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Abstract

In this doctoral thesis, the low-dimensional algebraic cohomology of infinite-
dimensional Lie algebras of Virasoro-type is investigated. The considered Lie
algebras include the Witt algebra, the Virasoro algebra and the multipoint
Krichever-Novikov vector field algebra. We consider algebraic cohomology,
meaning we do not put any constraints of continuity on the cochains. The Lie
algebras are considered as abstract Lie algebras in the sense that we do not work
with particular realizations of the Lie algebras. The results are thus indepen-
dent of any underlying choice of topology. The thesis is self-contained, as it
starts with a technical chapter introducing the definitions, concepts and meth-
ods that are used in the thesis. For motivational purposes, some time is spent
on the interpretation of the low-dimensional cohomology. First results include
the computation of the first and the third algebraic cohomology of the Witt and
the Virasoro algebra with values in the trivial and the adjoint module, the sec-
ond algebraic cohomology being known already. A canonical link between the
low-dimensional cohomology of the Witt and the Virasoro algebra is exhibited
by using the Hochschild-Serre spectral sequence. More results are given by the
computation of the low-dimensional algebraic cohomology of the Witt and the
Virasoro algebra with values in general tensor-densities modules. The study con-
sists of a mix between elementary algebra and algorithmic analysis. Finally, some
results concerning the low-dimensional algebraic cohomology of the multipoint
Krichever-Novikov vector field algebra are derived. The thesis is concluded with
an outlook containing possible short-term goals that could be achieved in the
near future as well as some long-term goals.
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Chapter 1

Introduction

Lie algebras of Virasoro type

The Witt and the Virasoro algebra are the simplest non-trivial examples of infinite-dimensional
Lie algebras and as such, they have been the object of extensive studies in mathematics for
decades. In fact, the Witt algebra was introduced already in 1909 by Cartan [14]. The central
extension of the Witt algebra, given by the Virasoro algebra, was first discovered by Gelfand and
Fuks in 1968 [45] for characteristic zero, although it already appeared in positive characteristic
in an earlier text by Block in 1966 [12]. The Virasoro algebra is also very prominent in physics.
In 1970, during his study of so-called dual resonance models appearing in the sector of strong
interaction, Virasoro [120] introduced generating operators of the Virasoro algebra, which were
later named as the Virasoro operators. Nowadays, the Virasoro algebra is omnipresent in 2-
dimensional conformal field theory and it is also of outermost importance in String Theory, see
e.g. the book by Kac, Raina and Rozhkovskaya [67]. The Krichever-Novikov vector field algebra
is a generalization of the Witt and the Virasoro algebra and was introduced by Krichever and
Novikov in 1987 [72H74]. One concrete realization of the Witt algebra is given by the algebra of
meromorphic vector fields on the Riemann sphere CP! that are holomorphic outside of 0 and
oo. Krichever and Novikov extended this algebra to compact Riemann surfaces with any genus
g and two punctures. In 1990, Schlichenmaier [98-101,,110] further generalized amongst others
this vector field algebra to compact Riemann surfaces with any genus g and N punctures, see
also the book by Schlichenmaier [108]. This generalization is not only of interest to mathemati-
cians, but also to physicists. In the computation of amplitudes in String Theory, the Riemann
surface finds an interpretation as being the worldsheet of closed strings. Higher genus Rie-
mann surfaces correspond to loop diagrams and hence higher order contributions. Moreover,
the punctures of the Riemann surface correspond to in-going and out-going strings. Therefore,
the generalization to N punctures allows the consideration of several in-going and out-going
strings instead of only one in-going and one out-going string. Consequently, creation, anni-
hilation and interaction diagrams can be studied via the N-point Krichever-Novikov algebras.
Furthermore, these algebras have also relations to moduli spaces, see e.g. [111].

The cohomology of Lie algebras

The cohomology of Lie algebras goes back to a 1948 paper coined by Chevalley and Eilenberg
(201, where they reduce topological questions concerning the de Rahm cohomology of compact
Lie groups to algebraic questions concerning Lie algebras. The analogy between the de Rahm
cohomology of compact groups and Lie algebra cohomology was pursued further by Koszul in
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1950 [71]. Nowadays, the cohomology of finite dimensional Lie algebras is fairly well known.
For example, two important results are given by Whitehead’s lemmas, stating that for semisim-
ple finite-dimensional Lie algebras g over fields of characteristic zero, the first and the second
cohomology vanish. These results imply that all derivations from g into any representation are
inner, and that there are no non-trivial extensions of g, respectively. These statements go back
to papers of Whitehead [134]} [135], although they also appear in Hochschild’s paper [58]. For
more details on these historical aspects and the history of homological algebra in general, see
e.g. the text by Weibel [132].

The cohomology of infinite-dimensional Lie algebras is a topic with an entirely different fla-
vor. According to the foreword in Fuks’ book [43], the cohomology of infinite-dimensional Lie
algebras plays a role a part in mathematics, with it not being covered by traditional branches of
mathematics, being characterized by relatively elementary proofs, and finding various applica-
tions in many domains. Although the cohomology of infinite-dimensional Lie algebras enjoyed
a lot of attention for well over half a century in mathematics, it is still an active and on-going
research area. For example, the milestone-breaking theorem of Goncharova from 1972 [49-51],
giving the cohomology in characteristic zero of Lie algebras of formal vector fields on the line,
received a counterpart in characteristic two only in 2017 by Weinstein [133].

The low-dimensional Lie algebra cohomology is of particular interest both to mathemati-
cians and physicists. In mathematics, the low-dimensional cohomology comes with an easy
interpretation in terms of known objects such as invariants, derivations, extensions, deforma-
tions, obstructions and crossed modules, see Gerstenhaber [46-H48]. The knowledge of these
objects leads to a better understanding of the Lie algebra under consideration, while deforma-
tions and extensions allow the construction of new Lie algebras. Recently, crossed modules
were used to classify Lie-2-algebras, see Baez and Crans [10]. Also in physics, these objects find
widely applications. In fact, regularization procedures often lead to the necessity to work with
projective representations of Lie algebras. However, the situation can be remedied by using
Lie representations of central extensions of the Lie algebra, see e.g. Tuynman and Wiegerinck
[118]. Besides, the low-dimensional cohomology appears extensively in the study of anomalies,
see e.g. Roger [94].

The Lie algebra cohomology studied in the past half century mainly concerns the so-called
continuous cohomology of Lie algebras. In fact, the infinite-dimensional Lie algebras studied
included mostly the infinite-dimensional Lie algebras of smooth vector fields on a smooth man-
ifold X. The space Vect(X) corresponds to the space of smooth sections of the tangent bundle
on X, and is as such a Lie algebra with respect to the commutator bracket. Elements of Vect(X)
can be represented by first-order differential operators in the ring of smooth functions on X;
alternatively, they can be viewed as infinitesimal diffeomorphisms of X. In that case, the group
Diff(X) consisting of all diffeomorphisms of X would constitute the Lie group associated to the
Lie algebra Vect(X), although the relationship between Lie algebras and Lie groups is not as
tight in the case of infinite-dimensional Lie algebras as in the case of finite-dimensional Lie al-
gebras. When considering the cohomology of Lie algebras of vector fields over some manifold
X, it is natural to consider continuous cohomology, i.e. to consider cochains that are continu-
ous with respect to the topology inherited from the underlying space X. Most results involving
the cohomology of infinite-dimensional Lie algebras obtained so far thus concern the continu-
ous cohomology, although the specification “continuous” is often omitted in the literature. In
the continuous cohomology, many results about the classical infinite-dimensional Lie algebras
such as the Witt algebra are known. In fact, a geometrical realization of the Witt algebra is given
by the complexified Lie algebra of polynomial vector fields on the circle, which forms a dense
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subalgebra of the complexified Lie algebra of smooth vector fields on the circle, Vect(S'). The
continuous cohomology of vector fields on the circle with values in the trivial module is known,
see the results by Gelfand and Fuks [43, [45]. Similarly, based on results of Goncharova [49],
Reshetnikov [92] and Tsuyjishita [117], the continuous cohomology of vector fields on the cir-
cle with values in general tensor densities modules was computed by Fialowski and Schlichen-
maier in [36]. Since the Witt algebra is a dense subalgebra of Vect(S!), by density arguments, the
results for Vect(S!) are also valid for the Witt algebra, as long as one uses continuous cochains.
For more details, see e.g. Lemma 1 in the article by Wagemann, [127], and also [122]. Related
work on the cohomology of conformal algebras was done by Bakalov, Kac and Voronov [11].
Concerning the Krichever-Novikov vector field algebra, the continuous cohomology with val-
ues in the trivial module is known. It is given by the so-called Feigin-Novikov conjecture, which
was proven by contributions from Wagemann [121},122,[126}[127] and Kawazumi [69].

Although the Witt algebra has some geometrical interpretations in the form of specific vector
fields on the circle S! or the Riemann sphere CP!, it also has prominent algebraic realizations,
such as the Lie algebra of derivations of Laurent polynomials. The primary definition of the Witt
algebra and its related algebras is given by the Lie bracket and is purely algebraic. In such an
algebraic set-up, continuous cohomology has severe limitations, see e.g. Wagemann [125], and
is mainly inadequate to correctly describe the Lie algebra cohomology. Instead, the algebraic
cohomology should be used, which contains the continuous cohomology as a sub-complex. In
algebraic cohomology, no continuity constraints are put on the cochains, hence the cochains
are arbitrary and purely algebraic. In this thesis, we deal with algebraic cohomology; all proofs
involve purely algebraic methods and no results from topology are used. Our results are thus
independent from any choice of topology and any concrete realization of the Witt algebra or
its related algebras. Moreover, our results are valid for any base field K with characteristic zero,
and not just for R or C. However, while the computation of continuous cohomology can already
be heavily involved, the computation of algebraic cohomology is usually much worse. Conse-
quently, results on the algebraic cohomology of infinite-dimensional Lie algebras are somewhat
scarce in the literature so far. Concerning the Witt and the Virasoro algebras, Schlichenmaier
showed in [105,106] the vanishing of the second algebraic cohomology of the Witt and the Vira-
soro algebra with values in the adjoint module by using elementary algebraic methods; almost
at the same time, Fialowski independently showed the result for the Witt algebra, also with el-
ementary algebraic methods, see [34]. Without proof, the result was already announced in [33]
by Fialowski . In [119] by Van den Hijligenberg and Kotchetkov, the vanishing of the second alge-
braic cohomology with values in the adjoint module of the superalgebras k(1), k™ (1) and of their
central extensions was proved. In [26H28] by Ecker and Schlichenmaier, the first and the third
algebraic cohomology of the Witt and the Virasoro algebra with values in the adjoint module
was computed. The computation of the third algebraic cohomology of the Witt and the Vira-
soro algebra with values in the trivial module was also included in [27]. In [25] by Ecker, results
related to the first, second and third algebraic cohomology of the Witt and the Virasoro alge-
bra with values in tensor densities modules were announced, without proof. Concerning the
Krichever-Novikov vector field algebra, the Feigin-Novikov conjecture has not yet been proven
in the algebraic case. So far, the first algebraic cohomology with values in the trivial module
was computed, namely by Schlichenmaier, see [108]. In the two-point case, Millionshchikov
proved the finite-dimensionality of the second algebraic cohomology with values in the trivial
module, see [83]. In [115], Skryabin obtained a break-through by deriving the second algebraic
cohomology with values in the trivial module. Moreover, the second algebraic cohomology with
values in the trivial module for the so-called bounded and local cochain classes has been com-
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puted by Schlichenmaier [102], see also his book [108]. Local cocycles need to be considered
when one wants to obtain meaningful central extensions.

Main results

The main results of this thesis consist of the computation of the first algebraic cohomology of
the Witt and the Virasoro algebra over a field K with char () = 0 with values in the adjoint and
general tensor-densities modules,

2ifA=0
H'W, W) = {0} dmaHH%;9%={ l1ifA=1,2 ,
0 else
2ifA=0
and H'(V,7)={0} mm}#amghz{lﬁA:Lz,
0 else

and the computation of the second algebraic cohomology of the Witt and the Virasoro algebra
over a field K with char (K) = 0 with values in general tensor-densities modules,

2if1=0,1,2 2if1=1,2
dim H2(w, M =4 1ifA=57 , dimB*W,FM={ 1if1=0,5,7 .
0 else 0 else

In case of the Witt algebra, the adjoint module corresponds to # = .%~!. Hence these results
generalize earlier results [106] H>(#,%') = {0}. By some additional work in [106], it was also
shown that H*(¥,7) = {0}.

Moreover, we compute the third algebraic cohomology of the Witt and the Virasoro algebra over
a field K with char(K) = 0 with values in the trivial, the adjoint and some of the general-tensor
densities modules,

dim 3%, K)=1, H3w,w)=1{0}, B3W,FM={01ifAel,
dim H3(7,K) =1, dim H3(V,%)=1, H3(V,FM=1{0tifAel,

where I = {-100,...,-1} U {6,8,10,14,16,18,20,22,24,26}. In the case of the non-vanishing co-
homologies, explicit generators will be given. Finally, we also derived an upper bound for the
dimension of the third algebraic bounded cohomology of the Krichever-Novikov vector field
algebra over a field K with char (K) = 0 with values in the trivial module,

dim Hj (# 4 ,K) <K,

where K stands for the number of in-points. The various notions appearing here will be intro-
duced in detail later, in Chapter

Techniques used in this thesis

The aim of the present doctoral work is to compute the low-dimensional algebraic cohomol-
ogy of the Witt, the Virasoro, and as far as possible, the Krichever-Novikov vector field algebra,
for various modules. Two simple tools will be mainly used, namely the so-called cocycle con-
dition and the coboundary condition. These will be evaluated on combinations of the basis
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elements of the Lie algebras. Since we are dealing with infinite-dimensional Lie algebras, the
analysis boils down to solving infinite dimensional linear systems, i.e. linear systems with in-
finitely many variables and equations. To solve these systems, we will aim to create recurrence
relations in order to find relations between the variables. Ideally, the infinitely many variables
can be expressed in terms of a finite number of variables. This finite number of variables should
be as small as possible, as they provide an upper bound for the dimension of the cohomologies.
In case the dimension of a cohomological space is different from zero, a lower bound has to be
found by constructing explicit non-trivial generators of the cohomology space under consider-
ation.

Most of the proofs in this thesis thus will be elementary algebraic manipulations. In this
spirit, we aim to keep the text of the thesis as elementary and self-contained as possible. No
preliminary knowledge of the Lie algebra cohomology is needed to understand the majority of
the proofs. All the basic notions necessary to understand the background will be introduced
in Chapter[2] Concerning known results, we will give a proof only if it is short and simple, or
important for motivational purposes, otherwise we provide references. Although the proofs
given in this thesis use elementary algebra, the proofs per se are not simple, but rather involved
and some are computationally quite heavy. In general though, the proofs will be given with
enough details so that they can be understood by simply reading them, without having to do
too many additional computations or reasoning.

Although we strive to keep the proofs elementary, we also sometimes use higher tools from

homological algebra to derive results for the Virasoro algebra from results for the Witt algebra.
In all cases, the results for the Virasoro algebra could have been obtained independently of the
results for the Witt algebra in exactly the same way as the results for the Witt algebra were ob-
tained, namely by using elementary algebra in a direct, but lengthy, way. This approach was for
example chosen for the corresponding superalgebraic case in [119]. However, the proofs would
have been very similar to the proofs for the Witt algebra, and hence writing down elementary
proofs a part for the Virasoro algebra would be redundant, cumbersome, and not very inter-
esting for the reader. Instead, a neater and more concise way to obtain results for the Virasoro
algebra consists in using the results obtained for the Witt algebra. This can also been done on
an elementary level, see for example [106] where it was done for the second algebraic cohomol-
ogy of the Virasoro algebra with values in the adjoint module. We will also use this method in
the present thesis to derive the first algebraic cohomology of the Virasoro algebra.
The proof in [106] can be generalized to the third algebraic cohomology in a straightforward
manner, without any unforeseen difficulties showing up. However, we prefer using long ex-
act sequences and spectral sequences, as they allow to shorten the proof and also to obtain a
deeper insight and better understanding of the situation than elementary tools.

Structure of the thesis

The thesis is organized as follows.

Chapter 2|is a more technical introductory chapter, which will provide further motivation and
known results. We will start by introducing the Witt and the Virasoro algebra as well as the
Krichever-Novikov vector field algebra. Aside from giving their algebraic definitions, we will also
give some geometrical interpretations of these algebras, for reasons of completeness. Next, we
introduce the modules of these algebras that will be studied in this thesis, including the trivial
module, the adjoint module and general tensor densities modules. Subsequently, we introduce
the Chevalley-Eilenberg cohomology for general Lie algebras. For motivational purposes, we
will study the low-dimensional cohomology in more detail, and provide some of its main inter-
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pretations. Moreover, the notion of the degree of a cochain is given, and the well-known result
given in Theorem [43], important for this thesis, is presented, stating that the cohomology re-
duces to the degree zero cohomology for internally graded Lie algebras and modules. A brief
introduction to spectral sequences and the Hochschild-Serre spectral sequence in particular
is given. We will end the chapter by giving a brief summary of the results obtained so far for
the low-dimensional algebraic cohomology of the Witt and the Virasoro algebra, as well as the
Krichever-Novikov vector field algebra.

In Chapter |3} we will focus on the low-dimensional algebraic cohomology of the Witt and
the Virasoro algebra with values in the adjoint and the trivial module. We start by computing
the third algebraic cohomology for the trivial module, both for the Witt and the Virasoro alge-
bra. Inspired by the results, we investigate relations between the algebraic cohomology of the
Witt and the Virasoro algebra, for arbitrary modules. Next, we focus on the adjoint module. As
a warm-up example, we start by computing the first algebraic cohomology of the Witt algebra
with values in the adjoint module. The second algebraic cohomology being known already, we
continue by computing the third algebraic cohomology with values in the adjoint module for
the Witt algebra, with elementary algebra. Using results from the Witt algebra and the trivial
module, we can derive the first and the third algebraic cohomology with values in the adjoint
module for the Virasoro algebra. Finally, we aim to deepen the investigation of the link be-
tween the low-dimensional algebraic cohomology of the Witt and the Virasoro algebra, in the
particular cases of the trivial and general tensor densities modules.

Chapter [4| deals with the low-dimensional algebraic cohomology of the Witt and the Vira-
soro algebra with values in general tensor densities modules. We will first prove the results for
the Witt algebra. More precisely, we will compute the first, the second, and partially the third
algebraic cohomology. For the third algebraic cohomology, we only have results for some spe-
cific tensor densities modules, and not for all of them. The proof of the results for the third
algebraic cohomology is very technical, involving an algebraic and a numerical part, with the
algebraic part being already 37 pages long. We aim to present it in a way as comprehensive as
possible in the main text, although some complementary information can be found in the Ap-
pendix[Al Concerning the Virasoro algebra, the results can be deduced from the results for the
Witt algebra by using the link between their cohomology obtained in Chapter[3]

Chapter[5|deals exclusively with the Krichever-Novikov vector field algebra. In fact, Chapter
gives the zeroth algebraic cohomology with values in the general tensor-densities modules,
as well as a result for the third algebraic cohomology for bounded cochains with values in the
trivial module, of the Krichever-Novikov vector field algebra.

In the conclusion[6} we will provide a summary and an outlook for future work. We will point
out some results that possibly could be achieved on the short term, completing some existing
results of the thesis. We also offer some other long-term challenges that probably will need
more investment in order to be accomplished.

The Appendix[A|contains some supplementary information concerning the second and the
third algebraic cohomology of the Witt algebra with values in general tensor densities modules.
More precisely, we provide solutions to recurrence relations showing up in the proofs. The so-
lutions were found by guess.

Finally, we want to point out that parts of the present thesis are already publicly accessible
under the form of working papers e-prints [26, 27], proceedings [25} 28] and [29]. The results
concerning the Krichever-Novikov vector field algebra in Chapter [5/are not yet publicly avail-
able. Also, the results showing up in Chapter [3|related to the differential of the second page of
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the Hochschild-Serre spectral sequence and the cup product have not been published before.
We would also like to point out that the results concerning the first and the third algebraic co-
homology of the Witt algebra with values in the adjoint module have already been used by
Camacho, Omirov and Kurbanbaev [13] and by Feldvoss and Wagemann [30] to compute the
corresponding Leibniz cohomologies.
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Chapter 2

The cohomology of infinite-dimensional Lie
algebras

2.1 The Witt, the Virasoro and the Krichever-Novikov vector field
algebra

In this section, we will introduce the Lie algebras considered in this thesis.

2.1.1 Basic definitions

First of all, we recall some basic definitions concerning Lie algebras, starting with the definition
of a Lie algebra. Further definitions will be provided throughout the thesis as needed.

Definition 2.1.1. A Lie algebra £ is a vector space over a field K with char(K) # 2 and with a
bilinear product [+, ], called Lie bracket, satisfying the following properties:

e Skew-symmetry:
Vx,yeZ: [x, y1 = =[y, xl, 2.1

* Jacobi identity:

Vx,y,ze £ [x, [y, zl] + [y, [z, x]] + [z, [x, y]] = 0. (2.2)

The dimension of a Lie algebra is its dimension as a vector space over K.
A Lie algebra is called abelian if its Lie bracket vanishes for all elements in the Lie algebra, i.e.
Vx,yeZ:[x,yl=0.

Next, let us introduce the notion of a Lie algebra homomorphism.

Definition 2.1.2. Let (£, [,,-]) and (¥, [-,-]") be two Lie algebras. A linear map ¢ : &£ — &' is
called a Lie homomorphism if it respects the Lie algebra structure:

Vx,yeZ: [p(x), ()] = P(lx, y]).
We will also need the notion of a a Lie subalgebra and a Lie ideal.

Definition 2.1.3. Let Z be a Lie algebra.
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* A vector subspace &£’ of £ is a Lie subalgebra of £ if it is closed under the Lie bracket,
ie.
(£, LNcs.

* Avector subspace £’ of £ is Lie ideal of £ if

(£, %L <.

A Lie subalgebra is a Lie algebra, and a Lie ideal is a Lie subalgebra. If .# is a Lie ideal of a Lie
algebra £, then the quotient £/.# carries in a natural way a Lie structure and the natural map
n:¥ — £/¢¥ is alie homomorphism.

Prominent Lie ideals are given by the center of a Lie algebra and the derived subalgebra of an
ideal.

Definition 2.1.4. » The center of a Lie algebra Z is the Lie ideal defined by:

C)={xe&L|VyeZL:[x,yl=0}. (2.3)

e The derived subalgebra £ of a Lie algebra £ is the Lie ideal defined by:
L =1L, L :={xy]|x,yE L)xk. (2.4)

It is clear that the center and the derived subalgebras are Lie ideals of the Lie algebra. An-
other notion we will need is the concept of simple and perfect Lie algebras.

Definition 2.1.5. * AlLie algebra % is called simpleif and only if £ is not abelian and it has
no non-trivial ideals, meaning that if _¢ is an ideal of Z, then either ¢ = {0} or ¢ = Z.
Since the center and the derived subalgebra are Lie ideals, they must be trivial for a simple
Lie algebra, i.e. C(£) ={0} and [Z, ZL] = Z.

* A perfect Lie algebra is a Lie algebra satisfying:
(L, ZL]=2. (2.5)
Clearly, every simple Lie algebra is perfect.

An concept of outermost importance in this thesis is given by the notion of graded Lie alge-
bras.

Definition 2.1.6.

e A Lie algebra £ is called a Z-graded Lie algebra if there exist vector subspaces £, € &
Vn e Z such that £ = @,,c7 £; as a vector space and

(ZLn, Ll S Lnem VYnmeZ. (2.6)
* The subspaces £, are called homogeneous subspaces, and the elements of £, are called
homogeneous elements of degree n.

e If there exists M € N such that dim £, < M V n € Z, we say that the Lie algebra Z is
strongly graded.
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An example of a grading is given by the trivial grading:

{ ffo:zg (2.7)

Ly ={0}Vn#0

Clearly, every Lie algebra is graded with respect to the trivial grading, and every finite dimen-
sional Lie algebra is also strongly graded with respect to the trivial grading. The case of interest
is given by infinite-dimensional Lie algebras, since the grading allows to decompose them into
a sum of finite-dimensional parts. The Witt and the Virasoro algebra are examples of such Lie
algebras, as we will see in the following sections. A weaker concept, which is relevant for the
Krichever-Novikov type algebras, is given by the concept of almost grading.

Definition 2.1.7. A Lie algebra £ is called an almost-graded Lie algebra if
1. & can be decomposed as £ = @,,c7 £, as a vector space,
2. dim%, <oV nez,

3. There exist constants L; and L, such that:

n+m+Ly
(LnLmle @D L VYnmelZ. (2.8)

h=n+m-1L,

The subspaces £, are called homogeneous subspaces, and the elements of £, are called
homogeneous elements of degree n.

If there exists M € N such that dim £, < M V n € Z, we say that the Lie algebra £ is
strongly almost-graded.

If we drop condition 2. above, i.e. not all homogeneous subspaces are finite-dimensional,
we call the Lie algebra weakly almost-graded.

Moreover, we will need the notion of Lie modules.

Definition 2.1.8. * Let £ be a Lie algebra and M a vector space over K. A Lie action of £
on M is a bilinear map £ x M — M, (x, m) — x - m fulfilling:

Vx,yeZ, VmeM: X,y m=x-(y-m)—y-(x-m). (2.9)
In that case, the vector space M is called a £ -module.
o A trivial £-moduleis amodule M on which £ acts as zero,i.e. xxm=0V xe £,Vme M.
e ALie module M is graded if M = @®,,c; M,, as a vector space and
LMy <Myim, YnmeZ. (2.10)

The subspaces M,, are called homogeneous subspaces, and the elements of M,, are called
homogeneous elements of degree n.

If there exists N € N such that dim M,, < N V n € Z, we say that the Lie module M is
strongly graded.

e ALie module M is called an almost-graded Lie module if

1. M can be decomposed as M = @,z M,, as a vector space,
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2. dimM, <oV nez,
3. There exist constants M; and M, such that:

n+m+Mp
[My,Mpnls @ My, VnmeZ. (2.11)
h=n+m—-M,;

The subspaces M,, are called homogeneous subspaces, and the elements of M,, are
called homogeneous elements of degree n.
If there exists N € N such that dim M, < N V n € Z, we say that the Lie module M is
strongly almost-graded.
If condition 2. is dropped, we call it weakly almost-graded.

An example of a grading for a Lie module is again given by the trivial grading (2.7).
Next, we will need the notion of a derivation of a Lie algebra £.

Definition 2.1.9. Let £ be a Lie algebra over K, and M a £-module. AK-linearmap¢: £ — M
is called a derivation of £ into a £-module if and only if:

Vx,yeZ: dlx,yD=x-¢(y)—y-Pp(x). (2.12)
We will denote the space of derivations of Z by:
Der (£, M) :={¢: £ — M| ¢ is a derivation of Z}.
By the very definition of a module (2.9), the module action is always a derivation,
Yae M: Go: L — M, x—x-a. (2.13)
Such a derivation is called an inner derivation.

In the case M = £ we simply write Der Z for the derivations Der (£, ). It can be shown
that Der £ is a Lie algebra with respect to the commutator bracket of linear maps.
A prominent example of inner derivations is given by the inner derivations of Der £, which
correspond to the adjoint action.

Definition 2.1.10. In a Lie algebra £, the adjoint action ad, defined by an element y € £ is
given by,
ad,: £ — 2, x— [y, x]. (2.14)
Finally, let us introduce the notions of a direct sum and semi-direct sum of Lie algebras.

Definition 2.1.11. e The direct sum &) & £, of two Lie algebras (£, [+, -]1) and (%, [+, -]2) is
given by the direct sum £; ® %, on the level of vector spaces equipped with the following
Lie bracket [, -],

for x1,y1 € L1, x2,12€ Lot [(x1,%2), (31, y2)1 := ([x1, 111, [x2, y2l2) -

e Let (£, [+, -]1) and (£, [+,-]2) be two Lie algebras, with %, acting on %, as a derivation
n: %, — Der £, x» — 1n(x2) with n(x,) € Der £,. The semi-direct sum £, x %, is given
by the direct sum £ & %> on the level of vector spaces equipped with the following Lie
bracket [-,-],

[(x1,x2), (1, y2)1 = (x1, yili +0(x2) (1) = 1(2) (x1), [X2, ¥2l2) -

A straightforward verification shows that £; & %, and £ x %> are Lie algebras. In case the
action of %, on % is trivial, i.e. given by the zero map, the semidirect sum reduces to the direct
sum.

We now have the necessary ingredients to introduce the Lie algebras and Lie modules consid-
ered in this thesis.
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2.1.2 The Witt algebra

For the presentation of the Witt algebra in this section, we mostly follow the lecture notes writ-
ten by Iena, Leytem and Schlichenmaier [65].

On the level of vector spaces, the Witt algebra #” is generated over a base field K with charac-
teristic zero by infinitely many basis elements {e, | n € Z}, i.e. # = (e,)k. On the level of Lie
algebras, the Witt algebra is defined by the following Lie algebra structure equation:

len,em] =(m—n)epim, nmeCz, (2.15)

This is the most general and abstract definition of the Witt algebra. In the literature, this version
of the Witt algebra is also sometimes called the fwo-sided Witt algebra, or Witt algebra on the
circle. If one considers only modes bigger or equal to minus one, i.e. m,n = —1 in Equation
(2.19), one refers to the algebra as the one-sided Witt algebra, or the Witt algebra on the line in
the case of continuous cohomology.

The Witt algebra is a strongly Z-graded Lie algebra. In fact, the degree of an element e, can
be defined by its index as follows: deg e, := n. With this definition, the Witt algebra becomes
a Z-graded Lie algebra and can be decomposed into infinitely many one-dimensional homo-
geneous subspaces #;, i.e. # = @,z ¥, on the level of vector spaces. Each subspace #;, is
generated as a vector space over a field K with characteristic zero by one basis element e,,. Ob-
viously, the Lie product between elements of degree n and of degree m produces an element of
degree n+ m, hence is fulfilled. Moreover, as each subspace is one-dimensional and thus
finite-dimensional, we have that the Witt algebra is indeed a strongly graded Lie algebra.

The grading of the Witt algebra has a peculiarity in that it is given by one of its own elements,
namely ey € #'. More precisely, from the Witt structure equation we see that [eg, e;] =
n e,. This can be given a more concrete meaning. Let us first consider the adjoint action on #
with respect to ey, which gives according to Definition[2.1.10

ade, :=[eo,’]: W —W

. (2.16)
e, — ney

From ad,, (e,) = n ey, we see that e, is an eigenvector of ad,, with eigenvalue n. The associated
eigenspace corresponds to #,. In other words, the grading of the Witt algebra corresponds to
the eigenspace decomposition of the ade,-action on #'. The Witt algebra is thus a so-called
internally graded Lie algebra, as its grading is ensured by one of its own elements.

The Witt algebra is a perfect Lie algebra, i.e. it fulfills (2.5). In fact, all elements e, with n # 0 can
be easily obtained using ey and (2.15), while ey can also easily be obtained using for example
the pair e;, e_;:

1 1
en=—lepenl n#0, e =lerel. (2.17)

The Witt algebra is also a simple Lie algebra.

In this thesis, we consider the elements e, as abstract symbolic basis elements satisfying
(2.15), meaning we do not work with concrete realizations of the Witt algebra. Nevertheless, we
will give a brief description of these in the following, in order to provide some intuitive under-
standing of the Witt algebra. There are three popular realizations of the Witt algebra, insofar
that we can assign concrete objects to the basis elements e, fulfilling (2.15). One realization is
an algebraic one, while the other two realizations are more of an geometrical order.

Let us start with the algebraic realization. Consider the infinite-dimensional K-algebra of Lau-
rent polynomials « :=K[Z, Z ~11. Elements f € of of this algebrawrite as f =} ,cz a,Z", where
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only finitely many a,, € K are non-zero. This algebra is an associative, commutative algebra with
unit. The Witt algebra can then be defined as # := Der </, where Der is the space of derivations,
see Definition In this realization, the basis elements of the Witt algebra can be written as:

d
Zn+1_
az

en = )
where % is the formal derivative with respect to the formal variable Z, defined as % o —
o : Z"+— n Z""1. This expression for the basis elements satisfies Equation when the Lie
bracket is taken as the commutator bracket of linear maps. Therefore, the definition # := Der «f
provides indeed a sensible realization of the Witt algebra.

Secondly, a geometrical realization of the Witt algebra is given by the algebra of meromor-
phic vector fields on the Riemann sphere CP! that are holomorphic outside of 0 and co. This
algebra is a Lie algebra when equipped with the commutator bracket of vector fields. In fact, it
can be shown that this Lie algebra is isomorphic to Der .«/. In this realization, the generators of
the Witt algebra are given by:

where z is the quasi-global complex coordinate, and % the usual derivative of functions on
CP!. Clearly this realization of the basis elements fulfills Equation when the Lie bracket
is taken to be the commutator bracket of vector fields.

Finally, another geometrical realization of the Witt algebra can be obtained by complexi-
fying Vectpol(Sl), the Lie algebra of polynomial vector fields on the circle S!, the Lie bracket
being given by the commutator bracket of vector fields. The Lie algebra Vect,,;(S 1Y @R C forms
a dense Lie subalgebra of Vect(S!) ® C, the Lie algebra of complexified vector fields on the cir-
cle S'. By “polynomial vector fields” we mean the subset of vector fields the decomposition of
which into Fourier series is finite, i.e. only finitely many Fourier coefficients will be non-zero.
In this realization, the generators of the Witt algebra are given by:

_ s ing
ep=—ie""—,
where ¢ is the angle coordinate along S!, and % the usual derivative of complexified functions

on S'. Again, this realization of the basis elements fulfills Equation (2.15) when the Lie bracket
is taken to be the commutator bracket of vector fields.

2.1.3 The Virasoro algebra

In this section we will introduce the Virasoro algebra. The Virasoro algebra is given by the fol-
lowing sequence of Lie algebra homomorphisms,

0—K-—v"w_—0, (2.18)

where i(K) is the center of 7. Here, K is viewed as a trivial Lie algebra with trivial Lie bracket
[-, -l = 0. This sequence is exact, meaning that the kernel of each homomorphism is equal to
the image of the preceding homomorphism, e.g. kern = imi. We will introduce these notions
properly later in Section[2.2.3]

On the level of vector spaces, the Virasoro algebra 7 is given as a direct sum 7 =K @ #'. This
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results from exactness and a generalization of the Rank Nullity Theorem from linear algebra,
the Splitting Lemma, see Remarks [2.2.3|and [2.2.2| given later. Of course, this is only true at the
level of vector spaces, it is not true at the level of Lie algebras, as we will see later in Section
However, note that we have # = V/K as Lie algebras, which is a consequence of the First
Isomorphism Theorem|2.2.5)of Section[2.2.4]

The basis elements of 7 are chosen as é,, := (0, e;;) and the central element as ¢ := (1,0). Differ-
ent choices are possible, but they lead to equivalent results, as we will see in Section in
particular in Remark[2.2.2] The defining Lie structure equation is given by:

[en,éml=(m—n)ésm+aley,en) -t n,meZz,

2.1
[én, t] =[t, 1] =0, (2.19)

where a is an antisymmetric bilinear map a : # A # — K called Virasoro 2-cocycle, which can
be represented by:

1
alen, em) = _E(”3 — M8 nimo- (2.20)

The cubic term 73 is the most important term, while the linear term r is a so-called coboundary
term. In the literature, the linear term is thus sometimes omitted. The symbol §;, j is the Kro-
necker Delta, defined as being one if i = j and zero otherwise. The factor —ﬁ is traditionally
chosen in accordance with zeta function regularization methods, see e.g. the book by Green,
Schwarz and Witten [52]. We will not derive the Virasoro 2-cocycle explicitly, although it shows
up implicitly in some later proofs. For details about its derivation, see e.g. [67].

By defining deg(é,) := deg(e,) = n and deg(t) := 0, the Virasoro algebra becomes also an in-
ternally Z-graded Lie algebra.

Moreover, the Virasoro algebra is also a perfect Lie algebra. In fact, the elements &, can be ob-
tained as in Equation (2.17), while the central element ¢ can be obtained for example with the
following linear combination:

r=6[8_28&]+12[é,6,].

Contrary to the Witt algebra, the Virasoro algebra is not a simple Lie algebra, as its center is not
trivial.

For more details on the Witt and the Virasoro algebras, we refer the reader for example to the
book by Guieu and Roger [53].

2.1.4 The Krichever-Novikov vector field algebra

For an introduction to Krichever-Novikov type algebras, we refer the reader to the review by
Schlichenmaier [107]. For a complete treatment of the subject, we refer the reader to the book
by Schlichenmaier [108]. There are several different Krichever-Novikov type algebras associated
to the various classical algebras such as current algebras, affine Lie algebras or superalgebras.
Here, we will consider the Krichever-Novikov algebra associated to the Witt algebra, which we
will refer to as Krichever-Novikov vector field algebra and denote by £ .A".

As mentioned already in the introduction, the Krichever-Novikov vector field algebra is a
generalization of the Witt algebra to Riemann surfaces of genus g and N punctures. While the
Witt algebra can be realized as the Lie algebra of meromorphic vector fields on the Riemann
sphere CP! that are holomorphic outside of 0 an oo, the Krichever-Novikov vector field alge-
bra is realized as meromorphic vector fields on a compact Riemann surface of genus g and N
punctures, that are holomorphic outside of the N marked points. Let us split the set of the N
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punctures into two non-empty disjoint sets of punctures I and O, called the in-points and the
out-points, respectively. We denote by K the number of punctures in the set of in-points, and
by M the number of punctures in O. More precisely, we consider disjoint ordered tuples of
punctures,

I=(Py,...,Px) and O=(Py,...,Py), (2.21)

with N = K + M. This splitting is crucial for the introduction of an almost grading. Different
splittings will give rise to different non-equivalent almost-grading structures. In the case of the
Witt algebra, only two punctures are present given by the points 0 and oo, hence only one choice
for the splitting is possible. Consequently, only one almost-grading is present, which is in fact a
grading. For most representation theoretic constructions, the almost-grading of the Krichever-
Novikov type algebras is sufficient. Due to the presence of a finite number of non-equivalent
almost-gradings, new interesting phenomena show up, compared to the Witt algebra. In string
theory, the in-points correspond to in-coming free particle strings, that enter the region of inter-
action. Similarly, the out-points correspond to particle strings leaving the region of interaction.
Hence, this splitting appears quite naturally in physics.

There exist meromorphic vector fields {e,, , | n€ Z,p = 1,..., K} such that the zero-ordelﬂ at
the point P; € I = {Py,..., P;} of the element e, , is given by,

ordp,(epp) =n+2-06,;, i=1,...,K,

for the in-points, and some compensating orders at the out-points. Moreover, fixing local coor-
dinates z; centered at P; for i € {1,..., K}, the basis elements e, , need to satisfy,

en,p:zg+1(1+@(zp))di% nez, p=1,..K, (2.22)
where 0(z;,) denotes terms of order z, and higher. The existence of objects e, ;, with these
properties can be shown by using methods from algebraic geometry, see [108]. The Krichever-
Novikov vector field algebra has as basis this set of meromorphic vector fields {e, , | n€ Z,p =
1,...,K}.

The basis elements {e,, , | n€ Z, p =1,...,K} yield the following Lie structure equation:

n+k+R
(h,t)
ek, ens] = 0rs(M=K)ersnr+ D D Ciy s Chi (2.23)
h=n+k+1 t

with c((]’cl'” € K, the second sum going from ¢ =1 to ¢ = K, and the constant R depends on
,1),(1,9)

the number of punctures and the splitting thereof as well as on the genus g of the Riemann
surface. Defining the degree of an element by deg(ey ) := n, we see from Deﬁnitionthat
the Krichever-Novikov vector field algebra is a strongly almost-graded Lie algebra.

Let us point out that, just like the Witt algebra, the Krichever-Novikov vector field algebra is
a simple and hence a perfect Lie algebra. The proof involves methods from algebraic geometry,
hence we refrain from presenting it here. A proof can be found in [108], Proposition 6.99. on
page 153.

Finally, note that it is not a trivial matter to recover the Lie structure equation from
(2.22). To compute via residues, the pole order of basis elements around out-points is
needed, as well as the so-called Krichever-Novikov pairing, and more sophisticated methods.
For the details, we refer the reader to [108].

Recall that the order of a meromorphic vector field is defined to be the order of a local representing function
for it with respect to a local coordinate. It is independent of the chosen local coordinate. Note that a negative
zero-order of —n corresponds to a pole of order n.
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2.1.5 The trivial, the adjoint and the tensor-densities modules

In this section, we will introduce the modules M considered in this thesis for the Witt, the Vira-
soro and the Krichever-Novikov vector field algebra.

We will start with the frivial module, given by M =K, the base field. The trivial module M =K
is a trivial £-module in the sense given in the second bullet point of Definition[2.1.8}

Vxed, Vmelk: x-m:=0, (2.24)

where £ stands for the Witt, the Virasoro or the Krichever-Novikov vector field algebra. The
module K comes with a trivial grading as in (2.7), i.e. we have K = @,,7K, with Ky = K and
K, ={0} for n #0.

The next important module is given by the adjoint module, which corresponds to taking the

Lie algebra itself as module, i.e. M = £, where £ in our case corresponds to either the Witt, the

Virasoro, or the Krichever-Novikov vector field algebra. The module structure is simply given
by the Lie bracket,

VxeZ, VmeZ: x-m:=[x,m]. (2.25)

This is clearly an Z-module, as the action satisfies because Z fulfills the Jacobi identity
. Obviously, it is also a(n almost) graded module, the (almost) grading being the same as
for the Lie algebra itself.

Finally, we will introduce the general tensor densities modules %+, with A € C. The vector
space F* = (f} | m € Z) is generated by the symbolic basis elements f} over K. We will first
consider the action of the Witt algebra on these modules, which is given by the action of its
basis elements e,, on F*:

Vn,mezZ, YAeC: e, -fhi=(m+An) fl,,,. (2.26)

A direct computation (see e.g. [65]) shows that this action fulfills , hence &% is indeed a
# -module. Moreover, by defining deg( f,,@) := m, it becomes an internally graded # -module,
and the grading is ensured by the same element that gives the grading of the Lie algebra itself,
namely, ey - A = m f}}, as can be seen from .
In this thesis, we do not work with specific realizations of the elements f,;g. Instead, these ele-
ments are just considered as abstract symbolic basis elements satisfying[2.26] As we remain on
the abstract algebraic level and do not work with any geometrical interpretation, we will mostly
consider A € C, to get results as general as possible. Nevertheless, for motivational purposes, we
provide a geometrical interpretation of the elements £ in the following.
When working with the realization of the Witt algebra as vector fields on CP!, one can give
also to the symbols f;} a geometrical meaning. In fact, the symbols f;} can be interpreted as
meromorphic differential forms of weight A that are holomorphic outside of 0 and oo, a basis of
which is given by:

fA=z"Ydz*  Aez, (2.27)
where z is the quasi-global coordinate on CP!. The quantity (d 2)" denotes the frame dz®---®dz
on the tensor product of A dual tangent spaces TM* ®---® TM™ for A > 0, the frame % ® - ® %
on the tensor product of A tangent spaces TM ® ---® TM for A < 0, and for A = 0, we simply
obtain functions on CP!. For A = 1 we thus obtain differential 1-forms, for A = 2 we obtain
quadratic differential forms, and for A = —1 we obtain vector fields. In fact, taking A = -1 in
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(2.26), we see that the action corresponds simply to the Lie bracket. Therefore, A = —1 cor-
responds to the adjoint module and we have %! = #. For general A € Z, we obtain general
tensor densities, thence the name of the module. It can be shown that the realization sat-
isfies , and that the action corresponds to the Lie derivative of differential forms of weight
A with respect to meromorphic vector fields, see e.g. [65]. Note that in , A can also taken
to be an half-integer by fixing a square root of the canonical line bundle, see [108], which is
relevant in the case of superalgebras.

The tensor densities # -modules %* extend to 7 -modules in a canonical way,
en-fr=me) fl=e,-f2 and ¢ fli=n-fl=o, (2.28)

where 7 is the projection appearing in the central extension (2.18). The fact that this is a 7'-
module is ensured by 7 being a Lie algebra homomorphism.

Remark2.1.1. Any # -module M is a 7 -module via the quotient map ¥ — #’. Also, considering
[ as a Lie algebra with trivial Lie bracket [-, -] = 0, we have that every # -module M is a trivial
K-module.

The modules F* are also % ./ -modules. In this thesis, we will work mostly with the trivial
module in the case of the Krichever-Novikov vector field algebra, hence we will not provide all
the details here. To give some intuition, let us point out that the basis elements of &% Mas H N -
modules are given by the symbols { f,fl_ pl meZ, p=1,...K}, which can locally be represented
as:

fr/rll,p = ZZQ_A(I + @’(Zp))(dzp)/l AeZ, (2.29)

where z,, is the local coordinate around the puncture P,. The basis elements [ p can be in-
terpreted as meromorphic differential forms of weight A on a Riemann surface that are holo-
morphic outside of N marked points. As before, the superscript A can also be taken to be half-
integer. For more details, we refer the reader to [108].

2.2 The Chevalley-Eilenberg cohomology

In this section, we will introduce the cohomology of Lie algebras, and derive interpretations for
the low-dimensional cohomology. Also, we will give an overview of the results known in the
case of the low-dimensional algebraic cohomology of the Witt, the Virasoro and the Krichever-
Novikov vector field algebra.

2.2.1 The Chevalley-Eilenberg complex

The cohomology of Lie algebras, called the Chevalley-Eilenberg cohomology, is the counterpart
to the Hochschild cohomology [59] of associative algebras. In general, Lie algebra cohomology
can be approached via functorial methods, such as right derived functors and the Ext functor.
Alternatively, it can be described in a less categorical way by basic homological algebra. In this
thesis, we will choose the second approach, in order to respect the spirit of simplicity of the
thesis. We recall the basic definitions needed from homological algebra below. The functorial
approach can be found e.g. in [131].
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Definition 2.2.1. e A cochain complex is a sequence of vector spaces V¥, k € Z,

k-2 k-1 k k+1
O k1 ke O kel 0T

together with a linear map & such that 62 = §€0 §%~1 = 0.
* The operator 9 is called coboundary operator, cohomology operator or differential.

* The elements of V are called cochains, the elements of keré are called cocycles, and the
elements of im ¢ are referred to as coboundaries.

Since 6% 0 5%~1 = 0, we have im 6%~ c ker6¥, hence it is sensible to consider the quotient
ker&¥
imék-1°

e The k-th cohomology of (V,0) is given by the quotient vector space,

k . ker&*
H*(V,0):= /imak—l,

and the cohomology of the cochain complex (V, ) is given by the graded vector space

H(V,6) := @H*(V,4). (2.30)
k

Let £ be a Lie algebra and M a £-module. The vector spaces V7 of the Definition [2.2.1]
will in our case be given by CY(%, M), the vector space of g-multilinear alternating maps with
values in M,

C1(%, M) :=Homg(A1%,M).

The elements of the space C7(%£, M) are called g-cochains, in accordance with Deﬁnitionm
By convention, we set C%(, M) := M. Next, let us introduce the family of coboundary opera-
tors 6, defined by:

VgeN, 6,:CI1(L,M) — CT* (L M):y—6bqy,
(6(71//)(x1’---xq+1): :ZISi<qu+1(_l)i+j+l W([xl')xj])xly---;xiy---y-)%j,u-qu-i-l) (2.31)

+1 1 ~
+ XD Xy (. R X))

with xy,..., X441 € £, %; meaning that the entry x; is omitted and the dot - stands for the module
structure. In our case, we consider the trivial, the adjoint and the tensor densities modules, the
module structures of which have been defined in (2.24), and (2.26), respectively. It can
be shown that the coboundary operators applied twice give zero, 6 ;4106,=0V g €N, see e.g.
Proposition 4.1 in the book by Knapp [70], or Lemma 3.1. in the lecture notes by Wagemann
[128], hence we obtain the following cochain complex of vector spaces:

61

&,
RN ELLNGE7RY ) WL Tl TR 73 V)

5q+1

0y cac a2 crrl ey 2

where §_; := 0. This cochain complex is called the Chevalley-Eilenberg complex. The elements
of the vector space Z9(¥, M) := ker 6 q are called g-cocycles, while the elements of the vector
space BY(%£, M) := im §,_ are called g-coboundaries, as in Deﬁnition The g™ Lie algebra
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cohomology of £ with values in M is obtained by taking the quotient of the g-cocycles by the
g-coboundaries:

q
HI(2,M):= "M g 4 gy

The total cohomology space is called the Chevalley-Eilenberg cohomology [20], associated to
the Lie algebra £ with values in M :

H(Z, M) := @PHI(L,M).
q=0

We will refer to the spaces HY (%, M) with cohomological degree g = 0, 1, 2,3 as the low-dimensional
cohomology of £ with values in M.

In the case of graded Lie algebras such as the Witt or the Virasoro algebra, it is sensible to intro-
duce the notion of a degree for cochains as a helpful tool. This is presented in the next section.

2.2.2 The degree of a homogeneous cochain

Let £ = @,z £, be a Z-graded Lie algebra, and M = @,z M, a Z-graded Z£-module. It is
quite natural to translate this graded structure to the cochain complex and also the cohomol-
ogy complex. We say that a g-cochain is homogeneous of degree d if it sends homogeneous
elements of degree p to homogeneous elements of degree p + d.

Definition 2.2.2. A g-cochain v : A% — M is homogeneous of degree d, if there exists a num-
ber d € Z such that for all g-tuple x;,..., x; of homogeneous elements x; € ZLj,4(x,), We have:

q
Y(x1,...,xq) € Mywithn=)_ deg(x;)+d.
i=1

We denote by C(‘;) (&, M) the subspace of homogeneous g-cochains of degree d. The sub-

spaces C(Zi) (£, M) assemble to a subcomplex of the complex formed by the spaces C(%£, M).

Every g-cochain can be written as a formal infinite sum,

V=Y Way W €CL & M),
dez

where only a finite number of terms are non-zero when applied to a fixed g-tuple of elements.
The coboundary operators are of degree zero. Consequently, if ¥ = }_ ;¥ 4) is a g-cocycle, then
S04V = Xa04q¥ @ = 0 implies that all the individual terms of the sum must be zero, i.e. every
¥ (q) must be a g—cocycle. Actually, the terms in the sum cannot cancel each other, as the sum
goes over cochains v (4 of different degree and the coboundary operator 6, does not change
the degrees of the (4. Besides, suppose v is a g-coboundary of degree d, i.e. v =6,-1¢ for
¢ some (g —1)-cochain ¢. A priori, ¢ need not be of degree d, as it could be a (q — 1)-cocycle.
However, it is always possible to perform a cohomological change such that v = §,-1¢’ where
¢’ is a (g — 1)-cochain of degree d. Therefore, the decomposition can be performed on the level
of equivalence classes [y] € H(Z, M),

[U/]:dz vl (vl eH) (£ M),
€z
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where H?d) (&£, M) is the subspace consisting of classes of g-cocycles of degree d divided by
g-coboundaries of degree d. Thus, we obtain the decomposition on the level of cohomology:

HI(Z,M) = DH], (£, M),
dez

so that the study of H7(£, M) can be reduced to the analysis of each of its components H? o (M),
which simplifies the analysis.

An important well-known result says that for internally Z-graded Lie algebras and modules, the
cohomology reduces to the degree zero cohomology, see Theorem 1.5.2a. in [43], page 46. A
proof of this result can be found on page 45 of [43], Theorem 1.5.2, where it was derived in the
case of the trivial module. The generalization to general Z-graded modules, given by Theorem
1.5.2a. of [43], is immediate. Since the result is important and used throughout this thesis, and
since the proof is rather short, and because we want to keep this thesis as self-contained as
possible, we will give a proof of this result with general Z-graded modules below.

Theorem 2.2.1. Let £ be an internally graded Lie algebra with respect to a grading element ey,
and M a graded &£ - module with respect to the same grading element ey. Then the cohomology
H(Z, M) is zero except for the degree zero cohomology H ) (<, M):

VgeN:  H] (£ M =0} for d#0, (2.32a)

VgeN:  HILM=H (L M. (2.32b)

Proof. Let £ be an internally graded Lie algebra with respect to a grading element e;. Let M be
a graded Z- module with respect to the same grading element ey, i.e.
M=@ M,  with M,={xeM|ey-x=nx}.
nez

For d # 0, let us define the following map:

q .04 q-1
D, :Cl £, M) -l z,M),

as follows:
(D?d)lV)(xl,...,xq_l) (€0, X1+, Xg-1).-
The situation is illustrated in the diagram below,

0q-2 q-1 0q-1 q 9q q+1 0g+1
C(d) C(d) C(d) g2
q 1
Dy Dy - Pa
id id id
6q- 9 9
q-1 q-1 q q q+1 q+1
_— _—
(d) C(d) C(d)

Let ¥ be a g-cochain of degree d # 0, i.e. ¥ € C(‘Z) (Z,M). Let w(xy,...,x4) € M, with n =

Z?Zl d;+d, with d; := deg(x;). Let d := Z?:l d;. Let us apply D on a coboundary:

(Df’;)l(ng)) (X1,..., Xg) = G qy)(eo, X1,..., Xq)

q .
= (—l)l_lTl/([eO,xi],xb---,JACi,---,xq)
i=1
i N N 2.33
- Z (_1)l+] 11,”(60;[xi)xj]yxly---yxl')---;xjy---qu) ( )
l=i<j=q

q
i1 .
+ (_]-)l+ xi'W(enyly---,xi,---qu)

i=0
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The minus sign in front of the second sum appears because the element ey was switched with
the bracket. Using [ey, x;] = d; x;, the first sum can be rewritten as follows:

q . ~
Z(_l)l_lw([e()!xi]) x1,...,5€i,...,xc]) = d W(xly---)xq) .

i=1

q .

The second sum can be rewritten by using the definition of D,

i+j-1 % 2
Z (_1) y W(eo,[xi,Xj],x1,...,xi,...,xj,...,xq)
1<i<j=q

- ¥ (_1)i+j-1(Dfd)y/)([x,-,x]-],xl,...,xi,...,xj,...,xq).

1<i<j=q

The last sum is due to the fact that we are dealing with an arbitrary module and not a trivial
module. The last sum can be rewritten as follows:

q

i1 .
Z(_l)l+ xi'W(eO)xl)---)xir---)xq)
i=0

q .
(_1)lxi'W(eO)xli---)xiv---)xq) —e()"(l/(.X:l,...,Xq)

i=1

qa N
==Y D'x (DL ) ety By ) = (A + DYt ).
i=1
Inserting everything back into (2.33), we obtain:

(DI Gqw)) (a1, x) = d i, .. xg) = (d+ Dy, .. xg)

_ Z (_1)i+j—1 (D?d)’W)([xl',x]'],xl,...,.)ACi,...,.)%j,...,Xq)

l<i<j=q
q .
=2 (=D'x;- (D("d)w) X1y ey Riyens Xg)
i=1
=N (D?dgl((SqU/)) (X1,..0,Xg) = =AY (X1,...,Xq) =041 ((D(qd)u/) (xl,...,xq)) .

Next, let us consider cohomology, i.e. suppose v is a degree-zero cocycle, y € Z(LZi) (¥, M). Then
(64v) =0, and we obtain,

0g-1 ((D?dﬂ//) (x1,. ..,xq))
7 :

W(xly---qu):_

We obtain that v is necessary a coboundary. This means that all cocycles of degree different
from zero are coboundaries, which proves Theorem|2.2.1 O

2.2.3 Exactsequences

In this section, we recall some definitions and results from homological algebra about exact
sequences, for the convenience of the reader. The notions introduced here will be used in the
next Section
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Definition 2.2.3. * An exact sequence of Lie algebras is a sequence of Lie algebras £; and
Lie algebra homomorphisms f;,

i - fi-1 2, fi Lo fir1 -

that satisfy ker f; =im f;_; forall i.

* A short exact sequence is an exact sequence consisting of three terms,

i T

0 G%l ¢ ffz 33 —» 0, (2.34)

where 0 is the zero Lie algebra. We say that %, is an extension of £3 by 4.
* A long exact sequence is an exact sequence containing more than three terms.

* Two extensions %, and %, of a Lie algebra £; by a Lie algebra £, are equivalent if there
is an Lie algebra isomorphism ¢ : £, — £, such that the following diagram commutes,

03 2 <y o Ty @ » 0
id l"’ id (2.35)
0 < >££1fi>££2’ Ty Py » 0

i.e.poi=i"and ' o =m.

Remark [Origin of short exact sequences] 2.2.1. There are two sources for short exact sequences.
Let ¢ : &£ — £’ be a Lie algebra homomorphism. Due to the first isomorphism theorem, which
will be recalled later in the Remark [2.2.5} we have that ker¢ is a Lie ideal of £ and im¢ a Lie
subalgebra of £’. We thus obtain the following canonical short exact sequence of Lie algebras,

0—ker¢ —— 2 L im¢p—0. (2.36)

Another origin of short exact sequences is given by Lie ideals of . Let _¢# be a Lie ideal of Z,
then we obtain the following natural short exact sequence of Lie algebras,

0—>J¢_">$L>ff/j—>o. (2.37)

Every short exact sequence will be of these types, up to isomorphism. In fact, the map = in
is surjective, due to exactness at Z3, hence imn = %3. Moreover, kermr = imi = (%))
due to exactness at £,, and i (%)) = % since i is injective due to exactness at £;. Hence, every
given short exact sequence of Lie algebras is of type (2.36). Besides, if we set ker¢ =: _¢ in (2.36),

then we haveim¢ = due to the firstisomorphism Theorem|2.2.5, and we see that the short

er¢
exact sequence (2.36) can be regarded as being a short exact sequence of type (2.37).

Remark [Splitting and gluing of exact sequences] 2.2.1. Short exact sequences are useful because
any long exact sequence can be decomposed into short exact sequences and conversely, short
exact sequences can be glued into long exact sequences.
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e Let0 — A L % L Z3 L %, — 0 be a 4-term exact sequence of Lie algebras.

Then the two short sequences

02N, o0 and 0— N — 2L 2 ——0,

are also exact, with A =im f, =ker f3
J Let0—>$1LQ%ZAW—>0and0—></V—>££3£>$4—>Obetwoexact
sequences, with .4 a Lie subalgebra of £5. The 4-term sequence

0—>$1i>$2£>$3£>$4—>0,

is also exact.

This result allows to split and glue exact sequences of arbitrary length. See the lecture notes by
Gathmann [44] for the proofs and more details.

Next, we introduce the concept of a split short exact sequence or split extension.
Definition 2.2.4. Consider a short exact sequence of objects A, B, C and morphisms f, g,

f

0—A—B 8, C—0.
A short exact sequence is

(1) a split exact sequence if there exist isomorphisms ¢;,¢, and ¢3 such that the following
diagram commutes,

0 —3 A—3 AeC 25 C —3 0

(2) left split if there exists a morphism r : B — A, called retraction map, such that ro f =idy,
f
N
0— A B— C —— 0.
/&r/

(3) right split if there exists a morphism s: C — B, called splitting map, such that go s =idc,

8
Y
00— A—— B C —> 0.
/\z/

Remark 2.2.2. A well-known result states that every short exact sequence of vector spaces over
a field K is a split exact sequence. The Theorem holds both in the finite-dimensional and the
infinite-dimensional case.
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Remark [Splitting Lemma] 2.2.3. Let us briefly introduce the Splitting Lemma for the objects
considered in this thesis. The Splitting Lemma is a generalization of the Rank Nullity Theorem
to categorical aspects.

For short exact sequences of vector spaces, we have in Deﬁnition (1) © (2) ¢ (3). Hence,
due to Remark[2.2.2} every short exact sequence of vector spaces is also left split and right split.
In the case of short exact sequences of Lie algebras, we get (1) < (2) = (3). Hence, a short exact
sequence is not necessarily split if there is a splitting map. In general, B will only be the semi-
direct sum of A and C.

In the case of central extensions of Lie algebras though, we get (1) © (2) < (3).

Extensions can be classified into central extensions, abelian and non-abelian extensions. In
this thesis, we focus only on abelian and central extensions. Therefore, we provide definitions
only for abelian and central extensions below in For details on non-abelian extensions,
see e.g. the articles by Frégier [42] or by Alekseevsky, Michor and Ruppert [3].

Definition 2.2.5. e A Lie algebra extension 0 — £ <4 2 5 &3 — 01is abelian if £, is an
abelian Lie algebra.

| /A
e A Lie algebra extension 0 — £ < L — L3 — 01is central if imi = ker 7 is contained in
the center of %, i.e. imi € C(%»).

* The trivial central extension is defined as being the extension 0 — £} <4 Lo L Z
s — 0, where £ @ £ corresponds to the direct sum on the level of Lie algebras, given
in Definition Similarly, we obtain the trivial abelian extension, by replacing the
direct sum £ & %3 by the semi-direct sum £ x %3, for a fixed action of %5 on %;.

[ b/
¢ A central Lie extension 0 — £ < %, - &3 — 0 is universal if for every other central

] T
extension 0 — & < &£, — £L; — 0 there exist unique homomorphisms f; : & — £
and f> : & — £, such that the following diagram commutes,

i T
00— X —> % » L3 » 0
id

i’ 7T
0 — L —> L —» L, —» 0

i.e. ilOfl :fgoi aIldJTIsz =T7r.

On the level of vector spaces, all the extensions can be given by a direct sum, see the Remarks
[2.2.3]and[2.2.2labove. On the level of Lie algebras, the extensions we will encounter in this thesis
are based on direct sums and semi-direct sums twisted by a 2-cocycle a : Z3 A &3 — £, with
an action of %3 on &, i.e. £} is an ¥3-module. We will see later in Section as to why «a
has to be a 2-cocycle.

An abelian extension %> is given as a semi-direct sum of £ and Z3 twisted by a 2-cocycle
a: L3N Ls— £, with bracket given by, Vx1,y, € £, X3, y3 € £5:

[Cx1, 23), (11, 3] o, = (N(x3) Y1 = N(y3) X1 + (3, ¥3), [X3, V3] 2,) (2.38)

and the action of £3 on % is given by a Lie homomorphism 7 : £3 — Der £). In the abelian
extensions considered in this thesis, the derivation n appearing in (2.38) will correspond to the
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inner derivation given by the module structure.

In the case of central extensions, we have that £ is abelian and the action of £; on % is trivial.
The central extension %, is then given as a direct sum of £ and %5 twisted by a 2-cocycle
a: L3N L3 — 21, with bracket given by, Vx;,y, € £, x3,y3 € 3¢

[Cx1,23), (1, ¥3)] o, = (@3, ¥3), [X3, 3] ) - (2.39)

We will derive the explicit expression for the Lie bracket given above in later in Section
2.2.4

We see that the definition of a central extension coincides with the definition of the Vira-
soro algebra introduced in Section[2.1.3] In fact, the Virasoro algebra corresponds, up to equiv-
alence and rescaling, to the unique non-trivial one-dimensional central extension of the Witt
algebra by the base field K. Actually, it is a universal central extension. Traditionally, the Vira-
soro bracket is written as a sum using the central element ¢ like in but clearly it can also
be written as a couple as in ([2.39).

In the case of a trivial extension, the 2-cocycle a : &3 A %35 — £ in (2.38) and (2.39) is the zero
2-cocycle.

Finally, another important result of homological algebra states that every short exact se-
quence of Lie algebra modules gives rise to a long exact sequence in cohomology. Before we
state the result, we briefly need to introduce the concept of a cochain map.

Definition 2.2.6. Let (V,6y) and (W,6w) be two cochain complexes. A morphism of cochain
complexes or cochain map ¢ : (V,0y) — (W, dw) is a family of linear maps respecting the coho-
mological grading ¢* : V¥ — W¥ such that:

which is often abbreviatecﬂ as Ow¢ = ¢poy. Alternatively, the definition can be given by the
following commutative diagram:

51‘6/—2 61‘61—1 516 5k+1

L ——— V! > VE s v
O P’k—l O l(bk O l¢>k+1 O
5k=2 k-1 S5k k+1

L —2 s Wkl

The symbol H in (2.30) acts not only on cochain complexes (V,6v) yielding graded vector
spaces H(V, 6y), but it also acts on cochain maps ¢ : (V,6y) — (W,0w), inducing graded vector
space maps H(¢p) : H(V,6y) — H(W,6w) defined by:

H(p) [vF] := [¢*v¥], for vF e VF. (2.40)

The well-known result from homological algebra mentioned above is stated in Theorem
below.

Theorem 2.2.2. Let £ be a Lie algebra and A, B,C be £ -modules. Let be given the short exact
sequence of £ -modules,

0—A—-B".Cc—0,

2Normally, we denote the k-coboundary operator with a lower index §. In the following though, we denote it
with an upper index 5* to increase readability.
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and consider the induced cochain complexes with cochain maps ¢* and y*,

0— Cke, 4) Ck(,% B)—>Ck(££ C)—0, keN.

Then there is a long exact sequence in cohomology given by,

k H@Y Hwk)
. — HY(¥,A) —— H*(¥,B) —— H"(ZL,0)
Ak
< k+1 Hg" k+1 AR, k+1
H*"(&£,A — H*"(¥,B) — H" (Z£,C) — .

where the A* is called the connecting homomorphism.

Proof. This is a standard result in homological algebra. A proof can be found for example in the
book by M. Scott Osborne [89], page 48, Theorem 3.3. O

Remark 2.2.4. Sometimes it is useful to know an explicit expression for the connecting homo-
morphism A. Actually, it is defined in a most natural way. Consider [y] € H*(%£, C) with repre-
senting k-cocycle y : A¥% — C, and alift of y to ¥: AK2 — B,

B

Y .2
// T
7

Ak Ty c

The lift y exists because there always exists a section of 7 on the level of vector spaces. Asyisak-
cocycle, we have 5% ¢Y =0,and hence 5k 57 takes values in A € B, since n(6k V) = n(f/) =0 'éy =0.
One therefore deﬁnes

AR HY 2,0 —HM (2, 4), [yl 6571

Note that indeed we have 6 ky € ZM1(£,A). In fact, as 6K 57 takes values in A € B, it has a
preimage in A under i, denoted by i '6%¥. Thus, i6%+i 16"}/ skHlii-loky = skHsky =0
which is enough to conclude due to the injectivity of i. Moreover, clearly AF is independent of
the choice of the lift y. For more details on the construction, see e.g. Addendum 1.3.3 of [131].

2.2.4 Interpretation of the low-dimensional cohomology

In this section, we derive some interpretations of the low-dimensional cohomology for various
modules, for motivational purposes.

The zeroth cohomology

We will start with the zeroth cohomology of a Lie algebra £ with values in a general £Z-module
M. Recall that 0-cochains are elements of the module, i.e. ¥ € C%(, M) = M. The 0-coboundaries
and the 0-cocycles are given by, see (2.31):

B%(%,M)=imé_, ={0} and
Z%(L, M) =kerdo =y e M| (Soy)(x) =0V x € £}
={yeM| -x-y=0VYxeL}.
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The zeroth cohomology is given by the quotient Z°/B°,
HO(Z, M) =Ker00s s =(meM|x-m=0V¥xeL}=“M. (2.41)

The space < M is called the space of £ —invariantﬂ of the module M.
We can make this more explicit if we consider the trivial M = K and the adjoint module M =
. For the former, every element m € K is £-invariant, as the action is trivial, i.e. we have
x-m =0 forall xe % and m € K. For the latter, the elements < .% correspond to the space
{ye Z|(x,yl =0V x € %}, which is exactly the center of £, see the Definition[2.1.4] We thus
obtain:

H(Z, K=K and HY(ZL, %) =C%L). (2.42)

The first cohomology

Let us start by computing the 1-coboundaries and the 1-cocycles for a general module M. From
(2.31), we see that the coboundaries and cocycles are given by:

BY (£, M) =im&y = {(60) (x) = —x- ¢, p€ C' (L, M) =M, x€ £}, (2.43)
ZYW &L, M) =kerd, =y e CL(L, M) | 619)(x,y) =0V x,y € L}
={yeCH (LM |y(x,y)-xy@P+y-yx) =0V x,ye £} (2.44)

We can render these expressions more concrete in the case of the trivial and the adjoint module.

