
The rise of eBPF for non-intrusive performance
monitoring

Cyril Cassagnes, Lucian Trestioreanu, Clement Joly and Radu State
University of Luxembourg

Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Luxembourg, Luxembourg
{firstname.lastname}@uni.lu

Abstract—In this paper, we explain that container engines
are strengthening their isolation mechanisms. Therefore, non-
intrusive monitoring becomes a must-have for the performance
analysis of containerized user-space application in production
environments. After a literature review and background of Linux
subsystems and container isolation concepts, we present our
lessons learned of using the extended Berkeley packet filter to
monitor and profile performance. We carry out the profiling and
tracing of several Interledger connectors using two full-fledged
implementations of the Interledger protocol specifications.

Index Terms—Performance, Cloud computing, Interledger,
eBPF, Profiling, Tracing

I. INTRODUCTION

The requirement to monitor computer software at different
levels of the software stack appeared seamlessly with the
introduction of computers in industry. Monitoring helps and
is the only way to diagnose different types of problems
or anomalies [1]. Nonetheless, this activity is not a new
requirement or a new problem. Cloud service providers require
to monitor further and at scale what is happening in their
data center [2]. What has changed in the last few years
is that new tools at the operating system level and new
tools to package and deploy software appeared (e.g. micro-
services). This has been made possible thanks to Linux kernel
evolution (e.g. namespace, cgroups) [3]. However, the non-
intrusive management of containers relies on the observability
of the underlying operating system. For this reason, we explore
the observability capability offered by the extended Berkeley
Packet Filter (eBPF) to the Linux kernel. To do this, we
analyze the potential of eBPF-based tools, which offer unique
capability. Beyond networking functions, eBPF instruction set
allows for monitoring in-kernel IO subsystems, i.e. tracing,
analytics, and security functions. We specifically assess the
added-value of the extended Berkeley packet filter tracing
framework. Our contribution is the experimental study of
eBPF-based tools in the context of non-intrusive profiling and
diagnoses of a user-space application in production. Indeed,
all parties hosting and/or operating an application cannot rely
on predefined metrics externalize by developers. Moreover, to
find root causes after an incident1, cloud users may also want
to monitor the internals of the system.

1https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-
systems, valid in August 2019

Therefore, in this paper, we address the challenge of moni-
toring a new generation of user-space application at the deepest
level without any support from the application.

The structure of the paper is as follows. The Section II
discusses the state of the art and the capability of eBPF
for networking and beyond. Section III presents the eBPF
tracing tools against process isolation mechanisms. Section IV
presents and analyzes information extracted for Interledger
Connectors. This Section explains also the rationale behind
the design of our performance tool-chain. Section V discusses
challenges, future works and concludes.

II. BACKGROUND AND RELATED WORK

In the last few years, BPF has evolved with the extension of
its instruction set. BPF becomes the extended Berkeley Packet
Filter (eBPF), which is the Linux subsystem that allows safely
executing untrusted user-defined eBPF programs inside the
kernel [4]. Since, eBPF is completely redefining the scope of
usage and interaction with the kernel. It offers the possibility
to instrument most parts of the kernel. eBPF adds the ability
to inject code at specific tracepoints. This goes from network
tracing to process or I/O monitoring like proposed in the
I/O Visor project2. A key added-value of eBPF is that it
does not require a new kernel module in comparison to other
tools (e.g. LTTng or SystemTap). eBPF is by default in the
Linux kernel. The possible attachment points to collect metrics
are: Kernel functions with kprobes, Userspace functions with
uprobe, System calls with seccomp, and tracepoints. Thanks to
SECure COMPuting with filters (seccomp), eBPF changes also
the way we can perform security monitoring in the system.
Like explained in the Linux kernel documentation, seccomp
provides a means for a process to specify a filter for incoming
system calls. The filter is expressed as a BPF program. For
instance in [5], the authors use it to spot malicious system
activities. Instead of using packets as traditional applications
to intercept communications, they monitor network activities
by exploiting trace points and Linux kernel probes. In this
paper, we explore these capabilities to trace and profile user-
land applications.

