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ABSTRACT. Arithmetic billiards show a nice interplay between arithmetics and geom-
etry. The billiard table is a rectangle with integer side lengths. A pointwise ball moves
with constant speed along segments making a 45° angle with the sides and bounces on
these. In the classical setting, the ball is shooted from a corner and lands in a corner.
We allow the ball to start at any point with integer distances from the sides: either the
ball lands in a corner or the trajectory is periodic. The length of the path and of cer-
tain segments in the path are precisely (up to the factor v/2 or 21/2) the least common
multiple and the greatest common divisor of the side lengths.

1. INTRODUCTION

Arithmetic billiards, also known under the name Paper Pool, show a nice interplay
between arithmetics and geometry. They are a mathematical model for a billiard with
which one can visualize the greatest common divisor and the least common multiple of
two natural numbers (more general models for billiards exist in the branch of mathe-
matics called dynamical systems).

The billiard table is a rectangle with integer side lengths. The ball is a point that
bounces on the billiard sides and moves with constant speed on segments that make a
45° angle with the sides. Only the path matters.

FIGURE 1. Example of corner path for the 21 x 15 billiard table.
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In the classical setting, the ball is shooted from a corner of the billiard table, and the
ball necessarily lands in a different corner. We call the resulting path corner path: these
have been studied by various authors including Martin Gardner [1, 6, 7, 5]. If a and
b are the side lengths of the billiard table, then a corner path is the intersection of the
billiard table with a grid of squares of side length /2 gcd(a, b) (the grid is diagonally
oriented, and the starting corner is a vertex for one of the squares), and the length of a
corner path is v/21cm(a, b).

We investigate the analogous paths that start at any point of the billiard table with
integer distances from the sides. If the starting point does not belong to a corner path,
then the ball does not land in a corner but it periodically bounces on the billiard sides:
we call such paths closed paths.

With a closed path, we can again visualize the greatest common divisor and the least
common multiple of the side lengths of the billiard table. Indeed, closed paths have the
following properties:

e The length of the path is 2v/2lcm(a, b).

e The path is the intersection of the billiard table with two grids of squares of side
length /2 ged(a, b).

e The two grids are diagonally oriented, and they only differ by a translation par-
allel to the rectangle sides; vertices for the squares in the grids may be found on
the billiard sides.

e The path is symmetric (point-symmetric w.r.t. the center of the billiard table or
symmetric with respect to the perpendicular bisector of two billiard sides).

FIGURE 2. Example of closed path for the 21 x 15 billiard table.
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Up to a symmetry of the billiard table, there is exactly one corner path in a given
billiard table. However there can be many non symmetric closed paths (and there are no
closed paths if a and b are coprime).

e The number of closed paths up to symmetry is the integer part of ged(a, b) /2.

e Let z be an integer in the range from 1 to ged(a, b) — 1, and consider the point
P, on a fixed billiard side at distance = from one fixed corner at that side. Then
any closed path contains precisely one of the points P, .

There are several quantities that are the same for all closed paths inside a given billiard
table. We have already mentioned the length of the path and the length of the squares in
the grid. But there is also — as we will see — the number of boundary points, i.e. the
points of the path which are on the billiard sides. And the number of self-intersection
points, i.e. the points where the path crosses itself. Moreover, the path partitions the
billiard table into rectangles and triangles: also the number of rectangles and the number
of triangles do not depend on the closed path.

Key to our investigation is the following: we can write a formula for the coordinates
of the boundary points.

The exploration of arithmetic billiards is a source of activities for pupils [2, 8, 9, 3, 4].
Indeed, the pupils are asked to find out by themselves some of the known results. It
is also possible to go one step further and investigate open questions: as a research
direction we suggest to consider other shapes for the billiard table (for example, an
L-shaped figure with an axial symmetry, or a square with a square hole in the middle).

2. PRELIMINARY REMARKS, CORNER PATHS

Setting. We fix two positive integers a and b and call g their greatest common divisor.
We take as a billiard table a rectangle with side lengths a and b, and we choose coor-
dinates by placing the origin in a billiard corner and letting the opposite corner be the
point (a, b).

We consider the trajectory of one point (the ball) inside the billiard table such that
the path consists of segments that make a 45° angle with the sides. The speed does not
matter, so we may suppose that it is constant. The ball bounces on the billiard sides
(making either a left or a right 90° turn) and stops only if it lands in a corner. A step in
the path results when the ball moves from a point with integer coordinates to the next
one (each coordinate changes by 1).

There are corner paths, where the ball is shooted from a billiard corner and necessar-
ily lands in a different corner. If we start at a point with integer coordinates that is not
on a corner path, then we get a closed path, which corresponds to a periodic trajectory.

We call boundary points the points of the path which are on the rectangle sides. Most
paths have self-intersection points, where two path segments cross perpendicularly.

Corner paths. A corner path starts in any billiard corner, and we can predict what the
ending corner will be: if a/g and b/g are odd, then the starting corner and the ending
corner are opposite; if a/g is even and b/ g is odd, then the starting and the ending corner
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are adjacent to one a-side; if a/g is odd and b/g is even, then the starting and the ending
corner are adjacent to one b-side.

