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Abstract—The mixture of Gaussian (MoG) distribution was
proposed to model the wireless channels by implementing the
completely unsupervised expectation-maximization (EM) learn-
ing algorithm. With the high convenience for density estimation
applications, the focus of this letter is supposed to investigate
the secrecy metrics, including secrecy outage probability (SOP),
the lower bound of SOP, the probability of non-zero secrecy
capacity (PNZ), and the average secrecy capacity (ASC) from the
information-theoretic perspective. The above-mentioned metrics
are derived with simple and unified closed-form expressions. The
effectiveness of our obtained analytical expressions are success-
fully examined and compared with Monte-Carlo simulations. One
can conclude that this letter provides a simple but effective closed-
form secrecy analysis solution exploiting the MoG distribution.

Index Terms—Physical layer security (PLS), mixture of Gaus-
sian distribution

I. INTRODUCTION

PHYSICAL layer security (PLS) is favored as a promising
solution for guaranteeing secure communication. The

absence of secret keys makes it outperform the conventional
cryptography technique from the information-theoretic view-
point. In recent decades, plenty of works have studied the
PLS over various fading channels, e.g., Rayleigh [1], Rician
(Nakagami-n) [2], Hoyt (Nakagami-q) [3], α − µ [4]–[6],
cascaded α − µ [7], κ − µ [8], Lognormal [9], Fisher-
Snedecor F [10], generalized-K [11], extended generalized-K
(EGK) [12], α− η − κ− µ [13], Málaga [14], etc.

To this end, we were motivated to seek a more general and
flexible model, which can encompass or generalize most of
the well-known fading channel models to a large extent. The
mixture gamma (MG) distribution and the Fox’s H-function
distribution were proved to be two promising candidates to
address the aforementioned concern. The MG distribution was
proposed by Atapattu et al. in [15] to model the signal-to-
noise ratio (SNR) of wireless channels. This distribution can
highly accurately characterize the SNRs of composite fading
channels. The application of using the MG distribution to
characterize the physical layer security is effectively verified in
[3], where the secrecy outage probability (SOP), the probabil-
ity of non-zero secrecy capacity (PNZ), and average secrecy
capacity (ASC) are derived with closed-form expressions in
terms of the Fox’s H-function. In parallel, the feasibility of

This work has been supported by the Luxembourg National Research Fund
(FNR) projects, titled Exploiting Interference for Physical Layer Security in
5G Networks (CIPHY), and Energy and CompLexity EffiCienT mIllimeter-
wave Large-Array Communications (ECLECTIC).

L. Kong, S. Chatzinotas, and B. Ottersten are with the Interdisci-
plinary Centre for Security Reliability and Trust (SnT), University of
Luxembourg, L-1855 Luxembourg (email: {long.kong, symeon.chatzinotas,
bjorn.ottersten}@uni.lu)

utilizing the Fox’s H-function distribution was explored in
[12], which provides a unified secrecy analysis framework,
and the analytical results therein indicates that simple trans-
formation of the fading channel characteristics in the manner
of Fox’s H-function distribution can largely encompass the
existing works [1], [5]–[7], [10].

As discussed earlier, both the MG and Fox’s H-function
distributions are useful and beneficial, but limited to the
scenario that all the channel characteristics, i.e., the probability
density functions (PDFs) and cumulative distribution functions
(CDFs) of fading channel models are known. To the authors’
best knowledge, no work has ever considered the scenario that
the PDFs and CDFs are not exactly known. A possible answer
to such a concern is the mixture of Gaussian (MoG) distribu-
tion. Selim et al. in [16] proposed the MoG distribution to
model the wireless channels, while unsupervised expectation-
maximization (EM) learning algorithm was utilized to estimate
the parameters of the MoG distribution. The findings of [16]
shows that the MoG distribution is especially advantageous
to approximate any arbitrarily shaped non-Gaussian density,
and can accurately model both composite and noncomposite
channels in a very simple expression. Motivated by [16], the
main contributions of this paper are twofold.
(1) Providing a simple but effective information-theoretic

secrecy analysis solution under the condition of unknown
fading channel characteristics. Specifically, highly accu-
rate closed-form SOP, PNZ, and ASC expressions are
derived with the aid of the MoG distribution;

(2) Validating the tightness of our obtained results with
Monte-Carlo simulations. The accuracy indicator, i.e.,
analytical error, further confirms our obtained results.