Because of its origin, eBPF is already used heavily for
networking subsystems [6]. In this context, eBPF is used in

2www.iovisor.org/, valid in August 2019



conjunction with the eXpress data path (XDP) framework.
XDP has been created to process packets before they enter
the kernel, unlike the traffic control subsystem (TC). TC
operates in the network stack, which means that the packet has
been already processed by the kernel. Indeed, after a packet
passes the XDP layer, the kernel allocates a buffer to parse
the packet and store metadata about it. Then, to access the
packet, the eBPF program uses a pointer to sk buff, and not
xdp buff, which is not in the kernel. Nonetheless, the primary
goal of these frameworks is to perform efficient switching,
traffic classification [7], virtualized networks [8], [9], routing,
traffic generation or communication optimization [10]. For
instance, in [11] the main technical contribution of the authors
is to show how this nascent technology can be used to not
only build in-kernel programmable VNFs but also how to
interconnect them on a single system. Indeed, the Linux kernel
limits the size of eBPF programs to 4096 instructions or
32 kbytes, i.e. 4096 instructions of 64 bits. To get around
this instruction limit imposed by Linux for security, Tail-calls
are possible. This means that one program triggers another
filter/program to create a chain of eBPF programs. In this
area, Polycube is a framework that enables the creation and
deployment of arbitrary virtual network function3.

Another new feature offered by this tool allows the authors
of [12] to deal with the increase in encrypted traffic. To gain
access to the clear text payload transparently for end-to-end
encrypted applications they propose to use the recently merged
kernel TLS functionality. This method does not require to
decrypt and re-encrypt any data and reduces the overhead
and latency. However eBPF/XDP is not the only system
enabling programmable packet processing [13]. The Data
Plane Development Kit (DPDK) is the main alternative to
use accelerators (hardware or software) to manage transport
protocols of the future and minimize the impact of the network
service chain [14]. XDP takes an approach that is the opposite
of kernel bypass. Next, like explained by the authors of [15],
network traffic monitoring is traditionally based on packet
analysis. While this approach is still useful in many contexts, it
does not solve our problem to provide detailed visibility when
containers or virtual systems are used. Like they suggest in
their work, a merge between system and network monitoring
is required. That is why in this paper we explore the limit
of eBPF to monitor system-wise a containerized user-space
application. Indeed, most of the research work on eBPF is
related to the primary goal of the tool, i.e. packet processing.
Therefore, talking of eBPF without talking about packet pro-
cessing was until recently not relevant. However, eBPF is now
valuable for security monitoring, network filtering but also for
program tracing, profiling, and debugging.

With regards to the opportunity for Cloud infrastructures,
today, Cloud data centres with providers at physical level
and customers at virtual level both monitor their hard and
software infrastructure to understand load patterns and to
detect malfunctions [16] and bottlenecks. The motivation for

3https://github.com/polycube-network/polycube, valid in Sept. 2019

cloud monitoring on both the virtual and physical levels can
be summarized to the three following opportunities: alerting,
resource allocation, and visualization [17]. The added-value of
eBPF is performing those tasks for applications in production
environment, even when micro-services are used. Indeed, in
[18] the authors explain how micro-services are challeng-
ing the classical methodology and performance tools. Unlike
traditional client-server applications, resolving performance
issues requires to determine which micro-service is the root
cause of performance degradation. The major contribution of
the authors is their benchmarks, which unfortunately does
not consider payment or micro-payment infrastructure, like
Interledger [19].

A. Profiling and Tracing tools

The recommended front-end for using BPF tracing frame-
work is the BPF Compiler Collection (BCC). BCC was created
by Brenden Blanco in April 2015 but the work of Brendan D.
Gregg is now more than influential [20]. Performance tools
allow performing two major tasks:

• Tracing, to report when events occur over time.
• Profiling, to report the number of occurrences of each

type of event tracked.
There is a broad list of ways to perform Tracing in Linux [21].
From the original mainline Linux tracer, Ftrace, to profiling
tools like perf. Over the years, more complex customized
tracing tools appeared in the kernel, like BPF, eBPF, and
out of tree tracers like LTTng, systemtap and Dtrace [22].
The most intrusive method uses only static instrumentation:
tracepoints and user application statically defined tracepoints
(USDT). However, this has several implications. First, this
required access to the source code to add the user markers
(USDT). Then, in any case, it requires recompilation to
activate pre-defined marker. Second, user markers will have
to be maintained over time based on the evolution of the code
based. However, eBPF opens a new world of possibilities with
dynamic instrumentation: kernel dynamic tracing (kprobes),
user-level dynamic tracing (uprobes). For instance, in Java
the dynamic instrumentation known as dynamic tracing lets
you trace any software function in a running binary without
restarting it. Nonetheless, one downside of this approach is the
continuity of service over time because instrumented functions
can be removed or renamed depending of the maturity of the
software interface observed.

eBPF being introduced, we present now the mainstream
front-ends for using it, which have been disseminated in a con-
ference organized by the Linux foundation [23]. Moreover, we
specifically used them in the context of our experimentation.

