UNIVERSITE DU
LUXEMBOURG

PhD-FSTM-2020-17
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 20 May 2020 in Esch-sur-Alzette
to obtain the degree of

DOCTEUR DE LUNIVERSITE DU
LUXEMBOURG EN INFORMATIQUE

by

lvana Vukotic
Born on 27 July 1985 in Podgorica (Montenegro)

Formal Framework for Verifying Implementations of
Byzantine Fault-Tolerant Protocols Under Various Models

Dissertation defence committee

Dr. Peter Y.A. Ryan, Chairman
Professor, University of Luxembourg

Dr. Marcus Volp, Vice-chairman
Associate Professor, University of Luxembourg

Dr. Paulo Esteves-Verissimo, Supervisor
Professor, University of Luxembourg

Dr. Stephan Merz, Member
National Institute for Research in Computer Science and Control

Dr. John Rushby, Member

Computer Science Laboratory SRI International



To Gigio,
my all



Acknowledgements

I would like to start by thanking my mentor Prof. Paulo Esteves-Verissimo for his
unconditional support and guidance. I feel honored to have been part of his team
over the course of the last four years and proud of our joint achievements.

I would also like to thank my co-supervisor Dr. Vincent Rahli for his patience
and for sharing his knowledge about formal verification. 1 very much appreciated
our discussions, as well as his assistance with various coding challenges.

Similarly, T would like to thank my co-supervisor Dr. Ing. Marcus Volp for all
the great discussions we had, and for all the feedback he provided on my thesis
drafts. His “you can do it“ attitude made all the difference during this journey.

Over the years, many members of our research team become my dear friends:
Douglas, Jérémie, Jiangshan, Natalie, Tong and Tulio. I also managed to find two
“long lost brothers” in Christoph and David, and to “adopt” two amazing girls—
Maria and Inés. Great thanks to all of them; I was always in a great company and
I never felt alone.

I am deeply grateful to my parents, my brothers and their families, for their
unconditional love and support. I am aware how difficult it was for them to see
me go abroad. Their faith in me was instrumental in my drive to succeed and to
complete this exploration in a timely manner.

[ would like to extend my deepest gratitude to my husband for his love, patience
and support. It was a great comfort not to have to go on this journey alone. He
always had my back and helped me care for our family.

I am also truly grateful to my aunt Ljiljana, who was there for my family when
it was truly necessary. Her commitment and strength assured me that I could
purse my work without ever fearing they will lack support.

Many thanks to my friends from Montenegro, who always believed in me: Ana,
Aleksandar, Marija and Milena.

Finally, and above all, I would like to thank my “my little ball of energy”.
Without her, I would never even dare to start a PhD, and without her smiles and
hugs I would never finish it.

iii



Declaration

I, Ivana Vukotic, declare that this thesis, titled “Formal Framework for Verifying
Implementations of Byzantine Fault-Tolerant Protocols Under Various Models”
and the work presented therein are my own. I confirm that:

e this work was done wholly or mainly while in candidature for the degree
DOCTEUR DE L’'UNIVERSITE DU;

e where any part of this thesis has previously been submitted for a degree or
any other qualification at this university or any other institution, this has
been clearly stated;

e where I have consulted the published works of others, these are clearly at-
tributed;

e where I have quoted from the works of others, the sources are always given;

e where the work presented in this thesis is based on work done by myself
jointly with others, I have clearly outlined what was done by others and
what I contributed;

e with the exception of such quotations, this is entirely my own work; and

I have acknowledged all main sources of help.

Signed:

Date:

v



Abstract

The complexity of critical systems our life depends on (such as water supplies,
power grids, blockchain systems, etc.) is constantly increasing. Although many
different techniques can be used for proving correctness of these systems errors still
exist, because these techniques are either not complete or can only be applied to
some parts of these systems. This is why fault and intrusion tolerance (FIT) tech-
niques, such as those along the well-known Byzantine Fault-Tolerance paradigm
(BFT), should be used.

BFT is a general FIT technique of the active replication class, which enables
seamless correct functioning of a system, even when some parts of that system
are not working correctly or are compromised by successful attacks. Although
powerful, since it systematically masks any errors, standard (i.e., “homogeneous”)
BE'T protocols are expensive both in terms of the messages exchanged, the required
number of replicas, and the additional burden of ensuring them to be diverse
enough to enforce failure independence. For example, standard BFT protocols
usually require 3f + 1 replicas to tolerate up to f faults.

In contrast to these standard protocols based on homogeneous system models,
the so-called hybrid BF'T protocols are based on architectural hybridization: well-
defined and self-contained subsystems of the architecture (hybrids) follow system
model and fault assumptions differentiated from the rest of the architecture (the
normal part). This way, they can host one or more components trusted to provide,
in a trustworthy way, stronger properties than would be possible in the normal
part. For example, it is typical that whilst the normal part is asynchronous and
suffers arbitrary faults, the hybrids are synchronous and fail-silent. Under these
favorable conditions, they can reliably provide simple but effective services such as
perfect failure detection, counters, ordering, signatures, voting, global timestamp-
ing, random numbers, etc. Thanks to the systematic assistance of these trusted-
trustworthy components in protocol execution, hybrid BFT protocols dramatically
reduce the cost of BFT. For example, hybrid BFT protocols require 2 f + 1 replicas
instead of 3f 4+ 1 to tolerate up to f faults.

Although hybrid BFT protocols significantly decrease message /time/space com-
plexity vs. homogeneous ones, they also increase structural complexity and as such
the probability of finding errors in these protocols increases. One other fundamen-
tal correctness issue not formally addressed previously, is ensuring that safety and
liveness properties of trusted-trustworthy component services, besides being valid
inside the hybrid subsystems, are made available, or [ifted, to user components at
the normal asynchronous and arbitrary-on-failure distributed system level.

This thesis presents a theorem-prover based, general, reusable and extensible
framework for implementing and proving correctness of synchronous and asyn-
chronous homogeneous FIT protocols, as well as hybrid ones. Our framework



comes with: (1) a logic to reason about homogeneous/hybrid fault-models; (2) a
language to implement systems as collections of interacting homogeneous/hybrid
components; and (3) a knowledge theory to reason about crash/Byzantine homo-
geneous and hybrid systems at a high-level of abstraction, thereby allowing reusing
proofs, and capturing the high-level logic of distributed systems. In addition, our
framework supports the [ifting of properties of trusted-trustworthy components,
first to the level of the local subsystem the trusted component belongs to, and
then to the level of the distributed system. As case studies and proofs-of-concept
of our findings, we verified seminal protocols from each of the relevant categories:
the asynchronous PBFT protocol, two variants of the synchronous SM protocol,
as well as two versions of hybrid MinBF'T protocol.
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Chapter 1

Introduction

Our society strongly depends on critical information infrastructures such as elec-
trical grids, autonomous vehicles, distributed public ledgers, etc. Unfortunately,
ensuring that they operate correctly is very hard to achieve due to their complexity.
Moreover, given the increasing number of sophisticated attacks on such systems
(e.g., Stuxnet [Kusl3|, Cloudbleed [17b|, Bitcoin Unlimited [17a], etc.), ensuring
their correct behavior becomes even more necessary, especially because failures of
these systems might have catastrophic consequences. For example, two crashes
of Boeing 737 MAX 8 aircraft caused death of 346 people and loss of billions of
dollars [19b)].

Although testing is one of the most common techniques used for ensuring cor-
rectness of these systems, usually it is not feasible to test all possible runs of a
system. In consequence, it is not rare that systems that have been deployed for a
long period of time and tested by many users, still contain residual faults [Fon+17].
Ideally, we should ensure the correctness of critical systems, relying on a minimal
trusted computing base, and to the highest standards possible, i.e., critical systems
should be formally proven correct and these proofs should be machine checked.
Machine checked proofs are most commonly produced using model checkers or in-
teractive/automated theorem provers. Although model checking is an automatic
verification technique which has been widely used for debugging programs and
specifications, its application to systems of reasonable complexity—e.g., imple-
mentations of complex critical infrastructures—is all but straightforward, because
of the state space explosion problem. To overcome the state space explosion prob-
lem, systems are usually modeled at a high level of abstraction, which sometimes
conceals problems and details at the system implementation level. On the con-
trary, interactive theorem proving allows reasoning about implementations of sys-
tems, but it is very labor intensive to use a theorem prover to prove properties



about critical systems[] For example, Klein at al. needed 22.2 person years to de-
velop and formally prove correct a seL.4 microkernel [Kle+09|. This is why critical
systems are usually only partially verified when using theorem provers. Unfortu-
nately, it turns out that errors can be found even in software that is checked by a
theorem prover |[Fon+17], in particular if the assumptions they are based on are
over-simplifying.

One standard approach to mitigate the inevitability of faults, is to accept that
systems or applications will indeed have faults or vulnerabilities, even if residual,
and to tolerate them, through fault and intrusion tolerance (FIT) techniques. A
quite powerful such class of techniques is the well-known Byzantine Fault-Tolerant
State Machine Replication paradigm (BFT-SMR) |[LSP82|; |[CL99b|; [BSA14].
BFT-SMR is a general FIT technique that is used to turn any service into one
that can tolerate arbitrary (a.k.a. Byzantine) faults, by extensively replicating the
service to mask the behavior of a minority of possibly faulty replicas behind a
majority of correct replicas, operating in consensus. A faulty replica is one that
does not behave according to its specification. BFT-SMR can encompass a wide
range faults in replicas, accidental or malicious. For example, it can be one that
is controlled by an attacker, or simply one that contains a bug. The total number
of replicas N is a parameter over the maximum number of faulty replicas f, which
the system is configured to tolerate at any point in time. Typically, N = 3f + 1
for classical protocols such as PBFT |[CL99b.

Unfortunately, classical BET-SMR protocols such as [CL99b|; [CL99a|; [Cas01]
are expensive both in terms of the messages exchanged, the required number of
replicas, and the additional burden of ensuring them to be diverse enough to en-
force failure independence. To address these issues, hybrid architectures [VCF00;
[VCO02|; [CVNO2|; [Ver03]; [CNV04]; [Cor+-05| have been developed. These archi-
tectures assume existence of a subsystems of the architecture (hybrids), which rely
on stronger guaranties from the rest of the architecture (the normal part). This
way, these architectures allow the coexistence and interaction of components with
largely diverse behavior, e.g., synchronous vs. asynchronous, or crash vs. Byzan-
tine [Ver06|. In such models, “normal” components trust “special” components
that provide a set of pre-defined properties with a high level of trustworthiness. In
consequence, these trusted-trustworthy “special” components should undergo care-
ful design and verification. Therefore, by relying on stronger assumptions (e.g.,
full synchrony or crash-failure), they can be unconditionally trusted to provide
stronger properties to the entire hybrid distributed system, than what would be
possible in an otherwise homogeneous system. For example, these hybrid sub-

IKlein et al. in [Kle+14] concluded that formal verification is cheaper than full high-assurance
software certification, but it is about a factor of five more expensive than traditional good quality
software engineering in embedded systems.



systems can be used for development of many reliable services [Fet03|; |[ZSR02];
[VCFOO0]; [Ver-+13|; [VRCO7]|, such as: perfect failure detection, counters, ordering,
signatures, voting, global timestamping, random numbers, etc.

Actually, this generic architectural hybridization paradigm has been showing
great promise for BET-SMR. Many so-called hybrid solutions have been designed to
reduce the message/time/space complexity of BF'T protocols [CNV04]; [Chu+07];
|[Lev+09]; [Ver+13|; [Ver+10]; [Woo+11]; [Kap+12]; [CNV13]; [DCK16|; [BDK17|
by relying on trusted-trustworthy components (e.g., message counters in MinBFT
[Ver+13]) that cannot be tampered with and are trusted to only fail by crashing, or
otherwise always deliver correct results. For example, when applied to BEFT-SMR,
hybrid solutions only require 2f 4+ 1 replicas instead of 3f + 1, to tolerate f faults,
and normally have lower message complexity. An increasing number of off-the-
shelf hardware systems are now providing trusted environments [19i]; [19m]; [19h];
|[ERT17], thereby enabling the further development and large-scale use of hybrid
protocols, by hosting trusted-trustworthy components in those environments.

Although hybrid BEFT-SMR protocols significantly cut replication and execu-
tion costs vs. homogeneous ones, they have increased structural complexity, which
typically induces a higher propension for errors. Also, to the best of our knowl-
edge, there are no formal proofs showing that the safety and liveness properties
provided by trusted-trustworthy component services inside the hybrid subsystems,
are indeed available in a deterministic way, or lifted, to user components at the
“normal” fault-prone distributed system level.

As explained above, the complete or thorough verification of complex systems
and applications not being feasible, it is mitigated by making them resort to FIT
libraries and runtime subsystems, masking whatever residual faults may exist be-
hind a majority of correct replicas. These FIT subsystems become now a single
point of failure (SPoF) and as such, we should guarantee their correctness to the
highest standards known. That is, the proof of their correctness should be checked
by a machine and their model refined down to machine code. Unfortunately, as
pointed out in [DHZ15|, most distributed algorithms, including BFT protocols,
are published in pseudo-code or, in the best case, a formal but not executable
specification, leaving their safety and liveness questionable. Moreover, Lamport,
Shostak, and Pease wrote about such programs |LSP82|: “We know of no area
in computer science or mathematics in which informal reasoning is more likely to
lead to errors than in the study of this type of algorithm.”, which turned out to be
true—many production systems, although tested and used by a significant number
of users, still contain errors [Fon+17]. If we add on top of that the fact that many
blockchain protocols either use or are inspired by BFT-SMR protocols [SBV18];
IDSW16|; [Kok+16|; [Abr+16]; [Abr+18]|; [PS17]; [Luu+16]; [19¢|; [19K]; [19]], it
is clear that proving correctness of these protocols is extremely important.

3



1.1 Contributions

Anticipating the impact and widespread use of FIT systems, and to support the
development of correct FIT systems, we present here: A generic and extensible
theorem-prover based framework for systematically supporting the mechanical veri-
fication of homogeneous and hybrid FIT protocols and their implementations, where
processes communicate via message passing. We equipped our framework with a
knowledge-level theory that enables reasoning about homogeneous and hybrid sys-
tems at a high-level of abstraction, thereby allowing reusing proofs, and capturing
the high-level logic of distributed systems. In addition, our framework supports
compositional reasoning, e.q., through mechanisms to lift properties about trusted-
trustworthy components, to the level of the distributed systems they are integrated
. We provide more details about our contributions in the next sections.

Although the implementation we present here is Coq specific, our model and
reasoning patterns can be implemented using another theorem prover (e.g., Is-
abelle/HOL, PVS...). However, we are not aware of other frameworks that pro-
vide equivalent functionalities and reasoning patterns. We chose to rely on Coq
because it relies on a small trusted core which was partially proven correct [Barl0|
and which has been put under scrutiny for more than 30 years, as well as because
it enables reasoning about implementations of protocols.

The work presented in this thesis was independently validated through peer-
reviewed publications in international conferences of this area. The complete list
of publications related to this research is:

e Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq
Vincent Rahli, Ivana Vukotic, Marcus Volp, Paulo Esteves-Verissimo
European Symposium on Programming, 619-650 (April 2018).

e An Ecosystem for Verifying Implementations of BFT protocols
Ivana Vukotic, Vincent Rahli, Marcus Volp, Paulo Esteves-Verissimo
EuroSys Doctoral Workshop (April 2018).

e Asphalion: Trustworthy Shielding against Byzantine Faults
Ivana Vukotic, Vincent Rahli, Paulo Esteves-Verissimo
Proc. ACM Program. Lang. 3, OOPSLA, Article 138 (October 2019).

1.1.1 Reasoning about Homogeneous BFT-SMR protocols

Because most BFT-SMR protocols known today are actually homogeneous, we
developed a generic and extensible theorem-prover based framework for proving
the correctness of implementations of these protocols.

4



As part of our framework, we provide a model, called Byzantine Logic of Events
(ByLoE), that captures the idea of arbitrary/Byzantine faults. This model is
based on Lamport’s happened before relation [Lam78|, i.e., we model a distributed
system as a collection of events happening at various locations, such that events
are connected using the happened before relation. This relation defines a partial
order between events.

One of the most fundamental concepts to reason about distributed systems is
the concept of an event, which can been seen as a point in space/time at which
something happened. In ByLoE, an event is an abstract entity that corresponds
either: (1) to some correct behavior, i.e., to the handling of a protocol message,
or (2) to some arbitrary activity about which no information is provided. We use
those arbitrary events to model arbitrary /Byzantine faults.

To prove properties of distributed systems, one has to prove that these prop-
erties are true for all possible executions of a system. This includes proving both
local invariants, as well as properties that hold about the collection of processes
that form the distributed systems. We use induction on causal time, to prove both
distributed and local properties. To simplify proofs of local properties, we have
developed an automated proof technique, and to enable distributed reasoning we
are relying on the standard quorum reasoning, which enables tracing back correct
information between nodes.

We have successfully used this framework to prove a crucial safety property
of an implementation of a complex BFT-SMR protocol called PBFT |CL99b];
[CL99a|; [Cas01]. We handle all the functionalities of the base protocol, includ-
ing garbage collection and view-change, which are essential in practical proto-
cols. Our performance evaluation shows that our version of PBFT is around
one order of magnitude slower than the state-of-the-art BFT library, called BFT-
SMaRT |BSA14]. Moreover, to show that our framework can be used for veri-
fication of protocols that rely on different system models—asynchronous as well
as synchronous ones—we also proved safety of two implementations of a semi-
nal synchronous protocol called SM [LSP82|. An advantage of SM over PBFT is
its simplicity, which makes it a convenient protocol for learning how to use our
framework.

1.1.2 Reasoning about Hybrid BFT-SMR protocols

Even though hybrid techniques significantly reduce message/time/space complex-
ity, they increase the structural complexity of a protocol, thereby limiting the
assurance we obtain in their correctness. This was the reason why we chose to also
add support for development of correct hybrid BFT-SMR systems.

ByLoE does not support reasoning about systems that are composed of com-
ponents nor about different failure assumptions (e.g., some components can fail



arbitrarily, while others can only crash on failure). This motivated us to develop
our Hybrid logic of Events (HyLoE), which enables reasoning about systems com-
posed of multiple components that can have different failure assumptions. HyLoE
supports reasoning about three types of events: (1) events where nodes follow their
specification; (2) events that correspond to some arbitrary behavior of nodes; and
(3) events that correspond to some arbitrary behavior of nodes, involving the in-
vocation of a trusted component. In case an event corresponds to some arbitrary
behavior of a node, which also involved the invocation of a trusted component, we
can only rely on the information produced by the trusted component and we can
not rely on information about the rest of the local subsystem.

Additionally, to provide support for implementing distributed systems as a
collection of local subsystems (e.g., replicas), such that each local subsystem is
composed of any number of components, we developed our Monadic Component
language (MoC). To enable interactions between different components, as well as
to hide complexity of a local subsystem, we used monads [Mog89|. Moreover, to
enable implementing hybrid protocols, MoC allows tagging components as trusted
in case components can only crash on failure, as well as non-trusted when com-
ponents can fail arbitrary. Additionally, MoC allows modular reasoning by lifting
properties proved about hybrid components residing in a local subsystem, to the
level of that local subsystem.

We have successfully used our framework to prove, among other things, critical
safety properties (e.g., agreement) of two versions of the seminal MinBFT hybrid
protocol [Ver+13|: one based on USIGs (as in the original version) and one based
on Trlncs [Lev+09|. We also managed to simplify some of the original proofs of
those properties [Verl0|. Thanks to Coq’s extraction mechanism, as well as our
runtime, which supports running trusted components inside Intel SGX enclaves,
we were able to compare performance of our verified version of MinBFT with
our verified version of PBFT. Our performance evaluation shows that our verified
version of MinBFT is faster than our verified version of PBFT.

1.1.3 Knowledge Reasoning

It turns out that formal verification of BF'T-SMR protocols using theorem prover
is very expensive. Namely, to verify the implementation of PBFT, which contains
around 2 KLOC, we wrote more than 50 KLOC of specs and proofs, although
we built some automation in form of Coq tactics. Unfortunately, in case system
developers decide to change some protocol details, in most cases proofs have to
be fixed, and sometimes even redone from scratch. To prevent this from happen-
ing, formal verification of BFT-SMR protocols should be done at a high-level of
abstraction. This way, in case some low-level details change, the proof will not
have to be redone. Also, these abstractions should enable re-usability of proofs by



covering reasoning patterns that are common for many BF'T-SMR protocols. For
example, correctness of majority of BE'T-SMR protocols comes from the fact that
any two correct replicas will always be able to agree on the existence of one correct
participant from which they have received a piece of information. These were the
principles followed in our work, and we strongly believe that our formal frame-
work will provide precious assistance to engineers attempting to prove correctness
of BF'T-SMR protocols.

To address the issues listed above, we equipped our framework with an epis-
temic knowledge theory. We chose to rely on epistemic knowledge for several
reasons. First, reasoning about distributed protocols at the level of knowledge
is close to the way system experts informally reason about distributed systems.
For example, when designing a new distributed protocol system designers reason
as follows: to achieve a task, or to simply evolve, participants need to make new
discoveries and to exchange their knowledge so that others can know about it.
Second, knowledge allows us to capture the high-level logic of distributed systems.
For example, we already abstracted away crucial reasoning patterns for formal ver-
ification of BF'T-SMR protocols, such as finding overlapping quorums, going back
in time to find the correct replica that disseminated the information, etc. More-
over, reasoning at the level of knowledge allows reusing results proved once and for
all at the abstract knowledge level, to derive properties of multiple concrete imple-
mentations. For example, we already used our high-level lifting property presented
in Section to prove safety of two variants of MinBFT protocol (USIG-based
and TrInc-based). Finally, in case we have a lemma that is already part of our
knowledge theory, that lemma can help developers of new protocols to decide upon
a set of assumptions they have to make in order to prove a distributed property.

We provide knowledge theories in two flavors:

o A library to reason about distributed knowledge of homogeneous systems,
called ByK (which stands for Byzantine Knowledge).

o A sound knowledge calculus to reason about both homogeneous and hybrid
systems at a high-level of abstraction, called LoCK (which stands for Logic
Of events-based Calculus of Knowledge). In addition, LoCK supports lifting
properties proved about (trusted) components to the level of a distributed
system.

Although our knowledge calculus is more powerful that our knowledge library,
especially because it can be used for reasoning about both trusted and non-trusted
components, we decided to keep both variants because both methods have their
advantages and disadvantages.

Because our knowledge library is shallowly embedded in Coq, it is as expressive
as Coq and one can use Coq’s tactics to find parts of the proofs that are already
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proven. Also, to prove new properties, proof engineers do not have to be familiar
with all rules that are already proven.

Thanks to the fact that our knowledge calculus is deeply embedded in Coq,
there exists an abstraction barrier between high-level and low-level reasoning.
Moreover, developing this calculus forced us to identify the primitive constructs
(as constructors of the language) and principles (as derivation rules) necessary
to reason about knowledge. Additionally, we believe that our knowledge calculus
opens a door for further automation.

1.2

Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2| discusses related work.

Chapter [3| presents a model, called ByLoE (which stands for Byzantine Logic
of Events) that captures the concept of arbitrary/Byzantine faults. This
model comes with a collection of assumptions that capture standard fault
and system models, allowing one to reason about systems with faulty par-
ticipants, as well as proof tactics that capture common reasoning patterns.

Chapter {4| presents a library, called ByK (which stands for Byzantine Knowl-
edge) to reason about distributed epistemic knowledge. This library allows
reasoning about homogeneous distributed protocols at a high level of ab-
straction (without having to worry about low level details), thereby allowing
reusing proofs.

