ie/p′i of operation i is completed; while
constraints (12) say that operation j can not be completed before operation i is completed as well.

2.2. Modeling machines’ unavailabilities

Modeling the machines’ unavailability starts by considering real variables ci and c̄i (i ∈ V ) and binary
variables vik`, wik`, and w̄ik` (i ∈ V , k ∈ F (i), ` = 1, . . . , qk). The meaning of variables ci and c̄i (i ∈ V )
follows:

• Variable ci represents the completion time of each operation i.
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• Variable c̄i represents the completion time of the fraction of each operation i that is required to be
completed before the execution of an operation j if there exists (i, j) ∈ A; i.e., while ci represents
the completion time of the execution of p′i units of time of operation i, c̄i represents the completion
time of the execution of p̄′i units of time of operation i.

Variables vik`, wik`, and w̄ik` relate si, ci, and c̄i with the periods of unavailability of the machines,
respectively. The relation we seek between si and vik` is “vik` = 1 if and only if operation i is assigned
to machine k and the `-th period of unavailability of machine k is to the left of si.” The relation we seek
between ci and wik` is analogous, namely, “wik` = 1 if and only if operation i is assigned to machine k
and the `-th period of unavailability of machine k is to the left of ci”. Finally, the relation we seek
between c̄i and w̄ik` is “w̄ik` = 1 if and only if operation i is assigned to machine k and the `-th period
of unavailability of machine k is to the left of c̄i”. These relations can be modeled as follows:

vik` ≤ xik
si ≤ uk` − 1 +Mvik` +M(1− xik)
si ≥ ūk` −M(1− vik`)−M(1− xik)

wik` ≤ xik
ci ≤ uk` +Mwik` +M(1− xik)
ci ≥ ūk` + 1−M(1− wik`)−M(1− xik)

w̄ik` ≤ xik
c̄i ≤ uk` +Mw̄ik` +M(1− xik)
c̄i ≥ ūk` + 1−M(1− w̄ik`)−M(1− xik)



i ∈ V, k ∈ F (i), ` = 1, . . . , qk. (13)

Note that, in addition, constraints (13) avoid starting and completion times of an operation to belong
to the interior of a period of unavailability of the machine to which the operation was assigned. In fact,
constraints (13) also avoid a starting time to coincide with the beginning of a period of unavailability as
well as avoid completion times to coincide with the end of a period of unavailability. Now, we have that

ui =
∑

k∈F (i)

qk∑
`=1

(wik` − vik`)(ūk` − uk` ), i ∈ V, (14)

represents the sum of the unavailabilities between instants si and ci (assuming si ≤ ci) of the machine
that process operation i; and

ūi =
∑

k∈F (i)

qk∑
`=1

(w̄ik` − vik`)(ūk` − uk` ), i ∈ V, (15)

represents the sum of the unavailabilities between instants si and c̄i (assuming si ≤ c̄i) of the machine
that process operation i.

Now, it is easy to see that the relations

si ≤ c̄i ≤ ci
si + p′i + ui = ci

si + p̄′i + ūi = c̄i

 i ∈ V, (16)

must hold. (The two equality constraints in (16) make clear that the new variables ci and c̄i are being
included into the model with the only purpose of simplifying the presentation, since every appearance of ci
and c̄i could be replaced by the left-hand side of the respective equality. In fact, the same remark applies
to other equality constraints in the model as, for example, constraints (3) that define p′i, constraints (10)
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that define p̄′i, constraints (14) that define ui, and constraints (15) that define ūi.) With the inclusion of
the new variables ci and c̄i, constraints (4), (7), (11), and (12) can be restated, respectively, as follows:

ci ≤ Cmax, i ∈ V, (17)

ci − (1− yij)M ≤ sj , i, j ∈ V, i 6= j, F (i) ∩ F (j) 6= ∅, (18)

c̄i ≤ sj , (i, j) ∈ A, (19)

ci ≤ cj , (i, j) ∈ A. (20)

Summing up, with new real variables p̄′i, ci, and c̄i (i ∈ V ) and new binary variables vik`, wik`,
and w̄ik` (i ∈ V , k ∈ F (i), ` = 1, . . . , qk), the model that includes the machines’ unavailable periods
consists in minimizing (1) subject to (2,3,6,8,9,10,13,14,15,16,17,18,19,20).

2.3. Modeling sequence-dependent setup time

In order to model the setup, binary variables yij will be replaced by binary variables yijk (i, j ∈ V ,
i 6= j, k ∈ F (i)∩F (j)). The idea is that yijk = 1 if and only if operations i and j are assigned to machine k
and i is the immediate predecessor of j. If, for each machine k, we define the set Bk = {i ∈ V | k ∈ F (i)},
the required characterization of variables yijk can be achieved with the following constraints:

yijk ≤ xik
yijk ≤ xjk

}
k = 1, . . . ,m, i, j ∈ Bk, i 6= j, (21)

∑
i,j∈Bk,i6=j

yijk =
∑
i∈Bk

xik − 1, k = 1, . . . ,m, (22)

∑
j∈Bk,j 6=i

yijk ≤ 1, k = 1, . . . ,m, i ∈ Bk, (23)

∑
i∈Bk,i6=j

yijk ≤ 1, k = 1, . . . ,m, j ∈ Bk. (24)

Constraints (21) say that, if operation i or operation j is not assigned to machine k, then yijk must
be equal to zero. For any machine k,

∑
i∈Bk

xik represents the number of operations assigned to it.
Then, constraints (22) say that, for every machine, the number of precedence constraints related to
the operations assigned to it must be one less than the number of operations assigned to it. Finally,
constraints (23) and (24) say that each operation precedes at most one operation and it is preceded by
at most one operation, respectively. In fact, it is expected each operation to precede and to be preceded
by exactly one operation unless the first and the last operations in the scheduling of each machine.

The substitution of variables yij (i, j ∈ V , i 6= j, F (i) ∩ F (j) 6= ∅) by variables yijk (i, j ∈ V ,
i 6= j, k ∈ F (i) ∩ F (j)) consists in replacing constraints (6) with constraints (21,22,23,24) and replacing
constraints (18) with

ci −

1−
∑

k∈F (i)∩F (j)

yijk

M ≤ sj , i, j ∈ V, i 6= j, F (i) ∩ F (j) 6= ∅. (25)

Up to this point, we have a model, alternative to the one we already had, but more suitable to include
the setup feature.

Now, observe that, if operation j is assigned to machine k and∑
i∈Bk,i6=j

yijk = 0,
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this means that j is the first operation to be processed by machine k. In this case, the sequence-dependent
setup time required to process operation j on machine k is given by γFjk. On the other hand, if operation j
is assigned to machine k and ∑

i∈Bk,i6=j

yijk = 1,

then operation j is preceded by the only operation i such that yijk = 1. In this case, the sequence-
dependent setup time required to process operation j on machine k is given by∑

i∈Bk,i6=j

yijkγ
I
ijk.

Thus, if we define

ξ̂jk =

 ∑
i∈Bk,i6=j

yijkγ
I
ijk

+

1−
∑

i∈Bk,i6=j

yijk

 γFjk, j ∈ V, k ∈ F (j), (26)

we have that, if operation j is assigned to machine k, then ξ̂jk corresponds to the sequence-dependent
setup time required to process operation j on machine k. Note that, if operation j is not assigned to
machine k, by (26), we have ξ̂jk = γFjk. So, defining new real variables ξ̄jk (j ∈ V , k ∈ F (j)) and
constraints

0 ≤ ξ̄jk ≤ Mxjk
ξ̂jk −M(1− xjk) ≤ ξ̄jk ≤ ξ̂jk

}
j ∈ V, k ∈ F (j), (27)

we have that, if operation j is assigned to machine k, then its sequence-dependent setup time is given
by ξ̄jk; while ξ̄jk = 0 if operation j is not assigned to machine k. Thus,

ξj =
∑

k∈F (j)

ξ̄jk, j ∈ V, (28)

represents the sequence-dependent setup time of operation j.
For including the setup time into the model, we need to replace constraints (25) with

ci −

1−
∑

k∈F (i)∩F (j)

yijk

M ≤ sj − ξj , i, j ∈ V, i 6= j, F (i) ∩ F (j) 6= ∅, (29)

to say that between the end of an operation and the beginning of the next operation there must be
enough time to process the corresponding setup. It remains to say that a setup operation can not be
interrupted and that its completion time must coincide with the starting time of the operation itself.
This requirement corresponds to constraints

si − ξi ≤ uk` − 1 +Mvik` +M(1− xik)
si − ξi ≥ ūk` −M(1− vik`)−M(1− xik)

}
i ∈ V, k ∈ F (i), ` = 1, . . . , qk (30)

plus
si ≥ ξi, i ∈ V. (31)

Note that constraints (30), roughly speaking, say that, if si is in between two unavailabilities, then si−ξi
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must be in between the same two unavailabilities. Combining (30) with (13) results in

vik` ≤ xik
si ≤ uk` − 1 +Mvik` +M(1− xik)

si − ξi ≥ ūk` −M(1− vik`)−M(1− xik)

wik` ≤ xik
ci ≤ uk` +Mwik` +M(1− xik)
ci ≥ ūk` + 1−M(1− wik`)−M(1− xik)

w̄ik` ≤ xik
c̄i ≤ uk` +Mw̄ik` +M(1− xik)
c̄i ≥ ūk` + 1−M(1− w̄ik`)−M(1− xik)



i ∈ V, k ∈ F (i), ` = 1, . . . , qk. (32)

Summing up, with new real variables ξ̂jk, ξ̄jk (j ∈ V , k ∈ F (j)), and ξj (j ∈ V ) and new binary
variables yijk (i, j ∈ V , i 6= j, F (i) ∩ F (j) 6= ∅) that substitute the binary variables yij (i, j ∈ V ), the
updated model that includes the sequence-dependent setup time consists in minimizing (1) subject to
(2,3,8,9,10,14,15,16,17,19,20,21,22,23,24,26,27,28,29,31,32). Constraints (27), (29), and (32) depend on a
“sufficiently large” constant M whose value needs to be defined. In (27), a sufficiently large value for M
is given by

M1 = max

{
max

j∈V, k∈F (j)

{
γFjk
}
, max
i,j∈V, i6=j, F (i)∩F (j) 6=∅

{
γIijk

}}
.