The trivial module Let us start with the trivial module M = K. In the case of the trivial module,
we see from (2.43) that B} (£, K) = {0}, hence H} (£, K) = Z} (%, K). From (2.44), we see that we
are looking at 1-cochains ¢ : £ — K with the property that ¥|;«,#) = 0. In the present case, this
boils down to looking at cochains ¥ : ——— — K. Actually, the maps ¥ and ¥ are in one-to-

(£, Z]
one correspondence. This is based on the First Isomorphism Theorem, sometimes also called

the Factorization Theorem, which we recall in the remark below.

Remark [First Isomorphism Theorem ] 2.2.5. Let £ and ¥’ be Lie algebras, and ¢ : & — &’
be a Lie algebra homomorphism. Then ker¢ is a Lie ideal in £ and im¢ is a Lie subalgebra
in &'. Moreover, £ /kergp = im¢. Let .# be any Lie ideal of £ such that .# < ker¢. Then
@ factors uniquely through the canonical projection 7 : £ — £/.#, i.e. there exists a unique
homomorphism ¢ : £/ — %' such that p =@o.

In our case, we have ¢ = v and .¥ = [Z, Z]. Recall from Deﬁnition that the derived
subalgebra .# = [£, %] is indeed a Lie ideal of £. Moreover, we consider cochains ¢ : &£ —
K with y|s = 0, hence .# < kery. Using the Theorem above, we can instead consider

_ < —
cochains y : 7 K defined by (x mod j) — ¥ (x mod j) :=w(x), withxe€ £ and j € .£.

Hence, H' (&, ) is given by the space Homy ( (£, £ ’K) - ( [;21 ) ’
Hl(x,[m:(i), (2.45)
(2, L]

where * stands for the dual space.

3We write £ M instead of M< because we consider left modules, i.e. £ acts from the left on M. In case of Lie
algebras though, all left modules are also right modules, thus the distinction between the notations is not relevant
in our case.
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The adjoint module Let us now consider the first cohomology with values in the adjoint mod-
ule, M = Z. In order to find the 1-coboundaries and 1-cocycles, the image of §, and the kernel
of §) have to be computed. From the Equations (2.43) and (2.44), we derive the 1-coboundaries
and 1-cocycles for the adjoint module,

BY (£, %) =imby = {(6o¢) (x) = [, x],p, x € L} = {ady(x), P, x € £}, (2.46)
ZN L, L) =kers, =y e CH(L, L) | wx,y) =[x, y(D] + [w(x), Y],V x,y€ L}. (247

We see that the 1-coboundaries correspond exactly to the inner derivations of £ into %, see
(2.14), while the 1-cocycles satisfy the Leibniz rule and are thus derivations, see the Definition
The first cohomology with values in the adjoint module is thus given by the quotient of
derivations by inner derivations of £ into %, yielding the so-called outer derivations Out(%£)
of £ into £,

H'(2, 2 =Per<, ., =0u®). (2.48)

Remark 2.2.6. The first cohomology with values in the adjoint module H! (£, %) also classi-
fies, up to equivalence, right extensions (fg, [-,-1) of a Lie algebra (%, [:,-]), which are given
by the short exact sequence of Lie algebras 0 — ¥ — £ — K — 0. The Lie algebra
structure [-,-] in &, with P isomorphic to £ @ K as vector space, is given by [(x, 1), (y, p)] =
[x, ] + puw(x) — Ay (y), where x,y € £, A, p € K and y € H (£, %). We will not give details for
this correspondence, since the considerations are very similar to the correspondence between
H2(%,K) and central extensions, which we will describe below in detail. For more details on
right extensions, see e.g. [43], pages 31-32.

The general tensor-densities modules The reasoning we did for H!(¥, %) is also valid for
H! (%, Z"), or any module M, H' (£, M), see the definition of a general derivation, Thus,
for the general tensor-densities modules or any £-module M, we also obtain that the first co-
homology corresponds to outer derivations of £ into & Aor M,

Der(¥, M

—_— = Out(‘,%,P/?A),
[Der(¥, FM

H' (%, M =

where IDer(%, %) stands for the inner derivations of £ into %%, given by the module action
of & on Z*. See for example Hilton and Stammbach, p.234 [57].

In the same spirit of Remark the first cohomology with values in %% or any £-module
M also has an interpretation in terms of extensions. In fact, H! (%, ") (or H (&£, M)) classifies
extensions of Z-modules of the form,

0—F' s N—K-—0. (2.49)

We will not provide details here, since we are going to discuss central extensions in detail below.
For more details, see e.g. Weibel, Exercise 7.4.5 p. 232 [131].
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The second cohomology

Let us start by writing down the 2-coboundaries and the 2-cocycles for a module M. Equation
(2.31) yields for g = 1 and g = 2 respectively,

B*(£, M) =im &1 = {(619)(x,¥) = p([x, Y1) — x- p(y) + ¥+ p(x), (2.50)
x,yEff,([)ECI(ff,M}»
Z3(%,M) =ker§, = {y € C*(ZL, M) | w([x,y],2) —w((x, 2], y) +¥([y, 2], %) (2.51)

—x YD +y-wx 2 -z Yy =0,V x,yzeL}.

We will give concrete interpretations of the second cohomology for the trivial and the adjoint
module, since these are the most popular. Also, because these interpretations are very impor-
tant interpretations, we provide some details about the proofs and computations. The analysis
for the general tensor densities modules is very similar to the one for the trivial module, hence
we will not give details for these.

The trivial module Let us start with the trivial module. For the trivial module, the 2-coboundaries

(2.50) and 2-cocycles (2.51) become:

B*(Z,K) ={(619)(x, ) =[x, y]), x,ye L, pe C (L, M)}, (2.52)
722, K) ={y e C*(L,K) | y(x,y,2) —yw(xz, ) +y(y,2,x) =0,V x,y,z€ L}.  (2.53)

The second cohomology with values in the trivial module describes central extensions of £ by
the base field K. The Virasoro algebra is such an extension. We will present this cohomology
in detail, as it allows for a better understanding of the Virasoro algebra, which is in the focus of
this thesis. We follow here mostly the presentation given in the lecture notes by Iena, Leytem
and Schlichenmaier [65].

Consider the following central extension of Lie algebras,

0—K-—2 .20, (2.54)

with i(K) € C(¥?), i : K — 2L, m— (m,0) and n: L — £, (¢,0") — (0,¢). Since this is in partic-
ular also an exact sequence of vector spaces, due to the theorem mentioned in the Remark[2.2.2}
we already know that 2 = K & £ as vector spaces. This corresponds to the following splitting
map So,

s0:L— %,  x—(0,x). (2.55)

According to the Remark [2.2.2] and the Remark [2.2.3} we have splitting maps s on the level of
vector spaces. We do not necessary have them on the level of Lie algebras, i.e. they are in
general not Lie algebra homomorphisms. The general form of the splitting maps s: £ — £ is
given by,

$: L — P, x— (f(x),x),

for some linear form f : £ — K. Clearly s is linear and satisfies w o s = id . The splitting maps
could not be of the form s(x) = (f(x), g(x)) for some linear f: £ — K and g: £ — %, since
this does not satisfy mos = id. A priori, there is no canonical choice for the splitting map.
However, we will see later that the non-canonical choice of s disappears at the cohomological
level. We can already show now that the choice disappears at the level of the Lie bracket. In
fact, we have forall ¢,¢' € % that [4,0'] = [so(x), s0(y)] for some x, y € &£, where [-,-] stands for
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the Lie bracket on 2. To see this, let £:= i(1) = (1,0) and let ¢, ¢’ € &. Then there exist m, n € K
and x, y € £ such that £ = (m, x) = so(x) + m t and ¢' = (n, y) = so(y) + n t. The bracket becomes
14,01 = [so(x), s0(y)] + nlso(x), t] +Am[[so(y), tl+ m nlt, t] = [so(x), so(¥)], since t € C(P).

The goal is now to discover what £ looks like at the level of Lie algebras, i.e. we need to know
what the Lie bracket on & looks like. We will denote the Lie bracket on & by [-,-] and the Lie
bracket on Z by [, ] for the time being.

Observation 2.2.1. In a first step, we will show that every central extension (%, [,-]) of a Lie
algebra (%, [-,-]) by K as in (2.54), together with a choice of a linear splitting map s, gives rise
to a 2-cocycle of Z?(%,KK). In a second step, we prove that every 2-cocycle of Z?(%,K) yields a
central extension of Z. The correspondence on the level of extensions alone is not well-defined
due to the non-canonical choice of the section s, as we pointed out before. We will come back
to this later in Observations[2.2.2land[2.2.3

Let ¢ = i(1). We start by showing that there exists a 2-cocycle as € Z?(%,K) such that

X, yeZL: [s(x), s(V] =s(x,yD) +as(x,y) ¢, (2.56)

where s: £ — £ is a splitting map on the level of vector spaces. We see that a;(x, y) character-
izes the failure of s to be a Lie algebra homomorphism. We consider the quantity [s(x), s(y)] —
s([x,y]) and apply 7 to it. Since is a central extension of Lie algebras, 7 must be a Lie
algebra homomorphism. Moreover, we have 7 o s =id ». We obtain:

w([s(x), s —w(s(x, yD) =[mos(x),mos(y)] —mos([x,y]) =0,

hence ([s(x),s()] —s([x,y])) € kern and due to exactness also ([s(x), s())] —s([x,y])) € im7.
Therefore, we must have some constant as(x, y) € [ such that ([s(x), s())]1-s([x, y])) = as(x, y) t.
Besides, % must be a Lie algebra, meaning that [-,-] must be bilinear, skew-symmetric and
satisfy the Jacobi identity (2.2). From ([s(x), s(y)]—s([x, y])) = as(x, y) t, we see that the linearity
of s as well as the bilinearity and skew-symmetry of the Lie brackets implies that a; must be
bilinear and skew-symmetric, i.e. as € C?(Z,K). There remains the Jacobi identity. The first
term of the Jacobi identity on & yields:

[[s(x), s, s(2)] = [s([x, y]) + as(x, YL, s(2)] = [s([x, y]), s(2)] = s([[x, y1, 21) + a5 ([x, y], 2) .

Adding the cyclic permutations, we obtain that the condition of [, -] satisfying the Jacobi iden-
tity leads to:

S([[x,y],Z] +[lz,x1, y1 + [y, Z],x]] +(as([x, y1,2) + as ([y, 21, x) + a5 ([, x], y)) t = 0.

The underlined terms are zero due to the Jacobi identity on £. Hence, the remaining terms
involving a need to cancel each other. This corresponds exactly to the 2-cocycle condition
with values in the trivial module K, see (2.51). This shows that every central extension gives rise
to a 2-cocycle with values in K.

Vice-versa, every 2-cocycle in Z 2(%£,K) also gives rise to a central extension. Let a € Z 2(L,K)
be given. Then we can simply define a Lie algebra structure on £ = K & £ using s, from
as follows,

[s0(x), soN]:=so([x, ) +alx, ) t, Yx,yeZ, (2.57)
[t, %] :=0.

A direct computation shows that this is indeed a Lie bracket on 2. This concludes the proof.
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Remark 2.2.7. Note that if we define a := 0 in , we obtain the central extension . given
by the Lie direct sum of the trivial Lie algebra K and the Lie algebra £, sy will be a Lie algebra
homomorphism for this extension and the short exact sequence associated to Z splits. This
central extension is called the trivial central extension, see the third bullet point in Definition

Observation 2.2.2. We already mentioned that the choice of a splitting map is non-canonical,
but that the choice is not visible at the cohomological level. Actually, two different splitting
maps give rise to cohomologous 2-cocycles in (2.56), i.e. if s and s’ are two different splitting
maps in (2.54), then in the difference a; — ay is a 2-coboundary. This can be seen as fol-
lows. Let t = i(1). The maps s and s’ satisfy mos =idy = mos’, hence mo (s—s’) = 0, meaning that
s—s'isin the kernel of 77, and by exactness, also in the image of i, V x € &, s(x)—s'(x) e kerm =
imi. Therefore, there exists a linear form f: % — K such that, V x€ &, s(x)—s'(x) = f(x) t.
Next, we insert this relation into the expression (2.56) of the corresponding 2-cocycles, and we
obtain for x,y € &, ay(x,y) t = [s'(x),s' (] - s'([x, y]) = [s(x), s(W] — s([x, y]) + f([x,y]) t =
(as(x, )+ f([x, yD) t = (as(x, )+ (61f)(x,¥)) t. The last equality was obtained by observing
that the 2-coboundaries are exactly maps of the form f([x, y]), see (2.52). Thus, a5 and ay are
cohomologous.

In the last Observation[2.2.3} we will show that two cohomologous 2-cocycles in give
rise to equivalent central extensions in the sense of the definition in (2.35). Therefore, we will
find that equivalence classes of central extensions are in one-to-one correspondence with the
second cohomology H2 (%, K).

Observation 2.2.3. Two central extensions %, and % of a Lie algebra £ are equivalent if and
only if their defining 2-cocycles a; and a; are cohomologous.

Suppose we have two 2-cocycles a1, a, € H2(%#,K) that are cohomologous, i.e. they differ
by a coboundary,

(516)(x,y)6(

(a1 —az)(x,y) = [x,y]) Vxye,

and let them be defining cocycles of two central extensions (2’1, [-,-11) and (22, [-,-]2), respec-
tively. In order to show that they are equivalent, we need to construct a Lie algebra isomorphism
@ satisfying the definition in (2.35), i.e.

0 —3 K2y & Ly & » 0
id ltp id (2.58)
00— K232 292 %0

with @ o i) = iy and mp 0 = m. Let the splitting maps be s;(x) = (f(x), x) for some linear form
f:Z —Kand s;(x) = (g(x), x) with g : £ — K. Then the following map ¢,

0:L— L, ML= A+(Eg-0W),x),

fulfills . In fact, it is bijective and direct computation shows ¢ oi; = iy and 7o 0 ¢ = 7, and
also that o s, is a splitting map for %,. It remains to show that ¢ is a Lie algebra homomor-
phism, i.e. that it satisfies ¢ ([s1(x), s1()11) = [@(s1(x), @(s1(¥)]2 for x,y € £. To do this, one
can use $z(x) —@(s1(x)) € kerm, = im iy in order to write ¢ (s;(x)) = s2(x) + B(x) ¢ for B(x) € K and
t = i»(1), and then use the fact that ¢ is central in 522.
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Let (%4, [ -11) and (%5, [, -]») be two equivalent central extensions of £, and let ¢ be a Lie
algebra isomorphism such that we have (2.58). Using the facts that ¢(s;(x)) = s2(x) + B(x) ¢ for
Bx) € K, (p(l[sl(x),sl(y)]h) = [p(s1(x)), @(s1(¥)]2 for x,y € £ and the definition in (2.56), we
obtain

- Bx,y) t+@oa; t=ay t, (2.59)

where a1, a, € H* (%, K) are the defining 2-cocycles of #) and %, respectively. As the Diagram
commutes, we have @ o ij(a;) = i»(a1). In our case, both inclusions i; and i, are the
canonical inclusion given by multiplication by ¢ = i;(1) = i»(1) = (1, 0), see (2.54), hence we have
@oa) t=a; t. From , we thus immediately obtain that a; and a; must be cohomologous.

Theorem 2.2.3. The set of equivalence classes of central extensions of a Lie algebra £ by the base
field K is in one-to-one correspondence with the second cohomology H (%, KK).

Proof. This results immediately from the Observations|2.2.1}[2.2.2/and [2.2.3] O

Remark 2.2.8. We already mentioned in Remark[2.2.7]that the cocycle @ = 0 corresponds to the
trivial central extension. The cocycle a = 0 up to coboundaries, given by the cohomological
equivalence class [0] in H2(%,K), thus gives rise to central extensions equivalent to the trivial
central extension. Moreover, a central extension Pis equivalent to the trivial central extension
if and only if 2 is a split exact sequence of Lie algebras as given in Deﬁnitionm

Remark 2.2.9. Rescaling the defining cocycles in by a factor A € K \ {0} does not lead to
equivalent central extensions, i.e. the cocycles a and Aa do not yield equivalent extensions.
However, they give rise to isomorphic central extensions. We say that two central extensions
£ and %, are isomorphic if they are isomorphic as short exact sequences of Lie algebras. In
the particular case of rescaling, the classification is given by the projective space PH? (%, K), i.e.
non-trivial central extensions are, up to equivalence and rescaling, in one-to-one correspon-
dence with PH?(%,K). In practice, one is often interested in central extensions up to equiva-
lence and rescaling only.

The general tensor-densities modules We saw above how central extensions of Lie algebras
are classified by the second cohomology. The same holds true for abelian extensions, mean-
ing that abelian extensions of a Lie algebra £ by an abelian Lie algebra # are classified by
H?(%,.#). The proof is the same as for the central extensions, see also e.g. the lecture notes
by Wagemann [128] for more details. We will therefore not present it here. In general, Z* for
fixed A is not a Lie algebra. However, we can always equip the modules &* with the trivial Lie
bracket, turning them into abelian Lie algebras. Therefore, H2(¥,FM corresponds to abelian
Lie algebra extensions 0 — % — & — £ — 0. In that case, we considern: & — Der %% in
to yield the inner derivation given by the module action of £ on %* as defined in Section
More precisely, we have Vx € £, V f* € F4, n(x)(f}) := ppr(x) = x- f*, where ¢ 2 is the inner
derivation as defined in (2.13).

The adjoint module Next, we focus on the second cohomology with values in the adjoint
module, H2(%, ¥). Let us start by writing down the expression for the 2-coboundaries (2.50)
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and the 2-cocycles (2.51) in the case of the adjoint module,

B*(£, M) =imé1 = {(61)(x,y) = P([x, ¥]) — [x,p()] + [y, p(0)], (2.60)
x,ye£,peC' (£ M},
Z3(L,M) =ker8, = {y € C*(£Z, M) | y(lx,y,2) —w(lx, 2], y) +¥([y, 2], x) (2.61)

—[x, w21+ py(x 2] - z,w(x )N =0,V x,y,z€ £}.

In the following, we will show that H2(%¥, %) characterizes infinitesimal deformations of the Lie
algebra £. We follow here mostly the presentation of [26} 106, 108].

Let (£, [-,-]) be a Lie algebra. In general, the Lie bracket [-,-] of a Lie algebra £ can be written
as an antisymmetric bilinear map, i.e. a 2-cochain v,

Vo LxL— L, (x1, X2) = Yolx1, X2) = [x1, X2] .

Besides antisymmetry and bilinearity, the map v also has to satisfy the Jacobi identity (2.2), in
order for Z to be a Lie algebra. Next, we consider on the same vector space £ is defined on,
the following family of Lie algebra structures:

We=Wo+yy L+ t2+.... (2.62)

The product u; should be a Lie bracket, i.e. the maps y; : £ x £ — £ must be antisymmetric,
bilinear and they must be such that the Lie algebra structure u; fulfills the Jacobi identity. In
that case, we obtain a family of Lie algebras Z; := (£, u;), with the original Lie algebra £, =
(Z,vy) being given by t = 0. We say that the family {¥£;} is a deformation of £,. Regarding the
deformation parameter ¢, we need to distinguish different cases:

1. The parameter t can be taken as a variable over K. In this case, £, with @ € K is a Lie
algebra for every a for which the expression (2.62) exists with respect to issues of conver-
gence. In general though, this set-up is very hard to analyze.

2. The parameter ¢ can be viewed as a formal variable, in which case we consider the family
Z; not over K, but over the ring of formal power series K[f]. Moreover, the underly-
ing vector space of Z; will no longer be the vector space V of £, but rather the formal
power series V[t]. If we take the formal variable ¢ over K, we obtain a deformation in the
previous sense only if the series converges. However, it is possible that the series
converges only when plugging in zero for . We call a deformation with the formal power
series as parameter space a formal deformation.

3. A deformation %, can also be taken over the quotient K[X]/(X"*!). In that case, the
deformation is called a n-deformation, and the sum in (2.62) contains maximally n + 1
terms. The particular case given by the parameter ¢ being considered as an infinitesimal
variable with t? = 0 is called infinitesimal deformation, and corresponds to taking n = 1
in K[X]/(X"™*h.

More complicated parameter spaces can be envisaged, some of them yielding unexpected prop-
erties in the case of infinite-dimensional Lie algebras, see the work by Fialowski and Schlichen-
maier [36H38} 103, 104].

We will now show how infinitesimal deformations relate to H2(%, £).

Proposition 2.2.1. The set of infinitesimal deformations of a Lie algebra £ is in one-to-one cor-
respondence with Z 2(L, L.
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Proof. In order for Z; to be a Lie algebra, the family u, in must fulfill the Jacobi identity
up to all orders in ¢, i.e.

We(ue(x1, x2), x3) + cyclic permutations of (x1, X2, x3) =0

& Z wi(yj(x1, x2), X3) e cyclic permutations of (x;, X2, x3) =0 (2.63)

i,j=0
has to be fulfilled for all ¢. For infinitesimal deformations, we have t? = 0 and hence we only
obtain two conditions, namely the condition for order zero t° and the condition for order one

t'. The former condition simply corresponds to the original Jacobi identity of 1, on . The
condition for order one ¢! is:

W1 ([x1,X2], x3) + cycl. perm. + [y (x1,X2), x3] + cycl. perm. =0. (2.64)

No terms of higher order have to be verified since > = 0. Comparing the equation (2.64) above
to the 2-cocycle condition with values in the adjoint module given in (2.61), we see that they co-
incide exactly. We therefore obtain that the family u; = wo+ 1, tis an infinitesimal deformation
if and only if y; is a Lie algebra 2-cocycle with values in the adjoint module, i.e. y; € Z?(%Z, £).
This concludes the proof. O

Remark 2.2.10. In general, a necessary condition for a general family i, to be a deformation is
given by the first non-vanishing coefficient y; having to be a 2-cocycle.

Next, we consider aspects of equivalence. Generally, two deformations p; and y, of the Lie
bracket v are called equivalent if there exists a linear automorphism v, such that:

Yo=id+a t+as 2 +..., (2.65)
with linear maps «a; : £ — £ fulfilling:

(1, X2) = W (e (e (1), Wi (x2))) (2.66)

Proposition 2.2.2. Two infinitesimal deformations ji; = wo+ vy t and [, = o+ ' t are equiv-
alent if and only ify, and ', are cohomologous in H?(Z£, ).

Proof.

Let u; = wo+ 1y t and u; = o+ t be two equivalent infinitesimal deformations. Using
y; ! =id-a; t+0(t?), taking (2.62) and (2.65) and inserting them into (2.66), we obtain after a
power expansion in ¢ for the linear term in ¢,

Y (x,y) =y1(x, ) + (a1 (0, Y]+ [x, a1 (1] — a1 [x, y].

Comparing this expression to the form of a coboundary given in (2.60), we see that ¢} — v is a
coboundary 6,a;.

Let yu, = o+ tand p; = yo + v t be two infinitesimal deformations such that ¢ —y, = 6¢
for ¢ € C1(£,£). We define: v, = id + ¢ t. Clearly this is a linear automorphism. The same
computation as above shows that it also satisfies for order zero and order one. O

Remark 2.2.11. In the Remark [2.2.10, we mentioned that a necessary condition for a general
family to be a deformation is that the first non-vanishing coefficient ¥; has to be a 2-cocycle.
Similarly, if two general deformations p; and ) are equivalent, then the corresponding y; and
v, are cohomologous in H?(Z, ).
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Theorem 2.2.4. The set of equivalence classes of infinitesimal deformations is in one-to-one cor-
respondence withH? (£, £L).

Proof. This results directly from the Propositions[2.2.1land[2.2.2] O

Remark 2.2.12. We say that a Lie algebra (£, v) is rigid if every deformation u; of ¥ is locally
equivalent to the trivial deformation, given by u; = vy for all values of . Locally means that
t has to be “close to zero”. This, of course, depends of the type of deformation under consid-
eration. Intuitively, rigidity means that a Lie algebra cannot be deformed. Depending on the
type of the deformation and the Lie algebra under consideration, the vanishing of the second
cohomology implies different properties,

e ifdim % <oo, H3(¥, %) =0 implies that Z is rigid with respect to any deformation [46-
48, 186].

e if H3(¥, %) =0, then the Lie algebra Z is rigid with respect to infinitesimal and formal
deformations, see Fialowski and Fuchs [35], Fialowski [32][33], Gerstenhaber [46-48], and
Nijenhuis and Richardson [87,/88]. However, contrary to finite-dimensional Lie algebras,
the vanishing of H?(£, %) does not imply rigidity with respect to other parameter spaces
in the case of infinite-dimensional Lie algebras, see [36-38, 103} [104].

For the sake of completeness, let us point out that if H?>(#£, %) < oo, then there is a family of
infinitesimal deformations that is universal [46-48]. In addition, if H?(%, %) < oo, then there
is a family of formal deformations that is versal, i.e. it induces all other non-equivalent formal
deformations [35].

In general, it is possible to obtain an infinitesimal deformation from a general deformation.
A straightforward way to do this is to simply truncate the general deformation by putting > = 0
in (2.62). The deformation thus obtained is called differential of the deformation. Hence, every
deformation yields an infinitesimal deformation. The opposite is not always true, as obstruc-
tions will arise given in terms of elements of the third cohomology, see [31}146-48]. We will see
this in more detail when discussing the third cohomology with values in the adjoint module
below.

Third Cohomology

We start by writing down the expressions for the 3-coboundaries and the 3-cocycles for a gen-
eral module M. Taking g =2 and g = 3 in Equation (2.31) gives respectively,

B*(£, M) =im&; = {(520) (x, ¥, 2) = P([x, ¥1, 2) — ([, 21, ) + p([y, 2], %) (2.67)
—x-(/)(y,z)+y-(,b(x,z)—z-(,b(x,y),x,y,zeff,(,beC2($,M)},

73, M) =kerds = {y € C*(L, M) | w((x,y), 2z, w) —w(x, zl,y,w) +w(x, wl,y2)  (2.68)
+y(ly,zl, x, w)—w(y,wl,x,2)+y(z, wl,x,y)—x-y(yz,w)
+y-y(x,z,w)—z-yx,y,w +w-yxyz =0V xyzeL}.

The adjoint module We will start by analyzing the particular case of M = £ given by the ajoint
module.
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For the adjoint module, the Equations (2.67) and (2.68) become,

B (¥, %) =imd, = {620 (x,,2) = p([x, ¥, 2) — ([, 2], ) + ([, 2], %) (2.69)
—[x,¢(y, 21+ [y, ¢(x,2)] = [z, p(x, V], x,y,z2€ L, € Cz(z,f)}

Z3(L, L) =kerds = {w eC3(L, L) | v(lx,yl,z,w)—y(x,zl,y, w)+y(lx, wl,y z) (2.70)
+y(y zl, x, w) -v(ly, wl,x,2) +y(z, wl, x, y) - [x,¥(y, 2z, W]
+Hy,w(x,z,w)] - [z, ¥(x,y, W]+ w,w(x,y,2]=0,Y x,y,z€ £} .

A sensible question to consider is, whether a given infinitesimal deformation can be ex-
tended to a general deformation. This will not be possible in general, since the Jacobi identity
has to be satisfied at all orders of ¢, and also aspects of convergence in (2.62) need to be con-
sidered. Usually, it is not an easy exercise to determine which infinitesimal deformations can
be lifted to genuine deformations. Slightly more accessible is the task of determining which
infinitesimal deformations allow an extension at least on the formal level, i.e. which ones can
be given by a formal power series to all orders of ¢. This problem boils down to a step-by-step
approach given by a step n to a step n + 1 lifting property. Generally, obstructions to this lifting
will appear, which are given by elements of H* (%, £).

Let us consider a n-deformation given by p; = ¥  v; t, hence the sum in contains
maximally n + 1 terms. The question now is whether it can be lifted to a n + 1-deformation
Wy = Z?:“ y; t'. The Jacobi identity in is fulfilled to all orders if the coefficients of t* are
zero for all k, i.e. the following conditions hold:

Y. wiyj(x1,x2),x3) + cycl. perm.=0  0s<k<n+1,
i+j=ki,j=0

where “cycl. perm.” stands for cyclic permutations of xj, x», x3. The n-deformation is given,
hence the equations above are satisfied for 0 < k < n. Therefore, the n-deformation can be
extended to a n + 1-deformation if the remaining equation of order k = n + 1 is fulfilled:

Y Wi(y(x1,x2),x3) + cycl. perm. =0

i+j=n+1,i,j=0

& [(wo@ e (x1,X2), X3) + W1 (Wo (X1, X2), X3)) + cycl. perm.]

+ > (wi(y(x1,x2),x3)) + cycl. perm.| =0

i+j=n+1,i,j>0

> v, (W j(x1,X2),x3) + cycl. perm.| =0.

i+j=n+1,i,j>0

< (629 n+1) (X1, X2, X3) +

The second line was obtained by separating the sum into terms with i =0,j =0 and i,j > 0.
To obtain the last line, recall that v is the original bracket [-,-]. The terms with v, then give
rise to the 3-coboundary term 6,v 41, see the expression (2.69). Thus, the lifting problem of
the n-deformation y; to the n+ 1-deformation ) boils down to a condition on a 3-coboundary
term for v, plus an extra quantity which is called obstruction, given by:

W, = Y Wi (y(x1,x2), X3) + cycl. perm..

i+j=n+1,i,j>0

A straightforward computation yields 63V ,+1 =0, i.e. ¥4 € Z3(L, %) is a 3-cocycle [46H48].
An obstruction to a deformation can be interpreted in terms of the equivalence class [V +1]
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in H3(%, %) as follows: A n-deformation can be lifted to an 7 + 1-deformation if and only if
[W,+1] = 0 in H3(Z, %), as in that case there exists a 9,1 yielding a coboundary term that
cancels the obstruction, i.e. >v¥ 41 = —¥,+1. In particular, the vanishing of all obstructions
at all levels, i.e. H3(%, %) = {0}, is a sufficient condition for the extension of each infinitesimal
deformation to a formal deformation. For more details, see e.g. [24].

The trivial module and the general tensor-densities modules Next, we focus on modules
M =V, where V is an abelian Lie algebra. This is for example the case for V=K or V =% A
equipped with the trivial Lie bracket. We will show that H*(#, V) is in one-to-one correspon-
dence with crossed modules, which we define below. This correspondence appeared first in the
articles by Gerstenhaber [46H48], and was analyzed in more detail by Wagemann [123} [124].

A major part of the present thesis concentrates on the third cohomology with values in the triv-
ial and general tensor densities modules. Hence, it is paramount to motivate this analysis, so
we will introduce crossed modules and the link to the third cohomology in some detail. Thus,
we will reproduce the relevant proofs here instead of just pointing to references. We will follow
here the lecture notes by Wagemann [128], in which the interested reader can find more details.

Definition 2.2.7. A crossed module of Lie algebras is a homomorphism of Lie algebras u: .4 —
A together with a Lie action of A" on ./ via derivations, n: A — Der .4, n— n(n) with n(n) €
Der .4, such thatV m,m'e 4 andV ne A"

L. pn(n)(m)) = [n, u(m)] x,

2. n(um)(m") =m,m') 4,
where [-,-]_ and [+, -] 4 are the Lie brackets in .4/ and .4, respectively.

To each crossed module is associated a four-term exact sequence,

0—-VLut ¥yo 2o, @2.71)

N
where ker p=i(V) and £ = coker uy = ——. By the second property in Definition|2.2.7, we see
imp

that V must be central in .4, and also abelian.

We have that V is a Z-module, but .# and ./ in general are not well-defined Z-modules.
In fact, taking different sections p and p’ of 7 gives different elements of £ on .4, their dif-
ference being an inner derivation, n((p — p’)(x))(m) = [m', m] with x € £, m € .4 and some
m' € 4. Actually, no p satisfies the conditions of being an action up to inner deriva-
tions, 1 ([p(x),p(y)],/y - p(x, y];,g)) (m) = [m',m]_4, hence it can be seen as an outer action.
The action of £ on V induced by the outer action though is well-defined, as we have that
n(lp(x), oWy — p([x, ¥12)) (M)ivy = 0 because V is central in 4.

If V is a trivial £-module, the crossed module is called central crossed module. The trivial
crossed module for kernel V and cokernel Z is given by,

0y vy 0 pldg o 2.72)

Next, let us introduce the notion of equivalent crossed modules.

Definition 2.2.8. Two crossed modules (u,7) and (¢/,n) are elementary equivalent if there are
Lie algebra morphisms ¢ : 4 — #' and v : &/ — &' compatible with the actions

¢ (n(m)(m)) =n' (w(n) (p(m)), (2.73)
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such that the following diagram commutes:

0 vy gy Ly ¥y Ty o % 0
» l(,) l‘” id : (2.74)
00— Vs g Hy p Ty % 0

The equivalence of crossed modules is generated by elementary equivalences.

Let us denote by crmod (£, V) the space of equivalence classes of crossed modules associ-
ated to £ and V. The Theorem to show is given below.

Theorem [Gerstenhaber] 2.2.5. The space crmod (£,V) is in one-to-one correspondence with
the third cohomology H3(£,V):

D crmod (£, V) =H3(L, V).

Remark 2.2.13. The isomorphism ® also holds on the level of abelian groups.

In order to show the one-to-one correspondence between equivalence classes of H3(Z, V)
and the equivalence classes of crossed modules associated to £ and V, we start by presenting
how to a given crossed module can be associated a 3-cocycle of H3 (%, V), and prove that
® is injective. The proof is taken from [128].

Proposition 2.2.3. There exists an injective map ® : crmod (£,V) — H3(£, V).

Proof. Three steps need to be shown. First, we prove the existence of the map by showing
that every crossed module yields a 3-cocycle. Secondly, we show that equivalent crossed mod-
ules give rise to cohomologously equivalent 3-cocycles. Finally, we show that @ is injective, i.e.
ker® =0.

Let us consider a crossed module as in (2.71). Taking p to be a section of 7, we consider again
the failure of p to be a Lie algebra homomorphism, just as in the case of central extensions,
a(x,y):=[px),p(»] , —p([x, yle) with x,y € £. Clearly, moa(x,y) = 0 as 7 is a Lie algebra
homomorphism, hence a(x, y) € ker 7 = im u and there exists (x, y) € 4 such that u(B(x, y)) =
a(x,y). We can choose a section o on im u such that f(x, y) = o o a(x, y), showing that S is bi-
linear and antisymmetric, f§ € C3(, .M). Using the first property of a crossed module in the
Definition as well as the Jacobi identities in . and ./, one obtains ,u((6 4P (X, Y, z)) =
0V x,y,z€ %, where 0_4 is the formal coboundary operator (2.31) with values in .#, the ac-
tion of £ on .4 being given by 1o p, which is an outer action. Therefore, (6_4f)(x,),2) €
kerp = imi and there exists a y(x,y,2z) € V such that (6.48)(x,y,2) = i(y(x,y,2)). We can
choose a section 7 on imi to obtain y(x,y,z) = 7 ((6 J%,B)) (x,¥,2), showing that y is trilinear
and skew-symmetric, y € C3(%,V). By writing down the expressions explicitly, and by re-
calling that the action of £ on V is induced by the outer action of A" on .4, one finds that
i(OvY)(x,y,2,w)) = (6_yiy)(x,y, 2z, w). Writing iy = 6_4 [, one finds after some computational
manipulations that (0_4iy)(x,y,z,w) =0V x,y,z,w € £, which is enough to conclude that
Ovy)(x,y,2,w) =0V x,y,z, we £ due to the injectivity of i. Note that§_s 0d_, is not automat-
ically zero, as there is only an outer action. We obtain that every crossed module gives rise to a
3-cocycle.

Next, let us show that equivalent crossed modules give rise to equivalent 3-cocycles. First,
we need to show the analogue of Remark2.2.2} i.e. different choices of sections p, 0,1 give rise
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to 3-cocycles differing by a coboundary. Let p and p’ be different sections of 7. As (o' — p)(x) €
ker s, we can write p'(x) = p(x) + c(x) for ¢ : & — kern. The default a’ of p’ being a Lie al-
gebra homomorphism can then be written as a'(x,y) = a(x,y) + (6_y¢)(x,y) + [c(x),c(N]y,
where 6_4 is the formal coboundary with values in A and ¢ : &£ — A is considered
as 1-cochain. Since (6_4c)(x,y) and [c(x),c())] 4 lie in kerm = imy, there exists e(x,y) € A
and 0(x,y) € 4 such that (6 4¢)(x,y) = (uo€)(x,y) and [c(x),c(V)]y = (uoB)(x,y), respec-
tively. We therefore obtain a'(x, y) = (uo ) (x,y) = (uo B)(x, y) + (uo€)(x, y) + (uoB)(x, y). Lift-
ing this expression from . to .4, one obtains f'(x,y) = B(x,y) +e(x,y) +0(x, y) + {(x, y), for
some {(x,y) € keru = imi. To obtain i(y' —7y) = §_4 (B’ — B), we need to apply §_4 to the ob-
tained expression. The aim is then to show that the obtained terms will be coboundary terms.
The term (6_4()(x,y) yields a coboundary term with values in V, since {(x,y) € imi hence
O.ul)(x,y) = O 4iM))(x,y) =i(6yA)(x,y) for some A(x,y) € V. Concerning the term with ¢,
we have e(x, y) = (00 _4¢)(x, y) and a direct computation using the first property in Definition
yields p((@6.0)(x,y) = (6.40¢)(x,y)) =0, hence (66 4 ¢)(x,y)—(6.40¢)(x,y) e keru=imi
and there exists some A(x,y) € V such that e(x, y) — (6_y0c)(x,y) = i(A(x,y)). Applying § 4 to
this last expression yields after some algebraic manipulations that §_,€ must be a coboundary.
The same reasoning holds true for the term with 6. Hence i(y’ —y) is a coboundary and chang-
ing the section p does not affect the cohomology class.

Next, let us consider the sections o,0’. These will give two different f = ca and ' = o’a. We
have f—f' € ker u = im i, hence there exists A € V such that i(1) = f— f'. Applying the cobound-
ary operator §_4, we obtain that i(y' —y) is a coboundary by the same arguments as before.
Concerning two sections 7 and 7’ of i, they are needed only on im i, where they must be the
same because i is an isomorphism from V to imi. Therefore, the choice of different sections
does not change the cohomology class.

Now, let (u,7) and (¢, 1) be two equivalent crossed modules as in Deﬁnition We need to
show that the associated 3-cocycles y and y’ differ by a coboundary. Let p,o0, and p’,¢’,7’ be
the sections associated to the crossed modules (u,7) and (¢/,n’) respectively. As the diagram
in commutes, we have 7' (o p) = mo p = idy, hence p’' := wo p is a section of 7. Thus,
p’' and p’ are two different sections of 7’. As we saw above, they will yield cohomologous 3-
cocycles, and we can work with g’ instead of p’ since we are interested in cohomology classes,
not cocycles. Let @' be the default of p to be a Lie algebra homomorphism. Let 8’ = o’@’ and
B = oa as before. Using the fact that the commutativity of the diagram yields u'¢ = yu
and that ¢’ and o are sections of ¢/ and p respectively, we have that (5’ — @ o ) (x,y) € kerp/ =
im i’, hence there exists A'(x, y) € V such that (8’ — ¢ o B)(x,y) = i’A'(x,y). Next, we consider
G.u (B —@oP)(x,y,2) = (6.4i'A)(x,y,2), where 8 4 is the coboundary with values
in ./’ and the formal action i’ oy o p. By computation and using the equivalence relation
(2.73), one finds that 6 4@ o B = @d_4B. Moreover, direct verification shows that we can ex-
change 6 4i'A' = i'6y ), yielding at most a coboundary. With iy’ = 8 4" and iy = & 48, we
then obtain i'y’ — @iy = i'6yA’. As the diagram in commutes, we furthermore obtain
i'y'—i'y =i'6yA'. Taking the section 7/, we obtain that Y’ and y are cohomologous.

It remains to show the injectivity of ®. We want to show ker® = 0, hence whenever [y] =0
then the associated crossed module corresponds to the trivial crossed module of Definition
We proceed in three steps. First, we show that a crossed module associated to the zero
cohomology class [y] = 0 gives rise to an extension. This extension needs not be central nor
abelian. In a second step, one shows that the map between the extension and the crossed mod-
ule associated to [y] = 0 is a morphism of crossed modules . In a third step, one shows that if a
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crossed module admits such a morphism, then it is equivalent to the trivial crossed module.
Let (u,n) be the crossed module associated to the zero cohomology class [y] = 0. If [y] =0,
then y is a coboundary, i.e. there exists w € C?(%£, V) such that y = §yw. We define {(x, y) :=
B(x,y) —i(w(x,y). Using iy = 6 4B, we obtain 6_4{ =6 4B — O yiow) =6 4B —i(Oyw)
Oub— i(l'_l(é./ﬂﬁ)) =0. Hence, { € Z2(L, . 4) is a 2-cocycle with values in .4 and thus defines
an extension of £ by .4,

O—ns M —E — L —»0. (2.75)

Hence, every crossed module associated to the zero cohomology class [y] = 0 gives rise to an
extension.

Next, we construct the morphism. As a vector space, we have & = .4 & &£, see Remark
Moreover, we have A = imu & £ on the level of vector spaces. In fact, the exact sequence
associated to the crossed module can be decomposed into two short exact sequences as

in Remark|2.2.1} yielding:
0—>Vi>/%[ﬂ>imu—>0 and O—>im,u—i>,/Vl>.5£—>0.

By the Remark[2.2.2} we then obtain from the second extension, A =imu & £. The following
map m,

m: ML —imus L, (a,x) — (u(a),x), (2.76)

induces a map of crossed modules,

0 —— A > & » &£ » 0
id lm id . 2.77)
O<—>V<L>J% ”>JV » &£ » 0

Let us check whether m is a morphism of crossed modules. The Lie bracket in the extension A
is given by, for a,beimuyc A and x,y € &,

[(a,x),( b,y =Ua,b)ylimp+x-b=y-a+alx,y),[x,yle), (2.78)

where the dot in e.g. x- b denotes the action of £ on .4/, given by [p(x), b] 4. Similarly, the Lie
bracket in the extension & is given by, for a,b € .4 and x,y € Z:

[(a,x),(b,e=a,bly+x-b-y-a+{(x,¥),[x,y]e), (2.79)

where the dot in e.g. x- b denotes the action of £ on .#, given by n(p(x)) (b). Using the proper-
ties of a crossed module[2.2.7} and u¢ = u(f — iw) = @ as uf = poa = a and ker p = im i, a direct
computation shows that m ([(a, x), (b, )l¢) = [m((a,x)),m((b,y))] ,. In conclusion, we have
that m is a morphism of crossed modules.

Finally, one can show that if a crossed module admits a morphism m,

0 —> u 2 hd

&
id lm
0 vty gty 4y =

» £ » 0
id , (2.80)

» £ » 0
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then it represents the trivial equivalence class. In fact, if m exists, then one can construct the
following commutative diagram,

0Oo— V v— s — P 50
| o] .
0— v 2N yeu e Y, 0 - (2.81)

\
4

<
| o] I
' N VA SNy 7 s 0

This is an equivalence of crossed modules. Therefore, u represents the zero map, meaning that
the crossed module is equivalent to the trivial crossed module as defined in (2.72). O

The proof of the surjectivity of @ is taken from [124} [128].
Proposition 2.2.4. The map ® : crmod (£,V) — H3 (%L, V) is surjective.

Proof. We want to show the surjectivity of @, i.e. we want to show that for each 3-cocycle class
[yl € H3(%£, V), there is an associated equivalence class of crossed modules given by the pre-
image of ®. One way to do thisisto fixz7: A/ — Zin and hence also 4. With three terms
fixed in the four-term exact sequence (2.71), this boils down to constructing .# as a semidirect
sum with a twist, and finding a suitable action 7. Basically, this boils down to an extension
problem similar to the ones we saw previously in this section. This procedure can be found in
the text by Kassel and Loday [68]. However, in the present text we prefer to present the more
general setting and not fix .4/, hence we will follow the construction by Wagemann given in
[124,128], which he called the Principal Construction.

The plan of the proof is as follows:

1. The 3-cocycle class [y] € H3(Z, V) is given, and with % and V given, we construct a short
exact sequence of Z-modules.

2. The short exact sequence of point 1. gives rise to a long exact sequence in cohomology in
accordance with Theorem [2.2.2]

3. Using the long exact sequence, we construct a 2-cocycle [a] starting from [y].
4. Using Theorem|2.2.3} we can construct an abelian extension with [a].

5. Gluing the short exact sequences of points 1. and 4. together, we obtain a four-term exact
sequence.

6. We construct an action 1 and a Lie homomorphism p and verify that together with the
four-term exact sequence of point 5., they verify the properties of a crossed module as
given in Definition[2.2.7]

7. Proceeding as in the proof of Proposition[2.2.3} we construct the 3-cocycle class [y’] asso-
ciated to the crossed module we constructed in point 6.

8. We have a closer look at the constructions used in the proof and see that [y] = [y']. There-
fore, starting with [y], we constructed a crossed module whose associated 3-cocycle is [y],
i.e. the crossed module is the pre-image of [y] under @, which allows to conclude.
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Let [y] € H3(#,V) be a given 3-cocycle class. Thus, we also have a Lie algebra % and a £-
module V given. In the following, we will use some notions and results from more advanced al-
gebraic cohomology. We will not introduce these in detail here, because they will not be used in
the rest of the thesis. The important result is that the category of Z-modules possesses enough
so-called injectives, which guarantees the existence of a so-called injective Z-module I and an
injective homomorphism i : V — I. For more details on this well-known result, see e.g. Corol-
lary 7.3.4 of [131]. With this data, we can construct a short exact sequence of the following form,

0—V—sT-2Q—0, (2.82)

I
where Q = — is the cokernel of i. This is a short exact sequence of Z-modules and thus
imi
induces a short exact sequence of cochain complexes:

0— C*"(L,V)— C*(L, D) 2 C*(£,Q) — 0.
According to Theorem 2.2.2} this gives rise to a long exact sequence in cohomology,

s B2, V) 2 g2 2D 2, )
A

<H3(.5£,V) 1O e, n 22 w32, Q) — ...

A standard result of homological algebra states that HY(Z, I) = 0 for g > 0if I is injective, see e.g.
chapters 2 and 3 of [131], in particular exercise 2.5.1. Therefore, due to exactness, we have that
the connecting homomorphism A is an isomorphism. From there, we can obtain a 2-cocycle
class [a] € H*(#, Q) by taking the pre-image of [y] under A, [a] = A~![y]. Moreover, the #-
module Q can be considered as a Lie algebra equipped with the trivial Lie bracket, i.e. it will be
an abelian Lie algebra. Therefore, with [a], we can construct an abelian extension & of £ by Q
due to Theorem[2.2.3]

0—Q-—e ™, v 0. (2.83)

Next, we glue the short exact sequences (2.82) and (2.83) together as in Remark to obtain
a four-term exact sequence,

0o—V—Ii-te_ 0. (2.84)

The map p is induced by 7 and i’ and given by u: I — &, (q, v) — (q,0), where we have I = Qe V
and & = Q ® £ on the level of vector spaces. The n-action of & = Q @ £ on I is induced by the
action of Z on I, n(e)(i) =n(q,x)(i) :==x-i, whereee &,i €1, g€ Q and x € Z. Considering
the Z-module I as a Lie algebra with trivial bracket, we obtain that the second condition in
Definition [2.2.7]is trivially satisfied. Using the definition of the Lie bracket of an abelian
extension, a direct verification shows that the first condition in Definition[2.2.7]is also satisfied.
Therefore, the sequence corresponds to a crossed module.

Finally, we need to check whether the associated 3-cocycle y’ is in the cohomology class of
the 3-cocycle y we started with. We already saw how to obtain the 3-cocycle associated to a
given crossed module in the proof of Proposition In fact, the 3-cocycle y' is given by:
y' =i71'6;B8 with ' = oa’, where o is a section of u and ' € H?(%, I), a' € H(Z,&). To see
whether [y'] = [y], we need to have a closer look at the definition of A in order to obtain an
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explicit expression for [y]. In fact, the connecting homomorphism A is defined as follows, see
the Remark[2.2.4

['B] (L| [a]
m
— B2, V) = H2(2, D) =5 HA(Z,Q)
. (2.85)
w2, V) 29 132, n 2T 132, Q) — .
w

[yl =Ala) i 53]

In the last step, the pre-image of 6? B under i exists since 62@ =0 and hence 5% B takes values in
VcI=VeQ. The map r in the diagram above, extended by the zero map on the second
factor, actually corresponds to the map y, i.e. (7,0) = u. We see that this construction, starting
from [a] € H?(%Z, Q), corresponds exactly to the construction in the proof of Proposition
recalled above the diagram (2.85), starting with [a'] € H?(%Z, &), where & = Q @ £. Hence, we
can choose as starting cocycle class [a'] = [(@,0)], where (a, 0) is the 3-cocycle a corresponding
to the abelian extension (2.83) extended by the zero map on the second factor. We then obtain
[¥'] = [y]. Note that we are working directly with cohomology classes and not cocycles, hence
the addition of coboundaries leads to at most equivalent crossed modules.

O

Remark 2.2.14. The motivation to use two extensions to construct the crossed module in the
proof of Proposition[2.2.4]stems from the fact that a crossed module can be split into an abelian
and a general, i.e. not necessarily abelian, extension. Actually, in accordance with the Remark
2.2.1}, a crossed module as in can be split into

0— V-t imp—0 and 0—impu—to ¥ 52 —0, (2.86)

where the first extension is an abelian extension and the second one is a general extension. In
fact, in the proof of Proposition [2.2.4} a central extension (2.82) and an abelian extension (2.83)
were used. The Z-modules V, I and Q in (2.82) are indeed seen as Lie algebras with trivial Lie
bracket.

Corollary 2.2.1. Every crossed module is equivalent to a crossed module stemming from the Prin-
cipal Construction.

Crossed modules are useful to classify the so-called Lie-2-algebras, which is a categorified
version of Lie algebras, see the original article by Baez and Crans [10], and also e.g. [128]. More-
over, crossed modules and H3 (%, V) with V abelian also classify so-called double central ex-
tensions, which are a kind of two-dimensional central extensions, see the article by Rodelo and
Van der Linden [93].

2.2,5 Spectral sequences

One of the aims of spectral sequences is to avoid having to compute the cohomology of a
cochain complex in one go. Instead, the computation is broken down into small steps, which is
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more manageable. Spectral sequences were first introduced by Leray [77]; their significance in
algebraic topology was discovered by Serre [112]. Nowadays, spectral sequences are the main
computational tool in homological algebra.

Spectral sequences based on filtrations

The main source of spectral sequences are spectral sequences arising from filtrations. An exam-
ple of a spectral sequence based on filtration is the Hochschild-Serre spectral sequence, which
we will introduce later since we will use it. We will follow here mostly the presentation of spec-
tral sequences as given in [39].

Definition 2.2.9. * Let C be an abelian group. A filtration of C is a family of subgroups
FPCcC,peZ,suchthat FP c Flif g < p.

* Afiltration {FP C} is called positive if FPC = C for p < 0.

 Afiltration {FP C} is called finite if only finitely many terms F” C of the filtration are differ-
ent from 0 and C.

FPC
* The adjoint graded group Gr C of C is defined as Gr C=,, riC

With these definitions, a finite positive filtration is thus of the form,
C=F'2F'2--.oF"2F"!=0, (2.87)

with FPC = C for p < 0 and FPC =0 for p > n+ 1. In our case, we are interested in C being
a cochain complex of Lie algebras C9(%, M). Thus, let C have a grading, C = @D, C4, and a
differential § : C? — C9*! such that §(FPC) < FPC. The grading and the filtration must be
compatible, i.e. one must have FPC =@, FP C7 with FPC9=FPCn CY.

The filtration (FPC,d|rrc) of the complex (C,6) gives rise to a filtration of the corresponding
cohomology, H(F”C,6|grc), which is denoted by FPH,

FPCnkerd

FPH:=H(FPC,6 =
( |Frc) FPCno )

(2.88)
Concerning the adjoint graded complex Gr C appearing in the Definition it is interesting
because it has many properties in common with the original complex C. For example, if C is a
finite-dimensional vector space, then Gr C has the same dimension as C.

Again, the filtration in the adjoint graded complex gives rise to a adjoint graded complex in
cohomology,

GrHO) =@ FPH :EBFPanera FPYICN6(C)
y FPYTH N FPCNno(C) FPiCnkerd
269 FPCnkerd (2.89)
» (FPCNH(C)) + (FPHICnkerd) ’

Again, Gr H(C) and H(C) are closely related, hence knowing Gr H(C) will provide substantial
information on H(C).

Next, we can introduce the notion of a spectral sequence, which is given by so-called pages,
defined below.
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Definition 2.2.10. Let {FPC} be a filtration of a graded abelian group C = @, CY. Then the rth
page of a spectral sequence is given by the following space,
FPCP*4 N 5—1 (Fp+rcp+q+l)

pq _
Er - [Fp+1cp+q 05—1(Fp+rcp+q+l)] + [chp+q ﬂ5(Fp_r+1Cp+q_1)] np.qe N, (2.90)

equipped with a differential defined as follows,
arbt. gra _, gprra-rl (2.91)

The index p is called the filtration degree, the index g is called the complementary degree, and
p + q is called the full degree.

It can be shown, see Leray [77], that d7? is well defined, i.e. the differential does not depend
of the choice of the representative in FPCP+9 0§~ 1(FPT"CP+9*1), Moreover, the differentials
satisfy df”’q_rﬂ o df’q =0 [77].

Let us have a closer look at the first two pages of a spectral sequence. The zeroth page is given
by taking r = 0 in (2.90), yielding,

5P FPCP*ang~l(FPCPHIt
0 " [FPtiCPtdn§-L(FPCP*4+1)| + [FPCP+d 0 §(FP+LCP+A-1)]
FPCP*4 FPCP*4
= Fp+1Cp+q+5(Fp+1Cp+q_1) = Fp+1cp+q :

We see that the zeroth page is given by the adjoint graded complex. Since the adjoint graded
complex is closely related to the original complex, we see that the starting point of the spectral
sequence is almost the original complex. The first page is obtained by taking r = 1 in (2.90):

qu _ chp+q N 5—1(Fp+lcp+q+l)
L [Fpricp+an g1 (FP+ICPHa+Y)| + [FPCP+4 0 §(FPCP+a-1)]
FPCP+ans-L(FPHICPa+ly  kerd!?
T TEpticpiq pCPra-1y . pq-1’
FPHICP* A +§(FPCPHY)  jmg!

(2.92)

where d(’; ¥ is the differential of the zeroth page, induced by the differential of the complex,

4P _ spha FPCP*4 FPCP*ra+l
o=

FFIUpTCC : Fpr+lcp+q - Fr+1Cp+q+l :

We see that the first page gives us the cohomology of the adjoint graded complex with respect to
the differential dé’ 7 i.e. H(Gr C,d"). One could hope that this would be the same as Gr H(C, ),
so that one was able to compute the cohomology of the original complex in two steps. However,
in general H(Gr C) is bigger than Gr H(C), thus these two spaces are not equal in general. Actu-
ally, the original differential § takes values in different filtration levels, whereas the differential
dy takes values only in the filtration level of its argument. Nevertheless, spectral sequences al-
low for a transition from H(Gr C) to Gr H(C), but more steps are needed. In fact, the differential
0 of the original complex also induces a differential d; on the first page,

chp+q N 6—1(Fp+lcp+q+1) Fp+1Cp+q+1 n 5—1(Fp+2Cp+q+2)

dpq . —
1 : Fp+1cp+q+6(chp+q—l) Fp+2cp+q+1+5(Fp+lcp+q)

(2.93)
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We see that d; goes down one level in the filtration (2.87). Together with dj, this provides al-
ready a better approximation of §, which can go down to any filtration level. In we see
that the first page E; is obtained by taking the cohomology of the zeroth page E, with respect
to dp. Continuing the reasoning, it is natural to take the cohomology of the first page with re-
spect to dj, in order to get a second page E». This will provide an even better approximation of
Gr H(C). On the second page, we have a differential d» induced by 8, which will go down two
levels in the filtration. Taking again the cohomology, one can obtain a third page, and so on.
Actually, one can prove that the (r +1) th page as defined in can be obtained by taking the
cohomology of the rth page with respect to the induced differential d, as defined in (2.91), i.e.
EP! = kerd”?/imdP """ see [77].

The next aspect to consider is the end of the spectral sequence. If we take r in big enough,
we will have FP*"C = 0 and FP~"*1C = C, hence E, will become independent of r. The page
where the independence of r occurs is called the infinity page and denoted by E,. One says
that the spectral sequence converges to E,. Taking r big in , the infinity page reduces to:

pq FPCP*9nkerd _ FPHPTI(C)
% [FptlCPtd nkerd| + [FPCPYdn§(CPa-1)]  FPHIHP+I(C)’

(2.94)

see to obtain the last equality. We see that the infinity page gives the desired result,
namely the adjoint graded complex in cohomology Gr H(C). To summarize, starting with the
adjoint graded complex Gr C, one takes successively the cohomology to finally obtain the ad-
joint graded complex in cohomology Gr H(C). Thus, instead of trying to compute Gr H(C) in
one go, one divides the computation of the cohomology into smaller, simpler steps. In practice
though, the expressions for the pages and the differentials become complicated so fast, that,
normally, one does not have explicit expressions for the differentials. Spectral sequences that
converge rapidly though, are a very powerful tool for computing cohomology. One spectral
sequence we will introduce in some more detail below will be the Hochschild-Serre spectral
sequence.

Before continuing though, it is important to point out that each page of a spectral sequence
has a standard two-dimensional graphical representation. The filtration degree is given on the
horizontal axis, while the complementary degree is indicated on the vertical axis. The entries
EP? are placed into the cells (p, g), and the differentials are represented by arrows. For example,
the zeroth and the first page come with vertical and horizontal arrows, respectively, see Figure
while the second page comes with differentials going two entries to the right and one entry
down, see Figure

The relation between E,, and Gr H is given by Equation (2.94), and it can also be represented
graphically. For example, elements of full degree n € N, i.e. elements of Gr H”, are given by the
direct sum of the elements on the nth anti-diagonal of the graph of E,, see Figure[2.3]

This concludes our introduction to general spectral sequences, as we introduced all the no-
tions we will need in this thesis.
For a more profound understanding of the basic ideas and functioning of spectral sequences,
we refer the reader to the texts by Chow|[21] and Mitchell [84]. For some examples of compu-
tations using spectral sequences, we refer the reader to the lecture notes by Diaz Ramos [23].
A historical overview of spectral sequences is provided by McCleary [81]. Finally, for a more
thorough introduction on spectral sequences, see the textbook by McCleary [82].
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0,2 1,2 2,2
Eo Eo Eo E?'Z 5 Ell’2 > Ef’z —

0,1 1,1 2,1
Eo Eo Eo E?'l > E%’l > Ef’l —

0,0 1,0 2,0
Eo Eo Eo N E(l)’o > Ei’o > Ef’o —

i i i "P ' P

FPCP+a

Figure 2.1: The zeroth page on the left has entries Eé’ 7=

Eé) “9*1 \while the first page on
EPT — gV,

/

/

pPq . oPq
Friicrra and arrows do CEy —

the right has entries Ef 7 = ker d(’)g 7/im dg *9~1 and arrows df 7.

Figure 2.2: The second page has entries given by Ef T = ker df 7/im df ~19 and differentials df 7.

pq p+2,q-1
E2 —>E2 .

The Hochschild-Serre spectral sequence

We will finish this section by briefly presenting the Hochschild-Serre spectral sequence, which
will be the spectral sequence used in this thesis. The spectral sequence used in this thesis is
a spectral sequence in the theory of Lie algebra cohomology. Therefore, the starting point will
be the Chevalley-Eilenberg complex C(%£, M), where £ is a Lie algebra and M a £-module.
We denote by ¢7 the g-cochains of C7(%, M). The zeroth page will be given by the adjoint

graded complex associated to

a certain filtration of the complex. By taking successively the

cohomology, a spectral sequence is constructed that will converge to Gr H(Z, M). Let /£ c £
be an ideal of ¥, and let us consider an extension,

The filtration used in the Hoch

00— A —L—E—0.

schild-Serre spectral sequence is given by,

FPCPT(L, M) = {yPT e CPTI(L, M) | yP 9 (x1,..., Xpsq) =0, if x1,..., Xg41 € H} .

By definition,

C"(L, M) =F°C"(£,M)2---2 F"C"(¥,M) 2 F""'C" (¥, M) =0,
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q
Or
n ||EY
E;C,)I’l—].
0 ELP
0 n En+1,—1 f p
o0 .
~N
FPH"
Figure 2.3: Elements of Gr H" are given by Gr H" = EBerq:nEfc’,q =®, T i.e. they are

obtained by taking the sum over the nth anti-diagonal.

and § FPCP*9(%, M) < FPCP*a*1(%, M), where § is the differential of the complex C(Z, M),
hence {FP} is a filtration of C(%, M). By taking the cohomology of the zeroth page Eg =
EPCP+d

Fp+lCp+q
page of the spectral sequence is given by,

with respect of the differential dg 7 of the zeroth page, one can prove that the first

&
EPT=H1 (Jf C”(%,M)) :

Taking again the cohomology with respect to the differential dlp 7 of the first page, one can prove
that the second page of the Hochschild-Serre spectral sequence is given by,

4
EY1 :H”(%,Hq (Jf,M)) :

For details of these computations, we refer the reader to Theorem 1.5.1 p. 40 of [43]. In the cases
treated in this thesis, the spectral sequence starts with the second page and will already con-
verge on the third page. For later convenience, we summarize the results for the Hochschild-
Serre spectral sequence in Theorem 2.2.6

Theorem [Hochschild-Serre] 2.2.6. Let /€ be an ideal of a Lie algebra £. Then there is a first
quadrant convergent spectral sequence,

A
EP!=nP (%,Hq (%,M)) =>HPT (L, M),

where M is a £ -module and via /€ — £ also a A -module.

Proof. A very concise proof of this theorem can be found for example in Theorem 7.5.2 p. 232
of [131]. The original literature consists of the articles [60, 61] by Hochschild and Serre, see also
Lyndon [80]. O

In general, explicit expressions for the differentials of the Hochschild-Serre spectral sequence
are not known. However, in the case of the first few pages, results are known see e.g. the articles
by André [7], Hilton and Stammbach [56], Charlap and Vasquez [19] and Huebschmann [62-H64].
We will come back to this later in the thesis, in Section
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2.2.6 Results for the algebraic cohomology

In order to give the reader an overview, we summarize in this section the results known in the
case of the algebraic cohomology of the Witt, the Virasoro and the Krichever-Novikov vector
field algebra. The summary includes the results obtained in this thesis as well as previously
obtained results. To highlight the work done in this thesis, and to distinguish the new results
from old results, we underlined the results obtained in the present thesis. We first discuss the
Witt and the Virasoro algebra, then we will discuss the Krichever-Novikov vector field algebra.
For the zeroth cohomology characterizing invariants, we immediately obtain from the
following results for the Witt and the Virasoro algebra:

HOW,K) =K, B, %)=}, dim B, gh={ 11=0"
0 else
1if A =0

° = 0 = im HO° A _

HWMM,HWW%LdemgF%me,

where ¢ = i(1) is the central element. For H*(#, %9), the action of # on %' is given by e, - f2, =
mfy, - Hence, the element f is # -invariant, and we have dim H°(#', #°) = 1. For A # 0, there
is no # -invariant. The same holds true for the Virasoro algebra.

Concerning the first cohomology with values in the trivial module, we also get immediate re-
sults using the fact that the Witt and the Virasoro are perfect Lie algebras, as pointed out in
Section[2.1] Regarding the adjoint module, we derive the results in this thesis for the Witt and
the Virasoro algebra in Chapter[3] The results concerning the general tensor-densities modules
are derived in Chapter[4]

2ifA=0
H 7, K)={0}, Hw,#)={0}, dimH #w, F})={ 1if1=1,2 ,
0 else
2ifA=0
H!(V,K)=1{0}, H.\(7,%)={0}, dmnﬂaggh{1ﬂA:L2
0 else

The results for the trivial module are found by using and the fact that the Lie algebras
under consideration are perfect, i.e. they satisfy [£, £] = £. The results for the adjoint module
state that all derivations of the Witt and the Virasoro algebra into themselves are inner. This is
a well-known result in the case of the Witt algebra. In fact, according to Tang [116], this was
proven by Zhu and Meng in [137]. Similarly, we find that all derivations of the Witt and the
Virasoro algebra into the general tensor-densities modules #* are inner, except for A € {0,1,2},
where we also have outer derivations.

For the second cohomology, related to extensions and deformations, we have the following:

2if1=0,1,2
dim H2%,K)=1, H2(W,w)=1{0}, dim H2(W,Z") ={ 1ifA=57
0 else
2if1=1,2
H?2(V,K) = {0}, H2(¥,¥)=1{0}, dim H2(V,ZY)={ 1ifA1=0,57 ,
0 else

The first result in the left column is a well known result and states that the Witt algebra admits
a unique non-trivial central extension, which is universal. An algebraic proof can be found for
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example in [8, [67]. The second result in the left column was shown in [106], and states that
the Virasoro algebra admits no non-trivial central extension. The first two results for the ad-
joint module were shown in [34} 106, [106], stating that the Witt and the Virasoro algebra are
infinitesimally and formally rigid. For the Witt and the Virasoro algebra, we obtain the results
for the general tensor densities modules in Chapter[4] These results state that the Witt algebra
admits two non-trivial abelian extensions by the modules #°,.%!,. %2, and one non-trivial ex-
tension by the modules .%°, %7, while the Virasoro algebra has two non-trivial extensions by the
modules %!, %2 and one non-trivial extension by the modules %°, %°, %7, where the modules
Z* are considered as Lie algebras with trivial Lie bracket.

For the third cohomology yielding crossed modules and obstructions, we get:

dim 3%, K)=1, H3w,w)=1{0}, B3W,FM={01ifAel,
dim B3(7,K) =1, dimH3(V,»)=1, H3(V,gM={01ifLe,

where I = {-100,...,-1}U{6,8,10,14,16, 18,20, 22,24, 26}. These results are derived in this thesis
in the chapters[3|and 4]

The results on the Witt and the Virasoro algebra obtained in this thesis were already made pub-
licly accessible in [26-28].

Next, let us give a summary of the results known in case of the Krichever-Novikov vector field
algebra. For the zeroth algebraic cohomology, we have:

1ifA=0

HO(Z N K=K, H(FN, XN =10}, dimH(F N, F :{ 0 else

The first result is straightforward to obtain. In fact, K is a trivial £ .4"-module, hence every
element of K is invariant under the £ .4 -action. Concerning the second result, we know that
K N is a simple and hence a perfect Lie algebra, see Proposition 6.99 p. 153 [108]. Simple
means that there are no non-trivial proper ideals in £ /", see Definition On the other
hand, we know that H*(# A, # A) = C(H A), see (2.42), and the center C(Z /) is an ideal,
C(xN) XN, see Definitions [2.1.4/and [2.1.3| Since £ A has no non-trivial proper ideals,
it means that C(Z /) is either the zero-ideal or Z A itself. However, £ .4 is non-abelian,
therefore C(# ) cannot be & A . Thus, C(& /) is the zero-ideal and H® (% A, & &) must
be zero. To obtain the third result, more work is needed. We will present the proof in Chapter|[5}
For the first algebraic cohomology, we have:

H (% N, K) = {0}.