In chapter [5| we demonstrate that our framework can be used for formal
verification of homogeneous BFT-SMR protocols. We proved critical safety
properties of a version of the landmark asynchronous protocol called PBFT,
as well as of two versions of the landmark synchronous protocol called SM.
Our performance evaluation shows that our version of PBFT is an order
of magnitude slower than state-of-the-art BE'T-SMR library, called BFT-
SMaRt.

Chapter |§] presents a model called HyLoE (which stands for Hybrid Logic
of Events) to reason about programs composed of multiple components that
can have different failure assumptions, as well as a language called MoC
(which stands for Monadic Component language) to implement systems as
collections of interacting hybrid components. Additionally, in this chapter
we present methods to [lift properties of (trusted) components of a hybrid
subsystem to the level of the local subsystem it resides in(Section .
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e Chapter [7| presents a sound knowledge calculus, called LoCK (which stands
for Logic Of events-based Calculus of Knowledge), to reason about hybrid
systems at a high-level of abstraction. As opposed to ByK, LoCK supports
reasoning about both trusted and non-trusted data. In this chapter, we
present several reasoning patterns, which we verified within LoCK, that are
used to prove standard properties about both homogeneous and hybrid sys-
tems. Additionally, in this chapter we present methods to lift properties
of (trusted) components of a local subsystem to the level of a distributed

system (Section [7.7).

e In chapter [§ we demonstrate that our framework can be used for formal
verification of hybrid BFT-SMR protocols. We proved critical safety prop-
erties of two versions of the seminal hybrid protocol called MinBFT. Thanks
to the fact that our runtime environment supports execution of a trusted
component inside Intel SGX, we were able to compare our verified version of
MinBFT with our verified version of PBEFT. In all our experiments, MinBFT
was faster than PBFT.

e Chapter [J concludes the thesis and discusses some future work.
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Chapter 2

Related Work

As explained above, the main goal of this thesis is developing a general, reusable
and extensible framework that can be used for formal verification of homoge-
neous and hybrid fault-tolerant protocols, which rely on synchronous or asyn-
chronous model. To show that our framework can indeed be used for imple-
menting and formally proving properties of these protocols, we proved agreement
of several well-known fault-tolerant protocols: SM [LSP82|, PBFT [CL99b| and
MinBFT[Ver+13|. We provide a brief description of these protocols in Section
Next, because we built our framework using interactive theorem prover called
Coq [19d]; [BC04], in Section we explain some basic Coq constructs we used
in rest of this thesis. Finally, because we are not the first ones to reason formally
about fault-tolerant distributed systems, in Section we provide more details
about related work as well as how others approaches model Byzantine behavior.

2.1 Protocols

Many BFT-SMR protocols have been developed over the years, such as [LSP82];
|CLI9b|; [Kap+12|; [Ver+13|; [BSA14]; [DCK16|; [Ver+09|; [Gue+10]; [Chu+07];
|[Lev+09|; [BDK15|; [BDK17]; [Ami+11|, to cite only a few. In this section we
provide a brief descriptions of the protocols we used as a case study: SM [LSP82]
(Section [2.1.1), PBFT [CL99b]; [CLI9a); [Cas01] (Section and MinBFT
[Ver+13] (Section [2.1.3). The notations we used in the sections below correspond
to the notations used in original papers.

2.1.1 SM

To show that, our framework supports reasoning about synchronous protocols,
we chose to verify the agreement property of two implementations of SM (short
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for Signed Messages), which is a synchronous Byzantine fault tolerant protocol.
Lamport, Shostak and Pease introduced SM in [LSP82|, and provided a pen-and-
paper proof of its correctness. An advantage of SM over other protocols we verified
(PBFT and MinBFT) is its simplicity, which makes it a convenient protocol for
learning how to use our framework.

2.1.1.1 SM Recap

As it turns out, SM does not require any constraint on the number of tolerated
faults to be correct. However, as the authors pointed out in [LSP82|, the problem
is vacuous when there are strictly less than f 4+ 2 replicas, because in that case
there would be strictly less than 2 correct replicas. There, replicas are called
metaphorically generals. One of those generals is the commander, while all the
others are lieutenants. The goal of the protocol is for the correct generals to
reach agreement on the order of the commander. The algorithm starts with the
commander, e.g., replica 0, signing and sending its value v (its order) to every
lieutenant. We write (v : 0) for that message, where 0 stands for replica 0’s
signature of the value v. Lieutenants receive orders, storing them locally in a
vector V', and finally make a decision depending on the values they have received.
The rest of the algorithm can be divided in one of the following steps:

1. Commander message: When lieutenant i receives a message of the form
(v : 0) from the commander, assuming that it has not received any value yet: (i) it
saves value v in its vector V; (ii) appends its signature to the end of that message;
(iii) and broadcasts the new message, i.e. (v:0: ), to all other lieutenants.

2. Lieutenant message: When lieutenant ¢ receives a message of the form
(v:0:7;:...:ji), containing a value v, which it has not received before, lieutenant
¢ saves that value in its vector V. In case the number of lieutenants that signed the
received message excluding the commander (i.e. k here) is less than f, lieutenant i
appends its signature to the end of that message and broadcasts the new message,
ie. (v:0:j1:...:Jg: 1), to all other lieutenants who have not already signed this
message.

3. Execution: When a lieutenant does not receive any more messages (see
assumption A3. below), it calculates choice(V;) in order to make a decision. Here
choice is a deterministic function, which takes a vector of values and produces a
single value.

Authenticity of generals as well as message integrity are ensured through signa-
tures, and a replica accepts a message only if the signature is correct. We actually
implemented two variants of the SM protocol, which we call SMgeq (SM with Se-
quential signatures) and SMy,, (SM with Multi signatures). As in SM |[LSP82],
in SMgeq, each lieutenant signs the whole message (i.e. the value with all the ap-
pended signatures), appends its signature to that message, and then disseminates
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it to other lieutenants (see code/sM for more details). As opposed to SM |[LSP82],
in SMpy1, each lieutenant signs only the value (as opposed to signing the mes-
sage along with the received signatures), adds its signature to the collection of
received signatures, and then disseminates this new message to other lieutenants
(see code/sm2 for more details). We chose to implement and verify multiple variants
of SM to illustrate the fact that the high-level knowledge reasoning principles we
developed apply to protocols which assume that each node signs the whole mes-
sage (i.e. the value with all the appended signatures) before it disseminates that
message to other nodes, as well as to protocols that assume that each node signs
only the value and disseminates its message to other nodes only after it appends
its signature to the collection of received signatures. Additionally, our formal ver-
ification of both versions of SM shows that the safety of SM does not depend on
the way messages are signed—the safety of SM comes from the fact that all correct

nodes received the same commands by the end of f + 1 synchronous rounds (see
Section [5.1] for more details).

SM is a synchronous protocol, i.e., it relies on bounded message generation and
transmission delays (up to p), as well as clock drifts (up to 7). On top of that, SM
assumes the following: A1l. Every message sent by a non-faulty process is delivered
correctly; A2. The receiver of a message knows who sent it; A3. The absence
of a message can be detected; A4.a A loyal general’s signature cannot be forged,
and any alternation of the contents of his signed message can be detected; A4.b
Anyone can verify the authenticity of a general’s signature. See |[LSP82, Section
6] for examples of how these assumptions can be substantiated. We present in
Section the assumptions we used to verify our SM variants, as well as how
they relate to the original SM assumptions mentioned above.

2.1.1.2 SM Properties

SM is both safe and live. Proofs of its safety and liveness are presented in [LSP82].
SM’s correctness is stated in terms of two properties called IC1 and IC2. IC1
says that all loyal lieutenants obey the same order; while IC2 says that if the
commanding general is loyal, then every loyal lieutenant obeys the order he sends.
These properties combine both safety and liveness properties. We have proved the
agreement property of both our variants of SM (i.e., the safety part of IC1). The
safety part of IC1 says that the orders decided upon by any two loyal lieutenants
must be the same, while its liveness part says that loyal lieutenants eventually
decide upon orders.
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code/SM
code/SM2

2.1.2 PBFT

To demonstrate that the framework presented in this thesis is also capable of prov-
ing properties of fault-tolerant protocols that a way more complex than SM, as well
as to show that our framework supports reasoning about asynchronous protocols,
we chose to verify the agreement property of the seminal practical asynchronous
BFT protocol (called PBFT). We have chosen PBFT because several BET-SMR
protocols designed since its publication, either use (part of) PBFT as one of their
main building blocks, or are inspired by it, such as [Kap+12|; [Ver+13|; [BSA14];
[DCK16]; [Ver+09]; |[Gue+10|, to cite only a few. Therefore, a bug in PBFT could
imply bugs in those protocols too. If we add on top of that rising number of the
blockchain technologies and different cryptocurrencies which are either inspired
by or adapt PBFT [SBV18|; [DSW16|; [Kok+16|; [Abr+16|; [Abr+18]; [PS17];
[Luu—+16]; [19¢]; [19Kk]; [19j], the importance of formal verification of this protocol
becomes even higher. Castro provided a thorough study of PBFT: he described the
protocol in [CLI9b|, studied how to proactively rejuvenate replicas in [Cas01], and
provided a pen-and-paper proof of PBFT’s safety in [CL99a]; [CL02|. Even though
we use a different model—Castro used I/O automata (see Section [2.3.1)), while we
use a logic-of-events model (see Section [3.1)—our mechanical proof builds on top
of his pen-and-paper proof. One major difference is that here we verify actual
running code, which we obtain thanks to Coq’s extraction mechanism.

2.1.2.1 PBFT Recap

We describe here the public-key version of PBFT, for which Castro provides a for-
mal pen-and-paper proof of its safety. As mentioned above, PBFT is considered
the first practical BF'T-SMR protocol. Compared to its predecessors, it is more
efficient and does not rely on unrealistic assumptions. It works with asynchronous,
unreliable networks (i.e., messages can be dropped, altered, delayed, duplicated, or
delivered out of order), and it tolerates independent network failures. To achieve
this, PBFT assumes strong cryptography in the form of collision-resistant digests,
and an existentially unforgeable signature scheme. It supports any deterministic
state machine. Each state machine replica maintains the service state and imple-
ments the service operations. Clients send requests to all replicas and await for
f + 1 matching replies from different replicas. PBF'T ensures that correct replicas
execute the same operations in the same order.

Assuming that set of replicas is denoted by |R|, PBEFT requires |R| = 3f + 1
replicas to tolerate up to f faults. Replicas move through a succession of configu-
rations called views. In each view v, one replica (p = v mod |R|) assumes the role
of primary and the others become backups. The primary coordinates the votes, i.e.,
it picks the order in which client requests are executed. When a backup suspects
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Figure 2.1: PBFT normal-case (left) and view-change (right) operations

the primary to be faulty, it requests a view-change (see below) to select another
replica as new primary.

Normal-case. During normal-case operation, i.e., when the primary is not sus-
pected to be faulty by a majority of replicas, clients send requests to be executed,
which trigger agreement among the replicas. Various kinds of messages have to be
sent among clients and replicas before a client knows its request has been executed.
Figure shows the resulting message patterns for PBFT’s normal-case operation
and view-change protocol. Let us discuss here the normal-case operation:

1. Request: To initiate agreement, a client ¢ sends a request of the form
(REQUEST, o, , ¢),, to the primary, but is also prepared to broadcast it to all replicas
if replies are late or primaries change. (REQUEST, o, t, ¢),, specifies the operation to
execute o and a timestamp t that orders requests from the same client. Replicas
will not re-execute requests with a lower timestamp than the last one processed
for this client, but are prepared to resend recent replies.

2. Pre-prepare: The primary of view v puts the pending requests in a to-
tal order and initiates agreement by sending (PRE-PREPARE,v,n,m),, to all the
backups, where m should be the n** executed request. The strictly monotonically
increasing and contiguous sequence number n ensures preservation of this order
despite message reordering.

3. Prepare: Backup i acknowledges the receipt of a pre-prepare message by
sending the digest d of the client’s request in (PREPARE, v, n,d,),, to all replicas.

4. Commit: Replica ¢ acknowledges the reception of 2f prepares matching a
valid pre-prepare by broadcasting (COMMIT, v, n,d,i),,. In this case, we say that
the message with the sequence number n is prepared at 1.

5. Execution & Reply: Replicas execute client operations after receiving
2f 4+ 1 matching commits, and after having executed all operations with lower
sequence numbers. Once replica ¢ has executed the operation o requested by client
¢, it sends (REPLY,v,t,c¢,7,7),, to ¢, where r is the result of applying o to the

!Pre-prepare messages introduced in [CL99b| and |Cas01| have different formats. Namely,
pre-prepare messages introduced in [CL99b| contain additional field (original client’s message).
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service state. Client c accepts r if it receives f 4+ 1 matching replies from different
replicas.

Client and replica authenticity, as well as message integrity are ensured through
signatures of the form (m),,. A replica accepts a message m only if: (1) m’s
signature is correct, (2) m’s view number matches the current view, and (3) the
sequence number of m is in the water mark interval (see below).

PBFT buffers pending client requests, processing them later in batches. More-
over, it makes use of checkpoints and water marks (which delimit sequence number
intervals) to limit the size of all message logs and to prevent replicas from exhaust-
ing the sequence number space.

Why do we need commits? As explained in [CasOl, p.21-22|, commits are
necessary to ensure that decisions are consistent across views. As explained there,
without the commit phase, a replica could collect a prepare certificate in some view
v for a request r with sequence number n, and directly execute r. The primary of
this view could be suspected to be faulty, leading to a view-change, before the other
replicas collect prepare certificates for . The new primary may be unaware of the
prepared message, and might even have received pre-prepare/prepare messages
with the same sequence number n for a request different than r. In that case, it
is not possible for the new primary to know which request to choose (it should
chose r to satisfy consistency). This problem is solved by an additional commit
phase: after the prepare phase, we know that enough replicas have received a given
request; and after the commit phase, we know that enough replicas have agreed
to execute this request.

Garbage collection. Replicas store all correct messages that were created or re-
ceived in a log. Checkpoints are used to limit the number of logged messages by
removing the ones that the protocol no longer needs. A replica starts checkpoint-
ing after executing a request with a sequence number divisible by some predefined
constant, by multicasting the message (CHECKPOINT, v, n,d,1),, to all other repli-
cas. Here n is the sequence number of the last executed request and d is the digest
of the state. Once a replica received f + 1 different checkpoint messagesﬂ (possibly
including its own) for the same n and d, it holds a proof of correctness of the
log corresponding to d, which includes messages up to sequence number n. The
checkpoint is then called stable and all messages lower than n (except view-change
messages) are pruned from the log.

View-change. The view-change procedure ensures progress by allowing repli-

2Although 2f +1 checkpoint messages were required in [CL99b|, this requirement was relaxed
in [Cas01].
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cas to change the primary so as to not wait indefinitely for a faulty one. Each
backup starts a timer when it receives a request and stops it after the request
has been executed. Expired timers cause the backup to suspects the primary and
requests a view-change. It stops receiving normal-case messages, and multicasts
(VIEW-CHANGE, v+1,n,s,C, P, i),,, reporting the sequence number n of the last sta-
ble checkpoint s, its proof of correctness C, and the set of messages P with sequence
numbers greater than n that backup ¢ prepared since thenE] When the new primary
p receives 2f + 1 view-change messages, it multicasts (NEW-VIEW,v+1,V,O,N),
where V is the set of 2f + 1 valid view-change messages that p received; O is the
set of messages prepared since the latest checkpoint reported in V; and N contains
only the special null request for which the execution is a no-op. N is added to the
O set to ensure that there are no gaps between the sequence numbers of prepared
messages sent by the new primary. Upon receiving this new-view message, replicas
enter view v+ 1 and re-execute the normal-case protocol for all messages in OUN.
We have proved a critical safety property of PBFT, including its garbage col-
lection and view-change procedures, which are essential in practical protocols.

2.1.2.2 PBFT Properties

PBFT with |R| = 3f 4 1 replicas is safe and live. Its safety boils down to lineariz-
ability [HW87], i.e., the replicated service behaves like a centralized implementa-
tion that executes operations atomically one at a time. Castro used a modified
version of linearizability in [Cas01] to deal with faulty clients. As presented in
Section we proved the crux of this property, namely the agreement property.
Agreement states that, regardless of the view they are in, any two replies sent by
correct replicas for the same request must be equal.

As informally explained by Castro |[Cas01|, assuming weak synchrony (which
constrains message transmission delays), PBFT is live, i.e., clients will eventually
receive replies to their requests.

2.1.2.3 Differences with Castro’s Implementation

As mentioned above, besides the normal-case operation, our implementation of
PBFT handles garbage collection, view-changes and request batching. However,
we slightly deviated from Castro’s implementation |Cas01], primarily in the way
checkpoints are handled: a replica always require its own checkpoint before clearing
its log. We chose to deviate from Castro’s protocol in order to simplify our proofs
of PBFT’s correctness. Assuming the reader is familiar with PBFT, we here detail
our deviation and refer the reader to [Cas01] for comparison.

3Unlike in |Cas01], in [CL99b| view-change messages do not carry the state.
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We require a new primary to send its own view-change message updated with
its latest checkpoint as part of its new-view message. If not, it may happen that
a checkpoint stabilizes after the view-change message is sent and before the new-
view message is prepared. This might result in a new primary sending messages
in O UN with a sequence number below its low water mark, which it avoids by
updating its own view-change message to contain its latest checkpoint.

2.1.2.4 PBFT and Authentication

The version of PBFT, called PBFT-PK in [Cas01|, that we implemented relies
on digital signatures. However, we did not have to make any more assumptions
regarding the cryptographic primitives than the ones presented above, and in par-
ticular we did not assume anything that is true about digital signatures and false
about MACs. Therefore, our safety proof works when using either digital signa-
tures or MAC vectors. As discussed below, this is true because we adapted the
way messages are verified (we have not verified the MAC version of PBFT but a
slight variant of PBFT-PK) and because we do not yet deal with liveness.

As Castro showed [Cas01, Chapter3|, PBFT-PK has to be adapted when digital
signatures are replaced by MAC vectors. Among other things, it requires “signifi-
cant and subtle changes to the view-change protocol” [Cas01, Section 3.2|. Also, to
the best of our knowledge, in PBFT-PK backups do not check the authenticity of
requests upon receipt of pre-prepares. They only check the authenticity of requests
before executing them [Cas01, p.42|. This works when using digital signatures but
not when using MACs: one backup might not execute the request because its part
of the MAC vector does not validate, while another backup executes the request
because its part of the MAC vector checks out, which would lead to inconsistent
states and break safety. Castro lists other problems related to liveness.

Instead, as in the MAC version of PBFT [Cas01} p.42], in our implementation
replicas always check requests’ validity when checking the validity of a pre-prepare.
If we were to check the validity of requests only before executing them, we would
have to assume that two correct replicas would either both be able to verify the
data, or both would not be able to do so. This assumption holds for digital
signatures but not for MAC vectors.

2.1.3 MinBFT

To show that, our framework supports reasoning about hybrid protocols, we chose
to verify the agreement property of the seminal hybrid BEF'T-SMR protocol called
MinBEFT [Ver+13]. We believe that verifying MinBFT-like protocols is important
because: (1) MinBFT is part of other protocols, such as [Kap+12]; [DCK16[}

*MinBFT [Ver+13]| is part of the Hyperledger Fabric umbrella [19e].
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function createUI (msg) : UI {
counter-+-;
H:=hash (msg,id , counter , keys);
return<<id , counter ,H>>; }

function verifyUI(msg, UI) : bool {
H:=hash (msg,UI.id ,UI.counter , keys);
return (UI. digest =— H); }

Figure 2.2: Pseudo-code for USIG’s operations

(2) many protocols such as [Ver+10|; [Kap+12|; [Ver+13]; [BDK17] rely on the
same kind of trusted components as MinBFT (see Section [2.1.3.3); and (3) to
the best of our knowledge MinBFT’s trusted components (called USIGs) have the
smallest TCB compared to other trusted components used in contemporary hybrid
protocols.

In this section we first provide brief description of the trusted component on
which MinBFT is based on, namely USIG (see Section[2.1.3.1). Next, we introduce
a more general version of USIG, called TrInC (see Section [2.1.3.2)). Finally, we
provide a brief description of MinBFT protocol (see Section [2.1.3.3)), as well as a
brief description of its properties (see Section [2.1.3.4).

2.1.3.1 USIG

To achieve safety with only 2f + 1 replicas, every MinBFT replica runs a lo-
cal service called USIG (Unique Sequential Identifier Generator). Its purpose is
to securely count messages so that replicas can know whether they have missed
some messages. Every message generated by USIG-component is tagged with a
certificate called UI (Unique Identifier). A Ul is a triple of: an id (the replica’s
unique id), a counter value, and a signed hash (of the message/id/counter triple).
USIGs provide only two simple operations createUl and verify Ul, which generate
and verify Uls (see pseudo-code above). Counter values produced by USIGs are
monotonic (and without gaps) and therefore uniquely identify messages. This is
guaranteed even when replicas are compromised because by definition USIGs exe-
cute inside trusted-trustworthy components, i.e., in tamperproof environments. To
the best of our knowledge USIGs have the smallest TCB compared to other trusted
components used in contemporary hybrid protocols, such as TrIncs discussed next.

2.1.3.2 TrInc

In [Lev+09|, the authors introduced a new kind of trusted components called TrInc
(which stands for Trusted Incrementer). Trlnc is more general than USIG in the
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Figure 2.3: MinBFT normal-case

sense that it maintains multiple counters (one can dynamically add new counters
through TrInc’s interface), and that counters can have gaps: given a counter k, k’s
next counter value is provided by the client of the trusted component and has to be
greater than the current value (see |[Lev+-09| for uses of these features). This is to
contrast with a USIG, which increments its counter by one on each createUI call.
Note that the fact that counters do not have gaps does not need to be enforced by
the trusted components, which is made explicit when using TrInc instead of USIG.
Trlnc’s flexibility comes at the price of slightly more complex trusted components.
However, this flexibility makes TrInc compelling and led BF'T implementations
such as Hybster [BDK17] to be based on TrInc instead of USIG.

2.1.3.3 MinBFT Recap

As other such protocols do, MinBF'T works in a succession of configurations called
views. In each view v, the distinguished replica p = v mod n (n is the total number
of replicas), called the primary, is in charge of ordering client requests by assigning
sequence numbers (the counter values generated by its USIG) to them. As long
as the primary is not suspected to be faulty, MinBFT executes its normal-case
operation (see figure above); and switches to a view-change operation otherwise.
We focus here on the normal-case operation, which works as follows:

1. Request: To execute an operation o with timestamp ¢, client ¢ sends a
message (REQUEST, ¢, t,0),, to all replicas and waits for f + 1 matching replies
from different replicas.

2. Prepare: When the primary p receives a request m, it calls its USIG
component to generate a new identifier ui; and sends (PREPARE, v, m,ui;) to all
other replicas (v is the current view).

3. Commit: Upon receipt of (PREPARE, v, m,ui;), replica j calls its USIG to
verify ui;, generates a new identifier ui;, and sends (COMMIT,v,m, ui;, ui;) to all
other replicas.

4. Execution & Reply: If replica k receives f+1 valid (COMMIT, v, m, ui;, ui,)
messages (i.e., the Uls are valid) from different replicas, it executes the request
m, and sends the result r of this execution in a reply (REPLY,k, seq,r),, to the
client. In addition, upon receipt of a new commit, k£ calls its USIG component to
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generate a new identifier ui; and sends (COMMIT, v, m, ui;, uix) to all others.

In all these steps, replicas only handle messages if: (1) the message is signed
properly (for requests); (2) prepare messages come from the current primarys;
(3) the view number is the current one; and (4) upon receipt of a Ul from a
replica i, replicas check that they have already received all the Uls from ¢ with
lower counter values.