First, the BPF Compiler Collection provides a BPF library
and Python, C++, and Lua interfaces for writing programs.
BCC4 front-end is a toolkit great for complex tools with a
bound scope or for agents. In this respect, BCC provides a
large set of predefined tools. Brendan just released most of
his work in a book [24] where he presents all these tools.

4https://github.com/iovisor/bcc, valid in August 2019



An interesting fact is the audience targeted by the book, i.e.
system administrators and reliability engineers. This confirms
the relevance of the tools for cloud providers or in-house
critical IT infrastructure. BCC requires a program built in three
parts:

1) Importing the dependencies to use the eBPF framework.
2) The eBPF program always written in C-like language

and stored in a variable.
3) The processing script allowing to load, execute and

retrieve data from the eBPF program injected in the
kernel.

Second, the Bpftrace for quick ad hoc instrumentation (e.g.
for detecting zero-day vulnerabilities). Bpftrace5 is suited for
decomposing metrics into distributions or per-event logs to
create new metrics. Ultimately, the tool helps to uncover
blind spots. Bpftrace was created by Alastair Robertson. It
uses LLVM as a backend to compile scripts to BPF-bytecode
and makes use of BCC for interacting with the Linux BPF
system, as well as existing Linux tracing capabilities: kprobes,
uprobes, and tracepoints. The bpftrace language is inspired
by awk and C, and predecessor tracers such as DTrace and
SystemTap. Bottom line, Bpftrace is best for short scripts and
ad-hoc investigations.

Third, the Performance Co-Pilot provides a range of ser-
vices that are used to monitor and manage system perfor-
mance. PCP6 is a system-level suite of tools for performance
analysis. It has been field-tested in RedHat distributions and
provides a framework. PCP uses a daemon and relies on
PMDA (Performance Metric Domain Agent) to collect any
metrics.

eBPF collects the data in the kernel and transfers it in the
user-space thanks to BPF Maps. This is a key/value store inside
the kernel. This allows to collect metrics at each iteration of
the eBPF program. A single BPF program can currently access
up to 64 different maps directly. eBPF is changing drastically
the capability of the Linux kernel [25], [26].

III. NON-INTRUSIVE MONITORING AND PROFILING

Today performance monitoring for Cloud service providers
is complex; while they do not have control of the application
layer, they must provide the technical means to align with
new regulations such as data protection in Europe. More-
over, containers have become a commonly-used method for
deploying services on many operating systems, providing
short application start-up times, resource control, and ease of
deployment. Consequently, Cloud service providers have to
deal with Continuous integration (CI) and continuous delivery
(CD), application elasticity, and distributed data processing
workloads. In this Section, we explain the complexity of
undertaking performance evaluations for containerized user-
space applications even when using Linux based profiling
and tracing tools. We explain the rationale behind the aim
of performing non-intrusive performance monitoring and we

5https://github.com/iovisor/bpftrace, valid in August 2019
6https://pcp.io, valid in August 2019

demonstrate the added value of eBPF-based tools to perform
non-intrusive performance monitoring of containerized user-
space applications.

A. Container isolation

The isolation boundaries of a container can vary. In the
case of Linux, namespaces and cgroups are used to set those
boundaries. The first meaning that we attach to the principle of
isolation implies protecting each process from other processes
within the operating system. In consequence, this segregate
the memory space of process A from the memory space
of process B. To enforce this Docker container and other
container technologies use a collective noun for a group of
isolation and resource control primitives. For instance, the
Google gVisor, the IBM Nabla secure container systems, and
others propose a promising approach to containment [27]. The
authors propose X-Containers as a new security paradigm
for isolating single-concerned cloud-native containers. They
explain that replacing some of the isolation primitives with
local system call emulation sandboxes is not enough guarantee.

In this context, where isolation of software components
is strengthening, we advocate for non intrusive performance
monitoring with in-kernel facilities. Security and performance
are the primary concern but gathering indicators for perfor-
mance or to guarantee security becomes a challenge. On the
one hand, user level tools are required to monitor the full
stack of their application in a outsourced environment and, on
the other hand, more advance sysadmin tools are required to
monitor black-box containers. Indeed, it is not clear yet how
dynamic instrumentation will be able to safely bore in the con-
tainment boundaries where the business code is. The added-
value of non-intrusive monitoring has been proven in many
other works [28], [29], [30], [31], [32] and [2]. For instance,
Cilium7 leverages eBPF in a cloud native and micro-services
context. However, Kubectl-trace is a Kubernetes command
line front end for running bpftrace across worker machines
in Kubernetes cluster [33]. While at this stage and to the best
of our knowledge there is no solution yet to activate metric
capturing during the deployment of a containerized application
with Kubernetes or equivalent.