As # A is a perfect Lie algebra, this result is immediate, see (2.5) and (2.45). To the best knowl-
edge of the author, the first algebraic cohomology with values in the other modules is unknown.
For the second algebraic cohomology, we have the following results,

dim H} (# A, K)=1, dim H3(# A, K)=K, dim H*(# A, K) =2g+N-1,

where K stands for the number of in-points, see , N is the total number of punctures, and
g is the genus of the surface. The first and the second results were proven by Schlichenmaier
[108], the third result can be derived from results by Skryabin [115]. The subscript [ stands for
local cohomology, b stands for bounded cohomology, and no subscript denotes the total coho-
mology. We will provide more details on this in Chapter[5| To the author’s best knowledge, no
results related to the other modules are known.

In Chapter 5} we derive an upper bound for the dimension of the third bounded algebraic co-
homology,

dim H}(# A, K) <K.
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Chapter 3

The trivial and the adjoint module

In this chapter, we present the results obtained related to the trivial and the adjoint module, for
the Witt and the Virasoro algebra. The trivial and the adjoint modules are related to an infinite
family of modules, which will be considered in the next Chapter[4] The results in this chapter
concern mainly the third cohomology, although in the case of the adjoint module, we also give
the computation of the first cohomology. Section[3.1]deals with the trivial module. Inspired by
the results obtained in Section 3.1} we aim to find a canonical relation between the cohomology
of the Witt and the Virasoro algebra at the end of Section[3.1] This will be deepened further in
Section[3.3] Section[3.2]focuses on the adjoint module.

The main tools at our disposal are the cocycle condition and the coboundary condition, mean-
ing the condition for a cochain to be a cocycle and a coboundary, respectively. When evaluated
on combinations of basis elements e; of the Witt or the Virasoro algebra, these conditions yield
actually an infinite number of linear equations with an infinite number of variables. The aim is
then to find recurrence relation between the variables in order to express all of them in terms of
a finite number of variables. This provides information on the dimension of the cohomology.
In case of a non-zero dimension, explicit generating cocycles are provided, which are obtained
by either solving recurrence relations or by inspiration from continuous cohomology.

The analysis can be simplified by considering only the degree-zero cohomology, recall Theo-
rem2.2.1] However, the degree-non-zero part can be derived rather easily. We will not do it for
the trivial module, as it will show up later in Chapter[5|lanyway when considering the Krichever-
Novikov vector field algebra. We will derive the degree-non-zero cohomology in case of the
adjoint module though, as it will constitute a nice illustration of the proof of Theorem [2.2.1|
with simple concrete examples.

The content in Sections[3.1]and [3.2] of this chapter has been published beforehand as mostly a
verbatim reproduction in [26-29]. The results in Section 3.3|have not been published before.

3.1 The trivial module

3.1.1 Analysis of H*(#,K) and H3(7, K)

In this section, we prove that the third algebraic cohomology of the Witt and the Virasoro al-
gebra with coefficients in the trivial module is one-dimensional. We will start by writing down
the appropriate cocycle and coboundary conditions. Subsequently, we will express cochains
and cocycles in terms of their coefficients and derive the cocycle and coboundary conditions
on the coefficients. These coefficients constitute an infinite number of variables. The proofs
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for the Witt and the Virasoro algebra are very similar, the ones for the Virasoro algebra being
only slightly longer than the ones for the Witt algebra. Here, we will write down the analysis
for the Virasoro algebra. The corresponding analysis for the Witt algebra can be obtained in a
straightforward manner by dropping the central terms.

The condition for a 3-cochain v € C3(7,K) to be a 3-cocycle with values in the trivial module
can be deduced from and is given by:

(03W)(x1, X2, X3, X4) =W ([x1, X2], X3, Xa) — W ([X1, X3], X2, Xa) + V¥ ([X1, Xa], X2, X3)
+ ¥ ([x2, x3], X1, X4) — ¥ ([X2, X4], X1, X3) + ¥ ([x3, X4], X1, X2) =0, (3.1

where x1, X, X3, %4 € 7. The condition for a 3-cocycle v € Z3(¥,K) to be a coboundary with
values in the trivial module can be deduced from (2.67) and is given by:

W (x1, X2, Xx3) = (02¢) (X1, X2, X3) = P ([x1, X2], x3) + P ([x2, X3], X1) + P ([x3, X1], X2) , (3.2)

where ¢ € C2(7,K).

Recall from the Lie structure for the Virasoro algebra. In order to simplify the notation,
we will denote in the following the generators é; of the Virasoro algebra simply by e;, omitting
the hat. Inserting the Lie structure into the cocycle condition (3.1I), evaluated on the basis
elements e;, ej, ey, e;, we obtain:

(B3y) (e, ej, ex, e) =y ([ei ej] e, er) — v (lei, exl, e, er) + v ([ei, 1] e, ex)
+v([ej.ex] eier) —w([ej er] eiex) +v(ler e, eiej) =0
0= -Dylei+j, er e)+ale,e)y(t e e
—(k=Dy(eirr ej e) —ale,e)y(t,ej, e
+U-Dwyleirrej er) +ale, e)y(t, ejer)
+ (k= jwlejrr e e)+alej,e)y(t e, e
— (- jylejir e er) —alej,e)y(t, e, er)
+U-Kylek ei,ej) +alex, e)y(t, e e)), (3.3)
where «a is the Virasoro 2-cocycle, given in (2.20). Let 3 be a 3-cochain and ¢ a 2-cochain of

C}(7,K) and C3(V,K), respectively. These cochains will be given by their system of coefficients
$i,j»bi, Wi jk cij €K defined as follows:

wiejej,ex):=w;jr and  ylejejt):=cij,

Plej,ej) =i j and ¢lei, t) :=b;, (3.4)
with the obvious identification coming from the alternating property of the cochains. In the
case of the Witt algebra, only the coefficients on the left are present.

Replacing the cocycle v in (3.3) by its coefficients (3.4), as well as the Virasoro 2-cocycle a by its
expression (2.20), we can immediately deduce the cocycle condition on the coefficients corre-
sponding to the basis elements e;, e, ex, e;:

G=DVivjki— (k= DWirkji+ U= DWivjk

+ k= PWjrkin— U= DV jie+ U=k

| 1 5 . |
—E(lg—l)5i,—jck,l+E(lg—l)5i,—kcj,l_ﬁ(13—Z)ai,—lcj,k

_E(] —])5j,—kCi,l+E(] —])5j__lci_k—ﬁ(k —k)ok,—1ci,j=0. (3.5)
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In case of the Virasoro algebra, we obtain two types of conditions. One type corresponds to
the cocycle or coboundary conditions obtained when they are evaluated on basis elements e;,
like the one we just derived. The second type appears when the conditions are evaluated on a
combination of basis elements including the basis element . Due to the alternating property
of cochains, if  appears more than once in the arguments, the cochain will be zero. Hence, we
include ¢ only once in the arguments. Moreover, ¢ can always be brought to the last position of
the arguments, with appropriate sign changes.

The cocycle condition evaluated on the basis elements e;, e}, ey, t yields, after replacing
the Lie bracket by (2.19):

(531,[/) (ei) ej) €k t) ZW([ei) e]] » €l t) _u/([ei! ek] ’ ej) t) +1,U([ei) t]) ej! ek)

=0
+ B ’ iyt_ 'yt) ) + eyt)eiye'zo
v ([ej ex] e t) —w([ej t] e er) +y( k01 h)
=0 =
=0
=0
+ (k= pylersj e, D) +alej, e y(t,e;t).
=0

From this expression we can immediately deduce the cocycle condition on the coefficients for
the generators e;, e}, ey, t, by using (3.4):

(J=Dcivjr—(k=D)Cirrj+ (k= j)Cjsk,i =0. (3.6)

In the case of the Witt algebra, we do not have the condition (3.6). Only the condition
shows up in the case of the Witt algebra, but without the central terms appearing in the last two
lines of (3.5). Next, we do the same for the coboundary conditions.

Replacing the Lie bracket in by its expression (2.19), the coboundary condition evaluated
on the basis elements e;, e}, ex becomes:

vlei e ex) =([eiej], ex) +d([ef ex], ei) + d(lex, eil, )
=¢((j-Deirj+ale,ept,er) +d((k—jejx+alej et e;)
+p((—Kejrr+ale et ej)
=(j-D¢leirj, er) +ale;, e))p(t,er) + (k- j)plejrk, ei) + alej, er)P(t, e;)
+(i—k)pleirr ej) +aler, e)P(t,e;).

Replacing ¢ in terms of its coefficients (3.4), and the Virasoro 2-cocycle by its expression (2.20),
we immediately deduce the coboundary condition on the coefficients for e;, e;, ex:

Vijk=G=DPisjr—k=DPirrj+ k= DPjik,i (3.7)
1 5 . 1 5 . I 3 .
+ E(lg —)8; b - E(z?’ —)8;_kbj+ E(]S — )8 —kb;. (3.8)
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Next, we compute the coboundary condition (3.2) evaluated on the basis elements e;, ej, t,
which yields after replacing the Lie bracket (2.19):

vieiej, )= ([eiej], 1)+ (e, t],e) + ([t z’i], ej)
=0 =
= (- DPleirj, 1) +ale, ej) d(1,1) .
——
=0
Replacing ¢ in terms of its coefficients (3.4), we immediately deduce the coboundary condition
on the coefficients evaluated on the basis elements e;, e;, I

Cij = —1Dbj4j. 3.9)

As we only need to consider cochains of degree zero due to Theorem[2.2.1} and since our trivial
module K has only degree zero elements, non-zero coefficients are only possible if the indices
of the said coefficients add up to zero, hence:

Vi k=0 i+j+k#0,
Ci,j:() i+j750,
$i,j=0 i+j#0,
b;=0 i#0.

(3.10)

Finally, we gathered the necessary ingredients to prove the main result of this section.

Theorem 3.1.1. The third algebraic cohomology of the Witt and the Virasoro algebra over a field
K with char(K) = 0 and values in the trivial module K is one-dimensional, i.e.:

dim 7 ,K)) = dimH3(7,K)) = 1.

The proof proceeds in two steps. We will first prove that the dimension is at most one and
subsequently we prove that the dimension is at least one.

Proposition 3.1.1. The third algebraic cohomology of the Witt and the Virasoro algebra over a
field K with char(K) = 0 and values in the trivial module K is at most one-dimensional, i.e.:

dim 7 ,K)) <1 and dimMH3(7,K) <1.

We will treat both the Witt algebra and the Virasoro algebra simultaneously. The proof con-
sists of two lemmata. The first lemma mostly involves a cohomological change. The second
lemma involves the cocycle condition (3.5).

Lemma 3.1.1. Every 3-cocycle w' € H3(¥,KK) is cohomologous to a 3-cocycle v € H3(V,K) with
coefficients ¢; j,y; j x €K fulfilling:

and Y j1=0 Vi+j+1=0, exceptpossibly fory_1p.

Every 3-cocycle ¢' € H3(W,K) is cohomologous to a 3-cocycle w € H3(W,K) with coefficients
Vi ik €K fulfilling:

vij1=0 Vi+j+1=0, exceptpossibly fory_19,1. (3.12)
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Proof. Lety' be a 3-cocycle for # or 7. We will perform a cohomological change ¢ = ¢/ — §,¢
with a suitable coboundary 6,¢ such that for the cocycle ¥ we have for 7 and # the rela-
tions (3.11) and (3.12), respectively. Note that the coboundary is obtained by constructing a
2-cochain ¢ such that §,¢ has the desired properties.

Recall from and that v is given by coefficients v; ; _;_; and c; —;, and that ¢ is given
by the system of coefficients by and ¢; —;. The first part of the proof concerns only the coeffi-
cients c¢; —; and by and is irrelevant for the Witt algebra.

First, we consider by = ¢(ep, t). By setting:

Cl
Pleo, 1) = by := ‘2“ ,

we obtain after the cohomological change:
wle_i,en, ) =v'(e_1,e1,1) = Saple_r,er, ) =c. ;1 —2by=0=rc_1,1.

Next, let us determine the relation between a coefficient of the form ¢; _; and the generator
c_2,2. Consider the cocycle condition (3.6) for (e;,e—;_1,e1, 1), and take i < —2:

(1-1)

(-1-2i)cx1— (A =i)Cit1,-i-1+ ([ +2)c-;; =0 ¢Cj - = Cic2

Ci+1,—i-1
1 (1-10)!

_ 1 R
=3 (—i—2)!c_2’2 S Ci—i= E(l —)(-i)(—i—1)c_22.

< Ci,—i

Hence we obtained the first equation in (3.11).

The second part focuses on the coefficients of the form y; ; ;- ;. We will explicitly prove the
statement concerning the Virasoro algebra, but the proof concerning the Witt algebra can be
treated simultaneously. In fact, in the equations which we will consider, the central terms drop
out. Hence, the conclusions obtained are valid for both the Witt algebra and the Virasoro alge-
bra.

We will start with a cohomological change v = ¢’ — (§2¢) in order to annihilate as many coeffi-
cients y; j  with i+ j+k = 0 as possible. To do this, we will use the coefficients ¢; ; with i+ j =0
of the 2-cochain ¢. Note that we cannot use the coefficient by of the 2-cochain ¢(ey, ) = by
as this one has already been used in the previous part to annihilate the coefficient c_;;. We
start by defining ¢»_1,1 = ¢p_» 2 = 0 in order to simplify the notation. In fact, the structure of the
equations is such that these coefficients cannot be consistently associated to some coefficient
Vi, j—i-j- Consider the coboundary condition - for the generators (e;,e_;—;, e1), which
will yield a suggestion for the definition of ¢:

Wi i = (1= 20¢q7 — (L= Dpiar—1i + @+ i

L s 1 s 1 .
+ S = D8irib - (2= l-,_lb_l_i+ﬁ%bi

/

1»”i,—l—i,l_(2+i) o
a-i a-n"""

= pit1,-1-i:=—

The coefficient ¢_; ; is zero due to our normalization, the other three slashed terms are obvi-
ously zero due to the Kronecker delta’s and their pre-factors. Starting with i = 2, i increasing,
recalling that ¢»» _» = 0 due to our normalization, we obtain a definition for ¢; ; with i + j =0,
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i >2 and we have after the cohomological change y; j; =0V i+ j+1=0and i = 2. The coeffi-
cient for i = 1 is obviously zero due to the alternating property, i.e. ¥, = 0. Hence, we have
V¥ j1 =0V i+ j+1=0exceptfor the coefficient y_19 ;. O

In the second lemma, we use the fact that we are dealing with cocycles fulfilling (3.5). The
proof proceeds as follows: we start by fixing one index of the coefficients, which we will refer
to as level, and derive results for this particular level. For the coefficients v; ;  for example,
we will first analyze ¥; —; 0, ¥i-i-1,1, Vi—i+1,-1, Vi—i-2,2, and ¥; _;42 2, V i € Z, or coefficients
with some permutation of these indices, and refer to these as coefficients of level zero, one,
minus one, two and minus two respectively. Subsequently, we use induction to consider general
coefficients y; _;_rr Vi,k€Z.

Lemma 3.1.2. Lety € H3(¥,KK) be a 3-cocycle such that:

1
c,-,_l-:6(—i+1)(—i)(—i—1)c_2,2 Vi, je”Z
and Y;j1=0 Vi+j+1=0, exceptpossibly fory_yp;.

Then :

¢i,j=0 Vi, jeZ and
The coefficients vy, j x. are linearly generated by the coefficienty 1,10, V i,j, k€ Z.

Letw € H3(#,K) be a3-cocycle such that:
Vi j1=0 Vi+j+1=0, exceptpossibly fory_yp;.
Then :
The coefficients y; j . are linearly generated by the coefficienty 11,0, V i, j,k€Z.

Proof. Once again, we write down the proof in the setting of the Virasoro algebra. However, the
central terms cancel in most of the cocycle conditions which we will consider in the following.
Hence, the conclusions obtained are valid for both the Witt algebra and the Virasoro algebra.
The central terms only appear towards the end of the proof, where we will explicitly point out
the differences between the proof for the Witt algebra and for the Virasoro algebra.

The coefficients to consider are of the form y; ;, with i + j + k = 0, and can be written as
W_i—kik- We will see that they can a priori be expressed in terms of two generating coeffi-
cients ¥_1,1,0 and ¥_» 2o, although we will show in the end that they are related by a non-trivial
relation, hence we will have only one linearly independent generating coefficient in the end.
We will proceed by constructing recurrence relations. In order to have recurrence relations, at
least one of the generators e; appearing in the cocycle condition is taken to be of degree
plus or minus one, e; = e+. This means that no coefficient ¢; ; will appear in the recurrence re-
lations, because either the coefficient ¢; ; is equal to a coefficient of the form ¢; +1, which is zero
due to our assumption inspired by the previous lemma, or its pre-factor of the form (i® — i)6;, j
is zero because ((+1)3 ¥ 1) = 0. Therefore, we can once again treat the Virasoro algebra and the
Witt algebra simultaneously.

We will start with level zero, k = 0. The cocycle condition on the generators (e—;_1, e;, ey, €1)
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yields:
A +20)y-_101 +Y1—=7i — L+ D¥=1=71
+@2+DY-ii0— W=+ (=1+ DW14i-1-1,0=0
(A+2D)w_101+ R+ DWP_ii0) - (3.13)

S Y-1-i1+i0 = C1+1)
The slashed terms cancel each other, and are zero anyway for i # —1,0 because of our assump-
tion. Starting with i = 2, increasing i, we see that level zero is generated by two generators,
w_1,1,0 and ¥_, 2 0. Negative values of i do not yield any new information due to the alternating
property ¥, = —v¥ ;.

Let us continue with level minus one, kK = —1. A recurrence relation for level minus one is ob-
tained by considering the cocycle condition on the generators (e_;,e;,e_1,€1):

200,11 +2%0,-i,i — (C1+ DY_a=r71 + 1L+ DYP1-4,-1

— A+ DY gsi=r1+ (1 + DYP144,-i,-1 =0

S Y1-ii-1= ;.(—21'1!/0,—1,1 =2Wo—ii— (=1+DWi4i—i-1). (3.14)

1+7)

The slashed terms are zero for i ¢ {—1,0} due to our assumption. We do not need to consider
i € {—1,0}, since for these values of i the equation above is trivially satisfied and does not yield
any information. Starting with i = —2, decreasing i, we see that level minus one is generated by
the same generators as level zero, namely ¥_; 1 0 and y_» 2 o. Values of i bigger than minus two
i > —2 do not lead to any new information due to the alternating property.
We can proceed similarly with level minus two k = —2. The cocycle condition for the gen-
erators (e_;41,€;,e_p,e]) gives us a recurrence relation:

3Y_11-ii— 3+ DY =71+ iV i—2
- QC+DY o1+ 1+ DY14i1-i,—2=0
1 .
S Waji—2= ;(—31#—1,1—1',1' — =1+ DV¥1+in-i-2). (3.15)

The slashed terms are zero for i ¢ {—1,0} due to our assumption. Since we consider i < —3 in
the following, we can omit these terms. Starting with i = —3, i decreasing, we see that also level
minus two is generated by y_; 1,0 and ¥_»20. Again, taking i > —3 does not lead to any new
information.

The same can be done for level plus two k = 2, by considering the cocycle condition for the
generators (e_;_1,e;,e2,e_1):

=3Yr =7t iW_2-ii2— B+ DW1-ii1
+ A+ DY-14i-1-i2 = (=2+ DP24i-1-i,-1=0
1 ) . .
SY_2-ii2= ;((3 +DW1-ii-1— A+ DY -1+ -1-i2+ (=2+ DW24i-1-i,-1) - (3.16)
The slashed term is zero for i ¢ {—1,0} by assumption. Since we consider i = 3 in the following,
we can omit this term. Starting with i = 3, 7 increasing, it is clear that also level plus two is solely

generated by y_; 1 0 and ¥_» 2. Once more, taking i < 3 does not yield any new information.
Finally, we can produce recurrence relations for generic level k. Starting with positive k, the
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cocycle condition (3.5) for the generators (e_;_x_1, €;, ek, 1) yields:

—A+i+20Y =71+ 1+ DYt —1-i-kk + A+ 20+ DY =51

+QR+HI+RY i ki~ CL+H R 1-iki + I+ Wi —=rF1 =0
1 . .
S Y 1-i-kil+k = ﬂ(—(—l +DW14i-1-i-kk— CHi+ W _i—kik) - 3.17)

For the indices i and k under consideration, the slashed terms are zero due to our assumptions.
Starting with k =2 and i = k+2, increasing k and i, we see that a generic positive level k is build
from the generators w_1,1,0 and ¥_5 2. Considering i < k + 2 does not yield new information
due to the alternating property.

The same can be done for negative k by considering the cocycle condition for the genera-
tors (e—;—k+1,€i, ek, e-1):

—(1+i+20W1—ii 1+ A+ DY q4i—i—kke+ (C1+ 20+ D)Wk k-1
F(24+i+ RV ik~ A+ RV k1—i—ki + I+ Wik 1—i—k,-1 =0
1
-1-k
—(1+2i+ Y1 k-1 — (2+ i+ O ki — i+ D Wisri1-i—k,-1)- (3.18)

SYi-i—k,i—-1+k = (“1+i+2k)Y1-ii-1— A+ DY _14i1-i-kk

Starting with k = -2 and i = —2 + k, decreasing i and k, we see that also a generic negative level
k is build from the generators ¥ _;,1,0 and ¥_»20. Again, taking i > -2 + k does not yield new
information.

Let us summarize the results we obtained so far. We showed that the coefficients y; ; ;. are
solely determined by two generating coefficients ¥_1,1,0 and w_220. In the analysis above, no
central terms appeared and thus, the conclusion is valid for both the Witt and the Virasoro
algebra. Moreover, in the case of the Virasoro algebra, we showed in the previous lemma that
the coefficients c; ; are generated by a single coefficient, namely ¢_,». This means that up to
now, the dimension of H3(#/, K) is at most two, and the dimension of H3(7, K) is at most three.
In the last step of the proof, we have to check whether there are non-trivial relations between
the three generators c_22, ¥_1,1,0 and ¥_22. In order to prove that the dimension is at most
one, we need to find at least two non-trivial relations in case of the Virasoro algebra, and one
non-trivial relation in case of the Witt algebra. We will consider the cocycle condition for
the generators (e_4,e_3,e2,e5) and (e_3,e_»,e»,e3). The cocycle condition for (e_4,e_3, e, e5)
yields:

Y-725—6W_2,-35+50_1,45+9Y1,32+3Y7,4-3=0
=0
S —=Y_752+6Ys5_3_2—5Ys5_4-1+3Y74-3=0, (3.19)

whereas the one for (e_3,e_», 2, e3) yields:

1
5C-337F 222+ W 523—3W_1,-23+4Y0,-33+6Yo_22—5Y1,32+Y5-3-2=0
=0

1
& 50—3,3 +2C 20— W _532+5W3 5 1+4Yo_33+6Wo_22+Ws5_3-2=0. (3.20)
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The terms of level plus one are zero due to our assumption. We will use the recurrence relations
(3.11), (3.13), (3.14), (3.15), (3.16), (3.17) and to express all the coefficients v; ; x and c; ;
appearing in the conditions above in terms of the generators c_2 2, ¥_1,1,0 and ¥_229. We will
write down all the coefficients needed implicitly and explicitly, in order to expose the structure
of the recurrence relations and their entanglement. We will see that the cocycle condition
for (e_4, e_3, €2, e5) yields a non-trivial relation between ¥_;,1 0 and ¥ _, 2 9. As no central terms
appear, the cocycle condition is valid both for the Witt and the Virasoro algebra. In case
of the Witt algebra, the cocycle condition is sufficient to conclude. In case of the Vira-
soro algebra, the cocycle condition (3.19), together with the second cocycle condition for
(e—3,e-2,e2,e3),yields ¢; j =0V i, j € Z, which allows to conclude.

Let us begin with the coefficients of level zero. The recurrence relation yields for i = 2 the
following expression for ¥ _3 3 ¢:

W-330=-5W_-110+4W_-220 (3.21)
Continuing with i = 3,4,5 we obtain respectively:

1
W_440= 5(71#—1,0,1 +5¥_330) © W_440=—-16¥_110+10¥_220, (3.22)

and
1
W_550= §(9W—1,0,1 +6W_440) © Y_550=-35¥_110+200_220, (3.23)

and

1
V_6,6,0= Z(l 1Yy 101 +7Y 550 © W_e60=—"64Y_110+35¢_22p0. (3.24)

More coefficients of level zero will not be needed. Hence, let us consider the coefficients of level

minus one.
The recurrence relation (3.14) yields for i = -2, -3, -4, -5, —6 the following coefficients:

Y3,—2,-1=—(AYo0,-1,1 =2Y0,2,-2 +3Y_12=1) © VY321 = —4¥_1,1,0 = 2¥ 2,20, (3.25)
and fori =-3

(3.25),.21)
<

1
W4-3-1= —5(61//0,—1,1 —2yo3,-3+4Y_23 1) W4,-3-1=—6W_110-8Y¥_220, (3.26)

fori=-4,

1 3-26), 322
¥5-4-1=~3 BYo,-11 =2W0,4,-4+5¥-34-1) < Ys5-4-1==2Y_110-200 220, (3.27)

fori=-5,
1 327, 323)
V6,-5-1=—710%0,11=2V05-5+6Y45-1) < Ye5-1=12011,0-40¥ 220, (3.28)

and finally for i = -6,

1 6.:28),8:29
V7,-6-1= _g(lzwo,—l,l —2Wo6-6+7TW-56-1) ©  W7-6-1=400_110-70W_220. (3.29)
More coefficients of level minus one will not be needed. We continue with the coefficients of
level plus two.
The recurrence relation (3.16) yields for i = 3,4,5 the following coefficients:

1 325,820 22 8
V532 = 5(61//—2,3,—1 —4Yo g5+ Ys5_4-1) ©  Y_532= 31//—1,1,0 - §1V—2,2,o, (3.30)
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fori=4,

Y 642 = —(7w 3,4-1—9W3 _52+2We 5, 1) 34&8,3'30 Y 642 = ¥W—1,1,0_23_81//—2,2,0» (3.31)
and finally for i =5,

Y_752= é(81V—4,5,—1_61//4,—6,2"'31”7,—6,—1) " V_752= 581#—1,1,0—12—61#—2,2,0- (3.32)

More coefficients of level plus two are not needed. We will continue with the coefficients of
level minus two.
The recurrence relation (3.15) yields for i = —3,—4, -5 the following coefficients:

326
V5,3, 2———( 3W_1,4, 3+4jU}2,4,/) W5,-3,-2=—6W_110—8¥_220, (3.33)
for i = —4 we obtain
1 @3- 27 3:33)
We,—4,-2 = —Z(—3W—1,5,—4 +5¥_35-2) We,—4,—2=—9Y_110—25¢ 220, (3.34)

and for i = -5

1 ©.28),(8.34) 18
Y7,-5-2 = _g(_3W—1,6,—5 +6W_46-2) < Y7-5-2= 5 V-0~ 54y _220.  (3.35)
These are all the coefficients needed for level minus two. Next, we need some coefficients for
level minus three.
Putting k = -2 in the recurrence relation (3.18), we obtain a recurrence relation for level minus
three:

W3—ii-3=(=5+DY1-ii-1—A+DWY_14i3-i—2—(=3+20)y3_2 1
—(—4+DYo i 2o—(—I-2)¥; 23-i1. (3.36)

We need only one coefficient of level minus three, namely the coefficient obtained by taking

i=-41in (3.36):

W7,-4-3=—9Ys5 4 1+3W_57 2+11Y3 o 1+8We 4,229 _67,-1

36
S Y7,-4-3= == ¥-1,10 = 209220 (3.37)

These recurrence relations are valid both for the Witt algebra and the Virasoro algebra, since no
central terms appear.

At last, we will need the coefficient c_3 3 in the case of the Virasoro algebra. Taking the relation
(3.11) and putting i = -3, j = 3, we obtain:

C_33= 4 C_22 (3.38)

Finally, we obtained all the coefficients needed. Inserting the coefficients (3.32), (3.33), (3.27)
and (3.37) into the cocycle condition (3.19), we obtain:

106
=58y _1,10+ 5 V-220~ 36W_1,1,0—48Y 220+ 10¥_110

108
+100y—2,2,0 - ?1//—1,1,0 —60y _220=0
< 8Y_11,0-Y-220=0
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This already allows to conclude for the Witt algebra. Similarly, inserting the coefficients (3.30),
(3.25), (3.21), (3.33) and (3.38) into the cocycle condition (3.20), we obtain:

22 8
3 V-0t gV-220- 209 1,10 = 10Y 220209 1,10
+16Y 220 +6W _220—6W_1,1,0-8Y_220+4C22=0
©3¢-22—5@W_1,1,0—-W¥-220) =0
Hence we obtain c_,» = 0 and a non-trivial relation between the remaining two generators,

meaning that we end up with only one generator, e.g. ¥_1 1 o, for both the Witt algebra and the
Virasoro algebra. This concludes the proof of Lemma|3.1.2 O

The Lemmata(3.1.1/and 3.1.2|allow to prove Proposition|3.1.1

Proof of Proposition[3.1.1} Starting with a 3-cocycle ¥ € H3(¥,K) or € H*(#,K), by Lemma
we can perform a cohomological change to obtain an equivalent 3-cocycle ¥/, such that
the hypotheses of Lemma [3.1.2] are fulfilled. Using Lemma 3.1.2}) we obtain that all the coeffi-
cients w;’,j, ;. are uniquely determined by a single coefficient. Hence, the dimension of H3(7,K)

and H3(#,K) is at most one. O

Next, we prove that the dimension of the spaces H3(7,K) and H3(#,KK) is at least one. To
show this, we will construct an explicit degree-zero 3-cocycle of H3(7,K) and H3(#/,K), that is
not trivial, i.e. not a coboundary.

Proposition 3.1.2. The third algebraic cohomology of the Witt and the Virasoro algebra over a
field K with char(K) = 0 and values in the trivial moduleK is at least one-dimensional, i.e.:

dimH*#,K)) = 1 and dim(H* (V,K)) = 1
Proof. Consider the following trilinear map:
VW <xWxW—K,
defined on the basis elements via:
Wieiejer) =—PNG-KE-Kk)bitjrko, (3.39)

which we extend trivially to:
V.7 x¥V x¥V =K,

by setting W (x1, 10, x3) = 0 whenever one of the elements x;, x, or x3 is a multiple of the cen-
tral element t. By their very definition, ¥ and ¥ are alternating, hence ¥ € C3(#,K) and
¥ e C3(¥,K). Moreover, due to the Kronecker Delta in the definition, these cochains are clearly
of degree zero.

A straight-forward calculation of for a quadruplet of basis elements e;, e}, ey, e; yields 63V =
0. Hence ¥ is a three-cocycle of #'. Concerning the Virasoro algebra, we have 6§ 3‘? (X1, X2, X3, X4) =
0 if one of the arguments is central. If all the arguments are coming from #’, we obtailﬂ
83W(x1, X2, X3, %4) = 63W (X1, X2, X3, X4) = 0. Thus, ¥ is a 3-cocycle for 7. It remains to be shown
that these cocycles are not trivial.

Let us assume that ¥ and ¥ are coboundaries, which will lead us to a contradiction. So, let

!In abuse of notation, we use the same symbol x to refer both to x € 7 and its projection 7 (x) € #'.



64 CHAPTER 3. THE TRIVIAL AND THE ADJOINT MODULE

®: % x¥W — K be a 2-cochain with ¥ = §,®. On the one hand, evaluating ¥ on the triple
e_1,e1, e, we obtain by the very definition (3.39) of V:

‘I’(e_l,el,eo) =2. (3.40)
On the other hand, ¥ being a coboundary we obtain using (3.2):

Y(e_1,e1,e0) =P([e-1,e1],e0) +D([e1,e0l,e-1) + D ([eg, e-1],e1)

(3.41)

=2D(ep, e9) —D(e1,e-1) —P(e-1,e1) =0.
Therefore, ¥ cannot be a coboundary. Similarly, assume P = 52613, with ®: 7 x 7 — K. Again,
we obtain ¥ (e_1, e1,ep) = VY(e_1,e1,e9) =2 as well as 5,d(e_q, e, eg) = 0, hence ¥ cannot be a
coboundary. Note that for any two elements out of the three elements e_y, e;, ey, the defining
cocycle for the central extension of # vanishes, hence exactly the same expression (3.41)
will also appear for . O

Remark 3.1.1. The Godbillon-Vey cocycle is known in the context of the continuous cohomol-
ogy H3(Vect(Sh),R). For the interested reader, we exhibit the relation in the following.

Let ¢ be the coordinate along S'. The elements of Vect(S!) can be represented by functions on
S!. Assigning to the vector field f (t)% the function f (), it was shown in [45] that the contin-
uous cohomology H’. (Vect(S 1) R) of Vect(S!) with values in R is the free graded-commutative
algebra generated by an element w of cohomological dimension two and an element 6 of co-
homological dimension three. The generator of dimension two, called Gelfand-Fuks cocycle, is

given by:
d d ! gl
w-(fa’g%)'_’j;ldet( g )dt’ (3.42)

Note that the Gelfand-Fuks cocycle can be related to the Virasoro 2-cocycle (2.20). The genera-
tor of dimension three is given by:

h

d d d foos

9:(f—,g—,h—)r—>f det| f/ g W |dzt, (3.43)
dt “dt dt St f// g// B

with f, g, h € C*(S!) and the prime denoting the derivative with respect to t. The generator 0
in (3.43) is commonly called the Godbillon-Vey cocycle.
If one considers the complexified vector field &,, = ie'"! % then

1 1 1
H(én,ém,ék):_f detl n m Kk |etmrir gy,
1
’ ' om* K (3.44)

=(n-mn-k)(m- k)f e mEit gy
Sl

The integral evaluates to zero if n+ m + k # 0, otherwise it yields the value 1. The expression
(3.44) makes perfect sense for our algebraic generators e, of # for every field K with char (K) =
0, and we obtain the expression (3.39).

Proof of Theorem Proposition and Proposition clearly prove Theorem O
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Remark 3.1.2. Note that the cocycle condition is the same as the cocycle condition in
H2(#,K). Similarly, the coboundary condition is the same as the coboundary condition in
H?(#,IK). This leads to the fact that the 2-cocycle in actually corresponds to the Virasoro
2-cocycle, see ([2.20). This is no coincidence but a general fact valid for every cohomological
dimension. This will be shown in Theorem[3.3.2]in Section 3.3

We have seen that the proofs for the Witt and the Virasoro algebra are very similar for the
trivial module, and we obtained that the third cohomology has the same dimension for both
Lie algebras. This leads to the sensible question whether the result is a mere coincidence or
whether there is a deeper, more fundamental link between the two cohomology spaces. This
can best be investigated with spectral sequences, which we will do in the next section.

3.1.2 Relation between H*(#', M) and H* (7', M)

The aim in this section is to find a first relation between H*(#, M) and H*(¥, M), by using the
Hochschild-Serre spectral sequence introduced in Section[2.2.5] The result we will prove in this
section is the formula in Proposition below. We will prove the result for a general module
M. Tt will be used in Section[3.2]for M = # and deepened further in Section[3.3|both for M =%
and M = 1.

Proposition 3.1.3. Let ¢, := df'l : Ef’l — E5+2'0 and M a W -module. Then we have the follow-
ing relation between the algebraic cohomology of the Witt # and the VirasoroV algebra:

H*(V, M) = B0/, My
’ imeg—

® ker (pr_1 :H* YW, M) — H**'\ (W', M)). (3.45)

Proof. We will prove this via the Hochschild-Serre spectral sequence. Take & =7 and # =K in
Theorem then &/ =% . Hence, the second stage spectral sequence Ef 7 becomes in our
case:

EYT=HP( ,HI(K, M) = HPH (¥, M).

Due to the alternating property of the cochains, we have H* (K, M) = 0 for k > 1. This is true for
any module M.
Consequently, the Hochschild-Serre spectral sequence has only two lines in our case:

0 0 0
1| H'w ,HY(K,M) H'®,H'@,M) BH>2W,H(K,M)
0| H'm,H(,M)) H'W,H(K,M) H>W,H(K,M))
| 0 1 2

(3.46)

The entries with p < 0 or g < 0 are zero. In addition, the entries for g = 2 are zero because of
H* (K, M) =0 for k > 1.
The second stage spectral sequence comes with the differentials:

pq. 4 p+2,q-1
d," :Ey"" — Ej .
With these maps, we can take the cohomology Ef T of Ef "1 which gives the third page spectral

sequence:
p.q
BPa ker d2

= —2,g+1°
1md§ a+
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The third page spectral sequence has the same shape as the second page spectral sequence,
meaning it too has only two lines different from zero. Again, the third page spectral sequence

comes with maps:
pq. pq p+3,4-2
dy"  Ey’' — Ej .

However, the operator df "7 corresponds to going three entries to the right and two entries to
the bottom. Since we only have two lines different from zero , we always obtain im dp T =0.
Moreover, the kernel of dp 'Y then corresponds to Ep "9 Therefore, we obtain Ep = Ep q .=
E%Y, meaning in our case, the Hochschild-Serre spectral sequence converges already on the
third page.

We consider a # -module M in (3.46), which is a 7-module as a quotient module and a trivial
K-module, see the Remark- The latter implies HO(K, M) =¥M = M, Where KM denotes
the space of K-invariants of M, see (2.4I). Moreover, we have H! (K, M) = M. In fact every
linear map ¢ € C'(K, M) is a cocycle since (51¢)(t1,%) =0V 1,2 € K due to the alternating
property. Therefore, H! (I, M) just corresponds one-to-one to all linear maps 1 — w € M, i.e. to
all elements of M. The (0,0) and (0, 1) entries in thus become: H* (%', M) =" M.

Our second stage spectral sequence thus becomes:

0 0 0 0 0

1 Mo O Hw,M) BEw,M) H3W,M) HW,M)
dy! d," dy!

0 "M OHW,M) HEW,M) WH3W,M) HW,M)

In order to simplify the notation, we define:

,1 ,1 2,0
¢p=dy BV — EJT0, (3.47)

Next, we take the cohomology of the sequence with respect to ¢, which gives us the third page
spectral sequence E; P =E} P4 We will abbreviate H (#, M) by H:

0 0 0 0 0

1| ker(po:”M—H?) ker(p;:H —H3 ker(p,:H>—H* ker(ps:H>—H® ker (ps:H* — H®)

2 3 4
0 WM Hl iH]:(Po irsfﬂl i;‘ﬂz
0 I 2 3 1
H(V, M) H'(V, M) H2(¥, M) H3(V, M) HY (¥, M)

The elements Ef "7 converge to HP+9(&, M), i.e. HP*9(¥, M) in our case. This means that in
the case under consideration, we can write the elements H?*9(%, M) of degree n = p+ ¢ as a
direct sum of the elements E:f "7 of degree n, i.e. the elements Eg’; "1 with p + g = n lying on the
n-th diagonal:

H*, M) = EFC @ EF 1L
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Clearly, the diagram above gives us formula (3.45). For the low-dimensional cohomology, we
thus obtain,

. 7/M:7/]\4

HY(V,M)=H'#, M) @ker (po:” M — H>(W, M)).

H2(V, M) = M g yer (or :H W, M) — H3 (W, M)).

imeo

H3(V, M) = M g yer (g, - H2W, M) — HAW, MD)).

im ¢

HAY, M) = BM g yer (s - H3 W, M) — H3 (W, M)).

im @2

The maps ¢_; and ¢_, are zero, hence the first two lines. O

From (3.45), we see that we have H3(7,K) = H3(#,K) only if ¢, is injective. In that case,
ker¢, =0, and since H!#,K) = 0, we have im ¢1 = 0, hence the result. In order to prove that
H3(7,K) = H3(#,K) in a canonical way, we need a better understanding of the differentials of
the second page of the Hochschild-Serre spectral sequence. We will analyze these in Section
only, as the results are not necessary for the proof of the next main results given in the next
Section[3.2

3.2 The adjoint module

This section focuses on the first and the third algebraic cohomology of the Witt and the Virasoro
algebra with values in the adjoint module. We start by deriving the cohomologies for the Witt
algebra, then we will derive the cohomologies for the Virasoro algebra by using the results from
the previous Section|3.1

3.2.1 Analysisof H!(#,%#)and H3(W, %)
The first cohomology H! (%, #)

In this section, we prove HY#,#) = {0} in the Theorem [3.2.1/ below. Recall from (@.48) that
Der %
H' W, W) =

4
that for the Witt algebra, all derivations are inner derivations.

= Out(#). Therefore, Theorem |3.2.1|gives a simple proof of the statement

Theorem 3.2.1. Thefirst algebraic cohomology of the Witt algebra# over a field K with char(K)=
0 and values in the adjoint module vanishes, i.e.

H' W, %) = {0}.

Proof. The proof follows in two steps, the first step concentrating on the non-zero degree co-
homology of the Witt algebra, the second step focusing on the degree zero cohomology.

Recall from that the condition for a 1-cochain y to be a 1-cocycle with values in the ad-
joint module is:

81y (x1,x2) = 0=y ([x1, %)) — [x1, W (x2) | — [w(x1), X2] ,
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with x1, X, € #. The condition for a 1-cocycle ¢ € H! (#,%#) to be a coboundary with values in
the adjoint module is given by (2.46):

Y(x) = (6op) () =—x-¢p=[¢,x],

with x € # and ¢ € CO, W) =W. As the values are taken in the adjoint module, we have
-=1,.].

We will start by analyzing H(1 &) (W, %) with d # 0 in order to exhibit the proof of Theorem@
on a concrete and simple example. The result shall be the following:

Hi, W, #)=10} for d#0 and H'W,%)=HgyW,¥).

1
Lety e HL, o W, W).

Let us perform a cohomological change v’ = w — §o¢ with the following 0-cochain ¢:

1 1
¢ =——yle) €W = Bod)(x) == [x,y(eo)] ,

which gives us:
1
Y'(xX) =y (x) - (Go) (x) =w(x) + 7 [w(eo), x] .

Hence,

, B 1 _ 1 B 1 B
v'(eo) = yleo) + [ (eo), e0] =y (eo) - 7 deg(y(en) y(eo) = y(eo) - — d y/(eo) =0.

We thus have | ¥/ (eg) =0 |.
Next, let us write down the cocycle condition for ¢’ on the doublet (x, ey) for x € #:

0=1y'(lx,e0)) =[x, (e0)] - [¥'(x),e0] & 0=1v'(—deg(x)x) + deg(y'(x)y' (x)
=0
< 0=—deg(x)y'(x) + (deg(x) +d)y'(x) & 0=d v'(x).

As d # 0, we get ¥/'(x) =0 Vx € #, meaning that v is a coboundary on #". We conclude that
the first cohomology of the Witt algebra reduces to the degree zero cohomology, in accordance
with Theorem[2.2.11
Next, we focus on the a priori non-trivial degree-zero cohomology H(IO) ', %). We will show
the following:
Hioy (W, W) = {0} .

Let ¥ be a degree zero 1-cocycle, i.e. we can write it as W (e;) = y;e; with suitable coefficients
v; € K. Consider the following 0-cochain ¢ = 1/ ey. The coboundary condition for ¢ gives:

God) (i) = [, ei] = iye;.

The cohomological change ¥’ = v — §o¢ leads to ¥ = 0. In the following, we will work with
a 1-cocycle normalized to v/ = 0, although we will drop the apostrophe in order to augment
readability.

The 1-cocycle condition for ¥ on the doublet (e;, ej) becomes:

0=y ([ei,e;]) - [enwle)] - [wlen e
©0=0-D(wisj-v;-vi).
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For j =1 and i = 0, we obtain from the 1-cocycle condition: ¢ = 0.

For j =1 and i < 0 decreasing, we obtain from the 1-cocycle condition: v; = y;.+; =0.

For j =1 and i > 1 increasing, we obtain from the 1-cocycle condition: ¥;;; = ¥; = w», where
the value of v, is unknown for the moment.

Next, taking j = 2 and for example i = 3, we obtain:

Ys—yY2—y3=0
SYr—Yr—yYr=0aswehavey; =y, Vi>1
S VY2 = 0.
All in all, we conclude |y; =0 Vie Z|
This concludes the proof of Theorem|3.2.1} O

The third cohomology H3 (%, #)

Theorem 3.2.2. The third algebraic cohomology of the Witt algebra % over a field K with char(K)=
0 and values in the adjoint module vanishes, i.e.

H3 (W, %) = {0}.

Due to Theorem|2.2.1} we already know that the non-zero degree cohomology of the Witt al-
gebra is zero. However, for reasons of completeness, we will prove this result again for the third
cohomology, since the proof is short and simple. The proof is an application of the proof of
Theorem[2.2.1]to the particular case of the third cohomology with values in the adjoint module.
Thus, we proceed in two steps, the first step concentrating on the non-zero degree cohomology
of the Witt algebra, the second step focusing on the degree zero part.

Recall from that the condition for a 3-cochain y to be a 3-cocycle with values in the ad-
joint module is given by:

(O3y)(x1, X2, X3, X4)
=y ([x1, X2], X3, X4) — W ([X1, X3], X2, Xa) + W ([X1, X4], X2, X3)
+ ([x2, x3], X1, Xa) — W ([X2, X4], X1, X3) + V¥ ([X3, Xa], X1, X2)
— [x1, W (x2, x3, x4) | + [ X2, W (X1, X3, %) | — [ X3, W (201, X2, Xa) | + [ X2, W (31, X2, X3) | =0,
with X1,X2,X3,X4 € W .

The condition for a 3-cocycle ¢ € H3(#,#) to be a coboundary with values in the adjoint mod-
ule is given by (2.69):

W (x1, X2, Xx3) = (02¢) (X1, X2, X3) = ([X1, X2], X3) + P ([x2, X3], X1) + P ([x3, X1], X2)
— [x1,p(x2, x3) | + %2, p(x1, x3) | — [ %3, P21, x2) |,

where x1, X, X3 € # and ¢p € C2(W, #).
We start by showing the following,
HY, (W, W)={0} for d#0 and HW,#)=Hy,W ,W). (3.48)
3
Lety € H( 1£0)
2-cochain ¢:

(W, #). Let us perform a cohomological change ¥’ = ¥ — §,¢ with the following

1
(P(xly x2) = _EW(xl) X2, eO) »
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which gives us, taking into account that ¢ (e, -) = ¢ (-, ep) = 0:

W' (x1, x2,€0) = W (X1, X2, €0) — (62¢p) (X1, X2, €0)
=¥ (x1, X2, e0) — P ([x1, X2], €9) —¢p ([x2, eo], x1) — P ([eo, X1], X2)
=0
+[x1,P(x2, €0)] — [x2,p(x1, €9)] + [eo,(,b(xl,xz)]
=0 =0
= (1, X2, €9) + deg(x2) Pp(x2, x1) —deg(x1)p(x1, x2) + (deg(x) + deg(xz) + d) p(x1, x2)
=— (X1, %2)

=—d ¢(x1,x2) +d Pp(x1,x2) =0.

We thus have | ¢/ (x1, X2, e9) = 0|. Next, let us write down the cocycle condition for ¥ on the
quadruplet (x1, x2, x3, €9) of homogeneous elements:

(63¥)(x1, X2, x3,€0) =0

=3 }V,([XI;XZ] ,x3,€oz—}V’([x1,x3] ,x2,902+wl([x1,€0],xz,xs*)

-0 =0
+}V' ([x2, x3], x1, 901_1#/ ([x2, €0, x1, x3) + ¥ ([x3, €0l , X1, X2)
-0
— [x1,% (x2, X3, €0)] + [x2, W' (x1, X3, €0)] — [x3, W' (1, X2, €0)] + [eoﬂ,l/'(xb X2, x3)] =0
=0 =0 =0

© —deg(x1)y(x1, X2, x3) +deg(x2) (x2, X1, X3) —deg(x3) ¥(x3, X1, X2)
S——— ~——
==y (x1,X2,X3) =y(x1,X2,X3)
+ (deg(x1) + deg(x) + deg(x3) + d) w(x1, x2,x3) =0

< dy(x, x2,x3) =0 Y(x,x2,x3) =0asd#0.

We conclude that the third cohomology of the Witt algebra reduces to the degree zero coho-
mology, in agreement with the result of Theorem[2.2.1]

Next, we focus on the hard part of the proof, which aims to prove the following,
HYy (W, %) = {0} . (3.49)

Clearly, the results (3.49) and (3:48) prove Theorem[3.2.2] The proof of is accomplished in
six steps and is similar to the proof performed for H%O) (#,%) in [105,[106], albeit the proof here
is quite a bit more complicated.

Let y be a degree zero 3-cocycle, i.e. we can write it as ¥(e;, ej, ex) = ¥, j e+ j+k With suitable
coefficients v; ;. € K. We say that ... is of level | € Z if one of its indices is equal to [, i.e.
V... =1..; or some permutation thereof.

Consequently, five steps of the proof correspond to the analysis of the levels plus one, minus
one, zero, plus two and minus two. The final step consists in the analysis of generic levels, which
is obtained by induction. In each step, there are always three cases to consider depending on
the signs of the indices. One of the three indices corresponds to the level and is fixed. In that
case, the three cases to consider correspond to both remaining indices being negative, both
being positive, or one being negative and one being positive. It does not matter which of the
indices are chosen to be positive or negative, nor does it matter which one of the three indices
is chosen to be fixed, because of the alternating property of the cochains. In the following, we
provide a brief and superficial summary of the proof:
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* Level plus one / minus one: There is a cohomological change y' = ¢ —382¢, ¢ € C?O) W, W)
which allows to normalize to zero either the coefficients of level plus one or the coeffi-
cients of level minus one, depending on the signs of the two remaining indices. More
precisely, we normalize ¢’ to y/;, j—1 =0if i and j are both positive and v jo =0else.

The aim is to use the coboundary condition to produce recurrence relations which pro-

vide a consistent definition of ¢, i.e. of all the ¢b; ; V i, j € Z. Each degree of freedom given

by some ¢.. should be used to cancel some coefficient of the form v..; or .. _;. In the
case where both indices of ¢; ; have the same sign, the definition of the ¢; ;’s can be ob-
tained in a straightforward manner from the recurrence relations. In the case where the
two indices are of opposite sign, poles occur in the recurrence relations, and the defini-

tion of the ¢; ;’s has to be obtained in a somewhat roundabout manner.

* Level zero: For a cocycle ¥ normalized as described in the previous bullet point, the co-
cycle conditions imply y; jo =0V i, j€ Z.
The cocycle conditions provide recurrence relations which allow to deduce the result im-
mediately for i and j of the same sign. For i and j of different signs, the proof is an (al-
most) straightforward generalization of the proof of H*(#, #') gy = {0} given in [105,106].

* Level minus one / plus one: The cocycle conditions imply y; j; = 0 if i and j are both
positive and vy ;-1 = 0 else. Together with the result of the first bullet point, we have
Vij1=Vij-1= ov i,j e’.

This step is the simplest one of the entire proof. The cocycle conditions provide again
recurrence relations which allow to deduce the results directly.

* Levels plus two and minus two / Generic Level k: The cocycle conditions imply v/ j,—» =
Oandy; 2 =0V i,j€Z. Induction on k subsequently implies y; jx =0V i, j, k€ Z.
For both indices i and j negative, the first step consists in proving that level minus two is
zero, i.e. ¥, j—» = 0. Induction on the third index allows to conclude that the coefficients
Wi,k are zero for all negative indices i, j, k < 0. These results can be obtained directly
from the recurrence relations given by the cocycle conditions.
In the case of one positive and one negative index, the first step consists in proving that
both levels plus two and minus two are zero, ¥; j» = ¥;, j -2 = 0. This has to be done by
using induction on either i or j depending on the level under consideration. Note that
in the proof of H2(#,# ) = {0} in [105} [106], the vanishing of the levels plus two and
minus two could be proved directly without using induction. Obviously, the number of
times induction has to be used increases with the number of indices. Due to poles and
zeros in the recurrence relations, the proof again follows a somewhat roundabout way.
The second and final step consists in using induction on the third index in order to prove
¥i,jx = 0 for mixed indices, i.e. two indices positive and one index negative or two indices
negative and one index positive.
The final case with both indices i and j positive starts with the proof that level plus two
is zero, i.e. ¥; j» = 0. Induction on the third index allows to conclude that the coefficients
Vi, jx are zero for all positive indices i, j,k = 0. These results follow directly from the
recurrence relations.

We now come to the detailed proof. Let us write down the coboundary and cocycle conditions
for later use. If ¢ is a degree zero 2-cochain, i.e. ¢p(e;, e;) = ¢;,je; j, the coboundary condition
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for v on the triplet (e;, e, ex) becomes:

Vijk=620)ijk == DPirjx+ k= jPrrji+(@—K)Pii,
—(j+k—l')([)jyk+(i+k—j)([)i,k—(l'+j—k)gbiyj.

The cocycle condition for ¥ on the quadruplet (e;, e, e, e;) becomes:

O3)i 1 == DWirjr1— (K= DWirk i+ U= DWivjk
+ k= DWirjit—U=PWisjix+U=Wiik
—(Hk+1I-Dyjri+i+k+1-W;r
—(+j+l-Rwy;j++j+k—Dy;;jr=0.

In the proofs below, when we evaluate the cocycle and coboundary conditions on quadruplets
(ei,ej,ex, ep) and triplets (e;, e, ex) respectively, we will refer to these quadruplets and triplets
simply by the indices of the basis elements, and write them as (i, j, k, [) and (i, j, k), respectively.
The first step of the proof is achieved with a cohomological change:

Lemma 3.2.1. Every 3-cocyclew of degree zero is cohomologous to a degree zero 3-cocycley' with:

‘//,]1 0 Vi<0o,Vjez,
/ _ . .

and ww,_ =0 Vi j>0,
! _ .

and 1,(/1.’_1’2—0 VieZ,

and 1//’_4,2,_2 =0.

(3.50)

Proof. The aim is to define consistently a 2-cochain ¢ that leads to the results after the
cohomological change. Writing ¢ in terms of its coefficients, we start by defining ¢p; ;1 =0V i€ Z
and ¢_1» = 0. Hence, we will perform a cohomological change ¥’ = 1 — §2¢ with ¢ normalized
to ’ ¢pi1=0VieZ ‘ and’ ¢p-_12=0 ‘ This simplifies the notations considerably.

To increase the readability of the proof, we will separate the analysis depending on the signs of
the indices i, j. Let us start with the case i and j both being negative.

’Casel- I, j<0‘

Our aim is to show that we can find coefficients ¢; ; such that v/} ija =0 Writing down the
coboundary condition for (i, j, 1) and dropping the terms of the form ¢_;, we need:

Yij1=—(+j=1D¢; i+ @ -1Dpiv1,j—(—Djr1,i.
This is the case if we define ¢:

i—1 j—1 Vi j1
Giv1,j——————Pj+1,i —

i+j-1 i+j-1 i+j-1"

bi,j =

Starting with i =0, j = —1, j decreasing and using ¢ ; = 0, this recurrence relation defines in
a first step ¢, j for j < —1. In a second step, ¢_;,; with j < -2 can be obtained, and so on for
all i = -2 with j < i. It is sufficient to consider j < i due to the alternating character of the
cochains. Thus, this recurrence relation defines ¢; ; for i, j < 0. It follows that we can perform
a cohomological change such that 1//'1.' N 0vVij=<o.

’CaseZ: i<0and j>0
We will start by proving that we can obtain ¢, , =0V i <0 for a suitable choice of the coeffi-
cients ¢; ;.
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Let us consider the coboundary condition for (-3, 2, —1). Taking into account the normalization
¢2,-1 = 0 we obtain:

—2¢_42—-6¢p_3 _1=9_35 1.

The quantity ¢p_3 _; has been defined in the previous case i, j < 0. Thus, we obtain a definition
for ¢p_4». From there, we can obtain ¢; » i < —5 by using the coboundary condition for (i,2,-1)
and ¢, 1 =0, which gives us:

3+1i 2,-1 i—3 l—
bi- 12—_(/)12 Yiz2-1 ¢ (l)l+2 1 (3.51)

i+1 i+1

The last two terms have been defined in the previous case i, j < 0. Thus, this defines ¢; » i < -4
such that we have v/ =0V i =< -3. Next, let us consider the coboundary condition for
(—4,2,-2):

i,2,—1

W_42,-2=—2¢-62—8P_42—4po-4—4¢p2 2.

The coefficients ¢_4,—» and ¢o,—4 have been defined in the previous case i, j < 0. The coefficient
¢_62 has been defined in (3.51) for i < —4. Therefore, we obtain a definition for ¢, _,, which
annihilates v’ ,, ,,|v’,, ,=0|
As ¢p2,_» is now defined, we can come back to Equation (3.51), insert i = —2 and obtain a defini-
tion for ¢_3 », annihilating w—2,2,—1' Since ¢_; » = 0 due to our normalization, the only remain-
ing ¢p; 2 i <0 to define is ¢g 2.

Let us write down the coboundary condition for (0,2, —-1):

—(B¢o,2 +3Po,—1) =Wo2,-1
1
< o2 =—pho,-1— §W0,2,—1 -

This defines ¢ » and consequently, Wé,z,—l = 0. Since ¥’ 1,2,-1 = 0 due to the alternating prop-
erty, we obtain all in all thaty;, |, =0V i<0.

Next, let us prove that we can obtain 1,U’l., 1 =0V i<0V j>0. It suffices to write down the
coboundary condition for (i, j, 1) in the following way:

l-l-]—l i

-1 lVz,]l
(,bi,j+13 4)1,] j (»bl+1]

-1

Fixing i = 0, and starting with j = 2 (recall that ¢;; = 0 and that we have just defined all
¢i2 i <0), j increasing, we obtain ¢ ; V j > 2 and vy, = 0V j = 2. Similarly, fixing i = -1,
and starting with j = 2, j increasing, we obtain ¢_; ; V j > 2 and 1//'_1,].'1 =0V j=2. Con-
(1 =0V i<0, j>0. To-
gether with the result v/} = =0V i,j <0 obtained from the previous case with i, j <0, we get

‘wb1=OVisQVjez‘

tinuing along the same lines, we obtain ¢; ; V i <0, j > 0 and v

’Case?.: z'>0andj>0‘
Let us write down the coboundary condition for (i, j, —1):

Vi j—1=(+Dpi—1,j+ G- j—Dpi1—A+i+ )i
+(+ D1+ A +i—Pdj-1+(—DPivj-1.
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From there, we can define ¢ via recurrence as follows:

_ G+ G+ o Vi
(b”_(1+i+j)¢l_1]+(1+i+j)(/>l']_1 (1+i+))
(1+i+j)¢”_1+ (1+i+j)¢)]’_1+ (1+i+j)¢”f"1'

Note that ¢»__; have been defined in the previous case for i < 0, j > 0. Starting with i = 2,
J =3 and j increasing, we obtain in a first step ¢, j, V j = 3 and ‘V/z,j,—1 =0V j=3. Next,
fixing i = 3, starting with j =4 and j increasing, we obtain in a second step ¢3j, ¥V j = 4 and
(VA 170 V j = 4. Continuing similarly with i increasing, we finally obtain all ¢; ;, V¥ i, j > 0,

and 1//’1.,].,_1 =0V i, j>0| Note that we already have 1//’1,].’_1 =0V j>0dueto the previous case,

which yielded 1//’1.’].,1 =0V i=<0,V jeZ Combining the result w,i,j,—l =0V i, j>0with theresult

v, =0V i<0from the previous case i <0, j >0, we also obtain |y, ,=0VieZ| O

Lemma 3.2.2. Lety be a degree zero 3-cocycle such that:

¥ij1=0 Vi<0,VjezZ,
and v;j-1=0 Vi, j>0,
and Vi-1,2 =0 VieZ,

then
U/i,j,OZO Vi,jEZ. (3.52)

Proof. Again, we split the proof into the three cases depending on the signs of i and j.

’Casel: i,jsO‘

Let us write down the cocycle condition for (i, j,0,1), neglecting the terms of the form y; j,1 i, j <
0:

((+j—-Dvyijo—UG—-DYit1j0+(—D¥j+1,i0=0.

We can define the following recurrence relation for i and j decreasing:

(-1 (J-1

Vijo= (l-l-]——l) i+1,7,0 = (H-]——l)

Yi+1,i,0-

Fixing i = —1, starting with j = -2 and j decreasing, we obtain y_; jo =0V j < —2. Repeating
the same procedure with decreasing values for i and j < i, we obtain y; jo =0V i, j <0.
Case2:i<0,j>0

Let us write down the cocycle condition for (i,2,0,-1):

W a7 +3Wri0+ (=1 +DP20 -1 —2Wai=7— (1 +DW_14i20
+(=3+DVi0-1—Wiz=T+B+DV¥20— (—2+D)W24j0-1=0.

The slashed terms cancel each other, although they are zero anyway as we have y;», .1 =0V i €
Z. The term vy ;o is zero aswe have y; j; =0V i, j <0. The term ¢ 0 - is zero due to y;» 1 =
O0VieZ Theterms y;o -1 and ¥240,—1 (for i <—2) are zero because of Case 1, i.e. they are of
the form v; j0 =0V i, j < 0. Therefore, we are left with:
i+3
Yi-120= mU/i,Z,O- (3.53)
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Putting i = -3 in the equation above, this recurrence relation implies ¥ _420 = 0 and by recur-
sion ¥; 20 =0 Vi < —4. Next, consider the cocycle condition for (i,2,-2,0):

2Y o35+ W2 20+ 2Wa =3+ 2+ DY _2+i20
+(=4+DVWi 20— @G+ DVi20— (-2+DW24j-20=0.

The slashed terms cancel each other, the terms ¥; _» o and ¥24;, -2, (for i < —2) are zero because
of y;jo=0V1ij<0. Aswe have ;>0 = 0 Vi < —4, we can put for example i = —4 in the
equation above and obtain 3 5 ¢ = 0. Inserting this value in Equation with i = -2, we
obtain ¥_3, 0 = 0. Recall that we also have y_; 20 =0duetoy;_12, =0V i € Z. All in all, we
have g0V i=<O.
This result is needed to write down a well-defined recurrence relation. Writing down the cocycle
condition for (i, j,0,1) and neglecting the terms of the form v; ;, with i, j<0and i <0,j >0,
we obtain the following recurrence relation:
_it+j-1 i—-1

Vij+1,0 = jTU/i,j,o - jTIWHLj,O-
Fixing i = —1, one starts with j = 2 (since we already have y; j; =01i,j<0and y;20=0i<0),
which gives, with increasing j, ¥ ;0 = 0 j = 3. Continuing with fixing i = -2, starting again
with j = 2 and increasing j, we obtain ¢ _» j o = 0 j = 3. Doing this for all i < 0, we finally obtain
Vijo=0Vi<0, j>0.
Case3: i, >0‘
Writing down the cocycle condition for (i, j,0,—1), we obtain:

Yo7 A+ DYy o+t (=1+i— Wio-1+iWii=T

_%+ A+i+ Pyijo+ 0+ DY-1+]i0

+A+i=DYj0-1— jWhimT+ (=14 )Visjo,-1=0.

The slashed terms cancel each other, though they are zero anyway due to y; ;-1 =01,j > 0.
The terms v;0,-1, ¥j0,-1 and ¥4 j o1 are zero due to the previous case, ¥ jo=0i <0, j >0.
Thus, we obtain the following recurrence relation:

(1+1) 1+7)

Vi,jo= m‘/f—lﬂ',j,o - m

V_1+j,i,0-

Fixing i = 1, starting with j = 2, j increasing, we obtain y jo =0 j = 2. Fixing i = 2, starting
with j =3, we get ¢ j,0 = 0 j = 3. Continuing with increasing i and keeping j > i due to skew-
symmetry, we finally obtain y; j o =0V 7, j > 0.

Taking all three cases together, we obtain the announced result, ¥; jo =0V i, j € Z. O

Lemma 3.2.3. Lety be a degree zero 3-cocycle such that:

vij1=0 Vi<0,Vjez,
and v;j-1=0 Vi, j>0,
and Vi-1,2 =0 VieZ,
and w,’,jy():() Vi,j€Z,

then
Vij1=Vij-1=0 Vi jeZ.
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Proof. Again, the proofis split into the three cases depending on the signs of i, j.

Case 1: i,jsO‘

Writing down the cocycle condition for (i, j,1,—1) and neglectingy; j1 i, j <Oaswellasy; jo i, j <
0, we obtain:

—(=24+i+ Vi j1+ 1+ D144 j-1— (14 W14j,i,-1=0
(=1+1) (=1+])

SYij-1= mw1+i,j,—l - m

Yi+j,i-1-

Fixing i = —2 (since level zero ¥, j, -1 j < 0is already done and y_; ;-1 = 0), starting with j = -3
and j decreasing, we obtain ¢ _» ;1 =0 j < —3. Fixing i = -3, starting with j = -4 and j
decreasing, we get ¥_3 ;-1 = 0 j < —4. Continuing along the same lines, we obtain v; j 1 =
0i,j=<0.

Case2:i <0, j>0‘

Writing down the cocycle condition for (i, j,1,—1) and neglecting y; j1 i <0, j>0,vy;;1i,j<0
aswellasy; jo i <0, j >0, we obtain:

—(=2+i+ i j1+ 1+ DY -1 — (14 W14,i,-1=0
(=2+i+]) (=1+1)

< Yil+j-1= m%‘,j,—l - m

Yi+i,j,-1-

Fixing i = —2 (since level zero vy ;-1 j > 0 is already done and y_; j -1 = 0) and starting with
j=2(since y¥;» 1 =0i<0), increasing j, we obtain ¥ _5 ; -1 =0 j = 3. Fixing i = -3, starting
again with j = 2, j increasing, we get ¥_3 j -1 = 0 j = 3. Continuing with i decreasing, we get
¥ij-1=0i<0, j>0.

Case3: i, >0‘

Writing again down the cocycle condition for (i, j, 1, —1), this time neglecting the terms y; j -1 i, j >
Oandy; jo i, j >0, we obtain:

—A+DY-144,j1+ C+i+ DY+ A+ DY-14i1=0
1+19) 1+

< Y= mW—Hi,j,l - m

Y_1+j,i1-

Fixing i = 2 (since v, ;,1 = 0) and starting with j = 3, increasing j, we obtain y ;; =0 j = 3.
Increasing i and keeping j > i we finally obtain y; j; =0V i, j > 0.

Taking all three cases together, we have proven that y; j; =0V i,je Zandvy;; 1=0V i,j€
Z. O

Lemma 3.2.4. Lety be a degree zero 3-cocycle such that:
Vij1=Vij-1=Vijo=0 Vi,jeZ and y_42-,=0,

then
'Wi,j,k:O Vi jkeZ.

Proof. Again, the proofis split in the three cases depending on the signs of i and j.
’Casel: i,jsO‘

In a first step, we shall prove the following statement: |y; j =0V i,j<0|
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Writing down the cocycle condition for (i, j,—2,1) and neglecting the terms of level one v/; ;1
and level minus one ¥;,j -1, we obtain the following:

(=3+i+ Vi j—2— 1+ DWitij—2+ 1+ DW14ji-2=0
(-1+1) (—=1+j)

= W Ty VT o)

Yitj,i—2-

Fixing i = -3 (since the levels zero v; j 0 and minus one y; j _; are already done and ¥ _» j, > =
0), starting with j = —4 and decreasing j, we obtain 3 ; » =0 j < —4. Continuing along the
same lines with decreasing i and keeping j < i, we obtain y; ;> =0V i, j <0 as a first step.