2.1.3.4 MinBFT Properties

MinBFT works with partially synchronous, authenticated reliable channels and it
tolerates independent network failures. To achieve this, it assumes strong cryptog-
raphy in the form of collision-resistant digests, and a non-existentially forgeable
signature scheme.

2.2 Coq Notation

Coq [19d] is an interactive theorem prover, which implements a programming
language called Gallina. Coq also implements a logic called Calculus of Inductive
Constructions, which allows a user to prove properties about Gallina programs. It
is implemented in OCaml.

In this Chapter we introduce some basic constructs used in this thesis. We
refer the interested reader to a quick tutorial [Ber06| and a couple of books [BC04];
[Ch113]; [Pie-+1§|.

Inductive types. In Coq, inductive types contain a list of constructors, such that
each constructor from the list specifies how a new object of that type can be built:

Inductive TypeName :=

| constructor_1: ...— TypeName
| constructor_2 : ...— TypeName
| constructor_n : ...— TypeName.

For example, natural numbers are defined such that a first constructor 0 corre-
sponds to zero, and the second constructor S corresponds to the successor function:

Inductive nat : Set =
| O : nat
| S : nat — nat.
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Using pattern-matching (i.e., expressions of the form match...with...end), one
can compute a value of an inductive type for some input I, such that the value
of the computed expression will depend on the pattern that input 7 satisfies. For
example, following definition returns true in case a natural number n is different
than zero, and otherwise returns false:

Definition not_zero (n : nat) :=
match nwith
| O = false
| S n=true
end.

Type Classes. Similar to Java classes, Coq’s classes provide an interface, which is
composed of parameters of the class (p_1, p_2, ..., p_n) and the methods (m_1,
m_2, ..., m_n) of the class:

Class classname (p-1: Type_1) (p-2 : Type-2) ...(p-n: Type_n) = {
m_1: Type_1;
m_2: Type_2;

m_n : Type_n }

One can prove properties that are true for any type a class can be instantiated
with, and then later instantiate parameters and methods of the class with concrete

types:

Instance instancename : classname p_1p_2...p_n = {
m_1: Type_1;
m_2: Type_2;

m_n : Type_n }.

Record. Records in Coq are defined and used the same way as any other imper-
ative language. In Coq, record is essentially composed of a list of fields (field_1,
field_2, ..., field_k), which can depend on a list of parameters (p_1, p_2, ...,

p-n):

Record recordname p_1 p_2 ...p_n:= MkRecordname { field_1; field_2; ... field_k }.
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Figure 2.4: Comparison with related work

2.3 Formal Verification of Distributed Systems

First efforts to formally verify dependable and safety-critical systems were done
using CSP [Hoa85|; [But-+97]; [BPS98| and CCS [Mil80]; [KB07]. Although over
the years many logics, models and tools have been developed to reason about dis-
tributed systems, in this section, we lists some of the most prominent ones (see
Figure , and we discuss below how we relate to them. To the best of our knowl-
edge, this thesis presents the first theorem prover based framework for verifying
the correctness of implementations of homogeneous and hybrid fault-tolerant pro-
tocols under synchronous and asynchronous fault models. Also, we believe that we
provide a first theorem prover checked knowledge theory, which allows reasoning
about distributed protocols at high level of abstraction without having to worry
about low-level details. Moreover, we believe that we are the first ones to provide
machine-checked proofs of safety of implementations of the following protocols:
SM, PBFT and MinBFT. We end this section by providing more details about
related work as well as how others approached modeling Byzantine behavior in
asynchronous environments.

2.3.1 Logics and Models
2.3.1.1 DistAlgo

DistAlgo |[LSL17] is a high-level language for implementing control flows of dis-
tributed algorithms, where complex synchronizations can be expresses using high-
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level queries over message history sequences. Because, programs containing control
flows with synchronization conditions expressed at high-level are extremely inef-
ficient if executed straightforwardly, this paper also presents optimizations that
automatically transform complex synchronization conditions into incremental up-
dates of necessary values as messages are sent and received. The authors im-
plemented operational semantics of the language, a prototype of the compiler and
optimizations. DistAlgo is used for implementing a variety of distributed protocols
including Paxos|Lam98|, Multi-Paxos [CLS16] and PBFT |CL99b|.

2.3.1.2 Event-B

Event-B [Abr10]; [Fir+14b| is a set-theory-based language for modeling reactive
systems and for refining high-level abstract specifications into low-level concrete
ones. It supports code generation [MS11]; [Fiir+14al; [Edm+12|, with some lim-
itations.ﬂ For example, code generation introduced in [Edm-+12| does not work
the with latest version of Rodin and requires specific versions of several other
plug-ins; code generation introduced in [Fiir+14a] is not publicly available; and
code generation introduced in [MS11| requires manual postprocessing and cov-
ers only a part of Event-B. The Rodin [Abr+10| platform for Event-B provides
support for refinement, and automated and interactive theorem proving. Both
have been used in a number of projects, such as: to prove the safety and live-
ness of self-x systems [AMS14]; and to prove the agreement and validity proper-
ties of the synchronous crash-tolerant Floodset consensus algorithm (introduced
in |[Lyn96]) [Bryll].

Actually, we are not the first ones that proved correctness of the SM protocol.
Using Event-B, Krenicky and Ulbrich in [KU10| proved the validity and agree-
ment properties of SM, as well as of ZA |[GLR95|. In order to do so, they had
to construct 4 contexts (which isolate the parameters of a formal model and their
properties, and are assumed to hold for all instances) and 12 machines (which con-
tain definitions of events and invariants which describe the discrete state transition
system), as well as 106 invariants. Although they automatically proved some of
these invariants using Rodin, the majority was proved manually. Besides the fact
that they used a different approach, the authors assume that messages cannot be
forged (in PBFT, at most f nodes can forge messages), and they do not verify
implementations of these algorithms.

5Significant progress in the development of the correct-by-construction translation from Event-
B to Java, C, C++, C#, Dafny, VHDL has been made in the following project: http://wiki.
event-b.org/index.php/Code_Generation_Activity
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2.3.1.3 Heard-Of model

The Heard-Of (HO) model [CS09]; [Bie+07] requires processes to execute in lock-
step through rounds into which the distributed algorithms are divided. For each
round r and each process p, the HO(p,r) set denotes the collection of processes
that p has heard from in round r. Systems are modeled as pairs of an algo-
rithm and a communication predicate over the HO(p, r) sets. This predicate cap-
tures both the system (e.g., degree of synchrony) and fault models of the system.
For example, if a process crashes, it will never be heard from it anymore. The
HO-model was implemented in Isabelle/HOL |[CDM11] and used, for example,
to verify the Byzantine agreement algorithm for synchronous systems with reli-
able links called EIGByz |[Bar+92|. This formalization uses the notion of global
state of the system |CL85|, while our approach relies on Lamport’s happened be-
fore relation [Lam78|, which does not require reasoning about a distributed system
as a single entity. Model checking and the HO-model were also used in [TS07];
[TS08|; [CCMO9| for verifying the crash fault-tolerant consensus algorithms pre-
sented in [CS09]. To the best of our knowledge, there is no tool that allows
generating code from algorithms specified using the HO-model.

2.3.1.4 I0OA

IOA |GLOO|; [Gar+04]; [Tau04]; [Geo+09| is the model used by Castro |[Cas01] to
prove PBET’s safety. It is a programming/specification language for describing
asynchronous distributed systems as I/O automata [LT87| (a form of labeled state
transition systems) and stating their properties. While TOA is state-based, the
logic we use in this thesis is event-based. IOA can interact with a large range of
tools such as type checkers, simulators, model checkers, theorem provers, and there
is support for synthesis of Java code [Tau04]. In contrast, our methodology allows
us to both implement and verify protocols within the same tool, namely Coq.

2.3.1.5 TLAT"

TLAT |[Lam04]; [Cha+10] is a language for specifying and reasoning about sys-
tems. It combines: (1) TLA |[Lam94|, which is a temporal logic for describing
systems |[Lam04|, and (2) set theory, to specify data structures. TLAPS [Cha+10]
uses a collection of theorem provers, proof assistants, SMT solvers, and decision
procedures to mechanically check TLA proofs. Model checker integration helps
catch errors before verification attempts. TLAT has been used in a large num-
ber of projects (e.g., [LMWLI1]|; [Jos+03|; [BDHO7|; [New14]; [New+15|; [CLS16])
including in proofs of safety and liveness of Multi-Paxos |[CLS16|, and safety of
a variant of an abstract model of PBFT [18] that does not include garbage col-
lection. Moreover, Lamport and Merz in [LM94], using TLA+ and hierarchical
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proofs [Lam95|, proved the safety of the seminal synchronous Byzantine algorithm
OM |LSP82], in the presence of at most one traitor. To the best of our knowledge,
TLA™ does not perform program synthesis.

2.3.2 Tools
2.3.2.1 Actor Services

Actor Services [SM16] allows verifying distributed and functional properties of
programs communicating via asynchronous message passing at the level of the
source code (they use a simple Java-like language). It supports modular reasoning
and proving liveness properties. To the best of our knowledge, Actor Services do
not deal with faults.

2.3.2.2 Aneris

Aneris [Kro+18|; [Krol8| is a higher-order, concurrent, separation logic built in
Coq, whose main goal is to facilitate modular verification of large software systems,
including distributed systems. It allows node-local reasoning about concurrent dis-
tributed systems, i.e., when proving correctness of Aneris programs, one can reason
about each node of the system in isolation. Among other things, the authors used
Aneris to verify an implementation of the two-phase-commit protocol, such that a
distributed client of the two-phase-commit provides a replicated logging.

2.3.2.3 ByMC

ByMC is a model checker for verifying the safety and liveness of fault-tolerant
distributed algorithms [KVW15|; [Kon+17]; [KVW17]. It applies an automated
method for model checking parametrized threshold-guarded distributed algorithms
(e.g., processes waiting for messages from a majority of distinct senders). Dis-
tributed systems are represented as threshold automata that capture their local
control flow. To enable automated verification, all cycles must be simple (i.e.,
there exists exactly one node-disjoint directed pathf| between any two locations in
a cycle). Threshold automata are then interpreted as counter systems where in-
stead of modeling the state of a system as the collection of the current states of the
processes as in [CL85|, a system is modeled by the number of processes in a given
state. Specifications are expressed in a fragment of linear temporal logic, which
the authors call Fault-Tolerant Temporal Logic (ELTLgT). Again, this restriction
to a fragment of LTL enables automated verification. To prove that a system (rep-
resented as a threshold automaton) is safe and live, one specifies the negation of

6Two paths pl and p2 are node-disjoint, if there does not exist a node 4 which can be found
in both paths pl and p2.
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the safety and liveness of the system in ELTLpT, and then ByMC checks whether
there are parameters, an initial configuration, and an infinite schedule such that
the specification is true about the system; in which case a counterexample is re-
ported to the user. Otherwise, if no counterexample is found, this shows that the
system is correct for all parameters that satisty the required resilience condition
(for BET protocols, the resilience condition is 3f + 1 processes). ByMC is based
on a short counterexample property, which says that if a distributed algorithm
violates a temporal specification then there is a counterexample whose length is
bounded and independent of the parameters (e.g. the number of tolerated faults).
The same overall technique is used to prove both safety and liveness properties.
Namely, it relies on the fact that counterexamples all have a lasso shape, i.e.,
they loop after a finite prefix. In the case of liveness, counterexamples are infi-
nite executions. However, thanks to the short counterexample property, for each
such infinite execution, there exists a representative execution that has a bounded
length.

In |Laz+17], the authors extended ByMC, with a distributed algorithm syn-
thesizer, that works as follows: it takes as inputs (1) a sketch of a distributed
algorithm with holes (threshold expressions that are left unspecified), (2) safety
and liveness specifications, and (3) a resilience condition relating the total num-
ber of participants (a parameter) and the maximum number of faulty participants
(also a parameter); and either outputs a correct distributed algorithms where those
holes are filled in, or it reports that no such algorithm exists.

In [Sto+19], the authors introduced a variant of the threshold automata pre-
sented in [KVW17|, which supports synchronous protocols (in the rendez-vous
sense as opposed to assuming a maximum transmission delay). Those automata
are called synchronous threshold automata, or STA for short. Because it turns
out that in general the parameterized reachability problem is undecidable for
STA, the authors show that many synchronous fault-tolerant algorithms have a
bounded diameter (the number of steps needed to reach every configuration of a
counter system) and they use bounded model checking to formally verify those
algorithms. Moreover, they introduce an SMT-based procedure for finding the
diameter of a counter system associated with an STA. As a case study, they for-
mally verified several Byzantine fault-tolerant [ST87|; [BSW11]; [BGP89]; [P B89|,
crash fault-tolerant [Lyn96|; [Cha+00]; [Ray10| and omission fault-tolerant algo-
rithms [BSW11|; [Ray10].

2.3.2.4 Chapar

Chapar |[LBC16] is a framework for modular certification of causal consistency of
replicated key-value store implementations and their client programs. The frame-
work is written in Coq, and therefore allows extracting OCaml code (which implies
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that there is no gap between the verified and the executed code). Moreover, Cha-
par contains a simple model checker, which can be used to formally verify client
applications. Using Chapar, the authors proved the causal consistency of two
key-value stores. As opposed to this thesis, Chapar relies on the distributed snap-
shot semantics of distributed systems, and is specifically tailored to reason about
causal consistency (as opposed to the strong linearizability consistency property
of BET-SMR protocols).

2.3.2.5 ConsL

ConsL [MSB17| is a language for expressing crash-fault tolerant asynchronous and
partially synchronous consensus algorithms, whose semantics is expressed in HO,
and that connects to the Spin model checker |Hol04]. As for ByMC, it relies on
guards. The authors proved cutoff bounds that reduce the parameterized verifi-
cation of consensus algorithms to a guard-depending number of processes. Using
ConsL, the authors proved the zero-one principle (the algorithm’s correctness for
binary inputs entails the algorithm’s correctness for inputs from any ordered set)
and provide a cutoff bounds for the following algorithms: Paxos |Lam98|, Ben-
Or [Ben83|, 3-rule and three algorithms form the Uniform Voting family [CS09)],
as well as algorithm from [MSB15|. Because the bounds they obtained were small,
the authors could leverage model checking to provide the first fully automated
decision procedure applicable to a range of consensus algorithms.

2.3.2.6 DISEL

DISEL [WST17|; [SWT18] is a framework for modular verification of implementa-
tions of crash fault tolerant distributed systems. It provides a programming lan-
guage shallowly embedded in Coq, and a separation-style program logic [Rey02]
to compositionally reason about distributed systems. Unlike other state-of-the-art
tools, DISEL provides supports for reusing correctness proofs of distributed pro-
grams, to derive the correctness of larger composite systems. Distributed systems
are often designed as the composition of building blocks, where a block (a dis-
tributed program) acts as a server that provides a service. Other blocks then act
as clients of that server to achieve higher-purpose goals (clients of servers then
become servers of other clients). To achieve modular verification of such systems,
DISEL provides a domain-specific language for the specification and implementa-
tion of distributed systems as the compositions of small building blocks; as well
as novel proof techniques. To the best of our knowledge, DISEL does not allow
reasoning about components relying on different system and fault models.

DISEL provides a specification language to specify the high-level behavior of
systems abstracting away from low-level details. Such high-level specifications are
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called protocols. Protocols can then be refined into running implementations. One
advantage of having such a two-layered language is that whenever proving the cor-
rectness of a composite system, one can reason about the high-level protocols of its
components instead of their low-level implementations. Protocols are state transi-
tion systems, essentially composed of transitions to send messages and transitions
to receive messages.

Once the correctness of a component has been proved, it is however sometimes
not enough to prove the correctness of a larger composite system that uses this
component. To overcome this issue, DISEL provides two techniques that enable
modular verification of large composite systems: the WITHINV inference rule and
send-hooks. The WITHINV rule allows adding an invariant to a protocol, thereby
adding additional pre/post-conditions to that protocol, that can then be used to
verify the composite system in which the protocol is used. Besides this WITHINV
rule, DISEL also provides a standard separation logic-like frame rule, which can
be used to compositionally reason about components that do not depend on each
other. In addition, DISEL provides the notion of hooks, which are application-
dependent restrictions on the possible interactions between the components of a
composite system. Using DISEL, the authors have verified the two phase commit
protocol, and showed how it can be reused to prove the correctness of a replicated
log. Unlike our model, DISEL’ model relies on the notion of global states and small
step transitions (i.e., the distributed snapshot semantics).

2.3.2.7 EventML

EventML [BCR12|; [Rah+15|; |[Rah+17| is a domain specific language imple-
mented on top of the Nuprl theorem prover [Con+86|. It provides expressive
and modular combinators for implementing and reasoning about crash-fault toler-
ant distributed systems. EventML implements both a Logic Of Events (LoE) to
specify and reason about distributed systems; as well as a general process model
to execute those specifications (GPM). Using EventML, the authors proved among
other things the safety of Multi-Paxos [Rah+12|; [Sch+14]. Moreover, they built
within Nuprl a tool that can automatically optimize GPM programs and prove
that the optimized and non-optimized programs are bisimilar [RBA13]|. As ex-
plained in Section [3.1], the model presented in this thesis evolved from EventML
to reason about Byzantine fault-tolerant homogeneous/hybrid protocols and to
reason about distributed knowledge.

2.3.2.8 IronFleet

IronFleet [Haw+15|; [Haw+17] is a framework for building and reasoning about
distributed systems using Dafny [LeilO| and the Z3 theorem prover [MBO§|. Be-
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cause systems are both implemented in and verified using Dafny, IronFleet prevents
gaps between running and verified code. It uses a combination of TLA-style state-
machine refinements [Lam04] to reason about the distributed aspects of protocols,
and Floyd-Hoare-style imperative verification techniques to reason about local be-
havior. The authors have implemented, among other things, the Paxos-based state
machine replication library IronRSL, and verified its safety and liveness. Unlike
IronFleet we focus on Byzantine faults.

2.3.2.9 Ivy

Ivy [Pad+16] initially supported debugging infinite-state systems using bounded
verification, and verifying their safety by gradually building universally quantified
inductive invariants.

In [Pad+17|, the authors extended Ivy so that it can automatically verify safety
properties of models of complex distributed protocols such as Paxos. Their method
consists in transforming system models along with their invariants, expressed in
an undecidable many-sorted first-order logic over uninterpreted structures, into
models and invariants expressed in a decidable fragment of that logic (namely,
EPR, which stands for Effectively Propositional Logic). Those transformations es-
sentially consist in eliminating quantifier alternations, and are guided by the user
(who provides derived relations to replace existential formulas). Those transfor-
mations are also mechanically checked.

Ivy was then further extended with the novel notion of decidable decomposi-
tion |Tau+18| allowing the tool to automatically verify the correctness of imple-
mentations of crash-fault tolerant distributed systems such as Raft and Multi-
Paxos. The idea of decidable decomposition is that systems, models and proofs
should be structured in a modular way to allow Ivy to use different decidable
logics.

In [Pad+18], the authors extended Ivy further so that it can also be used
to prove liveness properties of infinite-state systems by reducing those to safety
properties (in some cases, liveness can even be proved automatically by combining
this method with the one presented in [Pad+17]). Their method relies on a sound
fair cycle detection mechanism (where a fair cycle is an execution that revisits a
state after satisfying all fairness constraints—e.g., about fair scheduling). Liveness
follows from the absence of fair cycles. Using this method, the authors proved the
liveness of several protocols including several variants of Paxos. This method is
related to the short counter-example method of ByMC [Kon-+17].

Finally, in [Ber+19|, the authors extended Ivy, so that it can automatically
verify the correctness of threshold-based protocols by encoding these properties in
decidable logics, namely EPR and BAPA. Tvy uses EPR to verify properties of
distributed protocols while assuming some properties about sets whose cardinali-
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ties adhere to certain threshold, and then uses BAPA to verify if those properties
are correct. They used their methodology to verify the safety and liveness of a
Byzantine one-step consensus protocol and of a hybrid reliable broadcast proto-
col; as well as the safety of the Fast Byzantine Paxos protocol. The hybrid fault
model used by Ivy has a different meaning from the one used in rest of the thesis.
Namely, hybrid fault model [ST87| in their case distinguishes between asymmetric,
symmetric and benign faults, while hybrid fault model used in the rest of this thesis
assumes that distributed system is composed of components with different failure
assumptions.

Most recently, Ivy in combination with Isabelle/HOL, is used for verifying
safety and liveness of an open membership Byzantine agreement protocol on which
a blockchain-based network called Stellar depends on [Lok-+19).

2.3.2.10 ModP

ModP [Des+18| is a programming framework to build, specify and composition-
ally test dynamic, asynchronous distributed systems. Using ModP, one defines a
system as a collection of interacting modules, where a module contains a number
of state machines that react to and produce events (messages). State machines
implement abstract interfaces, and are allowed to use other machines possibly
from different modules through their interfaces. One can also dynamically declare
new interfaces and machines. ModP provides frame rules and conditions to al-
low combining modules. Those conditions for example require that the events of
two modules that one wants to combine are “compatible” (e.g., sent events must
be disjoint). ModP provides means to ensure this, for example allowing hiding
internal events, and renaming interfaces. In addition, ModP provides means to
define and show that some modules are refinements of other modules. Using their
framework, the authors implemented modularly and validated (through testing)
two crash fault-tolerant distributed systems (Multi-Paxos |[Lam98|; |[RA15| and
Chain Replication [RS04]).

2.3.2.11 PSync

PSync |[DHZ16| is a domain specific language embedded in Scala that enables
executing and verifying fault-tolerant distributed algorithms in synchronous and
partially asynchronous networks. PSync is based on the HO-model, and has been
used to implement several crash fault-tolerant algorithms. PSync makes use of a
notion of global state and supports reasoning based on the multi-sorted first-order
Consensus verification logic (CL) |Dra+4-14]. To prove safety, users have to provide
invariants, which CL automatically checks for validity. Unlike PSync we focus on
Byzantine faults.
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2.3.2.12 PVS

PVS is an environment for formal specification and verification. It has been exten-
sively used for verification of synchronous systems that tolerate malicious faults
such as in [LR93b|; [LR93a]; [SWRO02|; [Rus01], to the extent that its design was
influenced by these verification efforts [Owr+95|. In |[Rus03|, using predecessor of
PVS called EHDM |[RHO91], Rushby formally verified OM algorithm, which was
initially introduced in |LSP82|. Then, Lincoln and Rushby in [LR93b|; [LR93a],
using PVS, formally verified version of OM algorithm that distinguishes between
manifest, symmetric and arbitrary faults. Finally in [SWR02|, the authors for-
mally verified modified version of OM algorithm that distinguishes between mani-
fest, omission, symmetric and arbitrary faulty nodes, as well as between send link
faults and receive link faults.

2.3.2.13 Verdi

Verdi [Wil-+15]; [Woo+16| is a framework to develop and reason about crash-fault
tolerant distributed systems using Coq. As in our framework, Verdi leaves no gaps
between verified and running code. Instead, OCaml code is extracted directly from
the verified Coq implementation. To reason about faults the authors implemented
several network semantics (single-node, reordering, duplicate, dropping and node
failure semantics) that can be combined. Verdi provides a compositional way
of specifying distributed systems, where the user provides an implementation of
a system in an idealized model (in which faults cannot occur) and then applies
one of the verified system transformers in order to obtain a system that tolerates
faults. Verdi supports two types of transformers: (1) transmission transformers—
used for networks in which packets can be duplicated, reordered or dropped; and
(2) replication transformers—used in networks in which nodes may crash. For
example, Raft [OO14]—an alternative to Paxos—transforms a distributed system
into a crash-fault tolerant one. Moreover, in [Woo+16|, the authors report that
they have completely verified Raft’s safety. They also present their methodology
to deal with proof maintenance, such as using interface lemmas in order to hide
definitions [Woo+16, Section 4]. One difference to our respective method is that
they verify a system by reasoning about the evolution of its global state, while we
use Lamport’s happened before relation. Moreover, to the best of our knowledge,
they do not deal with the full spectrum of arbitrary faults (e.g., malicious faults),
they do not support reasoning about synchronous protocols.