Neglecting their orientation, there are two corner paths. Moreover, there is a symme-
try of the billiard table mapping one path to the other, namely the symmetry mapping
starting and ending corner of one path to those of the other. The length of the path
is v/21lcm(a, b) (because there are lem(a, b) steps) and the path crosses lem(a, b) unit
squares.

The path is symmetric: if the starting and the ending corner are opposite, then the path
is point symmetric w.r.t. the center of the rectangle, else it is symmetric with respect to
the perpendicular bisector of the side connecting the starting and the ending corner.

There are a/g boundary points (including the corners) on the two a-sides, and b/g
on the two b-sides. Moreover, the boundary points are evenly distributed along the
rectangle perimeter: the distance along the perimeter (i.e. possibly going around the
corner) between two such neighbouring points equals 2g.

The corner path starting at the origin is the intersection of the billiard table with the
grid of squares whose corners are the points (xg,yg), where x, y are integers with the
same parity (the squares are oriented at 45° w.r.t. the billiard sides).

Unless a is a multiple or a divisor of b there are self-intersection points, and more
precisely there are (a — g)(b — g)/2g? of them (to derive this formula consider that
every g steps there is a boundary point or a self-intersection point, and we find each
self-intersection point twice). Moreover, there are self-intersection points on the first
segment of the path, and the ball arrives at such a point after g steps: the least distance
between a corner and a self-intersection point is v/2 gcd(a, b). Unless a = b the integer
g is the least distance between a corner and a boundary point which is not a corner (if
a = b, then the path is just a diagonal of the billiard table).

If we would let the ball bounce at the corners, then a corner path would correspond to
a periodic trajectory: the ball would go twice through the path (forwards and backwards)
in every period.

3. BOUNDARY POINTS FOR CLOSED PATHS

We now turn our attention to closed paths. These do not contain corners, and the
ball never stops. The trajectory is periodic because the path consists of finitely many
segments, and we concentrate on one period.

Notice that if g = 1, then all points in the billiard table with integer coordinates lie
on the corner paths and there is no closed path, so we may suppose that g > 1.

Length of the path, number of boundary points. There are boundary points on each
billiard side so we may suppose that the starting point is on the bottom a-side and the
starting direction is rightwards, i.e. both coordinates are increasing.

e The length of a closed path is 2v/21cm(a, b). Indeed, we are back to the bottom
a-side after any number of steps which is a multiple of 2b. Moreover, since we start and
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end the path by going rightwards, then we can be back to the starting point only after a
number of steps which is a multiple of 2a. So the total number of steps is 2 lem(a, b).

e There are a/g boundary points on each a-side and b/g boundary points on each
b-side. Indeed, we touch one same a-side every 2b steps, and 2 lcm(a, b)/2b = a/g. For
the b-sides, we reason analogously.

The boundary points. In what follows we determine the set of boundary points. The
formulas for the coordinates of these points depend on a, b, and the smallest positive
integer 7 such that the point (7, 0) belongs to the path.

Let r be an integer in the range from 1 to g — 1. The boundary points are as in the
following tables, where we specify the z-coordinate for the a-sides and the y-coordinate
for the b-sides. Keep in mind that a/g and b/g cannot be both even and that, up to
exchanging the role of a and b, we may suppose that a/g is odd.

bottom a-side r,2g—r,...,n2g+r,(n+1)2g—r,...,%Zg—l—r
right b-side g—r,g—l—r,...,n29+g—r,n29+g—|—r,...,b;—ggQg—i—g—r
upper a-side g—r,g+r,...,n2g—|—g—r,n2g+g+r,...,%Qg—i—g—r

left b-side r,29—r,...,n2g—|—r7(n+1)29—7‘,...,b;—gng—}—r

FIGURE 3. Boundary points if a/g and b/g are odd.

bottom a-side | 7,29 —r,...,n2g +, (n+1)2g—r,...,%29+r
right b-side g—r,g+r,...,(%—1)29+g—r,(%—1)29+g+r
upper a-side r,2g—r,...,n29+r,(n—|—1)2g—r,...,%29—1—7"
left b-side | r, 2g—r,...,(% — 1)2g+7~,(% —1)2g+29—r

FIGURE 4. Boundary points if a/g is odd and b/ g is even.

The boundary points are thus the points on the sides whose coordinate leaves remain-
der r or 2g — r (respectively, g — r or g+ r) after division by 2¢g. By varying r we obtain
all points of the sides whose coordinate is not a multiple of g (those other points lie on
the corner paths). Also notice that the boundary points are evenly distributed along the
rectangle perimeter (i.e. possibly going around the corner) because the distance between
any two of them is alternatively 2r and 2g — 2r.