In a second step, we shall prove|y; j x =0V i, j, k < 0| This can be done by induction. We know

the result is true for k = 0,—1,—2. Hence, we will assume it is true for some k < —2 and check
whether it remains true for k— 1. The cocycle condition for (i, j, k, —1) is given by, after omitting
terms of level minus one v;, j —1:

A+ DY 14i ket A+ i+ j+BOW; e+ A+ DY oa4jik— A+ Y14k, =0
& —(1+ k)W—Hk,i,j =0 Y_14k,,j=0as k<-2.

The terms ¥_14; j x, Vi jx and ¥_1, ; x are zero since they are of level k and thus zero by in-
duction hypothesis. It follows ¥; j x =0V i, j,k<0.

’Casez: 1<0, j>0‘

In a first step, we shall prove the following two statements for levels minus two and plus two:
Vi j—2=0Vi<0, j>0|aswellas|y;;>=0Vi<0, j>0|respectively.

The cocycle condition for (-3,2, -2, —1) reads, after dropping the terms of level one, minus one
and zero:

2Y 42 2—-2Y_32-2=0.

Since we have y_4 2 _» = 0, the equation above implies ¢_3 2 _» = 0. Next, let us write down the
cocycle condition for (-3, j,—2,1), which gives after dropping terms of level one and of level
minus one:

(=6+Dw_3j-2+(=1+)W14j-3-2=0
(=6+])

Cre i

< Y14j,-3,-2=
Starting with j = 2, we obtain y; 3> =0V j =3 since the starting point is zero: ¥ 3 > = 0.
Adding the level one, we obtain y; 3 »=0V j>O0.
Next, let us write down the cocycle condition for (i,3,2,—1) after dropping terms of level one
and level minus one:

—(A+DY-14i32+6+D)Y;32=0
< 1//—1+i32=(6—+i)1//i32- (3.54)
™ aQ+n"
This givesus for i = -2: w_332 = —4w_232.
Fori=-3:y_432=-3W_332=6y_23p.
Fori=—4:9_532=5W _432=—4Y_235.
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Now, let us write down the cocycle condition for (-3,3,2,—-2) and drop the terms of level one,
level minus one and level zero, as well as the terms of the form ¢ 3 > j > 0:

W_532+4W_332—6W32 2=0
S =4y _232— 160 _232—6W_23>=0
S Y-232=0.

To obtain the second line, the first two terms were simply replaced by their expressions com-
puted above. Putting i = -2 and ¥ _, 3> = 0 in the recurrence relation (3.54), we obtain ¥; 3, =
0V i = -3. Together with the levels minus one and zero, we obtain y;3, =0V i <0.

To prove y;j-» =0V i <0, j> 0, we will use induction on i. Indeed, we have proven that
Vi j—2=0V j>0,fori=0,-1,-2,-3 (recall that we have y/; _3 » =0 j > 0). Suppose the state-
ment holds true down to i + 1, i < —4, and let us see what happens for i. The cocycle condition
for (i, j,—2,1) gives, after dropping terms of level one and level minus one:

(=3+i+ VWi j—2— 1+ DY14ij,—2+( 1+ PWr4j,i-2=0
=0

(=3+i+])

< Yij+1,-2= C1+))

Vij-2- (3.55)
The term in the middle is zero due to the induction hypothesis.

This gives, for j =2: W32 = (=14 Wi 2.

For j=3: Wia-2 =Ly =500y, , .

For j=4: yi5-p= Ly, = CLH0OMD o

Next, we will insert these values into the cocycle condition for (i,3, -2, 2), after dropping terms
of level zero and level one:

(=3+DY3 22+Ws5; 2+ 2+ DPY_24i32+(=3+DY;_22
+(=1+DY;3 20— T+DYiz2—(=2+D)WP24i3-2—(=3+DW34;,22=0
(1+DE)A+1D)
@ p—
6
o (i-3)(i*-3i+8)y;s »=0.

Vig—2—(=3+DWi2 2+ (-1+1)(-1+Dy;2-2=0

The terms ¥3 22, ¥_2+; 32 and ¥; 32 are zero due to what was proved before, ¥;3, =0V i <0.
The terms 243 -2 and w3 22 are zero as a consequence of the induction hypothesis. In
the last line, we have (i —3) # 0, since i < —4, and also (i% — 3i + 8) # 0 since its discriminant is
negative. It follows y; » _» = 0. Reinserting this into (3.55) and taking into account that level one
is zero, we obtain that the induction holds true for i, and thus: y; ; > =0V i<0, j>0.

Next, we proceed similarly, but with induction on j, to prove ; j» =0V i <0, j > 0. We already
know that the statement holds true for j = 1,2,3. Let us suppose itis trueupto j—1, j =4,
and show that it remains true for j. Let us write down the cocycle condition for (i, j, 2, -1), after
dropping terms of level one and level minus one:

—(A+ DY 14ij2+B+i+ PYijo+ 1+ )P_14i2=0
=0
B+i+]))
1+1) v

© Yo1+ij2 = ij,2- (3.56)
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The third term is zero due to the induction hypothesis. From the recurrence relation above, we
obtain for i = -2: ¢ _3,j2 = —(1+ )Y 2,j2.

Fori=-3:9_4j2= ﬁU/—s,j,z = %W—z,]’,z

Fori=-4:9_5j,= %W—M,Z = —W#W—z,j,z-
Next, we insert these values into the cocycle condition for (-3, j, 2, —2) after dropping terms of

level zero and level minus one:

Y_s5j2— B+ W32 -2—(=7+)¥_3j-2+0+))Y_3j2

+ @B+ NY-3+j2-2+C+PDY-2+j-32—B+PNWj2-2—(-2+ j)Wa4j-3-2=0

- _(—1+])](1+])
6

© (j+3)8+3j+j)y_2j2=0.

Vo2~ A+ DA+ NW2,j2~ B+ NY_2j2=0

The terms ¢35 2, ¥_3,j,—2 and ¥2, j, _3,» are zero due to what was shown before in this proof,
¥j-3-2=0V j>0.The terms ¥ 3,2 > and ¥ _»,; 32 are zero due to the induction hypothe-
sis. In the last line, we have (j+3) # 0, since j = 4, and also (j2+3j+8) # 0 since its discriminant
is negative. It follows ¥_; j» = 0. Reinserting this into (3.56) and taking into account that level
minus one is zero, we obtain that the induction holds true for j, and thus: y; j, =0V i <0, j > 0.
Now that the terms of level two and of level minus two are zero for the case i <0, j > 0, we can
use induction on k to first prove | ¥; jx =0, V i <0, j >0,k = 0|and then

Wi,j,k:(): ViSO,j>0,kSO R
The result is true for k = 0,1,2. Let us assume the result is true for k, k = 2 and show that it
remains true for k+ 1. The cocycle condition for (i, j, k, 1) gives, after dropping terms of level
one,

(1+i+j+ v jr— 1+ DY je+ 1+ Pk — (C1+ Y144, =0
< (-1+ k)w1+k,i,j =0 Yitk,i,j = Oask=2.

The terms ¥; j k, W1+i,j,k and Y14 j, ik are zero because of the induction hypothesis (if 1 +i =1,
the term /14 j « is still zero because the level plus one is zero for all j, k € Z). It follows that the
result holds true for k + 1.

All the same, the result is true for k = 0,—1,—2. Let us assume it is true for k, k < —2, and show
that it holds true for k — 1. The cocycle condition for (i, j, k,—1) yields, after dropping terms of
level minus one,

—A+ DY gy jk+ A+i+j+ ROV e+ A+ DY _gtjie— A+ Y 144, =0
< (1+ k)'W—1+k,i,j =0 YV 1+ki,j = Oask<-2.

The terms ¥_1; jk, Vi jx and ¥_14 j ; x are zero because of the induction hypothesis (if -1+ j =

0, the term v _1j; x is still zero because the level zero vanishes for all i, k € Z). It follows that

the result holds true for k— 1. Thus, we have obtained the desired result for the case i <0, j > 0.
Case3:i>0,j>0

In a first step, we shall prove the following statement: |y; j» =0V i, j > 0| The cocycle condi-

tion for (i, j,2,—1) yields, after dropping the terms of level one and of level minus one:

—(A+DY14ij2+ B+i+ PDWij2+ 1+ NY-145i2=0
1+1) (I+))

@ o . - _ . . +—
Vii2= Gir p Vit g )

Yi-1+j,2-
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Fixing i = 3 and starting with j = 4, j ascending, we obtain 3 ;> =0 Vj > 4. Fixing i = 4 and
starting with j =5, j ascending, we get ¢4 j» = 0 V j = 5. Continuing with ascending i, keeping
j > i, wefinally obtainv; j» =0V i, j > 0.

Finally, we want to prove | y; jx =0V i, j >0,k =0/ This can be done with induction on k. In-

deed, the result is true for level zero, level one and level two, i.e. kK =0,1,2. Thus, let us assume
the result is true for k, k = 2 and show that it holds true for k + 1. The cocycle condition for
(i, j, k,1) gives, after dropping the terms of level one:

(1+i+j+Vijc— 1+ DU je+ 1+ DUk — 1+ P14k, =0
< (—1+ k)W1+k,i,j =0 Yitk,ij = Oask=2.
The terms ¥/; j x, ¥1+i,j,k and ¥ 1. i x are zero because of the induction hypothesis. It follows

that the statement holds true for k + 1.
Taking all three cases together, we find the announced result|y; jx =0V i,j, k€ Z O

Proof of the Theorem[3.2.2 Let us collect the statements of the four lemmata. Let ¢ be a degree-
zero 3-cocycle of # with values in #'. By Lemma[3.2.1|we can perform a cohomological change
such that we obtain a cohomologous degree-zero 3-cocycle with coefficients fulfilling (3.50).
Hence, the assumptions of Lemma[3.2.2]are satisfied and we obtain (3.52). Together with Lemma

3.2.3) the assumptions of Lemma3.2.4|are fulfilled and Lemma(3.2.4ishows | y; j x =0V i, j, k€ Z

which proves the result (3.49). The results (3.49) and (3.48) prove Theorem|3.2.2 O

3.2.2 Analysis of H!(7,%) and H3(7,7)

In this Section, we will compute the first and the third cohomology for the Virasoro algebra,
with values in the adjoint module. Of course, one could compute these directly as we did it for
the Witt algebra in the previous section. However, this would be lengthy and rather uninterest-
ing. A better way to proceed is to use the results for the Witt algebra we already have. In order
to achieve this, we will use a long exact sequence as in Theorem In fact, the short exact
sequence giving the central extension 7 of # by K can also be viewed as a short exact
sequence of 7-modules. Actually, 7" is a 7 -module as the adjoint module, and #  is a quotient
7 -module while K is the trivial 7-module, see the Remark [2.1.1] Therefore, this short exact
sequence of 7 -modules gives rise to a long exact sequence in cohomology, accordingly to The-

orem[2.2.7

0 — H°(V,K) — H°(¥,7) — H'(V, %)

J

<H1(V,K) —— H'(V,7) — H'(V,#)

J

H2(V,K) — H2(V,V) — H2(V, W)

J

J

<
<H3(7/,[K) — By, v) — B3, W)
<

H' TV K) —— -
(3.57)
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The relevant part for us is the part involving the first and the third cohomology,
. — W) —H VK —HT, ) —H T, W) — ..., (3.58)

and
. — W) —BVK) —BT,Y) — B, W) — ..., (3.59)

We will start with the first cohomology.

We already showed H % ,#) = {0}, and we also have H! (7, K) = {0}, see Section These
results will be used in the proof of HY(7,7) = {0} based on long exact sequences. This time we
will focus only on the degree zero cohomology accordingly to the result of Theorem[2.2.1]

Theorem 3.2.3. The first algebraic cohomology of the Virasoro algebra ¥V over a field K with
char(K)= 0 and values in the adjoint module vanishes, i.e.

H' (7, V) ={0}.

Proof. Since we already have HY(7,K) = {0} and also H! (#, #') = {0}, it suffices to prove HYV, W)=
HY(#,#) in order to conclude via (3.58). However, this is an immediate consequence from
Proposition In fact, taking k = 1 in Formula @.45), M = #, we obtain HO (%, ) =" W =0
since C(#) = 0. Thus, ker ¢y = 0 and since ¢_; = 0, we obtain H (¥, %) =H (W, %). O

In the following, we would like to present an alternative proof of H' (¥, %) = H' (W, %), us-
ing direct computations, as was done to prove H?(¥,%#) = H?(#,#') in [106]. Actually, we will
have similar considerations in the proof of Theorem in Section 3.3} but for general coho-
mological dimension. That proof will be easier to understand after reading through a similar
proof, but for cohomological dimension one, as the one given below.

Alternative proof. The proof consists of two steps. First, we will compare the cocycles of Z! (¥, #)
to the cocycles of Z Loy, #). In the second step, we will compare the coboundaries of BY(V, W)
to the ones of B1(W, ).

Let ¥ : ¥ — # be a cocycle of Z(¥,#). Our aim is to show that the restriction of this co-
cycle to #, i.e. w:=1ly : ¥ — W, is a cocycle of Z'(W,#). Let x1,x, € ¥. We will use the
same symbols to denote the projections 7 (x;),7(x2) € #'. Writing the Virasoro bracket [-, ]y
in terms of the Witt bracket [-,-] and the 2-cocycle a(-,-) giving the central extension, i.e.
[,-ly =[]y + a(-,-) - t, the cocycle condition for ¥ becomes:

0= (87 ) (X1, x2) = W ([x1, Xoly) — X1 - (%2) + X2 - P ()
< 0= (87 9) (1, x2) = ([x1, X2l9) + @(x1, %2) () = [x1, W (%) 1 + 262, P ()l
& 0= (87 9)(x1,x2) = 67 ) (x1, x2) + (X1, x2) F(2). (3.60)

Since we are considering degree-zero cocycles, the cocycle 1 evaluated on the central element
reads as follows:

(1) =c ey,
for suitable c € K. Next, let us insert this expression into the cocycle condition for (ey, f), which
yields:
(61 §)(er, 1) = (e 1) — e1 - (1) + L-Apter] = 0
o —ley, Py =—cler, e’ =cer =0

< c=0.
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Inserting 9/(¢) = 0 into (3.60), we obtain
0= (87 ) (x1,%2) = (67 W) (x1, %) (3.61)

This means that a cocycle { € Z1 (¥, #') corresponds to a cocycle v € Z (#,%#) when projected
to # . Moreover, a cocycle ¢ of Z'(#,%#) can also be lifted to a cocycle § := wovin ZL(V,#).
By definition, we thus have {/(#) = 0 and the relation holds true. Hence, a cocycle v €
ZYw, W) yields a cocycle ¥ € ZYV, %) and we have ZY(V, %)= ZY (W ,#) in a canonical way.

The second step of the proof consists in comparing the coboundaries of BY(¥,#) and those
of BL (W ,#). However, this is trivial. In fact, the coboundary condition applied on a 0-cochain
¢ € CO(¥, W) is the same as the one applied on a 0-cochain ¢ € CO(#, #), yielding in both cases:

Bop)(x) =—x-pwithpeW .

Since the central element of 7 acts trivially on #, we have B (¥, %) = B (%, #'). All in all, we
conclude H (7, %#) =H'(#,#) in a canonical way. O

Next, we will consider the third cohomology.

Theorem 3.2.4. The third algebraic cohomology of the Virasoro algebra V' over a field K with
char(K)= 0 and values in the adjoint module is one-dimensional, i.e.

dim H3(7,%) =1.

Proof. In [106], it was proven that H2(V, W)= H2(W,#) and also H2(# ,#) = 0. Consider For-
mula for k=3 and M =% . Since we already computed H! (%, #) = 0 we obtain img; =0,
and due to H2(#,#) = 0, ker ¢, = 0. Therefore, we obtain H3(¥, %) = H3(#,#'), which is zero
as we proved it in the previous section. Consequently, our long exact sequence reduces
to the short exact sequence,

0—HwW K —H,”)—0.

Since we already proved dim H3(#,K) = 1, we obtain by exactness and the Rank-Nullity Theo-
rem that dim H3(7,7) = 1. O

3.3 The differential d”"'

In this section, we aim to render the formula more explicit. To do this, we need a better
understanding of the differentials ¢, = df ! In fact, we will first show that the differentials Yp
correspond to the cup product of a p-cocycle with the extension class, i.e. with the class of the
Virasoro 2-cocycle (2.20). In a second step, we will then prove by explicit considerations that
@y is injective for low p, for the modules M = K and M = & A, Thus, we obtain a direct link
between the low-dimensional algebraic cohomology of the Witt and the Virasoro algebra for
these modules.

Let us recall the definition of the cup product as given in [60, [61].

Definition 3.3.1. Let £ be a Lie algebra and M, N be Z-modules. Let ¢ € CP(Z, M) and ¢ €
C9(&£, N) be p-cochains and g-cochains with values in M and N, respectively. The cup product
—:CP(&, M) x C1(¥L,N) — CP*9(%¥, P) with P = M ® N is given by, for X1, Xprg € L

(Y —P) (1, Xprg) i= 3 (1) Oylxg,... x5,) @ Py, ..., Xg,), (3.62)
S
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where the sum goes over all the ordered subsets S = (sy,...sp) of the set (1,2,...,p + g), and
T = (#,..., tq) is the ordered complement of S. The quantity (1) denotes the sign of the
permutation (si,...Sp, f1,..., [g), and can be defined as follows: For each 1 < j < g, denoting
by S(j) the number of indices i for which s; is bigger than ¢;, we define v(S) := ijl S(j). The
pairing® : M x N — P, (m,n) — m®nsatisfiesx-(men)=(x-m)®@n+m® (x-n).

One can show [60, 61] that 6 (y — ¢) = (6w) — ¢+ (-1)Py — (6¢), and that the cup product
can be lifted to the level of cohomology, yielding a pairing —: H? (¥, M) x HY(¥%,N) —
HP*9(%,P)with P=M® N.

3.3.1 Differential and cup product

In this section, we want to prove that the differential df 1 is given by [a] —, where « is the Vira-
soro 2-cocycle. This result can be found in [61], Theorem 8. The Theorem below can then
be deduced immediately from and Theorem 8 in [61]. This was communicated to the au-
thor by Wagemann [130]. Still, we provide a direct proof of Theorembelow. Subsequently,
the Theorem Formula and a Theorem by André [7] introduced below immediately
imply d?' = [a] —.

Consider the following abelian Lie algebra extension,

0—bh—g—1—0, (3.63)

with a non-trivial extension class [a] € H2([,h). Let M be a g-module. Let Ef’q =HP(,H9(h, M))
be the second page of the associated Hochschild-Serre spectral sequence, with the differential
dé“) L EV — EY *24-1 The differential dé“) can be written as,

di® =d\” + M), (3.64)

forall p, g, where [a] € H2(I, h) is the extension class and dz(o) is the differential in the case of the
trivial extension, A(0) = 0. In fact, the Hochschild-Serre spectral sequence associated to
has the same structure in the case of the trivial extension and the extension [a]. In particular,
the differentials dé“) and déo) start and end for all p, g, at the same spaces Ef "7 and Eg’ t2q-1

respectively. The difference dé“) — déo) thus gives a map depending on [a], denoted by A(a).

)

Theorem [André] 3.3.1. Consider an abelian Lie algebra extension as in (3.63), with differentials
of the associated Hochschild-Serre spectral sequence as in (3.64). Then the map A (for all p, q) in
(3.64)

H2 (1, b) ~ Hom (HP (1, H (h, M)), HP (L, H ™} (h, M) ,
gives a homomorphism A(a) corresponding to [a] —, where — is the cup product (3.62).

©._ O.p1;
p =4

We see that we can obtain d; ol — by proving that ¢ is zero for all p.

Let us denote by 7' the trivial central extension of # by KK,
0— K7 2w —so0.

We shall prove that HYv', M) = H*(w', M)  H* L (w7, M). By comparing this result to Formula
(3.45) and replacing ¥ by 7/, ¢, by (pg)), we conclude immediately that (pg)) =0forall p.

Since 7' is the trivial central extension, we have 7’ = K @ # on the level of Lie algebras. In
the following, we analyze how 7’ can be split into direct sums on the level of cohomology with
coefficients in a # -module M.
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Theorem 3.3.2. Let 7’ be the trivial central extension of the Witt algebra by the trivial base field
<. Then the following holds,

v M) =H*w , Mye H (', M),
where M is a W -module and hence also a V' -module.

Proof. Let us consider general k-cocycles of H*(7/, M). We denote by vi,, homogeneous ele-
ments of 7/, by wq, homogeneous elements of #/, and 1 is the generator of K. We will use the
same symbols w, to denote elements so(w,) = (0, w,) of # seen as elements of 7', but we use
t =1i(1) = (1,0) to denote the generator 1 of [ seen as element of 7.

Because 7' =K @ # as Lie algebras, k-cochains y of C*(¥’, M) can be decomposed as:

Y(y,..., V) =y (L, w),..., (1, wg)

k .
ZW(WI,..., wk) + Z(_l)k_lW(wly---y wiw-') Wk, t)
i=1
+ }: (—1f+j+HyUUb.”,dq”.”lbp.“,u%,t,t)
1<i<j<k :’()"
+e+ylt,..., 1),
——

=0
where the hat denotes omitted entries. Due to the alternating property of the cochains, and

since we consider a one-dimensional central extension with only one generator ¢, only two
terms remain in the decomposition,

k .
Y., V) =, w) + Y (D (L W w, D). (3.65)
— =1 h g

=:A :‘:rB

Defining an element ¥ (w1, ..., wi_1, t) of C*(¥', M) as an element of C*~1(#, M) by the follow-
ing, v(wy,...,wk_1,t) =: y(w,..., wi-1), with appropriate signs when ¢ is in other positions,
we obtain CK(¥', M) = C* (W', M) ® CK~1 (%, M) on the level of cochains. Next, we need to check
whether this isomorphism holds on the cohomological level.

We will first concentrate on the decomposition on the level of cocycles, then on the level of
coboundaries. The first step consists in showing that if v is a cocycle in Z¥(¥’, M), then the
restriction |4 will be a cocycle in Z ko , M), whereas the restriction w|p will be a cocycle in
Z¥=1(w',M). Conversely, we need to show that if ¢, and , are cocycles in Z*(#, M) and
Z=Yw M, respectively, then they can be lifted to cocycles of Z key' M). In a second step,
the same reasoning has to be done for coboundaries.

Zkv' Mmyzz5w , My 25K o, M)

Zkv' M) — Zk(w , M) |We want to show that every cocycle v of Zkv' M) yields a cocycle ¥| 4
in Z*X(w , M) when restricted to A. The cocycle condition in Z k| ,(¥', M) reads,

ritl R .
(6k'll/)(w1,...Wk+1): Z (_1)l+]+ W([wirwj]]/l)wly---ywir'-')wjy--')wk+l)
l<i<j<k+1
k+1 .
+ ) (D' wi-w(wn,..., wi,..., Wie1) =0.
i=1
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However, this corresponds exactly to the cocycle condition in Z*(#,M). In fact, since 7' =
K@ # as Lie algebras, we have [w;, w;],, = [w;, wj],,, meaning we do not have the additional
term a(w;, w;) t that we obtain for non-trivial extensions a # 0. The action terms are also the
same, see the Remark[2.1.1]

ZkW', M) — Z*w, M) |Let y, be a cocycle in Z*(#, M). We want to define a lift /; such that

1 is a cocycle in Z¥(¥/, M). We define the lift in the following canonical way, 9/ := ¥, o, hence
we obtain by definition ¥/ (wy,..., wr_1, t) = 0. The cocycle condition in Z*' M) reads,

) sl R R
G W, Vi )= Y. (D™ 1,//1([1/;.,v}]w,v'l,...,U’i,...,v’j,...,v;ﬁl)
1<i<j<k+1
k+1 .
oA / - 1
+Z(—1)’ Vi (U, Vi, Vi)
i=1
[+j+1 5 A -
= Z (—1)l+]+ Qpl([wi;wj]ynwl:---rwi’---’wj»---’wk+l)
1<i<j<k+1
k+1 .
+ ) D' wi g (w, .., Wy, Wi
i=1
+Y Pty )+ ) () + ) ., D)
=0 0 0

= 0ry1)(wy,... Wrs1).

To obtain the last line, we use the definition ¢/, := y; om as well as [w;, w;],, = [w;, w;],,.
Moreover, the three sums represented symbolically are zero because 7" is a central extension,
because M is a trivial K-module (see Remark, and because 1/1(..., t) = 0 by definition of
the lift, respectively.

As we have (§;y1) (w1, ... Wi+1) = 0, we obtain (6x91) (v}, ... U;C+1) = 0, hence every cocycle in
Zkw , M) gives rise to a cocycle in Zkv' M.

Zkv' My — Z¥-1 (', M) |We want to prove that if y is a cocycle of Z*', M), then the restric-
tion | yields a cocycle of Z¥~1(#/, M). Defining the element v (w1, ..., wk_1, t) of C*|z(¥', M)
as an element 1 of CkYmw, M) by ¥ (wy, ..., wk-1) := w(wy,..., wWi_1, t), the cocycle condition
in ZK|5(¥', M) becomes,

Gr)wr,...we, )= Y. DRy (wy, gy, w0y, wE)
l=i<k+1 ‘jf)—’

+ (DM ey (.., Wy, W)

=0

i+j+1 A A
+ Y Dy (wh,wily, wr . Wi, W, W D)
1<i<j<k

+ (_1)l wi'w(wl’u-)wiw--)wk)t)

k
i=1

= 1) (wy,...wy).

The first two terms correspond to the entries j = k+1 and i = k + 1 of the sums. They are zero
because 7’ is a central extension and M is a trivial IK-module, respectively. The last line is ob-
tained by definition of ¢ and due to the fact that the extension is trivial, [w;, w j]y, =[w;, w j]W'
Since (6 y)(wy,...wy, 1) =0asy e Z*v' M), we obtain (O k1) (wy,... wg) =0, hence vy yields



86 CHAPTER 3. THE TRIVIAL AND THE ADJOINT MODULE

indeed a cocycle ¢ in Z*~ (%', M).

ZkW', M) — Z*1(w', M) | Let w, be a cocycle in Z¥~1(#, M). We are going to define a lift 7,
such that 1, is a cocycle in Z¥(¥’, M). We define the lift v, as follows, @, (w1, ..., wy) := 0 and
Wo(wy,..., Wr_1, ) :=w2(wy,..., wr_1) with appropriate signs when ¢ is in other positions. The
cocycle condition in Z key'. M) reads,

k+1
G (W), V) 2 Gria) Wi, wis) + Y Gka) W, g, £y Wi, W)
k+1 I+
:E6kw2)(w1""wk+lz+Z(_D - (6k1//2)(W1,..., wl;---,wk+1,t)
;E) =1
=Y ol tlyr,.. )+ )t Pal...)
\6_3 [ —
= =0
s k—1+1 [+ j+1
+ Z(—l) - Z (—1)l+]+ wZ([wi,wj]V,,wl,...,wl,...,wi,...,u?]-,...,wkH,t)
1<i<j<k+1ij;él
k+1 kel
+Z( 1) *1 Z ( ]-)l wi- WZ(wl) vwly---rwi)---rwk+l!t)
i=1,i#l
s k—1+1 i+j+1
= Z(_l) -1+ Y DTy (wi wily, wry e Wy Wi, Wiy, Wie1)
1<i<j<k+1ij;él
k+1 bl
+Z( ]-) *1 Z ( ]-)l wi- WZ(wly ywl)---)wi)---rwk+l)
i=1,i#l
k+1 bltl
=Y DT G v s Wy W)
=1

The first term in the second line is zero by definition of our lift, the first and second sums in
the third line are zero due to the fact that we consider a central extension and that M is a trivial
IK-module, respectively. Since (§x—112) = 0, we obtain (0;12) = 0. Hence the conclusion.
Altogether, we obtain Z*(¥', M) = Zkw', M) @ Z*~ (', M).

B*',M)= B*w',M)e B¥ (', M)
Next, we need to perform the same analysis on the level of the coboundaries. As it is similar to
the previous one, we will keep it short.

Bk, M) — B*(%', M) |We want to show that every coboundary v of B, M) yields a cobound-
ary w| 4 in B¥(#, M) when restricted to A. The coboundary condition in B¥| ,(¥, M) states that
v € B¥|4(¥', M) if there exists a k — 1-cochain ¢ € C¥~1| 4(7/, M) such that:

Y(wi,...wp) = Ok P)wr,...w) = Y, D d(wi wil,, wi, e Wi, W w)
l<i<j<k

k .
+Z(—l)l wi-p(wy,..., Ww;,..., W).
i=1

Since we have [ w;, w;|,, = [w;, wj],,, this corresponds exactly to the coboundary condition in
B, M.
B*(¥', M) — B*(W, M) | Let 1, be a coboundary in B¥(#, M), i.e. ¢, = §x_1¢; for some ¢p; €
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Ck=Y(w,M). We define a lift ¢, of ¢, from # to 7' in the following canonical way, ¢ := ¢po,
hence we obtain by definition c[)l(wl, ey Wi—2, 1) = 0. Thus, (/31 is a k—1-cochain from 7' to M.
Applying the coboundary operator to ¢, we thus obtain a coboundary §;_ ¢, € B¥(¥', M),

2 / / i+j+1 7 oo / - - /
(5k—1(yb1)(v1)"'vk): Z (_]-)l ] (pl([virvj]ylyvl)“-rv,ir---rv,jw--rvk)
l<i<j<k

k
+ (=D VP, Ve, 1))

i=1
(3.65) i+j+1 7 A "
- Z (_1)l 1 (pl([wi)wj]y/)wl)---)wi)---rwj)---)wk)
1l<i<j<k

k . .
+ 2 =D wipr(wi, e, Wiy, W)

i=1
bi([, tlyr,... t-pr(... hi(...,t
+Y i(l _(1)7 )+ </)_10( )+Z¢>1(_0 )

= (6k-1¢1)(1ﬂ1,... wk) = w1(wlr-" wk) .

Reading the development above backwards, we see that every coboundary v of BE(#, M) can
be seen as a coboundary of Bk’ M.

B*(¥', M) — B*~1(', M) | We want to show that if v is a coboundary of BX(¥’/, M), i.e. v =
Ok-1¢ for some ¢ € C*k=1(¥', M), then the restriction v|p yields a coboundary in BYw  M). As
before, we define an element ¢p(wy, ... wi_s, t) of Ck_1|3(7/’, M) as an element J) of Ck=2(w', M)
by ¢(wr, ... wi_s) := ¢(wn, ... Wir_s, t). A coboundary in Bk|g(V', M) is given by,

(5]6—1()[))(“}1)-" Wk-1, t) = Z (_1)i+k+l¢([wi’ t]V’) Wwy,... wi)---) wk—l)
——

1<i<k ~0

+(_1)kt'¢(w1y-~) wl')---ywk—l)

=0
i+j+1 ~
+ Z (=D (,b([wi,wj]y,,wl,...,wi,...,wj,...,wk_l,t)
lsi<j<k-1
k-1 .
+ Z(—l)l wi-Pp(wy,..., Wi,..., Wk-1, 1)
i=1

= (6x—2P) (wr,... wi_1).

Therefore, the coboundary ¥ = §_1¢ in B¥(¥’/, M) can be viewed as a coboundary (§x_»¢) in
Bty , M.

B*(¥', M) — B*=1(w', M) | Let w» be a coboundary in BX*"1(%, M), i.e. ¥» = 81_o¢, for some
¢ € CK2(', M). We want to lift this coboundary to a coboundary of B¥(7/, M). We define
the following lift of the cochain ¢, to a cochain ¢, of C¥~1 (7', M), ¢o(wr,... wk_1) := 0 and
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</32(w1, ceiWg—2, 1) := 2 (w1,... Wi—2). A coboundary in BX(¥', M) reads,

k
65 511wy, w) + Y. Gr1 G Wi, iy, £y W11, wi)  (3.66)

=1

Ok-192) (W), ... )

k
= @12 W, .w) + Y D G pmrd Wi,y iy w0

:0 =1
=Y ol gy, )+ - al..) (3.67)
=0 =0
k k-1 [+ j 2
+Z(—l) B Z (—l)l+]+1 (/)2([11),',Wj]y,,wl,...,bf}l,...,Lf/i,...,lf)j,...,wk,t)
=1 1<i<j<k,i,j#l

k k
+ Z(_l)k_l Z (_l)l Wi '(;bz(wlr---) wlr---» wi)---) Wk, t)
=1

i=1,i#l
k k-1 i+j+1
:Z(_l) B Z (_1)l+]+ (PZ([wirwj]V/ywly---ywl!'--ywir'-')wjy-~-!wk)
=1 l<i<j<k,i,j#l

k k
+ Z(_l)k_l Z (_l)l wi '(PZ(wl;---}wlr---}wi)---) wk)
=1 i=1,i#l

(D G roapa) Wi, Ty, wp). (3.68)

M=

~
I
—_

The computation above needs to be read backwards. Starting with the coboundary v», we use
¢ to define the cochain ¢, € C¥~1 (¥, M). Applying the coboundary operator to ¢,, evaluating
on k different combinations of k — 1 elements of k elements of #, and combining them as in
(3.68), we can do the computation backwards, adding zero terms (3.67), to finally obtain the
coboundary (§_,¢>) in BX(¥’, M) in (3.66). Hence, every coboundary in B¥~1(#, M) can be
interpreted as a coboundary of Bk’ M. O

Comparison of the result of Theorem to Formula (3.45) yields that the differential

déo)’p = <p§?) for the trivial central extension must be zero for all p. Consequently, we obtain

that the differential d; = ¢ for the non-trivial central extension 7 is given by the cup product
with the extension class [a].

Remark 3.3.1. The result of Theorem . as well as déo)’p 1 =0, is not only valid for the trivial
central extension of the Witt algebra # by the trivial module K. It is valid for any extension
0 — bh — g — ¢ — 0 of a Lie algebra ¢ by a Lie algebra § satisfying the following properties,

* the extension must be central,

¢ the extension must be trivial,

¢ the extension must be one-dimensional,

e M must be a trivial h-module.

See also Theorem 8 of [61].
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In the following two sections, the goal is to prove the injectivity of the differentials ¢, for low
p, for M =K and M = #*. Using (3.45), we thus obtain a canonical relation between H*(¥, M)
and H*(#', M) for the low-dimensional cohomology. The adjoint case for the Witt algebra M =
# is included in the analysis of M = Z*, corresponding to A = —1. The adjoint case for the
Virasoro algebra M =7 is not included. However, using the long exact sequence and the
results for M = K and M = %!, a relation between H*(7, %), H*(#,#) and H*(#,K) can be
found, just as we did in Section |3.2|in case of the third cohomology. The results will be used in
the next Chapter|4]

3.3.2 The trivial module

Although results are already known for the low-dimensional algebraic cohomology, we will
write down the proofs explicitly also for the known cases, in order to see how the complexity
of the proofs increases with the cohomological dimension. For example, although we already
know that H!(#,KK) = 0 or that every cocycle class of H?(#,K) and H3(#/,K) are multiples of
the cocycle classes of a in or of ¥ in (3.39), respectively, we still write down the cup prod-
uct with general degree-zero cocycle classes [y], to exhibit possible patterns in the proofs when
increasing the cohomological dimension. If patterns appear, the proofs could possibly be gen-
eralized to higher cohomological dimension. Since only the degree-zero cohomology is a a
priori non-trivial, we will stick to degree-zero cocycles, though.

The aim in this section is to prove the injectivity of ¢, = [a] — V p where [a] € H2(#,K) is the Vi-
rasoro 2-cocycle cohomology class, and ¢, applies to p-cocycles classes [w(p)] e HP(#',K). The
product [a] — [1//(”)] yields in accordance with Deﬁnition an element of HP*2(#, K ® K) =
HP2 (W K).

To show the injectivity of the ¢, we need to show the injectivity on the cohomological level, i.e.
ker ¢, = 0 up to coboundaries. Concretely, we need to prove,

(101 = [¥7]) (eiys i €3y €3y €1,) = [0] Vi, ipia € Z) 0y € [0

meaning that the kernel of ¢, has to be the zero-cocycle up to coboundaries. For reasons of
simplicity, we will work in the proofs with cohomological choices such that the right-hand side
on the left of the formula above is zero exactly. As we do not know the precise form of the co-
homological choice under question, we work with general elements of [a] and [yP]. A general
degree-zero cocycle in the cohomology class of the Virasoro 2-cocycle is of the form,

ales,ej) =% —pi)bisjo, (3.69)

where f € K. Actually, a generic degree-zero 1-coboundary with values in the trivial module is
of the form ¢ ([e;, e_;]) = —2ip(eg) := —Pi.

Theorem 3.3.3. For n =0,1,2,3,4, the following relation between the algebraic cohomology of
the Witt and the Virasoro algebra over a field K with char (K) = 0 and values in the trivial module
holds true:

H'7,K)=H'w,K), H(¥ K =HW,K),
H"(W,K)

Hn V,K — T o >
( ) H"2(W,K)

n=2,3,4.
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Proof. [n=0}: For n =0 in (8:45), we have im¢,_, = 0 and ker¢,_; = 0 since H2(#,KK) and
H~1(7,W) = 0 by definition.

: Let v be in H°(#,K). Recall that the 0-cochains are the elements of the module,
hence v is an element of K. The general form of the cup product (« — ) with ¢ € HO(#,K)
evaluated on the basis elements (e;, ej) has the following form:

(@—v)(ei,e)) = ale;, e))y = (i> — fi)Sisjop.

Choosing i+ j=0and i ¢ {0, i\/ﬁ}, we immediately obtain that (& — y)(e;,ej) =0Vi,je Zif
and only if ¢ = 0. Hence, ker¢y = 0 and ¢ is injective. Together with the fact that im¢_; =0
because H}(#,K) =0 by definition, we obtain the result for n = 1.

[n=2] Let v be a degree zero 1-cocycle of H! (#/,KK). Such a degree zero 1-cocycle can be
written as w(e;) = ¥;6; 0. The cup product of @ and v is of the form:

(@ —v)(ei,ej,er) = ale;,e;)y(er) —ale, ex)y(e;) +alej,er)y(e)
= (i® = Bi)8irjoWiOi0— (i° = PD)O sk oW 60+ (j° = B)OksjoWibio-

Choosing i + j =0, i ¢ {0,++/B}, k = 0, we obtain o = 0. Hence y(e;) =0 Vi € Z and v is the
zero map. Thus, we obtain that (&« — y)(e;, ej,ex) =0 Vi, j, k € Z if and only if y is the zero map,
meaning that ker¢; = 0 and ¢ is injective. Together with the previous result that ¢ is injective,
we obtain the result for n = 2.

: Let ¥ be a degree zero 2-cocycle of H?(#,KK). In terms of coefficients, 1 can be
written as y(ej, e;) := Y 00
The general form of the cup product (a — ) with y € H?(#/,K) evaluated on the basis elements
(ei, e}, ek, ep) has the following form:

(@ —v)(ei ej, ex, er) = ale;, e))y(er, e)) — ale;, e)y(ej, e + ale;, e)yle;, ex)
+alej, e)y(e;, e —alej,e)yle;, er) + alex,e)yle;ej). (3.70)
In order to compute the kernel of this cup product, we have to solve in ¢ the equation (a¢ —
y)(ej,ej ex,e) =0V i,j,k,1€Z Wewant to show that this equation implies y(e;,e;) =0V i, j €

Zory(ej,ej) =b2¢p(e;,ej) V i, j € Z for some 2-cochain ¢. Inserting our notation and the defi-
nition (3.69) for the Virasoro 2-cocycle, we obtain:

(a—1vy)(ei,ej, e, e) =0
& (i® = Bi)0i+ 00 ks 1,0W k1 — @ = Bi)Si+k00 j1,0W 1 + (% = BD)Bi11,00 j+koW ) k
+ (2= BB j+k00isr,0Wii— (52 = BN 41,00 ik 0Wik + (k° = BK)Okr1,00i4 0¥, = 0.

The cup product (@ — y) evaluated on (e_y_1, ex+1, €k, e—x) yields:

(@ —vy)(e_k_1,er+1,€x, e-k) =0

& (K = W 1 prix+ (1=K + BA+ Wi £ =0

(-1-k)3+BA+k)
K3 - Bk

SY_1-k1+k = V_kk- (3.71)
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Clearly, there are poles appearing in the recurrence relation (3.71). Poles appear for k = 0 and
k = +,/B. Due to the poles, the values y_;; and Vo1 B+ VB have to be analyzed separately.

Of course, f € K is not necessarily integer, nor is /. If it is not integer, no poles appear and the
analysis below related to the poles k = +/f can be skipped.
We will start with proving ¥_, VBB = 0. Moreover, we suppose  # 0 as the case of the

pole k = 0 will by analyzed later. First of all, we need to express the coefficients v_, B.2+\/B
andy_,_ VB34 in terms of y_, _ B4/ Due to antisymmetry, we can work either with k
positive or k negative. In the following, we will work with k positive. Using (3.71), we find,

~ _ (-2- \/_)3+,6(2+\/_)
R N AP - P+ VIV

~ . (-3- \/_)3+,6(3+\/_)
k_2+\/g' 3-VBa+VB 2+/B)3B-B2+/B) Vo2-\/pa+ /B

(-3- \/_)3+ﬁ(3+\/_)
1++/B)3- /3(1+\/_) VIV

No poles appear in the denominators above. Let us insert these values into the cup product for

(€1 /prere @ s/ ¢34 /5 Which yields:

(@—y)e_,_ /pe, 5es Jpes =0 (3.72)
(R ) E N (S TR PRV
@((—3—\/5)3+ﬁ(3+\/g))w_1_ ,6,1+\/,1_3:0'

There are no zeros of (-3—+/f)3+B(3++/B). Thus, we obtain the desired result Y RaeB
0.

Next, we consider the value ¥ _; 1, which is problematic due to the pole at k = 0 in (3.71). The
analysis of this pole also includes the case v/ = 0. We proceed similarly to the reasoning above.
The reasoning below is valid for § ¢ {1,4,9}. The values f € {1,4,9} will be analyzed separately
later. First, we express the coefficients ¥_, » and y_3 3 in terms of w_; ;, by using (3.71),

—-8+2
k=1: V-22= 7T ,Bﬁw_l'l B#1,
. _—27+3ﬁ _27—3,6
k=2: V-33= g5 V- 2p V22T 05 yo11 Be{l 4l

Subsequently, we insert these into the cup product evaluated on (e, e_1, e3, e_3),

(a—vy)(e,e-1,e3,e-3) =0
< (1- ﬁ)l[/g,_g + (27 — 3ﬁ)1//_1,1 =0 -2(027- 3ﬁ)’(p_1'1 =0

The zero of 27 - 36 is f = 9. Therefore, we obtain ¥ _;; = 0 except for § € {1,4,9}.

We are now able to conclude for ¢ {1,4,9}. Inserting w_;,; = 0 into (3.71) with k = 1, in-
creasing k until k = /B -1, we obtain y_; ; =0 for 0 < i < /. At k = \/B, there is a pole in the
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recurrence relation (3.71). However, we already proved at the beginning of the reasoning for the
case n = 3 that w—l—\/ﬁ,u\/ﬁ = 0. Thus, inserting w—l—\/ﬁ,u\/ﬁ =0 into 3.71) with k =1+ /B,
increasing k, we obtainy_; ; =0V i€ Z, for f ¢ {1,4,9}.

Letus come backto § € {1,4,9}. For these values, the crucial point consists in proving ¢_; 1 =
0. Let us consider = 1. For § = 1, the conclusion is immediate. In fact, k =1 in yields
(1-PB)y_22=-8+2Pw_;,; and hence y_;; =0 for = 1. Note that for § = 1, the poles in
occur for k = +1. By the reasoning we did before for general poles of the form k = +/f, we also
obtain y_»» = 0. Using induction in as before, we obtainy_; ; =0V i € Zalso for f=1.
Next, consider § = 4. From for k = 1, we immediately obtain y_, , = 0 for § = 4. Starting
with k =2 in (3.71), using ¥_, » = 0 and induction, we obtain with the same reasoning as before,
w_;; =0V i€ Zexcept for y_; ;. However, recall that v is a degree-zero 2-cocycle of H>(#,K),
hence it needs to fulfill the cocycle condition, which reads in terms of coefficients, evaluated on
(e, ej,ex),

(J=DWirjk— (k= DWiskj+ (k= PDWryji=0.

Consider the cocycle condition evaluated on (e_3, 2, e1),
SY_11—-4Y_22—¥3-3=0. (3.73)

Since y_»2 =w_33 =0, we also obtain w_; ; =0 and thus, y_; ; =0V i € Z.

It remains § = 9. The relation for k = 2 yields immediately y5 _3 = 0 for § = 9. Moreover,
for k = 1, the relation yields =8y _,, = 10y _;,; for f = 9. Comparing this to the result
from the cocycle condition in (3.73), we obtain ¥_; ; = 0. Using induction in as before,
we obtainy_; ; =0V i € Z also for f=9.

As we consider degree-zero cocycles, we obtain y(e;,e;) =0V i,j € Z. Thus, we have
(@ — vy)(ej,ej,ex,e) =0Vi,j k1 € Zif and only if y is the zero-map, and kerg, = 0. Next,
we consider the situation for 3-cocycles.

: Let 1 be a degree-zero 3-cocycle of H3(#,K), w(e;, ej,ex) =V jk0i+jrko- The cup
product evaluated on the basis elements (e;, e}, ey, ey, e,) yields:

(a—wy)(ej,ej, e e, en) =0

< ale;, ej)ylex, e em) —ale;, er)ylej, e, em) + ale;, e)w(ej, ek, en)
—ale;, em)y(ej, e, e)) +alej, ex)yle;, e, en) —alej,e)y(e;, ek, em)
+alej,en)y(e;, e, e) +alex,e)yle;, ej,en) — alex, en)y(e;, ej, e
+ale;, en)y(e;,ej,er) =0.

Inserting our notation and the definition of the Virasoro 2-cocycle (3.69), we obtain:

(a—1vy)(ej, ej, e e;en) =0

& — (1% = Bi) 60,i4mbo, j+k+1Wj 1 + (i = Bi) 80,i+100, j ks mW j e, — (i° = Bi) 80,i+k80, j-+ 1+mW j,1,m
+ (i3 - Bi) 60,i+j00k+1+mWk,1,m+ (]3 - BJ) 80,j+m00,i+k+1Wi k1 — (]3 - BJ) 80,j+100,i+k+mWi k,m
+ (7%= Bi)60,j+k00,i+1+mWit,m = (K° = Bk) 80, kemBo,iv js1Wi 1 + (k° = Bk) 80 k+180,i4 j+mWi,jm
+ (l3 - ﬁl) 50,l+m50,i+j+k1y”i,j,k =0.
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Next, consider the cup product evaluated on (e;, e_;, ek, e, e—x—;). We will assume i # +1, i # +k
and i # +(k + 1), because for these values the cup product is zero anyway due to its alternating
property. In that case, only four terms remain:

(a—w)(e; e—j,er,ee_r-1)=0, iZxlLi#Axki#A+(k+])
< (= Bi) Wi p—k-1+ (K° = Bk) 8o, k—100,k+1Wi—i—k—1 (3.74)
— (K> = Bk) 80,-160,1Wi i + (I = Bl) 80,180,k Wi —ik = O.

Case 1: Letus choose k#0,[#0,k+[#0and i ¢ {0, + \/B}. In that case, we obtain:
Wk,1,—k-1 = 0 except for entries of the form wj . (3.75)
Case 2: In order to analyze the remaining entries, we consider k = 0 and [ # 0 in Equation (3.74):

(a—w)(ej,e-j ep ep,e-)) =0
& (—Pl+ Py o+ (—Pi+i)Wo;-1=0, i#+Li#0,l#0
Choosing furthermore / = i + 1, we obtain the following recurrence relation for i ¢ {0, —1}:
(a ~— u/)(el'! €_i,€0,€i+1, e—i—l) =0
G+1D3-BG+1)
i3—Bi

Comparing the expression (3.76) to (3.71), we see that they are the same. Moreover, consider
the cup product evaluated on (e_, VB C1e /B €0 €3 JFrCg \/3)’ which yields:

S Yo,—i-1,i+1 = — Yo,—i,i- (3.76)

(@—y)le_,_ /e, /peres /5o /p=0

(B R M,
(N Pap—

Also this expression is exactly the same as in (3.72). Therefore, we can redo exactly the same
reasoning as before for the case n =3 toobtainy_; ;0 =0V i € Z, exceptfor f =4 and f=9.
For f =4 and =9, we can nevertheless already obtain w_; ;o =0V i € Z except for ¥_;,1 0 in
the case of f =4 and except for y_; 10, ¥-22,0 in the case of f = 4, by the same reasoning as
the one for the case n = 3. The annihilation of the values w_1,1,0, ¥_22,0 requires the cocycle
condition, which are different for H2(#/,K) and H3(#/,K), therefore we will treat these cases
explicitly. The cocycle condition of H W, K) expressed in terms of coefficients reads,

J=DWirjrt— (k= DWWk i+ U= DWigjk
k=D — U= PWisjir+ U=k
and yields, when evaluated on (e_3, 2, e1, €g),
SW_11,0—4W_220+3Y=331—V3-30+2Y2=31 — Ws=32=0.

The slashed terms cancel each other and are zero anyway due to Case 1. The remaining equa-
tion is exactly the same as in (3.73). The same reasoning as the one done for n = 3 allows to
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concludey_; ;o=0VicZ.

The results and y_; ;0 =0V i€ Zyield y(e;ej,er) =0V i,j,k €Z as we consider
degree zero 3-cocycles. Thus, we have (a — y)(e;, e}, ex, e, en) =0 Vi, j, k, I, m € Z if and only if
v is the zero-map, and ker ¢3 = 0. Together with the previous result that ¢, is also injective, we
obtain the statement for n = 4.

All in all, we proved Theorem O

Remark3.3.2. The author tried to go beyond cohomological dimension four. However, the com-
plexity of the analysis increased in such a manner that the methods used in the proof above are
insufficient to obtain the results. Although the complexity of the proofs does not seem to in-
crease with the cohomological dimension as dramatically as when trying to compute H* (7, K)
directly, still there is no obvious pattern apparent, i.e. there is no straightforward generalization
of the proofs to higher dimension.

H3 (W, K)
H 7, K)
Since we have H! (#/,K) = {0}, we obtain H*(¥,K) = H*(#,KK) in a canonical way, corroborating
our previous result from Section|3.1

Remark 3.3.3. We see that in the case of the third cohomology, we have: H 7, K) =

HXW,K) _ H2(W,K)

VK K
dim H?(#,K) = 1, we obtain H?(¥,K) = {0}, meaning that the Virasoro algebra 7 admits no

non-trivial central extension. This was already computed explicitly in [106].

. Since

In the case of the second cohomology, we obtain H2(V,K) =

3.3.3 The general tensor densities modules

In this section, we perform the same analysis but with the %% modules instead of the triv-
ial module K. Thus, the aim in this section is to prove the injectivity of ¢, = a — Vp where
a € H2(#,K) is the Virasoro 2-cocycle, and ¢, applies to p-cocycles v'P e HP(W,F). The
product a — 1//(”) yields in accordance with Deﬁnition an element of HPF2(W ,K ® F1) =
HP*2(w,FM), as the tensor product is K @ F4 = F1,

Theorem 3.3.4. Forn=0,1,2,3, the following relations between the algebraic cohomology of the
Witt and the Virasoro algebra over a field K with char (K) = 0 and values in F* hold true:

H'v,sh=0'w,¥", HW,gH=H'W,F",
H"(W,F"

H” 7/,97’1 =,
( ) Hn—Z(W’g/l)

n=2,3, VAeC.

Proof. [n=0}: For n =0 in (845), we have im¢,_, = 0 and ker¢,,_; = 0, because by definition,
we have H?(#, " =0and H ' (#, ") = 0, respectively.
To prove the other results, we show the injectivity of @ — on the cohomological level.

[n=1} Let v be a degree zero 0-cocycle, i.e. v is of the form y = o f;}, where v € K and
f € 1. The cup product with the Virasoro 2-cocycle a yields,

(@—w)(ei,e)) = (5= B8+ jowofi.
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Choosing i + j = 0 and i ¢ {0,++/f}, we obtain that (i* — ,6i)6,-+j_01//ofo7L is zero if and only if
wo = 0. Hence, (@ — y)(e;,ej) =0 Vi, j € Zif and only if y is the zero map and thus kergo =0.
Together with the fact that im¢_; = 0 because H- (%, %) = 0, we obtain the result for n = 1.

: Let v be a degree zero 1-cocycle, i.e. y is of the form v (e;) = wiflﬂ, with ; e K. The
cup product (@ — ) is zero if and only if,
(a—wy)lej,ej,er) =0< ale;, ej)yler) —ale;, e )y(e)) +alej,e)yle;) =0
& (=i joyifit — (° = PDSikow i f] + (° = BNO jrrowif] = 0.
Let us choose i+ j=0and i ¢ {O,i\/ﬁ}, as well as k ¢ {—i,i}. Then we obtain immediately

v = 0. Different choices of i lead to v = 0 Yk € Z. Hence ¢, is injective as its kernel is zero,
and together with the previous result that ¢ is injective, we obtain the result for n = 2.

: Let y be a degree zero 2-cocycle, i.e. v is of the form y(e;, e;) = wl-,jfl.ﬁj, withy; ;€

K. The cup product with the Virasoro 2-cocycle a — v can be found in (3.70), and yields after
writing a and v in terms of their coefficients,

(a—1vy)(ei,ej,ex,e) =0

& i (i*=B) f1 1 00ir1wj k= i (i = B) 1y 00kt 1 + 1 (% = B) £ 100,i+ jWk1

=i (7%= B) flowinbo i+ (7= B) A wiibojsk + k(K = B) f jwijBoks1=0.  B77)
In the following, we will choose the indices i, j, k, ! in such a manner that only one of the Kro-
necker Deltas will be different from zero, then two, then three and so on.
Case 1: Let us choose the indices such that ;4 ; will be different from zero and all other Kro-
necker Deltas zero, i.e. we choose i+ j =0, k # +i, | # +i, and k+ [ # 0. Furthermore, we choose
i ¢{0,+ \/B}. Then we immediately obtain from the equation (3.77) above,

Yii1=0 Vk+1#0,

meaning all coefficients y ; are zero except those of the form vy _. The latter will be consid-
ered below.

Case 2: We will now choose the indices in such that two of the Kronecker Deltas will be
different from zero. We choose i + j =0, k+ [ =0, k # i in (3.77), which yields:

(@—y)(eie i epe_r) =0 (> =By _if+ (K - pOwi—ify =0, k#+i. (3.78)

Let us choose i = 1 in the equation above, and k ¢ {O,i\/ﬁ}. Then we immediately obtain
w1,-1 = 0. Next, we take i = —k—1 in (3.78), which is compatible with our assumptions and
yields,

(@ —vy)(e—k-1,ek+1, €k, e-) =0

& (= PR 1_p ek + (1 - B + UL+ Wi k) fi =0. (3.79)
This expression is exactly the same as (3.71). Moreover, the cup product evaluated on the basis
elements (9—1—\/3’ €1 /B C-3- /B %+ \//3) yields:

(@—y)e ) pe, /pe s /posyp =0

[ R Py

VB 85 =0

+
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This expression is the same as (3.72). We can thus do exactly the same reasoning as for n = 3 in
the case of the trivial module, see the proof of Theorem 3.3.3} to obtain y; _; =0 V i € Z except
for f€ 4,9}, v;_;=0ViezZ\{xl}forf=4,andy; _; =0V ieZ\{x1,+2} for f=9.

For B =4 and 8 = 9, we need to consider the fact that v is a cocycle of H>(#, %) and that it has
to satisfy the cocycle condition. The cocycle condition of H2(#, ") can be found in and
yields when evaluated on (e_3, e2, e1),

SY 11 =4y 22— VY33~ B =321+ (=2+2)yY 31— (-1+D)y_3.=0.

The underlined terms are of the form y; with k + [ # 0 and thus zero due to Case 1. The re-
maining equation is the same as in (3.73). By the same reasoning as the one performed in the
proof of Theorem3.3.3}, we obtainy; _.; =0V i€ Z.

Together with the coefficients analyzed in Case 1, we obtain that ker ¢, = 0, hence ¢ is in-
jective, and since ¢ is also injective, the result is shown for n = 3.

All in all, we proved Theorem 3.3.4



Chapter 4

General tensor densities modules

The analysis of the previous chapter focused on the trivial and the adjoint module. However,
these two modules are related to a larger, actually infinite family of modules, called the gen-
eral tensor densities modules #*%, A € C. As we already mentioned in Section the adjoint
module for the Witt algebra corresponds to the module % ~!. Hence, the proof presented for
Theorem is only an example of the family of proofs we will present in Section Nev-
ertheless, we presented the proof for A = —1 explicitly for Theorem because it allows a
better understanding of the general proof given in Section[4.3] Note that in case of the Virasoro
algebra, the adjoint module does not correspond to % 1.

The trivial module K is included in °. In fact, recall from Section [2.1.5|that the action of # or
7 on Fis given by e, O = mf?, ... The trivial module K can thus be associated to the element
f(? ,onwhich # and 7 indeed act trivially, e, - f(? = 0f? = 0. When interpreting the modules &#°
as meromorphic functions, f), = 2™, the trivial module K associated to f corresponds to con-
stant functions.

In Section 4.1} we concentrate on the first algebraic cohomology. We have complete results for
the Witt algebra for all A € C. In Section 4.2} we analyze the second algebraic cohomology. In
Section[4.3} we present results for the third algebraic cohomology. Here, we only have results for
a finite number of values of A, due to the complexity of the proofs. In Sections and
we only consider the Witt algebra. The results for the Virasoro algebra can be deduced immedi-
ately from the results for the Witt algebra, thanks to the results given in Theorem|3.3.4} they will
be given in Section Most results of this chapter have already been announced in 25, 29].

4.1 The first algebraic cohomology

We will start by deriving results for all A € C except for A =0, 1, 2. These values will be considered
in a separate analysis later on.

We focus only on the degree zero cohomology, as the non-zero degree cohomology is zero, see
Theorem As we consider only the degree zero cohomology of the Witt algebra, we can
write a 1-cochain of C'(#, %) as follows: 3 (e;) = w?flﬂ, with the w;‘ e K, the e; € # and the
fl.’1 € Z*, In that case, the condition for a 1-cochain 1,(/’1 eClW,FM tobea 1-cocycle is given
by, when evaluated on basis elements (e;, e;) =: (i, j), see (2.44):

GryMeie)) = (- Dy, = (G +ADY] + I+ A )y} =0, 4.1)

Next, let ¢! be a zero-cochain, i.e ¢p* € F*. As we consider the degree zero cohomology, we
have ¢* = ¢ fo’l, with ¢ € K. The condition for a 1-cocycle ¢ to be a coboundary reads, when
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evaluated on a basis element e;, see (2.43):

(e = BodM) (e) = —poei - f} = —podif]. (4.2)

4.1.1 General analysis
The aim of this section is to prove the Theorem below.

Theorem 4.1.1. The first algebraic cohomology of the Witt algebra# over a field K with char (K )=
0 and values in F* with A € C\ {0, 1,2} vanishes, i.e.

YAeC\{0,1,2}: Hw, g1 =10}. (4.3)

Proof. Lety*bea l—cocycle of H' (%, ). The first step consists in performing a cohomologi—
cal change such that 1//1 0. Let us chose the following zero-cochain: ¢ = Awl f0 € 1. Note
that A # 0 by assumption. The coboundary condition (4.2) gives us:

1 1
Ooph)(en = ~er Tyl =~ O+ AD YL f = ~iyi £,

The cohomological change ()" = ¢ + (§o¢1) then leads to (] 1Y/ = 0. In the following, we will
work with (y1)’, although we will drop the apostrophe to augment readability.
Next, the cocycle condition evaluated on (i, 1) yields:

GryM(er,en) = -+ iyt + G+ Dy} + -yl =0

i+A
syl = , wf‘. (4.4)

From this relation, we obtain:

Fori=2: 1;/3 (2+7L)w

(B3+A) (3+/1)(2+/1)

For i =3: 1//4 > 1//3 1//
— _ (@4+N (4+/’L)(3+/1)(2+/1)

Fori=4: 1// =3 1/14 1//2

Writing down the cocycle condltlon (@.1) for (3,2) and inserting the values of 1%1 and wé gives
us:

G190 (e3,e2) = —2+30) WA + B+20)ywh —ylt =0
G+ DB+DR+A)
6 V2=

1
@—E(A—z)(/l—mwg:0@w§:0a5/1¢{0,1,2}.

& —2+30)Yh + B+20) 2+ Myl -

Inserting 1//% = 0 into the recurrence relation defined in li , we obtain 1//;1 =0V i=3. Inserting

i=0in 1i gives wé =0 since A # 0. Thus, we obtain‘ w? =0Vi=0 ‘
Finally, consider the cocycle condition for (-, i), i > 0, which yields:

Gy e-s ) =2iwl + (—i+ iV, - —id) v} =0
~—~
=0 for i>0
@(—i+iﬂl)w’}i:0©u/g:Oas/l;él.

As i >0, we obtain w? =0V i<0/ Allin all, the statement is proved. O
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4.1.2 Exceptional cases

In this section, we focus on the remaining values of A, namely A = 0, 1,2. We will see that the co-
homology does not vanish for these cases. We will proceed similarly to the analysis for H3(#, K)
given in Section by first deriving an upper bound for the dimension, then a lower bound.
The lower bound is obtained by constructing explicit generating cocycles. These will be ob-
tained by solving recurrence relations.

The first pathological value of A we will analyze is A = 0. The main result we obtain is the Theo-
rem[4.1.2]below.

Theorem 4.1.2. The first algebraic cohomology of the Witt algebraW over a field K with char(K)=
0 and values in F* with A = 0 has a dimension of two, i.e.

dim H'w, % =2. (4.5)

Proof. In afirst step, we will derive an upper bound for the dimension of the cohomology space,
ie. |dim H'(#,F% <2|
Let w € H' (%, %°). First of all, let us point out that a cohomological change is not possible in
the case A = 0. In fact, we see from the formula that in the case A = 0, every cohomological
change is trivial. Therefore, we cannot normalize ¥; = 0. In order to determine an upper bound
for the dimension, we have to count the generating coefficients of a 1-cocycle fulfilling the 1-
cocycle condition (4.1), which for A = 0 yields:

(J=Dyirj—jyj+iy;=0.
Putting j = 1 gives a recurrence relation:

A-Dyin—y1+iy;=0
1 i
S Yy = ?Wl + ,—lwi for i increasing
i—-1 1 . .
S Wi =——Y;+1 + <y for i decreasing. (4.6)
i i

Starting with i = 3 in the first recurrence relation above, and increasing i, we see that all ele-
ments ¥; i = 3 are generated by two generators ¥; and v,. Starting with i = —1 in the second
recurrence relation above and decreasing i, we see that all elements 1; i < —1 are generated by
two elements, ¢ and v,. Hence, three generating coefficients appear a priori. However, there
is a relation between them. Taking for example the cocycle condition for (-2,2) and inserting
the recurrence relations yields:

=20 _2+4yo—292=0 -2(Yo - 291+ Y2) =0 & Y2 =2¢1 — Yy. 4.7)

Thus, there are only two independent generating coefficients and the dimension of the first al-
gebraic cohomology is at most two.

Next, we prove that the dimension is at least two, | dim H!w, %% =2 | We need to find two
generating cocycles, which are not coboundaries, and not cohomologously equivalent, i.e. their
difference must not be a coboundary. These can be found by solving the recurrence relation
(4.6), and are given by:

yUen =y f =iy 7,
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The choice of signs and the generating coefficients is not important. A straightforward veri-
fication shows that both cochains above are cocycles. Moreover, they are not coboundaries.
Actually, as mentioned before, all the degree zero coboundaries are trivial for A = 0, while v
and v, need not be trivial. Similarly, their difference needs not be zero, hence it cannot be a
coboundary so that ) and @ are not equivalent. Also, the two cocycles are clearly linearly
independent. Hence, H! (#,.%°) is generated by two non-trivial cocycles, meaning that the di-
mension of H! (%, %) is at least two. Together with the first part of the proof, we obtain that
the dimension is exactly two. O

The next theorem concerns the critical value A = 1.

Theorem 4.1.3. The first algebraic cohomology of the Witt algebra# over a field K with char (K )=
0 and values in F* with A = 1 has a dimension of one, i.e.

dimH' %, =1. (4.8)

Proof. As before, we will start by determining an upper bound for the dimension, meaning we
start by showing |dim H!'(#, &) < 1|
Let v € H'(#,%'). By choosing a degree zero zero-cochain ¢ equal to ¢ = —1,U1f01, we can
normalize our 1-cocycle ¥ to y; = 0 by a cohomological change. The cocycle condition for
A =11is given by:

(= DW=+ )y + G+ iy =0.

Putting j = 1 gives us the recurrence relations:

A+ DY+ A+ Dyi+ 1 -D)Yiq =0

oY= ?wiﬂ for i decreasing (4.9)
I
i+1 . .
S Yt = l__—lu/l- for i increasing. (4.10)

For i = 0 the first recurrence relation immediately gives ¥ = 0. Starting with i = -2 and i
decreasing in the first relation, we see that ¥ _; generates all y; i < —2. Starting with i =2 and
increasing i in the second recurrence relation (4.10), we obtain that v, generates all y; i > 3.
Thus, there are two generating coefficients a priori. However, the cocycle condition for (i, j) =
(—1,2) yields:

1//_1—1[/24-3%:0(:)1”_1 =Y.

Hence, there is only one generating coefficient and the dimension of the first cohomology is at
most one.

Next, we will show that the dimension is at least one, | dim H!(#,%1) = 1| The second re-
currence relation (4.10) can be rewritten as follows, for i = 3:

I 1 !
YVi=——FVi-1=¢

L. .
e T A L

The first recurrence relation (4.9) for negative i can be rewritten as follows, for i < —2:

Vi T TGy e T T e E R e
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Putting i = 0,1,2,—-1 into the formula y; = %i(i —1)y,, we obtain ¥ =0, v, =0, Y2 = ¥, and
w_1 = Y, respectively. These values are all compatible with our previous results, hence the
formula v; = %i(i — 1)y, is valid for all i. Next, we can insert this expression into the cocycle
condition for generic i and j, and direct verification shows that the cocycle condition is satis-
fied. Hence, we showed above that the cochain with coefficients y; = %i (i—1)w- is a generating
cocycle. We can check explicitly that it is non-trivial, i.e. that it is no coboundary. Suppose the
contrary, i.e. suppose y¥; = %i (i — 1)y, is a coboundary. Then it would fulfill for A =1 for
some 0-cochain ¢g, ¥; = —¢pi © %i(i — 1y, = —¢pi. For i =1, the relation implies ¢pg = 0. For
i =2, the relation implies ¢ = —%Wg. Since v, is not necessary zero, we obtain that the cocycle
vi= %i(i — 1)y, cannot be a coboundary. Hence, we found an explicit, non-trivial, generating
cocycle of H! (#,#1), meaning that the dimension of H! (#, %) is at least one. Together with
the first part of the proof, we obtain that the dimension is exactly one. O

The procedure for A = 2 is very similar to the one for A = 1. We will give it anyway for reasons
of completeness. The statement to prove is given below in Theorem[4.1.4]

Theorem 4.1.4. The first algebraic cohomology of the Witt algebraW over a field K with char(K)=
0 and values in F* with A = 2 has a dimension of one, i.e.

dimH' (%, % =1. (4.11)

Proof. Once again, we will start by deriving an upper bound for the dimension, in order to
obtain |dim H!(#,%?)< 1| Let w € H'(#,%2). By choosing a degree zero zero-cochain ¢

equal to ¢ = —%1//1 foz, we can normalize our 1-cocycle ¥ to w; = 0. The cocycle condition (4.1)
for A =2 is given by:

(J-Dv¥irj— Qi+ yj+@+2))y;=0.