2.3.2.14 Sally

Sally [DJN18| is a model checker, based on SMT and bounded model check-
ing. It implements PD-KIND algorithm [JD16| that can automatically discover
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k-inductive strengthening of a property. Using Sally, the authors specified and
automatically verified several synchronous fault-tolerant protocols, including OM
|LSP82|, which is a Byzantine fault-tolerant protocol. In case of OM protocol,
the authors proved agreement and validity assuming existence of one Byzantine-
faulty link. Unfortunately, as stressed in [Tau+ 18|, formal verification of complex
distributed systems, such as Raft and Multi-Paxos, are beyond the reach of this
technique.

2.3.3 Formal Verification of Trusted Components

In addition to the logics, models, and tools mentioned in the sections above, there
are many more systems, tools, and techniques related to our work on hybrid sys-
tems. We mention some of those below.

2.3.3.1 Trustworthy Component-Based Programs

In our work we assume that trusted local components cannot be compromised,
and derive distributed properties from the properties of these components. Or-
thogonal but complementary to our work are those works aiming at guaranteeing
the trustworthiness of component-based local programs. Let us mention here a
few relevant projects.

CAmKES [Kuz+07]; [Fer+13b|; [Fer+13a; [Ferl6]; [Kle+18| is a component based
platform to reason about embedded systems built on top of sel.4 [Kle+09]. It al-
lows reasoning about the interface between trusted /non-trusted components and
the payload network [Fer16|. It supports compositional programming and verifi-
cation, and automatically generates verified “glue” code to connect the different
components of a system.

SCC/RSCC |Jug+16|; [Aba+18] are secure compartmentalizing compilation tech-
niques for unsafe languages such as C. Applications are divided into components
that communicate via procedure calls, and the compiler ensures that compromised
components cannot contaminate the other components.

2.3.3.2 Interfacing With Trusted Components

Orthogonal but related to our work, many models, systems, and tools have been
developed to provide safe and secure interfaces between trusted components and
payload systems. Given the fact that IBM’s CCA API is a standard API used
by banks, many researchers have focused on studying whether it is secure |[Kei06];
[Tog13]; [You-+07]; [You+05]; [CMOG].

Many other generic model checking-based bug finding tools have been develop
to ensure that APIs are secure, such as [Gan+05]; [CW02|; |Avg14].
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Moreover, temporal rules are a standard technique to ensure that clients can
only use APIs in a safe manner [Alu+05]; [BLR11].

2.3.3.3 Trusted Component/Environment Verification

Several new trusted environments have been developed this past decade, such
as [191]; [19i]; [19m]. As a result, many papers [Haw+14]; [Sin+15]; [BTZ17];
[Fer-+17al; [Dat+09]; [LCF15]; [Fer+17b|; [Dat+09]; [Jia-+15]; [Sub+17]; [SQEF18|;
[Sha-+15]; [Bai+14]; [Del+10]; [Gual5|; [Del+11]; [BJX17]; [XBM13|, to men-
tion only a few, are concentrated on proving different properties about these
trusted components/environments (e.g. confidentiality, integrity, linearizability, re-
mote equivalence). Although some of these papers were about proving properties
of the security protocols, e.g. [Del+11]; [BJX17]; [XBM13|, to the best of our
knowledge none of them is about proving properties of BF'T-SMR protocol.

2.3.4 Knowledge and Distributed Systems

Knowledge is a widely used and studied concept. For example, knowledge based
systems have been developed to: (1) analyze distributed systems |[Hal87]; [HM90];
[DMO0]; [PT92|; [Fag+97]; (2) reason about synchronous systems [Ben11|; [BM14];
[CGM14]; [CGM16]; [DMM17]; [GM18]; (3) study the principle of full communi-
cation [Roe07]; [AW17] (i.e., group members should be able to establish group
knowledge through communication); (4) derive protocols [HZ92]; (5) synthesize
systems |Bic+04]; (6) reason about blockchain protocols [HP17]; and (8) reason
about distributed knowledge using proof systems [HNO7|; |Giel4]; [GA19] and type
theories [PT12).

The closest work to ours on the verification of synchronous systems using knowl-
edge theory is the one by Ben-Zvi and Moses [BM10]. They define the concept
of Syncausality, a generalization of Lamport’s happened before relation |[Lam78],
which is designed specifically for synchronous systems. In addition, they identify
two general communication structures called centipede and centibrooms that exist
in synchronous systems.

Another work close to ours on the verification of synchronous systems using
knowledge theory is done by Berman, Garay and Perry |[BGP89|. The authors
proved agreement and validity of a variation of the Byzantine generals algorithm
introduced in [Bar+92|; |[LSP82|, which they called EIG (Exponential Informa-
tion Gathering). The authors also proved agreement and validity of ESFM (Early
Stopping Fault Masking) protocol, which is actually EIG protocol equipped with
fault masking |Bar+92|; |Coa86| and early stopping [DRS90|. Thanks to these
mechanisms, ESFM allows correct processors to reach agreement using less com-
munication steps than using EIG. On top of this, [BGP89| presents two novel
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protocols, Cloture Voting and Phase King protocol, which are more optimal than
its predecessors. Using knowledge theory, the authors proved agreement and va-
lidity of Cloture Voting, and showed that Phase King protocol, solves Byzantine
generals problem in 3(f + 1) rounds, using messages from {0, 1,2} and assuming
n > 3f.

One major difference between our work and works presented in [BM10| and
IBGP8Y| is that we our proofs are formally verified using theorem prover.

2.3.5 Modeling Byzantine behavior

As mentioned above, we are not the first ones to reason about Byzantine fault-
tolerant systems (see Fig. . In this section we briefly discuss how asynchronous
Byzantine behavior is modeled in ByMC and TLA™, as well as how synchronous
Byzantine behavior is modeled in Event-B, HO and PVS.

ByMC extends the original Control Flow Automata (CFA), by introducing “a
where cond”, which states that action a will be executed only if some condition
cond is meet. This extension allowed reasoning about Byzantine fault-tolerant
algorithms, because these protocols only react to messages that are sent by quo-
rums of processes. Additionally, ByMC captures Byzantine behavior as sending
messages when is not needed, i.e., when a process does not follow its specifica-
tion. Unlike our model, the ByMC model [Joh+12| assumes that processes cannot
impersonate each other, and that processes communicate reliably.

TLAT. In [Lamll] Lamport presented the idea of Byzantizing which enables
converting an algorithm with N processes that tolerates crash failure of up to f
processes into an algorithm with N + f processes that assumes existence of N
correct processes and tolerates up to f Byzantine processes. In order to achieve
this, Lamport introduced concepts of acceptors, which are equivalent to PBFT
replicas, and assumes that up to f acceptors are fake, while all the other ones are
real ones (i.e., non-faulty ones). Additionally, Lamport assumes that one might
determine in advance which processes are malicious—this assumption results in
no loss of generality, because Byzantine algorithms do not assume any knowledge
about which acceptors are real, and which are the fake ones. Moreover, the union
of fake and real acceptors is called byzacceptors, and their quorums are called
byzquorums. A set of byzacceptors is built such that: (1) if a quorum consists of
any g acceptors, a byzquorum consists of any ¢ + f byzaceptors; and (2) any two
byzquorums have a real acceptor in common.

Event-B. As mentioned above, Event-B [Hal08| relies on a refinement technique,
which assumes that one starts with a simple abstract model and then introduces
details gradually. By dividing a model into several levels of refinements, one can
concentrate on a particular aspect of the model instead of dealing with the entire
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complexity all the time.

Each Event-B model consists of two constructs: (1) context—contains types,
constants and axioms; and (2) machines—contain variables (i.e., state of a ma-
chine), invariants (i.e., constrains on variables), theorems (i.e., predicates implied
by invariants), events and variants. Similar to our approach, events in Event-B
are composed of guards (which describe the necessary condition under which an
event might occur) and actions (which describe how state variables evolve when
the event occurs). The properties which one wants to prove using Event-B, are
formulated as invariants in the machines.

In [KUL0| the authors start with a simple machine called Messages. This ma-
chine records all messages sent in the current round, a current round number, as
well as all values that a machine received so far. It assumes that every message
contains sender, receiver and a value. Also, it contains two types of events: ini-
tial event and round event. Then, the authors refined the machine Messages to
a machine called MessagesSigned. The MessagesSigned machine adds additional
assumption that only messages which are received can be forwarded. Next, the
authors refine machine MessagesSigned to a machine called Histrory. This machine
adds additional assumption that each message caries history (i.e., each message
contains a set of machines trough which it has passed). The authors repeat refine-
ment process several times, until they reach a machine called SM, which actually
models SM algorithm [LSP82][] Unfortunately, in most cases invariants have to
be adapted and proofs have to be redone.

Because SM is not a “typical” round-based synchronous recursive algorithm,
but it is a form of reactive system (i.e., when a lieutenant receives a message,
he processes it and then disseminates messages to other participants), their SM
machine is similar to our notion of replica. Namely, each SM machine contains
a history (i.e., it keeps track of all the messages it received) and input buffer (in
which it maintains all messages which should be processed), and it processes one
message at a time. Unlike our model, SM machine handles three types of events:
the initial event, an event which assumes that current machine is non-faulty, and
an event which assumes that the current event drops all messages. Also unlike our
model, the machines can be non-faulty, symmetrically faulty and arbitrarily faulty.

Interesting fact is that SM is the only machine for which all proofs were simple
enough to be proved automatically by the Rodin’s solvers [Abr-+10].

HO. As explained above, degree of synchronism and the failure model are formally
expressed by a communication predicate. For example, a communication predicate
might state that no process receives more than « corrupted messages in any round,
but that every process receives more than § correct messages at each round. This
type of communication predicate will be true for protocols modeled using HO,

"We refer the readers interested in all refinement steps to the original paper [KU10].
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because HO model assumes that all nodes are connected using point-to-point links.
Usually both, local and global communication predicates, are defined. While local
communication predicate is valid only during one round and is used to prove safety,
the global communication predicate is valid only when all rounds are taken into
account and is used to prove termination.

HO model is based on a communication-closed rounds, i.e., in each round, every
process: (1) sends messages to other processes; (2) receives messages from other
processes; and (3) makes a local state transition. In this model, all messages which
are not received within that round are discarded. Thanks to a communication
predicate, even in a case when a node is lying, HO model makes no assumptions
on the reason why a node did not receive a message which was sent by some other
node—because the Byzantine nodes will never form a majority (there can be up
to f of them), a correct node will always decide upon a correct value.

As it turns out, HO model is not designed to deal with full spectrum of Byzan-
tine failures. Although it is designed to tolerate value faults (i.e., at any round r,
the message received by process ¢ from p might be different from the message that
p actually sent to ¢), it cannot tolerate Byzantine transition faults (i.e., processes
never deviate from their specification). Because of this, their agreement property
is simpler than the one we proved. In their case, if the process decides upon some
value, the value it decided upon is always the right one. In our case, we have to
assume that the process is not faulty, and only then we can make this kind of
claims.

In [CDM11|, the authors formally verified two asynchronous Byzantine fault-
tolerant algorithms Az g, and Ur g, originally introduced in [Bie+07], as well
as synchronous Byzantine fault-tolerant algorithm EIGByz, originally introduced
in [Bar+92|. While Ay g, and Ur g, are correct under local communication pred-
icate, EIGByz requires validity of its global predicate, which only depends on SHO
sets (i.e, messages which a node actually received). The authors pointed out that
global predicates, which only rely on SHO sets, correspond to synchronous ap-
proach. Because EIGByz is designed for synchronous systems with reliable links,
the authors left reasoning about authentication for future work.

PVS. Because PVS is a theorem prover, formal specification and verification of
Byzantine faults using PVS [LR93b|; [LR93a]; [SWRO02[; [Rus01] is quite similar to
the formal specification and verification of Byzantine faults presented in this thesis.
The main difference between our work and works presented in [LR93b|; [LR93a];
[SWRO2|; [Rus01] is that our fault models slightly differ—while we only consider
arbitrary faults, they distinguish between several less-than arbitrary fault modes
(i.e., the model presented in [LR93b|; |LR93a| distinguishes between manifest,
symmetric and arbitrary faults, and the model presented in [SWRO02|; [RusOl]
distinguishes between manifest, omission, symmetric and arbitrary faulty nodes,
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as well as between send link faults and receive link faults). As a consequence of this,
our reasoning also slightly differs—when proving properties of distributed systems
we only consider values coming from correct nodes, and in their proofs they have
to consider and combine values coming from nodes which are non-arbitrary faulty.
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Figure 3.1: Outline of our Byzantine Logic of Events (ByLoE) model

Chapter 3

Verification of Homogeneous BFT
protocols

Using PBFT (see Section [2.1.2]) as a running example, we now present our Coq
model for Byzantine fault-tolerant distributed systems communicating via message
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passing, which relies on a logic of events. See Figure for an outline of our
formalization.

3.1 Homogeneous Model

3.1.1 ByLoE: A Byzantine Logic of Events

There are two main models of distributed computing that are prominently used in
the literature. Namely, Lamport’s happened before relation [Lam78|, and Chandy
and Lamport’s global state semantics |[CL85|. In the first model, a distributed
system is modeled as a collection of events happening at the various locations in-
volved in the system and connected by a happened before relation, which essentially
defines a causal partial order between events. In the second model, a distributed
system is modeled as a single state machine: a state is the collection of all processes
at a given time, and a transition takes a message in flight and delivers it to its re-
cipient (a process in the collection). Each of these two models has advantages and
disadvantages over the other. We chose to base our model on Lamport’s happened
before relation because in our experience it corresponds more closely to the way
distributed system researchers and developers reason about protocols. As such,
it provides a convenient communication medium between distributed systems and
verification experts.

Our model evolved from the Logic of Events (LoE) used in EventML [Bic09];
IBCR12|; |[Rah+17] to not only deal with crash faults, but arbitrary faults in
general (including malicious faults). LoE, which is built on top of Lamport’s
happened before relation |[Lam78|, and is also related to event structures [NPW81|;
[Mat89], was developed to reason about events occurring in the execution of a
distributed system, with a particular focus on systems that can tolerate crashes.
It has recently been used to verify consensus protocols [Sch+14]; [Rah+17] and
cyber-physical systems |[AK15)|.

We call the logic of events we present here, ByLoE, which stands for the Byzan-
tine Logic of Events. Unlike in LoE, where an event is an abstract entity that
corresponds to the handling of a received message, in ByLoE, an event is an ab-
stract entity that corresponds either (1) to the handling of a received message,
or (2) to some arbitrary activity about which no information is provided (see the
discussion about trigger in Section [3.1.5). We use those arbitrary events to model
arbitrary /Byzantine faults. An event happens at a specific point in space/time:
the space coordinate of an event is called its location, and the time coordinate is
given by a well founded partial ordering on events that totally orders all events
at the same location. As pointed out in [TG98|, we model logical time and not
potential causality because local events are totally ordered. Although a timestamp
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is associated to each event, we use them only when we reason about synchronous
protocols, and they are meaningless otherwise. Processes react to the messages
that triggered the events happening at their locations one at a time, by updating
their states and creating messages to send out, which in turn might trigger other
events.

To reason about distributed systems, we use the notion of event orderings (see
Section , which essentially are collections of ordered events and represent runs
of a system. They are abstract entities that are never instantiated. Rather, when
proving a property about a distributed system, one has to prove that the property
holds for all event orderings corresponding to all possible runs of the system (see
Section and Chapter [5] for examples). Some runs/event orderings are not
possible and therefore excluded through assumptions, such as the ones described
in Section For example, AXIOM _exists_at_most_f_faulty excludes event
orderings where more than f out of n nodes could be faulty.

In the next few sections, we explain the different components (messages, au-
thentication, time, event orderings, state machines, and correct traces) of ByLoE,
and their use in our PBFT case study. Those components are parameterized by
abstract types (parameters include the type of messages and the kind of authen-
tication schemes), which we later have to instantiate in order to reason about a
given protocol, e.g. PBF'T, and to obtain running code. The choices we made when
designing ByLoE were driven by our goal to generate running code. For example,
we model cryptographic primitives to reason about authentication.

3.1.2 Messages

Model. As mentioned above, processes communicate via message passing. Cor-
rectly received messages of type msg, a parameter of our model, trigger events
at the locations where the messages are received. Processes react to messages to
produce message/destinations pairs called directed messages. A directed message
is a triple composed of: (1) a message (of type dmMsg); (2) a list of recipients
(of type dmDst); and (3) a message delay (of type dmDelay). For simplicity, we
assume for now that messages are always sent with delay 0. A directed message
is typically handled by a message outbox, which sends the message to the listed
destinations.E] A destination is the name (of type name, which is a parameter of
our model) of a node participating in the protocol.

Case Study. In our PBFT implementation, we instantiate the msg type with

! Message inboxes/outboxes are part of the runtime environment but not part of the model.
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the following datatype (we only show some of the normal-case operation mes-
sages, leaving out for example the more involved pre-prepare messages—see Sec-

tion [2.1.2.1)):

Inductive Bare_Prepare =
| bare_prepare (v : View) (n : SeqNum) (d : digest) (i : Rep).

Inductive Prepare :=
| prepare (b : Bare_Prepare) (a : list Token).

Inductive PBFTmsg =
| REQUEST (r: Request)
| PREPARE (p : Prepare)
| REPLY (r: Reply) ...

As for prepares, all messages are defined as follows: we first define bare messages
that do not contain authentication tokens (see Section [3.1.3), and then authen-
ticated messages are formed as pairs of a bare message and a list of authentica-
tion tokens. Views and sequence numbers are nats, while digests are parameters
of the specification. PBFT involves two types of nodes: replicas of the form
PBFTreplica(r), where r is of type Rep; and clients of the form PBFTclient(c),
where ¢ is of type Client. Both Rep and Client are parameters of our formaliza-
tion, such that Rep is of arity 3f-+1, where f is a parameter that stands for the
maximum number of tolerated faults.

3.1.3 Authentication

Model. Our model relies on an abstract concept of keys, which we use to imple-
ment and reason about authenticated communication. Capturing authenticity at
the level of keys allows us to talk about impersonation through key leakage. Keys
are divided into sending keys (of type sending_key) to authenticate a message for
a target node, and receiving keys (of type receiving_key) to check the validity of
a received message. Both sending_key and receiving_key are parameters of our
model | Each node maintains local keys (of type local_keys), which consists of two
lists of directed keys: one for sending keys and one for receiving keys. Directed
keys are pairs of a key and a list of node names identifying the processes that the
holder of the key can communicate with.

2Sending and receiving keys must be different when using asymmetric cryptography, and can
be the same when using symmetric cryptography.
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Sending keys are used to create authentication tokens of type Token, which
we use to authenticate messages. Tokens are parameters of our model and ab-
stract away from concrete concepts such as digital signatures or MACs. Typically,
a message consists of some data plus some tokens that authenticates the data.
Therefore, we introduce the following parameters: (1) the type data, for the kind
of data that can be authenticated; (2) a create function to authenticate some data
by generating authentication tokens using the sending keys; and (3) a verify func-
tion to verify the authenticity of some data by checking that it corresponds to
some token using the receiving keys.

Once some data has been authenticated, it is typically sent over the network to
other nodes, which in turn need to check the authenticity of the data. Typically,
when a process sends an authenticated message to another process it includes its
identity somewhere in the message. This identity is used to select the correspond-
ing receiving key to check the authenticity of the data using verify. To extract this
claimed identity we require users to provide a data_sender function.

It often happens in practice that a message contains more than one piece of
authenticated data (e.g., in PBFT, pre-prepare messages contain authenticated
client requests). Therefore, we require users to provide a get_contained_auth_data
function that extracts all authenticated pieces of data contained in a message.
Because we sometimes want to use different tokens to authenticate some data
(e.g., when using MACs), an authenticated piece of data of type auth_data is
defined as a pair of: (1) a piece of data, and (2) a list of tokens.

Case Study. Our PBFT implementation leaves keys and authentication tokens
abstract because our safety proof is agnostic to the kinds of these elements. How-
ever, we turn them into actual asymmetric keys when extracting our Coq code to
OCaml code (see Section [5.3|for more details). The create and verify functions are
also left abstract until we extract the code to OCaml. Finally, we instantiate the
data (the objects that can be authenticated, i.e., bare messages here), data_sender,
and get_contained _auth_data parameters using:

Inductive PBFTdata :=
| PBFTdata_request (r : Bare_Request)
| PBFTdata_prepare (p : Bare_Prepare)
| PBFTdata_reply (r: Bare_Reply) ...

Definition PBFTdata_sender (m : data) : option name =

match m with
| PBF Tdata_request (bare_request o t ¢) = Some (PBFTclient c)
| PBF Tdata_prepare (bare_prepare v n d i) = Some (PBF Treplica 1)
| PBF Tdata_reply (bare_reply v t ¢ i r) = Some (PBFTreplica 4) ...
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Definition PBFTget_contained_auth_data (m : msg) : list auth_data :=
match m with

| REQUEST (request b a) = [(PBFTdata_request b,a)]

| PREPARE (prepare b a) = [(PBF Tdata_prepare b,a)]

| REPLY (reply b a) = [(PBFTdata_reply b,a)] ...

3.1.4 Time

As mentioned above, processes communicate by exchanging messages. The consid-
ered system model provides, among other things, a characterization of the possible
such exchanges. For example, in asynchronous systems, messages can take an ar-
bitrarily long time to arrive at their destinations, which does not impose any
restriction whatsoever on message exchanges. On the other hand, synchronous
systems, require among other things that there exists a maximum transmission
delay by which all sent messages must be received by their recipients. Therefore,
to support reasoning about such synchronous systems, we equipped our model
with a notion of time, namely the type dt_T. This type is left abstract in ByLoE,
and can be instantiated with any discrete representation of time (e.g. the natural
numbers) that, among other things, forms a ring, and that supports transitive
and irreflexive less than (dt_1t) and transitive and reflexive less or equal (dt_le)
relationsF]

ByLoE is not the first logic of events that supports reasoning about time.
For example, Anand and Knepper [AK15| introduced such a time-based logic of
events to reason about the cyber-physical behavior of robotics systems. One major
difference between their work and ours is that they do not reason about faults.

3.1.5 Event Orderings

A typical way to reason about a distributed system is to reason about its possi-
ble runs, which are sometimes modeled as execution traces [RHB97|, and which
are captured in ByLoE using event orderings. An event ordering is an abstract
representation of a run of a distributed system; it provides a formal definition of
a message sequence diagram as used by system designers (see for example Fig-
ure . As opposed to |[RHB97|, a trace here is not just one sequence of events
but instead can be seen as a collection of local traces (one local trace per sequen-
tial process), where a local trace is a collection of events all happening at the
same location and ordered in time, and such that some events of different local
traces are causally ordered. Event orderings are never instantiated. Instead, we

3For more details about our abstract notion of time, we refer the interested reader to our
implementation: code/model/DTime. v.
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Figure 3.2: Examples of message sequence diagrams: LoE (left); ByLoE (right)

express system properties as predicates on event orderings. A system satisfies such
a property if every possible execution of the system satisfies the predicate. We first
formally define the components of an event ordering, and then present the axioms
that these components have to satisfy.