In (29), a sufficiently large value for M is given by any upper bound for the optimal Cmax like, for
example,

M2 = max
{k=1,...,m}

{ūkqk}+
∑
j∈V

max
k∈F (j)

{
pjk + max

{
γFjk, max

{i∈V |k∈F (i)}

{
γIijk

}}}
.

(Note that M2 is a loose upper bound for the optimal Cmax.) The same value M2 can be used in
the second, the fifth, and the eighth inequalities in (32); while, in the third, the sixth, and the ninth
inequalities in (32), it can be used

M3 = max
{k=1,...,m}

{ūkqk}.

3. Constraint programming formulation

Constraint Programming (Rossi et al., 2006) is a powerful paradigm for solving combinatorial prob-
lems; and it is particularly attractive for problems that do not have a simple formulation in terms of
linear constraints, as it is the case of the OPS scheduling problem being considered in the present work.
CP Optimizer (Laborie et al., 2018) is an optimization engine based on CP that extends classical CP with
a few mathematical concepts that make it easier to model scheduling problems while providing an inter-
esting problem’s structure to its automatic search algorithm. The automatic search is an exact algorithm
(so it produces optimality proofs) that internally uses some metaheuristics, mainly the Self-Adapting
Large-Neighborhood Search (Laborie and Godard, 2007), to quickly produce good quality solutions that
help to prune the search space. A formulation of the OPS scheduling problem suitable to be solved with
CP Optimizer is presented below. The CP Optimizer concepts will be briefly described as soon as they
appear in the formulation. For more details, please refer to Laborie et al. (2018) and to the CP Optimizer
reference manual.
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A formulation using the concepts of CP Optimizer equivalent to the MILP model (1–9) follows:

Minimize max
i∈V

endOf(oi) (33)

subject to

endBeforeStart(oi, oj), (i, j) ∈ A, (34)

alternative(oi, [aik]k∈F (i)), i ∈ V, (35)

noOverlap([aik]i∈V :k∈F (i)), k = 1, . . . ,m, (36)

startOf(oi) ≥ ri, i ∈ V, (37)

startOf(oi) = s̄i, i ∈ T, (38)

interval oi, i ∈ V, (39)

interval aik, opt, size = pik, i ∈ V, k ∈ F (i). (40)

Decision variables of the problem are described in (39) and (40). In (39), an interval variable oi for
each operation i is defined. In (40), an “optional” interval variable aik is being defined for each pos-
sible assignment of operation i to a machine k ∈ F (i). Optional means that the interval variable may
exist or not; and the remaining of the constraint says that, in case it exists, its size must be pik. The
objective function (33) is to minimize the makespan, given by the maximum end value of all the oper-
ations represented by the interval variables oi. Precedence constraints between operations are posted
as endBeforeStart constraints between interval variables in constraints (34). Constraints (35) state that
each operation i must be allocated to exactly one machine k ∈ F (i) that is, one and only one interval
variable aik must be present and the selected interval aik will start and end at the same values as inter-
val oi. Constraints (36) state that, for a machine k, the intervals aik representing the assignment of the
operations to this machine do not overlap. (It should be noted that this noOverlap constraints actually
create a hidden sequence variable on the intervals aik. More details on sequence variables will be given on
Section 3.3.) Finally, constraints (37) say that each operation i can not start to be processed before its
release time; and constraints (38) fix the starting time of the operations whose starting times are already
pre-determined.

The CP Optimizer model (33–40) can be strengthened by a redundant constraint stating that, at any
moment in time, there are never more than m machines being used simultaneously. This constraint (that
implicitly apply to discrete instants in time) is given by∑

i∈V
pulse(oi, 1) ≤ m. (41)

It is worth noting that, in CP as well as in MILP formulations, adding redundant constraints is a common
technique to get a stronger reduction of the domains of variables at each search node, which results in a
better pruning of the search space.

3.1. Modeling machines’ unavailabilities

As the operations are suspended by the unavailabilities of the machines, the definition of the interval
variable aik must be modified by considering as intensity function a step function Uk that represents the
unavailability of machine k. In CP Optimizer, step functions are constant structures of the model that
are represented by a set of steps associated with a value. The value of the step function Uk is 0% when
machine k is unavailable, i.e., on time windows [uk1 , ū

k
1 ], ..., [ukqk , ū

k
qk

], and 100% in between these time
windows. So, including the machines’ unavailabilities in model (33–40) simply consists in replacing (40)
with

interval aik, opt, size = pik, intensity = Uk, i ∈ V, k ∈ F (i). (42)
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3.2. Modeling partial overlap

An additional feature of the OPS scheduling problem is that operations subject to precedence con-
straints may partially overlap. Each interval variable oi (resp. aik) is associated with an additional
interval variable ωi (resp. αik) that represents the proportion of operation i that has to be processed
before any of its successors can start. The size of the optional interval variable αik is defined as dθipike
(see (43) and (44)); and interval variables aik and αik have the same presence status (see (45)). Inter-
val ωi is the alternative between all the interval variables αik (see (46)); and interval variables oi and ωi
start at the same time (see (47)). This way, when operation i is allocated to machine k, both interval
variables aik and αik are present, the size of αik, that represents the proportion of operation i to be
executed before any of its successors, is equal to dθipike, and interval variable ωi is synchronized with the
start and end of αik. (See Figure 3.) Precedence constraints are posted between ωi and its successors
in (48). Constrains (49) say that operation j can not be completed before the completion of operation i
if (i, j) ∈ A.

interval ωi, i ∈ V, (43)

interval αik, opt, size = dθipike, intensity = Uk, i ∈ V, k ∈ F (i), (44)

presenceOf(aik) == presenceOf(αik), i ∈ V, k ∈ F (i), (45)

alternative(ωi, [αik]k∈F (i)), i ∈ V, (46)

startAtStart(ωi, oi), i ∈ V, (47)

endBeforeStart(ωi, oj), (i, j) ∈ A, (48)

endBeforeEnd(oi, oj), (i, j) ∈ A. (49)

Machine k

Machine k′

oi

aik size(aik) = pik

size(αik) = dθipike

ωi oj

size(aik′ ) = pik′

size(αik′ ) = dθipik′e

aik′

αik

αik′

Figure 3: Illustration of the relation between the interval variables oi, aik, and αik. In the picture, there are two alternative
machines k and k′ to process operation i; and operation i is assigned to machine k′ since the size of ωi coincides with the
size of αik′ . The size of ωi corresponds to the proportion of operation i that must be processed before operation j can start
to be processed. (The picture assumes that there is a precedence constraint between operations i and j.)

The model that includes the machines unavailabilities as well as the partial overlapping consists in
minimizing (33) subject to (35–39), (42), and (43–49) (that substitute constraints (34)); constraints (41)
being, as already mentioned, optional.

3.3. Modeling the sequence-dependent setup time

Another additional feature of the OPS scheduling problem is the notion of setup time and setup
activities between consecutive operations executed on a machine. The usual formulation for sequence-
dependent setup times in CP Optimizer is to use a sequence variable that permits to associate an integer
type with each interval variable in the sequence and to post a no-overlapping constraint on this sequence
with a transition distance matrix. This is the purpose of the sequence variable SAk defined in (50). This
sequence variable is defined on all the interval variables aik on machine k (optional interval variables
representing the possible execution of operation i on machine k). Each interval aik is associated with a
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type i in the sequence variable. A non-overlapping constraint is posted in (51), specifying the transition
distance matrix ΓIk defined as ΓIk[i][j] = γIijk. These constraints ensure that operations allocated to ma-

chine k do not overlap and that a minimal setup time of ΓIk[i][j] must elapse between any two consecutive
operations i and j. The definition of the sequence variable and the non-overlapping constraints are given
by

sequence SAk on [aik]i∈V :k∈F (i), types [i]i∈V :k∈F (i), k = 1, . . . ,m, (50)

noOverlap(SAk,Γ
I
k), k = 1, . . . ,m. (51)