Putting j = 1 gives us the recurrence relations:

-1 +2i);//{+ C+Dy;+1-Dyis1 =0

i—1
oY= ?wiﬂ for i decreasing (4.12)
i
i+2 . .
S Yy = :1//1- for i increasing. (4.13)

For i = 0 and i = —1 the first recurrence relation immediately gives yo =0 and w_; =0,
respectively. Starting with i = —3 and i decreasing in the first relation (4.12), we see that w_»
generates all y; i < —3. Starting with i = 2 and increasing i in the second recurrence relation
(4.13), we obtain that 1, generates all w; i = 3. Thus, there are two generating coefficients a
priori. However, the cocycle condition for (i, j) = (-2, 2) yields:

2y 2+ 2y +4Y=0 Y2 = —y.

Hence, there is only one generating coefficient and the dimension of the first cohomology is at
most one.

As before, we next prove that the dimension is at least one, | dim H!(W,%2)) > 1| We start
by solving the recurrence relations (4.12) and (4.13), the relation (4.13) yielding for i = 3,

i+l _1G+D
iz T Vi T s

1
— Yo =cili+ D= Dye,
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and (4.12) yields for i < -3:

Ci-1 1(=i+1)!

Y= m%ﬂ = 5—(—i—2)!

Yo = éi(i+ DiE-Dys.

Putting i =0,1,2,—1, -2 into the relation y; = éi(i +1)(i — 1)y, we obtain ¢ =0, ¢; =0, W =
W2, w_1 =0and ¥_, = —y,. This is consistent with the results obtained before, thus the relation
Vi = %i(i +1)(i — 1)y is valid for all i. Inserting this relation into the cocycle condition for
generic i and j, we obtain that the cocycle condition is satisfied. Hence, we showed that the
cochain with coefficients y; = %i (i +1)(i — 1)y, is a generating cocycle. We can verify explicitly
that it is not a coboundary. Suppose it was a coboundary, then it would need to satisfy for
A =2 for some 0-cochain ¢y, ¥; = —2¢gi < %i(i +1)(i — Dy = —2¢pi. Inserting i = 0 implies
¢o = 0. Inserting i = 2 implies —i’lﬂz = ¢pp. Since ', is not necessarily zero, we obtain that ¥ with
coefficients ¥; cannot be a coboundary. Hence, we obtained a non-trivial generating cocycle,
meaning that the dimension is at least one. Together with the first part of the proof, we find that
the dimension is exactly one. O

4.2 The second algebraic cohomology

As we focus on the degree zero cohomology of the Witt algebra, we can write a degree zero
2-cochain 1//’1 € C2(W,F") and a degree zero 1-cochain (,[)’1 e C'(w,F) with values in F* as
follows: ¥ (e;, e;) = wl.l'j iﬁj and ¢ (e;) = ¢ !, respectively, with the wl.l,].,(/);1 € K and ufﬁj -
—1//? ;» the e; € # and the flﬂ € Z. In that case, the condition for y* to be a 2-cocycle expressed
in terms of its coefficients is given by, see (2.51),

G2y (ei e e) = (= DY}, = k= Dyl + k= Pyi,

. . A . . A . . A (414)
—(]+k+)Lz)1//jyk+(z+k+/1])1//i,k—(z+]+/lk)1//iyj =0.

Similarly, the condition for the 2-cocycle y to be a coboundary expressed in terms of the coef-
. A A . .
ficients y; ¢ is given by, see (2.50):
G1pMei ) =] = (=D}, ;= (G+ADY] + G+ 1))} . (4.15)

In the following, we will drop the superscript A in order to augment readability. In the proofs,
we generally start by fixing one of the two indices in y; j, and we will refer to the fixed index as
level.

As in the previous Section[4.1} we start by performing a general analysis for all A € C except for
a few exceptional values of 1. In a second step, we analyze these exceptional values of 1.

4.2.1 General analysis
The aim of this section is to prove Theorem[4.2.1]below.

Theorem 4.2.1. The second algebraic cohomology of the Witt algebra W over a field K with
char(@<)= 0 and values in F* with A € C\{0,1,2,5,7} vanishes, i.e.

YAeC\{0,1,2,5,7}: HEW,FM ={0}.
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The proofis done in six steps. The first step consists in finding a cohomological change such

that level plus one vanishes. Subsequently, the cocycle conditions are used to show that level
zero, level minus one, level plus two and level minus two vanish. In the final step, induction is
used to show that the 2-cocycles identically vanish.
The proofs consist of two cases. The first case corresponds to A € C\ N and the proof of that
case is similar to the proof of H>(#,%#') = {0} given in [106]. The second case concentrates on
A being a positive integer, except for A € {0,1,2,5,7}. The proofs are more complicated in the
second case, because for positive integer A € N'\ {0,1,2,5,7}, poles appear in the recurrence
relations, creating gaps in the recurrence relations. The coefficients corresponding to gaps in
the recurrence relations have to be annihilated in a rather roundabout way.

Lemma 4.2.1. Every 2-cocycle of degree zero is cohomologous to a degree zero 2-cocycle ' with:

For AeC\N: y;,=0Vi€eZandy',,=0.
For AeN\{0,1,2}: y; , =0V ieZ\{~M andy’, , ,=0andy’,,=0.

Proof. Let ¥ be a 2-cocycle and let ¢ be the 1-cochain used to perform the cohomological
change v/ = v — (6:¢). We start by defining in order to simplify notation. Actually,
the structure of the coboundary condition is such that ¢; cannot be consistently used to anni-
hilate some coefficient y; ; of ¥. The coboundary condition on (i,1) suggests to define
the remaining coefficients of ¢ in the following way,

Vin =~ +iNG{+(E+ N+ A=D1y

i+ A
S Pryi= (li+ 1)4)1 :l/l 11 for i increasing (4.16)
-1 .
o ¢ = ((l n )L)) br4+i+ W_:;) for i decreasing. (4.17)

’Casel: AEC\N‘

From relation (4.17), starting with i = 0 (recall A ¢ N) and i decreasing, we immediately obtain
a definition for ¢;V i < 0 and so w'l.,l =0V i <0 after the cohomological change. In fact, since
A ¢ N and i <0, the recurrence relation is valid for all i < 0 since no zeros appear in the
denominator. Next, let us write down the coboundary condition for (-1, 2), which suggests the
following definition for ¢;:

(=1+20) ¢ +3/(/>{— C-ANp2=vw_1

_(=1+2A) Y2
Sz (4.18)

This expression for 4)2 is well-defined, since ¢_; has been defined in the previous step and
A # 2. So we obtain y’ 12 = 0 after the cohomological change. Startlng withi=21in -| and
inserting ¢, increasing i, we obtain a definition for ¢; V i =3 and v, =0V i = 2. Due to the
alternating property, we have ¢/} | =0. .

Allin all, we obtainy; | =0V i € Z.

’Casez: Le I\I\{O,l,Z}‘

Inserting i = 0 into (4.17), we obtain a definition for ¢, since we assumed A # 0 and by defi-
nition ¢ = 0. Thus, ¥, = 0 after the cohomological change. Inserting i = —1 into , we
obtain ¢_1, since we assumed A # 1. Thus, ¥’ 1= 0. Since we assume that A # 2, we obtain
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from (4.18 - ¢2 and thus ¢’ , = 0. Starting with i = 2 in and inserting ¢,, we obtain
¢;Viz=3andy/ 1=0Vi=2 Allinall, ¢; Vi=- laredeﬁnedandwehavet// =0Vi=-1,
as well as 1//_1’2 =0.

From (4.17), we see that all the coefficients ¢; are defined for i negative from i = —1 down to
i= —/1+1 1ncluded so we have v/} 1=0,-A+1=<i <0.Ati=—A, weobtain apole.

Let us write down the coboundary condition @.I5) for (—A+1,—1), which suggests the following
definition for ¢_,:

~ 1+ A= DAP-y + (1 =201 + (=2 + Dp_2 = W p41,-1
(-1+(1-A)A) (1-2A) V11

T TG e M

Since ¢p_; and ¢_, ,; are already defined, and since by assumption A # 2, we obtain a definition
for¢p_p, andalsoy’ | 1 =0.

Startingwith i =-A1-1in , decreasing i, we obtain¢; Vi < -A1—-1and 1// OVis-A-1.
This concludes the proof O

Lemma 4.2.2. Lety be a 2-cocycle such that:

ForAeC\N: y;1=0VieZandy_1,=0
For A eN\{0,1,2}: ¢; 1 =0VieZ\{-Alandy_j41—-1=0andy_1,=0

Then:
VAeC\{0,1,2}: Yio=0 VieZ.

Proof. The cocycle condition (4.14) for (i, 1,0) gives:

— A+ iy —wri+ (+ DY+ i - A+ DY+ 1 -DYi14i0=0
(l+ A

S Yi4i0 = w, o for i increasing (4.19)

i—l

me i 0 for i decreasing. (4.20)

S Yio=
The slashed terms cancel each other. The underlined term v o is zero by assumption, for both
cases A € C\Nand A e N\{0,1,2,5,7}. Indeed, in the latter case, ¥, does not correspond to the
pathological y_, 1, as we have A # 0 by assumption. Thus, the formulas above are valid for both
cases.
’Casel:/letﬁ\l\l\
Starting with i = —1 in (4.20), decreasing i, we immediately obtain ;o =0V i < —1.
Next, let us write down the cocycle condition for (0, -1,2):

=2y 17— (=1+2)Wp=1+ (2~ Doz +3yPrs —2Y2-1=0
@(2—1)1#0)2:0@1#0,2:0&5/1?52. (4.21)

The slashed terms are zero either by assumption or the previous resulty; o =0V i < —1. Starting
withi=21in 9) and inserting v » = 0, increasing i, we obtain ;o =0V i = 3. All in all, we
obtain y; o = 0 V ie”.
Case2: L eN\{0,1,2}
Inserting i = —1 into (4.20), we obtain ¢_; o = 0 since A # 1 by assumption. In that case, all
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slashed terms in (4.21) are zero and we get ¥ = 0 since A # 2 by assumption. Starting with
i =2in (4.19) and inserting ¥ = 0, increasing i, we obtain ¥; o =0V i = 3. All in all, we have
Yio=0Vi=-1.

From (4.20), starting with i = —1, decreasing i, we obtain ¢; o =0,-A1+1<i<0. Ati=-A, we
have a pole. The cocycle condition for (-1, ,0) yields:

A+ AP 20— Mpar— A=Ay~ AMpa=r=0
S (“A+ AW _10=00W_10=0asA¢{0,1}.

The slashed terms cancel each other, the underlined term is zero as we showed y; o =0V i = -1
in the previous step. Continuing with i = =1 -1 in (4.20) and inserting ¥_, ¢ = 0, decreasing i,
we obtain ;o =0V i < —A-1. Therefore, we have v; o = 0 V i < 0. This concludes the proof. O

Lemma 4.2.3. Lety be a 2-cocycle such that:

ForAeC\N: y;1=v;0=0VieZandy_1,=0.
For A eN\{0,1,2}: ;1 =0VieZ\{-Aandy;p=0Vi€eZandy_j;1,-1=0andy_12=0.

Then:
VAeC\{0,1,2}: 1w, 1=0VieZandy; =0Vi€Z.

Proof. ’Case 1: /IEC\N‘
The cocycle condition for (i,1,-1) yields:

=20,i — iAY 1,1 = (1= DY 140 (4.22)
+(-1+i+Ny;1-1A+i- A)@+ 1-D¥i14i-1=0 (4.23)
(-1+i+A) .. )
S Yiyi-1= i——lwi'_l for i increasing (4.24)
—1
SYi_1= mwlﬂ__l for i decreasing. (4.25)

The underlined terms are of level zero and level plus one, which are zero V i for A € C\N. Start-
ing with i = 0 in (4.25), decreasing i, we immediately obtain y; _; =0V i < 0. Starting with i = 2
in (4.24), increasing i, we obtainw; _; =0V i = 3. Allin all, we have ¢; .1 =0V i € Z.

|Case2: LeN\{0,1,2}|

For i = 0, the underlined terms in (4.22)-(4.23) also disappear for A € N\{0,1,2,5,7}, as the
pathological case y_, ; does not appear in y; 1, i =0 as we have A e N\ {0,1,2,5,7}. Also, y_; 1
is zero since it does not correspond to the pathological case as A # 1 by assumption. Therefore,
the recurrence relations and are valid also for the case A e N\ {0,1,2,5,7}.

Starting with i = 2 in (4.24), increasing i, we obtain y; _; =0 V i = 3. All in all, together with the
assumptions, this givesy; _; =0V i = 0.

Next, consider i lying in —A +2 < i < 0. In that case, the underlined terms in (4.22)-({4.23) van-
ish, as they are of level zero and of level plus one and the pathological case y_, ; is excluded.
Starting with i = 0 in (4.25), decreasing i, we obtain y; _; = 0 for —A +2 < i < 0. Next, let us put
i =—-A+1in (4.22)-(4.23), which gives:

=20, A+1— A+ DAY 1 —(A=2)p 11— (=2A+2)Y_ 41,1 AW 2421 =0

SA-2)y_11=0oy_y1=0asA1#2.



106 CHAPTER 4. GENERAL TENSOR DENSITIES MODULES

The terms underlined once disappear as they are of level zero or plus one and they do not cor-
respond to the pathological y_, ;. The term underlined twice is zero due to the previous step,
ie. y;_1=0for—A+2=<i=<0. Therefore, y_,; =0, the underlined terms in (4.22)-(4.23) are
zero for all i and the relation (4.25) is valid for all i. Continuing with i = —A in (4.25), recalling
that we have ¥_,,,,—; = 0 by assumption, decreasing i, we obtain y; .1 =0V i < —A. Allin all,
we have ¢; _; =0V i <0. This concludes the proof. O

Lemma 4.2.4. Lety be a 2-cocycle such that:
VYAeC\{0,1,2}: wiylz”([/i,():u/i,_lz()ViEZ.

Then:
vYAeC\{0,1,2,5,7}: Vi j=0VijeZ.

Proof. We will start by proving’ Vip=W;_2=0Vie”Z ‘
The cocycle condition for (i,-2,1) yields:

—(=1+iNY o1+ 3Y 17+ (2= DY 24771
—(2+i+ Ny 2+ (A +i-20)Yr7— 1= DYP14i,-2=0
(i-1) . .
SYi 2= mwlﬂ-,_g for i decreasing (4.26)
(—2+i+ 1)

- Wi o for i increasing. (4.27)
(i-1) '

S Yivi—2=
The cocycle condition for (i,2,—1) yields:

=3uri— 1+ iNye=1— (-1-DW_14i2
+(=1+i+20) W1~ R+i - VW2 + 2 — DWarr=7=0
1+1)

SYio= mw_lﬂ-,z for i increasing (4.28)
2+i-A) ) .
SY_14i2= W’lﬂi,g for i decreasing. (4.29)

’Casel: /lEC\I\I‘

Starting with i = 0 in (4.26), decreasing i, we immediately obtain v; _, =0 V i < 0. Starting with
i =0in (4.28), increasing i, we immediately obtain y;» =0V i = 0.

From (4.27), we obtain the following:

Fori=2: V3,2 = /11[/2,_2
_ (A+1)

_ (A+DA

Fori=3:v4-2="5"V¥3 2="5"Ws 2
For i =4: Ys,-2 = @’([/4,_2 = wwl_g
Inserting these values into the cocycle condition for (2, -2, 3) yields:
—(A+20) W23 —4Wes+5Wrs —3AY2 2+ (5 -2) Y25 —Ys5-2=0 (4.30)
A+2)A+DA
< (1+ ZA)AWZ,—Z — 3/11//2,_2 — #’WZ_Z =0
& (=7T+MN(=2+MAys_ =0y, _p=0asA¢{0,2,7}. (4.31)

The slashed terms are zero either by assumption or by the previous result y; », =0V i = 0. Start-
ing with i = -2 in (4.29) and inserting ¥ _» = 0, decreasing i, we obtain y;> =0V i < -3.
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Starting with i = 2 in and inserting ¥, _, = 0, we obtain ¥; _, =0V i = 3. Allin all, we
havey;,=v; =0V icZ

Case2: 1€N\{0,1,2,5,7}|

Starting with i = 0 in (4.26), we obtain y; » =0for -1 +3 <i<0. Ati = -1 +2, we have a pole.
Starting with i = 0 in (4.28), we obtain y;» =0 for 0 < i <A —3. At i = 1 -2, we have a pole. In
particular, inserting i = 3 in yields ¢35 = 0 since A # 5 by assumption. The latter implies
that the slashed terms in Equation are also zero for the case A € N\ {0,1,2,5,7}. Using
, we can again express the coefficients w3 _» and y5,_ in terms of the coefficient v, _, as
we did before, and insert them into to obtain (4.31).

Starting with i = -2 in and inserting v, _, = 0, decreasing i, we obtain ;, =0V i < —3.
Together with the results of level minus one and zero, we have ¢;, =0V i <0.

Starting with i =2 in and inserting v, _, = 0, we obtain v; _» =0 V i = 3. Together with
the results of level plus one and zero, we have y; ., =0V i = 0.

Next, let us write down the cocycle condition for (—-A + 2, -2, 2), which yields:

—-(2- A)AM+ 4%— A’WZ—A,—Z +(4- 3/1)’(//2_1’2 - A’(V4_,1,_2 +(—4+ /1)1[/_/1,2 =0

S Ay _2=001Ws_3_2=0asA1#0.

The slashed terms are zero by assumption and because ¢_»» = 0 as proven earlier. The terms
underlined once are zero since we already showed that ¢; » =0V i <0 (Recall that A ¢ {0,1,2}).
The term underlined twice is zero because we already argued that ¢; » =0for -1+3<i <0,
and we also have y;,_», =0if A =3.

Starting from i = -1+ 1 in and inserting w,_) —» = 0, decreasing i, we obtain ¥;_, =
0Vi<-A+1. Wethusobtainy;_» =0V i<0and all togetherwehavey,; ,=0VieZ.
Finally, let us write down the cocycle condition for (A — 2, -2,2), which gives:

—(2+MAY—og+ 4Py o h — AP 4 22— (=4 +3V)Y 240, 2 =AW 2422 — G- DYy =0

SAM _2422=0 W _2.12=0asA#0.

The slashed terms are zero by assumption and because ¢_»» = 0 as proven earlier. The terms
underlined once are zero as they are of level minus two, and we showed y; _» =0V i € Z in
the previous step. The term underlined twice is zero as we showed before that y;, = 0 for
0<i<A-3,andwealsohavey_;,=0if A =3.

Starting from i = A —1in and inserting ¥_», 4, = 0, increasing i, we obtain ¢, , =0V i =
A —1. We thus obtain ¥; , =0 V i = 0 and all together we have ¢;» =0V i € Z.

The final step consists in proving|y; j =0V i,j€Z |

This can be proved for both cases of A simultaneously. In order to do this, we use induction.
The result is valid for the levels zero, plus one and plus two. We suppose it is valid for level k = 2
and check whether it remains valid for level k + 1. The cocycle condition for (i, 1, k) produces
the following:

—A+k+iVyrr-Q+i+ kDY + @+ k+ DYk
+A=DYr4ip+ 1+ ROY 1k — (1 + Wi =0
& (-1+Y14ki =0 Y14 ;=0ask=2.

The underlined terms are of level k and are zero by induction. The statement remains true for
level k + 1.
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We also know that the statement is true for the levels zero, minus one and minus two. Let us
suppose that the statement is valid for level k < —2 and check that it remains true for level k—1.
The cocycle condition for (i, -1, k) yields:

—(l+k+iNyar+(1-Dy_ g4~ 1+ i+ k)@=
++k=NYir+ A+ Y 14k = i+ Wie=1=0
< (1+ k)UJ—1+k,i =0 Y-1+k,i= Oas k<-2.

The underlined terms are of level k and are zero by induction. The statement remains true for
level k — 1. This concludes the proof. 0O

Proof of Theorem[4.2.1, We use Lemmaf4.2.1|to perform a cohomological change such that the
assumptions of Lemma[4.2.2]are fulfilled. By Lemmaf4.2.2} we obtain results such that the as-
sumptions of Lemma[4.2.3] are fulfilled. Lemma[4.2.3|then gives the results necessary to fulfill
the assumptions of Lemmal4.2.4} which allows to prove Theorem[4.2.1/immedjiately. O

4.2.2 Exceptional cases

In this section, we will analyze the dimension of the second cohomology for the critical values
of 1. We will proceed with the proofs in two steps, similarly to the proofs we gave in the previous
section for the first algebraic cohomology. We first derive an upper bound for the dimension,
then a lower bound. Unfortunately, the methods used to determine the lower bound of the di-
mension for the first cohomology do not work so well for the second cohomology. In fact, for
A =5and A =7, the recurrence relations can be solved and provide generating cocycles for the
second cohomology. However, for A € {0, 1,2}, the recurrence relations are hard to solve explic-
itly. An easier way to proceed consists in making guesses for candidate generators, based on the
results of continuous cohomology for Hﬁont(Vect(Sl),g 1), and subsequently in proving that
the candidate generators are indeed generating cocycles of H2(w, ) with A € {0,1,2,5,7}. This
is the same strategy as the one used in the proof of Theorem[3.1.1} see the Remark[3.1.1] Explicit
expressions for the generating cocycles of the continuous cohomology H2, (Vect(S'), #*) on
the circle for 1 €{0,1,2,5, 7} can be found in [90].

Resultsfor 1 =0

We will start with the pathological value A = 0. The statement to prove is Theorem below.

Theorem 4.2.2. The second algebraic cohomology of the Witt algebra W over a field K with
char@<)= 0 and values in F* with A = 0 has dimension two, i.e.

dim B>, g% =2.

We prove the Theorem in two steps given by Propositions|4.2.1|and 4.2.2|below.

Proposition 4.2.1. The second algebraic cohomology of the Witt algebra W over a field K with
char(K)= 0 and values in F* with A = 0 has maximally a dimension of two, i.e.

dim B>, % <2.
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Proof. We shall start by deriving the upper bound on the dimension, i.e. | dim H?(#, %% < 2|
Let 1 be a degree-zero 2-cocycle of H2(#, %°). The first step consists in performing a cohomo-
logical change ¥’ = v — §,¢ with a 1-cochain ¢ in order to obtain the following condition on
v, |y, =0V iez\{0}andy’,,=0| We start by defining ¢ := 0 and ¢ := 0 in order to sim-

plify the notation. In fact, the structure of the coboundary condition for A = 0 is such that these
cannot be put consistently in a non-trivial relation with some coefficient y; ;. The coboundary
condition (4.15) for A =0 is as follows:

ipi =+ (= DPij =Y. (4:32)

Putting j = 1, we obtain a recurrence relation we can use to define ¢:

— Pl +ipi+ (1= DPi1=win
i-1 1 . .
< ¢ = ——d;1 + <y, for i decreasing (4.33)
i i
i 1
S Pip1 = _—1cpi - _—11//,',1 for i increasing. (4.34)
i— i—
Starting with i = —1 in the first recurrence relation (4.33), decreasing i, we obtain a definition
for ¢; i < —1and we get ¢, , =0V i < -1 after the cohomological change. Next, the coboundary

condition for (i, j) = (2,—1) yields a definition for ¢:

1 1
-1 =31 +2¢2 =21 © 2= _E(P_l +5¥2-1

and we have ¢, , = 0. Starting with i = 2 in the second recurrence relation (4.34), increasing 7,
weobtain¢; Vi=3andy;, =0V i=2.

In the following, we will drop the prime and work with a 2-cocycle vy; ; which has been coho-
mologically normalizedtoy; 1 =0V i€ Z\ {0} and y_; 2 =0.

As usual, we will start with level zero and count the generating coefficients necessary to gen-

erate . The cocycle condition (4.14) for (i, j, k) = (i,0,1) produces the recurrence

relations:

Yo+ Yri—iWio— W7+ A+ Y7 — 1 —DY1450=0

1-i
SYip= —Lf’l - ( - )wlﬂ-,o for i decreasing (4.35)
i i
i
S Wiri0=— ! -Yio— 1”0’1_ for i increasing. (4.36)
—1i -1
The slashed terms cancel each other. Starting with i = —1 and i decreasing in the first recur-

rence relation (4.35), we see that v ; generates all y/; ¢ i < —1. Starting with i =2 and i increas-
ing in the second recurrence relation (4.36), we obtain that 1y ; and ¥, generate all v, o i = 3.
Writing down the cocycle condition for (0, —1,2) provides a non-trivial relation between the two
generating coefficients:

—2Y 17+ Yo, -1 +2Yo2 + 31,0~ 2Y2=T=0
S —Wo1+2W02+3W10=0 o2 =—2Y10.

Hence, y; o V i € Z is generated by a single generating coefficient, 1 .

Next, we will focus on level minus one and count the generating coefficients of .
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The cocycle condition (4.14) on (i,—-1,1) for A =0 yields:

2Wo,i+(“1=Dy 11— 1+Dy; 1+ A+ Dy 1 —A—DY144,-1=0

2 (-1-1) (1+1) . .

SYi_1= mu/w + 1 Vo1+int ﬁ‘l’i,l +¥1+j,-1 for i decreasing (4.37)
2 (-1-1) (1+1) .. .

S Yigj-1= - iwo’i + = Yo1+il Wi+ T w1 for i increasing. (4.38)

Starting with i = 0, i decreasing in the first recurrence relation (4.37), we immediately obtain
w; -1 I <0 without a new generating coefficient appearing. Similarly, starting with i =2 and i
increasing in the second recurrence relation (4.38), recalling that w_; » =0, we obtainy; _; i =3
without any new generating coefficient becoming apparent. Since y_;,; = 0 due to the coho-
mological change, we see that y g is also sufficient to generateall y; _; V i € Z.

Next, we will count the generating coefficients necessary to generate level two and level minus
two, i.e.|¥;2 and w; _» V i € Z | The cocycle condition for (i,2,-1) gives:

=3Py —YorT— (F1=DY_ 142+ 1+ DY; 1 —C+ DY 2+ 2—-D)WP24;,-1=0

(—=1+1) (2+1) 2-1) . )
SY_14i2=— = iwl’i + _1—_1//,',_1 - Ewi,g + - iq//gﬂ;_l for i decreasing (4.39)
3 (-1+1) (2-1) (-1-1)

S Yio= —mwu + vi_1+ sz”"l - W_1+i2 for i increasing. (4.40)

i+2 i+2
Starting with i = 0 and i increasing in the second recurrence relation (4.40), we obtain ¢; » i = 0
without a new generating coefficient appearing. Starting with i = —2, i decreasing in the first
recurrence relation (4.39), we obtain ;2 i < —3 with no new generating coefficient appear-
ing. However, the value vy, _, is missing and is not related to the generating coefficient y .
Thus, y, —» corresponds to a new generating coefficient. Similarly, the cocycle condition

(i,—2,1) gives the recurrence relations for level minus two:

Yort+3W_1,i+(2-DW_24i1—(2+DyY; 2+ A+ DY;i1— A -DY14;,-2=0

3 (—2-1) (1+1) (1-1) . )
SYi 2= ﬁ”"“ +— 5 W_ori1+ ) Vil— = W1+i—2 for i decreasing (4.41)
3 (—2-1) (—2+1) (1+1) .. .
S WYiti-2= :w_u + 13 W_o4i1— - Yi_2+ ﬁu/i,l for i increasing. (4.42)

Starting with i = 0 in the first recurrence relation (4.41), i decreasing, we obtain ¥; _» i <0
without any new generating coefficient appearing. Starting with i = 2 in the second recurrence
relation (4.42), i increasing, we getw; _» i = 3. Again, the value y_, » is missing. Thus, the levels
plus one, minus one, zero, plus two and minus two are generated by at most two generating
coefficients. However, there might be non-trivial relations appearing between vy, and ¥2 >
for high values of i, j and k.

In the last step, we can use induction on k. We want to show that y; ; is generated at most by
w1,0 and y_» 2. The statement is true for levels zero, plus one and plus two. Thus, let us suppose
the statement is true for level k = 2, and let us prove that it holds true for level k + 1. The cocycle
condition for (i, 1, k) gives:

—A+0Y1 - A+ DY +E+ ROV + A= DY1k+ Gl DYk — T+ OYi41 =0
SA-kYiiki=—A+y1 - A+ Dy +(+ DY+ A= DY14 6 — i+ BDWitk -
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The terms on the right are of level plus one or level k, which are generated by v, and w_»
due to the induction hypothesis. We see that the term of level k + 1 on the left can be expressed,
for all i, in terms of level- k-terms without any new generating coefficient becoming apparent.
Hence, level k + 1 is also generated by at most two generating coefficients.

The same can be done for decreasing k. The statement is true for the levels zero, minus one and
minus two. Let us suppose the statement is true for level k < —2, and let us prove that it holds
true for level k — 1. The cocycle condition for (i, -1, k) gives:

—(=1+ Y 1+ (C1=DY_ 146 — 1+ Dy,
+i+ DY+ A+ W 14k — i+ DWirg-1=0
S -(+BY 14ki=—C1+ DY 1 x+ (C1=DY 14— 1+ DY
+(A+OYi =i+ Witk -1.

A similar reasoning as before leads to the fact that also level k — 1 is generated by at most two
generating coefficients. Therefore, the dimension of the second cohomology for A = 0 is at most
two. 0

Proposition 4.2.2. The second algebraic cohomology of the Witt algebra W over a field K with
char(K)= 0 and values in F* with A = 0 has minimally a dimension of two, i.e.

2 <dim B2, F9)).

Proof. To prove that the dimension is at least two, we will give two explicit cochains which fulfill
the cocycle conditions and which are not coboundaries.

The cocycles we found are inspired from continuous cohomology. Continuous cohomology
yields two cocycles, one of them corresponds to the Virasoro 2-cocycle with values in the
trivial module C < &°. Inspired from these cocycles, we can define algebraic cochains suited
for our purpose:

w(l)(ei,ej) = W?; firj =G =0 fivjs
w(z)(ei,ej) = 11152]) fisji=Aj5=i%PD8isjo fivj-

Clearly, the expressions above are antisymmetric in i and j. We will start by proving that these
two cochains are cocycles. The proof is immediate for the generator vV (e;, ¢;). It suffices to
insert the expression for its coefficients 1//51]) = (j — i) into the cocycle condition for A =0,
and a direct computation shows that the cocycle condition is fulfilled. Thus, 1//(1) (ej,ej) is a
cocycle. In case of the second generator 1//(2) (ei, ej), we need to consider several case differenti-
ations because of the Kronecker Delta appearing in its expression.

Casel:i+j+k#0

In this case, the cocycle condition for A = 0 reduces to:

—+ DY+ Ry -G+ Ry =0, (4.43)

where u/gz} = (ij?—i%j)0iy j,0- Next, we can distinguish further three sub-cases according to
whether zero, one, two or three terms in (4.43) remain:

e j+k#0and i+ k#0and i+ j#O0: In this case, all the coefficients WE-ZJ)- appearing in the
cocycle condition (4.43) above are zero due to the Kronecker Delta’s appearing in the ex-

pression of the coefficients 1//5.2])., meaning that the cocycle condition is trivially satisfied.
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e jtk=0andi+k#0andi+ j#0: In this case, only the coefficient y ; » remains in the
cocycle condition (4.43) given above:

—(j+k)w§.?}czo. v

=0
The factor (j+ k) is zero by assumption, and hence the cocycle condition is fulfilled in this
case.

e j+k=0andi+k=0and i+ j#0: The first condition implies j = —k and the second one

@) ®)
ik ik

implies i = —k. There are two non-zero coefficients y
(4.43), which becomes:

~GHRY G A G+ W) =k + [ + (i~ K
=k(=(=k>+ (k)3 + (k) - (=k)k*) =0.

and v~ in the cocycle condition

e j+k=0andi+k=0and i+ j=0: This case is not possible under the assumption i +
j+ k #0. Indeed, summing the three conditions above yields 2(i + j + k) = 0, which is
contradictory with our assumption.

Case2:i+j+k=0
Once again, we have to consider several subcases:

e j+k#0and i+ k#0and i+ j#0: In this case, the cocycle condition (4.14) for A =0 re-
duces to:

G=w?,  — U= Dy® + -y,

=—(-)Hi-k({-k@E+j+k =0. v
=0

e j+k=0andi+k#0and i+ j#0: Inthis case, the cocycle condition (4.14) contains four
non-zero coefficients.

G=Dw? ==y + U= pyP =G+ Dy,

. 3 13 20 . _
_*_l’o"(] kK>+i“(-j+k)=0. v
The index i is zero because our assumptions i + j+ k=0and j+ k=0imply i = 0.

e j+k=0andi+k=0and i+ j#0: This case is not possible because of our assumption
i+ j+k=0. In fact, the conditions i + j+ k = 0 and j + k = 0 imply i = 0, while the
conditions i+ j+k =0and i+ k =0imply j =0, and hence i + j = 0 which is incompatible
with the assumption i + j # 0.

e j+k=0andi+k=0and i+ j=0: In this case, all the coefficients in the cocycle condi-
tion (4.14) remain:

—(i+ j)wf} ++ Ry -+ k)wf}c

i Py - iRy iR

= (—i+])) (—(i+j)2k+ (i+j)k2) — i+ ) (PR - G+ 6P

+(—j+k)(i2(j+k)—i(j+k)2):0. v

The underlined factors are zero by assumption.
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We proved that our two generating cochains ¢ (e;, ¢;) and @ (e;, e;) are cocycles. Next,
we have to prove that they are not coboundaries, and that they are not cohomologically equiv-
alent.

Let us start with w(l) (ei, ej). The verification is immediate. On the one hand, the coboundary
condition for A = 0 evaluated on the generators e; and ey yields 9, = 0. On the other
hand, the generating cocycle ! evaluated on e; and ey yields in general a non-zero coeffi-
cient: 1//8% =1-0=1#0. Consequently, the cocycle ) cannot be a coboundary.
Let us proceed with the second generating cocycle 1?). We consider the coboundary condition
evaluated on several combinations of the generators e_3,e_»,e_1, ey, 1, €2 and we com-
pare them to the corresponding coefficients 1//52]) of the generating cocycle:

Yo, 2 =20 2 —4po+2¢ Yy, =16,

Yi,-1=¢-1—2¢o+ P Tl/(lz)_l =2,

Y1,-2=2¢2—-3¢p_1+¢; Yy _,=0,

Y_12=—¢_1+3¢p1 —2¢> 1//(_2{,220,

Yo31=-3p3+4po—¢p1 w5 =0.
Forcing equality between the coboundary condition and the coefficients 1//52]) yields a linear
system which is incompatible:

0o 2 0 -4 0 2 0 2 -4 2 |16
0O 01 -2 1 O 0 0 1 -2 012
tkf 0 2 -3 0 1 0 |=4#rk] 0 2 -3 0 0|0 |=5. (4.44)
0o 0 -1 0 3 -2 o 0 -1 0 3 -2|0
-3 4 0 0 -1 O -34 0 0 -1 01O

where the columns from left to right are taken to correspond to the variables ¢_3,¢_2,...¢,.
Hence, our cocycle ¢? cannot be a coboundary.

Finally, let us consider the difference Y =1 Taking the same system as before, but replacing
the independent terms by the differences, we obtain for the outermost right column in (4.44),
(-20,—-4,-3,3,4). The corresponding matrix has still rank five, hence the system is still incom-
patible. Thus, ') —y/® cannot be a coboundary, meaning " and ¢® are not equivalent.
All in all, we found two non-trivial and non-equivalent 2-cocycles, meaning that the dimension

of H2 (W, #9) is at least two. O
Proof of Theorem[4.2.2, Proposition and Proposition together clearly prove Theorem
4.2.2] O

Results for 1 =1

We will continue with the critical value A = 1. The analysis is very similar to the case A = 0.
Still, putting both analysis’s together into a single proof is rather awkward, making the resulting
proof hard to read. We prefer giving explicit separate proofs for all the exceptional values of 1.
The statement to prove is Theorem[4.2.3|below.

Theorem 4.2.3. The second algebraic cohomology of the Witt algebra W over a field K with
char(@<)= 0 and values in F* with A = 1 has dimension two, i.e.

dim B>, ) =2.
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The Theorem will be proven in two steps corresponding to the Propositions and
[4.2. 4 below.

Proposition 4.2.3. The second algebraic cohomology of the Witt algebra W over a field K with
char(@<)= 0 and values in F* with A = 1 has maximally a dimension of two, i.e.

dim >, ) <2.

Proof. Let v be a degree-zero 2-cocycle of H?(#,%'). We will start by performing a cohomo-
logical change ¥’ = y — §,¢ with a one-cochain ¢ in order to obtain the following condition,

y;,=0Viez\{-1}andy’ ,=0| We start by defining ¢y = 0 and ¢, = 0. The coboundary
condition (4.15) for A =1 is as follows:

(i+j)([)i—(i+j)(pj+(—i+j)(pl‘+j:w,‘_j. (4.45)
Putting j = 1, the coboundary condition suggests to define ¢ in the following recursive way.:

-1+ i)5l){+ A+D¢pi+A—-D)P1+i =Y

o ¢; = iy + L ; 1 for i decreasin (4.46)
¢i = i+1¢l+1 l.+11//z,1 g .
i+1 1 .. .
© piy1:= i_l(pi - l_—ll//,-,l for i increasing. (4.47)

Starting with i = 2 in the second recurrence relation (4.47), increasing i, we obtain a definition
for ¢p; i = 3 and we get 17”;',1 =0V i = 2 after the cohomological change. Putting i = 0 in the
first recurrence relation (4.46), we obtain a definition for ¢ and we get 1//6'1 = 0. Next, the
coboundary condition for (i, j) = (2,—1) yields a definition for ¢_;:

- —35/>{+5/>5= Yo, 1o P-1:=-Y21,

and we have y’ 1,2 = 0 after the cohomological change. Starting with i = —2 in the first recur-
rence relation (4.46), decreasing i, we obtain ¢; V i < -2 and 1/’,;',1 =0V i<-2. Wenote that the
value y_; ; is missing.

In the following, we will drop the prime and work with a 2-cocycle v/; ; which has been coho-
mologically normalizedtoy; 1 =0V i€ Z\{-1}and y_;,=0.

As usual, we will start with level zero and count the generating coefficients necessary to gen-

erate . The cocycle condition (4.14) for (i, j, k) = (i,0,1) produces the recurrence

relations:

-1+ i)%+w— I+Dyio— i@+(1+ i)@— 1-DY14i0=0

i—1
S Yio= mwlﬂ-,o for i decreasing (4.48)
i+1
S Y14i0= :wm for i increasing. (4.49)

The underlined terms cancel each other. Starting with i = -2 and i decreasing in the first re-
currence relation (4.48), we see that ¢_; ¢ generates all y; ¢ i < —2. Starting with i = 2 and i
increasing in the second recurrence relation (4.49), we obtain that vy, generates all ¢; ¢ i = 3.
Writing down the cocycle condition for (0,—-1,2) provides a non-trivial relation between
the two generating coefficients ¥_1 9 and ¥y o:

—2Y 17— Wo1+Wo2 +3Yx0 — 2Y2=T= 0 Yo1 =Yo,2.
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Hence, y; o V i € Z is generated by a single generating coefficient, say v o.

Next, we will focus on level minus one and count the generating coefficients of .

The cocycle condition (4.14) on (i,—-1,1) for A =1 yields:

— W 1+ 2@+ (C1=-DY 14— iy + i1 -1 —DYi45,-1=0

1 1_i
( l)u/_lﬂ',l +Yi1— ( - 1)1//1”,_1 for i decreasing (4.50)
i

2
SYi-1= —W—1,1+;W0,i+ ;

- o i N 2 .+(—1—i)
Yit+i-1= 1_i11/—1,1 1_l.WO,z 1-

i i
Yol+il— Fu/,‘,_l + me for i increasing.
-1 -1
(4.51)

Starting with i = —2, i decreasing in the first recurrence relation (4.50), we see that ¢; _; i <
-2 is solely generated by yw_;,; and . Similarly, starting with i = 2 and i increasing in the
second recurrence relation (4.51), we obtain v; _; i = 3 without any new generating coefficient
becoming apparent. Hence, y, ¢ and y_;; are sufficient to generate ally; _; Vi€ Z.

Next, we will count the generating coefficients necessary to generate level two and level minus
two, i.e. |y andy; _,VieZ ‘ The cocycle condition for (i,2,-1) gives:

=3y, i - A+ DYt (1 =DY_14i 2+ A+ DY 1 - A+ D2+ 2 - D)P24i-1=0

2-1) . .
S W_14i2=— = iwl’i —Wi 1+ Y2+ . iw2+i’_1 for i decreasing (4.52)
3 2-1) .. .
SYi2= _i-l—_lwl’i +Y_14i2t Y1+ 1 W+ -1 for i increasing. (4.53)

Starting with i = 0 and i increasing in the second recurrence relation (4.53), we obtain w; » i =0
without introducing a new generating coefficient. Starting with i = —2, i decreasing in the first
recurrence relation (4.52), we obtain v;» i < —3 with a new generating coefficient appearing,
W_2,. Similarly, the cocycle condition for (i,—2,1) gives the recurrence relations for level
minus two:

—(1+ DY +3yY_1,; +(-2-DY 21— (1+DyY; 2+ (=1+DY;1 —A-DY144,-2=0
(=2-1)
i—1
(=2-1)
1-1i

3 . .
SYi_o= :w_l,,- + W_2+i1+Wi1+ Y1+ -2 for i decreasing (4.54)

SYiti—2= &1[/_1,1' + W_2+i1+Wi_»—; foriincreasing. (4.55)
Starting with i = 0 in the first recurrence relation (4.54), i decreasing, we obtain ¥; _» i <0
without any new generating coefficient appearing. Starting with i = 2 in the second recurrence
relation (4.55), i increasing, we get ¥; _» i = 3. Again, the generating coefficient w_, » appears.
Thus, the levels plus one, minus one, zero, plus two and minus two are generated by at most
three generating coefficients, ¥_1,1, ¥o2 and ¥ _»». However, there is a non-trivial relation be-
tween these three generating coefficients. Actually, the cocycle condition for (2,-2,3)
yields, after replacing the various expressions of y; ; by their corresponding recurrence rela-
tion:

—3Y_23—4Y03+3Ur2 —3Y2,2+3Y23—V¥5-2=0
S =Y, 2+6Y20—8W_11=00 Y2 2=6Y20—-8¥_1;.

The slashed term is zero due to the cohomological change. Thus, there are only two generating
coefficients 29 and yw_1 ;.
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In the last step, we can use induction on k. We want to show that y; ; is generated at most by
W20 and y_; ;. The statement is true for levels zero, plus one and plus two. Thus, let us suppose
the statement is true for level k = 2, and let us prove that it holds true for level k+ 1. The cocycle
condition for (i,1, k) gives:

—I+i+by - A+i+ Dy +A+i+ 0y«
+A=DY14ik +C1+OWY1ki — (i + KDWYk =0
SA-bDyY14k,i=—-AQ+i+ Dy —A+i+ Dy +A+i+ )y«
+A=DY14ik— I+ RDWipk-

The terms on the right are of level plus one or level k, which are generated by ¥2 and y_;;
due to the induction hypothesis. We see that the term of level k + 1 on the left can be expressed,
for all 7, in terms of level- k-terms without having to introduce any new generating coefficient.
Hence, level k + 1 is also generated by at most two generating coefficients.

The same can be done for decreasing k. The statement is true for the levels zero, minus one and
minus two. Let us suppose the statement is true for level k < —2, and let us prove that it holds
true for level k — 1. The cocycle condition for (i, -1, k) gives:

—(1+i+ Ry 1+ (1=-DY_ g4k —(C1+i+ Ky
+(=1+ i+ DY e+ A+ DY 14k — i+ BDWiig,-1=0
S -1+ Y 14ki=—C1+i+ DY+ (C1=DY 46— (C1+i+ By
+(=1+i+ Yk — i+ DYk,

A similar reasoning as before leads to the fact that also level k — 1 is generated by at most two
generating coefficients. Therefore, the dimension of the second cohomology for A = 1 is at most
two. 0

Next, we will prove that the dimension of H?(#,%!) is at least two. The proof is more
straightforward as in the case of A = 0, as no Kronecker Delta’s are needed in our definitions
of the generating 2-cocycles, which renders case differentiations unnecessary.

Proposition 4.2.4. The second algebraic cohomology of the Witt algebra W over a field K with
char@<)= 0 and values in F* with A = 1 has minimally a dimension of two, i.e.

2 <dim H2(%, &) .

Proof. Similarly to the case A = 0, our definitions of the generating 2-cocycles are inspired from
continuous cohomology, which can be found in [90]. We will define our generating degree-zero
cochains in the following manner:

W(l)(ei;ej) = wﬁlj) firji= (ij*—i%)) firj»
v® (ei,e)) = 11152]) firj =GP =) firj

Clearly, the expressions are antisymmetric in i and j, thus they are cochains. The first cochain
is again similar to the Virasoro 2-cocycle (2.20). The verification that ¢! is a cocycle is straight-
forward. It suffices to insert the expression for the coefficients wg.'n. = (ij*-i?%j) into the cocycle
condition for A =1, and a direct computation yields that the cocycle condition is indeed
fulfilled. The same can be done for the second cochain y'? = (j2 — i?), yielding also immedi-

ately that w® is a cocycle. Consequently, our two generating 2-cochains are cocycles. Next, let



4.2. THE SECOND ALGEBRAIC COHOMOLOGY 117

us check that they are not coboundaries, and not equivalent.
We will consider the coboundary conditions4.45|evaluated on several combinations of the ele-
ments e_3, e_y, e_1, €1, €2, e3, and compare them to the coefficients 1{/5.1])., which yields:

Y-o12=¢-1+3p1 -2 W(_liyzz—G,
Y1,-2=¢-2-3¢_1—1 1!/(1%)_2 =6,
w-3,1 = —Z(P_g +4([)_2 +2¢1 1[/(_1;1 =-12,
Y32=-p3+5p_1+h yh, =-30,
W13 =201 +4p2 —2¢3 yl) =-12.

Forcing equality between the coboundary conditions and the coefficients wg.l]). yields a system
which is incompatible:

0 01 3 -1 0 0o o1 3 -1 0] -6
0 1 -3 -1 0 O 0 1 -3 -1 0 O 6
tkl -2 4 0 2 0 0 [|=4#1k| -2 4 0 2 0 0 |-12 |=5.
-10 5 0 1 O -10 5 0 1 0 |-30
0O 0 2 0 4 -2 0o 0 2 0 4 -2|-12

The columns correspond, from left to right, to the coefficients ¢_3, ¢p_», ¢_1, ¢1, P2 and ¢3. The
system is incompatible, and therefore, ) cannot be a coboundary. Next, we will proceed the
same for ®. We can use the same system of coboundary conditions:

W_12=¢-1+3p1 - ha vy, =3,
Yi,-2=¢_2—-3¢_1—-P1 1,’/(1%)_2 =3,
Y31 =—2¢_3+4¢p_2+2¢; Tl/(_zéyl =-8,
Y-32=—¢h_3+5p_1+ 2 w(_z;yz =-5,

Yo13=2¢-1+4¢p2 —2¢3 y? ;=8

which is once again incompatible:

0o o1 3 -1 0 o o1 3 -1 0] 3
0 1 -3 -1 0 O 0 1 -3 -1 0 O0]3
tkf -2 4 0 2 0 0 |=4#rk| -2 4 0 2 0 0 |-8 |=5.
-10 5 0 1 O -10 5 0 1 0 |-5
0O o 2 0 4 -2 o o 2 0 4 -2| 8

Therefore, ® cannot be a coboundary.

Finally, let us check whether the difference ¢!’ —/® can be a coboundary. Taking once again
the same system, replacing the ¢;-independent terms by the differences, we obtain for the out-
ermost right column in the matrix on the right-hand side above, (-9, 3, -4, —25,—-20). The rank
of the matrix thus obtained is still five, hence the system is still incompatible, so that " — @
cannot be a coboundary, meaning ¢ and @ are not equivalent.

We proved that H?(#, %) is generated by two non-trivial non-equivalent cocycles ¢! and
w®@. This concludes the proof. O

Proof of Theorem[4.2.3 Clearly, Propositions[4.2.3|and[4.2.4prove Theorem[4.2.3 O
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Results for A =2

The analysis for A = 2 is almost identical to the previous one. Still, I write it down for reasons of
completeness. The statement to prove is Theorem given below.

Theorem 4.2.4. The second algebraic cohomology of the Witt algebra W over a field K with
char@<)= 0 and values in F* with A = 2 has a dimension of two, i.e.

dim H*#, %) =2.
Again, the proof follows in two steps.

Proposition 4.2.5. The second algebraic cohomology of the Witt algebra W over a field K with
char(K)= 0 and values in F* with A = 2 has maximally a dimension of two, i.e.

dim H*(¥, %) <2.

Proof. Let v be a degree-zero 2-cocycle of H2(#,%?). We will start by performing a cohomo-
logical change v’ = vy — §1¢ with a 1-cochain ¢ € C!(#,%?) in order to obtain the following:
y;,=0Viez\{-2}andy’,, =0| We start by defining ¢, := 0 and ¢, := 0. The coboundary

condition (4.15) for A = 2 is as follows:
(i+2))p;i— Qi+ )pj+(—i+ )pivj =i ;. (4.56)
Putting j = 1, the coboundary condition suggests the following recursive definition for ¢:
— (142091 + 2+ Dpi + A= Dpr4i = Vi

i—1 1
< ¢$;=——¢; 1+ ——w;; for i decreasin 4.57
bi l.+2¢)l+l i+2'(//z,1 g ( )
i+2 1 .. .
S Pir1 = _—1cp,- - ﬁ‘/fi,l for i increasing. (4.58)
l_ —

Starting with i = 2 in the second recurrence relation (4.58), increasing i, we obtain a definition
for ¢p; i = 3 and we get 1//’1.,1 =0V i = 2 after the cohomological change. Putting i = 0 in the
first recurrence relation (4.57), we obtain a definition for ¢y and w6,1 = 0. Next, the coboundary
condition for (i, j) = (2,—2) yields a definition for ¢_»:

1
—2¢-2—4¢o - 2%: Wa,—2 & Pp_p=—2¢ - SV2-2)

and we get »5 = 0. Putting i = —1 in the first recurrence relation (4.57), we obtain a definition
for ¢p_; and also ¥’ 1,1 = 0. Starting with i = -3 in the first recurrence relation (4.57), i decreas-
ing, we obtain ¢; V i < -3 and w;,l =0V i < -3. We note that the value y_; ; is missing.

In the following, we will drop the prime and work with a 2-cocycle v ; which has been coho-
mologically normalizedtoy; ;1 =0V i€ Z\{-2}and y_,, =0.

As usual, we will start with level zero and count the generating coefficients necessary to gen-

erate . The cocycle condition (4.14) for (i, j, k) = (i,0,1) produces the recurrence

relations:
—(A+2DYeT+ Y1, — C+DYio— Y1 + 1+ DYin — 1= DYP1450=0

i—1
SYio= H—zwlﬂ-_o for i decreasing (4.59)

i+2
S Yi4i0= i_—lwi_o for i increasing. (4.60)
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The underlined terms cancel each other. Inserting i = —1 in the first recurrence relation (4.59),
we obtain y_; o = -2y = 0. Continuing with i = —3 and i decreasing in the first recurrence
relation (4.59), we see that y_, o generates all ;¢ i < —3. Starting with i = 2 and i increasing
in the second recurrence relation (4.60), we obtain that v, generates all ¥;o i = 3. Writing
down the cocycle condition for (-2,2,0) provides a non-trivial relation between the two
generating coefficients w_, o and y o:

20U 20— 2W 575 —2Wo—5+2020=0 W _20=—Y20.

Hence, y; o V i € Z is generated by a single generating coefficient, say v o.

Next, we will focus on level minus one and count the generating coefficients of .

The cocycle condition on (i,—1,1) for A = 2 yields:

—2iyaT+2v0,i+(1-DY_ 14— G+ Dy 1+ (- Dy —A-DyYi14-1=0

2 i—1 1=
SWY; 1=—Wo;—W_1+j1+—W;] ——— i _1 for i decreasin 4.61
Vi1 l.+11l/0,z V_1+i1 i+11!/z,1 1 Yiti-1 g (4.61)
2 (-1-1) i+1 .. .
S Wiyi—1 = :Ufo,i + T3 V_1+i1— :Wi,—l — ;1 for i increasing. (4.62)

Starting with i = —2, i decreasing in the first recurrence relation (4.61), we see that ¢; _; i <
—2 is solely generated by ¥_,; and .. Starting with i = 2 and i increasing in the second
recurrence relation (4.62), we obtain ¥; _; i = 3 with a new generating coefficient becoming
apparent, ¥, _;. Hence, we have 4 priori three generating coefficients w_, 1, ¥ and v, _;, to
generateally;, _; VieZ.

Next, we will count the generating coefficients necessary to generate level two and level minus
two, i.e. | yioandy; o VieZ ‘ The cocycle condition for (i,2,—1) gives:

=3y, —(1+2DW2 1 —(=1=DY_14i2+@+DY; 1 —iYi2+ 22— ;-1=0

- o (1+2i0) 3 . 3+1i _ i _ +(2—i) . (4.63)
1//—1+z,2— 1— 1//2,—1 _l_iU/l,z _1_in,—1 _1_in,2 _1_l.'W2+z,—1 .
(1+2iQ) 3 i+1 3+1i 2-1
SYiz2=— ; Yo -1— ;1//1,1‘ + TW—H;‘,Z + T%‘,—1 + ; Yoti-1- (4.64)

Starting with i = 3 and i increasing in the second recurrence relation (4.64), we obtain y; » i = 3
without introducing a new generating coefficient. Starting with i = —2, i decreasing in the first
recurrence relation (4.63), we obtain vy; » i < —3 with no new generating coefficient appearing.
Similarly, the cocycle condition for (i,—2,1) gives the recurrence relations for level minus
two:

— (1420 21 +3W 1+ (-2 DY 241 — W 2+ (3+DY;1 — A1 —-DP144,-2=0
(=1+2i0) 3 (-2-1) i—3 1-1i
SYi-2= —fvl—m + ;1//—1,1' + ; Y_o+i1+ Tllfi,l - T%H‘,—z (4.65)

(=1+21) 3 (=2-1)
TU/—z,l + :1//—1,1' +

i i-3
SYrti-2=— Vootril———Wi-2+ :U/i,l . (4.66)

1-i 1-i

Starting with i = -3 in the first recurrence relation (4.65), i decreasing, we obtain y; _» i < -3
without any new generating coefficient appearing. Starting with i = 2 in the second recurrence
relation (4.66), i increasing, we get ¥; _» i = 3. Thus, the levels plus one, minus one, zero,
plus two and minus two are generated by at most three generating coefficients, ¥ _; 2, ¥, and
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w_2,1. However, there is a non-trivial relation between these three coefficients. Actually, the
cocycle condition (4.14) for (2,-2,3) yields, after replacing the various expressions of y; ; by
their recurrence relation:

—SW_23—4Wo3+3Ur2 —6Wo=s+ Y23 —Y5-2=0
SY21+2Y20— W2, 1=00 Y2 1=Y_21+2¢2p.

Thus, there are only two generating coefficients, say w20 and ¥ _ .

In the last step, we can use induction on k. We want to show that y; ; is generated at most by
w20 and y_y ;. The statement is true for levels zero, plus one and plus two. Thus, let us suppose
the statement is true for level k = 2, and let us prove that it holds true for level k+ 1. The cocycle
condition for (i,1, k) gives:

-A+2i+ Dy —A+i+20)yp 1+ 2C+i+ Dy, «
+A=DY14ik+ 1+ DYk — (i +B)Wi441 =0
S A=Yk =—A+2i+ Dy — A +i+20)w;i,
+R+I+BDV+ A= DWr4ik— i+ OWivk1-

The terms on the right are of level plus one or level k, which are generated by v, and yw_»;
due to the induction hypothesis. We see that the term of level k+ 1 on the left can be expressed,
for all i, in terms of level- k-terms without having to introduce any new generating coefficient.
Hence, level k + 1 is also generated by at most two generating coefficients.

The same can be done for decreasing k. The statement is true for the levels zero, minus one and
minus two. Let us suppose the statement is true for level k < —2, and let us prove that it holds
true for level k — 1. The cocycle condition for (i,—1, k) gives:

—(1+2i+ )y, +(1=-DyY_ g4 — 1+ i+2k)y;
H(2+i+ Y+ A+ R 14k — i+ ) Wig-1=0

S -1+ Y_ 14k, =—1+2i+BDY_1c+ (1= DY 145k
—(1+i+20) Y+ (2+i+ Vi — i+ Wirf-1-

A similar reasoning as before leads to the fact that also level k — 1 is generated by at most two
generating coefficients. Therefore, the dimension of the second cohomology group for A =2 is
at most two. O

Next, we prove that the dimension of H?(#, %?) is at least two.

Proposition 4.2.6. The second algebraic cohomology of the Witt algebra W over a field K with
char@<)= 0 and values in F* with A = 2 has minimally a dimension of two, i.e.

2 <dim H*(W,F?).

Proof. Our expressions for the generating cocycles are again inspired from continuous coho-
mology. Let us define our generating degree-zero cochains in the following way:

vV e e)) = wﬁlj) firj =G =1%)) fisj,
y@ (i e)) = ‘ngj) fivj =GP =) firj.
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The antisymmetry in i and j is again plain to see. The verification that these two cochains are
cocycles is also straightforward. It suffices to insert the expression of the coefficients 1//5.1]). =
(ij° - %) and coefficients ¢'*) = (j* - i®) into the cocycle condition @.I4) for A = 2, a direct
calculation shows that they fulfill the cocycle condition. Hence, the two cochains are cocycles.
Let us check that they are not coboundaries, and not equivalent. For the coefficients wglj)., this

is straightforward. Consider the following coboundary conditions:
Y-1,2=3¢p-1+3¢1 1//(_1},2 =-6,
Yi,-2=-3¢_1-3¢1  yi),=-6.

Clearly, the coefficients ¢p_; and ¢b; cannot fulfill the equations obtained by equaling the cobound-
ary conditions and the coefficients wg.lj).. Hence, w! cannot be a coboundary. Next, we con-

(4.67)

sider ¢?. We will consider the coboundary condition for several combinations of the elements

e_s3,...,e3 and compare them to the coefficients w§2}:

Voo ==2¢_r—4po—2¢ W ,=-16,
Y_12=3¢_1+3¢ y®, =9,
Y-_32= ([)_3 + 5([)_1 +4(p2 1,U_3,2 = 35,
W-13=5p-1+4¢2— 3 W(_zi,g =28,
W_23=4¢_2+5)1 + 3 W(_233=35,

)

Y-33= 3(P_3 + 6([)0 + 3(D3 1[/(_2;’,3 =54,

Putting the coboundary conditions equal to the coefficients 1//5.2]). yields a linear system which is
incompatible:

0 -2 0 -4 0 -2 0 0 -2 0 -4 0 -2 0 -16

00 3 03 0 0 00 3030 0 9

1 05 0 0 4 0 1 05 0 0 4 0 35
Klog 05 00 4 17X g 05 0 0 4 -1 28 |76

0 4 00 5 0 1 04 005 0 1 35

300 6 0 0 3 300 6 0 0 54

From left to right, the columns correspond to the variables ¢_s, ..., 3. The system is incompat-
ible, meaning that ¥® cannot be a coboundary.
Finally, let us check whether ') — @ can be a coboundary. We consider the system (.67).

Doing the difference, we obtain for the ¢;-independent terms w(_li 9= w(_zi , =—15and 1//(11)_2 -

1//(12)_2 = 3. The rank of the associated homogeneous system is one, whereas it is two for the entire

system. Thus, the system is not compatible and ¢!’ —® cannot be a coboundary, meaning
that ! and ¢® are not equivalent.

In conclusion, we found two non-trivial non-equivalent cocycles V) and ¢?, hence H2(#/, #2)
is at least two-dimensional. O

Proof of Theorem[4.2.4, Clearly, the Propositions[4.2.5|and [4.2.6]together prove Theorem
O

Resultsfor 1 =5

Next, we will turn our attention to the critical value A = 5. The statement to prove is given in
Theorem[4.2.5|below.
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Theorem 4.2.5. The second algebraic cohomology of the Witt algebra W over a field K with
char@<)= 0 and values in F* with A = 5 is one-dimensional, i.e.

dim H* (%, ") =1.
As usual, we will start by deriving an upper limit for the dimension.

Proposition 4.2.7. The second algebraic cohomology of the Witt algebra W over a field K with
char(@)= 0 and values in F* with A = 5 has maximally a dimension of one, i.e.

dim H?(w, %) <1.

Proof. In the proof of Theorem we see that the assumption A # 5 is relevant only quite
late in the proof, at the analysis of levels plus and minus two in Lemma4.2.4] Thus, the proof
of w1 =vio=1w,;-1=0given by the Lemmatal4.2.1}4.2.2|and 4.2.3} is valid for the case 1 = 5.
Consequently, we can immediately start with the analysis of levels plus and minus two. The
cocycle condition for (i,—2,1) and A = 5 gives the recurrence relations for level minus
two:

—(=1+5D)Y o1+ 3Y—47+ (2= DY 2477
-@+Dy;2+(-9+ l')%— 1-DY14i-2=0
1-1)

S Yi_p=— T3 W1+i,—2 for i decreasing (4.68)
(i+3) . :
S Yisi—2=— 17 Wi —p for i increasing. (4.69)

Starting with i = —4 in the first recurrence relation (4.68), decreasing i, we see thatall y; _, i <
—4 are generated by w_3 _». Starting with i = 2 in the second recurrence relation (4.69), increas-
ing i, we see that all ; _, i = 3 are generated by ¥, _,. A priori, level minus two is generated by
two generating coefficients.

The cocycle condition for (i,2,—-1) gives the recurrence relations for level plus two:

=3yri— (1 +50)Yo=1— (-1-DW_14i2
+ O+ DYi=T— (-83+ DYz + 2 - )W2ri=1=0
<:>1//i2:_(_1_i)
’ i—-3
i—3
(-1-1)

W_1+i,2 for i increasing (4.70)

SY_14i2=— i for i decreasing. (4.71)

Starting with i = 4 in the first recurrence relation (4.70), i increasing, we see thatall y; , i > 4 are
generated by 3 ,. Starting with i = —2 in the second recurrence relation (4.71), i decreasing,
we see that all y;» i < -3 are generated by ¥_,». Thus we have three generating coefficients
in total for the time being. However, the cocycle condition for (2,-2,3) produces a non-
trivial relation between two generating coefficients:

—11Y_23—4Wes+5Uxs — 15Y2, 2 — 523 - W5 2=0 Y2 2 =VY23.
Similarly, the cocycle condition (4.14) for (2, -2, —-3) gives another non-trivial relation:

~W_52=5Y_2 3+5Y =3 —4We=3— 112, 3+ 15V 2 =02 Y_3 2=v3 2.
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Therefore, only one generating coefficient remains.

As usual, we can use induction on k for the last step. We want to show that y; ; is generated by
at most one generating coefficient, say w2 _». The statement holds true for k = 0,1,2. Suppose
itis true for level k = 2, and let us see what happens for level k + 1. The cocycle condition
for (i, 1, k) yields:

—(I+5i+ Dyt - A +i+5wi+ G+i+ Dy«
+ A= DYr14ik+ 1+ DYk — (i + W7 =0
SA-BYi1+k,i=6+i+ Y+ A=D1+ k- (4.72)

The terms on the right side are of level k and generated at most by ¥ _» due to the induction
hypothesis. Consequently, the term on the left of level k + 1 is also generated by at most one
generating coefficient.

The statement is also true for k = 0,—1,—2. Suppose it is true for level k < -2, and let us see
what happens for level k — 1. The cocycle condition for (i,—1, k) yields:

—(=1+5i+kyar+(1-Dy_14ik— (1+i+5k)ywi=1
+(5+i+ Y+ A+ DY 11k — (i + B Yire=1 =0
S —(I+RBY 14k, =+ 1 =DY_ 14k + (=5+i+ Y, k. (4.73)

The terms on the right side are of level k and generated at most by ¥, _» due to the induction

hypothesis. Consequently, the term on the left of level k — 1 is also generated by at most one

generating coefficient.

All in all, we can conclude that the second cohomology with A =5 is at most one-dimensional.
O

Proposition 4.2.8. The second algebraic cohomology of the Witt algebra W over a field K with
char(K)= 0 and values in F* with A = 5 has minimally a dimension of one, i.e.

1 <dim H*(%, ).

Proof. To prove that the dimension is at least one, we have to find a non-trivial cochain fulfilling
the cocycle condition for A = 5. We can obtain a generating, non-trivial cocycle by solving the
recurrence relations appearing in the previous proof. An alternative way of obtaining a non-
trivial cocycle is given by guessing a candidate generator of H?(#,%°) based on the continuous
cohomology [90], and then prove that it is indeed a generator. We will define our candidate
generating degree-zero cochain the following way:

wleie)) =i firj:=j*=i*j®) fir. (4.74)

Clearly, this expression is antisymmetric in i and j. Inserting the coefficients y; ; = ( i34 —i*j3)
into the cocycle condition for A = 5, expanding everything, we can verify straightaway that v is
a cocycle.

Let us check that v is not a coboundary. We will write down the coboundary condition for
A =5 for several combinations of the elements e_3, ..., e3 and compare them to the coefficients
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—8¢p_2—4¢o —8¢2 Y2,-2 =256,
9(P_1 +3(P1 +3(P2 Y-12= —24,
—3¢p-2-3¢p-1-9p1  Y1,-2=24,
Th_3+5p_1+13¢s  W_3,=—1080,
2¢)_3 +4(,b_2 + 14([)1 Y_31= —108,
13(,[)_2 + 5([)1 + 7(,[)3 Y_23= —1080,
12([)_3 + G(P() + 12([)3 Y_33= —4374.

Equaling the coboundary conditions with the coefficients y; ; yields a system which is incom-
patible:

0 -8 0 -4 0 -8 0
0 0 9 0 3 3 0
0 3 -3 0 -9 0 0
k| 7 0 5 0 0 13 0 |=6
2 4 0 0 14 0 0
0 13 0 0 5 0 7
12 0 0 6 0 0 12
0 -8 0 -4 0 -8 0] 256
0 0 9 0 3 3 0| —24
0 3 -3 0 -9 0 0| 24
#tk| 7 0 5 0 0 13 0 |-1080 |=7.
2 4 0 0 14 0 0| —108
0 13 0 0 5 0 7 |-1080
12 0 0 6 0 0 12|-4374

Hence, our cocycle 1 cannot be a coboundary, meaning that H2 (W, %°)is atleast one-dimensional.
O

Proof of Theorem[4.2.5 Propositions and prove Theorem[4.2.5] O

Remark 4.2.1. Recall that for A =5 and A = 7, the recurrence relations are much easier to solve
than for 1 € {0,1,2}. For A =5, the solution of the recurrence relations reads,

Vik= —ﬁ(i -Dii+DE-kk(k—1D(k+1Dya,_2. (4.75)

In comparison, the expression for the cocycle we found inspired by continuous cohomology
(4.74), ie. v = i3k* — i*k3, is much simpler, meaning that the cocycle in || has many
coboundary terms.

Results for A =7

The last critical value corresponds to A = 7.