3.1.5.1 Components
An event ordering is formally defined as the tuple{]

Class EO :={
Event : Type;
happenedBefore : Event — Event — Prop;
loc : Event — name;
pred : Event — option Event;
trigger : Event — option msg;
time : Event — PosDTime;
keys : Event — local_keys; }

where (1) Event is an abstract type of events; (2) happenedBefore is an ordering
relation on events; (3) loc returns the location at which events happen; (4) pred
returns the direct local predecessor of an event when one exists, i.e., for all events
except initial events; (5) given an event e, trigger either returns the message that
triggered e, or it returns None to indicate that no information is available regarding
the action that triggered the event (see below); (6) time returns the logical time
at which events happened’} and (7) keys returns the keys a node can use at a
given event to communicate with other nodes. The event orderings presented here
are similar to the ones used in |[AK15|; [Rah+17], which we adapted to handle
Byzantine faults by modifying the type of trigger so that events can be triggered
by arbitrary actions and not necessarily by the receipt of a message, and by adding
support for authentication through keys. To model that at most f nodes out of

4A Coq type class is essentially a dependent record.

5Because when reasoning about distributed systems one only has to reason about positive
time, we also introduced PosDTime which is essentially a subset of dt_T that contains non-
negative values.
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N can be faulty we use the AXIOM _exists_at_most_f_faulty assumption, which
enforces that trigger returns None at most f nodes (see Section .

Moreover, even though non-syntactically valid messages do not trigger events
because they are discarded by message boxes, a triggering message could be syntac-
tically valid, but have an invalid signature. Therefore, it is up to the programmer
to ensure that processes only react to messages with valid signatures using the ver-
ify function. Our AXIOM _authenticated_messages_were_sent_non_byz and AX-
IOM _exists_at_most_f_faulty assumptions presented in Section [3.1.7) are there to
constrain trigger to ensure that at most f nodes out of N can diverge from their
specifications, for example, by producing valid signatures even though they are
not the nodes they claim to be (using leaked keys of other nodes).

3.1.5.2 Axioms

The following axioms characterize the behavior of these components:

1. Equality between events is decidable. Events are abstract entities that corre-
spond to points in space/time that can be seen as pairs of numbers (one for the
space coordinate and one for the time coordinate), for which equality is decidable.
2. The happened before relation is transitive and well founded. This allows us
to prove properties by induction on causal time. We assume here that it is not
possible to infinitely go back in time, i.e., there is a beginning of (causal) time,
typically corresponding to the time a system started.

3. The direct predecessor e; of e; happens at the same location and before e;.
This makes local orderings sub-orderings of the happenedBefore ordering.

4. If an event e does not have a direct predecessor (i.e., e is an initial event) then
there is no event happening locally before e.

5. The direct predecessor function is injective, i.e., two different events cannot
have the same direct predecessor.

6. If an event e; happens locally before e; and e is the direct predecessor of e,
then either e = e; or e; happens before e. From this, it follows that the direct
predecessor function can give us the complete local history of an event.

Notation. The type A — B is the type of total functions, of the form Az.b, from
A to B. The type A x B is the type of pairs of the form (a, b) of an a € A and a
b € B. We use the standard “let” notation to destruct pairs: let =,y = p in f.
We write p.1 and p.2 for the 1st and 2nd elements of the pair p. B is the Boolean
type with constructors true and false. We often assume an implicit coercion
from B to PP (the type of propositions). The option(A) type is the usual option
type with constructors None and Some(a), where a € A. The list(A) type is the
usual list type, with constructors [|—the empty list—and « :: [, where a« € A and
[ € list(A).
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We use a < b to stand for (happenedBefore a b); a =< b to stand for (a < b or
a =b); and a C b to stand for (a < b and loc a=loc b). Moreover, let first?(e) be
true iff pred(e) = None; let e; C eg be pred(eq) = Some(ey); let pred=(e) be ¢ if
¢/ C e, and e otherwise. We also sometimes write EO instead of EventOrdering.

Some functions take an event ordering as a parameter. For readability, we
sometimes omit those when they can be inferred from the context. Similarly, we
will often omit type declarations of the form (7' : Type).

In order to improve readability, in Chapter [D] we present summary of notation
introduced in this thesis.

3.1.5.3 Correct Behavior

To prove properties about distributed systems, one only reasons about processes
that have a correct behavior. To do so we only reason about events in event
orderings that are correct in the sense that they were triggered by some message:

Definition isCorrect (e : Event) =
match trigger e with
| Some m = True
| None = False
end.

Definition arbitrary (e : Event) := ~ isCorrect e.

Next, we characterize correct replica histories as follows: (1) First, we say that
an event e has a correct trace if all local events prior to e are correct. (2) Then, we
say that a node 7 has a correct trace before some event e, not necessarily happening
at 1, if all events happening before e at ¢ have a correct trace:

Definition has_correct_bounded_trace (e : Event) :=
Ve,e'Ce
— isCorrect e”.

Definition has_correct_trace_before (e : Event) (i : name) :=
Ve,e'<e
—loce’ =1
— has_correct_bounded_trace e’.

47



3.1.6 Computational Model of ByLoE

Model. We now present our computational model, which we use when extracting
OCaml programs. Unlike in EventML [Rah+ 17| where systems are first specified
as event observers (abstract processes), and then later refined to executable code,
we skip here event observers, and directly specify systems using executable state
machines, which essentially consist of an update function and a current state. We
define a system of distributed state machines as a function that maps names to
state machines. Systems are parametrized by a function that associates state types
with names in order to allow for different nodes to run different machines.

Definition Update ST O :=S5— I — (option S* O).
Record StateMachine S I O := MkSM { halted : bool; update : Update S I O; state : S}.

Definition System (F:node — Type) I O =V (i : node), StateMachine (F i) I O.

where S is the type of the machine’s state, I/ O are the input/output types, and
halted indicates whether the state machine is still running or not. We sometimes
write System(F) for the type of systems that take messages as inputs and output di-
rected messages. Moreover, we sometimes write System(S) for System(fun _ = S).

Let us now discuss how we relate state machines and events. Let sm@~e
and sm@%te be the states of the sm state machine before and after the event
e, respectively.ﬁ These states are computed by extracting the local history of
events up to e using pred, and then updating the state machine by running it
on the triggering messages of those events. These functions return None if some
arbitrary event occurs or the machine halts sometime along the way. Otherwise
they return Some s, where s is the state of the machine updated according to
the events. Therefore, assuming they return Some amounts to assuming that all
events prior to e are correct, i.e., we can prove that if sm@Q%te = Some s then
has_correct_trace_before e (loc e). As illustrated below, we use these functions to
adopt a Hoare-like reasoning style by stating pre/post-conditions on the state of a
process prior and after some event. In addition, we also define sm ~» e to be the
outputs of the state machine sm at e. Those are computed by: (1) computing the
state sm@~e; and (2) running sm on that state and on the input that triggered e
(in case of a “correct” event). We sometimes write SQ~ ¢, where S is a system, for
sm@~ e, where sm is the state machine running at loc e.

6Those two operations are called state_sm_before_event and state_sm_on_event in our im-
plementation code/model/Process.v

48


code/model/Process.v

Case Study. We implement PBFT replicas as state machines, which we derive
from an update function that dispatches input messages to the corresponding
handlers. Finally, we define PBFTsys as the function that associates PBFTsm
with replicas and a halted machine with clients (because we do not reason here
about clients).

Definition PBFTupdate (i : Rep) =
fun state msg = match msg with
| REQUEST r = PBFThandle_request i state r
| PREPARE p = PBFThandle_prepare i state p

end.
Definition PBFTsm (i: Rep) := MkSM false (PBF Tupdate 1) (initial_state ).

Definition PBFTsys := PBFTsm.

Let us illustrate how we reason about state machines through a simple example
that shows that they maintain a view that only increases over time. It shows a
local property, while Chapter [5| presents the distributed agreement property that
makes use of the assumptions presented in Section [3.1.7 As mentioned above we
prove such properties for all possible event orderings, which means that they are
true for all possible runs of the system. In this lemma, s/ is the state prior to the
event e, and s2 is the state after handling e. It does not have pre-conditions, and
its post-condition states that the view in s7 is smaller than or equal to the view
in s2.

Lemma current_view_increases : V (eo : EO) (e : Event) i s1 s2,
(sm i)@Q~ e = Some s1
— (sm 1)@T e = Some s2
— current_view s < current_view s2.

3.1.7 ByLoE Assumptions

Before one starts reasoning about distributed system, it has to first define a sys-
tem and threat fault model. In this section, we introduce both, system as well
as fault model assumptions our framework supports. Moreover, because reasoning
about Byzantine behavior requires use of cryptography, in this section we also in-
troduce our assumptions regarding cryptography. The organization of this section
is depicted in Figure [3.3]
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Figure 3.3: Overview of ByLoE assumptions

3.1.7.1 Assumption 1 (Origin of Triggers)

Proving safety properties of crash fault-tolerant protocols that only require rea-
soning about past events, such as agreement, does not require reasoning about
faults and faulty replicas. To prove such properties, one merely has to follow the
causal chains of events back in time, and if a message is received by a node then it
must have been sent by some node that had not crashed at that time. The state
of affairs is different when dealing with Byzantine faults.

One issue is that Byzantine nodes can deviate from their specifications or im-
personate other nodes. However, BE'T protocols are designed in such a way that
nodes only react to collections of messages, called certificates (see Section ,
that are larger than the number of faults. This means that there is always at least
one correct node that can be used to track down causal chains of events.

A second issue is that, in general, we cannot assume that some received mes-
sage was sent as such by the designated (correct) sender of the message be-
cause messages can be manipulated while in flight. As captured by the AX-
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IOM _authenticated _messages_were_sent_or_byz predicate defined below[| we can
only assume that the authenticated parts of the received message were actually sent
by the designated senders, possibly inside larger messages, provided the senders
did not leak their keys. As usual, we assume that attackers cannot break the
cryptographic primitives, i.e., that they cannot authenticate messages without the
proper keys |[Cas01].

1.Definition AXIOM _authenticated_messages_were_sent_or_byz (P : AbsProcess) :=
2. ¥V e (a: auth_data),

3. In a (bind_op_list get_contained_auth_data (trigger e))

4. — verify_auth_data (loc €) a (keys e) = true

5. — de’, e’ < e A am_auth a = authenticate (am_data a) (keys e’)
6. A (3 dst m,

7 In a (get_contained_auth_data m) A In (m,dst) (P eo e’)
8 A data_sender (loc e) (am_data a) = Some (loc e?)

9

. V
10. (3 e
11. e” <X e’ A arbitrary e’ A arbitrary e” A got_key_for (loc €) (keys e”) (keys e’)
12. A data_sender (loc e) (am_data a) = Some (loc €7)) ).

This assumption says that if the authenticated piece of data a is part of the message
that triggered some event e (1..3), and a is verified (L..1), then there exists a
prior event e’ such that the data was authenticated while handling e’ using the
keys available at that time (L.5). Moreover, (1) either the sender of the data
was correct while handling e’ and sent the data as part of a message following
the process described by P (1.6 8); or (2) the node at which e’ occurred was
Byzantine at that time, and either it generated the data itself (e.g. when ¢” = ¢€),
or it impersonated some other replica (by obtaining the keys that some node leaked
at event e¢”) (L.10-12).

We used a few undefined abstractions in this predicate: An AbsProcess is
an abstraction of a process, i.e., a function that returns the collection of messages
generated while handling a given event: (V (eo: EO) (e: Event), list DirectedMsg).
The bind_op_list function is wrapped around get_contained_auth_data to handle
the fact that trigger might return None, in which case bind_op_list returns nil.
The verify _auth_data function takes an authenticated message a and some keys
and: (1) invokes data_sender (defined in Section to extract the expected
sender s of a; (2) searches among its keys for a receiving_key that it can use to
verify that s indeed authenticated a; and (3) finally verifies the authenticity of
a using that key and the verify function. The authenticate function simply calls
create and uses the sending keys to create tokens. The got_key_for function takes

"For readability, we show a slightly simplified version of this axiom. The full axiom can be
found in |code/model/EventOrdering.vi
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a name 7 and two local_keys /k1 and k2, and states that the sending keys for i in
k1 are all included in [k2.

However, it turns out that because we never reason about faulty nodes, we
never have to deal with the right disjunction of the above formula. Consequently,
this assumption about received messages can be greatly simplified when we know
that the sender is a correct replica, which is always the case when we use this
assumption. This is so because BFT protocols are designed so that there is always
a correct node that can be used to track down causal chains of events. We now
define the following simpler assumption, which we have proved to be a consequence
of AXIOM _authenticated_messages_were_sent_or_byz:

Definition AXIOM_authenticated _messages_were_sent_non_byz (P : AbsProcess) :=
V (e : Event) (a : auth_data) (¢ : name),
In a (bind_op_list get_contained_auth_data (trigger e))
— has_correct_trace_before e ¢
— verify_auth_data (loc €) a (keys €) = true
— data_sender (loc e) (am_data a) = Some ¢
—de’dstm,e’<eANloce’=¢
A am_auth a = authenticate (am_data a) (keys e’)
A In a (get_contained _auth_data m)
A In (m,dst) (P eo €)

As opposed to the previous formula, this one assumes that the authenticated data
was sent by a correct replica, which has a correct trace prior to the event e—the
event when the message containing a was handled.

3.1.7.2 Assumption 2 (Correct Keys)

Because our framework enables reasoning about implementations of protocols, pro-
cesses need to store their keys in the state in order to sign and verify messages.
We must connect those keys to the ones in the model. We do this through the
AXIOM _correct_keys assumption, which states that for each event e, if a process
sm has a correct trace up to e, then the keys (keys e) from the model are the same
as the ones stored in its state (which are computed using sm@Q~e¢).

3.1.7.3 Assumption 3 (Number of Faulty Nodes)

Finally, we present our assumption regarding the number of faulty nodes. There
are several ways to state that there can be at most f faulty nodes. One simple
definition is (where node is a subset of name as discussed in Section (3.2.2)):
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Definition AXIOM_exists_at_most_f_faulty (E : list Event) (f: nat) :=
3 (faulty : 1ist node),
length faulty < fAV el e2,In e2 E
— el < e2
— ~ In (loc el) faulty
— has_correct_bounded_trace el.

This assumption says that at most fnodes can be faulty by stating that the events
happening at nodes that are not in the list of faulty nodes faulty, of length less or
equal than f, are correct up to some point characterized by the partial cut F of a
given event ordering (i.e., the collection of events happening before those in F).

3.1.7.4 Assumption 4 (Collision Resistant Hashing)

Very often, in order to reduce the amount of information that has to be exchanged,
different nodes of distributed protocols exchange hashes of messages instead of
sending entire messages. For example, pre-prepare messages in PBFT protocol
contain client requests, but prepare and commit messages simply contain digests
of client requests. In order to enable application as well as verification of hash
function, our model enables adding these kind of functions as parameters of a dis-
tributed protocol, as well as assumptions about these functions. For example, our
PBFT formalization is parametrized by the following create and verify functions,
and we assume that the create function is collision resistant:

Class PBFThash := MkPBFThash {
create_hash : list PBFTmsg — digest;
verify _hash : list PBFTmsg — digest — bool; }.

Class PBFThash_axioms := MkPBFThash_axioms {
AXIOM _create_hash _collision _resistant :
YV msgsl msgs2, create_hash msgsl = create_hash msgs2 — msgsl = msgs2; }.

3.1.7.5 Assumption 5 (Synchronous Delivery)

Unlike asynchronous protocols, which make no assumptions regarding time, syn-
chronous algorithms crucially depend on time bounds. In [CGRI11, Section 2.5.2],
the authors define a synchronous system as one for which the following two prop-
erties hold:

1. Synchronous computation: There is a known upper bound on processing
delays.
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2. Synchronous communication: There is a known upper bound on message
transmission delays.

Alternatively, in [LSP82|, the authors assume that the absence of a message can
be detected (see assumption A3 in [LSP82, Section 3]). In [LSP82, Section 6],
the authors then show that this assumption can be substantiated when the two
properties listed above hold. Correspondingly, we model A3 as follows (note that
this assumption also covers assumption Al presented in [LSP82, Section 3|):

Definition AXIOM_messages_get_delivered (eo : EO) F (sys : System(F)) :=
v (e : Event) (m : DirectedMsg) (d : name),
In m (sys ~ ¢)
— In d (dmDst m)
— is_correct_in_near_future d e
— Je’,loc e’=d A (trigger e’) = Some (dmDst m)
A (time e + 7 < time e’ < time e + (u + 7).

i.e., if at some event e, a message m was sent by a correct node and it was not
delayed, then there exists some prior event ¢’, that triggered the message m, such
that it did not take it more than (u+7), but also not less than 7, for the message to
arrive. Here, is_correct_in_near_future covers the usual assumption of synchronous
protocol, which states that every message sent by a correct node is delivered within
the same round (i.e., by pu+ 7):

Definition is_correct_in_near_future (d : name) {eo : EO} (e : Event) :=
3 e’ loc e’ = d A has_correct_trace_before e’ d A (time e + (u + 7) < time e).

3.1.7.6 Assumption 6 (Authentication)

In order to prevent malicious behavior of its participants, many BFT protocols
use signed messages (e.g., SM and PBFT). Thanks to those signatures, correct
processes can verify the authenticity of the data sent by other correct processes,
ie.

Definition AXIOM_verified_authenticated (eo : EQ) =
V (el e2: Event) d,

has_correct _trace_before el (loc el)

— has_correct_trace_before e2 (loc e2)

— 3 1k tok,
In 7k (lookup_receiving_keys (keys e2) (loc e1))
A In tok (authenticate d (keys el))
A verify d (loc el) rk tok = true.

For this assumption to hold, e2 must have a receiving key for e/ (which can be
extracted using lookup_receiving_keys) and el must have a signing key for e2.
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3.1.7.7 Assumption 7 (Non-Repudiation)

Many distributed protocols (e.g., SM) also assume that if some authenticated piece
of dasi{zﬁa can be verified at one correct node, then it can be verified at all correct
node

Definition AXIOM_all_correct_can_verify (eo : EQ) i=
V (el e2: Event) q,
has_correct_trace_before el (loc el)
— has_correct_trace_before e2 (loc e2)
— verify_auth_data (loc el) a (keys el) = true
— verify _auth_data (loc e2) a (keys e2) = true.

3.2 Local and Distributed Reasoning

To reason about distributed systems, one has to prove both: local invariants of
processes, as well as properties that hold about the collection of processes that
form the distributed systems. To simplify proofs of local properties, we have ac-
tually developed an automated proof technique (see Section , and to enable
distributed reasoning we are relying on the standard quorum reasoning (see Sec-
tion and Section . Moreover, to reason about distributed properties at a
high-level of abstraction, we have developed a knowledge library, which we discuss
in the next chapter (see Chapter [4), and which among other things captures the
typical quorum reasoning discussed in this section.

3.2.1 Automated Inductive Reasoning

We use induction on causal time to prove both distributed and local properties.
As discussed here, we automated the typical reasoning patterns we use to prove
local properties. For example, in our PBFT formalization, we proved following:
if a replica has a prepare message in its log, then it either received or generated
it. Moreover, using ByL.oEE we prove local properties about processes by reason-
ing about all possible paths they can take when reacting to messages. Thus, a
typical proof of such a lemma using our framework goes as follows: (1) we go by
induction on events; (2) we split the code of a process into all possible execution
paths; (3) we prune the paths that could not happen because they invalidate some
hypotheses of the lemma being proved; and (4) we automatically prove some other
cases by induction hypothesis. We packaged this reasoning as a Coq tactic, which
in practice can significantly reduce the number of cases to prove. Besides general

8Note that AXIOM_all_correct_can_verify is true when using digital signatures, but not when
using MACs.
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tactics, which can be used to prove properties of any protocol, we also developed
protocol specific tactics, which significantly reduced the costs of formal verifica-
tion of SM, PBFT and MinBFT properties. For example, we used this automation
technique to prove local properties of PBET, such as Castro’s A.1.2 local invari-
ants |[Cas01]. Because of PBFT’s complexity, our Coq tactic typically reduces the
number of cases to prove from between 50 to 60 cases down to around 7 cases,
sometimes less, as we show in this histogram of goals left to interactively prove
after automation:

avg. # goals/lemma

w
B
Tt
D
\]
0.¢]

# of goals left to prove | 0 | 1 | 2
# of lemmas 8115414129173 5

3.2.2 Quorums

As usual, we use quorum theory to trace back correct information between nodes.
A (Byzantine) quorum w.r.t. a given set of nodes NV, is a subset @) of N, such that
f+1<(2%|Q|) — |N| (where |X| is the size of X), i.e. every two quorums inter-
sect [MR97|; [Vuk10] in sufficiently many replicas. We use here Castro’s notation
where quorums are majority quorums [Tho79| (also called write quorums) that
require intersections to be non-empty, as opposed to read quorums that are only
required to intersect with write quorums |Gif79]. Typically, a quorum corresponds
to a majority of nodes that agree on some property. In case of state machine
replication, quorums are used to ensure that a majority of nodes agree to update
the state using the same operation. If we know that two quorums intersect, then
we know that both quorums agree, and therefore that the states cannot diverge.
In order to reason about quorums, we have proved the following general lemma:ﬂ

Lemma overlapping_quorums :
V (11 12 : NRlist node), 3 Correct,
(length 11 + length [2) - num_nodes < length Correct
A subset Correct 11 A subset Correct [2 A no_repeats Correct.

This lemma implies that if we have two sets of nodes /7 and /2 (NRlist ensures
that the sets have no repeats), such that the sum of their length is greater than
the total number of nodes (num_nodes), there must exist an overlapping subset of
nodes (Correct). We use this result below in Chapter [4]

9We present here a simplified version for readability.
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The node type parameter is the collection of nodes that can participate in
quorums. For example, PBFT replicas can participate in quorums but clients
cannot. This type comes with a node2name function to convert nodes into names.

Notation. In the rest of the thesis, we will sometimes write EventN(N), where N
is a predicate on process names, for the collection of events e such that N(loc(e))
and such that loc(e) is a node (in node), i.e., for the collection of events happening
at nodes that satisfy the constraint N. In addition, we will write EventN for the
type of events happening at nodes.

3.2.3 Certificates

Lemmas that require reasoning about several replicas are much more complex than
local properties, because they typically require reasoning about some information
computed by a collection of replicas (such as quorums) that vouch for the infor-
mation. In PBFT, a collection of 2f + 1 messages from different replicas is called
a strong (or quorum) certificate, and a collection of f + 1 messages from different
replicas is called a weak certificate.

When working with strong certificates, one typically reasons as follows: (1) Be-
cause PBFT requires 3 f + 1 replicas, two certificates of size 2f + 1 always intersect
in f+ 1 replicas. (2) One message among those f + 1 messages must be from a
correct replica because at most f replicas can be faulty. (3) This correct replica
can vouch for the information of both quorums—we use that replica to trace back
the corresponding information to the point in space/time where/when it was gen-
erated. We will get back to this in Chapter

When working with weak certificates, one typically reasons as follows: Because,
the certificate has size f + 1 and there are at most f faulty nodes, there must be
one correct replica that can vouch for the information of the certificate.
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Chapter 4

ByK: Byzantine Knowledge Theory
for Homogeneous Systems

Knowledge theories have applications in many areas, such as, as mentioned in
|Fag+03], economics, linguistics, artificial intelligence, theoretical computer sci-
ence, and, evidently, distributed computing. This is because the way humans,
machines, distributed systems, etc., manage to achieve tasks, or simply evolve is
by making new discoveries and exchanging their knowledge so that others can
know about it and benefit from it. Actually, the way they exchange this informa-
tion forms the high-level logic of a system. Understanding and being able to reason
about this logic is one of the major difficulties when dealing with distributed sys-
tems. Additionally, because the same high-level logic is typically shared by many
systems, such theories allow reusing results proved at that level in multiple appli-
cations. Therefore, we decided to develop a Byzantine Knowledge library (ByK),
to reason at a high-level of abstraction about the knowledge exchanged between
the nodes of a distributed system.