An additional feature of the OPS scheduling problem is that the setup activities are also subject to the
unavailability of the machines and, in particular, the setup cannot be interrupted by an unavailability time
window. Because of these complex constraints on the setups, the setup operations need to be explicitly
represented as interval variables in the model. The explicit representation of the setup operations as
interval variables also allows us to model the setup of the first operation being processed by a machine,
a case that is not covered by (50,51). For each interval aik, we define in (52) an interval variable sik that
represents the setup activity just before operation aik; and we establish in (59) that the end of sik must
coincide with the beginning of aik. For each interval aik, we also define in (53) an interval variable cik
that covers both sik and aik (see (55)). Interval variables aik, sik, and cik have the same presence status
(see (56) and (57)). A sequence variable SCk representing the non-overlapping sequence of intervals
cik on machine k is defined in (54), the non-overlapping being represented in (60). The size of the
setup activity sik depends both on the type of the previous operation on sequence SCk and the type of
operation i; and its value is given in (58) by a matrix Γk. Matrix Γk is a matrix with row index starting
from 0 and defined as the concatenation of matrices ΓFk and ΓIk, i.e., Γk consists in ΓIk with an additional
0-th row given by ΓFk [i] = γFik. By convention, when operation i is assigned to a machine k and it is the
first activity executed by the machine, the type of the previous operation on sequence SCk is 0 so that
the size of the setup activity sik is Γk[0][i] = ΓFk [i] = γFik. Figure 4 illustrates the extent of the setup time
concerning the predecessor type.

sjk ajk

cjk

sik aik

cik

Machine k

sik′ aik′

cik′

oi

Machine k′

sizeOf(sik′ ) = Γk′ [typeOfPrev(cik′ )][i]

= Γk′ [0][i] = γF
ik′

sizeOf(sik) = Γk[typeOfPrev(cik)][i]

= Γk[j][i] = γIjik

Figure 4: Illustration of the relation between interval variables oi, aik, and cik in the CP Optimizer model. The illustration
also shows the explicit inclusion of the setup interval variables sik. The right hand side of the graphic shows two alternatives
for processing operation i on machine k or on machine k′. The left hand side illustrates the computation of the sequence-
dependent setup time.

Finally, a set of constraints is added to ensure the behavior of operations and setup activities with
respect to machine unavailable periods. The intensity function Uk used in the definition of the interval
variables representing operations (42) states that operations are suspended by unavailabilities. Addi-
tionally, constraints (61) and (62) establish that operations cannot start or end during an unavailability
period; whereas constraints (63) say that setup activities cannot overlap unavailability periods. The new
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set of constraints follows:

interval sik, opt, i ∈ V, k ∈ F (i), (52)

interval cik, opt, i ∈ V, k ∈ F (i), (53)

sequence SCk on [cik]i∈V :k∈F (i), types [i]i∈V :k∈F (i), k = 1, . . . ,m, (54)

span(cik, [sik, aik]), i ∈ V, k ∈ F (i), (55)

presenceOf(aik) == presenceOf(cik), i ∈ V, k ∈ F (i), (56)

presenceOf(aik) == presenceOf(sik), i ∈ V, k ∈ F (i), (57)

sizeOf(sik) == Γk[typeOfPrev(SCk, cik)][i], i ∈ V, k ∈ F (i), (58)

endAtStart(sik, aik), i ∈ V, k ∈ F (i), (59)

noOverlap(SCk), k = 1, . . . ,m, (60)

forbidStart(aik, Uk), i ∈ V, k ∈ F (i), (61)

forbidEnd(aik, Uk), i ∈ V, k ∈ F (i), (62)

forbidExtent(sik, Uk), i ∈ V, k ∈ F (i). (63)

Summing up, the full CP Optimizer formulation of the OPS scheduling problem is given by the
minimization of (33) subject to constraints (35–39,42,43–49,52–63); constraints (41) being, as already
mentioned, optional. In the same sense, constraints (50,51), superseded by constraints (52–63), can be
considered optional. It is expected that keeping them would result in a stronger inference in the resolution
process due to the direct formulation of the minimal distance ΓIk between consecutive operations on each
machine k.

4. Discussion

In this section, we elaborate on the relation between the main components of the MILP and the CP
Optimizer formulations of the OPS scheduling problem. The main difference between both formulations
is that, in the CP Optimizer model, the number of explicit variables and constraints is O(om); while, in
the MILP formulation, the number of variables and constraints is, in the worst case, O(o2m+o

∑m
k=1 qk),

where o is the number of operations, m is the number of machines, and qk is the number of periods of
unavailability of machine k. A tighter bound is given by O(|A|+

∑m
k=1(|Bk|2 + |Bk|qk)), where A is the

set of precedence relations and, for each machine k, Bk is the set of operations that could be processed
by it. On the other hand, every constraint in the MILP model involves a constant number of variables or
a number that is, in the worst case, O(o+

∑m
k=1 qk); while, in the CP Optimizer model, each non-overlap

constraint on the sequence SAk (k = 1, . . . ,m) involves a dense matrix ΓIk of size o2. So, as expected,
the non-overlapping constraints in the CP Optimizer model involve, as a whole, dealing with the O(o2m)
given setup times. (The same is true, in a similar way, for the sequence variables SCk.) Another difference
between the models is that the CP Optimizer model strongly relies on the integrality of all the constants
that define an instance, i.e., it assumes that the processing times of the operation on the machines, the
fixed starting times, the setup times, the beginning and the end of the machines’ unavailability periods,
and the release times are all integer values. If, on the one hand, this is not a requirement of the MILP
formulation; on the other hand, this is a usual assumption that can be accomplished, in practice, by
changing the constants’ unit of measure. The same is not true in the required interpretation of partial
overlapping. In the considered definition of overlapping, the interpretation of constant θi is that if p′i is
the processing time of operation i on the machine to which it was assigned, then operation i must be
processed at least dθip′ie units of time before any successor can start to be processed. The fact of using
d·e in the interpretation of overlapping is needed in the CP Optimizer formulation, due to the integrality
assumption; while it is not relevant at all in the MILP formulation.
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One of the most relevant components of both models is the one that represents the duration of each
operation, where by duration we mean its processing time on the machine to which it was assigned plus the
duration of the unavailabilities of such machine that interrupt its execution. In the CP Optimizer model,
this object is represented by the interval variables oi. The equivalent object in the MILP formulation is
given by the starting time si and the completion time ci, that correspond, respectively, to the beginning
and the end of the interval variable oi of the CP Optimizer model. In the MILP model, the time elapsed
between si and ci is divided into the processing time of the operation itself, represented by p′i, and the
sum of the unavailability windows in between si and ci, represented by ui. In the CP Optimizer model,
this distinction is made with the help of the indicator function Uk.

Another object present in both formulations and strongly related to the duration of an operation is
the duration of the fraction of an operation that must be processed before any successor of it can start to
be processed. In the CP Optimizer model, this role is played by the interval variables ωi. In the MILP
model, the beginning and the end of this interval are given by variables si and c̄i, respectively. Not by
coincidence, there is a constraint in the CP Optimizer model saying that the beginning of oi and ωi must
coincide. (In the MILP model the beginning of these two intervals is represented by the same variable si.)
Once again, the time elapsed between si and c̄i is divided in the MILP model in the actual processing of
the operation (represented by p̄′i) and the aggregated time of the unavailability windows that interrupt
the execution of the operation, represented by ūi). The same effect is, once again, obtained in the CP
Optimizer model through the usage of the indicator function Uk.

The assignment of an operation to a machine is modeled in the MILP formulation with binary vari-
ables xik. Then, with the same variables, the machine-dependent processing time pi of operation i is
established. The same thing is done in the CP Optimizer formulation with the “alternative” constraint
that relates the interval variables oi with one and only one variable aik for some k ∈ F (i), whose duration
is pik. Note that, in the MILP model, the xik variables also only exist if k ∈ F (i). Both situations
correspond to the disjunction that is modeled in a classical way in the MILP model; while it corresponds
to a primitive of the CP Optimizer modeling language in the other case. The non-overlapping between
operations being processed by the same machine k is once again modeled with the help of binary vari-
ables yijk in the MILP model. In CP Optimizer, the “noOverlap” constraints are posted on a hidden
“sequence” variable that is defined over a set of interval variables, each interval variable in the set being
associated with an integer “type.” The “noOverlap” constraints state that the intervals of the sequence
must be ordered as a set of non-overlapping intervals (that typically represent the different operations
on a machine). The “type” of the types of the intervals may, for instance, be used to index a setup time
matrix that represents a minimal distance between consecutive intervals in the sequence. In the MILP
model, the setup feature is achieved with the help of the yijk variables. All other elements of both models
also relate similarly.

As it was described, the MILP and the CP Optimizer model represent the OPS scheduling problem
using equivalent structures; the difference lies on the fact that the CP Optimizer modeling language
provides to the CP Optimizer solver a more compact model and much more structure of the problem
than the one that the MILP model could give to a general-purpose MILP solver.

5. Numerical experiments

The numerical experiments in the present section have three goals. Experiments with small-sized
instances aim to compare the efficiency and effectiveness of the commercial solvers IBM ILOG CPLEX
and IBM ILOG CP Optimizer (both included in version 12.9), when applied to instances modeled with
the Python API DOcplex 2.10.155 library. Experiments with medium-sized instances aim to determine
the size of the instances for which optimality can be proved with the commercial solvers IBM ILOG
CP Optimizer. Experiments with large-sized instances, that are of the size of real instances of the OPS
scheduling problem, are also considered. The goal of these experiments is to evaluate the possibility of
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using feasible solutions found by the IBM ILOG CP Optimizer in practice. Section 5.1 describes the
generation of instances; while Section 5.2 presents the numerical results with small-, medium, and large-
sized instances. The implementation of the MILP and the CP Optimizer formulations, the generator of
random instances, and all the generated instances are freely available at https://willtl.github.io/

ops.