Theorem 4.2.6. The second algebraic cohomology of the Witt algebra W over a field K with
char(K)= 0 and values in F* with A = 7 is one-dimensional, i.e.

dim B>, ") =1.
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Proposition 4.2.9. The second algebraic cohomology of the Witt algebra W over a field K with
char(@<)= 0 and values in F* with A =7 has a maximal dimension of one, i.e.

dim 2w, ") <1. (4.76)

Proof. In the proof of Theorem |4.2.1, we see that just like for A = 5, the assumption A # 7 ap-
pears quite late in the proof, at levels plus and minus two, analyzed in Lemma4.2.4} Thus, the
proofofy;; =v;0=v,;-1 =0, given by Lemmatal4.2.1}4.2.2land|4.2.3} is valid for the case A =7
too. Consequently, we can immediately start with the levels plus and minus two. The cocycle
condition for (i,—2,1) and A = 7 gives the recurrence relations for level minus two:

—(=1+7D)Y—o1+3Ya47+ (2= DY 2477
—OG+DY; 2+ 13+ Dwrf— 1= DYP14i,-2=0
(1-1)

SYi_p=— Y W1+i,—2 for i decreasing (4.77)
(i+5) . .
S Yi4j—2=— 17 Wi _» for i increasing. (4.78)

From the first recurrence relation[4.77} we see that _4 _» = ¥_3 _» = 0, by inserting successively
i = -3 and i = —4. Starting with i = —6 in the first recurrence relation[4.77} decreasing i, we see
thatally; _» i < —6 are generated by y_5 _». Starting with i = 2 in the second recurrence relation
increasing i, we see that all y; _» i = 3 are generated by ¥, _,. A priori, level minus two is
generated by two generating coefficients.

The cocycle condition for (i,2,—1) gives the recurrence relations for level plus two:

=3yri— A+ 70)Yo1— (1= DY_14i2

+ A3+ DW= (=5+ DY+ 2-DYory =7 =0
iy (-1-1)

M5
i—5 . .

mwm for i decreasing. (4.80)
From the first recurrence relation (4.79), we see that ¥4, = w3, = 0, by inserting successively
i =3 and i = 4. Starting with i = 6 in the first recurrence relation (4.79), i increasing, we see that
all y; » i = 6 are generated by 15 ». Starting with i = —2 in the second recurrence relation (4.80),
i decreasing, we see that all y;» i < -3 are generated by ¥ _, . Thus, we currently have three
generating coefficients in total. However, the cocycle condition for (2,-2,5) produces a
non-trivial relation between two generating coefficients:

—171[/_2,5 — 4%— 35’(#2,_2 —TYr5+ 7%— 3'(#772 =0 Yo _2=—Ys2.
Similarly, the cocycle condition (4.14) for (2, -2, —-5) gives another non-trivial relation:

—BY_72+TY 35 -TY 25 —4We=5— 172, 5+35Y2, 2 =09 Y_5_2 =2 .

Therefore, only one generating coefficient remains.

We use induction on k for the last step. We want to show that v; ; is generated by at most one
generating coefficient ¥, _,. The statement holds true for k =0,1,2. Suppose it is true for level
k = 2, and let us see what happens for level k + 1. The cocycle condition for (i, 1, k) yields:

—(I+7i+ Dyt - A+ i+ 70w+ (T+i+ DY, «

+A=DYr4ik+ 1+ OY 14k, — (1 + Wi =0
SA-BY14ki=T+i+ Y+ A —=DW14ik. (4.81)

W_1+i2 for i increasing (4.79)

SY-_1+i2=—
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The terms on the right side are of level k and generated at most by ¥, _» due to the induction
hypothesis. Consequently, the term on the left of level k + 1 is also generated by at most one
generating coefficient.

The statement is also true for k = 0,—1,—2. Suppose it is true for level k < -2, and let us see
what happens for level k— 1. The cocycle condition for (i, -1, k) yields:

—(=1+7i+kyar+ (1=-Dy g4k — 1+ i+ 7k ywi=1
+(=T+i+ Y+ A+ KW 14k — (i + K Wie=7=0
-1+ Y_yiki=FE1-DY 14k +(7+Hi+ DY, k. (4.82)

The terms on the right side are of level k and generated at most by ¥ _» due to the induction

hypothesis. Consequently, the term on the left of level k —1 is also generated by at most one

generating coefficient.

All in all, we can conclude that the second cohomology with A = 7 is at most one-dimensional.
O

Proposition 4.2.10. The second algebraic cohomology of the Witt algebra W over a field K with
char(K)= 0 and values in F* with A = 7 has minimally a dimension of one, i.e.

1 <dim B>, F7).

Proof. Once again, we will define our generating degree-zero cocycle inspired by the continu-
ous cohomology:

e e) =i firj =200 =i -9G" > - i fis). (4.83)

The expression is antisymmetric in i and j. To verify that this cochain is a cocycle, it suffices
to insert its coefficients y; ; = 2(i° j® - i° j°) - 9(i* j° - i° j*) into the cocycle condition for
A =7, adirect computation shows that the cocycle condition is fulfilled.

Next, we have to check whether our generating cocycle is non-trivial, i.e. whether it is not a
coboundary. Let us consider the coboundary condition for A =7 for the following com-
binations of elements e_s, ..., e3:

—6¢p_1 —2¢ —6¢1 v1,-1=22,
—12¢_2 — 4(,[)0 — 12¢)2 Yo —2= 11264,
—5([)_2 — 3(P_1 - 13([)1 Yi,-2 = 576,
ll(p_g +5¢_1 + 19(P2 Y-32= —73440,
4p_3 +4¢_2 +20¢; Y-31= —4428,
19([)_2 + 5¢1 + 11(!)3 Y-23= —73440,
184)_3 + 6(,[)0 + 189[)3 Y-33= —433026.

Forcing equality between the coboundary conditions and the coefficients y; ; yields a system
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which is incompatible:

0 0 -6 -2 -6 0 0
0 -12 0 -4 0 -12 0
0O -5 -3 0 -13 O 0
rk|] 11 0 5 0 0 19 0 [|=6
4 4 0 0 20 0 0
0O 19 0 O 5 0 11
18 0 0 6 0 0 18
0 0 -6 -2 -6 0 0 22
0O -12 0 -4 0 -12 O 11264
0O -5 -3 0 -13 O 0 576
#rkl 11 0 5 0 0 19 0 | —73440 |=7.
4 4 0 0 20 0 0 —4428
0O 19 0 O 5 0 11| -73440
18 0 0 6 0 0 18| —433026
The incompatibility of this system implies that our generating cocycle ¥ is not a coboundary.
Hence, the dimension of H?(#/, &7) is at least two. O
Proof of Theorem[4.2.6, Propositions[4.2.9and[4.2.10]prove Theorem[4.2.6 O

Remark 4.2.2. Just as for A = 5, the recurrence relations for A = 7 are not too hard to solve, and
yield:

1
Yik= —Mi(i2 —1)(i — k) k(k* = 1)(2i* = 7ik + 16+ 2k*)w, . (4.84)

Clearly, the expression found by inspiring from continuous cohomology (4.83), i.e. y; j = 2(i 36—
i%7%)—9(i* j°> - i° j*), is much simpler than the one ([.84) coming from solving the recurrence
relation. This means that the cocycle in (4.84) contains many coboundary terms.

4.3 The third algebraic cohomology

In this section, we analyze the third algebraic cohomology of the Witt algebra with values in
Z. Unfortunately, we were able to settle with our method only the case of finitely many values
for A. In fact, the complexity of the proof concerning the third cohomology increases rather
dramatically compared to the proofs involving the second cohomology. To simplify the proofs,
we consider A € Z rather than A € C. A main problem consists in the fact that the length of the
proof increases with the absolute value |1| of A. To avoid doing all the computations by hand,
itis sensible to implement the proof in a programming language able to do symbolic computa-
tions. For this thesis, I used Mathematica. However, the running times obviously increase with
the length of the proofs, hence only a finite number of values of A € Z with low |1] have been
treated.

In the case of the second cohomology H?(#/, %), the proof of its vanishing given in Theorem
[4.2.1] was much easier for A € C\N than for A € N, which also contains values of A where the
cohomology does not vanish. In the former case, only minor modifications had to be imple-
mented in the proof corresponding to A = —1 in order to extend it to A € C\N, whereas major
changes had to be applied in the second case.

The situation is similar for the third cohomology H3(#, %) in the sense that the prooffor A <0
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is more straightforward than the one for A > 0. However, contrary to the second cohomology,
minor modifications of the proof for A = —1 are not sufficient to extend it to A < 0, at least not
in the last step of the proof.

We will only focus on the degree-zero cohomology, as the cohomology related to the non-zero
degree cohomology of the Witt algebra is zero due Theorem Let us start by writing down
the coboundary and cocycle conditions with generic A, in terms of coefficients. Suppose
v is a degree-zero 3-cochain of C3(#, %), then it can be written as y* (e;, ej,ex) = w?'j,kfiﬁﬂk
for suitable coefficients y; j € K. The condition for ¥ to be a 3-cocycle, evaluated on basis

elements (e;, e}, e, e;) and expressed in terms of the coefficients v; ; x, is given by,

G5y (ei ej e e) =(j = Dy}, = k=Dl + =Dyl o
+ (k- j)w£+j,i,l - (- j)w?+j,i,k +(1- k)w?ﬂc,i,j
—-(j+k+ l+/1i)1//?,kyl+(i+k+l+/1j)w?,kyl
—(+j+ I+ AY] + +j+k+ADY] ;= 0. (4.85)
Let ¢ be a degree-zero 2-cochain ¢ € C2w,FM, ie. ([)fl(ei,e]-) = (/)?,jfl.’lj with adequate co-
efficients ¢; ; € K. The condition for the 3-cocycle ¥ to be a coboundary, evaluated on basis
elements (e;, e}, ex) and expressed in terms of the coefficients y; j x and ¢; ;, is given by, see
(2.67),
W)= G29M e e e) =G =D}, + k= P, + =P
—(+k+ADG] + (A + K+ AP} =+ +AR)P] . (4.86)

In the following, we will drop the superscript A in order to simplify the notation.

4.3.1 Negative values of 1

We start by analyzing H3(#, %) with negative A, i.e. A € Z\N. The aim of this section is to
prove Theorem below.

Theorem 4.3.1. The third algebraic cohomology of the Witt algebra % over a field K with char (K)
0 and values in the tensor densities modules F* is zero for A€ I ={-100,...,—-1}, i.e.

H W, FY = {0} ifAel.

The proof follows the same structure as the proof of Theorem 3.2.2] We start by performing
a cohomological change, subsequently we fix one of the three indices of /; ; x to a certain level
and derive results for it. In the last step, induction is used on the fixed index to get the desired
result. Some parts of the proof are almost identical to the proof of Theorem given for
A =—1. Hence, we will not repeat these parts here.

Lemma 4.3.1. Every 3-cocyclew € H3(W, %) with A € Z\N of degree zero is cohomologous to a
degree zero 3-cocycley' with:

VA€Z\N: g, =0Vi<0,VjeZandy); ,=0VYi,j>0,
andy;, =0VieZandy s ,, ,=0.
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Proof. Let v € H3(W, ") and ¢ € C>(W,Z") both be of degree zero with A € Z\N. We will
begin with a cohomological change ¥’ = ¥ — (§2¢) in order to annihilate as many coefficients
of ¢ as possible. We define: ¢;1 =0V i € Z and ¢ 1 = 0. This choice allows one to simplify
the notation to a maximum. As we did in the case of A = —1 in Lemma[3.2.1} the proof will be
separated into three cases depending on the signs of 7, j.

Casel:i,j<0

The proof for this case is identical to the one given for A = —1, hence we will not repeat it here.
Actually, there are no poles appearing in the recurrence relations when defining ¢, because
i,j =0and also A <0. Thus, we refer instead to the proof of the corresponding case of Lemma
It leads to a definition of all ¢;,j, i,j <0 and y} ;, =0, i, j < 0 after the cohomological
choice.

Case 2: iSO,j>0‘

The proofis very similar to the one performed for A = —1 given in Lemma(3.2.1} and only slight
adaptions are necessary. Let us consider the coboundary condition for (i,j, k) = (-2+
A,2,-1):

—3¢1=ra— A+ (-2+ MNP T - (1 - Dep_341,2
+ (=343 1+@-AN)Pr_1=W_2422-1.

The slashed terms are zero by definition of ¢. The underlined terms with both indices negative
have been defined already in the previous case. Since the coefficient (1 — 1) is different from
zero for A < 0, we obtain a definition for ¢_3,, 2, and consequently v’ , 12,-1=0

The coboundary condition for (7,2, —1) suggests the following recursive definition for ¢; »:

=3¢pr7—(1+iNpa1 — (=1 = D142
+(=1+i+20)¢p; 1 - C+i—-Npi2+ 2 —)Pari—1=VWi21

(=1+i+2A) 2+i-21) 2-1) Yi2 -1
EE— Y P — i1+ .
iv1 L i+1 iz i+1—¢2+”1 i+1

Q(;b—l+i,2 = — (487)

starting with i = —3 + 1 in the relation above (4.87), decreasing i, we obtain a consistent defi-
nition for ¢; », i < -3+ A since the underlined terms have both indices negative and thus have
already been defined in the previous case 7, j < 0. As a consequence, we have ‘V;',z,—l =0Vis<
—2+ A. Next, consider the coboundary condition for (-3+A,2,-2):

—4¢ _3:1— (=3+ VA2 2 — (1 - AV)p_5:1,2

+(=5+3M)p_342,-2—(-1=AN)P_3:22+ G-V P_142,-2=W_3422,2.

The terms underlined once have both indices negative and have thus been defined in the pre-
vious case i, j < 0. The terms underlined twice are of the form ¢; », i < -3 + A and are thus also
defined already. Finally, as the coefficient (-3 + 1) A is different from zero for A < 0, we obtain
a definition for ¢», ,. Moreover, we get ', 12,2 = 0. Reinserting the definition of ¢, _» into
the recurrence relation , starting with i = —2, decreasing i, we obtain a definition for ¢; »,
—2zi>-3+Aleadingtoy;, ,=0,-22i>-2+A.

Since ¢_; » = 0 by definition, only ¢ » remains to be defined. This can be done by considering
the coboundary condition for (0,2,-1):

b1z + (=142 o, -1 — 2 = N po,2 = 3Pr + h2=1 = Yo,2,-1.
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The underlined term has been defined in the previous case, i, j < 0. Since the coefficient (2—-A)
is not zero for A < 0, we obtain a definition for ¢, leading to w/O,Z,—l = 0. Taking everything
together, we gety;, | =0V i<O0.

The final step can be performed exactly in the same way as in the proof for A = —1 given in the
corresponding case in Lemma leading to a definition of all ¢; ;, i <0, j >0 and u/'i, Rk 0,
i <0, j>0. We will not reproduce the reasoning here.

Case3:1i,j >O‘

The reasoning here is exactly the same as the one from A = —1 given in the corresponding case
in Lemma hence I will not reproduce it. It leads to a definition of all ¢; j, i,j > 0 and

/

Y, i1 0, i, j > 0. This concludes the proof. O

Lemma 4.3.2. Lety € H3(W, %) with A € Z\N be a cocycle such that:

VAeZ\N: Yij1=0Vi<0,VjeZandy;j; 1=0Vij>0,
andy;_1,=0Vie”Z,

Then
VAEZ\N:  v,0=0YijeZ.

Proof. ’Case 1:,j < 0‘

The corresponding proof given for A = —1 in Lemma 3.2.2]also applies to A < 0. It leads to the
result that level zero with both indices negative is zero: y; j o =0, i, j < 0.

’Case2: iSO,j>0‘

In this case, the proof for A = —1 in Lemma(3.2.2] has to be adapted slightly in order to make it
work for A < 0. The cocycle condition for (i,2,0,—1) provides a recurrence relation on i
for y; o0

— Y72+ 3Unro — (L+ iMWae=T— 2o =T — (1 + DV -14i20
F(=14+i+20)Wi0,-1 —Wiz=T+ C+i—ADWi20— (=2+ DP2+i0-1=0
2+i-A)

WW;’,z,o . (4.88)

SY-_1+i20=

The slashed terms are zero by assumption, the underlined terms are either zero by assumption
or due to the previous case, ¥; o =0, i,j < 0. Inserting i = -2+ A and decreasing i in the
recurrence relation above, we obtain ¥; 0 =0, i = -3+ A. The cocycle condition
for (i,2,-2,0) yields:

2Y 72— A2 20+ 22 — (=2 = DY _2+i20
+(=2+i4+20)Y; 20— C+i=20)Wi20+ 2= DW2rii—20=0.

The slashed terms cancel each other and the terms underlined once are zero (for i < —2) be-
cause of the previous case, ¥; jo =0, i, j < 0. If we insert for example i = —3 + A into the ex-
pression above, the terms underlined twice are zero due to ¥; 20 =0, i < -3+ A. We thus obtain
(=3+ M)Ay, _20=0andhence ¥ _»0=0as A <0. Inserting ¥, _» ¢ = 0 into the recurrence rela-
tion , decreasing i, we obtain ¥; 20 =0, i < —2. As we also have y_; » o = 0 by assumption,
wegety;20=0,i=<0.

The final step is again exactly the same as the one performed for A = —1 for the corresponding
case in Lemma3.2.2) which allows one to get y;,j,0 =0, i <0, j >0.
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Case3: i,j >0‘
The reasoning is exactly the same as for A = —1, see the corresponding case in the proof of
Lemma 3.2.2] which gives y; j 0 =0, i, j > 0. All in all, we obtain the announced result. O

Lemma 4.3.3. Lety € H3(#,F*) with A € Z \N be a cocycle such that:

VYAeZ\N: 1//,',]"1:0\71'50, Vj€Z(ll’ld1,Ui,j,_1:0Vi,]’>0,
andu/,;_m:ov ie”Z, andw,-,j,O:OV i,jEZ.

Then
VAeZ\N: ’l[/,‘ij:OVi,jEZandl[/iyj,_lz()Vi,jEZ.

Proof. For all three cases, i,j <0,i<0, j>0and i, j > 0, the reasoning is exactly the same as
the one given in the proof of Lemma for A = —1. Therefore, we will not reproduce the proof
here. O

The techniques employed in the proof below remain the same as the ones used in the proof
for A = -1 in Lemma [3.2.4} but the calculus becomes longer the lower A is. This leads to the
fact that for a fixed A, a proof can in principle be given explicitly. Of course, if one wants to go
to very low values of A, it is sensible to implement the calculus into a symbolic programming
language to speed it up. However, this method does not provide a proof working for generic
negative values of 1.

Lemma 4.3.4. Lety € H3(W, %) with A € Z\N be a cocycle such that:
VAeZ\N: Vij1=Vij-1=V¥ijo=0VijeZ andy_3422,-2=0.

Then
VA€{-100,...,~1}:  w;jx=0VijkeZ.

Proof. ’Case 1: 7, <0
The reasoning made for A = —1 in Lemma holds true for A < 0, leading to the result
Vijk= 0,7,j,k=<0.

’CaseZ: iSO,j>0‘

Again, it is for this case where the differences with the proof for A = —1 in Lemma[3.2.4|show up.
The major problem results from the fact that we were forced in Lemma to put ¥_341,2,-2
equal to zero with a cohomological change instead of ¥ _4,—» as was the case for A = —1. The
coefficient y_4 2 _» can be put immediately into a relation with w_3, _». Hence, if _4 _» is
zero it implies immediately the vanishing of w_32 _», which is the basis step upon which the
whole proof relies. For A = -2, the coefficient y_52 _» cannot be put into an immediate rela-
tion with ¢_3 2 _». There is an intermediate step involving w_4 —». For A = -3, the coefficient
W_g,2,—2 has to be put into a relation with ¥ _3» _», which necessitates two intermediate steps
involving ¥ _52 > and ¥_4,2,—», and so on. We will show this explicitly in the following.

The main difficulty consists in proving ¥/; j» = ¥ ;-2 =0, i <0, j > 0. To do this, we first need
to establish a relation between v, _3 _» and ¥_5 3 2, which are the basements of the proof. The
cocycle condition for (i,3,2,-1) provides us with a recurrence relation on i for y; 3 »:

=3t — A+ iMWs=T— VY51~ QL+ DP_14i32+ L+ +3D)Wia=T
—R+i+2M)Wis=T+ G +i—ADWiz2+ (=2+ DYP24i571 — (-3 + D) W3442-1=0
G+i-A)

WW:’,S,Z . (4.89)

SY-1+i32 =
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The slashed terms are of level plus one or minus one, and are thus zero by assumption. For later
use, we will express the values of y; 3, for i = -3, -5 in terms of w_, 3 »:

W_332=(-3+ANW_232, (4.90)
=3+ =2+ (-1+Q)
Y532 = 5 Y_232. (4.91)

The cocycle condition (4.85) on (-3,j,—2,1) provide us with a recurrence relation on j for
Vj,-3,-2:

Y551+ (—4+ jAY 327+ (-5+j+NW_3j2+Q2—j+20)Y 357+3Y_r=37
+ B+ NY_3+5721~ C+ NY-245=31+ 1= j+ 3V W=7+ (-1 + P14j,-32=0

-5+j+A1
(5+/+A), iz, (4.92)

S Yi+j,-3,-2= 1+ ))

The slashed terms are of level plus one or minus one and are thus zero because of our assump-
tions. For later use, we will express the values of ¢; _3 _» for j = 3,5 in terms of ¢, 3 »:

W3,-3-2=(=3+A)y2_3_2, (4.93)
(=3+AM)(=2+A)(-1+AQ)
Vs5,-3-2= 6 Yo,-3-2. (4.94)

By inserting the coefficients (4.90), (4.91), (4.93) and (4.94) into the cocycle condition (4.85) for
(=3,3,2,-2), we obtain a relation between v, _3 _» and ¥ _» 3 2:

W_532+3(-1+AN)Y_32 2—-2(-1+AN)Y_33 2—-2(-1+AN)WY_33>—5¥ 1575
— 4o 33+ 6Woo 7 + 55U =32 +3(-1+ A Y32 2-V¥5-3-2=0

=3+ M) (-2+A)(-1+A)
< 6

Y_232—3(=1+AN)yy_3 _2+2(-1+A)(=3+ )23

(=3+AM)(=2+A)(-1+Q)
6

=21+ M) (=3+ My _232+3(-1+AN)yp_23>— W, -3-2=0

1
< A (—12+ D) (-5+A)(-1+A)(Y_232—W2_3-2) =0.

The slashed terms are zero by assumption, as they are of level plus one, level minus one or level
zero. The zeros of the polynomial in A in the last line are given by A = 1,5,12. Hence, for A <0 the
coefficient in front of (Y _p 32 — W2, —3,—2) is different from zero, which implies ¢_2 32 = w2, _3 .
In the next step, we want to obtain a relation between ¥ _» 32 = ¥2 _3,—» and the value which is
cohomologously set to zero, i.e. ¥, _3,2,—2. This is done by considering the cocycle condition
for (i,3,2,-2) with -3 + A < i < -3, and by expressing all the coefficients v; ; » appearing
in there in terms of ¥_,32 = W2 _3_» and ¥, ; _». The cocycle condition for (i,3,2,-2)
appears as follows, after dropping terms of level zero and one:

—B+iMNWs22—VYs5i 2—2+DWY_24i32+ A +3NW;2 2
—(A+i+20)Y;3 2+ G+i-20)W;32+(=2+DWP24i3-2— (=3 +D)P34i2 2=0. (4.95)

We need recurrence relations on i for y3; —», indirectly for w4 ; —», and for ¥5 ; —», which must
be expressed in terms of ¥» ; —» and ¥2 _3,_». The recurrence relations can be obtained by con-
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sidering the cocycle conditions (4.85) for (i,2,-2,1), (i,3,-2,1) and (i,4, -2, 1), which yield re-
spectively after dropping terms of level zero and one:

W3,i-—2=U+VY2i 2~ (-1+DW214i-2, (4.96)
Q+i+A) (=1+1)

Va,i—2= Tlﬁs,i,—z - Y3 1+i,-2» (4.97)
@2+i+A) (-1+1)

Ysi-—2= 3 V2T Yal+i—2- (4.98)

For later use, let us solve the recurrence relations (4.96)-(4.98) above for i = —4, -5, —6:

For i = —4:
For i = -5:
For i = —6:

W3, a2 =(—4+ MW _4 >+595 3 2,
V44,2 =%(—3 +A) (=4 + Ny 42+ 10y, 3 ),
V54,2 =é(—3 +A)(=2+ M) (-4 + VY242 +15W2 3 _2).
W3, —5-2=(=5+N)WY2_5_2+6Y2_4_2,
Ya,-5,-2 :%(—4 + A ((=5+VWa,—5-2+ 1224, 2) + 1592 3 2,
W5, _52 Zé(—3 +F A (=4 + VD) ((=5+ V)2 —5-2+18Ws 4 _2) +90y3 _3 _»).
V3,62 =(=6+AM)Y2 _6_2+7W2 _5_2,
Wi, 6,2 =%((—5 + M) ((=6+NYo 62+ 14y 5 _5) +425 4 _»),
1
Ws,—6,-2 :8(_4 + M ((=5+ V(=6 + N2 _62+21Ys 5 _5) + 126y, 4 _»)

+ 351[/2,_3,_2 .

As an example, we will write down the cocycle condition (4.95) for i = —4,-5,—6. Using the
recurrence relations (4.96)-(4.98) and (4.89) for i = —4, -5, -6, as well as the fact that w_53, =
¥2,-3,—2, the cocycle condition (i,3,2,-2) for i = —4, -5, —6 yields respectively:

For i = —4:
Fori=-5:
For i = —6:

é(—G +A)(20+ (—15+ A)A)(—Z’(’Ugy_zh_z +(3+ A)’(’Uzy_gy_z) =0, (4.99)
B é(‘lf’ D)7+ D=2+ VY252 =320+ (~11+ DAYz 4>
+ Elo(2520 + A(—138 + A(—425+ A (255 + A(=55+3A)wy—3-2=0, (4.100)

1
%(—60((—8 + )42+ (-19+ VAV y2,6,-2

+21(=10+ V) (=3 + Ny, _5-2+78(—4+ VY2 _4,_2)
+(=2520+ A(2226 + A(23 + A(=210+ A (155 + 2(—=18 + A)A)))) w2, —3,—2) = 0.
(4.101)

The first equation for i = —4 gives us a non-trivial relation between v, 4 —» and ¥ 3,2
for A # -3, hence ¥, _4,—» can be expressed in terms of ¥, _3 _». The coefficient in front is
different from zero for integer A. For A = -3, the first equation immediately implies
W2,—4,—2 = 0. This does not influence the generic reasoning. Actually, for A = —3 the coefficient
zero by assumption is ¥, _311,-2 = W2, -¢,—2, thus the relevant cocycle condition corresponds to
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(-6,3,2,-2), i.e. the third equation above for i = —6. Let us check whether it provides
us with a non-trivial relation between v, _g,_» and ¥»,_3 _». In the second equation for
i = =5 the coefficient ¥, _4,_» can be written in terms of w3 _3_» by using the first equation
for i = —4, which gives:

1
ﬁ(_IS + D) (=2+ 1) (=20(=7+ ANz, 52+ (276 + A(=83 + A(—=4 +31)))y¥2,—3-2) =0.
The coefficients involving A are different from zero for negative integer A. Therefore, we obtain
anon-trivial relation between vy, _5 _» and ¥ _3, _». Expressing the former in terms of the latter
and inserting it into the cocycle condition (4.101) for (-6, 3,2, —2), we obtain:

T (T8 AE2+ (F19+ D) (=B0(=T+ Ay 6.2

+(5+A)(=102+ A(=16+ (=3 + A2 _3,_2)) = 0.

Except for the factor (5 + A1), which is zero for A = -5, the other factors involving A are different
from zero for negative integer A. In particular, for A = —3, we see that we obtain a non-trivial
relation between vy, _g _» and ¥, _3_». The coefficient ¥, —» is zero by assumption, which
implies that v, _3 _ is also zero. This was the aim. Note that for A = —5, we obtain ¥, __» =
0. Again, this is not an issue, since for A = -5, the coefficient which is zero by assumption
corresponds to Y2 _341,—2 = W2 —g,—2, implying that the relevant cocycle condition corresponds
to (-8,3,2,-2). This condition will provide a non-trivial relation between vy, _g _» and Y, _3 _».
It continues like that. The lower A is, the more equations one has to consider. I found no proof
with a fixed length for all A € Z\N. Induction on i in the cocycle condition (i,3,2,-2) is hard
to use as the degree of the polynomials in A increases with decreasing i. Induction on A is also
hard to implement, as the coefficients W?,]-, . and w?;lk are not related a priori.
The procedure can be encoded in a symbolic programming language though. Basically, it can
be implemented in three steps,

* Inafirst step, the recurrence relations (4.89) on i for v, 3 » have to be implemented as well
as the recurrence relations (4.96)-(4.98) on i for w3 ; -2, Wa,;—2 and ¥3 ; —.

* In a second step, we implement our favorite cocycle condition (i, 3,2, —-2) given in (4.95),
and we write it down for i = —4,--- =3+ A. In each of the equations thus obtained, we
replace the coefficients ¥; 32, W3; —2, W4 ;-2 and Y3 ; _» by the recurrence relations previ-
ously implemented, and we also take into account ¥, _343 —» =0.

* In the last step, we solve the system of linear equations in the variables ¢ _5 2 ;, 71 = -3,---—
3+ A, obtained in the previous bullet point. We do it for A = —1,--- —100, and check
whether we always obtain ¥ _, » _3 = 0 as part of the solutions. This is indeed the case.

Therefore, we obtain ¢_» 3, =0for A = -1,---—100.

The next steps consist of a direct generalization of the proof given for A = —1 in Lemma
Inserting ¥» _3 _» = W_» 32 = 0 into the recurrence relations and (4.89), increasing j
and decreasing i, we immediately obtain y; 3 > =0, j =2 and y; 3, =0, i < -2, respectively.
Next, we want to prove ¢, » =0,V j >0,V i <0. We can do this by using induction on i.
Indeed, we already proved that the statement v ; » =0,V j > 0is true for i =0,-1,-2,-3. Let
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us suppose it is true down to i + 1 i < —4, and let us show that it holds true for i. Consider the
cocycle condition (4.85) on (i, j, —2,1), which gives us a recurrence relation on j for y/; ; —»:

(=2+i+j+ Ny j2—(1+DW14j,-2+01+ PYiei-—2=0
=0

(—2+i+j+A)
(=1+7)

SYil+j,—2= Vi,j,-2- (4.102)
The term in the middle is zero because of the induction hypothesis. We will need the relations
for j = 3,5, given by:

Forj=2:y;3 2=({I+N)yi2_2,

. C+i+AM)A+i+A)E+A)
For j=4:yi5-2= 5 Yi2,—2.

Consider the cocycle condition (i, 3,2, —-2) given by (4.95). The terms of the form y; 3, i <0 are
zero. The terms ¥;.23 —» and ;432 —» are zero because of the induction hypothesis. The terms
Wis-2and ¥, 3 _» can be expressed in terms of ¥; » _» as shown above, yielding:

(~(=2+i+ ) ((*+ (=7T+ DA+ i(=1+21))Wiz-—2=0.

A simple analysis shows that there are no zeros of the polynomial with i and A both being nega-
tive integers. Hence, we obtain ¥, » —» = 0. Inserting y; » _» = 0 into the recurrence relation on j
in , starting with j = 2 and increasing j, we obtainy;; _» =0V j > 0. Thus our induction
holds true for 7, and altogether we obtain y; j > =0, j >0, i <0.

Next, we want to prove ¥; j» =0, V i <0V j > 0. This time, we shall use induction on j. In-
deed, we have seen that the result holds true for j = 1,2,3. Let us suppose it holds true up to
j—1j =4, and let us show that it holds true for j. Consider the cocycle condition for
(i, j,2,—1), which provides a recurrence relation on i for y; ; »:

— A+ DY 144 j2+ Qi+ j - o+ A+ )Y_144i2=0
=0
2+i+j-N)

SY_1+i,j2= 1+

Vij2- (4.103)

The third term in the first line is zero due to the induction hypothesis. We shall need i = -3,-5
given by:

Fori=-2:9_3jo=~(-My_2j2,
(=2+j-NM(=1+j-D({G =N
-6

Fori=—4:9_s5j>= W-2j2-

Next, consider the cocycle condition(4.85) for (-3, j,2,—-2) after dropping terms of level zero
and level minus one, given by:

Y52+ (=3+jMWP_32-2—(=5+j+20) Y32+ (=1+j-20)p_3 2
+B+ NY_3+j2-2+tC+ PNW-24+j-32—(=3VDYj2-2—(=2+ j)Y24j-3-2=0

(—@+j-N(j+j*-2jA+ =T+ DA))w_z,2=0.
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The terms underlined once are of the form v 3 _» j > 0 and are thus zero. The terms under-
lined twice are zero due to the induction hypothesis. The last line is obtained by replacing the
remaining terms by the expressions in terms of ¢ _» ;» given above. A simple analysis shows
that the polynomial has no zeros for positive integer j and negative integer A. Consequently,
we have y_3 j» = 0. Reinserting y_» ;» = 0 into the recurrence relation on i in , starting
with i = -2 i decreasing, we obtain y; j» =0 V i < 0. Hence, our result holds true for j, and by
induction we thus have y/; j» =0V i<0,V j>0.

The proof for y; jx =0,V i<0,V j >0,V k€ Zis exactly the same as the one done for A = -1
given in Lemma|3.2.4} thus we will not reproduce it here.

Case3: i, >0‘

The proof is again the same as the one done for A = —1 given in Lemma leading to
Wi jx =0V i,j,k>0. Wewill not reproduce it here.

This concludes the proof. O

Proof of Theorem[4.3.1, By using Lemma we can perform a cohomological change such
that the assumptions of Lemma are fulfilled. Subsequently, we can use Lemma[4.3.2|such
that the assumptions of Lemmal4.3.3|are fulfilled, which in turn allows to fulfill the assumptions
of Lemma[4.3.4] Lemma[4.3.4]then allows to prove Theorem[4.3.1 O

Remark 4.3.1. In the preceding proofs, we were constantly working with coefficients y; ; i at
least one index of which included A, like for instance the coefficient ¢ _3, > —». Since the indices
i, j, k are always integers, the parameter A has to be an integer as well. Thus, the preceding
proofs do not work with complex A € C.

4.3.2 Positive values of 1

In this section, we will analyze H®(#/, %) with A € N. The aim is to prove Theorem below.

Theorem 4.3.2. The third algebraic cohomology of the Witt algebra ¥ over a field K with char(K )=
0 and values in F* with A € I is zero, i.e.

viel: Hw,gh=(0,
where I =1{6,8,10,14,16,18,20,22,24,26}.

The proof for positive A is distinctly more complicated than the proof for A negative given
in the previous section. We see from Theorem that we only have results for certain val-
ues of A. The proof is divided into several Lemmata. The firsts three Lemmata are valid for
any A € N\ {0,1,2,5,7,12,15}. The values {0,1,2,5,7,12,15} correspond to exceptional values
of A, for which H3(#, %) will most probably not vanish. They are inspired from continu-
ous cohomology. We had a similar situation in the case of the first and the second algebraic
cohomology. For the proofs given in this section, we will consider the following assumption:

AeN\{0,1,2,5,7,12,15} |
In the fourth Lemma, there arises again the problem that the length of the proof increases with
A. Therefore, the proof had to be implemented once again into a symbolic programming lan-
guage. However, in comparison to the case of A negative, the running time of the proof is much
longer, as the algorithm is more complicated. Thus, we did not go beyond A = 26. Moreover, the
algorithm does not work for A odd. Due to the complexity of equations and the recurrence rela-
tions involved, it is impossible with our methods to determine as to why the algorithm does not
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work for A odd, nor is it possible to prove that the algorithm would work for all A even. Actually,
already in the third Lemma4.3.7]differences show up between A odd and A even, the proof for
A odd being more complicated. This is due to the structure of the cocycle condition (4.85). The
fifth and last Lemma[4.3.9)is again purely algebraic.

As before, we only focus on the degree zero part of the cohomology since the non-zero degree
part is already zero due to Theorem[2.2.1] The cocycle condition is given by (4.85), the cobound-
ary condition by (4.86).

The first result we want to prove is given by Lemma Note that in the Lemma [4.3.5, we
assume a certain ordering in the indices i, j of the coefficients y; j +1 and v; j +», in order to
augment the readability. We place the greatest index in absolute value to the left, i.e. |i| > | ]|,
for i, j <0and i, j >0 in the expressions y; j +1 and ¥;,j +» below. For indices of different signs
iny; j+1, wetake i <0and j > 0.

Lemma 4.3.5. Every 3-cocyclew € H3 (W, ") with A e N\{0,1,2,5,7,12, 15} of degree zero is coho-
mologous to a degree zero 3-cocycley' with coefficients y; i v -1 v j and v j—2 Satisfying
the following conditions:

— — . i#=A: w;,,=0
,j<0,i<j|: j=0: { and. - 0

! —
1"/—A+1,0,—1 -

/

J=-1v v 4,=0
i#-A+2: ¢ _, =0

j=-2 : P
and : V. p42,-22=0
. _ . / —
j<-2 l;éd/-l 2 w/i'j’l ° P
and : l//—/1—j,j+1,—1 =0
1//;',2,—1 =0,
iZA-2: ! =0
Lj>0,i>]]: j=2 . iz .
and - Ya-22-2
i # /1— j . / . =0
j>2 SR U
S and : w/l_j’j_l'l =0

Proof. Asusual, we will begin with a cohomological change v’ = w— (62¢) in order to annihilate
as many degrees of freedom of y as possible.
We start by defining the following coefficients of a 2-cochain ¢,

Gi1=0VieZ\{-A},
¢-1+1,-1=0and ¢, 1 =0.

This normalization allows one to simplify the notation to a maximum, it is found by analyzing
the structure of the coboundary condition. We will proof the results mostly in the same order
than presented above, though it is not always possible to keep the exact ordering. In other
words, we shall start with the following case:
,j<0,i<j|:j=0:
The coboundary condition for (i,0, 1) suggests to define ¢ as follows:
— 1 +iNdor+Pri— i+ Vi +Pri+ (=1+DP14i0=Vi01
_(=1+1) Vio1

< $io:= m%ﬂ',o T
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The slashed terms cancel each other, the term ¢, is zero due to our normalization. Starting
with i = -1, i decreasing, we obtain a definition for ¢; ¢ and get U/Ii,o,1 =0 for —A < i <0 after
the cohomological change. Next, consider the coboundary condition for (-1+1,0,-1),
which suggests to define,

— 1A+ A+ (1+ D))o 1 —Prr7 + (=1 +20) P10 — (=2+ V)P0 =Y _2+1,0,-1
_ Y-a+10-1 1+ (=1+MA) (=1 +27L)¢
—(=2+4) —(=2+A) 0TV (247"

<> ¢P_10: 2,0

The slashed terms cancel, although they are zero anyway due to our normalization. The coeffi-
cients ¢9 -1 and ¢_, 4 o are already defined due to the previous result, i.e. the ¢, o are defined
for —A < i < 0. Because of our assumption A # 2, we thus obtain a definition for ¢_, ¢, and
we also obtain ' 141,01 = 0- As we now have a definition for ¢_) o, we can come back to the
coboundary condition for (i,0,1), which yielded:

(- 1+l)¢ Vio1
GaA) Tt T

bio:=

Starting with i = -1 —1, i decreasing, we obtain a definition for ¢; o and get 1//’1.,0'1 =0fori<—-A.
All in all, we used up all ¢; o with i negative in order to obtain the first two announced results.
Let us consider the next case:

I,j<0,i<jl:j=-1:
Consider the coboundary condition for (i,—1,1), which suggest the following definition:

—iAp_11+2¢p0,;i — A+ DPp_14i1— (1+i+ V)P, 1+ A+i-ADpi1+(=1+DP14i-1=Vi-11
2 (=1+1) Yi-1,1

' -1—————— for —-A+1l<i<-1.
(—1+i+/1)¢0’l+(—1+i+/1)¢1+”1 —l+itn) O A+l<ic<

S ¢pi-1:=

The coefficients ¢_1,1, ¢-1+i,1 and ¢; 1 are zero for -1 +2 < i < —1 due to our normalization.
The coefficients ¢ ; have been defined previously for i < 0. Hence, we obtain a definition for
¢i-1andgety | =0for -1+1<i<-1. Next, let us see what happens to the coboundary
condition (4.86) - for (=A1+1,-1,1):

(=1+A)AP_11 + 2(/)0 1-2—2(=1+ A)p1-21 = A2 1+ (=2+ VP11 =W_341,-11

1//—/’L+1,—1,1
—— o1 At P21t

@ p-a1= =T

A
( 2+7L) (-2+A)

The coefficients ¢_1,; and ¢,_,,; are zero due to our normalization. The coefficient ¢ ;-1
has been defined previously, as it is of the form ¢ ; with i negative. Moreover, the coefficient
¢p_p+2,—1 is already defined, as we have a definition for ¢; _; for —A+1 < i < —1. Thus, as we have
A # 2 by assumption, we obtain a definition for ¢_»,; and in the process we get v’ , i1-11 =0
Next, let us come back to the coboundary condition for (i,—1,1) which yielded:

%2 4 o AHiZA)
P = i T et T
(-1+1) Yi-1,1

P1+i-1—

+(—1+i+/1) (-1+i+ )"

In particular, for i = —A, we may define,

Pp_pr-1:==2¢0 -2+ P11 —AP_1_21+P1_A -1+ AP1_A 1 —P_a1 +F2AP_p 1+ W11
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The coefficients ¢p_;_, ; and ¢;_,,_; are zero due to our normalization, while the coefficients
¢o,—2 and ¢_,; have been defined previously. Consequently, the coefficient ¢_, _; is well-
defined and we get ¢ 1.1 = 0. Coming back to the coboundary condition for (i,—1,1)
with i < — A, we define:

(=1+1) Vi-11

—_—  prej - —— f < —A.
+(—1+i+)L)¢1+l’1 (-1+i+A) or <-4

bi-1:

AL

Recall that ¢ ; is already defined for i negative. Starting with i = -1 —1, decreasing i, we obtain

definitions for ¢p; -1 i < —A and we get v, _, ; =0 for i <—A. This proves the third result.
,j<0,i<jl|:j=-2:

Consider the coboundary condition for (i,—2,1), which suggests to take the following

definition for ¢:

(1= iNps1 +3¢p-1,i = R+ DP_24i1— (=2+i+ i
+ (1 +i=-20)¢pi1+(=1+D)P14i—2=Vi_21

S ¢ o= 3¢_1,i— R+ DP_2rin+A+i=20)Pi 1+ (—1+DPrei—2—Vi-21) .

-2+i+A (
The slashed term is zero because of the normalization. The coefficient of level minus one has
been defined previously, while the coefficients of level plus one are either zero due to the nor-
malization, or have been defined previously. Starting with i = —3, i decreasing, we obtain a
definition for the coefficients ¢; _» and get w’i'_m =0 for -1+4+2 < i< —2. Next, we want to
obtain a definition for ¢p_,.» _». To do this, we need to find a definition for ¢; » with negative i
first. Consider the following coboundary condition (4.86), for (i,2,—1):

=3¢1i— A+ NG + (L +DP_14ip+ (—1+i+20)¢p;
+(=2-i+MVi2— (=2+DP2+i-1 =Vi21
1 . . .

S Po1rip = m(39bl,i —(=1+i+20) i1+ Q+i-VPi2+ (=24 Dori—1+ Vi2,-1).
We have to leave the coefficient ¢, _, arbitrary, or put it to zero. The author was not able to find
a relation providing a consistent definition for ¢, _». Hence, the coefficient given by ¢, _, is
lost in the sense that it cannot be used to cancel some coefficient y; ; x. Starting with i = -2 in
the expression above, decreasing i, we obtain a definition for ¢);» i < -2 and we gety;, |, =0
for i < 0. Recall that the coefficients of level minus one and plus one are either zero or already
defined for i < -2 in the expression above. Remember also that we have A # 2 by assumption.
Next, taking i = 0 in the expression above, we obtain a definition for the coefficient ¢ » defined

as:
1

$po2:= o /1(—5/24,/2+ (1=20)¢po,-1 + 310~ P2-1 + Yo,2,-1) -

The coefficient ¢ —; being already defined, we obtain a consistent definition for ¢by » and 1//6,27_1 =
0. All in all, we obtain w/i,z,—l = 0 for i <0, which corresponds to the second result listed in the
case for i <0, j > 0. In total, we now proved four results out of the 13 results. Recall that our
most recent aim was to find a definition for ¢_, ., _». This can now be achieved by considering
the coboundary condition for (-1 +2,-2,2), yielding:

1
(Po_p,—2:= 1 (=2+NAP_22+4Po2-2+ (4 =3N) P22 —APs_p, 2+ (=4 +D)P_12—W2_2 _22).
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Recall that we have A # 0 by assumption. The coefficient ¢_; » is left arbitrary as stated before.
The coefficients of level zero and of level plus two appearing in the expression above have been
defined previously. Similarly, we already have a definition for the coefficients ¢; _» for —A +
2 <i<2, thus ¢p_44 > is defined. Consequently, we obtain a definition for ¢,_, _» and get
v, 122 = 0. Having obtained the desired definition, we can come back to the coboundary
condition for (i,—2,1), which yielded:

bi—2 (B—1,i — R+ DPosii + L +i =20 Pi1 + (=1+ DPrai—2—Wi—2.1) -

—-24+i+A
Starting with i = —A + 1, i decreasing, we obtain a definition for ¢; _» and get 1//l _y = 0 for
i < —A + 2. This finishes the proof of the two results listed in the present case. The next case to
consider is the following:

Lj<0,i<j|:j<-2:
The result we want to prove is the following: y/; ji=0fori#-A-jand v a—j,j+1,-1 = 0- This
can be done by induction. The base step corresponds to j = —3 and must be computed explic-
itly. The coboundary condition (4.86) for (i,—3, 1) gives us a definition for ¢; _3:

pi_3:= (2=iA)p_31+4p_2;—B+i)Pp_31i1

+ (A +i=-30)pi1+(=1+i)Pp14i-3—Yi-31). (4.104)

-3+i+A

The coefficients of level superior to level minus three appearing in the expression above are
zero or already defined for negative i. Hence, the expression above offers a definition for the
coefficients ¢; _3 for -1+ 3 < i < -3 leading to w;’,—f&,l =0for -1+3 < i< -3. Asusual, we need
to find a definition for ¢p_ .3 _3 by using a different relation. In fact, the coboundary condition
for (-1 +3,—2,—1) provides such a definition:

Pp_33-2:=—CB+(=3+MAV)p_2_1—(=5+A)P1-1,-1+(-4+N)pa_) 2
+ (1 =20 p3-1,—2—2¢P3-2,-1 +3AP3-3 -1 +P3-2,-2,-1-

The coefficients of levels minus one and minus two appearing in the expression above have al-
ready been defined previously. Hence, the coefficient ¢_33_, is well-defined and we obtain
w3 = 0. Next, we can come back to the coboundary condition for (i,-3,1) given in
Startlng with i = -1 +2 in (4.104), decreasing i, we obtain a definition for ¢»; _3 and
get wl,—?,,l =0 for i < —A + 3. This concludes the proof of the basis step.

In the following, we can use induction. Let us use induction on j. Suppose the statement holds
true for j+1, j < -3, 1i.e. ¢; j+1 is defined for all i < 0 and we have v/ ]+11—0f0ri7£—j—1—/1
(i =0), as well as w—]t—j—l,j+2,—l = 0. Let us check whether the statement holds true for j, i.e.
whether we can find a consistent definition for ¢; ; i < 0 leading to 1//;-, N Ofori#—-j—A
(i =0), as well as w/—}t—j,jﬂ,—l = 0. Consider the coboundary condition for (i, j,1) with
i,j=<0:

1 .. ) ..
¢, ji= m((l i+ jAPi + (1 +DP14i— A+ j+ildj1
tPr+ji—JPr14jit i+ PPivii—vij). (4.105)

The coefficients of level one appearing in the expression above are either zero or already de-
fined. The coefficient ¢, ;; is defined by induction hypothesis. For fixed j, starting with



4.3. THE THIRD ALGEBRAIC COHOMOLOGY 141

i = j—1,1idecreasing (j < i <0 is already defined because of antisymmetry and the induc-
tion hypothesis), we obtain a definition for ¢; ; for —A - j < i < 0, leading to 1//2., N 0 for
—A—j<i<0.Note that the pole i = —A - j with i, j <0 is not realized if —A — j > 0. In that case,
no pole occurs in the expression above, the ¢; ;’s can be directly defined and the statement is
obtained immediately. So let us assume in the following the problematic case, -1 — j < 0. Next,
we need a definition for ¢p_, _ ; ;. This can be obtained by considering the coboundary condition
for (-1 —j, j+1,-1), which yields:

1 . :
$j—j-r1= m((}(—l + )+ A Prej 1+ L+ 2+ Dpr1op o1 — (=14 j+ NP1 j-p 14

1+ 1+ AP a1 = P jor 14 F2AP—j a1+ — W j-A1+j,-1) -

The coefficients of level minus one have been defined previously. The coefficients of level j + 1
are defined by induction hypothesis. Since we consider j < —3 (i.e. in particular j # —2), we
obtain a consistent definition for the coefficient ¢; _;_, and we get v’ JAl+j-1 = 0. Next, we
can come back to the coboundary condition for (i, j,1) given in (4.105). Starting with i = —j —
A—-1in li decreasing i, we obtain a definition for the coefficients ¢; ; and get 1//2., = 0
for i < —A'—j. We conclude that the statement holds true for j. This concludes the proof of the
case under consideration.

:

First of all, recall that the second result listed in the present case has already been obtained, i.e.
1//’1.,2,_1 = 0 for i < 0 via the definition of the coefficients ¢; », i <0, see the case: i, j <0 j = -2.
Recall also that ¢; ; is already defined or zero for all i € Z. The remaining coefficients to define in
the present case correspond to the ¢; ; with i <0 and j > 2. This can be done straightforwardly
by considering the coboundary condition for (i, j, 1), yielding:

bir+ji= (—A+i+jNpir+ G+ j+ N j— (—1+iD)p14ij

-1+j
+(A+j+iMgji+ - Pdivj1+tviji).

Fixing j = 2, starting with i = 0, i decreasing, we obtain a definition for ¢; 3 i < 0 and we get
1//;.2'1 = 0 for i = 0. Doing the same for increasing j, we obtain a consistent definition for all ¢; ;
i <0, j>2leading to wli,j,l =0fori =<0, j>0. This corresponds to the first result announced
in the present case. The penultimate case to consider is the following:
Lj>0,i>jl:j=2

First of all, recall that the coefficients ¢; _; have been defined for i <0 in the case i,j < 0,i <
j : J = —1. The coefficients ¢_;,; have been defined for j > 0 in the previous case, just above.
Hence, all the coefficients of level minus one are already defined. From the coboundary condi-
tion for (i,2,-1), we obtain the following:

1
$ip:= —m(?ﬂbl,i +(L+ iD=~ A+ D142 = (=1 +i+20) ;-1

+(=2+D)Pp24i-1+Wi2-1). (4.106)

Starting with i = 3, increasing i, we obtain a definition for ¢; » with 2 < i < 1 -2, leading to

v, ,=0for2<i<A-2. Asbefore, we need to obtain a definition for ¢4 5, by using a

different coboundary condition. Consider the coboundary condition (4.86) for (-2 + A,-2,2),
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which yields the following definition:

1
P_2422:= 1 (=(=2+NAP_22+4¢po 2.2 —AP_4122
+@=-3N0)p_oip, 2+ (=4+A)Pp _2—VY_241,-22).

Recall that the coefficients of level zero ¢; have been defined for i > 0 in the previous case
(except for ¢, 9, defined in the case i, j <0, j = -2, and ¢, which is zero by normalization).
Recall also that the coefficient ¢_,, is left arbitrary. Moreover, the coefficients ¢_,., _» and
¢, correspond to coefficients of the form ¢; ; with i <0 and j > 2, which have been defined
in the previous case. Note that for A =3 and for A =4, ¢p_5,) _» is of level plus one and equal to
2,—2, respectively. We already abundantly commented on both. Finally, the coefficient ¢_4. 2
is also defined because we obtained above a definition for ¢; » with 2 < i <1 —2. Consequently,
since we also have A # 0 by assumption, we obtain a consistent definition for ¢_,. », leading
to ' 24d-22 = 0. Coming back to the coboundary condition for (i,2,—-1) given in , we
can start with i = A —1, i increasing, and obtain a definition for ¢; » with i > A — 2 leading to
’//,1',2,—1 =0for i > A —2. This proves the two results listed for the present case. We have one final
case left to consider:

Lj>0,i>j|:]>2:
We will proceed once again by induction. The basis step corresponds to j = 3 and needs to be
computed explicitly. Consider the coboundary condition for (i,3,—-1) yielding:

pi3:= Ao+ 2+iNp3 1 —Q+DPp_14i3—(=1+i+31)p; 1

+(=3+D)P34i-1+V¥i3,-1). (4.107)

3+i-A

The coefficients of levels plus two and minus one have been defined previously. Starting with
i =4, increasing i, we obtain a definition for ¢; 3 3 < i < 1 -3 leading to w/i,S,—l =0for3<i<
A —3. Note again that the pole i = A — 3 is not reached for A < 7 when i starts at i = 4. In that
case, no pole arises and the coefficients can be obtained directly. As before, we will treat the
more complicated situation and assume that the pole is realized. A definition for the coefficient
¢1-3 3 can be obtained by considering the coboundary condition for (A -3,2,1):

$_3123:= B+ (=3+NN)Pz1— (=2+30)P 317171~ 1 =2A)P_3422— (=4+V)Pp_2,2
+A=5)P 41T + V¥ _3422,1-

The coefficients of level plus two appearing in the expression above have been defined in the
previous case. Hence, we obtain a consistent definition for ¢_3,, 3 and we get ', 121 =0
Coming back to the coboundary condition for (i,3,—1) given in , we can start with i = 1—
2, i increasing, and obtain the ¢; 3 for i > 1 -3, yielding w;',3,-1 =0 for i > A - 3. This concludes
the proof of the basis step.

Next, let us use induction on j. Suppose the result is true for j—1, j > 3, i.e. we have a definition
for ¢p; j_1 forall i > 0 and we have . ,=0fori#—j+1+A(i>0),aswellasy’

ij-1,— —j+1+1,j-2,1 =
0. Let us check whether the statement holds true for j, i.e. we need to find a definition for ¢; ;
for all i > 0 leading to w;‘,j,—l =0fori#—j+A (i >0), as well as 1,(/’_].+M_1,1 = 0. Consider the

coboundary condition for (i, j,—1), yielding:

1 . . .
bi,j= m((l +D)P-14ij+ (C1+i+ jAPi 1= L+ 14,

— (iAo + (=i + PPisjm1 = Wi jo1)- (4.108)
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The coefficient of level j —1 is defined per induction hypothesis. Starting with i = j+1, i in-
creasing, we obtain a definition for ¢; ; with j <i < A - j, yielding w,i,j,—l =0forj<i<A-—j.
We assume again that the pole i = A — j can be realized, the other case being immediate. In
particular, this implies A — j > 0. We thus need a definition for the coefficient ¢,_; j, which is
obtained from the coboundary condition for(A—j,j—1,1):

Giirri= 57 14D A2 p_rij+ (142 = Dporean + L+ =1+ )P jan

+ (=20 jip-14j+ (J+A=DP1-jr,—14j —V—jrr-1+j,1) -

The coefficients of level plus one are zero or have been defined previously. The coefficients of
level j —1 are defined by induction hypothesis. As we consider j > 3 and in particular j # 2, we
obtain a consistent definition for ¢; _ ;1 leading to v’ ., A-14j1 = 0. Next, we can come back
to the coboundary condition for (i, j,—1) given in . Starting with i = A — j + 1, increasing
i, we obtain a definition for ¢; ; i > A — j resulting in 1//’1., 1= 0 for i > A — j. Therefore, the
statement holds true for j. This concludes the proof of Lemma(4.3.5 O

Note that for A = 3 and A = 4, the critical situations correspondingto i+ j=-Aandi+j=A7

are never reached except for coefficients of the form y; o; with i < 0. Hence, for these values
of A the proof of level zero being zero immediately implies the vanishing of levels plus one and
minus one.
This first result for A > 0 given by Lemma[4.3.5] already presents fundamental differences with
the case A < 0. In fact, there are missing values of coefficients in level plus and minus one which
could not be annihilated by a cohomological change. Instead, coefficients of level plus and
minus two have been canceled. This will lead to the fact that level minus one can not be treated
exclusively later on. Instead, it will have to be analyzed in parallel with levels plus and minus
two. However, a real issue is due to the fact that the coefficient ¢_5 5 is lost, meaning it could
not be used to cancel a coefficient of the 3-cocycle. In the case of A <0, the coefficient canceled
by ¢_, corresponded to ¥_3.3,22. In the case of A > 0, its analogue would have been the
cancellation of a coefficient similar to y3_, _» ». This missing piece leads to the fact that a proof
similar to the proof of Theorem[4.2.1]is very hard to obtain.

Concerning level zero, it is possible to construct a proof that all the coefficients of level zero,
i.e. all y; jo, are zero. The result is given by Lemma below. The assumptions of Lemma
correspond to the results of Lemmal4.3.5

Lemma4.3.6. Lety € H3 (W, ") with A € N\{0,1,2,5,7,12,15} bea 3-cocycle of degree zero with
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coefficients y; j1, Wi j-1, Vi j2 andy; j —» satisfying the following conditions:

P . .|, 7 — . i¢_ﬂ,: wlro’lzo
m ]=0: { and:  Y_2410-1=0 '
J

f=-1: ¥;-1:=0,
. { iZ-1+2: 1//1',—2,1:0
J==2 and : Y _A42-22=0 "'
j<-2: {l¢_1_ﬁ . ,
and : W_r-jj+1,-1=0
1//1',2,—1 = 0)

. . 5 . iZ1-2: wig_I:O
,j>0,i>7]: =2 i ,
{i#ﬂ—j: Vij-1=0
and : Yar-jj-11=0 ’

j>2

Then:
Vijo=0 Vi,je”Z.

Proof. Let us write down the cocycle condition (4.85) for (i, j,0,1), giving the following recur-
rence relations:

0=Yss7+(L+i+jDPi01++j+NVij0+igi— A+i+Hyin
—(=1+DY14ij0— A+ j+iNWjo1 —ji+ 1+ PDwirjio+ (—i+ Wirjon

S Yij0= (—A+i+jNyio1+ 1+ DYy 0+ A+ j+iMyjon

i+j+A
—(=1+ pW14ji0+ = PDWisjoa) for i, j decreasing (4.109)

S Y1+j,i0 = (A+i+jMyion—UG+j+ DY jo+ (1+DP14ij0

-1+j
+ A+ j+iMyjo1+iVirjo1— jWi+jo,) for i decreasing, j increasing. (4.110)

The slashed terms cancel each other. We will mostly follow the order of cases given in the state-
ment above, i.e. the first case we consider is the following:

i,j<0:j=-1
Putting j = —1 in the recurrence relation (4.109), starting with i = —2, i decreasing, we see
that ¢; 190 =0for —1+1 < i <0. Recall that we have y;y; =0 for i <0 and i # —1 and also
W_j+1,-1,0 = 0 by assumption. Inserting j = -1 and i = -1 + 1 into (4.109), we obtain:

1+ DAY 100 +Yora=11 + Yra=1-1

—2(=1+MY1-2,01 +* AP2-p,-10+ (=2+ N P_101 =0.

The slashed terms cancel each other. The terms ¥ _19,; and y1_,,,1 are zero by the assumption
Wio1=0fori<0andi# —A. The term y,_) _; ¢ is zero because of the result ¥; _1 = 0 for
—-A+1<1i=0. Since we also have 1 # 2 by assumption, we obtain y_, o; = 0. This means that
the terms of level plus one appearing in can now be ignored for all i < 0. Hence, we can
puti=-A, j=-1in and continue with i decreasing such that we obtain:

Vi 10=0 Vi<O. (4.111)
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The next case to consider is the following:

I,j<0|:j=-2
Inserting j = -2 into (4.109), starting with i = —3 and decreasing i, we obtain ;¢ = 0 for
—-A+2 < i =0. Next, we will need to get a result for ¥ _j .2 0. This can only be achieved by
considering the recurrence relation (4.110) with i <0, j > 0. More precisely, we will need a
result for ¢; » o for i <0.
Consider the cocycle condition for (i,2,0,-1):

W a7 +3W1i0— A +iM)Po0 -1 -2y — (L +DY_14i20
+(1+i+20)¥i 01— Wiz=T+ R+i-VW;i20— (=2+DW21j0-1=0
2+i-A
SYi-120= H—lllli,z,o- (4.112)

The slashed terms cancel each other. The term v ; o is zero because of the result y; o,; = 0 for
i =0. The term ¥, - is zero because of the assumption ;2 -1 = 0 for i < 0. Finally, the terms
Wio,—1and Yoy 0,1 (for i < —2) are zero because of our result . Clearly in the recurrence
relation above (4.112), we need a result for _,, as a starting point. From the recurrence
relation above, we get the following expressions for i = -3, —5:

W_320=AW_220,
A+2)A+DA
Y_520= fﬂf—z,z,o-

These values can be inserted into the cocycle condition (4.85) for (-3,-2,2,0):

Y520+t G20 3 20-1+20)Y_320—2W 232 +3AW_220-5%¥_1,20—2W2-32=0
=0 =0
A+2)(A+1DA
@ —_—
6
< (=7+ M) (-2+ A)/lw_zyg,() =0.

W_220— 1 +20)AW_220+3AW_220=0

As A ¢ {0,2,7} by assumption, we obtain y_, 2 o = 0. In the first line of the expression above, the
term y_;,_» is zero because of (4.111). The term y_3 _» ¢ is zero because from (4.109), we have:

Y_3-20=

=4y _5 20+t3 WY_q- .
oo T4¥2-20%3 Y130 )

=0 =0 cf.
Since A # 5 by assumption, we have ¥ _3 ¢ = 0. Inserting ¢_»» o = 0 into our recurrence re-
lation (4.112), starting with i = —2, i decreasing, we obtain ¥; 20 = 0 for i < —3. All in all, we

have:
Wiz20=0 Vi<O0. (4.113)

Recall that this result is needed to analyze y_,.2 20, which can be done by considering the
cocycle condition (4.85) for (-1 +2,-2,0):

(=2+ VAW 202 +2W 27772 + 2Wa -T2 + AMP2_2, 20+ 4 =3M)W2_202

+AW4_p,—20+ (=4+N)WY_302=0.

The terms w_202, ¥2-1,0,2 and ¥_, o2 are zero because of our previous result (4.113). The coef-
ficient w4_) 2 is zero because we already have established that y; 9o =0for -1 +2<i <0.
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Since we have 1 # 0 by assumption, we obtain y,_3 _» 0 = 0. Putting j = —2 in (4.109), starting
with i = -1+ 1, i decreasing and using yw,_) _2 =0, we obtain y; »0=0fori <-A+2. Allin
all, we obtain the following result:

Wi 20=0 Vi=<O. (4.114)

In the last step, we can proceed by induction to prove the result for generic negative j.
I,j<0|:j=-3

We have proven that y; jo =0V i <0 for j = —1,-2. Suppose the result holds true for j + 1,
i.e. ¥;j+10=0Vi<0,j<-3. Let us check whether it holds true for j, i.e. y;;o=0V i <0.
Consider the recurrence relation for fixed j. Note again that the terms of level plus one
are zero because we have ; o,; = 0 for i <0 by assumption and also due to one of our previous
results. Starting with i = j —1, i decreasing, we obtain y/; jo = 0 for —A — j <i < 0. In the case
that —A — j is positive, the pole is never realized and we immediately obtain y; j0o =0V i <0.
Let us consider the non-trivial case where the pole i = —A — j is realized. In that case, we need
to obtain a result for the coefficient ¢_,_; j 0. This can be achieved by considering the cocycle
condition for (-1 —j,j+1,0,—1), yielding:

—yéiffﬁm?7+(2+jhﬂﬁj—mo+(ﬂ_1+A)+A%Uﬂ+ﬂkd_ililﬂﬂhﬁﬁfﬁ:j

+A+2j+Dy1p0-1+ 1+ j+ DY _jp1cj0+t 1+ j(=1+A)W_j_20,-1
+ M7, —W+ -2y _j-11+j0=0.

The terms ¥1+,0,-1, W1-2,0,-1 and ¥_;_» 0 -1 are zero because of our result . The terms
Y_1-j-a1+j,0 and ¥ _;j_) 14 j,0 are zero by our induction hypothesis. It follows ¢ ;10 =0aswe
have j < -3, ie. j # -2 in particular. Coming back to the recurrence relation (4.109), starting
with i = =1 - j— A, i decreasing, we get y/; jo = 0 for i < —j—A. Allin all, we get ¥; j o = 0 for
i <0. Thus, the induction holds true for j, and all in all we obtain:

Vijo=0 Vi j=<0. (4.115)

The next case to consider is the following:

First of all, the terms of level plus one appearing in are zero because we have ;01 =0
for i = 0 by assumption and also due to one of our previous results, and also because of another
of our assumptions, namely vy; j; = 0 for i <0 (in particular, i = 0) and j > 0. Next, recall that
we already have the following result: ;5o = 0 for i <0, see (4.113). Hence, starting with j =2
and i = —1in (4.110), decreasing i and increasing j, we immediately obtain the following result:

Vijo=0 Vi<0,Vj>0. (4.116)
The final main case to consider is the following:
i,j>0
To analyze this case, we have to write down the cocycle condition (4.85) for (i, j,0,-1), giving.

~Worr— L+ DY 14 o+ (1 + i+ jAWi0,-1 + iWsgm1 — (1 iP5 501
+U+j-Dyijo+Q+Pw-_1+jio— 1+ j+iNY o1
—JWiimi+ (=i Wivjo-1=0
1+1) (1I+))
S Yij0=

— Y 14ij0—————W_1+ii0- 4.117
(i+j—ﬂ)w 1+4,,0 (i+j—7t)w 14,4,0 ( )
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The terms ¥ 0,1, ¥j,0,-1 and ¥4 j 0,1 are zero due to our previous result . Note that for
j =1, the coefficients ¥/ 1 o i > 0 are included in the coefficients of the form v; ;, with i <0 (in
particular i = 0) and j > 0, which are zero by assumption. Hence, it suffices to start with j = 2.
Putting j = 2in (4.117), starting with i = 3 and increasing i, we obtain y/; 5 o = 0 for 0 < i < -2+A.
Again a pole appears such that we have to find a result for y_5, 2 ¢ by considering the cocycle
condition for (-2+1,2,0,-2):

=2 o372 — (=2+ NAW2,0,-2 —2Wa 77,2 — AW _41220
+(=4+3M)Y 242,02 AW _24220— (—4+ V) Pp0-2=0.

The terms Ay20,—2, W_241,0,—2 and ¥, o2 are zero because of our result . The term
W_4+1,2,0 is zero because we already established ;29 =0 for 0 < i < -2+ A. As in addition
we have A # 0 by assumption, it follows ¥ _5,3 2o = 0. Coming back to our recurrence relation
(4.117), putting j = 2, starting with i = —1 + A, increasing i, we obtain ;0 = 0 for i > -2+ A.
All in all, we have:

Wizo=0 Vi>0. (4.118)

To prove the result for generic positive j, we can proceed once more by induction. We know
already that the result is true for j = 1,2. Suppose the result holds true for j —1,i.e. ¥; j-10=0
V i >0 for j = 3. Let us check whether it holds true for j, i.e. ;o =0V i > 0. For fixed j
in (4.117), starting with i = j + 1, increasing i, we obtain y; jo = 0 for 0 <i < A - j. For large
Jj» we have A — j < 0 and no pole appears. We immediately obtain y; jo =0V i > 0. Consider
the non trivial case where the pole at i = A — j is realized. We can obtain a result for ¥, _; ;o by
considering the cocycle condition for(A—j,j—1,0,1):

Yy —jra=17, — (= jA+ AW 1400 —W+ (=2+ )W —j+r0
F (=142 =Ny 14201+ A+ =1+ D)WY _jia01+ (1+2DW a0 140

—M+W+ (I+j-D¥1-j+a,-1+j,0 =0.