B. eBPF integration

Our goal is to dissect the behavior of Interledger connectors.
This means that at minimum, we want to perform the full
scope of classic system resources monitoring, e.g. CPU, mem-
ory, TCP connections. Then, two other requirements are the
possibility to filter traffic at the XDP level and the possibility
to filter the metrics gathered per container. For this, we use
the PID or a port number for a container running a specific
network service. The key features that we consider for our tool
chain are the extensibility of the tools used and the possibility
to store collected data. We want the ability to archive metrics
to perform a posteriori analysis.

Like explained previously, BCC and bpftrace are meant
to be used for the creation of higher level tools such as

7cilium.io, valid in August 2019



eBPF exporter or Performance Co-Pilot (PCP). At first, we
experiment with eBPF exporter, open sourced by Cloudflare,
to extract metrics and feed the main Prometheus server which
scrapes and stores time series data. Prometheus is supported by
the Linux foundation and relies on special-purpose exporters
for services like the eBPF exporter. Prometheus has a multi-
dimensional data model with time series data identified by
metric name and key/value pairs and so a query language
to leverage, PromQL. Then, we were not satisfied with the
module provided by the eBPF exporter. Indeed, we did not
have the possibility to monitor the garbage collector or any
facility to add IP filtering. Between modifying the parser
of the YAML files used by the exporter written in Golang
and switching to PCP, we decide to switch to PCP. Another
argument in favor of PCP is that it provides support for the
creation and management of archive logs.

U
se
r	
sp
ac
e

D
oc
ke
r

Ke
rn
el

Client

Client

eBPF bytecode

PMDA 
BCC

gc_latency

Performance Co-Pilot

eBPF bytecode

PMDA
BCC

http_analysisUSDT

System call

Interledger
JavaScript
Connector

Internal call

HTTP request

Other
PMDA

Vector

Arrows Legend

Fig. 1. Overview of the performance monitoring setup

Figure 1 shows the selected tool chain. PMDA modules are
in charge of injecting eBPF bytecode in the Kernel. Then,
PMDA modules gather and transmit collected metrics to a
PCP web daemon. Next, a visualization layer is required. In
this context, we try the following tool composition for the
realization of our performance monitoring tool chain:

• eBPF Exporter: integration with Prometheus and Grafana.
• Vector and Performance Co-Pilot (PCP): for remote BPF

monitoring.
• Grafana with PCP: for remote BPF monitoring.

Regarding data visualizations, we experiment with Grafana
and Vector. Vector can ”visualize and analyze system and
application-level metrics in near real-time”. These metrics
include CPU, memory, disk and network, and application
profiling using flamegraphs. Most important, Vector is built on
top of PCP. Vector pulls performance data from the PCP web
daemon, which in turn talks to the metric collector daemon.
This model is lightweight as no data is stored across browser
sessions, and there is no metrics aggregation across hosts.

Finally, in spite of our critics on static program instrumen-
tation, we try user application statically defined tracepoints as
shown in Figure 1. This approach is simple, easy to parse
but completely intrusive and lacks features such as typed

arguments. This is only suitable for the development and
debugging phase.

IV. PROFILING AND TRACING OF INTERLEDGER

As explained before, on-line monitoring is required in our
case. The default toolkits do not fulfill our needs. That is
why we have to create new eBPF programs, which will be
integrated in our monitoring solution based on Vector and
PCP, like presented Figure 1. We add dedicated modules for
the purpose of monitoring the connector during its execution.
For each module, parameters can be set through a common
configuration file for the BCC PMDA of PCP. Therefore,
we filter the monitoring to the connector itself, by setting
the ports, IP address and PID of the network stream to be
monitored. It is even possible in some cases to limit to a
process selected by regular-expression matched name. Each
module was systematically added in three steps. First, write
the corresponding user-space program to inject and perform
the measurement with the eBPF program. Second, gather and
store data with PCP, by adding the corresponding module in
the BCC PMDA. Third and last step, display the data in one
or more widgets in Vector, to allow for on-line monitoring.