II. SYSTEM MODEL

Consider the Alice-Bob-Eve classic wiretap model, it is
assumed that the instantaneous received SNRs γi = γ̄ih

2
i , i ∈

{B,E} at Bob and Eve, where γ̄i is the average received
SNR, hi is the channel coefficient and modeled as the MoG
distributed random variables (RVs). The PDF and CDF of γi
are respectively given by [16, Eqs. (23) and (45)]:
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where Ci represents the number of Gaussian components1.
wl > 0, µl and ηl are the lth weight, mean, and variance
with the constraint of

∑Ci

l wl = 1, which can be evaluated
using the unsupervised EM learning algorithm. γ̄i is the
average SNR at the receiver. erf(x) and Φ(x) are the error
function and the CDF of the standard normal distribution. Step
(a) is developed for the sake of simplifying the following
derivations.

According to [1], for one realization of (γB , γE) pair, the
instantaneous secrecy capacity over quasi-static wiretap fading
channels is defined as

Cs(γB , γE) = [log2 (1 + γB)− log2 (1 + γE)]
+
, (2)

where [x]+
4
= max(x, 0).

III. SECRECY CHARACTERIZATION

A. SOP Characterization
Secure communication can be guaranteed only when the

secrecy rate Rt is lower than the instantaneous secrecy ca-
pacity. The SOP is a pivotal and crucial secrecy indicator, and
widely used to characterize the probability that perfect secrecy
is compromised.

Theorem 1. The SOP is given by
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Proof. For a given target secrecy rate Rt, the SOP is math-
ematically defined as Pout = Pr (Cs ≤ Rt) [6], and further
developed as follows

Pout =

∫ ∞
0

FB (Rsγ +W) fE(γ)dγ, (4)

where Rs = 2Rt ,W = 2Rt − 1. Next, plugging (1a) and (1b)
into (4), we get
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step (b) is developed by applying the interchange of variables
y =

√
γ
γ̄E

. Since y is a normally distributed RV, i.e., y ∼

1The number of components Ci is selected automatically using the
Bayesian information criterion (BIC) method given in [16, Section III-C],
whereas the corresponding parameters for the mixture are evaluated using the
EM algorithm.

N (µk, ηk), subsequently applying the result given in [9, Eq.
(4)], the proof for Pout is achieved. �

The difficulty of deriving the exact closed-form SOP ex-
pression, the lower bound of the SOP PLout is thereafter
widely used to provide an asymptotic behavior of SOP for
two scenarios: (i) Rt → 0; and (ii) both γB and γE operate
at high SNR regimes. As such, PLout is developed as

PLout =

∫ ∞
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next, substituting (1a) and (1c) into (6), and subsequently
making the change of variables y =
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Next, applying [17, Eq. (3.462.1)] on U and after some
mathematical manipulations, PLout is eventually derived as
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For the simplicity of following notations, let ρ = γ̄B
γ̄E

.

B. PNZ Characterization

The PNZ is regarded as another important secrecy metric
to measure the existence of the positive secrecy capacity with
a probability Pnz , mathematically speaking, it means that
positive secrecy capacity can be achieved when γB > γE .

Theorem 2. The PNZ is given by
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Apparently, Pnz does not vary with the change of ρ.

Proof. Revisiting the definition of Pnz [12], i.e., Pnz =∫∞
0
FE(γ)fB(γ)dγ, then following the same procedure as the

proof of PLout, the proof is finished. (9b) is obtained by using
Φ(x) = 1

2
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)

. �

C. ASC Characterization

The ASC is another secrecy metric that quantifies the
maximum achievable secrecy rate.