The terms ¥ _1+,0,1, ¥-1+1,0,1 and ¥ _j 0,1 are zero because of our assumption y; j; =0 fori <
0 (in particular i =0) and j > 0. The terms ¥ _ ;.3 -1+ j,0 and ¥1- 42,1+ j,0 are zero by induction
hypothesis. Since we have j > 3 and in particular j # 2, we obtain ¥; ;.10 = 0. Using this
result in the recurrence relation for i = —j+ A +1, increasing i, we obtain y; jo = 0 for
i >—j+A. Allin all, we have y; j o = 0 for i > 0. Therefore, the induction hypothesis holds true
for j and we conclude:

Vij0o=0 Vij>0. (4.119)

The results (4.115), (4.116) and (4.119) correspond to the announced statement of Lemmal4.3.6
O

In the next step given by Lemmabelow, we will focus on level minus one (plus one in
the case of both indices being positive). However, in the cohomological change in Lemma[4.3.5]
we can already see that some coefficients of level plus two and minus two appear. Hence, it is
not possible to separate the analysis of levels plus and minus one completely from levels plus
and minus two. In the following, the aim is to annihilate levels plus and minus one, but the
proof also needs some analysis of levels plus and minus two.
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Lemma4.3.7. Lety € H3 (%, ™) with A € N\{0,1,2,5,7,12, 15} be a 3-cocycle of degree zero with
coefficients y; j0, Wi j1, Vi j-1, Vi j2 andy; j o satisfying the following conditions:

i,j=<0,i<j|: j=-1: v;_11=0,
{i#—ﬂ+2: 1//1',—2,1:0

]

_ and : W-r+2,-22=0
j<- { i#=A=j: ¥ij1=0 ’
and : W_r-jj+1,-1=0
1//1',2,—1 = 0)

. . 5 . iZ1-2: wig_I:O
,j>0,i>7]: =2 i ,
/ UL { and : Yr-22-2=0

ji>2 {iﬂ_j: Vig=0
e and : 'WA—j,j—l,l =0
and
Vijo=0 Vi, je”Z.
Then:

1//1-,]-,1:1//1-,]-__1:0 Vi,jEZ.

Proof. This time, the easiest case to examine corresponds to the one with indices of mixed
signs, hence we will start by considering the following:

First, note that coefficients of the form v, _;,; n € Z are always zero. In fact, for n <0, v, is
zero due to our assumption listed in the first line of the statement above. Moreover, for n > 0,
Wn,-1,1 is zero due to the assumption y; j; = 0 for i <0, j > 0 listed in the sixth line of the state-
ment.

The cocycle condition for (i, j,1,—1) yields the following recurrence relation:

1
-1+j
—(1+i+tj+ Ay +A+i+j-ADy; i+ 0 —Dyie 1

+ A+ PDY-14j,in+ G+ iV =17+ ([ — Wivs=1,1) -

Vitej-1=— (2yor7— A+ DY 1441 — G+ jAWi=1T

The slashed terms are zero because they are either of level zero or of the form v, 1, n € Z.
Moreover, the underlined coefficients of level plus one are all of the form y; j; with i <0, j >0,
which are zero. The starting point of the recurrence relation above corresponds to ;> —; with
i <0. As these are zero due to our assumption listed in the seventh line of our statement, we
obtain |y; ;1 =0, i <0, j > 0| The next case we will consider is more complicated and corre-

sponds to:

In this case, on the one hand we have a few coefficients of level plus one which are not zero,
namely those of the form v; ;; with i + j = —A. On the other hand, we only have a few coeffi-
cients of level minus one which are zero, namely the ones of the form y; j .y with i+ j=-A+1.
The aim is to express the coefficients of level minus one in terms of those of level plus one,
which will act as temporary generating coefficients. The corresponding recurrence relation can
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once again be taken from the cocycle condition (4.85) for (i, j,—1,1):

Vij-1= A+ DY q4ij1+A+i+j =Dy j1+ 1+ DW144,5,1

-1+i+j+A
+ I+ D141+ A= PWr+ji,-1) - (4.120)

In the expression above, we already dropped the coefficients of level zero and of the form v, 11
n € Z. We see that the pole is realized at i + j = —A + 1. The terms of level plus one are non-zero
ati+j=-A+1W_14j1, Y-1+j,1) and i + j = —A (y; j1). Therefore we conclude y; j 1 =0
for i + j > —A + 1, by using the usual procedure, i.e. fixing j = -2, starting with i = -3 and
decreasing i, then for decreasing j starting with i = j — 1, and so on. Due to our assumption
Y_2-j+1,j,-1 = 0 listed in the fifth line of our statement, we can extend the result to y; ;1 =0
for i+ j = —A+1. The remaining coefficients y; ; -, with i + j < —A +1 can thus all be expressed
in terms of the generating coefficients of the formy_;_ ;1 for j <0and —j—A < 0. We consider
—Jj — A =0 since we analyze here y; j; and v; ; -, with both indices i and j negative, the case
of one positive and one negative index having been treated before. Therefore, it suffices to
show that the generating coefficients of the form y¢_;_, ;; for j <0 and —j— A < 0 are zero
in order to get ;-1 =0V i,j < 0. Actually, the number of generating coefficients can be
reduced. The generating coefficients are a prioriy_;_ j1 for —A < j < —2. However, due to the
alternating property, it is enough to consider y_;_, ; ; for —% +1 < j<-2. For example, for 1 =
10, a priori we have ¥_g_21,%-7,-31,%-6,-4,1,¥-5-51,¥-4,-6,1,¥-3,-7,1, ¥-2,-8,1 as generating
coefficients. However, due to the alternating property, it is sufficient to consider only the first
three coefficients. Moreover, j € {0, 1} reduces to cases previously analyzed.

For later use, we write down a particular relation between coefficients of level plus one and
minus one. Inserting i = —j — A in the recurrence relation above, we obtain the following
relation:

V_ojrj1=— A+ Py ayjjar+t 1+ Py joaa—Cl+j+ Ay a1
(1201t A+ j+ DY ja5,1
S jaj1= (1420w j 1)1 (4.121)

The indices of the terms underlined once of level plus one satisfy i + j # —A and are thus zero
due to our assumption given in the fourth line of the statement. The terms of level minus one
underlined twice are zero because of the assumption given in the fifth line of the statement,
meaning their indices satisfy i + j = —A + 1. The relation will be needed later on.

Next, we can obtain a recurrence relation for our generating coefficients y; j; with i + j = —A.
This can be done by considering the cocycle condition for (-j—-A+1,j,-1,1), yielding
after dropping terms of level zero and coefficients of the form vy, 11 n€ Z,

1 ) .
Wi-j-A-1+j,1= Tj(_(_l F V11— j-a1+ 2+ AW
=2(=1+Ny1-jaj1— G+ AP2_j-2j-1)

-2+j+A

—i—Ai1- 4.122
1+j L4 j-A1 ( )

SYi-j-A-1+j1=
The indices of the terms underlined once of level minus one satisfy i + j = —A + 1 and are thus
zero due to one of our previous results. The indices of the coefficient of level plus one under-
lined twice fulfill i + j # —A and are thus zero due to our assumption given in the fourth line
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of our statement. Therefore, the generating coefficients of the form v; ;1 with i + j = —A are
reduced to a single generating coefficient, namely w,_) 2.

Next, we consider two cases corresponding to A being even and to A being odd. The proof
for A being even is the shortest one, hence we will start with A even. As mentioned after the
first Lemma A = 4 automatically already has levels plus one and minus one equal to
zero. Hence, the following proof should be considered for A = 6. Consider the relation (4.122)
and take a diagonal term, i.e. suppose for example —j -1 =j o j= —% # —1. This implies
v_ Ay don = 0, since the right-hand side is zero as the coefficient y_ 11, is zero due to the
alternating property. We can use this as a starting point for the recurrence if we invert the rela-
tion (4.122), yielding:

1+

Vbt =

Yi-j-A,-1+j1-

Starting with j = —% + 2, increasing j until obtaining j = -2, we get _;_» ;1 = 0 for —% +1<
Jj < —2. These are all the generating coefficients of level plus one for fixed A, which comes with
% — 2 generating coefficients when taking into account the alternating property. Note that the
pole at j = —A +2 is not realized for —% +1 < j < —2. This concludes the proof for A even, i.e. we
have y; j1 =v;;-1=0V i, j=<0forAeven.

For A odd, the proof is more complicated because it needs to include a discussion about the
coefficients of level minus two. Let us assume A is odd. As remarked after the Lemmaf4.3.5, A =3
has automatically vanishing levels plus one and minus one. Since we do not consider A = 5,7 by
assumption, the following proof for A odd should be considered for A = 9. A recurrence relation
for level minus two is given by the cocycle condition for (i, j,—2,1), yielding:

Vi j,-2= (=3 -1,i,j = @+ DY -24ij1 — (141 + jAY; 21

—24+i+j+A
+A+i+j =201+ 1+ D14 j—2+ C+ PW-2+j,in
+(=1+j+iMyj 21+ A= PWr4ji-2+ 0= PWirj-21). (4.123)

Consider the situation i + j > —A + 2. No issues due to poles arise if this condition is satisfied.

Moreover, all the coefficients of level plus one v, 1 are zero if i + j > —A + 2, because in that

case their indices satisfy m + n # —A. Finally, also the coefficient of level minus one ¥ _; ; ; is

zero because we have i + j = —A + 1 due to the condition i + j > —A + 2. Starting with j = -3,

i = —4, decreasing i and j, we obtain y; j > =0fori+ j>-A1+2.Ati+j=-A+2, poles appear

in the recurrence relation (4.123). We thus have new generating coefficients appearing of the

form v j,—» with i + j —2 = —A for A > 9, which will be discussed later in Lemmal4.3.8|

Next, we compare the cocycle conditions for (-A +6,-3,-2,-1) and (-1 +5,-3,-2,-1). The

first one yields:

W_56-2,-1—2W_46-2,—2+6+(=6+VD)N)Y_3 21
+(=9+Ny3-p 21— 8+ NPy, 31+ 7+ VW53 3>
+(1-20)Ye-2,-3-2+(=2+30)We-,-3-1+B—4AN)Pe-2,2-1=0, (4.124)

and the second one:

W 55-4,-1—2W_45 22+ 6+(=5+)N)P_3_21

+(=8+NWo_p2-1—(=7T+NVY3_3 31+ (-6+A)Pys_) 3>
- 2/11//5_/1'_3'_2 +(-1+ 31)’(#5_/1’_3’_1 +(2- 4A)’W5_/1,_2,_1 =0. (4.125)



4.3. THE THIRD ALGEBRAIC COHOMOLOGY 151

The indices of the coefficients underlined once of level minus one satisfy i + j = -1 + 1, such
that the corresponding coefficients are zero. Concerning the coefficient of level minus two un-
derlined twice, its indices satisfy i + j > —A + 2, hence it is zero. Note that for A =9, only the
second equation will be relevant.

First of all, let us have a look at the non-zero coefficients of level minus one appearing in the
second equation (4.125). Using relation (4.121), we can express these coefficients of level minus
one in terms of the generating coefficients of level plus one. In a second step, we can use rela-
tion to express all the generating coefficients of level plus one in terms of the coefficient

Y_2+2,-21:

—Ws5-p-5-1+(=8+M)Wa_3 21— =7+ N)P3-2,-31
=(1-20)Ys5-3, 51— 1 =20)(=8+VyYa_p 21+ 1 -20)(=7+A)P3_) 31

1-2A
= _T(_7 +A)(=2+NAWo_32,1-

Next, let us have a look at the coefficients of level minus two appearing in (4.125). Using the
recurrence relation (4.123), we can express ¥_ 345 —4,—2 in terms of ¥_j16,—4,—2 and ¥_j 45 3,2,
aswellas ¥ _j 4,32 interms of ¥_)5_3 _o:

W5 A-42=2Y 6521+t O+ (=5+NA)WY_421-5¥_35 32
+3W_15-2,-4+ 9+ VY1221~ 7T+ VP32 41

+(=2+3M)Ys5-2,41+@=50)Ys5_4 21+ A—=DWPe_3, 42

S Y5 2,-42=5s5-1,-3 2+ A—DYPs_2 42,
and

2
Wap-3-2=W 5421+ 2+A)W_3_21+3¥_14-2,-3

+(=7+ /1)'(//1_,1,_2’1 —(—6+ A)’WZ—A,—?;J +(—2+ 3/1)1//4_/1,_3,1
+B—4MYs-1,—21+A-3)¥s5-2,-3,2
S Yy2-3-2=A=3)Ps5-3,3-2.

The coefficients underlined once of level plus one are zero by assumption, because their indices
fulfill i + j # —A. The coefficients of level minus one underlined twice are also zero because their
indices satisfy i + j = —A + 1. Inserting everything into relation (4.125) yields:

1-2A
_T(_7 M2+ NAWo_p 21+ (=7+A)(=4+V)Ys5_2 32— 24— V)WPe_p,—42=0.

Comparing this equation to the relation (4.124), and since A # 4 because A is odd, we conclude
Wo_p,—21 =0for A ¢1{0,2,7, (%)}. Due to the relation , we obtain that all the generating
coefficients of level plus one are zero and hence, we obtain the desired result, ¥; j1 = ¥; j -1 =
0V i,j<0. It remains to show the same result for i, j > 0.
i,j>0

The proof is very similar to the one given for 7, j < 0. In this case, most coefficients of level plus
one are non-zero, whereas only a few coefficients of level minus one are non-zero. Hence this
time, we will take the coefficients of level minus one v; ; 1 with i + j = A as generating coeffi-
cients. First of all, we will express the coefficients of level plus one in terms of the coefficients
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of level minus one. This can be done by considering the coycle condition for (i,j,-1,1)
which yields:

Vij1= /1((1 + DY _14ij1+ (G144 j+ Dy 51+ A= DW14ij,1

1+i+j-
(1= Py 14jin+ 1+ Pyrei-1).

In the expression above, we already dropped the coefficients of level zero and of the form v, 11
n € Z. The pole is realized at i + j = A — 1. The generating coefficients of level minus one are
non-zeroati+j=A-1 W14 -1,¥1+ji-1) and i+ j=A (y;;-1). Hence,aslongasi+j<A-1
is satisfied, we have vy; j; = 0, by the usual procedure, taking j = 2, i = 3, increasing i, then
continuing with increasing j, always starting with i = j + 1. Due to our assumption given in
the last line of the statement, we can extend the strict inequality to equality, i.e. ¥; ;1 = 0 for
i+ j < A-1. The remaining coefficients y; j ; with i + j > A1 thus can all be expressed in terms
of the generating coefficients y; j -1 with i + j = A. Therefore, it suffices to show y; ; -1 = 0 with
i+ j = A. In particular, we will need the following relation between coefficients of levels plus
one and minus one, obtained by considering the cocycle condition for(—j+A,j,-1,1):

Y_jirj1 =+ PDY_14j—jear+ 1+ Py —jea1+ A= j+AW_1-j1a51
+(1+20)Y i1+ A+ - DP1-jiaj-1
Sy _jiaji= (1420 _j; 1. (4.126)

In the expression above, we already dropped the coefficients of level zero and of the form v, 1 1
n € Z. The terms underlined once of level plus one are zero due to the assumption given in the
last line of our statement, since the indices of the coefficients satisfy i+ j = A—1. The coefficients
of level minus one underlined twice are zero due to our assumption given in the second-to-last
line, because their indices satisfy i + j # A. Next, we will need a recurrence relation on our
generating coefficients y; ; 1 with i + j = A, which can be obtained from the cocycle condition
for(—j+A-1,j,-1,1):

Witj-1-j+A-1=— A+ NDY-r4j-1-jear+ (j+ AP _2_jiaj1

-1+
F2(-1+ MY _1-jipj1+QC+j—NY_jipj,-1)
2+j-21
SYl4j—1-j+A,-1 = THW—j+A,j,—1- (4.127)

The coefficients underlined once of level plus one are zero due to our previous result, i.e. ¥; j1 =
0 for i+ j < A—1. The coefficient of level minus one underlined twice is zero due to our assump-
tion given in the second-to-last line of our statement, i.e. its indices satisfy i + j # A. As before,
we will make a case differentiation between A even and A odd, and start again with A even.

The remark made for A = 4 in the case i, j < 0 holds true for the present case 7, j > 0, hence the
following proof should be considered for A = 6. As before, we can make appear a diagonal term
in the recurrence relation (4.127) by choosing j = % # 1. Thisimplies w2 , =0, which can

+1,4-1,-
be used as a starting point when inverting the recurrence relation (4.127):

-1+

V_j+r,j-1= m

Yitj,-1-j+A,~1-
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Starting with j = % —2, decreasing j until j =2, we obtainy_j,,j -1 =0for2<j< % — 1. This
range includes all the generating coefficients existing for given A, when taking into account the
alternating property. The pole at j = —2 + A is not realized for this range. This concludes the
proof for A even. Next, we consider A odd.

The remark concerning A = 3 given in the case i, j < 0 holds true in the present case i, j >
0. Since we do not consider A = 5 nor A = 7 by assumption, the following proof should be
considered for A = 9. As before, we need to go to level two to complete the proof. A recurrence
relation for coefficients of level plus two can be obtained from the cocycle condition for
(i, ,2,-1):

Vij2= 1 By j+A+DY_144j2— A+i+ jAWiz

2+i+j—
+(1+i+ 20y -1 — (2+ DWorjj—1+ (1= DW_14ji2
+A+j+iNYj2 1+ (= 2W2sji-1+ 0= DVirj2,-1). (4.128)

Consider the situation i + j < A —2. No issues due to poles arise if this condition is satisfied.
Moreover, the coefficient of level plus one is zero because its indices satisfy i + j < A-1if i+ j <
A —2. Furthermore, the coefficients of level minus one are zero due to our assumption given
in the second-to-last line of our statement, as their indices satisfy i + j # A in the situation
i+ j<A-2. Starting with j =3, i = 4, increasing i and j, we obtain y; j» =0fori+j<A-2.
We obtain poles at i + j = A —2. We thus have new generating coefficients appearing of the form
Vi j2 withi+ j+2=Afor A =9, which will be discussed later in[4.3.8]

Similarly to what we did before, the next step consists in comparing the cocycle condition
for (A-6,3,2,1) and (1-5,3,2,1). For A =9, only the second equation will be relevant. The first
one yields:

—(6+(=6+ D)D) Ps2,1 +2¥4 6412~ V5-6+A1
+(-3+ 4/1)1//—6+7L,2,1 +(2- 3A)w—6+/1,3,1 +(-1+ 2/1)1//—6+)l,3,2

— =7+ D¥_s5:232+ 8+ NW_44231 - (-9+ VP _34221=0, (4.129)

and the second one:

—(6+(=5+VA)Y321+2W4 5122~ VW5 5121
+(2+4M) Y 54221+ 1 =3N)Y_5.131+2 AW _5:132
—(—-6+ /1)1//_44_,%3,2 +(=7+ /1)1//_34_1’3,1 —(—8+ /1)1[/_2.,_/1,2)1 =0. (4.130)

The terms underlined once of level plus one are zero because the indices of the coefficients sat-
isfy i + j = A —1. Besides, the coefficient of level plus two underlined twice is zero because its
indices fulfill i + j <A -2.

Next, let us have a look at the non-vanishing coefficients of level plus one appearing in the sec-
ond equation (4.130). We can express these in terms of the generating coefficients of level minus
one by using expression (4.126). In a second step, we can express the generating coefficients of
level minus one in terms of the coefficient y3_, » _; by using . All in all, we obtain:

— s, 5421+ 7+ D)W 34231 —(=8+VDW_24121

=(-1+27) (W—5+/1,5,—1 +(=7+AN)Y_3423-1—(=8+ MW—2+/L2,—1)

-1+2A
- _¥(_7 + M2+ M)Ay 22 1.
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Concerning the coefficients of level plus two, we can use the recurrence relation (4.128) to ex-
press the coefficient ) _5 4 in terms of 3 _g 4,2 and ¥ )_53,2 as well as the coefficient w_4 32
in terms of Y _5 3 2:

W_5+242 =3W1,-5:24—5W3 5422+ B+ (=5+ M)AV Pso 1
+2We6,—540,-1+ (=4 + V)P _g1142+ @@ —=5N)Y_ 54221
+(=2+3MY_ 5241+ T=DY_3514-1+ I+ DY _1422,-1

S YW 542,42 =5 5232+ (4 + VW _64242,
and

2
W_as232=3W1,—as23+ 2+ M) W32 1+ V54421

+(=3+ MDY 54232+ B—4NWY_4422 -1+ (-2+3N)WY_4423,-1
+6-NY_ 24231+ 7+ VDY 14221
SY_44232=(=3+NWY_5:132.

The coefficients of level plus one underlined twice are zero because their indices satisfy i + j <
A—1. The coefficients underlined once of level minus one are zero due to our assumption given
in the second-to-last line of our statement, i.e. their indices fulfill i + j # A. Replacing the
coefficients of level plus one and plus two in by the obtained expressions, we get:

1-22
T(—7 + N2+ VAW 221 —2(-4+ VDYpr 642 — (=7+ V) (—4+VYy_532=0.

Comparing this equation to (4.129), since A # 4, we see thatwe gety,_», 1 =0for1 ¢ {0,2,7, (%)}.
By (4.127), we thus obtain that all our generating coefficients of level minus one are zero, and
hence we obtain the result y; j; = ¥; ;-1 =0V i,j > 0. All in all, we obtain the announced
result of Lemmal4.3.7 O

Up to now, the proofs were completely algebraic. However, to prove the vanishing of levels
plus two and minus two, we face the same problem than in the case for A negative, namely that
the length of the proof increases with A. In the following Lemma4.3.8, we present an algorithm
to prove the vanishing of the generating coefficients of level plus two and minus two, for cer-
tain values of A even. The algorithm was run for A € {6,8,10, 14,16, 18, 20,22, 24,26}, for which
it worked and provided the desired proof. It failed to work for A = 4. Also, it does not work
for A odd. Due to high processing times, the algorithm was not run beyond values of A = 26.
Although the entire algorithm was run up to values of A = 26 only, parts of the algorithm can
easily be run up to A = 100. The algorithm was found by proceeding empirically, hence there
is no guarantee that it will work for arbitrary high A. In other words, it could be possible that
already at A = 28, the algorithm could fail to provide the desired proof.

Once the vanishing of the generating coefficients of levels plus two and minus two is obtained,
the rest of the proof for coefficients of higher levels is algebraic, i.e. the length of the proof is
independent of A. Concretely, the results we need to obtain by the algorithm in Lemma4.3.8
involve the generating coefficients of level plus two and minus two, ¥; j» =0with i+ j+2=A1
and i,j >0, vy;j->=0withi+j-2=-Aand i,j <0, and ¥_3 5> = 0. Basically, we aim to
achieve this by finding a system of linear equations with the variables being given by the gen-
erating coefficients and with trivial solution, which forces the generating coefficients to zero.
The size of the analyzed system of linear equations is limited by processing time. The most of
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the processing time is due not to the solution of the linear system, but to the solution of recur-
rence relations, in order to express all coefficients in terms of generating coefficients, to reduce
the number of variables. In the case of 1 odd and A = 4, we could not find a suitable linear
system with trivial solution in a reasonable processing time. Bigger linear systems need to be
analyzed to possibly provide an adequate system, which involves more processing power. In
the Appendix[A] we provide some methods to speed up processing time.

Lemma4.3.8. Lety € H3 (W, M) with A € {6,8,10,14,16,18,20,22,24,26} bea 3-cocycle of degree
zero with coefficients satisfying the following conditions:

Vijil=Vij-1=Vijo=0 Vi jeZ and Vop+2,-22=Wr-2,-22=0.
Then

Vi j2=0withi+j+2=Aandi,j>0, Vij—2=0withi+j-2=-Aandi, j<O0,
and W3 -22=Y_322=0.

Proof. We will need the recurrence relations for generic level k. The recurrence relation for
generic decreasing negative k is given by:

1 . C .
Wijk-1= —m((l OV 14 jk— U+ J+HE=DW; j— L+ DY_14ik)- (4.131)
We see that for k < —1, no pole is appearing and hence no new generating coefficients of level
k < —2 appear. Similarly, the recurrence relation for generic increasing positive k is given by:

1
Vijk+1= ﬂ(_(i +j+Hk+ MY+ L+ DY e — G+ PDWisj ik (4.132)

We see that for k > 1, no pole is appearing and hence no new generating coefficients of level
k > 2 appear. In other words, the proof of the vanishing of the coefficients of level plus two and
minus two is sufficient to imply the vanishing of all the remaining coefficients.

First of all, let us identify the generating coefficients of levels plus two and minus two. If we
manage to force the generating coefficients equal to zero, the remaining coefficients of levels
plus two and minus two will become zero, too, as we will show in the next lemma. The aim
is thus to find a system of equations obtained from the cocycle condition which admits as a
unique solution the trivial solution. We have finitely many generating coefficients of “pure”
type with the three indices being either all positive or all negative, and we have a priori in-
finitely many generating coefficients of “mixed” type, with indices of both signs. However, the
latter can be reduced to a single generating coefficient, ¥_3,_22 or ¥3 7.

The generators of mixed type are the same as the ones appearing already for A = —1 and A neg-
ative. The algorithm we use is thus quite similar to the one we used for A negative, see the proof
of Lemma4.3.4] The cocycle conditions to consider for these are of the form (i,3,-2,2) i <0,
meaning we have three indices fixed, and one index only is varying. This means that the level
of the coefficients involved is reduced, which makes it easy to compute them. The resulting
algorithm is thus very fast. It was tested for values of A up to A = 100, which took only seconds.
The generators of pure type are specific for A positive and were not present in our previous work
for A negative. Their number increases with A. The algorithm was found by proceeding empiri-
cally. Possibly, variants might be found which are faster. The cocycle conditions to consider are
of the form (+A-2k—-1[F1,k +1, k, ). The levels of the coefficients involved in these equations
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are high, and increase with A. This makes the algorithm very slow. It was tested up to values
A =26, which took more or less 16 hours. We will first focus on the generators of pure type.
Considering the recurrence relation of level plus two y; ;» for i, j > 0 given in (4.128), we see
that a pole appears at i + j +2 = A. This means that the coefficients y; jo» with i+ j+2 =71
are generating coefficients. The recurrence relation of level minus two with i, j < 0 is given in
(4.123). The pole appears at i + j —2 = —A, meaning that our generating coefficients are of the
formwy; j o> withi+j-2=-A.

The generating coefficients of pure type do not exist for small A even. In fact, for A =6and 1 = 8,
we see that we have no poles appearing since for these values i + j +2 = A with i > j > 2 and
i+j—2=-Awithi < j<-2isnot possible. Hence, for A =6 and A = 8, the levels plus two and
minus two can be linked to levels of plus one and minus one and are thus zero for indices of
pure type.

Let us continue with A = 10. Here we have two generators of pure type given by ¢_5 _3 _» and
¥s,32. Considering the cocycle condition for (-4,-3,-2,-1) and (4,3,2,1), we immedi-
ately obtain w_5_3_» =0 and y532 = 0, respectively. Indeed, after eliminating the coefficients
of level minus one, the cocycle condition for e.g. (—4,—-3, -2, 1) yields:

3W_5-3-2—-19Y_4=3"2=0.

The coefficient y_4 _3 _ is zero because it satisfies i + j > —1 + 2, see the remark below (4.123).
Hence the conclusion. A similar reasoning holds true for the generating coefficients with posi-
tive indices.

The value A = 12 corresponds to a critical value, thus we will ignore it and continue with A = 14.
For this value of A, we have three generating coefficients for each pure type, i.e. ¥w_g9_3_»,
W_g_4-2, W_7_5-2 and Wo32, Wga2, W752. The cocycle conditions to consider are given by
(-8,-3,-2,-1), (-6,—-4,-3,-1), (-5,-4,-3,-2) and (8,3,2,1), (6,4,3,1), (5,4,3,2). Let us illus-
trate this on the first set of equations. After dropping the coefficients of level minus one, the
cocycle condition for (—8,-3,—-2,—1) yields:

T 93,2 —27W_g=35-2 — 2 48,2 = 0. (4.133)
Similarly, the cocycle condition for (-6,—4,-3,-1) gives:

SY_7-4,-3—27¢_6-4,-3—3W_5-6-3=0. (4.134)
and the one for (-5,—-4,-3,-2):

Y_9,-3-2—2Y_g_-4,2+W_7-5-2+3W_7_43-2Y¥_6_5-3
— 40y _5,-4,-3 + 53Y _5=1,2 — 66Y _5,=3 2 + T9YW_4=52 = 0.

The slashed coefficients of level minus two are zero because they satisfy i + j > -1 +2. We
see that in the last two equations (4.134) and (4.135), we have coefficients of level minus three
appearing. We can express these in terms of the generating coefficients of pure type of level
minus two by using with k = -2 and (4.123). Doing this with Mathematica, the last two

equations (4.134) and (4.135) above reduce to:

-30(y_g,-4,2+¥-7-5-2)=0 and  Y_g9_3-2—20W_g_42+2¢_7,5_2=0.

(4.135)

Together with (4.133), these equations lead to the unique trivial solutiony_g _3 > =0, ¥ _g _4,—2 =
0 and y_7,-5-2 = 0. Proceeding similarly with the other set of three equations, we also obtain
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W932 =0, Wga2 =0 and y752 = 0. In the following, we will not give all the details anymore,
since the procedure is always the same.

We continue with A = 16. We have four generators of each pure type appearing, namely y_11,-3,—2,
Y-10,-4,-2, Y-9,-5-2, Y-8 -6,-2 and V11,32 V10,4,2, V9,52, Ug,2- The eight cocycle conditions we
consider are the following:

(-10,-3,-2,-1), (10,3,2,1),
(-8,-4,-3,-1), (8,4,3,1),
(=6,-5,-4,-1), (6,5,4,1),
(=7,-4,-3,-2), (7,4,3,2).

Using the recurrence relations (4.131), (4.132), (4.123) and to express all the coefficients
appearing in the cocycle conditions above in terms of the generating coefficients, we obtain as
the unique solution the trivial solution w_;;,-3 2 =0, ¥_19-4,-2 =0, ¥_9 _5-2=0, ¥Y_g _6-2=0
and 1132 =0, Y1042 =0, Y952 =0, Yge2 = 0. In the following, we will provide the cocycle
conditions to use also for A = 18 and A = 20, in order to render the pattern more explicit.

For A = 18, we obtain five generating coefficients of each pure type, ¥ _13,-3,—2, ¥ -12,-4,-2, ¥ ~11,-5,-2,
Y-10,-6,-2, W-9,-7,—2 and Y1332, W12,4,2, ¥11,52 V10,62, ¥9,7,2. The ten cocycle conditions to use
are:

(-12,-3,-2,-1), (12,3,2,1),
(-10,-4,-3,-1), (10,4,3,1),
(-8,-5,-4,-1), (8,5,4,1),
(-9,-4,-3,-2), 9,4,3,2),
(=7,-5,—-4,-2), (7,5,4,2).

A similar reasoning to the previous one leads to the result that all generating coefficients of pure
type have to be zero. As a last example, we will consider A = 20. We have six generators of each

pure type, ¥_15-3, 2, ¥ _14,-4,-2, ¥-13,-5,—2, W—12,-6,—2, Y -11,-7,-2, ¥-10,-8,—2 and ¥153 2, ¥14,4,2,
V13,52 V12,62 V11,72, Y10,8,2. The twelve cocycle conditions to consider are:

(—14,-3,-2,-1), (14,3,2,1),
(-12,-4,-3,-1), (12,4,3,1),
(=10,-5,-4,-1), (10,5,4,1),
(—8,-6,-5,-1), (8,6,5,1),
(-11,-4,-3,-2), (11,4,3,2),
(=9,-5,-4,-2), 9,5,4,2).

Again, a similar reasoning to the previous ones leads to the result that all generating coefficients
of pure type have to be zero.

We can generalize our procedure now to arbitrary A. The generating coefficients are of the
following form:

W2+5,-3,-2W-246,-4,-2W-7A+7,-5-2,-- - W_1 _A_ 5 _»)
22 t4

and  Ya-532Y2-642¥1-752- Y11 5.
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Hence, there are in total % — 4 generating coefficients with negative indices ¥_j_j2 -2 j =
-3,..., —% +2 and % — 4 generating coefficients with positive indices w2 2 j =3,..., % -2.
The cocycle conditions to consider are of the form (-A-2k—-1+1,k—-1,k,]) k <1 <0 for the
coefficients with negative indices and of the form (A-2k—-1-1,k+1,k,1) k> [ > 0 for the co-
efficients with positive indices. Let us illustrate the procedure on the coefficients with negative
indices. The steps for the algorithm are the following:

1. Fixl=-1.

2. Take k = -1 and decrease k as long as the condition k—1> -A-2k—-1l+1 & k> —%—é+%

is satisfied.

3. Take I = -2, repeat step 2), continue decreasing / and repeating 2) until the number of
equations obtained equals the number of generating coefficients.

4. Check that the system of equations obtained has a unique solution, which is trivial.

The algorithm for the coefficients with positive indices is similar. In that case, the condition in
point 2) writes k < % - % - % This condition is necessary in order to avoid getting equivalent

conditions due to the alternating property. In practice, the algorithm the author encoded in
Mathematica for the coefficients with negative indices is given by Algorithml[]

Algorithm 1 Algorithm for the generating coefficients with negative indices. The algorithm for
the generators with positive indices is similar. The algorithm was employed up to A = 26. Dura-
tion: about 16 hours.

Doli=1;

1=-1;

compt = 0;

While [compt< A/2 - 4,

k=1-1;

While [k>-A/3-1/3 +2/3 && compt< A/2 -4,

compt++;

listel[i] =

FullSimplify[f[-A - 2*k -1+ 1, k - 1, k, 1, A]]; > f is the cocycle condition
i++;

k--]

I- -
I;

Dol[liste2[j] =
Psi[-A -j+2,j,-2, Al, §j, -3, -A/2 + 2, -1}]; > Psi are the generating coefficients

Solve[Table([listel[j], {j, 1, compt}] == 0,Table[liste2[j], {j, -3, -A/2 + 2, -1}1] ,{1,14,26,2}]

The algorithm starts with A = 14 in order to avoid the exceptional value A = 12. The value
A =10 was treated separately. The algorithm for the generating coefficients with positive in-
dices is similar.
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Next, we will consider the generating coefficients with indices of both signs. They appear
when we consider the recurrence relations of level plus two and minus two with one index
negative and one index positive, say, i <0, j > 0. The recurrence relation of level minus two for
mixed indices is obtained from the cocycle condition for (i,j,-2,1):

Vij+1,-2= 72 ; (—=(=2+i+j+ VWi j -2+ 1+ DP1445,-2). (4.136)

We see that we have a pole at the starting point j = 1. Therefore, we have to start with j =
2, meaning that for each i, we obtain generating coefficients of the form y;» _». The same

problem appears for level plus two, the recurrence relation for which can be obtained from the
cocycle condition (4.85) for (i, j,2,—1):

1
V_1+i,j2 = m((2+ I+]=MWijo+ 0+ PW_14i2). (4.137)

This time, we have a pole at i = —1. Therefore, for each j we obtain generating coefficient of the
form y_» ;.. Consequently, in the case of coefficients with mixed indices, we obtain a priori an
infinite number of generating coefficients of the form y; _» » with i € Z\{-A+2,-2,-1,0,1,2,1—
2}. As in the case of A negative, the crucial point consists in managing to put the coefficients
W43,-22 equal to zero. A subsequent induction procedure then allows to put the remaining
generating coefficients equal to zero.

The values of A =6 and A = 8 will be treated separately as they have no generators of pure type,
and hence the method used for these values is different from the one used for A = 10. We will
start with these two values of A and then provide the generic algorithm for A = 10. For both
values of A, we can use the same set of five equations given by (-4,-3,-2,2) and (i,3,-2,2)
with i = -7,...,—4. For A = 6 these conditions yield:

(—4,-3,-2,2): TY_7,-22=24Y _6-22+3Y_5 2>+ 3 2,=0,
(-7,3,-2,2): 17y 7,22 —48Y 6,22+ 199 _5_22—75_223=0,
(-6,3,-2,2): 120 6,22 —42Y 5 22 +4Y_3 22—500_223=0,
(=5,3,-2,2): Ys5-22+4Y_3_22=5Y 523=0,
(-4,3,-2,2): Y_3,-22+Y¥_223=0.
The coefficient ¥ _4,—» > does not appear as it is of the form ¥ _,,, _»» and hence zero by as-
sumption. This system of equations has as unique solution, which is the trivial solution y; 5 » =
O0fori=-7,...,—3 and y3 2 = 0. Similarly, for A = 8 we obtain:
(-4,-3,-2,2): BY_722+4Y_5 22+320_4 22+5Y_3_22=0,
(=7,3,-2,2): BW_7-22+37Y_5_22+12_4_22—-565¥_223=0,
(—6,3,-2,2): =35 _5_22+32Y_4 22 +4W _3_22—305W_223=0,
(=5,3,-2,2): =T _5-22—120_4 2>+40y_3 22 —1451 5,3 =0,
(-4,3,-2,2): O6W_4,22—5Y_3_22+28W_223=0.
This time, the coefficient ¥_j42 22 = ¥w_g 22 = 0 does not appear. Again, the system has a
unique solution, which is the trivial one, ¥; 2> =0fori =-7,...,-3 and ¥3,22 = 0.
Next, we will continue with the more generic case starting from A = 10 on, with the exception
of the critical value A = 12. The aim is the same as before: finding a system of equations which
has a unique solution, which is trivial, yielding in particular w_3 _2 » = w3 _» » = 0. In order to do

this, we use the fact that the generators of pure type are zero by the previous Algorithm|[1} and
also Y_)42,-22-0 = 0. The steps to consider are:
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1. Put w_j45-3_2 equal to zero, assuming that the Algorithm |1/ for the generators of pure
type did its job.

2. Use two “linking” equations (—A +5,-3,-2,2) and (-1 +4,-3,-2,2), which link the gen-
erator ¥ _j 5,32 of pure type to generators of mixed type, the one with lowest index i
being ¥_)+1,-2,2, and which also involve ¥ _j 2 _22-9 = 0.

3. Use the usual conditions of the form (7,3, -2,2) with i going from i =-A1+1toi = -3
to link the generators of mixed type appearing in the linking equations to the generators
V+3,-2,2-

4. Check that the system of equations obtained has a unique solution, which is trivial.

The number of equations of the form (i, 3, —2,2) with i goingfromi =-A+1toi = -3 is A-3. To-
gether with the two linking equations, we obtain a total of A —1 equations. The non-zero gener-
ators involved range from y_ 1,22 to ¥_3 _» », with the exception of w_j 12 _»» =0, and there
is also 3 _» ». In total there are thus A — 3 generators. This means that we have two superfluous
equations which are a linear combinations of the others. In fact, the equation (-1+2,3,-2,2) is
in general a combination of the other ones, and there is a second one which changes depending
on A. The author could not predict for a given A which equations would be a combination of
others, thus all of them were included in the algorithm.

Let us illustrate the procedure on the example A = 22. The linking equations are given by
(-17,-3,-2,2) and (-18,-3,-2,2). In these equations ¥_17,_3,_» would appear if it were not
zero. The coefficients ¥; _»» with most negative i appearing in the two linking equations are
W_19,—2,2 and ¥ _y1,—» 2, respectively. The coefficient ¢ _,9 —» » does not appear because it is zero
for A = 22. The remaining equations to consider are:

(-21,3,-2,2): w_51,—22 appears and some other y; _» » with i > -21, as well as w3, _» »,
(=20,3,-2,2) : ¥_19,—2,2 appears and some other y; _» » with i > —19, as well as y3, 2 2,
(=19,3,-2,2): w_19,—2,2 appears and some other y; _»» with i > —19, as well as w3 _2 »,
(-18,3,-2,2): w_13,—2,2 appears and some other y; _, » with i > —18, as well as y3 _, »,

(-11,3,-2,2) : w_11,-2,2 appears and some other y; _»» with i > —11, as well as y3 22,
(-10,3,-2,2): w_g,—22 appears and some other y; _» » with i > -9, aswell as 3 _» ,

(=9,3,-2,2): Y_g 22 appears and some other ¥; _»» with i > -9, as well as y3 22,

(=3,3,-2,2):y¢_3_22 and Y3, » appear.

We see two irregularities appearing, given by the underlined equations. In fact, normally equa-
tions of the form (m,3,-2,2) yield the coefficient ¥, 22 and some coefficients y; _»» with
i > m for i, m negative. We see that for (-20,3,-2,2), ¥_29 3,22 does not appear, but this is
normal since ¥ _» —22 = 0 by assumption. A genuine anomaly appears for (-10,3, -2, 2) which
fails to produce y¥_19 2. This leads to the fact that the equation (-10,3,-2,2) is not linearly
independent from the others. This anomaly occurs only for isolated values of A, where some
equation (i,3,-2,2) fails to produce the corresponding coefficient ¥; _»». The author could
not find a link between A and the anomalous equation (i,3,—-2,2), hence it is not possible to
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tell which equations will become linearly dependent. Nor did the author manage to predict for
which values of A this anomaly appears. Without this anomaly, the algorithm could have been
simplified by dropping the equations (-A+4,-3,-2,2), (-A+1,3,-2,2) and (-1+2,3,-2,2), as
well as the generator ¢_,,1,22. The anomalous values of A up to A = 100 are given by: A = 22,
A =26, 1=40, A =70, A =92 and A = 100. However, the algorithm as presented above works
for all of the values of A up to A = 100, only by assuming that the generating coefficients of pure
type are zero for the corresponding values of 1. In practice, the vanishing of generating coeffi-
cients of pure type was not proven by Algorithm |I|for values of A beyond A = 26. The algorithm
the author encoded in Mathematica for the generators of mixed type is given by Algorithm
The coefficient y_,42 2 » is already put to zero in the definition of psili, j, k, A] via the recur-

Algorithm 2 Algorithm for the generating coefficients of mixed type. The algorithm was em-
ployed for values up to A = 100. Duration: a few seconds.

Do|
Clear[sol];
> Define:
Dol[liste3[jl=Psilj,-2,2,A1,{j,-3,-1+3,-1}]; > Generators ¥; _p, fori=-3,---—1+3
Dol[liste4[i]=FullSimplifyl[f[i,3,-2,2,A]],{i,-3,-A+1,-1}]; > Cocycle conditions (i,3,-2,2)
> Solve system of equations:
sol=Solve[ Psi[-A+5,-3,-2,1]==0 && > Assume ¥/ _j 45 3 _» = 0 by Algorithml]]|
FullSimplify[f[-A+4,-3,-2,2,1]]==0 && > The first linking equation
FullSimplify[f[-1+5,-3,-2,2,A]]==0 && > The second linking equation
Table|liste4[i],{i,-3,-1+1,-1}]==0, > Cocycle conditions (i,3,-2,2)
> with respect to:
Flatten[{Table[liste3[jl,{j,-3,-A+3,-1}], > Generators ¥; _p fori=-3,---—1+3
Psi[-2,2,3,1], > Generator 3 2
Psi[-A+5,-3,-2,A], > Generator ¥ _,45 -3 2 = 0 by the first equation
Psi[-A+1,-2,2,A1}11; > Generator ¥_j41,—2 2 not included in liste3
Print[sol] > Print the solution
,11,14,100,2}]

rence relations, which in turn appear in the cocycle condition f[i, j, k, [, A]. The code starts with
A =14 in order to avoid the exceptional value A = 12. A successful separate run for A = 10 was
done. O

Remark 4.3.2. The Algorithm(l]is capable of producing an infinite number of equations by let-
ting [/ vary. There is a counter which counts the generated equations and stops the algorithm
once the number of equations obtained equals the number of generating coefficients of pure
type. In the explicit examples we gave, the equations produced by / = —1 and [ = —2 were suf-
ficient and we did not need to go further / < —3. A sensible question to ask is whether this will
always be the case for all values of A. In order to answer this question, we have to count the
number of equations (-1 —-2k—-1+1,k—1,k,l) [,k < 0 generated by varying k from k =1-1
down to k satisfying k > —% - é + % for fixed /. In order to obtain an exact integer number, we
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need to consider several case separations. We will not give details of the reasoning, but the final
results are:

* Amod3=0:
* —Imod 3 =0: number of equations: % + 4?[ -1.
* —Imod 3 = 1: number of equations: % + ‘g—l - %
* —Ilmod 3 =2: number of equations: % + 431 - %.
e Amod3=1:
* —Imod 3 =0: number of equations: % + ‘g—l - %
* —Ilmod 3 =1: number of equations: % + 4?1 -1
* —Ilmod 3 =2: number of equations: % + ‘;—l - %
e Amod3=2:
* —Imod 3 =0: number of equations: % + 4?1 — %
* —Imod 3 =1: number of equations: % + ‘g—l - %.
* —Ilmod 3 =2: number of equations: % + 431 -1

Let us compare these numbers to the number A2 — 4 of equations needed, i.e. the number of
generators of pure negative type.
We will start with / = —1 and check explicitly what happens for A mod 3 = 1. If [ = -1, then we

have —/ mod 3 = 1. The number of equations obtained for [ = —1 is given by ’% + %l -1= % - %

Let us see for which values of A this number is equal to or bigger than % —4:

A 71 A

———=2—-4510=A.

3 3 2
For A mod 3 = 2, the condition is 8 = A, and for A mod 3 = 0 the condition is 6 = A. Since we only
have generating coefficients of pure type for A = 10, it means that A = 10, which satisfies indeed
A mod 3 =1, is the only value of A where [ = —1 produces enough equations so that we do not
need [ = —2. This is exactly what we saw explicitly in the examples.
Next, let us take both / = —1 and / = —2 into account for each of the three cases. Let us start with
t;Lhe c?se A rr}lod 3 = 2. In this case, the number of equations obtained from !/ l: —1 is given by:

4l _ 4 8 4

—A_8 i - _ AL A g _A_ 11
3 +35 —3 =% — 3. The number of equations from [ = -2 corresponds to: 5+ 3 =5-3. Al

equations together should be more than % —4:

The value A = 14 is indeed the first value satisfying A mod 3 = 2. This means that for all values
of A satisfying A mod 3 =2, [ = —1 and [ = —2 will always provide enough equations so that we
do not need to consider [ < —2.

4l

Let us continue with A mod 3 = 1. For / = -1, the number of equations is given by: % +3-1=

%— L. For [ = -2, we obtain: ’%+ %l -32= ’% — 13, Both together should provide more than ’% —4
equations:

A7 A 1312

— -t ———>——45 A1>16.

3 3 3 3 2
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The value A = 16 is the first value of A satisfying A mod 3 = 1 we consider. Hence, for all values
of A satisfying A mod 3 =1, [ = —1 and [ = —2 will always provide enough equations so that we
do not need to consider [ < —2.

Finally, let us consider the case A mod 3 = 0. For [ = —1 the number of equations in this case is
glven by: 4 3 + - 3 = 2 —3. For [ = -2, the number of equations obtained is given by £+ 4—l 4=

3
§ —4. Both together should be bigger than 2 5—4

A A 1A

—=3+--42--4o1218.

3 3 2
Again, the value A = 18 is the first value of A satisfying A mod 3 = 0 which we consider. Hence,
for all values of A satisfying A mod 3 =0, [ = —1 and [ = —2 will always provide enough equa-
tions so that we do not need to consider / < —2. All in all, it means that we could actually limit
Algorithm([I]to [ = —2. This does not render the algorithm faster, but it augments its readability.
As a remark, note that the first value of A satisfying A mod 3 = 0 and having generating coeffi-
cients of pure type would have been A = 12, an exceptional value. In fact, we expect this value of
A to be exceptional because of the results from continuous cohomology, and thus we excluded
this value right from the start. However, now we have a first clue that this value is also excep-
tional in the algebraic setting. Because we obtained A = 18, it means that for A = 12, the values
I =-1and [ = -2 will not provide enough equations. We could consider / = -3, which might be
trivial, so that there might be a left-over generator of pure type. Clearly, the exceptional values
would need further investigation.

Next, we will use the results obtained algebraically previously for the levels plus one, zZero
and minus one, as well as the results obtained by the algorithms in Lemma |4.3.8, namely the
generators of pure type are zero, as well as W3 22 = w_3_22 = 0. The proof given in Lemma
[4.3.9below is again purely algebraic and works in principle both for A even and A odd. However,
some of the assumptions of Lemma[4.3.9 only hold true for particular values of A even, starting
with A = 6 and ending with A = 26, and A # 12. Thus in the end, the final result holds true only
for these values of 1.

Lemma4.3.9. Lety € H3(W,F") with A € {6,8,10,14,16,18,20, 22,24, 26} be a 3-cocycle of degree
zero with coefficients y; j x, satisfying the following conditions:

Vij1=Vij-1=V¥ijo=0 VijeZ and Y_p+2,-22=War-2,-22=0,
Vi j2=0withi+j+2=Aandi,j>0, Vij—2=0withi+j-2=-Aandi, j<O0,
and Y3 _22=9¥-3-22=0.

Then:
Vijk=0 Vi jkeZ.

Proof. We will start by using our results obtained for the generators of pure type and hence
focus on the coefficients of the form v; ;  with all i, j,k <0 orall i, j, k = 0. After dropping the
coefficients of levels minus one and plus one, the cocycle condition for (i, j,—2,1) yields
arecurrence relation for the coefficients y; j —» with i, j < 0:

Vi j—2= (1+DY14ij,-2— =1+ DP14ji,-2). (4.138)

(=24+i+j+A)

We have poles at i+ j—2 = —A. However, the coefficients of the form y; j > with i+j—-2 = -2 are
generators of pure type and thus zero by the assumption based on Algorithm[1] The recurrence
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relation above then implies v; ;> = 0 for all i, j < 0. Similarly, after dropping the coefficients
of levels minus one and plus one, the cocycle condition (4.85) for (i, j,2,—1) yields a recurrence
relation for the coefficients v; j» with 7, j > 0:

Vij2= (T+DY-1+i,j2— A+ DY_14j,i2).

2+i+j-A)
We have a pole appearing at i + j +2 = A. However, the coefficients of the form v/; j» with
i+ j+2 = A are generators of pure type and thus zero by the assumption base on Algorithm [I]
The recurrence relation above then implies v; j» =0 forall i, j > 0.

We can now use induction on the third index k. Let us start with generic negative k. So we
proved y; jr = 0forall i, j <0for k =0,-1,—-2. Letus assume the result holds true for k (k < -2),
and let us check whether the hypothesis remains true for induction step k—1. Alook at Equation
immediately reveals that this is correct. In fact, at the right-hand side of (4.131), all the
coefficients are of level k with i, j < 0 and thus, zero. Hence v, j x—1 is also zero as there is no
pole for k < —2. By induction, we thus obtain y; j x =0 forall i, j, k< 0.

We proceed similarly for generic positive k. We proved y; j x =0 forall i, j >0 for k=0,1,2. Let
us assume the result holds true for k (k = 2), and let us check whether the hypothesis remains
true for induction step k + 1. Alook at equation immediately reveals that this is correct.
In fact, at the right-hand side of , all the coefficients are of level k with 7, j > 0 and thus,
zero. Hence v; j r+1 is also zero as there is no pole for k = 2. By induction, we thus obtain
Vi jx=0foralli,j,k>O0.

The analysis of coefficients of mixed type is more involved, though the procedure per se is very
similar to the one used for A < 0. The cocycle condition for (i,3,2,—1) provides us with a
recurrence relation on i for ¥, 3 »:

=3Yrts— @+ iNWso—T-VYs5i-1— A+ DY_14i32+ 1 +i+3D) Yo7
—R+i+2N)Wis=T+G+i—-ADWiz2+ (=24 DY24i571 — (-3 + D) W3442-1=0
G+i-A)

SY-1+i32 = A+

Vis2. (4.139)
The slashed terms are of level plus one, zero or minus one, and are thus zero by assumption.
Also by assumption, ¥3,-22 = 0. Hence, starting with i = -2, decreasing i, we obtain ;32 =0
for all i < —3. Similarly, the cocycle condition (4.85) on (-3, j,—2,1) provides us with a recur-
rence relation on j fory; 3 »:

~ Y551t (=4+ jANy _3=—27+ (—5+j+/1)w_3,]-,_2 + (2—j+2)L)%+ 3Y_1=37
+ B+ NYosr21— C+ Y2431+ A= J+3V Y7+ =1+ )Y14j,-3-2=0
(-5+j+A)

V2 = T

Yij-3-2. (4.140)
The slashed terms are of level plus one, zero or minus one and are thus zero by assumption.
Moreover, by assumption, ¥, _3-»> = 0. Hence, starting with j = 2, increasing j, we obtain
Yj-3-2=0forall j=3.

In the next step, we will focus on coefficients of level plus two and minus two. We will start with
level minus two. More precisely, we want to prove ¥;; > =0 forall j >0 and i <0. We will do
this by induction on i. Indeed, we already showed that the statement y;; » =0 forall j >0is
true for i =0,—1,—-2,—3. Let us suppose the statement holds true down to i + 1, i < —4, and let
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us show that it remains true for i. Consider the cocycle condition (4.85) on (i, j,—2,1), which
gives us a recurrence relation on j for v/ ; —»:

(24+i+j+ My j—2— 1+ DW14ij,-2+14 PYir4ji-2=0
=0

(=2+i+j+A)
SYil+j,—2= C1+))

Vi, j-2- (4.141)

The term in the middle is zero because of the induction hypothesis. We will need the relations
for j =3,5, given by:

For j=2:vy;3-2=({+A)V¥i2-2,
C+i+AV)A+i+AN)E+AN)
6

Forj =4. ’(’Ul"5y_2 = i,2,-2 -

Consider the cocycle condition for (i,3,2,-2) yielding:

0=—4poi3+5Wirsz— B+iMW32 2—VWs5; 2— 2+ DWY_21i32+ ([ +3V)W;2 >
—I+i+20)yi3 2+ G+i-20)Yi32+ (=2+DWP2si3-2— (=3+DW34i2 2.

The underlined terms are of the form ;32 i < 0 and are thus zero. The terms ;23 2 and
Wi+3,2,—2 are zero because of the induction hypothesis. The terms y;5_» and y;3_» can be
expressed in terms of y; » _» as shown above, yielding:

(~(=2+i+ M) (I*+ =7+ DA+ i(=1+21)))¥is—2=0. (4.142)

We have to check the zeros of the polynomial in i above to see for which values of i the relation
will be trivial. The zeros of the polynomial are given by:

1
ip=-A+2 and 15:5(1—2Ai\/24/1+1).

The first zero iy = —A + 2 gives a trivial relation for the coefficient ¢ _j, _» ». This is not a prob-
lem, as this coefficient is already zero by assumption. The second and third solution will create
a problem when they yield integer negative values for i. A quick verification shows that for our
A of interest, both solutions i; are always negative. In order to get an idea when they yield inte-
gers, a quick scan reveals values of A and indices i for which the coefficients y; _» » are not put



166 CHAPTER 4. GENERAL TENSOR DENSITIES MODULES

to zero by the relation (4.142) above:

35 -49 =20

51 -68 -33
57 -75 -38
-90 -49
77  -98 -55
-115 -68
—124 -75

We see that all of the exceptional values of A show up, given in bold, but since we do not consider
them, they do not cause trouble. The boxed values correspond to values of A for which the
simplified version of Algorithm |2/ did not work. Without knowing all the values of 1 explicitly,
we will refer to the values of A causing trouble as pathological A.

For all non-pathological A, the relation yields immediately ¥; —»» = 0 for fixed i in the
induction procedure. For the values of A given in the table above, more work needs to be done
in order to obtain the same result, which we will do in the following.

Let us suppose we are dealing with a pathological A, and that we are at an induction step i where
i corresponds to either ij or i;. The proof is the same for both values ij and i;, hence we will
treat them simultaneously. Note that by induction hypothesis, we already have y; _»» = 0 for
all 0 = i > i;. The cocycle condition on (iy +3,-3,-2,2) yields:

0=1_53,520~ (=3+@+iAY-3-22-5Y_ gy + W53

—6+ig)W o+ B+iIV 1y 5o+ (C24ig +20)W5, i 3 o (4.143)

- (2 + ioi - 2&)1”3_,1'5,_3,2 + (3 + i(_)l— - 3/1)1//3_'_1'5’_2,2 - (1 + ioi)w5+l'§,—3,—2 .

The slashed terms are of level minus one and zero and are thus zero by assumption. The terms
underlined twice v5 iE-3,-2 and 4 +i¥,-3,-2 are coefficients of the form v; j x with i, j,k <0
and are thus zero by our previous results. Indeed, a look at the table above reveals that for non-
exceptional A, iy < —5, hence 5+ iy and 3 + ij are negative. Note that even if they had been
positive, the coefficients would have been zero anyway as we showed before that coefficients
of the form vy 3 —» with j > 0 are zero. The coefficients underlined once are zero by our as-
sumption and our induction hypothesis. The next aim is to express via recurrence relations the
coefficients ¥_s 3, ;+ », Y32 3, and yy,;= 3, interms of y;= _, 5, and to see whether we ob-
tain a non-trivial relation for ¥+ _, ,. In order to obtain these recurrence relations, we need to
consider cocycle conditions of the form (i, j,—1, k). More precisely, in this case we take



4.3. THE THIRD ALGEBRAIC COHOMOLOGY 167

k=-2and j =2,i.e. (i,2,-1,-2), yielding after dropping coefficients of level minus one and
plus one:
Viz3=0+DWY_14i2 20— (F-NDY;2 2. (4.144)

The coefficients we need correspond to i =3 + iy and i = 1 + i, yielding respectively:

Vasit2-3= @+ i5)Vouit0 o~ B+iyg —M¥s2 =0, (4.145)

1//1+l.§,2,—3 = (2 + i(_)_F)ng,Z,—Z - (1 + ioi - A)W1+i§,2,—2 = (2 + i(-)_'—)wl(']_*yzy_z . (4.146)

The coefficients of the form v; _,» with 0 = i > iy are zero by the induction hypothesis. The

remaining coefficientin (4.143) to express in terms of Vit -2 isoftheformvy; » 5. Itis obtained
(4.85

from the cocycle condition (4.85) for (i, j,—1, k) with k'= -4 and j =2, yielding after omitting
terms of level plus and minus one:

1
Vio2-5= 5((1 +DW_14i2-4a—(=2+i=VYi2_4a). (4.147)

We see that we need coefficients of the form v; » _4, which can be obtained from the cocycle
condition (4.85) for (i, j,—1, k) with k= -3 and j =2:

1
Win—4= E((l +DW_14i2-3—(=1+i=DY;2_3)

@143 ii+1) i-1-AM)@E-AN)
S

Vi 4= 2 Vioo2—(U-1-AM)I+Dy;_12-2+ > Vi 2.

More precisely, in Equation (4.143), we will need the coefficient y_5 5 +i,0- From (4.147), we see
that in this case, we need the coefficients v, it 2,4 and y5, %2, given by:

@+iH)EB+id)

Vorigo-a=— 5,  Viga-2~ CIVirizo 2+ () Warizn o
=0 induction =0 induction

Vsrigo-a= Wiz o 0= )Wouin o+ (L )Ys452 5 2 =0

The coefficients of the form y; _»» with 0 = i > iy are zero by the induction hypothesis. Insert-
ing these values into (4.147) with i = 3 + i yields:

I "

Y3tit2-—5= g((4 i) Wariz o4~ U+ i =AWs,50 5 4)

@+iHB+iy)2+i])
6

Finally, we can insert the values (4.145), (4.146) and (4.148) into (4.143), which yields:

S Ysiizo-5= Yizo—2- (4.148)

(=2+1§)(6+ig)iy Wiz =0. (4.149)

The zeros of the polynomial in iy correspond to iy =0,2,-5. The coefficients 2, —» and 2,5, »
are zero, hence it remains to check whether z— = —5 has a solution in A:

1
—5:15—*:5(1—2“\/2““)
o A=2 or A=15.
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These are two exceptional values of A we do not consider. Therefore, the relations and
show that we obtain ¥; _» » = 0, where i is the fixed 7 in our induction step i, and it holds
true even in the case when the induction step i corresponds to a critical i = i(f.
Now we can come back to for fixed i. Starting with j = 2, increasing j, we obtain
Vi j—2 = 0 for all j > 0 for the induction step i, even if i = if. Hence, our induction remains
true for step i. By induction, we thus obtain y; j > =0forall i <0andall j > 0.

Note that we could have proceeded the other way round. Instead of starting with the cocy-
cle condition (i, 3,2, —-2) resulting in , we could have started with the cocycle condition
given by (i +3,-3,-2,2). In fact, starting with the cocycle condition (i + 3,-3,-2,2),
redoing the same reasoning as before in the case i = iy, we end up with the equation (-2 +
1)(5+1)iy; 22 =0, which is independent of A. The zeros i =0 and i = 2 obviously do not make
trouble, but the zero i = -5 corresponding to ¥_5, _» poses difficulties for all A under consid-
eration, except for A = 7, for which y_5» _» corresponds precisely to ¥ _j.22_2 = 0. Hence the
induction step i = —5 now leads to trouble, and a separate non-trivial relation for ¢ _5» _» has to
be found. This can be done by considering the cocycle condition (i, 3,2,—2) with i = -5, which
by an identical reasoning to the one done in the first method leads to with i = =5:

A= ((A=7A-52A—1)+25)p 52 =0,

which has zerosin A givenby A =2, 1 =7 and A = 15. However, for A = 7, the coefficient ¢ _5, _»
precisely corresponds to ¥ _ .22 —2, which is zero by assumption. Hence, we end up again with
the same exceptional values of A we found before. We see that with this method, the critical
induction step i = -5 is of a simpler form than before i = i;, which simplifies the expressions
involved. However, the general procedure and length of the proof remains unchanged. Next,
we will prove the same result for level plus two v; ;> = 0 for i <0 and j > 0, which we will do by
using positive induction on j. We will do this by using the second method to change a bit.

Let us briefly summarize our assumptions and results obtained so far. We already have
Wi ik =0foralli,j,k=0,andalso w_32-» = w32 =0 and consequently ¥;3> =0 fori <0
and ¥, 3 —» =0 for j >0 due to (4.139) and (4.140), respectively. We have y; j» =0foralli <0
for j =1,2 and j = 3. Let us suppose the result ¥; j» = 0 for all i < 0 holds true for induction
step j—1 (j = 4), and let us check whether it remains true for induction step j. The cocycle
condition for (3, j —3,—-2,2) yields:

4o 5=37] +5Y1s772+ B+ (=3+ Y322+ (=2+ j+21) P53+ ),
—R+j-2M)¥33+j2-Vs5-3+j—2— (14 )W_5:j32 (4.150)

—(=3+j+3MNW_34j,—22+(=5+ )Y_14j3-2+(=6+ j)Y;j_22=0.

The twice underlined terms are zero because for j > 4 either they are of the form v; ; x with
i, j, k=0 or of level plus one, minus one or zero. The terms underlined once are zero by induc-
tion assumption, as they are of the form v, ;» with i <0 and 0 </ < j. Next, we will express
the coefficients w3 34 -2, ¥5-3+j,—2and ¥_1j3 2 interms of y; _» ». These coefficients are of
generic level k = 3 and k = 5, hence we will start by considering the cocycle condition (i, j, 1, k)
fork=2andi=-2,ie. (-2, j,1,2)yielding after dropping coefficients of levels minus one, zero
and plus one:

Y2i3={+ANW_pjo+ (=14 VW14 -22. (4.151)
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In (4.150), we see that we need the coefficients with j—1 and j—3. Replacing j by j—1and j—3
in the expression above leads to:

Y2,j-13={G—1+A) Y j-12 +H(=2+ )Y} -22, (4.152)
—_——
=0 induction

Y_2,33=(—3+A) Y232 +(=4+ )W _24j22. (4.153)
—_—— —_——
=0 induction =0 induction

Several coefficients are of the form vy, ;, with i <0 and 0 </ < j and thus zero by induction
assumption. Next, we focus on the coefficient 5 3, ; > of level k = 5. We first need to derive
an expression for coefficients of level k = 4. We consider the cocycle condition (i, j, 1, k) with
i = -2 and k = 3, which yields after dropping coefficients of level plus one and minus one:

1 . .
Vzja=50+]+ MY _2j3+ =1+ W14j-23)

@151) A+j+A)G+A) . )
S Yoo 4= / 2 / Y22+ Q+j+A)(=1+ DV je1,-22
(=1+ j)
_ %U,j%_z’z, (4.154)

Next, we can write down the coefficient of level k = 5. Considering the cocycle condition (4.85)
for (i, j,1, k) with i = -2 and k = 4, we obtain after dropping coefficients of levels plus one and
minus one:

1
W_2j5= 5((2 i+ MY 24+ 1+ DPrej-24). (4.155)

More precisely, from (4.150) we see that we need y_» j_35 and hence ¥_» j_34 and ¥ _24j —24.
These are obtained from (4.154) by replacing j with j —3 and j — 2 respectively, yielding:

W2j-34=0..) Y32 +(..) Wj2-22 —(..) ¥Yj-1,-22 =0,

N——— N——— N——
=0 induction =0 induction =0 induction
(j—2)(=3+ ) (4.156)
Wz j-24=0..) Y jo22 +(..) Wj-1-20 ————F——Yj 22.
N——— ——— 2
=0 induction =0 induction

Several coefficients are of the form vy, ;, with i =0 and 0 </ < j and thus zero by induction
assumption. Inserting the expressions of the coefficients of level four (4.156) into (4.155) with j
replaced by j — 3, we obtain:

1
W_2j-35= 5((_1 +j+r AP 2 j34+(=4+ Y _24j-24)
—_——
=0
(G-2G-3( -4
6

S Y-2,j-35= Vij-22. (4.157)

Finally, inserting the coefficients (4.152), (4.153) and (4.157) into (4.150), we obtain:

(=5+ )2+ ) jyj2-2=0.

We obtain a trivial relation for j = 0,—2 and j = 5. Since we consider positive j, only the in-
duction step jo = 5 leads to trouble. Therefore, we need another relation to force the coefficient
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W52 -2 to zero, which is true for all A except for A = 7, in which case the coefficient ¥52 _, cor-
responds to ¥)_22 2 = 0 zero by assumption. We start by considering the cocycle condition
for (i, j,2,—1), which yields, after dropping zero coefficients, a recurrence relation on i
for fixed j for y; j »:

—(A+DW-14i,j2+ Q+i+j—ADWij2+ 0+ )W-14+ji2=0
=0
2+i+j-N)

SY_1+i,j2= 1+

Vij2- (4.158)
The third term in the first line is zero due to the induction hypothesis. This is true for any
induction step j, independent of whether j = jj or not. We shall need i = —3, -5 given by:

Fori=-2:9_32=-(j-Ay_2j2,

—2+j-NDNE1+j-0)({G -2
Fori=-4: w—S,j,Z — ( +] )( ;‘] )(] )

~2,j,2-

Next, consider the cocycle condition (4.85) for (-3, j,2,—2), which is, after dropping terms of
level zero and level minus one, given by:

Yos5jot (=3+jMNWP_32-2—(=5+j+20)Y_3j 2+ (-1+j-20)Y_3 >
+@B+ Y3422+ 2+ PNV _24j-32—(=3VDYj2-2—(=2+ j)Y24j-3-2=0
o (-@+j-MN(j+j*-2jA+(=T+VA))y_z2=0.