A. Interledger connector

The goal of Interledger is to provide an architecture and
a minimal set of protocols to enable interoperability for any
value transfer system. The Interledger protocol is literally a
protocol for Interledger payments. Interledger Connectors aim
to realize the vision of an international friction-less payments
routing system. In other words, a standard for bridging diverse
financial systems [19]. In this Section, we use two full-fledged
implementations of the Interledger protocol. Each of them
runs over the last long-term support version of nodejs (v10)
in a Docker container. The reference implementation of the
protocols is in github8. This is a JavaScript implementation
of an Interledger connector. The second implementation of an
Interledger connector is also in JavaScript and all the source
code is on github9.

The main business risk connectors face in Interledger is be-
ing unable to fulfill the incoming transfer after their outgoing
transfer has been executed [34]. This is what they call the
Fulfillment Failure. To diminish as much as possible the odds
of that occurring, they propose some mitigation measures10.
For two of them eBPF has a clear added-value:

• Packet filtering - White-listing or denial of service pro-
tection

• Redundant Instances - Difficulty to interfere with pro-
gram instance(s)

Therefore, monitoring is a must in this case and in the case of
an unexpected attack. Indeed, a worldwide payments routing
system will certainly be a clear target.

8https://github.com/interledgerjs/ilp-connector, valid in Sept. 2019
9https://github.com/interledgerjs/rafiki, valid in Sept. 2019
10https://interledger.org/rfcs/0018-connector-risk-mitigations/



B. Performance analysis and flamegraph analysis

In this Subsection we profile both Interledger connectors to
point out performance flaw. All the material and code produced
in the context of the experimentation carried out for this paper
are available on a github repository11.

In [35], we explain how to setup an Interledger test-bed
connected to a private RippleNet and Ethereum PoA. For this
paper we used a simplified version of our test-bed to first
generate traffic only through two connectors based on the ref-
erence implementation. This simplified test-bed is composed
of a private RippleNet and three interconnected connectors,
i.e. forming a triangle where one is only observer/idle. Then,
using the same setup, we generate traffic through the Rafiki
connector. To generate the workload, we trigger payments
between two users connected to two different connectors and
exchanging 50000 XRP at a rate of 1 XRP per ILP packet. In
another work, we are currently evaluating the impact of the
parameters used by Interledger to route and settle payments.
This means that we create a proper payment channel and carry
well formed ILP packet.

To perform the stack trace profiling, i.e. flamegraphs, we use
a tool called 0x12. The stack trace profiling can be resource
intensive. Therefore, 0x proposes a method to generate a
flamegraph on a production server. By default 0x uses the
internal profiler of the JavaScript engine (V8). This means
native frames are omitted.

Fig. 2. Reference implementation at work - full flamegraph

Fig. 3. Rafiki implementation at work - full flamegraph

Figure 2 and Figure 3 show respectively the flamegraph
generated for the Reference implementation and for Rafiki,
both under workload, i.e. sending ILP packets. We present

11https://github.com/Oliryc/monobpf, valid in Sept. 2019
12https://github.com/davidmarkclements/0x, valid in Sept. 2019

these flamegraphs to emphasize first the differences in terms
of behavior. Conceptually, the two connectors do the same
thing. Indeed, both implementations are based on the same
specification and the same JavaScript libraries. The main
thing that distinguishes Rafiki is its software architecture.
To compare the Interledger connectors, we also carry their
stack trace profiling while in idle state, to have a baseline.
Besides, in our Vector dashboard we are also able to monitor
application specific metrics: garbage collector, TCP sessions
lifetime, HTTP traffic (HTTP verbs, code), Websocket ses-
sions, network throughput and other classic metrics. At this
scale, Figure 2 and Figure 3 only allow us to point out major
performance differences between the two implementations.

One of the major added-value of such flamegraphs is the
interactive nature of the plot that let you drill-down and zoom
on any function call. This is helpful when you do not know
what you are looking for. That is why, we primarily used
the flamegraph as a map to find out where Bilateral Transfer
Protocol (BTP) and the Interledger Protocol v4 are active.

Based on these Figures, which are at this scale suitable for
two things:

• Observe the general shape of the flamegraph. Knowing
that functions are ordered alphabetically

• Observe the proportion at runtime of each function level,
i.e. native, business, etc.