5.1. Generation of instances

Numerical experiments with the introduced models were performed on random instances. All con-
stants that define an instance are numbers randomly chosen with uniform distribution in a predefined
interval. So, from now on, whenever “chosen”, “random” or “randomly chosen” is written, it should be
read “randomly chosen with uniform distribution”. It should be noted that, although random, instances
are generated in such a way they preserve the characteristics of the real instances of the OPS scheduling
problem. Three different sets with small-, medium-, and large-sized instances will be generated, the
large-sized instances being of the size of the real instances of the OPS scheduling problem.

The generation of an instance relies on six given integer parameters, namely, the number of jobs n,
the minimum omin and maximum omax number of operations per job, the minimum mmin and the max-
imum mmax number of machines, and the maximum number q of periods of unavailability per machine.
Precedence constraints are defined as follows; starting with A = ∅. For each job j ∈ {1, . . . , n}, the
generation of its associated DAG starts by choosing its number of operations oj ∈ [omin, omax]; and it
proceeds by layers. Starting by layer L0, between 1 and 4 operations are chosen to populate L0. Addi-
tional layers Li are also populated with 1 to 4 operations, until the number of operations oj is reached.
Operations in L0 have no predecessors; while operations in the last layer have no successors. For every
layer Li, unless the last one, and every v ∈ Li, an operation w ∈ Li+1 is randomly chosen and the
arc (v, w) is added to A. All the other pairs (v, w) with v ∈ Li and w ∈ Li+1 are included in A with
probability 0.85. Figure 5 shows the random DAG of a job j with oj = 40. Note that the total number of
operations is defined as o =

∑n
j=1 oj . For each operation i such that an arc of the form (i, ·) ∈ A exists,

with probability 0.1, the overlapping coefficient θi is a real number chosen in [0.5, 0.99], otherwise, θi is
set to 1.

2

6

8

10 14

16

19

23

27

31

32

37

38

40

3936

35

34

30

33

29

28

26

25

24

22

21

20

18

17

15

13

12

9

7

11

5

4

3

1

Figure 5: Random DAG representing the precedence constraints of a job with 40 operations. All arcs are directed from
left to right. The visual representation of the DAG was drawn by using the network simplex layering proposed in Gansner
et al. (1993).

The number of machines is given by a random number m ∈ [mmin,mmax]. For each operation i, the
cardinality of F (i) is given by a random number in [d0.3me, d0.7me] and the elements of F (i) ⊆ {1, . . . ,m}
are randomly chosen. Then, a machine k̂ ∈ F (i) and the associated integer processing time pik̂ ∈ [1, 99] are

randomly chosen. For all other machines k ∈ F (i), k 6= k̂, pik ∈ [pik̂,min{3pik̂, 99}] is randomly chosen.
The number of periods of unavailability qk of a machine k is chosen at random in [1, q]. Let ϕk be the
mean of the processing times pik of the operations i such that k ∈ F (i). Then, we define ak = 1+dϕk

qk
e as

the distance between consecutive periods of unavailability. The first period of unavailability is given by
[uk1 , ū

k
1 ] = [ak, u

k
1 + d ak

Rk
1
e+ 1], where Rk1 ∈ [2, 10] is a random integer number. For ` = 2, . . . , qk, the `-th
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period of unavailability is given by [uk` , ū
k
` ] = [ūk`−1 + ak, u

k
` + d ak

Rk
`

e+ 1], where Rk` ∈ [2, 10] is a random

integer number.
Each operation i has three randomly chosen integer values sizei ∈ [1, S̄], color i ∈ [1, C̄], and varnishi ∈

[1, V̄ ], with S̄ = 10, C̄ = 4, and V̄ = 6, that stand for the operation’s size, color, and varnish, respectively.
Consider two operations i and j that are processed consecutively, i before j, on a machine k. If sizei <
sizej , then st ′k units of time are required to setup the machine; while st ′′k units of time are required if
sizei > sizej . (No setup time is required, regarding the size feature, if sizei = sizej .) If color i 6= color j ,
ctk additional units of time are required; and if varnishi 6= varnishj , other additional vtk units of time
are required. Values st ′k, st ′′k , ctk, and vtk are (machine dependent) random integer values in [2, 6].
The sum of the required values composes the setup time γIijk ≥ 0. The setup time γFik for the case in
which operation i is assigned to machine k and it is the first operation to be executed on the machine
is given by γFik = max{st ′k, st ′′k} + ctk + vtk. It should be noted that the duration of a setup operation
in between two consecutive operations i and j is not related to the processing time of the operations. A
clear example of this situation corresponds to the setup operations of a cutting machine. The setup of
the machine corresponds to adjusting the machine from the size of printed sheets and the cutting pattern
of operation i to the size of printed sheets and the cutting pattern of operation j; and this adjustment is
not related to the quantity of pieces that must be cut in the two operations.

The release time ri of each operation i is equal to 0 with probability 0.975. When ri is not zero,
it is a random integer number within the interval [1, 99]. An operation i with no predecessors has
probability 0.01 of belonging to T ; i.e., having a fixed starting time s̄i at a predefined machine k ∈ F (i).
(At most one fixed operation per machine is allowed.) If this is the case, pik is redefined as a random
number in [1, 99], F (i) is redefined as the singleton F (i) = {k}, and s̄i is randomly chosen in [γFub, u

k
1−pik],

where γFub = S̄ + C̄ + V̄ is an upper bound of the setup time of an operation that is the first operation
to be processed by a machine, as it is the case of a fixed operation generated in this way.

5.2. Numerical results

The experiments, carried out using the High-Performance Computing (HPC) facilities of the Univer-
sity of Luxembourg (Varrette et al., 2014), were conducted on an Intel Xeon E5-2680 v4 2.4 GHz with
4GB memory (per core) running CentOS Linux 7.7 (in 64-bit mode); always using a single physical core.

By default, see (IBM ILOG CPLEX Optimization Studio, 2020, pp. 227–228), a solution to a MILP
model is reported by CPLEX when

absolute gap = incumbent solution− best lower bound ≤ εabs

or

relative gap =
|incumbent solution− best lower bound|

10−10 + |incumbent solution|
≤ εrel,

with εabs = 10−6 and εrel = 10−4. In the considered instances, the objective function (1) assumes integer
values at feasible points. Thus, on the one hand, a stopping criterion based on a relative error less than
or equal to εrel = 10−4 may have the undesired effect of stopping the method prematurely; and, on the
other hand, an absolute error strictly smaller than 1 is enough to prove the optimality of the incumbent
solution. Therefore, following Birgin et al. (2020) and Andrade et al. (2014), we considered εabs = 1−10−6

and εrel = 0. All other parameters of CPLEX were kept with their default values. CP Optimizer was run
with all its default parameters. A CPU time limit of two hours per instance was imposed.

5.2.1. Experiments with small-sized instances

In this section, a set of 30 small-sized instances is considered. The k-th instance was generated with
the following parameters: n = 1+d k30 ×3e, omin = 2, omax = 3+d k30 ×2e, mmin = 2, mmax = 3+d k30 ×2e,
and q = 4. Table 3 shows the main characteristics of each instance; while Table 4 shows the value of the
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solutions found when solving the MILP and the CP Optimizer formulations with IBM ILOG CPLEX and
IBM ILOG CP Optimizer solvers, respectively. The associated effort measurements are also shown in
the table. Most of the columns in the table are self-explanatory. When optimality is not proven, column
“Makespan” shows the best lower bound, the best upper bound, and the gap. The precise CP Optimizer
model that is being solved and the meaning of the columns “number of branches in phases 1 and 2” will
be elucidated in the next section. The CPU time is expressed in seconds. Figures in the table clearly
show that the CP Optimizer solver outperformed the MILP solver. In the ten instances with n = 2, both
solvers performed similarly. In the ten instances with n = 3, the CP Optimizer solver outperformed the
MILP solver by one or two orders of magnitude. In the ten instances with n = 4, the MILP solver was
not able to prove optimality of any of the instances; while the CP Optimizer solver solved all instances in
a few seconds of CPU time. As an illustration, Figure 6 shows the solution to instance 30 found for the
MILP and the CP Optimizer formulations by IBM ILOG CPLEX and IBM ILOG CP Optimizer solvers,
respectively, but proven to be optimal in the latter case only.

Table 3: Main features of the considered thirty small-sized instances.