How can we prove that we have written down the correct set of boundary points?
Since in the tables we have the correct amount of boundary points, it suffices to show
that the next boundary point is again in the set. For example, suppose that a/g and b/g
are odd and consider the boundary point (p, 0), where p is any integer from 1 to a — 1
whose remainder after division by 2¢ is r or 2g — r: the next boundary point can only
be one of (a,a — p), (p £ b,b), (0,p) so it belongs to the given set.
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From the distribution of the boundary points, we may deduce that a closed path is
symmetric. Indeed, if a/g and b/g are odd, then the path is point-symmetric w.r.t. the
center of the billiard table while if w.l.o.g. a/g is odd and b/g is even, then the path is
symmetric with respect to the perpendicular bisector of the b-sides.

4. SHAPE OF A CLOSED PATH

Consider the closed path containing the point (r,0), where r is an integer from 1 to
g — 1, and recall that we know the boundary points.

Notice that, in the very special case a = b, then the path is the rectangle with corners
(r,0), (a,a — 1), (a —r,a), (0,7).

The grid structure. The segments which form the closed path are the segments with
slope 1 or —1 connecting two boundary points. The distances between parallel path
segments are alternatively /27 and v/2(g — r). Then the path segments form a grid
which partitions the billiard table into squares having side lengths v/2r and v/2(g — 1),
rectangles with side lengths v/2r and v/2(g — ), triangles around the border which are
half of one of the squares, and triangles at the corners which are a quarter of one of the
squares. We call corner triangles the triangles containing the corners and the further
triangles along the boundary side triangles.

Notice that the path is the intersection with the billiard table of two parallel grids of
squares of side length v/2g, one grid being the vertical shift of the other by 2r.

FIGURE 5. Example of closed path for the 35 x 14 billiard table.

The triangles. In the special case where r = ¢/2 all four corner triangles have legs .
Moreover, all side triangles have hypothenuse g: there are a/g — 1 side triangles along
each a-side and b/g — 1 side triangles along each b-side.

Now suppose that r # ¢/2. In this case, two corner triangles have legs 7, the other
two have legs g — 7, and we have: if a/g and b/g are odd, then the corner triangles
at two opposite corners are congruent; if w.l.o.g. a/g is odd and b/g is even, then the
corner triangles adjacent to one same b-side are congruent.
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The side triangles have hypothenuse 2 and 2g — 2r. There are a/g — 1 side triangles
along each a-side, and their size alternates. If a/g is odd, then there are (a — g)/2g side
triangles of each type on each a-side; if a/g is even, then there are a /g — 1 side triangles
of each type on the two a-sides (more precisely there are a/2g — 1 large side triangles
on the side whose triangle corners are small, and a/2g on the other). The analogous
formulas hold for the b-sides.

The rectangles. Suppose that r # ¢g/2. Then, in the partition of the billiard table given
by the closed path, there are rectangles that are not squares and there are squares of two
sizes. Up to exchanging the role of a and b we suppose that a/g is odd. Consider a
stripe of squares whose centers have the same b-coordinate: smaller and larger squares
alternate, and there are (a — g)/2¢g squares of each type. Since there are (b — g)/g
stripes, the total number of squares of each type is (a — ¢)(b — ¢)/2g*. Moreover, there
are ab/g* non-square rectangles (consider their centers: there are b/g possibilities for
the b-coordinate, and a/g possibilities for the a-coordinate). In total there are

2ab a+0

9 g
rectangles in the partition, and a similar calculation shows that this is also the case if
r=g/2.

+1

The self-intersection points. If a« = b, then there are no self-intersection points be-
cause the path is a rectangle. On the other hand if a # b, then there are self-intersection
points. Indeed, supposing w.l.o.g. that a > b, the path contains the segment from
(r,0) to (r 4+ b,b): this segment cuts the billiard table into two parts and there are
self-intersection points on it.

We count the self-intersection points together with the boundary points as the vertices
of the non-square rectangles in the partition (if r = g/2, then we have no such rectangles
but we may easily adapt the reasoning). Consider stripes of non-square rectangles whose
centers have the same b-coordinate: each stripe contains a/g rectangles and there are
b/ g such stripes. The rectangles in each stripe have 3a/g + 1 distinct vertices, and any
two rectangle stripes have a/g common vertices. We deduce that the total number of
vertices is 2ab/g? + (a + b)/g and hence the number of self-intersection points is

2ab a+0
9? g
We partition the self-intersection points into two easier sets: for one set the z-coordinate

(for the other set, the y-coordinate) equals ng, where n ranges from 1 to a/g — 1 (for
the other set, b/g — 1). The other coordinate of the self-intersection points is

g—r,g+1r39—r,3g+1r59—7r5bg+r,... (if nisodd)

r,2g — 1,29 +nr,4g —r,4g +r,6g —r,...(if nis even).
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The number of closed paths. We have given parametric formulas for the boundary
points of a closed path, where the parameter 7 is in the range from 1 to g — 1. In this
way we can parametrize the closed paths inside a given billiard table. In particular, we
can easily deduce that there are g — 1 closed paths.

For example, if g = 2, then there is only one closed path, which consists of the grid
of squares whose corners are the points (z, y) in the billiard table such that x + y is odd.

However, if we count the closed paths up to a symmetry of the billiard table, then
their amount is the integer part of g/2. To see this, notice that with a symmetry we may
replace r by g — r.
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