For the reference implementation we notice several prominent
columns pointing out deep and long function calls at the
application level. The software stack at issue is managing
part of the ILP packets processing and part of the settlement
process. Therefore, we investigated further how ILP packet
are (de-)serialize and how the settlement process is triggered.
It turns out that in Rafiki developers decouple the settlement
engine from the packet processing logic. Therefore, results are
consistent with their architectural modification. In Rafiki, the
columns pattern disappears.

C. New eBPF program created

a) Monitoring the garbage collector: BCC provides an
example to count the number of executions of the Garbage
Collector (GC) and time them. This was however not inte-
grated into PCP and Vector. Therefore, we have built on the
example to create a PMDA module and a heatmap widget for
Vector. The heatmap presents the lifetime and the frequency
of all the call to the garbage collector.

b) HTTP traffic Identification: We get the packet in a raw
form, quite close to the bytes circulating on the network. Even
though some processing has been performed by the network
card at this stage. For instance, on card TCP checksum
validation leads to an incorrect value of the corresponding
field when reading the packet at our stage. All the following
process is performed in the kernel at TC level. Our goal was to
show how far we can go in the packet analysis at this level to,
for instance, filter packet as early as possible. Consequently,
we process each network layer to locate the HTTP content.
First, we read the ”type” field of the Ethernet layer header. If
the value is the one associated with IP protocol, the packet is



candidate, i.e. it could be an HTTP packet and we process it
further. The next header is then from the Internet protocol. We
know the position of its first byte because the Ethernet layer
is fixed-size. The ”nextp” field of the IP header is checked for
correspondence with TCP. If so, the packet is still candidate.
To know where the first byte of this TCP header is, we use the
”ihl” field of the IP header. Similarly, to know where the first
byte of the HTTP header is, the ”doff” field of the TCP header
can be used to know the length of this last header. Finally, we
can check the packet for typical HTTP content, like methods
(GET, POST). If this matches, we send the packet to the user-
space program, where a similar task is performed to locate
the HTTP payload. From this payload, features of the HTTP
protocol can be extracted, like methods, headers, return codes.
Note that as soon as the packet is not candidate anymore, the
treatment is interrupted.

Header How to know the size?
Ethernet Fixed size in spec.
IP Size inferred from the ”ihl” field
TCP Size inferred from the ”doff” field
HTTP Sequence-delimited size

TABLE I
PROTOCOL LAYERS TO DECAPSULATE MANUALLY TO LOCATE THE HTTP

PAYLOAD.

c) IP Whitelisting and Denial of Service Attack: As a
hardening measure, we leveraged eBPF and XDP to improve
the resilience of the connector against denial of service (DoS)
attacks. It has been observed in the industry that rejecting
packets with iptables rules was not efficient enough to suc-
cessfully handle medium-sized DoS attack. The reason is that
once iptable decides to drop a packet based on one of its rules,
it is quite late already. Some copy and processing already went
through the kernel stack and situations where all the CPU time
is used to merely drop the packets arise. To solve this, a new
good practice is to rely on XDP. However, this security layer
is not perfect but clearly improve the capability of the kernel.
With XDP, we can decide to drop a packet right away, on
the networking card, thus without entering the kernel stack.
Indeed, this technique becomes even more relevant for the
new generation of network cards.

A key point of XDP compared to iptable is that there are no
costs associated to the re-injection of the packet into the kernel
when we want to keep it. This is paramount to avoid slowing
down legitimate packets during an attack. Nonetheless, since it
is based on IP white-listing, the risk for DoS attacks still exists
if an attacker success to find an IP in the white-list. Finally,
the code of the eBPF program used for DoS protection is
presented in Figure 4.

In this Section, we presented a part of our results. Indeed,
to perform a precise analysis and diagnosis of the program
under workload the cross-validation of all the different metrics
collected is required. Our experimentation are twofold. We
use eBPF to better understand Interledger connectors when
treated as a black-box program. Then, we assess the potential
of eBPF probes to monitor the full stack from operating system

1 #define WHITE4SIZE 6
2

3 static int ip4white[] = { 3137448128, 1644275904,
16885952, 2516691136, 2197924032,
1140959424};

↪→

↪→

4

5 int xdp_prog1(struct CTXTYPE *ctx) {
6 nh_off = sizeof(*eth);
7

8 if (data + nh_off > data_end) {
9 return rc;

10 }
11 h_proto = eth->h_proto;
12 if (h_proto == htons(ETH_P_IP)) {
13 // Allow packet to pass if its IP is in

the whitelist↪→

14 int ip = get_ipv4(data, nh_off,
data_end);↪→

15 if (ip == NOIP) {
16 return XDP_DROP;
17 }
18 #pragma unroll
19 for (int i = 0; i < WHITE4SIZE; i++) {
20 if (ip4white[i] == ip) {
21 return XDP_PASS;
22 }
23 }
24 return XDP_DROP;
25 } else if (h_proto == htons(ETH_P_ARP)) {
26 return XDP_PASS;
27 } else {
28 return XDP_DROP;
29 }
30 }

Fig. 4. Code snippet to prevent DDOS with XDP

to application layer when the application is containerized and
not modifiable.