Knowledge is often captured using possible-worlds models, which rely on Kripke
structures: an agent knows a fact if that fact is true in all possible worlds. For
distributed systems, agents are nodes and a possible world at a given node is es-
sentially one that has the same local history as the one of the current world, i.e.,
it captures the current state of the node. As Halpern stresses, e.g. in [Hal87],
such a definition of knowledge is external in the sense that it cannot necessarily
be computed, though some work has been done towards deriving programs from
knowledge-based specifications [Bic+04|. Therefore, because we want to reason
about knowledge propagation, we follow a different, more pragmatic and compu-
tational approach, and say that a node knows some piece of data if it is somehow
encoded in node’s local state, as opposed to the external and logical notion of
knowing facts mentioned above. This computational notion of knowledge relies
on exchanging messages to propagate it, which is what is required to derive pro-
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Learns Knows Disseminate

Figure 4.1: Knowledge operators

grams from knowledge-based specifications (i.e., to compute that some knowledge
is gained [Hal87]; [CM86]).

Let us now present an excerpt of our distributed epistemic Byzantine Knowl-
edge library that relies on three modal operators, which allow us to reason about
gaining some knowledge, holding some knowledge, and finally disseminating some
knowledge (see Figure [d.1)). We first start by introducing the knows modal oper-
ator (see Section , which is most commonly found in knowledge theories, and
which allows reasoning about the knowledge held by processes. Next, we intro-
duce our learns modal operator (see Section , which allows reasoning about
the knowledge gained by processes. In addition, we introduce two variants of
this general learns operator: one called learns_on_time, which can be used to
especially reason about synchronous systems; and one called learns_list, which
enables reasoning about pieces of data that are themselves combinations of sev-
eral pieces of data. Finally, we introduce our disseminate modal operator, which
allows reasoning about the dissemination of knowledge by some process to other
processes (see Section . Moreover, because framework presented in this thesis
supports reasoning about Byzantine faults, our ByK library also supports reason-
ing about authenticated knowledge (see Section [4.4). For each of these modal
operators, we present the parameters, as well as axioms about these operators.
We end each section with most important general purpose lemmas about knowl-
edge.F_-] We used these general purpose lemmas to prove agreement of PBFT and
SM. Actually, using two knowledge lemmas presented in this chapter (namely,
learns_on_time_imp_other_knew and disseminated_before_deadline) we managed
to abstract away most of the proof of SM’s agreement property. We end this
chapter (see Section [4.5] and Section by showing how we used ByK to prove
properties about SM and PBFT, respectively.

4.1 Knowing

We now extend the model presented in Section with an epistemic modal oper-
ator knows that expresses what it means for a process to hold some information.

'In this chapter we only present axioms on which our general purpose lemmas depend on. We
refer the reader to our implementation for the full list of axioms: code/model/Disseminate.vl
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Parameters. Formally, we extend our model with the following parameters, which
can be instantiated as many times as needed for all the pieces of known data that
one wants to reason about—see below for examples:

Class KnowingClass := MkKnowingClass {
byk_data : Type;
byk_info : Type;
byk_mem : Type;
byk_data2info : byk_data — byk_info;
byk_knows : byk_data — byk_mem — Prop;
byk_sys : System(byk_mem); }.

The byk_data type is the type of “raw” data that nodes have knowledge of; while
byk_info is some distinct information that might be shared by different pieces of
data. For example, PBFT replicas collect batches of 2f + 1 (pre-)prepare messages
from different replicas, that share the same view, sequence number, and digest
(see Section . In that case, the (pre-)prepare messages are the raw data that
contain the common information consisting of a view, a sequence number, and a
digest. The byk_mem type is the type of objects used to store one’s knowledge,
such as a state machine state. One has to provide a byk_data2info function to
extract the information contained in some piece of data. The byk_knows predicate
explains what it means to know some piece of data. Finally, byk_sys is the system
that one wants to reason about. For simplicity, we require here that all the nodes
in that system must maintain a state of type byk_mem, which they use to store
their knowledge.

Primitive Modal Operators. Let us now turn to one of the main components of
our theory, namely the knows epistemic modal operator. This operator provides
an abstraction barrier: it allows us to abstract away from how knowledge is stored
and computed, in order to focus on the mere fact that we have that knowledge.

Definition knows (e : Event) (d: byk_data) :=
d mem i, loc e = node2name 3
A (byk_sys i)@T e = Some mem
A byk_knows d mem.

This says that the state machine (byk_sys i) knows the data d at event e if its
state is mem at e and (byk_knows d mem) is true.

Non-Primitive Modal Operators. As mentioned in Section when reason-
ing about distributed systems, one often needs to reason about certificates, i.e.,
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about collections of messages from different sources. In order to capture this, we
introduce knows_certificate predicate, which states that a state machine sm (run-
ning at loc e) knows the information i at event e if there exists a list [ of pieces of
data of length at least & (the certificate size) that come from different sources, and
such that sm knows each of these pieces of data, and each piece of data carries the
common information i:

Definition knows_certificate (e : Event) (k : nat) (i : byk_info) (P : list byk_data — Prop) :=
3 (I list byk_data),
k<length IAN Pl
A no_repeats (map byk_data2owner )
AV dIndl
— (knows e d A i = byk_data2info d). (4.1)

Axioms. Using our knowledge library, we derived a number of general high-level
knowledge principles about the way knowledge is exchanged between the nodes
of a system. Typically these results rely on assumptions about the behavior of
the system. In order to use those lemmas to prove a property about a concrete
instance of a distributed system (such as SM or PBFT, for example), one has to
prove that those assumptions indeed hold about the distributed system. We briefly
describe in this section, as well as in Section [4.2] Section [4.3] and Section some
“standard” axioms that we defined within ByK. We then show in Section how
to use those axioms to derive useful results about knowledge, which we used, for
example, to prove properties about SM.E]

Aziom 1 (Preserving Knowledge). The AXIOM _preserves_knows axiom is only
valid about protocols that do not forget. It says that if a node knows a piece of
data d, then it will keep on knowing d as long as it stays correct. We formally
define this axiom as follows:

Definition AXIOM_preserves_knows (eo : EO) : Prop :=
V (el e2: Event) (d: byk_data),
has_correct_bounded_trace e2
— el C e2
— knows el d
— knows e2 d.

2We refer the reader to our implementation for the full list of axioms provided by ByK: code/
model/Disseminate. vl
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For example, this axiom is true about SM, because as opposed to PBFT, in
SM, processes do not garbage collect, i.e., they do not forget (see Section E]
We used this axiom to prove disseminated_before_deadline (see Figure [1.2). As
explained below, this lemma assumes that a node n learns a piece of data d owned
by a node n’ at some event e. From the fact that n learned d, we can prove that
there exists some event e¢” that happened at n’ before some deadline D, at which
n’ disseminated d. Moreover, from the fact that n’ disseminated d, we can derive
that n” knows d. Finally, thanks to AXIOM _preserves_knows, we conclude that
since n’ knows d at e” that happened before the deadline D, then it must also know
d at events that happen after the deadline.

Lemmas. We proved the following lemma, which captures the fact that there is
always a correct replica that can vouch for the information of a weak certificate:

Lemma knows_weak_certificate :
v (e : Event) (k f: nat) (i : byk_info) (P : list byk_data — Prop) (E : list Event),
(f < kA AXIOM _exists_at_most_f_faulty E fA In e E A knows_certificate e k i P)
— 3 d, has_correct_trace_before e (node2name d) A knows e d A i = byk_data2info d.

4.2 Learning

We now build on top of the knowledge theory presented in Section by introduc-
ing one additional epistemic modal operator, called [earns, that expresses what it
means for a process to gain some information, and which bears some resemblance
with the fact discovery notion discussed in [HM90|. Additionally, we here present
two variants of this operator: (1)learns_on_time that is especially useful to reason
about synchronous systems; and (2)learns_list that is useful to reason about pieces
of data that are themselves combinations of several pieces of data.

Parameters. In addition to the parameters introduced in Section [4.1l we here
present five additional parameters:

Class LearningClass := MkLearningClass {
byk_data2owner : byk_data — node;
byk_data2msg : byk_data — msg;
byk_data2auth : byk_data — auth_data;
byk_data2auth_list : byk_data — list auth_data;
byk_verify : ¥ (eo : EO) (e : Event) (d : byk_data), bool; }.

3PBFT’s garbage collection does not affect the knowledge majority of correct processes agreed
upon, because it only removes the messages that happened before garbage collection. Based on
this, we can conclude that PBFT only forgets the knowledge that lead to the garbage collection.
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The byk_data2owner function extracts the “owner” of some piece of data, typically
the node that generated the data. Next, byk_data2msg enables converting a piece
of data to a message. This essentially allows us to consider an entire message
as a piece of data because we can then convert the underlying piece of data of
a message to that message whenever we need to manipulate the message—see
below its use in learns_on_time. While, the byk_data2auth function extracts some
piece of authenticated data from some piece of raw data, the byk_data2auth_list
extracts all pieces of authenticated data from some piece of raw data. In most
cases protocols assume that a node signs the whole message before it disseminates
that message to other nodes (e.g., PBFT and SMgeq), so it is enough to extract
authenticated data that was created before message was sent (i.e., byk_data2auth
is used). In case one is reasoning about protocols which assume that each received
message is composed of a collection of authenticated pieces of data (e.g, SM ) we
need means to extract all of these pieces of authenticated data (i.e., byk_data2auth
is used). Finally, because typically in Byzantine fault-tolerant protocols messages
are authenticated using signatures, the byk_verify function allows verifying the
correctness of authenticity of a piece of data. For convenience, we define the
following wrapper around byk_data2owner:

Definition byk_data2node (d : byk_data) : name := node2name (byk_data2owner d).

Primitive Modal Operators. Let us now turn to the second main component
of our theory, namely the learns epistemic modal operator. We define learns as
follows:

Definition learns (e : Event) (d: byk_data) :=
In (byk_data2auth d) (bind_op_list get_contained_auth_data (trigger e))
A byk_verify e d.

This states that a node, at which event e happened, learns d, if e was triggered
by a message that contains the data d. Moreover, to handle Byzantine faults, we
require that to learn some data one has to be able to verify its authenticity.
Although most of the knowledge lemmas we proved depend on this learns op-
erator, we used a variant of this operator called learns_on_time to prove properties
of synchronous systems (e.g., see learns_on_time_imp_other_knew in Figure |4.3).
While learns requires that the event e be triggered by a message that contains the
data d, the learns_on_time operator requires that the event e be triggered by the
data d itself. For example, for both implementations of the SM protocol we instan-
tiated ByK such that: if a node ji sends some value v that was previously signed
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by senders jo,...,Jk_1, then a node learns_on_time a piece of data that consists of
the value v accompanied by all the signatures (i.e., jo,...,jx), while a node learns
a piece of data that contains the value v along with only one of those signatures.
In addition, our new modal operator learns_on_time requires that the data d be
delivered at a timely “epoch” (provided by the E parameter) and that this epoch
number is less than some bound that essentially corresponds to a deadline by
which the data must have been delivered (provided by the D parameter), i.e., the
proposition on_time e d F D is true. This operator is formally defined as follows:

Definition learns_on_time {eo : EO}
(e : Event) (d: byk_data) (F : byk_data — nat) (D : nat) :=
trigger e = Some (byk_data2msg d)
A byk_verify e d = true
A on_time e d E D.

where, on_time is defined as follows:

Definition on_time {eo : EO} (e : Event) (d : byk_data) (£ : byk_data — nat) (D : nat) :=
(time e<= (B d) * (1 + 7)) A (E d <= D).

As mentioned in Section we implemented two variants of SM, which we
named SMseq and SMy,,. Although the operators we introduced so far were
enough to prove properties (at the level of knowledge) of PBFT and SMgeq,
in order to verify SMpy, we extended ByK with an additional operator called
learns_list. As it turns out, our main reason for introducing this operator was due
to the way SMp works: whenever some node n learns a piece of data d, it learns
about a list of signatures that correspond to all the nodes that have also learned
about d. In this case, we can say that n actually learned a list of authenticated
pieces of data. Here is our formal definition of learns_list operator:

Definition learns_list (e : Event) (d : byk_data) =
subset (byk_data2auth_list d) (bind_op_list get_contained_auth_data (trigger e€))
A byk_verify e d.

Non-Primitive Modal Operators. Here, we present a few predicates that are
useful to track down knowledge by navigating trough chains of corresponding learns
and knows propositions. The learns_or_knows property is a local predicate that
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states that for a state machine to know about a piece of information it has to
either have learned about it or generated it.

Definition learns_or_knows =
v (d : byk_data) (e : Event),
knows e d
— (Je’, e’C e Alearns e’ d) V (byk_data2node d = loc e). (4.2)

The learns_if_knows property is a distributed predicate that states that if one
learns about some piece of information that is owned by a correct node, then that
correct node must have known that piece of information:

Definition learns_if_knows :=
V (d : byk_data) (e : Event),

learns e d
— has_correct_trace_before e (byk_data2node d)
— Je’, e’< eAloc e’=byk_data2node d A knows e’ d. (4.3)

Axioms. As in Section we define here some “standard” axioms that we de-
fined within ByK, and which we use to derive useful results about knowledge, for
example, to prove properties about SM in Section [4.4]

Aziom 2 (Relating Verify). The AXIOM _verify _implies_verify__auth_data relates
the two verify functions mentioned above, namely byk_verify and verify _auth_data.
It states that if one can verify a piece of knowledge using byk_verify, then one must
also be able to verify the authenticity of the corresponding authenticated piece of
data using verify _auth_data. We formally define this axioms as follows:

Definition AXIOM_verify_implies_verify _auth_data (eo : EO) :=
V (e : Event) (d : byk_data),
byk_verify e d = true
— verify_auth_data (loc e) (byk_data2auth d) (keys e) = true.

For example, we used this axiom in our proof of disseminated_before_deadline
(see Figure[£.2). This lemma assumes that a node n learns a piece of data d owned
by a node n” at some event e. Because n learned d, using our Origin of Triggers
communication assumption (see Section we can prove that there exists
some prior event e” at which this piece of data was sent. Finally, because the
verify function used in our communication assumption is different from the one
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used in our learns operator, we need AXIOM _verify_implies_verify _auth_data to
derive one from the other.

Aziom 3 (Knows if Learns on Time). The AXIOM_learns_on_time_implies_knows
axiom states that nodes get to know about pieces of data that they learn on time
(in synchronous system, one would typically discard pieces of data that arrived
late). We formally state this axiom as follows:

Definition AXIOM_learns_on_time_implies_knows (eo : EO) N K E D :=
v (e : EventN(N)) d,
has_correct _trace_before e (loc e)
— K(d)
— learns_on-_time e d E D
— knows e d.

Here K(d) is a data constraint. For example, we used this assumption to prove
learns_on_time_imp_other_knew (see Figure [4.3)), which is true about SM. This
lemma assumes that a node n learns about a piece of data d on time at some
event e. Based on this assumption, we can prove that d is first extended with
n’s signature, and then disseminated to all nodes that have not already signed
d. If a node n’ receives this message, it will learn about it. Thanks to AX-
[OM_learns_on_time_implies_knows we can derive that n’ knows the piece of data
d extended by n.

Lemmas. Using Equation (4.2) and Equation (4.3), we have proved this general
lemma about knowledge propagating through nodes:

Lemma knows_propagates :
V (e : Event) (d : byk_data),
learns_or_knows
— learns_if_knows
— knows e d
— has_correct_trace_before e (byk-data2node d)
— de’, e’< eAloc e’ =byk_data2node d A knows e’ d.

This lemma says that, assuming Equation (4.2) and Equation (4.3)), if one knows
at some event e some data d that is owned by a correct node, then that correct
node must have known that data at a prior event ¢’. We use this lemma to track

down information through correct nodes.
Moreover, using Equation (4.1}, we can combine the quorum and knowledge
theories to prove the following lemma, which captures the fact that if there are
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two quorums for information if (known at el) and 2 (known at e2), and the
intersection of the two quorums is guaranteed to contain a correct node, then there
must be a correct node (at which e/’ and e2’ happen) that owns and knows both
11 and 72—this lemma follows from knows_propagates and overlapping_quorums

(see Section [3.2.2)):

Lemma knows_in_intersection :
V (el e2: Event) (il i2: byk_info) (k f: nat) (P : list byk_data — Prop) (F : list Event),
(learns_or_knows A learns_if_knows)
— (k < num_nodes A num_nodes + f< 2 * k)
— (AXIOM _exists_at_most _f_faulty EfA In el EAIn e2 E)
— (knows_certificate el k i1 P A knows_certificate e2 k i2 P)
—Jel’e2’dl d2,
locel’=loce2’ Nel’< el N\ e2’ < e2
Aloc el’ = byk_data2node dI A loc e2’ = byk_data2node d2
A knows el’ d1 A knows e2’ d2
A il = byk_data2info d1 A i2 = byk_data2info d2.

4.3 Disseminating

In this section we present our disseminate modal operator, which expresses what
it means for a process to propagate some piece of information, and which bears
some resemblance with the fact publication notions discussed in [HM90].

Primitive Modal Operators. We are interested in distributed systems that com-
municate via message-passing. Disseminating messages allow processes to prop-
agate some knowledge they have gained, to other processes. Consequently, we
now define several disseminate operators that capture several ways processes dis-
seminate their knowledge to other processesE] For example, our primitive modal
operator disseminate is defined as follows:

Definition disseminate {eo : EO} (e : Event) (d: byk_data) :=
3 (m : DirectedMsg),
In m (byk_sys ~ ¢)
A In (byk_data2auth d) (get-contained_auth_data (dmMsg m)).

This operator states that the authenticated piece of data d was disseminated at
the event e if there exists a message m, such that m was sent at e and such that
the authenticated piece of data corresponding to d is part of m’s authenticated
parts.

4We refer reader to our implementation in code/model/Disseminate.v
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Although disseminate is already useful in many contexts, some distributed
systems require a more fine-grained reasoning about the recipients of disseminated
pieces of knowledge. For example, some distributed protocols require that a piece
of knowledge is disseminated to a list of recipients. To achieve this, we introduce
here another primitive modal operator, called disseminate_to_list, which is defined
as follows:

Definition disseminate_to_list {eo : EO} (e : Event) (d : byk_data) (L : list node_type) :=
3 (m : DirectedMsg),
In m (byk_sys ~ e)
A In (byk_data2auth d) (get_contained_auth_data (dmMsg m))
A subset (map node2name L) (dmDst m).

Again, even though disseminate and disseminate_to_list are already useful in
many contexts, some distributed systems require an even more fine-grained rea-
soning about the entire disseminated pieces of knowledge, and not just the au-
thenticated pieces of data contained in the disseminated pieces of knowledge. For
example, it is not always enough to know that an authenticated piece of data
signed by (at least) k processes was disseminated by a process. Sometimes we
need to know that this process did not disseminate more than k signatures. To
achieve this, we introduce yet another primitive modal operator, called dissemi-
nate_top_to_list, which is defined as follows:

Definition disseminate_top-to_list {eo : EO} (e : Event) (d : byk-data) (L : list node_type) :=
3 dst,
In (MkDMsg (byk_data2msg d) dst (’0)) (byk_sys ~> e)
A subset (map node2name L) dst.

Here, as explained in Section [3.1.2) (MkDMsg msg dst delay) creates a directed
message, which contains a message msg, which will be sent to the list of recipients
dst after a delay delay.

Non-Primitive Modal Operators. Let us now define a few useful non-primitive
operators on top of the primitive modal operators introduced above. For example,
because sometimes we only care about the fact that some piece of knowledge was
disseminated by a process src to another process dst, let us define the following
instances of the disseminate_to_list and disseminate_top_to_list operators:

Definition disseminate_to {eo : EO} (e : Event) (d : byk_data) (dst : node_type) :=
disseminate_to_list e d [dst].

Definition disseminate_top_to {eo : EO} (e : Event) (d : byk_data) (dst : node_type) :=
disseminate_top_to_list e d [dst].
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In addition, let us define the following instances of the disseminate_to_list
and disseminate_top_to_list operators, which express that a piece of data d is
disseminated to all processes except the ones mentioned in L (where nodes is the
collection of all the nodes participating in the byk_sys system):

Definition disseminate_to_except
{eo : EO} (e : Event) (d : byk_data) (L : list node_type) :=
disseminate_to_list e d (nodes\L).

Definition disseminate_top_to_except
{eo : EO} (e : Event) (d : byk_data) (L : list node_type) =
disseminate_top_to_list e d (nodes\L).

Axioms. As in Section we define here some “standard” axioms that we de-
fined within ByK, and which we use to derive useful results about knowledge, for
example, to prove properties about SM in Section [4.4]

Aziom 4 (On Time). The AXIOM_messages_are_disseminated_before_deadline
axiom states that if a piece of data d is disseminated at an event e by a correct
node, then e happened before the deadline D. We formally define this axiom as
follows:

Definition AXIOM_messages_are_disseminated_before_deadline
(eo : EO) (N : name — Prop) (D : dt_T) :=
V (e : EventN(N)) (d: byk_data),
has_correct _trace_before e (loc e)
— disseminate e d
— time e <= D.

This assumption holds about the class of protocols where all messages are
disseminated before a given deadline. For example, it holds for any round-based
synchronous protocol that completes in a bounded number of rounds. The deadline
D is then the time by which those rounds must have completed. In such protocols,
one only cares about messages that were sent before D. We used this assumption,
for example, to prove disseminated_before_deadline (see Figure 4.2)), which is true
about SM. As mentioned above, this lemma assumes that a node n learns about
a piece of data d at some event e. Because n learned about d, we can derive
that there must exist some prior event e” at which d was disseminated. Using
AXIOM _messages_are_disseminated _before_deadline, we can further derive that
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d was disseminated on time at e”, in the sense that this happened before the
deadline D.

Aziom 5 (Knows if Disseminate). The AXIOM _knows_if_disseminate axiom states
that a node that disseminates a piece of data must also know about it. We formally
define this axiom as follows:

Definition AXIOM_knows_if_disseminate (eo : EQ) : Prop :=
V (e : EventN) (d: byk_data),
disseminate e d
— knows e d.

This axiom holds for any protocol that “remembers” (e.g., logs) any piece of
data it disseminated. For example, we used this assumption to prove dissemi-
nated_before_deadline (see Figure [4.2)), which is true about SM. As mentioned
above, this lemma assumes that a node n learns about a piece of data d at event e.
Because d was learned about, we can conclude that there exists some prior event
e” at which d was disseminated. Thanks to AXIOM _knows_if_disseminate, we can
deduce that the node that disseminated this piece of data, knows about it.

4.4 Authenticated Knowledge

Although reasoning about knowledge dissemination is useful when reasoning about
distributed systems in various contexts (for example under different system as-
sumptions such as synchronous or asynchronous, or under different failure as-
sumptions such as no faults, crash faults, or Byzantine faults); we are especially
interested here in a version of disseminate that allows one tracing authenticated
pieces of data in the context of Byzantine fault tolerant systems.