Main instance characteristics MILP formulation CP Optimizer formulation

Instance m
∑m
k=1 qk n o |A| |T | # binary # continuous

# constraints
# integer

# constraints
variables variables variables

1 3 7 2 9 10 1 248 109 889 76 209
2 4 10 2 8 8 1 220 99 784 67 187
3 3 8 2 8 7 1 238 99 843 69 191
4 4 10 2 9 9 1 263 113 928 77 217
5 2 5 2 9 8 2 200 101 752 58 162
6 2 4 2 8 7 1 184 93 685 57 159
7 2 6 2 8 6 0 234 93 832 54 154
8 4 11 2 7 6 0 240 93 836 69 192
9 4 8 2 8 7 1 212 103 766 81 214
10 4 13 2 10 8 0 425 131 1416 104 280
11 4 8 3 14 14 0 549 181 1805 135 372
12 3 9 3 11 8 0 354 131 1225 83 231
13 3 7 3 14 13 0 458 163 1546 100 281
14 3 8 3 13 12 0 514 163 1701 116 323
15 2 4 3 13 12 1 322 145 1169 83 236
16 4 8 3 13 12 0 485 169 1619 121 341
17 2 4 3 14 14 1 301 151 1131 77 224
18 4 7 3 12 11 2 339 151 1182 109 300
19 4 13 3 14 14 1 669 183 2165 134 380
20 4 11 3 12 9 1 466 153 1559 107 300
21 4 10 4 18 16 1 927 237 2936 172 490
22 2 3 4 20 18 0 628 223 2149 126 359
23 3 8 4 18 15 0 895 225 2824 144 419
24 3 6 4 18 14 0 822 227 2596 159 447
25 2 5 4 18 17 2 615 201 2097 114 326
26 2 6 4 19 21 2 622 207 2159 112 321
27 2 2 4 23 26 1 624 249 2217 127 374
28 3 7 4 19 17 1 1027 241 3192 157 459
29 3 10 4 18 18 1 1057 231 3282 153 449
30 4 12 4 19 19 1 1132 255 3516 183 530

5.2.2. Experiments with medium-sized instances

In this section, a set of 20 medium-sized instances is considered. The k-th instance was generated with
the following parameters: n = 4+d k20×6e, omin = 6, omax = 7+d k20×5e, mmin = 6, mmax = 7+d k20×13e,
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Table 4: Description of the solutions found and effort measurements of the IBM ILOG CPLEX and IBM ILOG CP Optimizer
applied to the thirty small-sized instances.

IBM ILOG CPLEX IBM ILOG CP Optimizer

Makespan
Effort measurement

Makespan
Effort measurement

# iterations # B&B Nodes CPU
# of branches in

CPU
phase 1 phase 2

1 274 9286 824 0.5 274 299 21 0.1
2 230 7302 705 0.4 230 215 3 0.1
3 337 2451 231 0.2 337 66 3 0.1
4 276 6410 444 0.4 276 179 21 0.1
5 495 6444 763 0.3 495 212 21 0.1
6 271 5645 665 0.3 271 193 62 0.1
7 370 7223 561 0.3 370 203 580 0.1
8 279 3263 114 0.3 279 98 17 0.1
9 274 1261 113 0.1 274 8 19 0.1
10 329 8530 357 0.7 329 1148 30 0.1
11 239 649022 21705 56.6 239 5274 3 0.2
12 273 54160 2870 3.9 273 410 3 0.1
13 266 2464645 79179 176.0 266 14835 10038 1.0
14 518 401863 20863 42.4 518 1669 29 0.1
15 551 1826080 75865 153.8 551 14824 95573 1.2
16 278 21274 1340 1.4 278 361 29 0.1
17 540 108667 8321 7.7 540 14516 3 0.2
18 327 4623 441 0.3 327 12 27 0.1
19 325 248850 11251 16.5 325 1665 990 0.1
20 264 16287 826 1.1 264 1500 179 0.1
21 [263, 300] 12.3% 50935466 1465096 7200 300 21643 11865 0.7
22 [204, 671] 69.6% 73458018 1400247 7200 651 220130 3 8.0
23 [406, 467] 13.1% 56974881 1217720 7200 467 19771 3 0.6
24 [336, 572] 41.3% 80022693 1673003 7200 571 72971 3 2.6
25 [436, 672] 35.1% 62426552 2011692 7200 672 76887 110821 3.0
26 [374, 628] 40.4% 88226422 1926203 7200 627 226752 324106 12.5
27 [223, 719] 69.0% 79180995 1529405 7200 702 498600 927317 63.7
28 [297, 493] 39.8% 62733982 707445 7200 437 28733 3 1.4
29 [343, 498] 31.1% 55996388 1397887 7200 480 100627 39 4.0
30 [417, 420] 0.7% 65757996 1158447 7200 420 8148 10885 0.3

Mean 405.2 11.75% 22718889.3 490486.1 2415.44 401.43 0.0% 44398.3 49756.53 3.37
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Figure 6: Optimal solution to instance 30 of the set of small-sized instances. Operations with the same color belong to the
same job; while setups are represented in blue and machines’ unavailiability periods in red. The complete instance’s data
can be found in https://willtl.github.io/ops.

and q = 8. Table 5 shows the main characteristics of each instance.
As described at the end of Section 3, the CP Optimizer formulation of the OPS scheduling problem

is given by the minimization of (33) subject to constraints (35–39,42,43–49,52–63); with constraints (41)
and (50,51) being optional. Therefore, in a first experiment, we aim to evaluate the influence of the
optional constraints by comparing: (i) the plain model (named CP Model 1 from on); (ii) the plain model
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plus constraints (41) (named CP Model 2 from on); (iii) the plain model plus constraints (50,51) (named
CP Model 3 from on); and (iv) the plain model plus constraints (41) and constraints (50,51) (named
CP Model 4 from on). Table 6 shows the value of the solutions found when solving each of the four CP
Optimizer models with IBM ILOG CP Optimizer solver. The associated effort measurements are also
shown in the table. Figures in the table show that considering the optional constraints (50,51) helps CP
Optimizer solver to close the gap and prove optimality in 12 out of the 20 considered instances when
solving CP Models 3 and 4; while, when solving CP Models 1 and 2, that do not consider the optional
constraints (50,51), gaps are closed in 10 out of the 20 considered instances. On the other hand, including
or not the optional constraints (41) appears to have no relevant influence on the resolution process of the
considered set of instances. Figure 7 shows the average value of the makespan, over the 20 considered
instances, as a function of time, over the resolution of CP Models 1–4. The graphic confirms, as expected,
that, CP Optimizer solver is able to improve the incumbent solution faster when applied to CP Models 3
and 4 compared to its application to CP Models 1 and 2.

Table 5: Main features of the considered twenty medium-sized instances.

Main instance characteristics MILP formulation CP Optimizer formulation

Instance m
∑m
k=1 qk n o |A| |T | # binary # continuous

# constraints
# integer

# constraints
variables variables variables

1 8 41 5 39 58 0 5987 635 16984 584 1671
2 7 28 5 36 54 3 4341 559 12398 471 1381
3 8 46 5 43 75 1 7753 717 21670 643 1895
4 7 27 6 43 60 1 6615 693 18246 595 1749
5 6 31 6 45 61 3 6189 659 17641 512 1519
6 7 38 6 46 60 0 7292 715 20646 579 1725
7 8 31 7 64 108 1 12302 1049 33289 929 2731
8 9 51 7 53 76 1 11814 933 32185 860 2524
9 6 25 7 56 90 2 9139 839 25240 677 2011
10 8 31 7 63 110 2 12993 1057 34805 932 2777
11 13 52 8 75 118 0 26493 1615 67250 1693 4962
12 11 56 8 78 142 2 26370 1535 68106 1554 4543
13 16 75 8 68 105 0 30571 1713 77029 1949 5652
14 12 61 9 72 105 0 26915 1533 68895 1610 4685
15 17 73 9 76 107 0 37144 1965 92371 2239 6508
16 15 67 9 89 156 2 42871 2113 106337 2287 6756
17 7 34 10 109 207 1 32729 1723 86417 1460 4362
18 17 72 10 96 164 1 53876 2457 131704 2827 8190
19 14 72 10 92 142 2 44376 2095 110957 2273 6617
20 11 51 10 91 135 0 36772 1843 92819 1850 5439

As described in Section 3.3, modeling a setup in between consecutive operations is relatively easy
in the CP Optimizer language. However, the simple formulation given by constraints (50,51) does not
consider the setup time of the first operation processed by each machine; as well as it does not consider
that setup operations are not resumable, i.e., they can not be interrupted by periods of unavailability of
the machines. This is why the model that consists in minimizing (33) subject to constraints (35–39,42,43–
51) can be considered an incomplete model of the OPS scheduling problem, and we name it Incomplete
CP Model from now on. The Incomplete CP Model is much simpler that CP Model 4 and, as a resolution
strategy, it can be solved first; and its optimal (or best known feasible) solution used as an initial guess
to the resolution of CP Model 4. This two-phases strategy is based on the fact that IBM ILOG CP
Optimizer solver has the capability of accepting as initial guess a possible infeasible and incomplete
solution. By incomplete we mean that CP Model 4 has variables that are not present in the Incomplete
CP Model; and, by infeasible, we mean that, with very high probability, a solution to the Incomplete CP
Model has setup operations being interrupted by machines’ unavailabilities, as well as it does not consider
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Table 6: Description of the solutions found and effort measurements of the IBM ILOG CP Optimizer applied to the twenty
medium-sized instances.