V. CONCLUSIONS

eBPF is a major change in the Linux kernel, which im-
pacts a large audience of users. Indeed, as researchers, we
are always interested to perform precise measurements for
our experimentation and this can be achieved with a better
observability of the kernel. For system engineers, this offers
the possibility to better point out the applications’ critical
behavior, and for administrators this is the opportunity to better
secure infrastructure and profile third-party applications.

In this paper, we realized experiments with a Linux sub-
system to monitor containerized user-space applications. We
performed these experiments in the context of our work with
Interledger connectors where the capability to monitor the
software stack in production is a must-have. With this work
we explored and assessed the tool landscape created to support
eBPF. The contribution of this paper encompasses:

• The use of eBPF/XDP programs with one of the industry
standard tools, Performance co-Pilot

• Experimentation of the tools on Interledger connectors
In our future work, we will assess how this type of tools can

create an end-to-end view of a distributed system. Nowadays,
in complex n-tier architecture the challenge is to trace a request
all along its journey.



ACKNOWLEDGMENT

We thankfully acknowledge the support from the RIPPLE
University Blockchain Research Initiative (UBRI) for our
research.

REFERENCES

[1] B. Beyer and R. Ewaschuk, Monitoring Distributed Systems, O’Reilly,
Ed. O’Reilly Media, Inc., 2016.

[2] G. Liu and T. Wood, “Cloud-scale application performance monitoring
with sdn and nfv,” in Proceedings of the IEEE International Conference
on Cloud Engineering (IC2E), March 2015, pp. 440–445.

[3] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[4] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas,
N. Rinetzky, L. Ryzhyk, and M. Sagiv, “Simple and precise static
analysis of untrusted linux kernel extensions,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2019. New York, NY, USA: ACM,
2019, pp. 1069–1084.

[5] L. Deri, S. Sabella, and S. Mainardi, “Combining system visibility and
security using ebpf,” in Proceedings of the Third Italian Conference
on Cyber Security (ITASEC), ser. ITASEC’19, vol. Vol-2315, 2019, pp.
50–62.

[6] Cilium Authors community, “BPF and XDP Reference Guide,”
https://docs.cilium.io/en/v1.6/bpf.

[7] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle,
“Performance implications of packet filtering with linux ebpf,” in 2018
30th International Teletraffic Congress (ITC 30), vol. 01, Sep. 2018, pp.
209–217.

[8] T. Nam and J. Kim, “Open-source io visor ebpf-based packet tracing on
multiple network interfaces of linux boxes,” in 2017 International Con-
ference on Information and Communication Technology Convergence
(ICTC), Oct 2017, pp. 324–326.

[9] K. Suo, Y. Zhao, W. Chen, and J. Rao, “vnettracer: Efficient and pro-
grammable packet tracing in virtualized networks,” in 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
July 2018, pp. 165–175.

[10] S. Baidya, Y. Chen, and M. Levorato, “ebpf-based content and
computation-aware communication for real-time edge computing,” in
IEEE INFOCOM 2018 - IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), Apr. 2018, pp. 865–870.

[11] Z. Ahmed, M. H. Alizai, and A. A. Syed, “Inkev: In-kernel distributed
network virtualization for dcn,” SIGCOMM Comput. Commun. Rev.,
vol. 46, no. 3, pp. 4:1–4:6, Jul. 2018.

[12] T. Graf, “Accelerating envoy with the linux kernel,” in CloudNativeCon
Europe and KubeCon Europe, 2018.

[13] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller, “The express data path: Fast pro-
grammable packet processing in the operating system kernel,” in Pro-
ceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’18. New York, NY,
USA: ACM, 2018, pp. 54–66.

[14] S. Jouet and D. P. Pezaros, “Bpfabric: Data plane programmability
for software defined networks,” in 2017 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS),
May 2017, pp. 38–48.