Parameters. To trace disseminated authenticated pieces of data, we introduce
the following parameters on top of the ones presented above in Section and
Section 4.2

Class AuthenticatedKnowledge := MkAuthenticatedKnowledge {
byk_max_sign : nat;
byk_ext_info : byk_info — Sign — byk_data;
byk_ext_data : byk_data — Sign — byk_data;
byk_data2data : byk_data — node_type — data;
byk_data2sign : byk_data — Sign;
byk_data2can : byk_data — list (byk_data_or_info * Sign); }.
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As above, these parameters can be instantiated as many times as needed for all the
disseminated authenticated pieces of data that one wants to reason about. Here
Sign consists of two fields: (1) the name of the node that is signing a message;
and (2) a list of Tokens. The byk_max_sign parameter abstracts away the total
number of processes that can sign messages in the system that one wants to reason
about (i.e., byk_sys). The byk_ext_info parameter creates a piece of data from
some piece of information and a signature (e.g., in case of the SM protocol, when
a commander wants to disseminate a value to the other generals, it appends its
signature to the value and then sends it to all lieutenants). The byk_ext_data
parameter creates a piece of data from a piece of data and a signature (e.g., in
SM, this function is used when a lieutenant appends its signature to a message
it received). The byk_data2data parameter allows casting a pieces of knowledge
byk_data into a pieces of data. As mentioned above (see Section , in case of
PBFT, we instantiated the data type as the disjoint union of bare messages, i.e., the
disjoint union of objects that can be authenticated, while in one of our instantiation
of this knowledge theory (see Section , we instantiated byk_data with signed
(pre-)prepare messages. The byk_data2sign parameter extracts a signature from
a piece of data. The byk_data2can parameter converts a piece of data into its
canonical form, which is a list of pairs of (1) a piece of data/information and (2) a
signature. Here byk_data_or_info is the disjoint union of byk_data and byk_info.

Axioms. As in Section we define here some “standard” axioms that we de-
fined within ByK, and which we use to derive useful results about knowledge, for
example, to prove properties about SM in the next paragraph.

Aziom 6 (Authenticate Extended). The AXIOM_in_auth_data_trigger_extend ax-
iom states that if an event is triggered by a message m that contains a piece of
data d, extended with a signature s, then m must also contain the piece of data d
itself (i.e., without the extension with the signature s)[| We formally define this
axiom as follows:

Definition AXIOM_in_auth_data_trigger_extend (eo : EQ) :=
V (e: Event) d s,
auth_data_in_trigger (byk_data2auth (byk_ext_data d s)) e
— auth_data_in_trigger (byk_data2auth d) e.

5As it turns out, AXIOM_in_auth_data_trigger_extend is mnot true about
SMyul- Therefore, to prove SM .|, we defined similar axiom called AX-
IOM_in_auth_data_trigger_extend_learns_list. We refer reader to code/model/Disseminate.v
in our implementation for more details.
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The (auth_data_in_trigger a e) proposition is true if the event e is triggered
by a message that contains the authenticated piece of data a. This axiom is useful
to reason about nested pieces of data, i.e., pieces of data that are extended using
byk_ext_data (a is nested inside (byk_ext_data d s)). For example, we used this
axiom to prove disseminated_before_deadline (see Figure , which is true about
SM. This lemma assumes that a node n learns about a piece of data d owned by a
node n’; at event e (i.e., d is contained in the message that triggered e). Because n’
owns d, we can derive that it must have signed it, i.e., d must be some piece of data
d’ extended by a list of signatures /, such that the last signature in d’ belongs to n".
Therefore, by induction on [ and using AXIOM _in_auth_data_trigger_extend, we
can derive that d’itself must be contained in the message that triggered e. We can
then use our Origin of Triggers communication assumption (see Section
to get back to the time when d’ was disseminated by n’.

Aziom 7 (Verify Extended Data). The AXIOM _verify_extend _implies axiom states
that if one can verify a piece of data d extended with a signature s, then one can
also verify d itself. We formally state this axiom as follows:

Definition AXIOM_verify_extend_implies (eo : EO) :=
v (e : Event) (d: byk_data) (s : Sign),
byk_verify e (byk_ext_data d s) = true
— byk_verify e d = true.

This axiom is also useful to reason about nested pieces of data. Similarly to the
way we used our axiom @ to prove disseminated_before_deadline (see Figure ,
we used AXIOM _verify_extend_implies to derive that n verified the piece of data
d’, so that we can then use our Origin of Triggers communication assumption (see

Section |3.1.7.1)) to get back to the time when d’ was disseminated by n’.

Aziom 8 (Extended Knows). The AXIOM _knows_extend axiom says that exten-
sions should not influence whether or not pieces of knowledge are know. It states
that if one knows a piece of data d, then one must also know any extension of that
piece of data with a signature. We formally define this axiom as follows:

Definition AXIOM_knows_extend :=
YV d s m,
byk_knows d m
— byk_knows (byk_ext_data d s) m.
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As above, this axiom is also useful when reasoning about nested pieces of
data. For example, we used this axiom to prove disseminated_before_deadline
(see Figure [4.2)), which is true about SM. This lemma assumes that a node n
learns about a piece of data d owned by a node n’ at some event e. Because n’
owns d, we can derive that it must have signed it, i.e., d must be some piece of data
d’ extended by a list of signatures /, such that the last signature in d’ belongs to n’.
As explained above, using the axioms described above, we can further derive that
n’ must have disseminated, and know, d’. Finally, using AXIOM _knows_extend,
we can prove by induction on [, that n” must also know about d.

Aziom 9 (Verify within Epoch). The AXIOM _same_epoch_implies_verify_extend
axiom says that a correct node n’ (running at loc e’ below) will always be able
to verify the extension of a piece of data d with a signature from some other
node n (running at loc e below), provided that: (1) n is also correct, (2) it
can verify d, and (3) those two verifications happen within the same epoch (i.e.
events_in_same_epoch e e’is true). We formally define this axiom as follows:

Definition AXIOM_same_epoch_implies_verify _extend (eo : EQ) :=
V (e €’ : EventN) (d: byk_data),
loc e <> loc e’
— has_correct_trace_before e (loc e)
— has_correct _trace_before e’ (loc e”)
— = In (loc e) (byk_data2senders d)
— = In (loc €) (byk_data2senders d)
— events_in_same_epoch e e’
— byk_verify e d = true
— byk_verify e’ (sign_data d (loc e) (keys e)) = true.

Here, sign_data d (loc e) (keys e) stands for the extension of the piece of data
d with a signature from the node running at loc e, and byk_data2senders returns
the names of all the nodes that signed the given piece of data. For example,
we used this assumption to prove learns_on_time_imp_other_knew lemma (see
Figure , which is true about SM. This lemma assumes that a node n learns
about a piece of data d on time at some event e. If n has not yet signed d, it
does so at e. It then disseminates d extended with its signature to all nodes that
have not signed d yet—1let us call this extended piece of data d’. Any other correct
node n’ that has not yet signed d will receive d’. Now, to prove that n’ learns
about d’, we need to show that it can verify its authenticity, which we prove using
AXIOM _same_epoch_implies_verify _extend.
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Aziom 10 (Just on Time). The AXIOM _just_learned _on_time_implies_disseminate
axiom states that pieces of data that are newly learned about (in the sense that
they were not known before, i.e., predicate didnt_know e d is true) must be ex-
tended and disseminated right away. We formally define this axiom as follows:

Definition AXIOM_just_learned_on_time_implies_disseminate (eo : EO) N E D :=
V (e : EventN(N)) d,
just_learned_on_time e d E D
— disseminate_top_to_except e (sign_data d (loc e) (keys e)) (loc e :: byk_data2senders d).

For example, we used this assumption to prove learns_on_time_imp_other_knew
(see Figure [4.3), which is true about SM. This lemma assumes that a node n learns
about a piece of data d on time. Thanks to the above axiom, we can conclude
that d is first extended with »’s signature, and then disseminated to all nodes that
have not signed d.

Aziom 11 (Epoch Numbers Increase). The AXIOM _extend _data_raises_epoch ax-
iom states that extending a piece of data increases its epoch number. We formally
define this axiom as follows:

Definition AXIOM_extend_data_raises_epoch E :=
V d s, E (byk_ext_data d s) = S (E d).

For example, we used this assumption to prove learns_on_time_imp_other_knew
(see Figure [4.3), which is true about SM. This lemma assumes that a node n learns
about a piece of data d on time at some event e. If n has not yet signed d, it does
so at e. It then disseminates d extended with its signature to all nodes that have
not signed d yet—Ilet us call d’ this extended piece of data. Any other correct node
n’ that has not yet signed d will receive d’. Finally, to prove that n’ learns about
d’ on time, we use our axiom AXIOM _extend_data_raises_epoch.

Lemmas. We end this section by presenting two knowledge lemmas that we used
to prove SMgeq’s agreement property (the safety part of IC1). We used similar
lemmas to prove SMpy’s agreement property as well. We refer the interested
reader to our implementation (see code/sM and code/sm2) for more details.

The first lemma essentially states that if a node learns about some piece
of data d at some event e, and that some other node n’ owns that piece of
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data (namely loc e’), such that e’ happened after some bound D (e.g., a dead-
line), then n” must have known that piece of data at e’ This lemma uses AX-
IOM_authenticated _messages_were_sent_or_byz (see Section [3.1.7)), as well as fol-

lowing Assumptions: , , , , @, and . Those are elided here

for readability. We formally state this lemma in Figure [4.2]

Lemma disseminated_before_deadline :
V {eo : EO} (N : name — Prop)

(e: Event) (e’: EventN(N)) n n
(d: byk_data) (D : dt_T), e"
has_correct_trace_before e (loc e’) Learned-d

— has_correct_bounded_trace_lt e’

— learns e d € D I

— owns e d (loc e’)
— D < time e’ te' Knewd
— knew e’ d.

Figure 4.2: Knowledge lemma disseminated_before_deadline

The has_correct_trace_bounded_It e proposition states that e has a correct
trace, i.e., all local events prior to e, excluding e, are correct. Moreover, owns e d n
states that d must be the extension of a piece of data d’that contains a signature
from n as its last signature. Finally, while the modal operator knows talks about
the knowledge of a node right after some event, the (non-primitive) modal operator
knew talks about the knowledge of a node right before some event. Although the
reader might notice that this lemma does not directly mention any variant of the
disseminate operator, different variants of this operator are used in the axioms on
which this lemma depends on in order to track down the piece of data d through
the eo execution of the system.

The second lemma essentially states that if a correct node n (running at loc e
below) just learned (on time but strictly before the D bound—a deadline) at some
event e about some correct piece of data d, then any other correct node that is
correct in €’s “near future” must get to know about d too in later “epochs”. This
lemma relies on AXIOM _messages_get_delivered (see Section , as well as on

following Assumptions: , , @, and . Those are elided here for
readability. We formally state this second lemma in Figure [4.3]

The proposition (just_learned_on_time e d E' D) states that the node running at
loc e learned on time about the piece of data d at e (i.e., learns_on_time e d £ D is
true), which it did not know before e, and such that d’s epoch number is strictly less
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Lemma learns_on_time_imp_other_knew :
vV {eo: EO} NK E D (e e¢’: EventN(N)) d,

loc e <> loc e’
— = In (loc e) (byk_data2senders d) n n'
— = In (loc e’) (byk_data2senders d) /
— byk_verify e d = true ~Knows d Learned d
— just_learned_on_time e d E D
— has_correct_trace_before e (loc e) Knows d
— is_correct_in_near_future (loc e’) e D D
— has_correct_trace_bounded_lt e’
— K (sign_data d (loc e) (keys e))
— events_in_later_epoch e €
— knew e’ (sign_data d (loc e) (keys e)).

e' Knewd

Figure 4.3: Knowledge lemma learns_on_time_imp_other_knew

than the deadline D. Finally, events_in_later_epoch e e’ states that e’ happened
in later epoch than e’s epoch.

4.5 Knowledge and SM

As we already mentioned above, we used ByK to prove the agreement property
(i.e. the safety part of IC1) of two implementations of SM—here we focus on our
implementation called SMgeq. This property states that if two correct generals
gl and ¢2 decided upon some values v! and v2, then those two values must be
equal. To prove this lemma using our knowledge library, we first have to instan-
tiate the parameters of KnowingClass, LearningClass, and AuthenticatedKnowledge.
We instantiated KnowingClass and LearningClass as follows: byk_data is the type
of SM messages; byk_info is the type of SM values; byk_mem is the type of states
maintained by generals; byk_data2info extracts the value contained in an SM
message; byk_knows states that some value v is stored in the vector V maintained
by a general; byk_sys is a collection of state machines (i.e., SMsys, which we
defined similarly to PBEFTsys in Section [3.1.6); byk_data2owner extracts the gen-
eral that generated a given SM message; byk_data2msg is essentially the identity
function; while byk_data2auth extracts only authenticated piece of data created
by the last general that signed a SM message, byk_data2auth_list extracts all
authenticated pieces of data contained inside a SM message; and byk_verify is a
function that verifies if SM message is signed properly. In addition, we instantiated
AuthenticatedKnowledge’s parameters as follows: byk_max_sign is f + 1, i.e. the
number of signatures that need to be collected; byk_ext_info concatenates a sig-
nature to an SM value; byk_ext_data concatenates a signature to an SM message;
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byk_data2data m n concatenates the signature of lieutenant n to a message m,
that was already signed by some other lieutenant (as explained in Section
this function is used every time a lieutenant receives a message from another lieu-
tenant, in order to create a message that will be disseminated to other lieutenants);
byk_data2sign extract the last signature contained in an SM message. Finally, we
instantiated byk_data2can inductively as follows:

Fixpoint sm_data2can (d : sm_data) : list (byk_data_or_info * Sign) :=
match d with
| sm_signed_msg_sign v s = [(byk_is_info v, )])]
| sm_signed_msg_cons d’ s = snoc (sm_data2can d’) (byk-is_data d’, s)
end.

This sm_data2can function returns all the signed pieces of data contained in an
SM message as a list of pairs of either (1) a value and a signature of that value,
or (2) an SM message and a signature of that message.

Moreover, all the axioms presented in Section [4.I] Section [£.2] and Section
are true about these instantiations of KnowingClass, LearningClass and Authenti-
catedKnowledge. For example, lemma SM_preserves_knows in code/SM/IC1.v| shows
that SMgeq indeed satisfies axiom AXIOM _preserves_knows. The safety part of
SM’s IC1 property is then a straightforward consequence of the lemmas presented
in Section Section provides a sketch of the proof of this property.

4.6 Knowledge and PBFT

One of the key lemmas to prove PBFT’s safety says that if two correct repli-
cas have prepared some requests with the same sequence and view numbers,
then the requests must be the same [CasOl, Inv.A.1.4]. As mentioned in Sec-
tion 2.1.2.7] a replica has prepared a request if it received pre-prepare and pre-
pare messages from a quorum of replicas. To prove this lemma, we instantiated
KnowingClass and LearningClass as follows: byk_data can either be a pre-prepare
or a prepare message; byk_info is the type of triples view/sequence number/di-
gest; byk_mem is the type of states maintained by replicas; byk_data2info ex-
tracts the view, sequence number and digest contained in pre-prepare and prepare
messages; byk_knows states that the pre-prepare or prepare message is stored in
the state; byk_sys is a collection of state machines (see PBFTsys defined in Sec-
tion [3.1.6)); byk_data2owner extracts the sender of the message; byk_data2auth
and byk_data2auth_list are similar to the PBFTget_contained_auth_data func-
tion presented in Section [3.1.3} and byk_verify is a function that verifies if pre-
prepare/prepare message is signed properly. The two equations Equation and
Equation (4.3), which we proved using the tactic discussed in Section are
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true about these instances of KnowingClass and LearningClass. Inv.A.1.4 is then a
straightforward consequence of knows_in_intersection (see Section 4.2)) applied to
the two quorums.
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Chapter 5

Homogeneous Protocol Case
Studies: SM and PBFT

The main goal of this thesis is to design a general, reusable, and extensible frame-
work that can be instantiated to prove the correctness of any synchronous or asyn-
chronous BFT protocol. To show its usability, we proved crucial properties of the
seminal synchronous BFT protocol called SM (see Section , as well as crucial
properties of the seminal practical asynchronous BET protocol called PBET (see
Section . We conclude this chapter by explaining how we obtain executable
PBFT code, and by comparing our PBFT implementation with a state-of-the-art
BFT library, called BFT-SMaRt [BSA14|. Although we verified implementations
of both SM and PBFT, we only evaluated the performance of our PBFT imple-
mentation for the main reason that, as opposed to SM, it allows executing multiple
instances of consensus. The core SM protocol allows executing a single instance
of consensus only, and requires an additional layer to handle multiple instances,
which is out of the scope of this thesis.

We start this section by explaining how we proved agreement of SM (see Sec-
tion [5.1). Next, we explain how we proved agreement of PBFT (see Section
and how we obtained executable PBFT code (see Section [5.3). We finish this
section with a brief discussion about our trusted computing base and proof efforts

(see Section [5.4).

5.1 Verified SM properties

We demonstrate that framework presented in this thesis can be used to prove prop-
erties of synchronous BF'T protocols by proving that both our implementations of
the SM protocol satisfy the safety part of the ICT property, originally introduced
in [LSP82] (see Section for more details). This property states that any
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two values vl and v2, sent by correct generals g/ and g2 at events el and e2,
respectively, have to be equal[] We proved that this property is true in any event
ordering that satisfies the assumptions introduced in Section [3.1.7] i.e:

Lemma IC1_safety :
Y (eo : EO)(el e2: Event) (vl v2: sm_value) (g1 g2 : Gen),
AXTOM _authenticated _messages_were_sent_or_byz_sys eo SMsys
— has_correct _trace_before el (loc el)
— has_correct_trace_before e2 (loc e2)
— In (send_result g1 v1) (output_system_on_event SMsys el)
— In (send_result g2 v2) (output_system_on_event SMsys e2)
— vl = v2.

Note that for simplicity, we assume that each lieutenant sends the value it decided
upon to itself using send _result.

Proof Sketch 1. Let us first consider the special case where g/=g¢2. In that case,
vl and v2 must be equal, because otherwise there would exist a correct general
that decided twice upon two different values before the deadline.

Next, let us assume that g/ and g2 are different generals. If the values voted
upon by the two generals are not the same, it must be that there exists one value
in the vector of values of one of the generals, which is not in the vector of values
of the other general. Without loss of generality, we will assume that g1 received a
value v that g2 has not. We can then get back to the point when ¢! received that
value v. From there we proceed by cases on whether or not g7 received a signature
from ¢2 for v.

The case where ¢2 signed v and sent it to ¢, is a direct consequence of our
disseminated _before_deadline knowledge lemma presented in Section [4.4]

Let us now consider the case where g7 did not collect a signature from g2 for v.
We will again go by cases here, this time on whether or not the message containing
v that g1 received, contained at least f + 1 signatures.

If that message contained strictly less than f + 1 signatures, upon processing
that message, g7 will sign it and disseminate it to the generals that did not yet sign
it, including ¢2, which will therefore receive it. This case is a direct consequence
of lemma learns_on_time_implies_other_knew presented in Section

If the message containing v received by ¢! contained at least f + 1 signatures,
it must contain exactly f+ 1 signatures by design (see Section . Therefore,
there must be at least one correct general that signed v. That correct general might
be either a lieutenant or the commander. The case when that correct general is a
lieutenant is a consequence of our knowledge lemma disseminated_before_deadline

(see Section [4.4).

1See agreement in \code/SM/IC1.v.

82


code/SM/IC1.v

Finally, we derive the case when that correct general is the commander directly
within ByLoE. In this case we reason as follows: if general g1 learned piece of data
d, and commander owns that piece of data, then there exists a prior event el
at which commander disseminated that piece of data. In case of SM protocol,
event el is initial event. Moreover, if a commander disseminated a piece of data
d to the general g1, then it also disseminated the same piece of data to all other
correct generals, including general ¢g2. Based on this, we can prove that general
g2 actually learned data d on time, which implies that general g2 knows data d
before the deadline.

5.2 Verified PBFT properties

We demonstrated that framework presented in this thesis can be used to prove
properties of asynchronous BFT protocol by proving that our PBFT implementa-
tion satisfies the standard agreement property, which is the crux of linearizability
(see Section for a high-level definition). Agreement states that, regardless
of the view, any two replies sent by correct replicas ¢/ and ¢2 at events el and
e2 for the same timestamp ts to the same client ¢ contain the same replies. We
proved that this is true in any event ordering that satisfies the assumptions from

Section [3.1.71]

Lemma agreement :
V (eo : EQ) (el e2: Event) (vl v2: View) (ts : Timestamp)
(c: Client) (if i2: Rep) (r1 r2: Request) (al a2 : list Token),
AXIOM _authenticated _messages_were_sent_or_byz_sys eo PBFTsys
— AXIOM_correct_keys eo
— AXTOM _exists_at_most _f_faulty [e1,e2] f
— loc el = PBFTreplica if
— loc €2 = PBF Treplica i2
— In (send_reply v1 ts ¢ il r1 al) (output_system_on_event PBFTsys e1)
— In (send_reply v2 ts ¢ i2 r2 a2) (output_system_on_event PBF Tsys e2)
—rl=rl.

where Timestamps are nats; and send_reply builds a reply message. To prove this
lemma, we proved most of the invariants stated by Castro in [Cas01, Appx.A].
In addition, we proved that if the last executed sequence number of two correct
replicas is the same, then these two replicas have, among other things, the same
service state Pl

As mentioned above, because our model is based on ByLoE, we only ever prove
such properties by induction on causal time. Similarly, Castro proved most of his

2See agreement in code/PBFT/PBFTagreement . v.
3See same_states_if_same_next_to_execute in |code/PBFT/PBFTsame_states. vl
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invariants by induction on the length of the executions. However, he used other
induction principles to prove some lemmas, such as Inv.A.1.9, which he proved by
induction on views |[Cas01} p.151]. This invariant says that prepared requests have
to be consistent with the requests sent in pre-prepare messages by the primary. A
straightforward induction on causal time was more natural in our setting.

Castro used a simulation method to prove PBFT’s safety: he first proved the
safety of a version without garbage collection and then proved that the version
with garbage collection implements the one without. This requires defining two
versions of the protocol. Instead, we directly proved the safety of the one with
garbage collection. This involved proving further invariants about stored, received
and sent messages, essentially that they are always within the water marks.

5.3 PBFT Extraction and Evaluation

We start this section by explaining how we obtain executable OCaml code from
our Coq implementations. Next, we compare the performance of our PBFT imple-
mentation with the one of the BFT-SMaR#t state-of-the-art library [BSA14]. We
end this section by discussing our trusted computing base.

Extraction. To evaluate our PBFT implementation (i.e., PBFTsys defined in
Section [3.1.6/—a collection of state machines), we generate OCaml code using
Coq’s extraction mechanism. Most parameters, such as the number of tolerated
faults, are instantiated before extraction. Note that not all parameters need to be
instantiated. For example, as mentioned in Section neither do we instantiate
our assumptions (such as AXIOM _exists_at_most_f_faulty), nor do we instantiate
event orderings, because they are not used in the code but are only used to prove
that properties are true about all possible runs. Also, keys, signatures, and digests
are only instantiated by stubs in Coq. We replace those stubs when extracting
OCaml code by implementations provided by the nocrypto [19f] library, which is
the cryptographic library we use to hash, sign, and verify messages (we use RSA).

Evaluation. To run the extracted code in a real distributed environment, we
implemented a small trusted runtime environment in OCaml that uses the Async
library [19a] to handle sender /receiver threads. We show among other things here
that the average latency of our implementation is acceptable compared to the
state of the art BEFT-SMaRt |[BSA14] library (which is not formally verified). Note
that because we do not offer a new protocol, but essentially a re-implementation
of PBFT, we expect that on average the scale will be similar in other execution
scenarios such as the ones studied by Castro in [Cas01]. We ran our experiments
using desktops with 16GB of memory, and 8 i7-6700 cores running at 3.40GHz.
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Figure 5.2: Performance of verified PBFT (f = 1) on several machines

We report some of our experiments where we used a single client, and a simple
state machine where the state is a number, and an operation is either adding or
subtracting some value[f]

We ran a local simulation to measure the performance of our PBFT implemen-
tation without network and signatures: when 1 client sends 1 million requests, it
takes on average 1.7 microseconds for the client to receive f + 1 (f = 1) replies.