CP Model 1 CP Model 2 CP Model 3 CP Model 4

Makespan
Effort measurement

Makespan
Effort measurement

Makespan
Effort measurement

Makespan
Effort measurement

# branches CPU # branches CPU # branches CPU # branches CPU

1 344 11819616 599.7 344 4945664 499.0 344 368683 16.1 344 399038 32.5
2 357 129666 12.0 357 112211 11.3 357 35850 3.9 357 34779 3.8
3 404 45163467 4315.8 [361, 409] 11.7% 77088019 7200 [361, 406] 11.1% 88706470 7200 404 18733373 2825.1
4 458 17065512 1081.0 458 7777910 531.7 458 269785 25.4 458 548398 49.5
5 [474, 510] 7.1% 112252005 7200 [474, 515] 8.0% 86834261 7200 506 384590 40.8 506 399229 90.5
6 [329, 454] 27.5% 86652702 7200 [334, 438] 23.7% 84114310 7200 [334, 437] 23.6% 80406442 7200 [335, 442] 24.2% 47105274 7200
7 2429 1262 0.2 2429 1272 0.2 2429 1455 0.2 2429 1488 0.2
8 [360, 456] 21.1% 89059560 7200 [360, 451] 20.2% 64334715 7200 [360, 460] 21.7% 65621010 7200 [360, 452] 20.4% 59032373 7200
9 [629, 631] 0.3% 118721872 7200 [629, 636] 1.1% 34808015 7200 [629, 630] 0.2% 94392736 7200 [629, 630] 0.2% 86015687 7200
10 1184 1079 0.1 1184 1052 0.1 1184 1204 0.2 1184 1189 0.3
11 [406, 430] 5.6% 39491824 7200 [406, 431] 5.8% 53721744 7200 [406, 427] 4.9% 48553125 7200 [406, 424] 4.2% 45050481 7200
12 [457, 508] 10.0% 75583273 7200 [457, 510] 10.4% 76775244 7200 [457, 503] 9.1% 57651439 7200 [457, 505] 9.5% 48316050 7200
13 347 148874 26.5 347 144200 15.8 347 64381 7.7 347 29387 6.6
14 [302, 412] 26.7% 43670920 7200 [320, 404] 20.8% 57130518 7200 [302, 399] 24.3% 48125327 7200 [320, 403] 20.6% 33552405 7200
15 319 259273 40.6 319 275642 58.8 319 55919 12.4 319 94552 27.6
16 543 138290 18.0 543 1814 0.5 543 1343 0.4 543 1331 0.8
17 [1044, 1053] 0.9% 60769510 7200 [1044, 1059] 1.4% 48747654 7200 1052 12862072 1589.7 [1052, 1055] 0.3% 32700611 7200
18 3184 1968 0.6 3184 1968 0.6 3184 2091 0.8 3184 2091 0.7
19 [1449, 1451] 0.1% 93263868 7200 [1449, 1451] 0.1% 83339741 7200 1451 2305 0.7 1451 2371 0.7
20 [360, 544] 33.8% 71372646 7200 [417, 543] 23.2% 51052068 7200 [360, 532] 32.3% 43254587 7200 [417, 532] 21.6% 41945390 7200

Mean 800.9 6.65% 43278359 3904.72 800.6 6.32% 36560401 4015.9 798.4 6.36% 27038040 2964.91 798.45 5.05% 20698274 3031.91
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Figure 7: Evolution over time of the (average of the) incumbent solutions’ makespan of medium-sized instances along the
resolution of CP Models 1–4.
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Figure 8: Time comparison between the resolution of the CP Model 4 and its resolution in two phases considering the
solution found to the Incomplete CP Model as an initial guess.

the setup operation of the first operation being processed by each machine; thus being infeasible to CP
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Table 7: Description of the solutions found and effort measurements of the IBM ILOG CP Optimizer applied to the twenty
medium-sized instances. The left half of the table corresponds to CP Model 4 (already shown in Table 6); while the right
half of the table corresponds to solving first the Incomplete CP Model and passing its solution as an initial guess for the
resolution of CP Model 4.

CP Model 4 Incomplete CP Model + CP Model 4

Makespan

Effort measurement

Makespan

Effort measurement

# branches CPU
phase 1 phase 2 Total

# branches CPU # branches CPU CPU

1 344 399038 32.5 344 288898 15.53 280015 15.07 30.6
2 357 34779 3.8 357 22228 1.09 3 0.01 1.1
3 404 18733373 2825.1 404 132017215 4969.69 16246793 611.61 5581.3
4 458 548398 49.5 458 146895 5.59 3 0.01 5.6
5 506 399229 90.5 506 272817 31.26 294203 33.74 65.0
6 [335, 442] 24.2% 47105274 7200 [335, 441] 24.0% 142959186 4800.0 21538650 2400.0 7200
7 2429 1488 0.2 2429 1241 0.08 131 0.02 0.1
8 [360, 452] 20.4% 59032373 7200 [360, 450] 20.0% 129153428 4800.0 19362459 2400.0 7200
9 [629, 630] 0.2% 86015687 7200 629 43101316 1096.49 115 0.01 1096.5
10 1184 1189 0.3 1184 1250 0.09 3 0.01 0.1
11 [406, 424] 4.2% 45050481 7200 [406, 418] 2.9% 123558867 4800.0 18454514 2400.0 7200
12 [457, 505] 9.5% 48316050 7200 [457, 499] 8.4% 128774356 4800.0 17042168 2400.0 7200
13 347 29387 6.6 347 6914 0.39 3 0.01 0.4
14 [320, 403] 20.6% 33552405 7200 [320, 394] 18.8% 109752381 4800.0 13032611 2400.0 7200
15 319 94552 27.6 319 47107 3.19 3 0.01 3.2
16 543 1331 0.8 543 1481 0.29 3 0.01 0.3
17 [1052, 1055] 0.3% 32700611 7200 1052 572991 59.72 455352 47.48 107.2
18 3184 2091 0.7 3184 2063 0.39 3 0.01 0.4
19 1451 2371 0.7 1451 2504 0.36 187 0.04 0.4
20 [417, 532] 21.6% 41945390 7200 [417, 520] 19.8% 106764402 4800.0 12752639 2400.0 7200

Mean 798.45 5.05% 20698274 3031.91 796.45 4.7% 45872377 1749.21 5972992 755.4 2504.61

Model 4. Nevertheless, IBM ILOG CP Optimizer solver is able to heuristically transform this infeasible
and incomplete initial guess into a feasible solution that potentially helps to prune the search space in
the resolution process of CP Model 4. Table 7 shows the solutions found by IBM ILOG CP Optimizer
solver when applied to the twenty medium-sized instances of CP Model 4 without using (already shown
in Table 6) and using the solution of the Incomplete CP Model as an initial guess. In the two-phases
strategy, 2/3 of the two hours budget is allocated to the resolution of the Incomplete CP Model; while the
remaining 1/3 is allocated to the resolution of CP Model 4 itself. In the table, “# branches 1” corresponds
to the resolution of the Incomplete CP Model; while “# branches 2” corresponds to the resolution of
CP Model 4. The CPU time reported for “Incomplete CP Model + CP Model 4” corresponds to the
total CPU time for solving both models. Figures in the table show that, in instance 3, the two-phases
strategy took longer than the “single-phase strategy” to close the gap. On the other hand, it closed
the gaps of instances 9 and 17 (that were not closed by the single-phase strategy); and it reduced the
gap, by improving the incumbent solution, in the other six instances in which the single-phase strategy
was unable to prove optimality (namely, instances 6, 8, 11, 12, 14, and 20). Moreover, as depicted in
Figure 8, the two-phases strategy was able to prove optimality faster than the single-phase strategy on
11 out of the 12 instances in which both strategies proved optimality. As a whole, it can be inferred that
the two-phases strategy for solving CP Model 4 is the most efficient way of solving the CP Optimizer
formulation of the OPS scheduling problem. The figures reported in Table 4, where the performances of
IBM ILOG CPLEX and IBM ILOG CP Optimizer solvers are compared when applied to the MILP and
the CP optimizer formulations of the OPS scheduling problem, respectively, correspond to the two-phases
strategy applied to CP Model 4. As an illustration, Figure 9 shows the solution to instance 1 of the set
of medium-sized instances found by the two-phases strategy applied to CP Model 4.
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Figure 9: Optimal solution to instance 1 of the set of medium-sized instances. Operations with the same color belong to
the same job; while setups are represented in blue and machines’ unavailiability periods in red. The complete instance’s
data can be found in https://willtl.github.io/ops.