[15] L. Deri and S. Sabella, “Merging system and network monitoring with
bpf,” in Open Source Developers’ European Meeting (FOSDEM), 2019.

[16] J. Hong, S. Jeong, J.-H. Yoo, and J. W. Hong, “Design and implemen-
tation of ebpf-based virtual tap for inter-vm traffic monitoring,” in 2018
14th International Conference on Network and Service Management
(CNSM), Nov 2018, pp. 402–407.

[17] C. B. Hauser and S. Wesner, “Reviewing cloud monitoring: Towards
cloud resource profiling,” in Proceedings of the IEEE 11th International
Conference on Cloud Computing (CLOUD), July 2018, pp. 678–685.

[18] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark
suite for microservices and their hardware-software implications for
cloud & edge systems,” in Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages

and Operating Systems, ser. ASPLOS ’19. New York, NY, USA: ACM,
2019, pp. 3–18.

[19] E. Schwartz, “A payment protocol of the web, for the web: Or,
finally enabling web micropayments with the interledger protocol,”
in Proceedings of the 25th International Conference Companion on
World Wide Web, ser. WWW ’16 Companion. Republic and Canton
of Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2016, pp. 279–280.

[20] B. Gregg, “Performance superpowers with enhanced BPF,” in Proceed-
ings of USENIX Annual Technical Conference (ATC). Santa Clara, CA:
USENIX Association, Jul. 2017.

[21] M. Gebai and M. R. Dagenais, “Survey and analysis of kernel and
userspace tracers on linux: Design, implementation, and overhead,” ACM
Comput. Survey, vol. 51, no. 2, pp. 26:1–26:33, Mar. 2018.

[22] M. Marchini, “Enhancing user defined tracepoints,” in Linux Plumbers
Conference (LPC), 2018.

[23] B. Gregg, “System observability with bpf,” in Linux Storage, Filesystem,
and Memory-Management Summit (LSFMM), 2019.

[24] B. Gregg, BPF Performance Tools. Addison-Wesley Professional, 2019.
[25] T. Høiland-Jørgensen and J. D. Brouer, “Xdp - challenges and future

work,” in Linux Plumbers Conference (LPC), 2018.
[26] V.-H. Tran and O. Bonaventure, “Making the linux tcp stack more

extensible with ebpf,” in Netdev 0x13, 2019.
[27] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Re-

nesse, and H. Weatherspoon, “X-containers: Breaking down barriers
to improve performance and isolation of cloud-native containers,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’19. New York, NY, USA: ACM, 2019, pp. 121–135.

[28] J. Wei and C.-Z. Xu, “smonitor: A non-intrusive client-perceived end-to-
end performance monitor of secured internet services,” in Proceedings
of the Annual Conference on USENIX ’06 Annual Technical Conference,
ser. ATEC ’06. Berkeley, CA, USA: USENIX Association, 2006, pp.
21–21.

[29] M. Wagner, J. Doleschal, A. Knpfer, and W. E. Nagel, “Selective runtime
monitoring: Non-intrusive elimination of high-frequency functions,” in
Proceedings of the International Conference on High Performance
Computing Simulation (HPCS), July 2014, pp. 295–302.

[30] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and
W. Zheng, “Racez: A lightweight and non-invasive race detection tool
for production applications,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York, NY,
USA: ACM, 2011, pp. 401–410.

[31] B. Sengupta, N. Banerjee, A. Anandkumar, and C. Bisdikian, “Non-
intrusive transaction monitoring using system logs,” in Proceedings of
the IEEE Network Operations and Management Symposium (NOMS),
April 2008, pp. 879–882.

[32] C. E. T. de Oliveira and R. F. Junior, “A transparent and centralized
performance management service for corba based applications,” in Pro-
ceedings of the IEEE Network Operations and Management Symposium
NOMS (IEEE Cat. No.04CH37507), vol. 1, April 2004, pp. 439–452
Vol.1.

[33] A. Crequy, “bpftrace meets kubernetes with kubectl-trace,” in Open
Source Developers’ European Meeting (FOSDEM), 2019.

[34] A. Hope-Bailie and S. Thomas, “Interledger: Creating a standard for
payments,” in Proceedings of the 25th International Conference Com-
panion on World Wide Web, ser. WWW ’16 Companion. Republic
and Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee, 2016, pp. 281–282.

[35] L. A. Trestioreanu, C. Cassagnes, and R. State, “Deep dive into
interledger: Understanding the interledger ecosystem,” University of
Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust
(SnT), Tech. Rep., 2019.