Theorem 3. The ASC is given by (10), shown at the top of next
page, where GB(x, γ̄B , µ, η, ρ) = log2(1 + γ̄Bx

2)Φ
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η

)
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Proof. By averaging (2) over γB and γE , the ASC is mathe-
matically expressed as [12, Eq. (6)], C̄s = I1 +I2−I3, where
I1 =
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step (c) is developed by using [9, Eq. (4)]. Similarly, I2

and I3 can be obtained. After some simple mathematical
manipulations, the proof of C̄s is finished. �

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the accuracy of our derived analytical results
is validated by performing the Monte-Carlo simulations over
κ − µ fading channels. Assuming that the main channel and
wiretap channel undergo the same fading conditions, herein
κ = 3, µ = 1, where the estimated parameters for the
MoG distribution are adopted the ones from [16, Table. IV].
In order to encompass more fading models, we also plotted
the SOP over Rayleigh, Nakagami-m, Weibull, and α − µ2

fading channels in Fig. 1. (b). The SOP, PNZ, and ASC are
respectively plotted and compared in Figs. 1-4 with Monte-
Carlo simulations. Apparently, one can observe that there exist
excellent agreements between our analytical and simulated
results.

2The approximation parameters used to estimate α− µ distribution in the
manner of MoG distribution are obtained by using the method given in [18,
Appendix B].
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Fig. 1: Pout against γ̄B when Rt = 0.5 over (a) κ− µ fading
channels; and (b) Rayleigh, Nakagami-m, Weibull, and α−µ
fading channels [6] with γ̄E = 5dB.
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Fig. 2: Pout against Rt over κ − µ fading channels when
γ̄B = 8 dB.

A. Numerical Results

Figs. 1 and 2 plot the SOP, Pout, and the lower bound
of SOP, PLout. The increase of γ̄E means an increasingly
improving quality of the received SNR at Eve, it physically
says secure communication gradually confronts high risks.
Besides, the lower bound of SOP gradually shows a tight
approximation to the exact SOP when (i) Rt goes to 0, i.e.,
observing from (4) and (6), as Rt → 0, it means W → 0,
resulting in diminishing the gap between PLout and Pout.
Practically speaking, Alice adopts no transmission rate; and
(ii) γ̄E locates at the high SNR regime, i.e., it can be physically
interpreted that Eve is close to Alice.

Fig. 3 depicts the PNZ, as shown in (9a). In continuation
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Fig. 3: Pnz versus γ̄B over κ− µ fading channels.
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Fig. 4: C̄s versus γ̄B over κ− µ fading channels.

with Pout, higher γ̄E values leads to lower Pnz performance,
it means Eve is largely capable of wiretapping the legiti-
mate link. Fig. 4 shows that the analytical ASC, as in (10),
demonstrates an increasing tendency with regard to ρ. Larger
ρ illustrates bigger gap between γ̄B and γ̄E , and thereafter
resulting in higher C̄s.

Conclusively speaking, inspired by [8], [16], the MoG
distribution is feasible and applicable in cellular device-to-
device, vehicle-to-vehicle and on-body communications.

B. Accuracy Analysis

Observed from Figs. 1-4, our analytical results present
an excellent match with Monte-Carlo simulations. For the
purpose of illustrating the tightness of the analytical results,
a useful measure, namely analytical error, is used as the
accuracy indicator [9]

analytical error = 1− analytical results
simulation results

× 100%. (13)

As shown in Table I, the analytical errors for the PNZ and ASC
are considerable small, within ±1%. The analytical error for
the SOP gradually increases as ρ increases, but within ±3%.
Conclusively speaking, our derivations are highly accurate.

V. CONCLUSION

In this letter, the feasibility of the MoG distribution on the
PLS analysis was explored. The secrecy metrics, including
Pout, PLout, PNZ , and C̄s, are respectively derived with simple

TABLE I: Analytical error against ρ (dB) when γ̄E = 0 dB

ρ 0 4 8 12 16
Pout 0.03% -0.25% -0.14% 0.45% -2.40%
Pnz 0.09% -0.09% -0.03% -0.03% 0.01%
C̄s 0.63% -0.41% 0.27% -0.21% -0.008%

and closed-form expressions. The accuracy of our analytical
results are further successfully validated by performing Monte-
Carlo simulations. This letter offers a unified and effective
framework when analyzing physical layer security over fading
channels. The MoG approach is beneficial when the main
channel and wiretap channel confront different type of fading
conditions, e.g., mixture of composite and non-composite
fading channels.
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