5.2.3. Experiments with large-sized instances

In this section, a set of 50 large-sized instances is considered. Instances are of the size of the real
instances of the OPS scheduling problem. The k-th instance was generated with the following parameters:
n = 11 + d k

100 × 189e, omin = 5, omax = 6 + d k
100 × 14e, mmin = 9 + d k

100 × 20e, mmax = 10 + d k
100 × 90e,

and q = 8. Table 8 shows the main characteristics of each instance. Note that the last instance in the set
has 55 machines, 250 unavailability periods, 106 jobs, 978 operations, and 1,581 precedence constraints;
while its CP formulation has 85,463 integer variables and 251,649 constraints. Table 9 shows the solutions
found by and the performance of IBM ILOG CP Optimizer applied to CP Model 4 and to “Incomplete CP
Model + CP Model 4”. In the table, only the number of branches is shown, since in all case the CPU time
limit of two hours was reached. (Recall that, in the case in which the two phases strategy is considered,
2/3 of the time is devoted to solve the Incomplete CP Model and the remaining 1/3 of the time is used to
solve CP Model 4 using as starting guess the solution to the Incomplete CP Model.) Figures in the table
show that, as in the case of the medium-sized instances, the two phases strategy is more effective, in the
sense that it is able to found better quality solutions in 41 out of the 50 considered instances. Figures in
the table also show that in all cases a feasible solution is found and that the average gap is around 33%.
Table 10 shows the solution found by IBM ILOG CP Optimizer applied to “Incomplete CP Model + CP
Model 4” with a CPU time limit of 5 minutes, 30 minutes, 2 hours, and 10 hours. The table shows that
the average gap for the different CPU time limits is 41%, 34%, 33%, and 31%, respectively. These figures
suggest that “good quality” solutions are found relatively quickly, that most of the time is used to close
the gap, and that, when trying to close the gap, slightly better solutions might be found. This means
that IBM ILOG CP Optimizer could be used in practice to find feasible solutions to real instances of
the OPS scheduling problem. On the other hand, the non-null gap leaves space for the development of
ad-hoc heuristic methods that, hopefully, would be able to find better quality solutions.

6. Conclusions and future works

In this work, a challenging real scheduling problem with several complicating features was introduced.
The problem, named OPS scheduling problem, can be seen as a flexible job shop scheduling problem with
sequence flexibility. MILP and CP Optimizer formulations of the problem were presented and analyzed.
The capacity of IBM ILOG CPLEX MILP and IBM ILOG CP Optimizer solvers for dealing with the
proposed formulations was investigated. While the MILP solver is a general-purpose solver; the CP
Optimizer solver was born as a solver dedicated to scheduling problems, with its own modeling language
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Table 8: Main features of the considered fifty large-sized instances.

Main instance characteristics CP Optimizer formulation

Instance m
∑m
k=1 qk n o |A| |T | # integer

# constraints
variables

1 10 56 13 79 95 0 1293 3792
2 10 44 15 98 120 0 1595 4648
3 13 47 17 107 131 0 2359 6888
4 11 69 19 120 150 0 2451 7209
5 10 52 21 128 165 0 2235 6540
6 15 64 23 141 180 0 3820 11235
7 14 71 25 170 229 0 4120 12054
8 13 58 27 193 257 0 4655 13631
9 16 68 29 207 308 1 5592 16522
10 19 81 30 201 266 0 6537 19152
11 14 68 32 240 337 1 5938 17404
12 15 67 34 232 310 0 6124 18115
13 18 82 36 257 350 0 7860 23081
14 13 60 38 259 350 0 5883 17357
15 15 53 40 298 430 1 7708 22820
16 17 88 42 311 429 0 9140 26801
17 22 98 44 341 505 1 12788 37473
18 13 57 46 345 486 1 7853 23212
19 24 108 47 362 524 0 14367 42184
20 28 136 49 383 555 1 17662 52005
21 14 69 51 386 557 0 9544 28138
22 20 79 53 398 572 0 12750 37494
23 28 129 55 421 638 0 19538 57451
24 15 61 57 437 592 1 11299 33312
25 29 145 59 507 810 1 24190 70876
26 26 120 61 487 743 0 21193 62377
27 21 93 63 498 746 0 17571 51678
28 20 66 64 533 784 2 17039 50072
29 19 59 66 547 833 0 17555 51928
30 26 130 68 563 831 0 24305 71287
31 37 148 70 601 967 1 35633 105024
32 39 154 72 593 935 0 37521 110493
33 20 90 74 617 931 0 20027 58960
34 35 161 76 656 1011 0 37094 108969
35 17 71 78 675 1049 1 19362 57160
36 19 81 80 700 1127 1 22642 66713
37 43 197 81 789 1290 1 55235 162562
38 43 186 83 706 1143 1 49300 145476
39 32 137 85 765 1242 1 40211 118131
40 26 93 87 812 1305 0 34800 102295
41 27 135 89 834 1383 0 36985 109069
42 38 152 91 821 1282 2 50074 147194
43 26 93 93 904 1424 1 38750 114131
44 18 89 95 921 1564 0 28031 82872
45 34 164 97 965 1628 0 53196 156446
46 28 127 98 868 1367 1 39853 117804
47 19 87 100 961 1609 1 30667 90453
48 53 228 102 942 1540 0 78706 232310
49 23 101 104 959 1513 0 36885 108542
50 55 250 106 978 1581 0 85463 251649

that fully explores the structure of the underlying problem. Thus, it is not a surprise the latter to
outperform the former by a large extent in the numerical experiments with the OPS scheduling problem
presented in this work. The obtained result is in agreement with a previous comparison of similar nature
presented in Viĺım et al. (2015) and Laborie (2018) for the job shop and the flexible job shop scheduling
problems.
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Table 9: Description of the solutions found and effort measurements of the IBM ILOG CP Optimizer applied to the fifty
large-sized instances. The left half of the table corresponds to CP Model 4 (already shown in Table 6); while the right
half of the table corresponds to solving first the Incomplete CP Model and passing its solution as an initial guess for the
resolution of CP Model 4.

CP Model 4 Incomplete CP Model + CP Model 4

Makespan gap (%) # branches makespan gap (%) # branches 1 # branches 2

1 [387, 528] 26.7 49798163 [387, 527] 26.6 120241891 14581110
2 [494, 661] 25.3 39711504 [494, 650] 24.0 110885682 13313040
3 [452, 631] 28.4 39468386 [452, 633] 28.6 97607050 11604473
4 [562, 763] 26.3 35944769 [562, 756] 25.7 93096578 9904719
5 [625, 855] 26.9 39251314 [625, 828] 24.5 97073106 10349840
6 [490, 717] 31.7 32448937 [490, 715] 31.5 85024768 9228219
7 [659, 943] 30.1 28100210 [659, 923] 28.6 72857628 7788597
8 [739, 1055] 30.0 23528650 [739, 1039] 28.9 67355598 6681507
9 [654, 983] 33.5 24454758 [654, 980] 33.3 65804340 6537839
10 [547, 827] 33.9 25762983 [547, 790] 30.8 63801015 6740620
11 [857, 1244] 31.1 19205336 [857, 1230] 30.3 57729625 7599655
12 [838, 1225] 31.6 21224292 [838, 1180] 29.0 61503923 6541171
13 [699, 1073] 34.9 20602257 [699, 1011] 30.9 54006978 5190138
14 [1052, 1539] 31.6 18026217 [1052, 1486] 29.2 50939574 4958123
15 [975, 1478] 34.0 16007825 [975, 1445] 32.5 42382885 4677113
16 [924, 1488] 37.9 13721997 [924, 1382] 33.1 38344783 3879028
17 [763, 1150] 33.7 11518247 [763, 1117] 31.7 32621308 2787395
18 [1415, 2040] 30.6 11688840 [1415, 1897] 25.4 36621269 3282986
19 [737, 1107] 33.4 12841773 [737, 1028] 28.3 31061348 3454907
20 [671, 1093] 38.6 7883338 [671, 1053] 36.3 26628577 3368228
21 [1378, 2043] 32.6 9278464 [1378, 1956] 29.6 38050942 3605124
22 [985, 1563] 37.0 11218731 [985, 1496] 34.2 37444198 2991893
23 [762, 1185] 35.7 8102079 [762, 1146] 33.5 29827277 3268703
24 [1377, 2162] 36.3 7139492 [1377, 2010] 31.5 37578271 2841939
25 [892, 1397] 36.1 4160924 [892, 1367] 34.7 20504018 1181601
26 [880, 1463] 39.8 7210391 [880, 1362] 35.4 26867887 1847124
27 [1246, 1856] 32.9 8158263 [1246, 1790] 30.4 29586547 2630271
28 [1396, 2175] 35.8 7900895 [1396, 2089] 33.2 27240976 1642209
29 [1452, 2241] 35.2 4952743 [1452, 2199] 34.0 28329290 1889844
30 [1116, 1692] 34.0 8890534 [1116, 1769] 36.9 21953739 1703439
31 [822, 1284] 36.0 4139996 [822, 1218] 32.5 21050620 1652157
32 [776, 1204] 35.5 3423918 [776, 1151] 32.6 19731639 2487825
33 [1469, 2414] 39.1 4898465 [1469, 2276] 35.5 24557450 2204832
34 [951, 1490] 36.2 5776499 [951, 1483] 35.9 16280020 1379212
35 [1932, 3161] 38.9 5417895 [1932, 3049] 36.6 25096957 1948660
36 [1788, 2876] 37.8 4898721 [1788, 2826] 36.7 23458076 379399
37 [924, 1426] 35.2 2985158 [924, 1468] 37.1 11587937 821564
38 [832, 1281] 35.1 5009442 [832, 1192] 30.2 14892180 1195237
39 [1214, 1895] 35.9 2483387 [1214, 1845] 34.2 16606096 1193648
40 [1552, 2439] 36.4 3344183 [1552, 2439] 36.4 16202692 1411237
41 [1587, 2553] 37.8 3239079 [1587, 2524] 37.1 15517269 873936
42 [1111, 1905] 41.7 1837052 [1111, 1715] 35.2 14722059 1154822
43 [1737, 2779] 37.5 4525245 [1737, 2767] 37.2 16091655 1129221
44 [2587, 4007] 35.4 3260320 [2587, 3908] 33.8 13253041 1121671
45 [1446, 2331] 38.0 5837368 [1446, 2301] 37.2 14297375 1145106
46 [1539, 2432] 36.7 3434877 [1539, 2446] 37.1 15226438 1126198
47 [2518, 3928] 35.9 2421741 [2518, 4040] 37.7 14957027 961575
48 [896, 1368] 34.5 925320 [896, 1473] 39.2 6202106 895555
49 [2108, 3187] 33.9 3352348 [2108, 3233] 34.8 17104498 979735
50 [931, 1487] 37.4 1857144 [931, 1505] 38.1 13503241 927131

Mean 1692.48 34.4 12825409 1654.26 32.8 38666188 3821191

The problem under consideration corresponds to a real problem of a European company that runs
several online printing shops all over the Continent. These shops process, on average, 20,000 orders
per day and they recompute the scheduling considering recently arrived orders several times per day.
The OPS scheduling problem is an NP-hard problem and the CP Optimizer mixes exact and heuristic
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Table 10: Description of the solutions found by the IBM ILOG CP Optimizer applied to the fifty large-sized instances,
considering the Incomplete CP Model + CP Model 4 strategy, and with increasing CPU time limits.