The terms underlined once are of the form v _3 > j >0 and are thus zero due to previous re-
sults. The terms underlined twice are of the form y; ; » with i <0 and 0 < / < j and are thus zero
due to the induction hypothesis. The last line is obtained by replacing the remaining terms by
the expressions in terms of 5 ;> given above. Next, remember that there is only one induction
step causing trouble, namely j = 5. Considering j =5 in the expression above, we obtain a new
relation involving ¥ 2 »:

7-AD((A=-7A-101+ 30)1”—2.5,2 =0.

The relation is trivial for A = 2,7,15. The value A = 7 is not troublesome, as for this value of
A, W_252 =W_31-22 is zero by assumption. The other two values are exceptional values of 1
which we do not consider anyway. Hence, we obtain y_» ;> = 0 for the induction step j even
if j = 5. Next, we go back to equation , and starting with i = -2, decreasing i, we obtain
Vi, j2 = 0forall i <0 for the fixed induction step j, even if j = 5. Hence our induction hypoth-
esis holds true for the induction step j. By induction, we thus obtain y; j» = 0 for all i < 0 and
all j >o0.

Finally, we come to generic level k. Let us start with negative k. So we proved y; j x = 0 for
alli <0andall j >0and for k =0,-1,-2. Let us assume the result holds true for k (k < -2), and
let us check whether the hypothesis remains true for induction step k — 1. A look at equation
immediately reveals that this is correct. In fact, at the right-hand side of (4.131), all the
coefficients are of level k with i <0 and j = 0 and thus, zero. Hence v; j x-1 is also zero as there
is no pole for k < —2. By induction, we thus obtain y; jx = 0 for all i,k <0 and all j > 0. We
proceed similarly for generic positive k. So we proved y; jr =0 for all i <0 and all j > 0 and
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for k = 0,1,2. Let us assume the result holds true for k (k = 2), and let us check whether the
hypothesis remains true for induction step k+1. Alook at equation immediately reveals
that this is correct. In fact, at the right-hand side of , all the coefficients are of level k
with i <1 and j > 0 and thus, zero. Hence v; j r+1 is also zero as there is no pole for k = 2. By
induction, we thus obtain y; j x =0 forall j,k>0and all i <0.

All in all, we obtain the result stated in Lemma O

Proof of Theorem[4.3.2. Starting with a degree-zero 3-cocycle y € H3 (#,%) which has A €
{6,8,10,14,16,18,20,22,24,26}, the Lemma |4.3.5| allows to fulfill the assumptions of Lemma
which in turn, together with Lemma allows to fulfill the assumptions of Lemma
Lemmal[4.3.7) together with the previous lemmata, then allows to get the assumptions of
Lemma The algorithms proposed in Lemma[4.3.8} together with the previous lemmata,
yield the assumptions of[4.3.9} which allows to prove Theorem[4.3.2] O

Remark 4.3.3. In the Algorithms|1{and |2, the most time-consuming part is the process of ex-
pressing an arbitrary coefficient y; ; x in terms of the generating coefficients, i.e. the resolution
of the recurrence relations. The bigger |1] is, the higher is the level of the coefficients that must
be considered, and thus, the more steps are needed to solve the recurrence relations. In Algo-
rithm 2} only one index of the y;, jk involved increases with |A|, while in Algorithm (1} all three
indices of the coefficients increase with |1|. Hence, in Algorithm non-linear recurrence re-
lations in only one variable need to be solved, whereas in Algorithm (1} non-linear recurrence
relations in three variables need to be solved, which takes much more time. In order to speed
up processing time, one could try to solve the recurrence relations explicitly by hand and derive
explicit formulas to express arbitrary coefficients y; ; x in terms of their generating coefficients
directly. This was attempted, and the results are given in the Appendix [Al However, the ap-
proach is empirical, meaning we guessed the solution of the recurrence relations and tested
it for some v; j x, but we did not prove that it is indeed the correct solution of the recurrence
relations. Thus we did not get genuine proofs.

Apart from the recurrence relations, another possibility to shorten the running times would be
to avoid solving the systems of linear equations, which consist of several thousand equations.
Instead, considerations about the rank are already sufficient to analyze the triviality of the so-
lutions. The gain in speed would be slight, though. However, the speed could be increased
drastically by parallelizing these computations. Numerous algorithms and packages already
exist, see for instance Mulmuley [85] or Dekker, Hoffmann and Potma [22] for early examples.

4.4 The Virasoro algebra

In this section, we summarize the results obtained for the Virasoro algebra. They can be de-
duced immediately from the results for the Witt algebra by using Theorem|3.3.4

Theorem 4.4.1. The first algebraic cohomology of the Virasoro algebra V over a field K with
char(K)= 0 and values in F is given by:

H' 7,2 ={0 VAeC\{0,1,2},

dim H'(7, 9% =2 and dim H'(¥,Y)=dim H'(V,%%) =1.
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Proof. Recall from Theorem that we have H' (7, %) = H'(#,%"). Therefore, Theorem
[4.4.1)is obtained immediately from the Theorems[4.1.1}[4.1.2}[4.1.3]and[4.1.4] O

Theorem 4.4.2. The second algebraic cohomology of the Virasoro algebraV over a field K with
char(@K)= 0 and values in F* is given by:

H2V,ZFM={00 VAeC\{0,1,2,5,7},

dim H?*(7,ZY) =dim H*(V, &%) =2,
dim H2(7,Z% = dim H>(V, %% =dim H?*(V, &) =1.

Proof. Recall from Theoremthat we have for the second algebraic cohomology, H?(¥, %) =
H2W, M
HO(W ,F 1)
this chapter, we mentioned that the trivial module K is included in %°, corresponding to fOO, as
we have e;- ) = 0. This is the only trivial action for all A, meaning we have Y FA = {0} VA e C\{0}
and dim ¥ Z° = 1. Together with the Theorems [4.2.1} [4.2.2} [4.2.3} |4.2.4} |4.2.5|and |4.2.6, we ob-
tain Theorem O

. Recall also that HO(#, %%) is the space of # -invariants, ” #*. At the beginning of

Theorem 4.4.3. The third algebraic cohomology of the Virasoro algebra V' over a field K with
char@<)= 0 and values in F is given by:

By, M= Vviel,

where I = {-100,...,-1} U {6,8,10,14,16,18,20,22,24, 26}.

H3 (W, N

H' W, 7"
immediately yield Theorem4.4.3 O

Proof. Theorem [3.3.4|yields H3 (¥, F") = Thus, Theorems 4.1.1} [4.3.1] and |4.3.2




Chapter 5

The Krichever-Novikov vector field algebra

In this chapter, we derive the zeroth algebraic cohomology Krichever-Novikov vector field alge-
bra with values in general tensor densities modules as well as an upper bound for the dimension
of the third algebraic bounded cohomology of the Krichever-Novikov vector field algebra with
values in the trivial module K. The methods used to derive the latter result are very close to the
ones used to derive the upper bound for the second algebraic bounded cohomology, see [102]
and [108]. So far, the author was not able to derive a minimal bound for the dimension of the
third bounded cohomology.

5.1 Analysis of H'(# A, F)

In this section, we derive the zeroth algebraic conomology H’(% .4, %) with values in general
tensor-densities modules. The proof was given to the author by Schlichenmaier in a private
communication [109].

Theorem 5.1.1. The zeroth algebraic cohomology of the N -point-Krichever-Novikov vector field
algebra & N with higher genus over a field K with char(K) = 0 and values in F* is given by,

1 ifA=
Vieiz: dimHrN,Fh=1 L TA=0
2 0 else

Proof. Recall from Section that elements of Z#* correspond to meromorphic differential
forms of weight A. The action of elements of % .4 on elements of #* is given by the Lie deriva-

tive,
af de
- f=ze—+Af—, 5.1
e-f edz+ fdz 6.

where we use e to denote an element of £ A" as well as the representing function with respect
to the coordinate z, and similarly for f an element of #*. This action is described in terms of
the basis elements of £ A as,

enp for = m+An8p  flp, + > had., (5.2)

where h.d. stands for higher degree terms, i.e. elements fl/"r with R+n+m >1i> n+m, see
Section



174 CHAPTER 5. THE KRICHEVER-NOVIKOV VECTOR FIELD ALGEBRA

Let us start with A = 0. The Lie derivative action (5.1) on 1 for A = 0 yields,

dl
e-l=e—=0 Vee XN,
dz
thus 1 is an invariant of #° under # .#". The vector space generated by 1 over K thus gives
constant functions f(z) = ¢, c € K, satisfying

af

— =0 Vee L N. (5.3)
dz

e-f=e
Conversely, Equation (5.3) is only true if f is constant. Hence, we obtain that the space of £ A -
invariants of % is one-dimensional, dim *“¥ %0 = 1. Consequently, we obtain the result for
A =0, as we have HO(# A, F0) = £V Z0 gee Sectionm

Next, we consider 1 # 0. We want to show that there are no & 4 -invariants of &* for
A # 0. We proceed by argument to absurdity and suppose that there is a non-trivial element
we® N FAfor L #£0, i.e. thereis w # 0 such that & .4 -y = 0. We can write ¥ as a combination

of elements of 7,
no+R

V= Z Z“”vlﬂflﬁp’

n=ng p

with at least one coefficient a,, , # 0 as we assume ¥ # 0. Applying a general basis element e,
on ¥, we obtain from (5.2),

em,r-w:Zano,p5r,p(n0+/lm)f,fo+m,p+ Y hd.. (5.4)
p,r

nrnp

In particular, we obtain,
(Z e()’r) M 1// = Zano'pérypnofnloyp + Zh.d. = Z ano,pn()fr/z;)'p + Zh.d. .
r np p

As we assume that v is a & ./ -invariant, we have (¥, eo) - ¢ = 0. By the previous formula,
this implies @, ;19 = 0 Vp, since the f,;loy p are a basis of degree ny-elements. Since there is by
assumption at least one p such that a,,, # 0, we obtain ny = 0. Next, considering (Z rel, r) Y =
0, we similarly obtain from (5.4),

> Angp(no+A) frr oy p+ 2 Dd=0= @y p(B6+A) =0V p = ap, pA=0Vp.
p

As we consider A # 0, we obtain @y, , = 0 Vp, which is in contradiction with the assumption
that at least one coefficient @, is non-zero. Therefore, for A # 0, there are no £ .4 -invariants
of F1. O

5.2 Analysis of H; (£, K)

In this section, we will work with bounded cohomology, and more precisely, with cohomology
bounded from above. The definitions of boundedness, as well as the definition of local coho-
mology, which we provide for reasons of completeness, can be found in Definition below.



5.2. ANALYSIS OF H3, (X N, K) 175

Definition 5.2.1. Consider the complex H(# .4, KK) of the Krichever-Novikov vector field al-
gebra over a field K with char (K) = 0 with values in the trivial module K. Let ¢ € HY (% A, K).

* The cocycle y is bounded from above if and only if there exists L € Z such that we have
w(eihpl,...,eiq,pq) =0forall iy,...,igwith iy +---+i5 = L.

The cocycle v is bounded from below if and only if there exists L € Z such that we have
Y (eiy,pyy--r€ipp,) =0foralliy,...,igwith iy +---+ig < L.

A local cocycle is a cocycle that is bounded from below and from above.

A bounded from above cohomology class is a class [y] of H(#% A, K) which admits at
least one cocycle ¥ which is bounded from above.

A bounded from below cohomology class is a class [y] of HY (& A, K) which admits at
least one cocycle ¥ which is bounded from below.

A local cohomology class is a class [y] of HY (& A/, K) which admits in each cocycle class
[y] at least one cocycle y which is local.

In this thesis, we consider the third cohomology bounded from above, which we simply re-
fer to as bounded cohomology, and denote by HZ(Jf A, K). This space is the subspace formed
by all cohomology classes that are bounded from above.

The methods used to derive an upper bound of H*Z (& N,K) are similar to those used in the pre-
vious chapters. We do not need to work with particular realizations of the basis elements e, .
An important difference to the previous analyses consists in the fact that the Theorem 2.2.1]is
not valid for the Krichever-Novikov vector field algebra, since Krichever-Novikov algebras are
not graded Lie algebras, but only almost graded. Therefore, we need to consider cochains and
cocycles of arbitrary degree, and not only those of degree zero.

The condition for a 3-cochain ¥ to be a 3-cocycle with values in the trivial module evalu-
ated on basis elements (e; 1, e; 5, ek, 1, €1,4,) is given by:

(631,U) (ei,r» ej,s’ €kt el,u) =0

< W([ei,r) ej,s]) ek,t) el,u) - 'W([ei,r; ek,l’]) ej,s; el,u) + W([ei,r; el,u]) ej,S) ek,t)

+w(lejs ekl eirenuy) —wlejs eyl eir er) +ylex ey ul eir ejs) =0, (5.5)
where e; r,ej s, e r,eru € X A . We will refer to the sum i + j + k + [ of the indices of the basis

elements the cocycle condition is evaluated on as level. For the convenience of the reader, we
reproduce the Lie structure equation for the Krichever-Novikov vector field algebra (2.23) here:

n+k+R o)
[ek,r: en,s] = 5r,s(n - k) Ck+n,r T Z Z C(k,,r),(n,s) eht,
h=n+k+1 t
with c((Zg (ns) € K and R a constant, the second sum goes from ¢ =1 to ¢ = K, where K is the

number of in-points, see Section[2.1.4] Inserting this expression into the cocycle condition5.5]
we obtain:
(63w (eir ejs ekrreru) =0
< b6rs(J—Dy(eivjr ek e —0rn(k—Dw(eiikr €js eru)
+6,u(l=Dy(eisrr ejs k) +0sc(k— Dwejiks eir eru)
=Osull=ylejirs €ir e +0,ul—K)y(exir eir ejs) +hd. =0,

(5.6)
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where h.d. denotes terms of degree higher than the level given by i + j + k + [, i.e. terms of the
form y(em,q, €n,v, €p,w) With m+n+ p>i+ j+k+ 1. The condition for y to be a coboundary is
given by:

v(eir, €j.s) er,r) = 620)(ei,r, €js» ex,r)

=¢(leir ejsl ex,) —plleir, exl ejs) +Pllejs, ekl eir),

where ¢ is a 2-cochain with values in the trivial module.
In order to derive an upper bound for the dimension of Hz (A N, K), we will need the result
given in Lemma below.

(5.7)

Lemma 5.2.1. Every bounded 3-cocycle v of Hz(J,’ N, K) is cohomologous to a bounded 3-
cocycley’ fulfilling:

v'(eir eor k) =0 YieZ Yk#0andr<s, (5.8)
v'(eir,e0r eks)=00rhd. VieZYk#0andr>s, (5.9)
v'(eir,e0re05)=0 VieZ, (5.10)
v'(e_1,, €1, €05 =0 r<s, (5.11)
v'(e_1,,e1r, €05 =hd. 1>s5, (5.12)
v'(eir ejr e )=0 YVi+j#0, (5.13)
v'(eir ejr e, ) =0 Y i+ j+1=0 exceptpossibly fory'(e_i eor e1,r). (5.14)

Proof. Lety € H:Z (&£ N,K) be abounded cocycle. We need to consistently define a 2-cochain
¢ in such a way that the cohomological change ¥’ = w — §¢ yields a 3-cocycle v’ fulfilling the
conditions (5.8)-(5.14) given in the statement. As we consider bounded cohomology, we can
assume that v vanishes from level L upwards, i.e. v(e;,ejs er) =0V i+ j+k = L. Accord-
ingly, we define ¢(e;,, ej ;) =0V i+ j = L. This implies that v’ will also be bounded, even at the
same level as v, i.e. ¥'(e; r,ej s, ex,) =0V i+ j+ k= L. We continue to define ¢ consistently by
decreasing induction on the level, and by juggling between different coboundary conditions.
Note that it is not possible to first consider all levels for r # s in ¢(e;,r, € 5) and then all levels for
r = s, because in the coboundary condition, the higher degree terms of ¢) mix both cases r # s
and r = s. Instead, one has to proceed level by level and consider at each level both cases r # s
andr =s.

For L =0or L <0, one can jump immediately to the case of level zero or of level ¢ < -1, respec-
tively, treated towards the end of this proof. We assume L > 0 in the following, which is the more

interesting case.
Level L —1 | Consider the coboundary condition lb on the basis elements (e; r, € r, ek, ) with
r <sand i, k #0, from which we can get an expression for ¢(e; ,,er ) withr <sand i, k # 0:

1 .
Peir, ek;s) = _fw(ei’r’ eo,r €ks), i+tk=L-1. (5.15)

Note that y'(e; r,eo,r, exs) for i = 0 is trivially zero due to the alternating property. Another
possible definition for ¢(e; ,ex ) with r < s and i,k # 0 could be given by the coboundary
condition (5.7) on the basis elements (e s, €o 5, €;,,) With r < sand i, k # 0:

1 )
¢ejr, ers) = —EW(ei,r; €o,s €ks), i+k=L-1. (5.16)

In other words, we can choose whether we want to have an ey, or an e in the y’s. If we
compare the two possible definitions (5.15) and (5.16), we see that they are not equivalent as
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we do not necessarily have —%w(e,-,r,eoyr, ek,s) = —%w(e,-,r, eo,s, ek,s). Hence, it is only possible
to put one set of ¥'’s equal to zero, either ¥'(e; r, e r, ers) with r < s or y'(e; r, o r, €x,s) with
r > s. We will choose the definition and obtain the statement for level L — 1 after
the cohomological change. For example, in the case N = 3, with definition (5.15) we could
put to zero the entries ¥’ (ex 1, €,1, €i2), ¥ (ex1,€0,1,¢€:,3) and ¥ (ex 2, €02, €;,3) for i # 0, but not
the entries ¥/ (e 2, €02, €i,1), ¥ (ex3, €03, €i1) nor ¥’ (ex3, €03, €i2). However, let us see whether
it is possible to find some relation between v'(e; ;, €o,r, ex,s) and ¥'(e; s, €o,s, €k, r), with r < s.
Consider the cocycle condition on v’ and the basis elements (e; r, €, €k s, €o,s) With i, k # 0
and r < s, which yields:

iv'(eir, eos exs) —kv'(eir, eor exs) =hd., i+k=L-1, (5.17)

where h.d. denote higher degree terms of y'. As we considerlevel L—1,i.e. i+ k= L—1, we have
h.d. = 0 as these are at least of level L. Recall that due to our definition of ¢, ¥’ and y vanish
at the same level. As we already have after the cohomological change v/ (e; , €o,r, €x,s) = 0 for
r < s and k # 0, Equation gives ¥/ (e; ;, e s, e s) = 0 for r < s and i # 0. This means that
even with definition (5.15), we can annihilate the entries ¢’ (e; r, o 5, €x,s) with r < s and i # 0.
Therefore we obtain the statements and forlevel L—1.

The next step to consider is whether we can find a definition for ¢(e; , ex,s) when i =0 or k= 0.
Consider the definition (5.15) with i #0and k=0, and r # s:

1 .
Pleir,es) = _;W(ei,ry e €s), 1=L-1. (5.18)

As we consider i # 0, the ¢(e; ,,ep,s) with r < s are not related to the ¢(e; r, e ) with r > s in
any way, i.e. they constitute independent coefficients. Therefore, we can consider both r < s
and r > s in the definition above and annihilate v/ (e; ;, €9 r, €o,s) both for r < sand r > s
immediately. In the case r = s, ¥/ (e; r, €o,r, €0 5) is trivially zero due to the alternating property.
Hence, we obtain the statement for level L — 1. The statements (5.11) and (5.12) concern
level zero and will be obtained with ¢(eo r, €9, s). However, for now we are considering level L—1,
hence we will skip these two statements for now and come back to them later.

Let us see what happens if r = s and continue with statement . First, we define ¢p(e; ;, eo,r) :=
0 for i = L — 1. Next, using the coboundary condition on the basis elements (e; ;, ej,r, €o,r),
we can define ¢(e; ;, e;,r) as follows:

w(eir, ejr eor)
i+]j

pleir ejr) = , i+j=L-1#0. (5.19)

Hence we obtain v/ (e; r, ejr, eor) =0fori+j=L-1#0,which corresponds to statement (5.13)
for level L—1. Note thatif L—1 = 0 in the Definition above, it means that y(e; r, e} p, ex,q) =
OV i+ j+k=1, and one can jump immediately to the step of level zero ¢ = 0 treated further
below in this proof. The last statement is again a statement for level zero, which we will
consider later. We now continue with level ¢ = L —2.

’Level {=L-2 ‘: The definitions we use and the reasoning will be the same as for level L -1,
except that terms of higher degrees of ¢ and v will appear. However, since all ¢ of degree higher
than ¢ have already been defined, everything will be consistent. Still, we give the definitions
explicitly. First, consider the coboundary condition on the basis elements (e; r, eo,r, €k, s)
with r < s and i,k # 0, from which we can get an expression for ¢(e; r,ex ) with r < s and
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i,k#0:

i+R
(,b(el r»eks) ___w(el ryeOr;eks)"' (/)( Z Zc(lr) Or)ehl’)eks) l)k¢0»l+k:£

h=i+1

1 i+k+R 1 k+R (5.20)
_;(rb Z Zc(lr) ksehl”eor + l(pb hZ ZC(Or)(ks)ehl’relr r<s.

h=i+k+1

We see in the Definition thatin the higher degree terms, we have entries ¢(e; ,, ek ) of the
form ¢(e; r, eos), P(e; r, ek r) and others appearing, that are not included in the Definition (5.20)
for degree i + k = ¢. However, all of these entries have already been defined at the previous
levels, hence the Definition (5.20) is consistent. This shows why one has to consider at each
level all cases (e.g. r # s, r = s) separately, instead of defining all levels at once for each case.
In the Definition (5.20), we consider r < s, hence we obtain ¥/ (e; ,, € r, ex,s) = 0 for r < s and
k # 0. As for the previous level, the entries of the type y'(e; r, e r, €xs) with r > s and k # 0 are
not necessarily annihilated. An additional investigation is of order. The Equation holds
for anylevel i + k = ¢. However, contrary to the previous level L—1, the higher degree terms h.d.
appearing on the right-hand side are now at least oflevel L—1 and not necessarily zero. Inserting
v'(eir, €0, €ks) =0 for r < s and k # 0 into Equation (5.17), we obtain v/ (e s, €o,s, €;,r) = h.d.
for r < s and i # 0. Hence, we obtain no longer zero but higher degree terms in v’, which is
nonetheless sufficient for our purpose We thus obtain the statements (5.8) and (5.9) for level ¢.
Next, the coboundary condition (5.7) on the basis elements (e; ,, eo,, €o, S) withr #sand i #0
gives an expression for ¢(e; r, €p s) With r#sandi #0:

1 i+R )
Pleir, e0,5) = ==Y (eir €or €0,9) + < </>( 2 Zc(,,)wr)em,em) i=0#0
t

R (5.21)

1
_;(p Z Zc(lr)(os)eht:elr)+ (p(Z;C(Or)(OS)eht,ei,r) I’#S.

h=i+1

The higher degree terms in ¢ have been defined previously for all cases. Moreover, just as for the
previous level, the ¢(e; r, e ) with r < sand r > s are not related for i # 0. Thus, we immediately
obtain ¢’ (e; r, €9 s, €0,s) = 0 both for r < s and r > s, yielding the statement for level ¢, the
case r = s being trivially true. The statements and correspond to level zero, which
we analyze later. We continue with the case r = s.

We define ¢(e; ;, ep,) := 0 for i = ¢. Moreover, consider the coboundary condition on the
basis elements (e; ,e; r, €o,r). The term ¢p([e; r, e 1], €o,r) with i + j = £ is zero, as it yields terms
of the form ¢(ey, ;, €,r) with n = £, which are zero by definition. We define ¢ (e; , e; ;) as follows:

oleir e; )—W(ei,r’ej,rreoyr) i (HR )
Lro*j,r;—

c en s, ei
i+ i 2. Xt: @n.on e Eir 5,22

+ (P( Z chr)(()r)eht!elr)r i+j:€¢0.

l+]

Hence we obtain v/ (e; r, ejr eo r) =0for i+ j=/¢#0, which corresponds to statement - 3) for
level £. The last statement ( is again a statement for level zero, which we will consider later.
|Level 1 < ¢ < L—2] The reasoning and the definitions used are exactly the same as for level
¢ = L—-2. Thus, we obtain immediately the statements (5.8)-(5.10) and for these levels.
Next, let us consider level zero.
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Level =0 | The definition ( h is valid also for level zero, i + k = 0. Therefore, we obtain the

statement (5.8) for level zero. Be51des Equation (5.17) is also valid for i + k = 0. Equation (5.17)
together with the statement (5.8) yield the statement (5.9) for level zero. The third statement
(5.10) is trivial for level zero i = 0 due to the alternating property. Let us consider the fourth
statement . The aim is to find a definition for ¢ (eo r, €o,5), which can be deduced from the
coboundary condition evaluated on the basis elements (e_; ,, e, €9 s) with r < s:

1
(/’(eo,r, eO,S) —U/(e 1,7 €1,r, €0, S) - (Z ;C( 1,r),d,r) €n,t €0 S)
(5.23)

—1+R 1+R
+ - (P Z ;C( lr)(()s)eht’elr)__(p(z ZC(lr)(()s)ehtre lr)-

The higher terms are all of level £ = 1 and thus already defined for all cases. We have again a
subtlety concerning antisymmetry. The quantities ¢(ep, -, eo,s) and ¢(eg s, €p ;) are related by an-
tisymmetry, but not necessarily so y(e_1,,,e1,r, €0s) and w(e_y s, €15 €9 ). Hence, only one set
of ¥"’s can a priori be annihilated. We choose the Definition for r < s, thus we obtain the
statement (5.11), ¥'(e_1,/, e1,r,€0,s) = 0 for r < s. The Equation is in this case of no use,
as the zero-mode in is sitting on the puncture-index which is double, i.e. ¢'(e. r, eo r, €. ),
while we need the zero-mode to sit on the single puncture-index, ¢/ (e. ;, e. ;, €, s). Instead of us-
ing (5.17), let us have alook at the cocycle condition fory' evaluatedon (e_1 r, e, €15, €15)
with r < s, which yields:

Zwl(eo,r, e_1,5 €1, + 21///(€o,s, e-1,re1,r) = h.d., (5.24)

where h.d. denotes terms of higher degree, i.e. terms of the form v’'(e;, 4, e v, ep,w) With m +
n+p = 1. As we already obtained the statement (5.11), the Equation immediately yields
the statement (5.12), ¥/(e_1 5, €15, €0,/) = h.d. for r < s. The statement does not concern
level zero, hence we continue with statement . In the case of r = s, we need to define ¢
at level zero. First, we define ¢(e; ,e—1,;) := 0 and ¢(ez,,, e_»,,) := 0. Moreover, the coboundary
condition evaluated on (e; r,e_1-; r,€1,,) suggests to take the following definition for ¢ at
level zero:

2+ y'(eir, e-1-ir,€1,r)
(P(ei+l,r’ e—i—l,r) = _:(,b(ei,r» e—i,r) - 1—;

—1+R 1 i+1+R
- ¢ Z Zc(lr)( 1-i,r) €h,1 €11 + ‘/’ > Zc(zr)(lr)ehf’e 1-i,r (5.25)

h=i+2
—i+R
_l—l(p 2 ZC( 1-i,n),(1,n €0 €irr | -

h=—i+1 1

The higher degree terms have already been defined before for all cases. Starting with i =2 in
(5.25), using increasing induction on i, we obtain a consistent definition for ¢ at level zero and
also the statement (5.14).

: The reasoning and the definitions used are exactly the same as for level £ = L—2.
Thus, we obtain immediately the statements (5.8)-(5.10) and (5.13) for these levels.

This concludes the proof of Lemma(5.2.1 O

Theorem 5.2.1. The third algebraic bounded (from above) cohomology of the N -point-Krichever-
Novikov vector field algebra # A with higher genus over a field K with char (K) = 0 and values
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in the trivial module is at most K -dimensional,
dim H} (# A4 ,K) <K,
where K is the number of in-points.

Proof. Lety € H*Z(Jf A, K). The proof is separated into three cases, depending on whether we
have two identical second indices in the cocycle condition (5.6), three identical ones or four
identical ones. The aim is to express ¥ (e; r, €j,s, ex,;) of a given level i + j + k in terms of higher
degree terms Y (e, 4, €n,v, €p,w) With m+n+p > i+ j+ k. At the end, we conclude by using
boundedness and decreasing induction on the level. The level zero of the third case with four
identical puncture-indices corresponds to the Witt algebra. To analyze this level, we will use the
analysis of the upper bound of dim H3(#/,K), given in the proof of Proposition without
reproducing it here.

Starting with a 3-cocycle ¥ bounded at level L, we perform a cohomological change as de-
scribed in Lemmal5.2.1]to obtain a 3-cocycle ¢ bounded at level L and satisfying the conditions

(5.8)-(.14).
(Case 1: t = u| Consider the cocycle condition lb on the basis elements (e;,r, €; s, €x,r,€1,1),

with s Z ¢, r # t and r # s. We obtain:
(I - Kw(extir eir ejs) =hd..

Puttingl =(m+1)/2and k=(m—-1)/2if misoddand [ = (m+2)/2and k= (m—-2)/2if mis
even, we obtain,

v(em,: eir ejs) =h.d. Vm,i,jeZ and Vt#r#s#tell,...,K}. (5.26)

’Case 2:r=sand t=1u ‘: The cocycle condition lb on the basis elements (e; r, e, ek s, i)
with r # s yields:

(] - i)u/(ei+j,rr €L,s» el,s) + (l - k)W(ek+l,S7 €ir ej,r) =h.d. » (5.27)
where h.d. denotes higher degree terms of level ¢ > i + j + k + [. Taking [ = 0, we obtain:
(J—Dw(eisjr ek,s €o,s) — ky(ek,s eir ej,) =h.d.. (5.28)

Because of (5.8)-(5.10), the term (€4 j,, €k,s, €o,s) is either zero or a higher degree term. Hence,
for k # 0, we obtain:
ylers eirej)=hd, k#0. (5.29)

Next, we choose j = —i in Equation (5.27), and we consider k+ [ # 0:
- ZiW(eo,r, €k,s el,s) + (- k)w(ek+l,81 €irs e—i,r) =h.d.. (5.30)

Due to the result and since k + [ # 0, the term w(eg+; s, €;,r, e—; 1) is a higher degree term.
Taking i # 0 yields:
wleor ers ers) =hd., k+1#0. (5.31)

Finally, we choose i + j =0 and k =1, [ = —1 in Equation (5.27), yielding:

—2iy(eo,r,e1,s,6-1,5) —2¥(eps, €ir,e—ir) = h.d.. (5.32)
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Due to the conditions (5.11) and (5.12), the term vy (e, €1,5,e-1,5) is either zero or a higher de-
gree term. Hence, we obtain:

U/(eO,S)ei,r!e—i,r) =h.d.. (5.33)
The three results (5.29), and (5.33) together yield that,
v(eis ejr exr) =h.d. Vi,jjkeZ and Vr#sefl,...,K}. (5.34)

|Case3: r=s=t=ul As all puncture-indices are equal, we will drop the second index to in-
crease readability. Consider the cocycle condition (5.6) on the basis elements (e;, e}, e, e),
yielding:

(j—Dwl(eirj, e, e0) — (k—iDw(eirr, eje)) — (i +j+kyle;ej ex) + (k- jly(ejir ei,e0) = h.d..

Considering the restriction i + j + k # 0, the terms of the form v (e; j, ex, eo) are zero because of
condition (5.13), and the equation above reduces to:

(i+j+Kkyleiejer) =hd o wyle,ejer) =hd. i+j+k#0. (5.35)

This means that all entries ¥ (e;, e, e) can be expressed in terms of higher degree entries, ex-
cept for level zero.

| Conclusion |

Let us now conclude by using decreasing induction on the level. Takingi+ j+k=L-1#0in
(5.26), and (5.35), we obtain y(e;,;, €5, ex,p) =0for i+ j+k=L-1and Vr,s,pe{l,..., K},
because the higher degree terms are of level L and higher and thus zero by boundedness. There-
fore, terms of level L — 1 are zero, for all puncture-indices, i.e. for all three cases considered
above. Next, taking i + j + k = L—2 in (5.26), and , we obtain y(e; r, e} s, ex,p) = 0 for
i+j+k=L-2and Vrs,pe{l,...,K}, because the higher degree terms are of level L —1 and
higher and are zero because of the previous induction step, for all three cases. Continuing with
decreasinglevel until taking i + j+ k = 1 in (5.26), and (5.35), we obtain y (e;,, ej,s, ek, p) =0
fori+j+k=1and Vr,s,p € {1,...,K} by induction. Next, take i + j+ k = 0 in and
(5.34). Since the higher degree terms on the right-hand side are of level one and higher, they
are zero, and thus, we obtain y (e s, €;,¢j,) =0V k,i,jEZand V t #r #s# t€{l,...,K} and
y(eis ejrekr) =0V i, j,keZandV r #se€{l,...,K}. For the third case listed above, we see
from that the level zero i + j + k = 0 cannot be expressed in terms of higher degree en-
tries. However, at level zero, the analysis of Case 3 reduces to the analysis of the Witt algebra.
In fact, the condition corresponds exactly to the condition for the Witt algebra of Lemma
Moreover, as we already proved dim H3(#,K) = 1, we know that level zero is completely
fixed by the non-trivial entry y(e_1, e1, ep), which corresponds in the present case to K entries
y(e_1,r,€1,r,€0,) With r € {1,..., K}, see the proof of Lemma3.1.2] The reasoning in the proof of
Lemma|3.1.2|exactly also applies to the present case.

Continuing with decreasing induction on the level, we obtain by (5.26), and that
level minus one is completely determined by level zero and higher terms, i.e. it is completely
determined by the entries ¥ (e_1 ,, €1, €9 ) with r €{1,..., K}, for all three cases. The same holds
true for levels minus two, minus three and so on. Therefore, all y (e, eir,ejs), V i,j,k € Z,
VY t,r,s€{l,...,K} are completely determined by the entries w(e_y , ey, €0,,) with r € {1,...,K}.
This concludes the proof of Theorem|5.2.1 O

Remark 5.2.1. In the introduction, Chapter (1} we already mentioned the Feigin-Novikov con-
jecture, which has been proven for the continuous cohomology, but not for the algebraic co-
homology. The Feigin-Novikov conjecture states that the full cohomology of the multipoint
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Krichever-Novikov vector field algebra is given by the free graded commutative algebra gen-
erated by elements c; of cohomological dimension two and one element 6 of cohomological
dimension 3,

HW#x N,C) = /\(Cl,...,ng+N_1,9).

If the conjecture holds true in the algebraic case, then H3(# A, K) should be generated by 0
and thus, it should be one-dimensional. Since the space of bounded cohomology Hz (LN, K)
is a subspace of H3 (& A, K), the dimension of H‘Z (A N ,K) should be at most one. Therefore, it
should be possible in the proof above to find relations between the coefficients w(e_1 ,, e1,r, €o,r),
r €{1,...K}. The author did not further investigate this possibility, though.



Chapter 6

Conclusion and Outlook

6.1 Conclusion

The aim of this thesis was to compute the low-dimensional algebraic cohomology with values
in natural modules of infinite dimensional Lie algebras of Virasoro-type, including the Witt al-
gebra, the Virasoro algebra and the multipoint Krichever-Novikov vector field algebra. Natural
modules included the trivial module, the adjoint module, and general tensor densities modules.
Most of the explicit computations focussed on the Witt algebra, as the results for the Virasoro
algebra were deduced from the analysis of the Witt algebra using a relation we exhibited via the
Hochschild-Serre spectral sequence. Results for the multipoint Krichever-Novikov vector field
algebra are limited and need further investigation.

The focus in this thesis lied on algebraic cohomology. An interesting question is whether the
algebraic cohomology we derived in this thesis agrees with the continuous cohomology. Let
us recall the results from continuous cohomology. In case of the trivial module, it was shown
(43} 45] that the continuous cohomology HX(Vect(SY),R) is the free graded-commutative alge-
bra generated by an element w of cohomological dimension two and an element 6 of coho-
mological dimension three. More precisely, it is given by the tensor product of the algebra of
polynomials generated by w with an external algebra generated by 8. Thus, the dimensions of
the continuous cohomology are given by,

HO(Vect(SYH),R) H(Vect(S'),R) H2(Vect(SY),R) H3(Vect(SY),R) ... H¥(Vect(SH,R)
1 0 1 1 1

We see that these results agree with our algebraic computation of dim H3(#,K) = 1.

Under the assumption that the entire cohomology agrees in the algebraic and the continu-
ous cases, and that the maps ¢ from (3.45) are injective for all k, such that we have HY(V | K) =
HYW,K)

HE2(W,K)
sions of the cohomology of the Virasoro algebra are,

for all k = 0, as we already have for k up to four, see Theorem|3.3.3} then the dimen-

H(7,K) HY7,K) H2(7,K) H3(V,K) H*V,K) ... H K)
1 0 0 1 0 0

Therefore, only H*(7,K) and H3(7,KK) is non-zero. We proved the assumption for the low-
dimensional cohomology in this thesis, but it is not proven for all k.
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The continuous cohomology of Vect(S!) with values in tensor densities modules, including
the adjoint module, is given in [36]. The result is more complicated than the result for the trivial
module, hence we will not present it in detail here. We only give the results for the first and the
second cohomology spaces, which are:

H!(Vect(SY),C®(SHdeM ={0} vVAez\{0,1,2},

dim H!(Vect(S'),C®(SH)de®) =2,

dim H!(Vect(S'),C®(SHd¢p") = dim H' (Vect(Sh), C®(S")de?) =1,

H2(Vect(SY),C®(SH)det) =10} VAeZ\{0,1,2,5,7},

dim H2(Vect(S!), C®(SY)d¢®) = dim H?(Vect(Sh), C®(ShHde") =2,

dim H?(Vect(SY), C®(SYHdy?) =2,

dim H?(Vect(S'),C* (81 dp®) = dim H?*(Vect(S"),C®(S")dp") =1,

H3(Vect(SY),C®(SHdeh = {0} vAeZ\{0,1,2,5,7,12,15},

dim H3(Vect(S!), C®(SY)d¢®) = dim H3(Vect(Sh), C®(Shdeh) =2,

dim H3(Vect(S!), C®(SY)d¢?) = dim H3(Vect(Sh), C®(SHdy®) =2,

dim H®(Vect(SY),C®(ShHdep") =2,

dim H?(Vect(S"),C*(SHdp'?) = dim H*(Vect(S"),C>*(SHdp'®) =1,
where ¢ is the angular coordinate on the circle.
We see that they are in agreement with the algebraic results we obtained in this thesis. Also
for the third cohomology, continuous cohomology is H3(Vect(S'), C®(SHdpt) = {0} VA € Z\
{0,1,2,5,7,12,15}, and it is non-vanishing for A € {0,1,2,5,7,12,15}. This is compatible with the

results we obtained so far for the third algebraic cohomology, namely that it is zero for negative
A and also for large positive A.

Under the assumption that the entire cohomology agrees in the algebraic and the continu-
ous cases, and that the maps ¢y from are injective for all k, such that we have Hfv, gt =
v, M)
Hk-2 W, g/l)
mensions of the cohomology of the Virasoro algebra are for %9,

for all k = 0, as we already have for k up to three, see Theorem|3.3.4} then the di-

H° H! H2 H® H* H> H® H’ HE® H°
1 2 1 0 1 2 1 0 1 2

where we abbreviated H* := H* (7, #9). For &#!, we obtain under the assumption above,

HY H! H2 H3 H* H®> HS H’ H® H°
0O 1 2 1 0 1 2 1 0 1

where we abbreviated H* := H*(7,%!). The same is obtained for &#2. For &° and &7, we
obtain,

H° H! H?> H® H* H> H® H’ H® H°

0 0 1 2 1 0 1 2 1 0

For all non-exceptional A, we obtain that H*(¥,.#%) is zero, under the assumption given above.
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In case of the Witt algebra, for the adjoint module in particular, continuous cohomology
is zero, H*(Vect(SY), Vect(S")) = {0} Yk € N. This result also agrees with our algebraic result
H3(#, %) = {0}. Concerning the Virasoro algebra, remember its cohomology with values in the
adjoint module can be derived from the long exact sequence,

. —H ) — B K) — B, ) — B ) —

Under the assumption that algebraic and continuous cohomology coincide and that H* (7, #) =
H*X(w , %) for all k, we obtain dim H*(¥,K) = dim H* (¥, 7%) for all k.

6.2 Outlook

On the short term, there are some obvious analyses that should be completed. In fact, the anal-
ysis of H3 (%, %) should be performed for all A € C or at least for all A € Z. In particular, it
would be interesting to obtain a proof for some A odd. Also, the exceptional values of A, namely
1€1{0,1,2,5,7,12,15}, should be investigated in detail.

In case of the multipoint Krichever-Novikov vector field algebra, more results need to be com-
pleted. First of all, the dimension of the third bounded cohomology H?}(Jf A,K) needs to be
determined exactly. Also, the third local cohomology H?OC(J( A, K) should be investigated.
Concerning the tensor densities modules, including the adjoint module, almost all of the low-
dimensional cohomology is still unknown.

On the long term, higher cohomology could be explored, starting with the analysis of the
fourth cohomology H*(#,%'). In fact, comparing the analyses of H'(#,#), H*(# ,#) and
H3(#, %), no pattern becomes apparent. The increase of complexity between these three anal-
yses is substantial. Also, the complications that arise when going to higher cohomology are
hard to predict. For example, in the proof of H3 (W, %) = {0}, subtleties arose that were hard
to anticipate when regarding the proof of H2(#,%#') = {0}. It is thus clear that the analysis of
H*(# ,#) could be much more complicated than the one of H3(#,%#') when using our elemen-
tary algebraic methods, and that a generalization of our proofs to higher cohomology is maybe
not possible. Clearly, the computation of HYw , FM) for higher k is even more complicated, as
the analysis of H3 (W, clearly demonstrated. One could also attempt to extend the Theo-
rems(3.3.3|and 3.3.4]to higher cohomology, especially since the increase in complexity with the
cohomological dimension is not as strong as in the case of the computation of H*(#, #). Pos-
sibly, a pattern may become apparent after computations for several k.

In case of the trivial module, another approach may stem from the analysis of the cup prod-
uct. Similarly to the continuous cohomology, one could suspect that the entire cohomology
HYW | K) is generated by elements of H2(#,K) and H3(#,KK), via the cup product in our alge-
braic case. In a first step, one could try to prove that the cup product is injective, which would
provide a minimal dimension for H*(#,K). In a second step, one would need to prove that all
k-cocycles stem from the cup product between two cocycles. Using this approach, one could
also eventually aim to prove that algebraic and continuous cohomology are the same, and ob-
tain the algebraic cohomology from the continuous cohomology. However, is is not clear how
to proceed concretely to get a proof of these hypotheses.

Another approach to relate continuous cohomology to algebraic cohomology could be given
by the one used by Hennion and Kapranov in [55], where a relation was established in the case
of the trivial module. The author also tried a different method using algebraic discrete Morse
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theory, in collaboration with Viktor Lopatkin. However, the analysis boiled down to heavy com-
putations similar to those used in the main text of this thesis, not allowing to get new insights.
An example where the algebraic discrete Morse theory was applied successively to compute
cohomology is given by the article of Lopatkin [78]. Algebraic discrete Morse theory was intro-
duced independently by Jollenbeck and Welker [66] and Skoldberg [114], and is an algebraic
version of Forman’s discrete Morse theory [40, 41].

The topic considered in this thesis can be extended in various directions. For instance, the
same analysis could be performed for the superalgebraic versions of the Lie algebras consid-
ered here, which come with an extra Z,-grading. In [I19], H2(k(1), k(1)) and H?(k(1)", k(1)*)
were computed by using elementary algebra, which correspond to the two supersymmetric ver-
sions of H2(#,#'), and the same was done for the second cohomology of the Neveu-Schwarz
and the Ramond superalgebras, which are the two supersymmetric versions of the Virasoro al-
gebra. The same could be done for the third algebraic cohomology. The analysis could also be
extended to the tensor densities modules.

In this thesis, we focussed on infinite-dimensional Lie algebras, thus we always considered Lie
algebras over a base field K with characteristic zero, char (IK) = 0. Another direction that could
be investigated would be to consider char(K) # 0. The case char(K) = 2 is of particular inter-
est, asit hasled to the so-called commutative cohomology, see [79]. Recently, also a Hochschild-
Serre spectral sequence has been constructed in this setting, see [129].

Another very popular subject is given by the so-called Hom-Lie algebras. A Hom-Lie algebra
(£,() is a pair of a non-associative algebra £ together with an algebra homomorphism ¢ such
that the product [-,-] » on £ is antisymmetric, [x, y]l ¥ = —[), X] , and satisfies a {-twisted Ja-
cobiidentity, [(id+{) (x), [, z]l #] ¢ +[(id+0)(2), [x, y] ] 2 +[(d+0) (1), [z, X] £] » =0, VX, y,z2€ ZL.
The Hom-Lie algebras were first introduced by Hartwig, Larsson and Silvestrov [54, (75, [76],
though similar structures already played an important role in physics and mathematics be-
fore, see e.g. [2,[16H18,91,195H97]. Since their introduction, they have been studied intensively,
including their cohomology and representations, a very non-exhaustive list being given by [1}, /4~
6,19, 15,113, 136]. It would be interesting to explicitly compute the low-dimensional algebraic
cohomology with values in various modules of the Witt Hom-Lie algebra and the Virasoro Hom-
Lie algebra, and their supersymmetric analogues.



Appendix A

Solutions of recurrence relations

In this appendix, we write down how solutions of the recurrence relations, which we established
during the analyses of H>(#,%* and H3(#, %%, can be found. We will start with the second
cohomology, as it allows for a warm-up example to the third cohomology.

A.1 Solving the recurrence relations of H*(#/,.%°) and H*(W, &)

In this section, we give details about the solving of the recurrence relations established during
the analysis of H?(#,.%°) and H>(#,%"), see the Remarks [4.2.1|and [4.2.2} respectively. The
strategy is to write down the first terms of the recurrence relations and to guess a solution.
Subsequently, by induction it is proven that the guess of the solution is indeed a correct solution
of the recurrence relations.

A.1.1 Thecaseof A=5

We already proved that H?(#,.%°) is one-dimensional, hence we have one generating coeffi-
cient. In the following, we seek to express a generic 2-cocycle in terms of the generating coeffi-
cient ¥, _». We already know that the levels zero, one and minus one are trivial, so we can start
with levels minus two and plus two. For positive i, the recurrence relation for level minus two

yields, see (4.69):

i+3 i+2
Vitl,2=—7T—Vij 20V, 2=T——Vi1,-2
1-1 1—-2
oy o= LU= A2+ DIl ]) A1)
Vi—2= e _2)!1//2,—2 Vi—2= 22 Y2,-2. .

Doing the same reasoning for negative i using (4.68) leads to an identical formula. Similarly,
level plus two can be expressed as follows:

1
Wiz==5 (=2~ Dili+ Dy, (A.2)

Comparing the two formulas, we see that the factor (i —1)i(i + 1) remains the same. As a guess,
we may assume that for generic k, the formula may become:

1
Vik= ﬂ(a(k)i +b(k)(i-1)i(i+ 1Dy o, (A.3)
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where a(k) and b(k) are some functions of k, which have to be determined. Encoding the for-
mulas for level minus two , level plus two and the recurrence relation for generic level
k in some symbolic programming language, we can construct a table giving the val-
ues of a and b for various values of k:

kb alo ’5 bgk) “gk)
—-10 1650 165 1 0 0
-9 1080 120 5 9 1
-8 672 84 | o O
-7 392 56

4 40 -10
-6 210 35

5 100 —-20
-5 100 20
a0 1o | 8 210 -85
5 1o 4 7 392 -56
. 8 672 -84
1o o 9 1080 —120

10 1650 -165

From the table above, we see that both functions a and b look polynomial. The function a
has three roots in k = 0,1,—1 and is antisymmetric in k, thus it has minimal degree 3. The
polynomial a is of the following form:

a(k) = —ék(k— D(k+1).

The function b also has three roots, but it is symmetric in k, thus it is at least of degree 4. The
polynomial b is of the following form:

1
b(k) = glc2(1c+ D(k-1).
Replacing the expressions of a and b into (A.3), we obtain a generic formula for the two-cocycle:

Yik= == (K2 = D= U2 =) G+ D=1 1y

1
SYik= —m(i -Dii+ D) -k(k-1)(k+1Dys,2. (A.4)

The expression above is clearly antisymmetric in i and k, and its roots are consistent with the
triviality of level zero, level plus one and level minus one. In order to prove that the recurrence
relations of level plus two, (4.71}[4.70), level minus two and generic level k
are equal to for every k, we can use induction on k, by assuming formula valid for
k = 2 and checking whether it stays valid for k + 1 by using (4.72). Inserting the generic formula
for y; r, W11,k and ; i+ into the recurrence relation (4.72), a direct computation leads to
agreement. Hence, the cochain is a solution of the recurrence relations of H?(#', %°). In-
serting the expression into the cocycle condition of H2(W',%°), a direct verification
shows that is a cocycle. The same can be done for k decreasing.

A.1.2 Thecaseof A =7

We already proved that the dimension of H2(w,Z7) is one, hence all coefficients can be ex-
pressed in terms of a single generating coefficient. From the recurrence relation for level minus
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two (4.78}[4.77) we can immediately deduce the following generic expression:

1
Vi 2= ﬁ(i +4)(+3)(@+2)(+Di(i —Dyo_2. (A.5)
The same can be done for level plus two using [4.80):
1 . . . . .
Vip = —%(l -4E-3)@-2)0+Di(i —Dyo,_2. (A.6)
Comparing both formulas, we can make a guess concerning the formula for generic k:
1
Vik=—0 (a(l)i* + b(k)i* + c(k)i +d(K)) (i + Dii — Dy 2, (A.7)

where a(k), b(k), c(k) and d(k) are some functions of k. Again, implementing formulas
and (A.5), as well as the recurrence relation for generic k (4.81}4.82) into some symbolic pro-
gramming language, we obtain:

’5 d E)k) C(ok) b E)k) “E)k) ko dk) cl) bl alk)
1 0 0 0 0 —10 178200 75570 7425 165
9 24 _o6 9 1 -9 96120 44700 4860 120
3 204 194 54 _4 -8 48384 24864 3024 84

-7 22344 12796 1764 56
4 960 -800 180 -10

-6 9240 5950 945 35
5 3300 -2410 450 -20

-5 3300 2410 450 20
6 9240 -5950 945 -35 _4 960 300 180 10
7 22344 —-12796 1764 -56 _3 204 194 54 4
8 48384 —-24864 3024 -84 o 24 26 9 1
9 96120 —44700 4860 -120 _1 0 0 0 0
10 178200 -—-75570 7425 -165

Having a sharp look at the values for a(k) and b(k), we see that they are similar to the ones
encountered for A =5:

a(k) = —ék(k— D(k+1) and b(k)= Zkz(kJr Dk-1).

The remaining functions c(k) and d (k) can be determined by using some spreadsheet software,
which yields:

c(k) = —%(k— Dk(k+1)(16 +9k%), dk) = é(k— DK (k+1)(8+K?).

Inserting the definitions of a, b, ¢ and d into (A.7), simplifying, we obtain a generic formula for
a 2-cocycle:

Vip=-— (i =1)(i — K k(k* —=1)(2i* = Tik + 16+ 2k*) 2, 5. (A.8)

8640
In this last expression, we can see that it is antisymmetric in i and k and its roots are consistent
with the triviality of the levels zero, plus one and minus one. Once again, in order to prove
that the recurrence relations and are equal to the generic formula
for every k, we can use induction on k, by assuming formula valid for k = 2 and checking
whether it stays valid for k+1 by using (4.81). Inserting the generic formula forv; k, Wis1k
and v .+ into the recurrence relation (4.81), a direct computation yields agreement. The same
can be done for k decreasing. Hence, is genuinely a solution of the recurrence relations
we found for H?(#,%7). Inserting the expression into the cocycle condition (4.14), direct
computation shows that it is fulfilled.
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A.2 Solving the recurrence relations of H3w , FM)

The main aim in Section and in particular in Section was to find a system of equa-
tions for the coefficients v; j x with a trivial solution, implying in particular ¥ _3, > = 0. The
problem is that a system with that property was not found for A odd. Such a system can be
searched by numerical means, simply by testing systematically the equations resulting from
the cocycle condition when all the coefficients y; ; 1 have been expressed in terms of the gen-
erating coefficients of pure and mixed type. The problem is that expressing the coefficients in
terms of the pure type generators takes a lot of processing time, which limits the number of
analyzed equations very much. A solution to this problem is given by resolving the recurrence
relations by hand and by obtaining an explicit expression for the coefficients y/; ; x in terms of
the generating coefficients of pure and mixed type. Below, we solve the recurrence relations in
an empirical manner, which allows to increase the number of tested equations considerably.
For example, for A = 19, a system of 4152 equations with 45 variables (=generating coefficients
of mixed and pure type) was tested. Unfortunately, a non-trivial solution still could be found.
Although solving the recurrence relations algebraically did not help, we will in the following
show how the recurrence relations can be solved in a semi-empirical manner, since this allows
to speed up the processing times also for A even, and to go beyond A = 26. We do not prove
that the algebraic solution holds true for any ¥; ; x, but we compared the algebraic solutions
with the numerical solutions found by Mathematica for low-level coefficients. The aim is only
to gain processing time. Since this does not help with the generic problem of A odd, the author
did not do the effort of providing a rigorous proof for the resolution of the recurrence relations.

The strategy is simple. We will write down the first terms of the recurrence relation and then
guess a generic law. We will start with the mixed type generators, which arise for the coefficients
Vi,j,x which have two positive indices and one negative index or vice versa. We will start with
level minus two, i.e. we consider v/; j—» with j =2 and i < —2. Using , we try for example
Jj =2, j =3 and leave i arbitrary, which gives respectively:

Viz,2=U+MPiz 2+ 1 -DVWit12-2,

1 1
Via—2= E(i +AE+1+AD)Y 22+ 1-DA+ i+ D)WY 122+ E(i —Diyii22 2.

The bigger j is, the more terms there will be. Let us write down the terms from j =3,...,9, they
can be found in Tables Note that in Mathematica, Hﬂ;?n (i+A+c) gives one for j < m+3.
From these tables, we can now guesstimate a generic rule for the coefficients y; ; » with i < -2
and j > 2, given by:

j-2 1 -2 j-3
Vij2= ) =7 [ Ci=D[[G+A+ 0y . (A.9)
im0 MG =1=2)1 20, c=1

The coefficients with i > 2, j < —2 are obtained from this expression by antisymmetry: v; j > :=
—VYji-2-



Vi2,-2 Vit1,2,-2

Vig—2 | ((+A) —i+1

Vig—2 | 2G+DE+1+A) (—i+DGE+1+A)

Vis—2 | s(+DE+1+1)([+2+2) I+ DE+L+AE+2+A)

Wie-2 | A+ ANE+1+D)E+2+ D) +3+ 1) L—i+DE+1+ DA +2+ D +3+ 1)

Viz,-2 ﬁ(i+/l)(i+1+A)(i+2+A)(i+3+/1)(i+4+/1) 2—14(—1'+1)(i+1+/l)(i+2+A)(i+3+A)(i+4+/1)
g+ A+0 T (i + DITZ G+ A+0)

Table A.1: The table gives the coefficients of the generating terms v; » > and ;41 2, appearing in the expressions of the terms y/; ; _» with
j=3,...,7. Derived from these coefficients, the last line contains an ansatz for the expressions of these for generic j.

Vit2,2,-2 Vi+3,2,-2

Yi3—2 |0 0

Via—2 | 3(i—1)i 0

Yis-2 | 3(i—Dii+2+1) L=i+D=D(=i-1)

Wiz | 2= Di(i+2+A)({i+3+A) LI+ DED=i-DE+3+ )
SE-Di+2+ M)A +3+ N0 +4+1) S+ DEDi-DE+3+A(E+4+A)

Viz7,-2

i i+ DED IS G+ A+ o)

sosn 1 (iDL G+ A+ 0)

Table A.2: The table gives the coefficients of the generating terms ¥;.22 —» and ;.32 > appearing in the expressions of the terms y; j >
with j =3,...,7. Derived from the non-zero coefficients, the last line contains an ansatz for the expressions of these for generic j.

Vita,2,-2 Vit5,2,-2
Viz-2 |0 0
Vig—2 |0 0
Vis-2 |0 0
Vig-2 | 37—+ D(=D)(—i—1)(=i-2) 0
Viz7,-2 ﬁ(—i+1)(—i)(—i—1)(—i—2)(i+4+/1) gl(,(—i+1)(—i)(—i—1)(—i—2)(—i—3)
Vig,—2 ﬁ(—i+1)(—i)(—z'—1)(—z‘—2)(i+4+/1)(i+5+)t) FIO(—H1)(—i)(—z'—1)(—i—2)(—z’—3)(z‘+5+/1)
Yig,—2 ﬁ(—i+l)(—i)(—i—1)(—i—2)(i+4+/1)(i+5+/1)(i+6+l) ﬁ(—l#1)(—i)(—i—1)(—i—2)(—i—3)(i+5+/1)(i+6+l)

s [y (—i =D T3+ A+ 0)

e T - DL G+ A+ o)

Table A.3: The table gives the coefficients of the generating terms ¥;.4,2 —» and ;5 > appearing in the expressions of the terms v; j »
with j =3,...,9. Derived from the non-zero coefficients, the last line contains an ansatz for the expressions of these for generic j.
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Next, we will consider v; ;  of generic level k, with k < —2. The reasoning is valid for both
situations i < -2, j > 2 and i, j < —2, but the last situation gives us generating coefficients of
mixed type, which we will consider later. Let us abbreviate the coefficients y; j > in by
Vi j-2 := F(i, j). We will proceed as before. Considering the recurrence relation for generic
k with k < -2 given in (4.131), we write down v; ; r with k = —1,..., -5 expressed in terms of
F(i, j), in Table[A.4] From Table[A.4} we can guesstimate a generic expression:

St T e T g 1T
Viik= (i+m) (j+n) (i+j=A+nF(i+x,j+Yy), (A.10)
b x=k+2y=k+2-x (k=24 x+ Y0 o n=y+2 r=k+1

where F(i, j) is asin . This expression gives us the coefficients y; j r with two indices neg-
ative and one index positive.

To conclude the analysis of mixed type generators, we also need to find an expression of the co-
efficients y; j x with two indices positive and one index negative. To do this, we need to guessti-
mate an expression for y; j» with i < -2, j > 2, which can be done using and symmetry,
yielding:

—-i—-2 1 -2 —-i-3
Vije= ) ———— [ G=-b) [] Ci+A+0v_z . (A.11)
izo N=i=1=2)25 o=l

The coefficients with i > 2, j < —2 are obtained from this expression by antisymmetry: y; j 2 :=
-y j,i—2. Let us denote this expression for y; j» by F(i, j). The expression of the coefficients
Vi jk wWith k > 2 can be derived semi-empirically from (A.10) using symmetry:

E o s
Viik= (i—m) G-n i+ j+A-NEG-x -,
b x=—k42y=—fiz2—x K2+ PNEDE) s n=y+2 r=—k+1

where F(i, j) is as in l| .This expression gives us the coefficients y; ; x with two indices pos-
itive and one index negative.



Vij,-3 Vij,—4 Vi, j,-5 Yi,j,—6
F(i—4,)) 0 0 0 L (=2 -1i(i+1)
F(i-3,)) 0 0 tHE-n6+1 —tOE-DE+DE+j-5-1)
F(i-2,j) 0 16+ ~JOE+DE+j-4-1) TOE+DE+j-5-D(+j-4-1)
Fli—1,)) (i+1) —(+D(i+j-3-2) LE+D+j-4-N(+j-3-1) LA+ DE+j-5-D+j-4-D+j-3-1)
F(i, j) —(i+j=2=-0) LG+j-3-M+j-2-0) -L(+j-4-NG+j-3-D+j-2-1) Hl+j-5-MG+j-4-V(i+j-3-D(i+j-2-1)
F(i-3,j-1) 0 0 0 tDE-DE+DG+D
F(i-2,j-1) 0 0 TOE+DG+D —3@OE+DG+DGE+j-5-1)
Fli-1,j-1) 0 G+DG+1) —GHDG+DE+j-4-A) LE+DG+DE+j-5-DE+j—-4-2)
F(i,j-1) G+1) —(+DE+j-3-1) LU+DG+j-4-D+j-3-21) —$GHDE+]-5-D+j-4-Di+j-3-1)
F(i-2,j-2) 0 0 0 TOE+DG+ D)
F(i-1,j-2) 0 0 Li+nG+1() “IE+DG+DGGE+-5-1)
F(i,j-2) 0 L(HG+Dy -G+ DGE+]-4-A) TNG+DGE+j=5-(+j-4-A)
F(i-1,j-3) 0 0 0 FNG-DG+DGE+D
F(i,j-3) 0 0 tHU-DG+D —L)G-DGHDGE+j-5-2)
F(i,j-4) 0 0 0 =2 -Dj+D

Table A.4: The table gives the coefficients of the functions F(i, j) appearing in the expressions of the terms vy; j x with k = -3,...,—6. The
coefficients are both valid for i < —2, j > 2 and for i, j < —2 by considering F(i, j) as in and as in (A.12), respectively.
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Now we will turn our attention to the generating coefficients of pure type, which appear
when solving the recurrence relations for coefficients of the form v; ; . with all indices negative
or all indices positive. Here we concentrate on the former, i.e. y;, jkwith i, j, k <0. The situation
with all indices positive is symmetric and should not produce new insights, hence we do not
consider it here. In case of the pure type generators, it is harder to guesstimate a solution.
We will start by searching a solution for level minus two. The generic solution is then derived
from (A.10). The recurrence relation to consider for level minus two is given in (4.138). We will
proceed as before and write down the first terms of the recurrence relation in order to guess the
solution. However, contrary to before, we cannot leave the one index arbitrary. Both indices
need to be fixed. We start with j = -3.

j=-3
If j = -3 in (4.138) there is one generating coefficient appearing given by y_j,5 3 _». For i >
—-A+5,wehave y; _3 _» = 0. Hence, the interesting cases to consider are given by i < -1 +5. We
have:

Y-p+4,-3-2=—(=A+3)P_2145-3-2,

V_2+3,-3,-2 = %(—/1 +2)(=A+3)Y_p45,-3,-2,

W_Q+2,-3,-2 = —é(—/l + D (=A+2)(=A+3)Y_2+5-3,-2,
W_Q+1,-3,-2 = i (“AEA+D(EA+2) (A +3)WY_p45,-3-2,
Y_p-3-2= —L(—/1 —DEA+D(EA+2) (A +3)W_p45,-3,-2.

120
Next, let us continue with j = —4.
We have: y; _4,_» = 0for i > —A+6. The interesting cases to consider are thus given by i < —1+6.
We obtain two generating coefficients, namely ¥ _j 53 > and ¥_j.6 —4,—2:

I V_2+6,-4,—2 Y _2+5-3,-2
—A+5 (A—4) 5
~A+4 1A-9(-3) 5(A-3)
-1+3 tA-H(A-3)(A-2) 2(A-3)(A-2)
“A+2 | 7A-DA-3)(A-2)A-1) 2(A-3)(A-2)(A-1)

j=-5
The interesting cases to consider are given by i < —A+7. We obtain three generating coefficients,
namely ¥_115-3 -2, W-1+6,-4,—2 and Y _3 47,5 2:

i Y_A+7,-5,-2 V_2+6,-4,-2 W _2+5,-3,-2
—1+6 (A-5) 6 0
-A+5| 1(A-5A-4) 6(A—4) 15
~“A+4 | tA-5A-49)(A-3)  3A-4)(A-3) 15(A—3)

“A+3| 5A-5(.)A-2) A-49)A-3)(1-2) 2(A-3)A-2)
“A+2 | 5A-5).0A-D 1A-49(.00-1) 3A-3A-2)A-1)
A+l SA(A-5)(.)A A=) 2A-3)A-2)(A-DA

Obviously, the lower j is, the more generating coefficients appear. However, for fixed A, the
number of generating coefficients of pure type is finite, due to the alternating property. For ex-
ample, for A =9, the generator ¥_).7 _5_» above would be zero, and the generators ¢_, 6,42
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and ¥_j 5,32 would be identical. However, for now, we will not take this into account, but
consider A very big, and solve the recurrence relations in that case. Later on in Mathematica, a
manual cut-off can be implemented into the solution very easily.

j=-6
The interesting cases to consider are given by i < —A + 8. We obtain:

i V_A+8,-6,-2 Y_1+7,-5-2 Y_1+6,—4,—2 Y_1+5,-3,-2
-A+7 (A-6) 7 0 0
-A+6| 1(A-6)(A-5) 7(A-5) 21 0
-A+5 | tA-6)A-5(A-4) I(A-51-4) 21(A-4) 35
“A+4| ZA-6)(.)A-3) I(A-5(.)A-3) ZFA-49A-3) 35(A—3)
—A+3 | gA-6)(.)A-2) £A-5(.)A-2) IA-9(.)A-2) FA-3)(A-2)

The rule of the factors involving A is easy to guesstimate. The prefactors are a bit more com-
plicated to guess. Let us write down the prefactors for j = -7 and j = —8 without the factors

involving A.
j=-7
i V2+9,-7,-2 Y-1+8-6,—2 W-2+7,-5-2 V-1+6-4-2 Y-2+5-3,-2
-A+8| 1=1 8 0 0 0
“A+7| =% 8=3 28=27 0 0
-A+6| =73 4=3 28=4%  56=5L0 0
—1+5 P 4% 14_5 5 _% 70 = 8765
24 — 4! 37 3! - 2! T 234
j=-8
i Y-1+10-8-2 Y-1+9-7-2 Y-21+8-6,2 V-1+7,-5-2 V-r+6-4-2 Y-2A+5-3,-2
-A+9|  1=1 9 0 0 0 0
-1+8 i=-1 9=3 36=128 0 0 0
7| 121 05 36=3  g4=987 0 0
? 3i 2 21 lé 2.
“A+6| = %:% 18= 2 84=131  126=3870 0
1T _ 1 _9 _ 36 _ 84 _ 126 _ 9-8:7-6-5
-A+5 5= s=a 6—§ 42——, 126—7 126 = 53.45

We are now able to guesstimate a solution. If we write the generating coefficients appearing in
the tables above under the form y_3_ ;.2 j11,-2, the prefactors written in bold and italic are

given by % Hinzz— ;(=J+m). Moving down vertically, these entries are divided by some factorial.
All in all, the prefactors are given by %m H;1n:2— ;(=j+ m). Including the factors with
A, we can guesstimate the final solution for coefficients y; j o with i, j < -2,i<j,i+j<-A+2
and A big:

—A+2—j—i 1 ﬁ —(iir_/l[)+1
Vij-2= - - (=j+m) A+mW_p_jy2-1j+1,-2- (A.12)
" ;) l!(—l—/l—]+2—l)!m:2_l n=j+l e

As mentioned before, to find the generic v; j x, with i, j, k < 0, we can use the formula
and replace F(i, j) with the coefficients v; j —» as given in (A.12).

This completes the resolution of the recurrence relations. The solutions were implemented into
Mathematica. Some properties such as antisymmetry, the fact that there are only finitely many
generators of pure type, and the fact that y; j, =0fori+ j+k>—-Aand i, j, k <0, were added
manually into the implementation. This rendered the computation of the coefficients vy j x
much faster. However, there is now a new time limit appearing in the resolution of the linear
system.
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