5 minutes 30 minutes 2 hours 10 hours

Makespan gap (%) Makespan gap (%) Makespan gap (%) Makespan gap (%)

1 [387, 538] 28.1 [387, 530] 27.0 [387, 527] 26.6 [387, 521] 25.7
2 [494, 663] 25.5 [494, 654] 24.5 [494, 650] 24.0 [494, 649] 23.9
3 [452, 653] 30.8 [452, 635] 28.8 [452, 633] 28.6 [452, 623] 27.4
4 [562, 780] 27.9 [562, 755] 25.6 [562, 756] 25.7 [562, 756] 25.7
5 [625, 860] 27.3 [625, 837] 25.3 [625, 828] 24.5 [625, 825] 24.2
6 [490, 724] 32.3 [490, 718] 31.8 [490, 715] 31.5 [490, 698] 29.8
7 [659, 964] 31.6 [659, 938] 29.7 [659, 923] 28.6 [659, 902] 26.9
8 [739, 1091] 32.3 [739, 1044] 29.2 [739, 1039] 28.9 [739, 1022] 27.7
9 [654, 1019] 35.8 [654, 966] 32.3 [654, 980] 33.3 [654, 936] 30.1
10 [547, 902] 39.4 [547, 900] 39.2 [547, 790] 30.8 [547, 781] 30.0
11 [857, 1290] 33.6 [857, 1231] 30.4 [857, 1230] 30.3 [857, 1182] 27.5
12 [838, 1257] 33.3 [838, 1223] 31.5 [838, 1180] 29.0 [838, 1178] 28.9
13 [699, 1084] 35.5 [699, 1010] 30.8 [699, 1011] 30.9 [699, 998] 30.0
14 [1052, 1557] 32.4 [1052, 1514] 30.5 [1052, 1486] 29.2 [1052, 1449] 27.4
15 [975, 1542] 36.8 [975, 1476] 33.9 [975, 1445] 32.5 [975, 1427] 31.7
16 [924, 1516] 39.1 [924, 1420] 34.9 [924, 1382] 33.1 [924, 1343] 31.2
17 [763, 1131] 32.5 [763, 1080] 29.4 [763, 1117] 31.7 [763, 1037] 26.4
18 [1415, 2014] 29.7 [1415, 1918] 26.2 [1415, 1897] 25.4 [1415, 1898] 25.4
19 [737, 1236] 40.4 [737, 1046] 29.5 [737, 1028] 28.3 [737, 1008] 26.9
20 [671, 1135] 40.9 [671, 1132] 40.7 [671, 1053] 36.3 [671, 1050] 36.1
21 [1378, 2104] 34.5 [1378, 1992] 30.8 [1378, 1956] 29.6 [1378, 1939] 28.9
22 [985, 1639] 39.9 [985, 1642] 40.0 [985, 1496] 34.2 [985, 1573] 37.4
23 [762, 1336] 43.0 [762, 1128] 32.4 [762, 1146] 33.5 [762, 1082] 29.6
24 [1377, 2135] 35.5 [1377, 2073] 33.6 [1377, 2010] 31.5 [1377, 1942] 29.1
25 [892, 1524] 41.5 [892, 1442] 38.1 [892, 1367] 34.7 [892, 1241] 28.1
26 [880, 1581] 44.3 [880, 1486] 40.8 [880, 1362] 35.4 [880, 1348] 34.7
27 [1246, 1833] 32.0 [1246, 1791] 30.4 [1246, 1790] 30.4 [1246, 1741] 28.4
28 [1396, 2185] 36.1 [1396, 2171] 35.7 [1396, 2089] 33.2 [1396, 2003] 30.3
29 [1452, 2256] 35.6 [1452, 2298] 36.8 [1452, 2199] 34.0 [1452, 2282] 36.4
30 [1116, 2473] 54.9 [1116, 1590] 29.8 [1116, 1769] 36.9 [1116, 1561] 28.5
31 [822, 1296] 36.6 [822, 1295] 36.5 [822, 1218] 32.5 [822, 1288] 36.2
32 [434, 1214] 64.3 [776, 1208] 35.8 [776, 1151] 32.6 [776, 1165] 33.4
33 [1469, 2698] 45.6 [1469, 2398] 38.7 [1469, 2276] 35.5 [1469, 2166] 32.2
34 [409, 1545] 73.5 [951, 1604] 40.7 [951, 1483] 35.9 [951, 1403] 32.2
35 [1932, 3145] 38.6 [1932, 3099] 37.7 [1932, 3049] 36.6 [1932, 2892] 33.2
36 [1788, 3167] 43.5 [1788, 2819] 36.6 [1788, 2826] 36.7 [1788, 2691] 33.6
37 [924, 1463] 36.8 [924, 1671] 44.7 [924, 1468] 37.1 [924, 1350] 31.6
38 [832, 1264] 34.2 [832, 1200] 30.7 [832, 1192] 30.2 [832, 1144] 27.3
39 [452, 1880] 76.0 [1214, 1870] 35.1 [1214, 1845] 34.2 [1214, 1786] 32.0
40 [1552, 2463] 37.0 [1552, 2509] 38.1 [1552, 2439] 36.4 [1552, 2347] 33.9
41 [1587, 2550] 37.8 [1587, 2522] 37.1 [1587, 2524] 37.1 [1587, 2542] 37.6
42 [618, 1732] 64.3 [1111, 1688] 34.2 [1111, 1715] 35.2 [1111, 1598] 30.5
43 [529, 2784] 81.0 [1737, 2779] 37.5 [1737, 2767] 37.2 [1737, 2599] 33.2
44 [2587, 4030] 35.8 [2587, 4063] 36.3 [2587, 3908] 33.8 [2587, 3770] 31.4
45 [1446, 2378] 39.2 [1446, 2466] 41.4 [1446, 2301] 37.2 [1446, 2210] 34.6
46 [1539, 2439] 36.9 [1539, 2497] 38.4 [1539, 2446] 37.1 [1539, 2293] 32.9
47 [2518, 4195] 40.0 [2518, 3757] 33.0 [2518, 4040] 37.7 [2518, 3824] 34.2
48 [544, 1377] 60.5 [896, 1506] 40.5 [896, 1473] 39.2 [896, 1290] 30.5
49 [2108, 4065] 48.1 [2108, 3012] 30.0 [2108, 3233] 34.8 [2108, 2897] 27.2
50 [931, 2244] 58.5 [931, 1570] 40.7 [931, 1505] 38.1 [931, 1478] 37.0

Mean 1779.02 41.0 1683.46 34.1 1654.26 32.8 1594.56 30.6

strategies that were not specifically devised for the problem at hand. However, numerical experiments
in this work show that the CP Optimizer is able to find feasible solution to large-sized instances; thus
being an alternative to tackle the OPS scheduling problem in practice. On the other hand, it is not
expected the CP Optimizer to be competitive with ad-hoc heuristics fully exploiting the specificities of
the problem. These facts suggest that the development of heuristic methods to deal with the considered
problem is a promising alternative; and this will be the subject of future work.
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Özgüven, C., Özbakır, L., Yavuz, Y., 2010. Mathematical models for job-shop scheduling problems with
routing and process plan flexibility. Applied Mathematical Modelling 34, 1539–1548. doi:10.1016/j.
apm.2009.09.002.

Pinedo, M.L., 2012. Scheduling – Theory, Algorithms, and Systems. Springer. doi:10.1007/
978-1-4614-2361-4.

Rossi, F., Van Beek, P., Walsh, T., 2006. Handbook of Constraint Programming. Elsevier.

Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F., 2014. Management of an academic HPC cluster:
The UL experience, in: 2014 International Conference on High Performance Computing & Simulation
(HPCS), IEEE. pp. 959–967. doi:10.1109/HPCSim.2014.6903792.

Vilcot, G., Billaut, J.C., 2008. A tabu search and a genetic algorithm for solving a bicriteria general job
shop scheduling problem. European Journal of Operational Research 190, 398–411. doi:10.1016/j.
ejor.2007.06.039.
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