Figure [5.1] shows the experiment where we varied f from 1 to 3, and replicas

“We chose to implement a simple operation, because execution of a complex operation on a
state machine would significantly influence on the performance of PBFT.

85



4 T T T T

sl verif. PBFT (MAC) f=1 —— |

BFT-SMaRt f=1 —&— |

+ + +

25F ‘ i

15 1

0.5 =

=
=

[u]

=) 1=} = 1=}

average response time in ms

0 1 1 1 1
0 200000 400000 600000 800000 le+06

timestamp/instance

Figure 5.3: Performance of verified PBEFT based on MACs on a single machine

T T T T T

240 - verif. PBFT f=1 ——+— |

transactions per second

100 1 1 1 1
0 10000 20000 30000 40000 50000 60000

time elapsed in ms

Figure 5.4: Performance of verified PBFT in case of a view-change

sent messages, signed using RSA, through sockets, but on a single machine. As
mentioned above, we implemented the digital signature-based version of PBFT,
while BEFT-SMaR¢t uses a more efficient MAC-based authentication scheme, which
in part explains why BFT-SMaRt is around one order of magnitude faster than
our implementation. As in [Cas0l, Tab.8.9], we expect a similar improvement
when using the more involved, and as of yet not formally verified, MAC-based
version of PBFT (Figure [5.3 shows the average response time when replacing
digital signatures by MACs, without adapting the rest of the protocol). Figure
presents results when running our version of PBFT and BFT-SMaR¢t on several
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machines, connected via gigabit Ethernet network, for f = 1. Finally, Figure [5.4
shows the response time of our view-change protocol. In this experiment, we killed
the primary after 16 sec of execution, and it took around 7 sec for the system to
recover.

5.4 Homogeneous Protocols: TCB & Proof Effort

Trusted Computing Base. The TCB of our system includes: (1) the fact that
our ByLoE model faithfully reflects the behavior of distributed systems (see Sec-
tion [3.1.5); (2) the validity of the assumptions discussed in Section[3.1.7 (3) Coq’s
logic and implementation; (4) OCaml and the nocrypto and Async libraries we
use in our runtime environment, and the runtime environment itself (Section ;
(5) the hardware and software on which our framework is running.

Proof Effort. In terms of proof effort, developing parts of framework presented
in Chapters [3] Chapter [4] and Chapter [5] and verifying agreement properties of
SM and PBFT took us around 1 and a half person years. Our generic framework
consists of around 4500 lines of specifications and around 4000 lines of proofs. Each
of our verified implementations of SM consists of around 2000 lines of specification
and around 2000 lines of proofs. Our verified implementation of PBFT consists of
around 20000 lines of specifications and around 22000 lines of proofs.
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Chapter 6

Verification of Hybrid BFT
protocols

As explained above, hybrid Byzantine fault-tolerant distributed protocols signifi-
cantly reduce the message/time/space complexity of BFT-SMR, protocols. Unfor-
tunately, there is no lunch for free, i.e., these protocols are way more structurally
complex than homogeneous ones. In Chapter 3| we presented: (1) a general model
of processes, where each local subsystem is a state machine; and (2) a Byzantine
logic of events that supports arbitrary (Byzantine) events, i.e., events for which
no information is available, which could for example have been triggered by mali-
cious or corrupted nodes. As is turns out, model and logic presented in Chapter
cannot be used for formal verification of hybrid Byzantine fault-tolerant protocols,
for several reasons.

First of all, while homogeneous protocols assume that a local state machine is
essentially a single component, hybrid protocols assume that a local machine can
be composed of any number of components. Moreover, while homogeneous proto-
cols assume that all its participants have the same system and failure assumptions,
hybrid protocols assume that some parts of a system can rely on stronger assump-
tions compared to the rest of the system (e.g., some components can be tagged as
trusted, while all the other components are non-trusted ones). Unfortunately, the
model presented in Section does not provide support for compositional pro-
gramming and reasoning, nor for tagging participants as trusted. This motivated
us to developed a Monadic Component language (MoC). MoC allows implementing
distributed systems as collections of local systems, which are themselves collections
of components, some of them being tagged as trusted. In addition, MoC enables
lifting properties of trusted components to the level of a local state machine, via
deep embeddings of fragments of MoC.

To capture the behavior of trusted components, we also had to modify logic of
events presented in Section to allow the non-trusted components of processes
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Figure 6.1: Examples of message sequence diagrams

to misbehave, while the trusted components keep following their specification. We
captured this by changing the semantics of events (namely the trigger function
described in Section to also handle events at which a trusted component of
a compromised process is called. This led us to developing the a Hybrid Logic of
Events (HyLoE).

In addition to reasoning about hybrid systems, using framework presented in
this chapter one can also reason about homogeneous Byzantine systems by not
using trusted components, and about crash fault tolerant systems by assuming
that there are no Byzantine events (see Section [6.1]).

We start this chapter by presenting our Hybrid Logic of Events (HyLoE) (see
Section which we use to reason about hybrid fault model, and by comparing
it to our Byzantine Logic of Events (ByLoE) presented in Section [3.1.1 Next,
in Section we present our Monadic Component language (MoC), which we
use to implement systems as collections of interacting hybrid components, and in
Section we explain how to relate the execution of systems with event orderings.
Finally, in Section we explain how to reason about systems compositionally by
lifting properties of components of a local subsystem to the level of that subsystem.
In this chapter we use MinBFT (see Section as a running example.

Notation. We use Event to represent a set of events; AuthData to represent a set
of authenticated pieces of data; and Keys to represent a set of keys.

6.1 HyLoE: A Hybrid Logic of Events

As explained in Section [3.1.1] one of the most fundamental concepts to reason
about distributed systems is the concept of an event, which can be seen as a point
in space/time at which something happened. In ByLoE, an event is either an
abstract objects that only correspond to the handling of a message by a node
that follows its specification (kind 1-—see Figure , or it corresponds to some
arbitrary behavior, in which case no further information regarding this event is
available/provided (kind 2—see Figure [6.1b). HyLoE further extends ByLoE by
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providing means to reason about three kinds of events. As in ByLoE, HyLoE
supports events of kind 1 (see the constructor TImsg below). Furthermore, the
kind 2 events of ByLoE, that are happening at a compromised node, are now split
into two categories: (1) those that did not call a trusted component, and therefore
for which no information is available (kind 2a—see Figure and TIarbitrary
below); and (2) those that called a trusted component (kind 2b—see Figure [6.1d
and TItrust below). Assuming that trusted components only receive inputs of
some abstract type InputTrusted, ranged over by it, we introduce the type:

nfo € Triggerlnfo ::= TImsg(msg) | TItrust(it) | Tlarbitrary

Also, as explained in Section to prove a property about a distributed sys-
tem, one has to reason about all its possible execution traces. Therefore, we need
to provide a model of those traces. As in ByLoE, we model a run of a distributed
system essentially as a partial order on events. Such an abstract representation
of a run is called an event ordering. Therefore, to prove a property P about a
distributed system, one has to prove that P is true for all event orderings that cor-
respond to this system (among other things, all possible assignments of TriggerInfos
to events have to be considered).

Figure provides examples of message sequence diagrams. Figure de-
picts an event ordering with three locations [y, s, /3, where all events are correct
and are triggered by messages. Because here the network is asynchronous, even
though [, sent a message to [y at event e; before it sent a message to [y at es,
lo received the first message at es after it received the second message at e4. In
this figure, eg is triggered by the receipt of a message sent by /5 at e5. Instead, in
Figurd6.1b e is a Byzantine event for which no information is available and at
which no trusted component was called; and in Figure g is a hybrid event
at a Byzantine location and at which a trusted component was called.

6.2 MoC: Component-Based Programming

As explained above, to enable reasoning about distributed systems, where local
sub-systems are composed of multiple components that can have different failure
assumptions, we developed MoC.

In MoC, components are referred to by their names. Let CompName be the
set of component names, ranged over by c¢n. A component name is a triple of:
(1) a kind (a string), which is used to enforce constraints on the I/O behavior
of components (e.g., the "MSG" kind enforces that the component must receive
messages and output directed messages); (2) a space (a number) allowing differ-
ent components to be of the same kind (e.g., have the same I/O behavior), while
maintaining states of different types (e.g., a component of kind "MSG" and space
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0 might be maintaining a state of type N, while a component of kind "MSG" and
space 1 might be maintaining a state of type B); and (3) a tag (a Boolean) describ-
ing whether the component is trusted (trusted components are constrained to only
react to inputs of type InputTrusted—see Section . Moreover, a component’s
name specifies its behavior: we assume some functions S, Z, and O from compo-
nent names to types, which enforce that a component named c¢n must have a state
of type S(cn); take inputs of type Z(cn); and produce outputs of type O(cn).

6.2.1 Computational Model of MoC

In this section, we first introduce MoC components and explains how they interact
through a monad. Then, we explain how to build local/distributed systems as
collections of components.

Components. A component is a named state machine, which essentially consists
of an update function and the current state of the machine. To support the fact
that components are allowed to call each other, we define state machines using a
state monad [Mog89|. Therefore, instead of traditionally defining update functions
as functions that take an input and a state and return an output and an updated
state, we combine those with a monad (see M"(T")’s definition below), such that in
addition update functions take components as input and return possibly modified
components. Consequently, state machines can call other state machines through
this state monad. Therefore, to avoid a circularity in the definition of state ma-
chines, we now use step indexing |[DAB11| to define them, requiring that machines
at level n can only use machines of lower levels. Let Component™ (ranged over by
comp) be the collection of components at level n, which we define recursively over
n below. This definition uses the monad mentioned above, which looks like this
(where T'is a type):

M™(T) = list(Component™) — (list(Component™) x T')

Going back to state machines, a machine at level n+1 (of type Component™™!-—by
definition there are no level 0 machines) with name cn is either a state machine at
level n, or a pair of: (1) an update function of type Upd"(cn) = S(cn) — Z(en) —
M™(S(cn) x O(cn)); and (2) a state of type S(cn)[]

Monad operators. As mentioned above, the components of a local subsystem
interact through a monad. MoC’s monad provides three main operators to build a
component: (1) a return operator (ret) to turn a Coq expression into a component;

!State machines also have the ability to halt on their own. However, we do not discuss this
feature here for simplicity.
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(2) a bind operator (=>=) to compose two components; and (3) a call operator (call)
to allow components to call their components. Those operators can be combined
in any way one wants using any Coq function one desires, as long as the resulting
code has the right component type. The return and bind operators of our (state)
monad are defined as usual: ret(a) = As.(s,a) takes a « € A and outputs a
M"(A); and m >= f = (As.let ', a = m(s) in f(a, s’)) takesa m € M"(A) and a
[ € A— M"(B) and outputs a M"(B). A call operator takes a component name cn
and an input 7 € Z(¢n) and returns a monadic output of type M"(O(cn)). It first
looks for a component with name ¢n within its components subs, provided by the
returned monad. If it finds one, say comp, it then applies comp to the input 7 and
to the subset subs; of subs containing the components of levels strictly lower than
n (the only components that comp can use because of its level). This computation
produces an output o and a list of updated components subs,. Finally, call returns
the output o, as well as the list of components subs, where subs; is replaced by
subss.

Local & Distributed Systems. A local subsystem of type LocalSystem is a pair
of a main component at level n and a list of components at lower levels, such that
some of these components can be tagged as trusted. The level of a local subsystem
is the level of its main component. We enforce that main components send and
receive messages. A (distributed) system of type System is a function from node
names to local subsystems, i.e., of type Node — LocalSystem.

Case Study. In our MoC implementation of MinBFT (see code/MinBFT/MinBFT.v.
for more details), a replica is a local subsystem called MinBFTlocalSys. Each
local subsystem is composed of: (1) a main component (called MAINcomp), which
among other things maintains the replicated service; (2) a USIG component (called
USIGcomp—the only trusted component) as described in Section and
(3) a log component (called LOGcomp) that stores all sent and received messages.
Finally, the distributed system MinBFTsys is the function mapping each replica
name to MinBFTlocalSys.

6.2.2 Example: A Simple MoC Local Subsystem

We provide here a simple example of a local subsystem composed of multiple com-
ponents, implemented using MoC (see the file called code/model/ComponentSMExample? .
v in our implementation). The local subsystem is composed of (1) a trusted level 1
component, called ST = ("STATE", 0, true), which maintains a state—simply a
number here; (2) of two other non-trusted level-2 components, one to add a value
once to the state called OP1 = ("OP" 0, false), and one to add a value twice from
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the state called OP2 = ("OP", 1, false); and finally (3) of a main level-3 compo-
nent, called M = ("MSG", 0, false), that dispatches incoming messages to either
of the "OP" components. Because "STATE" is the only stateful component, all the
other components maintain a trivial state of type Unit, which is a singleton type
inhabited by tt. Messages are of the form ADD1(n), or ADD2(n), or TOTAL(n),
where n € N. Let ST’s update function be defined as follows:

As,iret((s 41,5 + 1))
Let OP1’s update function be defined as follows:
As, i.call(("STATE", 0, true), i) >= Ao.ret((tt, 0))
Let OP2’s update function be defined as follows:

As, 1. call(("STATE", 0, true), i)
>= A_.call(("STATE", 0, true), i) >= lo.ret((tt, 0))

Finally, the update function of M is defined as follows:

As,i. match ¢ with
| ADD1(n) = call(("OP",0,false), n)
| ADD2(n) = call(("OP", 1, false), n)
| TOTAL(n) = ret(n)
end
>= Ao.ret((tt, [(TOTAL(0), [)]))

where (TOTAL(0),]]) is a directed message, in this case, the instruction to send
the message TOTAL(0) to the empty list of recipients [].

Whenever this local subsystem receives a message m, it applies M’s update
function to m and to the list of its three components OP1, OP2, and ST. If m is,
for example, of the form ADD1(n), then M calls OP1 on the input n. This results
in looking for a component with that name in the list of M’s components. Because
such a component exists, namely OP1, we create a new local subsystem with main
component OP1 and component ST (the only component with level lower than
OP1’s). We then apply OP1’s update function to n and to the list containing its
single component, namely ST. This results in calling ST on the input n. Because
ST is present in the list of OP1’s components, we then create a new local subsystem
with main component ST and no components (because there are no components
with level lower than ST’s), and we apply this system to n. This results in applying
ST’s update function to n and to the empty list of components. If this call is the
first call, and if ST’s initial state is 0, then its update function returns the new
state n and outputs n. It also returns the empty list of components that it took
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as input. Going back to OP1, we then update the state of its component ST from
0 to n. Finally, OP1 return this updated list of components, it outputs the value
n, and its state remains tt. Going back to M, we then update the state of OP1
from tt to tt, and we replace the component ST with state 0 that M took as
input, with the one with state n that OP1 returned. Finally, M returns the list
of updated components OP1 with state tt; OP2 with state tt (which it did not
call here); and ST with state n. M also returns the state tt and outputs a single
directed message: (TOTAL(n), []).

If the input had been of the form ADD2(n) then instead we would have called
ST twice in a row. This would have resulted in OP2 updating twice its list of
components (containing only ST). The first time, ST’s state would have been
updated to n, and the second time, because ST’s state would have then be n, ST’s
state would have then been updated to n + n.

6.3 Relating MoC Systems and HyLoE Events

As mentioned above, to prove a property about a distributed system .S, one has to
prove that this property holds for all “possible” event orderings. Therefore, given
an event ordering eo, one has to be able to compute the inputs, outputs, and states
of S’s local sub-systems at all events in eo in order to reason about S’s “trace”
provided by eo. Inputs are provided by the trigger function. We now explain how
to compute outputs and states, and provide an example showing how to combine
these definitions to prove systems’ properties in a compositional manner.

Computing systems’ states. First, [s@~ e runs the local subsystem /s by applying
its main component to its components and to the list of events locally preceding
e and excluding e (similarly, [s@te computes Is’s state after e, by applying Is to
the list of events locally preceding e, including e). It either (1) returns a local
subsystem [s’ if all those events have been triggered by information of the form
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TImsg(msg), i.e., non-Byzantine events; or (2) it returns a trusted component in
case at least one of those preceding events has been triggered by some information
of the form TItrust(it) (in case the trusted componentf]is called) or TIarbitrary
(in case the trusted component is not called), in which case some Byzantine event
happened, and we cannot know what state the rest of the local subsystem is
in; or (3) it is undefined if one of those preceding events is a Byzantine event
and /s does not include a trusted component. Figure [6.2| provides an example of
the status of the components of a local subsystem (composed of 3 non-trusted
blue components and a trusted orange one) after handling the events caused by:
(1) the receipt of a message; (2) some arbitrary behavior; and (3) a call to the
trusted component D. As shown in Figure in case one of those preceding events
is Byzantine, [s@Q~ ¢ keeps on running the trusted component because it cannot
be compromised. However, [s@Q~ ¢ loses track of the rest of the system since a
Byzantine event has occurred, and the other non-trusted components could be in
any state.

Computing components’ states. We can then access the state of a component
named cn of a local subsystem /s using the operator Is|.,. Also, let comp],., be

cn
comp if it has name cn, and undefined otherwise. Therefore, [s@Q~¢|_ returns
the state of [s’s component called cn before the event e (if it exists, i.e., if the
component is trusted or no Byzantine event has occurred, otherwise the component
could be in any state); and similarly for [s@Q*e|_ . Finally, we can compute the
state of a component cn of a system S before a given event e simply by calling

S(loc(e))@~e|,,, which we write as S@Q~¢|_ , and similarly for after the event.

cno? cn?
Computing systems’ outputs. Let /s ~» ¢ be the outputs produced by /s’s main
component at ¢, when all the events preceding ¢ are non-Byzantine (these outputs
are obtained by running the system on [s@~¢). In case one of those events is
Byzantine, [s ~» ¢ produces instead the outputs of the trusted component, which
we are keeping track of (as explained above). We write S ~» ¢ for S(loc(e)) ~ e;
and d € Is ~ e to mean that d occurs within the outputs computed by s ~ e.

As illustrated below, framework presented in this thesis allows composing the
specifications of components to derive local and distributed system specifications,
which are fully specified in terms of (1) their states using S@Q~e|_ and SQTe|
(2) their inputs using trigger; and (3) their outputs using S ~ e.

cn cn?

Case Study. As shown in Section MinBFTlocalSys is a distributed system

2For simplicity, we currently only support systems with at most one trusted component per
local system—the typical case in the literature on hybrid systems. This can easily be extended
to systems with multiple trusted components if needed.
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composed of local sub-systems, each of which is composed of three components
called main, log, and usig. Let us prove that if accept(r, 1) € MinBFTlocalSys ~~
e, i.e., if a backup accepts a request r with sequence number 7, then r is logged, i.e.,
it is in MinBFTlocalSys@* | . First, (1) we prove that whenever log is called, it
logs the commit given as input. We prove this about the local subsystem composed
of log only (which does not use any components). Then, (2) from accept(r,i) €
MinBFTlocalSys ~~ ¢, we obtain that this output, as well as MinBFTlocalSys@* e,
was produced by running MinBFTlocalSys on MinBFTlocalSys@~e. We then
inspect the code run by MinBFTlocalSys, and we see that log, through the use of
call, was requested to log a commit containing 7. Finally, (2) we compose this proof
with the one in step (1), and conclude by showing that MinBFTlocalSys@*e|
is the new state computed in step (1).

log

6.4 “Deep” Restrictions

We now describe a compositional method to lift properties proved about (trusted)
components of a local subsystem to the level of that subsystem. One advantage
of MoC is its expressiveness and flexibility: one can build a component essentially
from any update function of type Upd™(cn). Indeed, our framework provides a
shallow embedding of components that can make use of any Coq expression as
long as it has the right type. Unfortunately, this is also sometimes a disadvantage
because it entails that we cannot prove many general lemmas about the behavior
of components. For example, a component could simply throw away all its compo-
nents. However, often components simply use their components, and return them
updated. This is useful information, which we would like to easily derive. A stan-
dard technique to prove such generic results about such “well-behaved” components
is to: (1) define a deep embedding of these “well-behaved” components; (2) define
an “interpretation” function from the deep embedding to the shallow embedding;
and (3) prove that these generic properties hold for the deep embedding.

One can define as many deep embeddings as needed. We define here a simple
one (which we used to implement MinBFT) that contains only three operators:
return/bind/call. Namely, let Proc(A) be the set of terms p of the following form:

RET(a) where o€ A
BIND(pi, p2) where p; € Proc(B) & pa € B — Proc(A4)
CALL(cn,i) where i€ Z(cn) & O(en) = A

We straightforwardly interpret this language as follows (this defines the function

97



I from Proc(A) to M"(A), and this for any level n):

I(RET(a)) = ret(a)
I(CALL(¢n, 1)) = «call(en,i)
I(BIND(m, f)) = I(m) >= Az.I(f(z))

Then, given a component name cn, a level n (indicating what components cn will
be able to use—it will only be able to use lower-level components), and a “deep”
update function v € S(cn) — Z(en) — Proc(S(cn) * O(cn)), we can build a
“shallow” update function of type Upd”(cn) using As,i.I(u s 7). Thanks to this
language, we can now prove the preservation lemma mentioned above, i.e., that
when a component is applied to components subs; then it produces components
subso such that subs; and subs, only differ by their states—components cannot be
thrown away or spawned and the names and update functions remain the same.

Most importantly, this language allows us to reason compositionally about local
and distributed systems (see Section . For example, we proved the following
general result,E] which we in turn used to prove that our MinBFT implementations
satisfy the Mon property presented in Equation in Section E]

Theorem 1 (Local Lifting). Given a local subsystem s, if (1) all its components
are built as above and have different names; and (2) cn is a trusted level 1 com-
ponent in s (i.e., it does not call other components); then for all event e, there
must exist a list of inputs | € list(Z(cn)) such that the state [sQT el is obtained
by running cn on [, starting from the state [sQ~ ¢e|

cn

cn e

Remark 1. Trusted components do not need to be at level 1. However, this con-
straint in Theorem [I] is convenient to obtain a simple lifting theorem. Otherwise,
without this constraint, i.e., for higher-level components, such a local lifting the-
orem would be more complicated because it would have to also take into consid-
eration the components such higher-level components use to compute their new
state. More precisely, it would not be enough to run the subsystem /s’ composed
of cn and its components subs (the components of [s that cn relies on) because
the execution of /s on an event e might involve other components than those in
Is’. Those other components might also call some of the components in subs. In
that case it might not be enough to call Is’ on a list of inputs to get to ls@QTe| .
because in between each call, we might have to also update the states of the com-
ponents subs. It is worth noting that all the “standard” trusted components used
in the literature [Chu+-07]; [Lev+09]; [Ver+13| are level 1 components.

3See the lemma called M_byz_compose_step_trusted in the file called |code/model/
ComponentSM3.v in our implementation.

“See ASSUMPTION_monotonicity_true in |code/MinBFT/MinBFTass_mon.v| and |code/
MinBFT/TrIncass_mon. vl
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The level 1 constraint is somewhat similar to the condition on the frame rule
in separation logic, which requires the heap to be split into two disjoint resources.
Here the resources are the components. We could allow trusted components to
have components, as long as they’re not used in the rest of the system. We could
also have a more general lemma that in general allows splitting a system into two
disjoint subsystems.

6.5 Spawning Components

The simple language presented in the section above is not the only choice. Note
however that it is enough for a large number of protocols. To allow other fea-
tures, one can simply introduce extensions of this language. For example, to allow
spawning sub-processes, one could define the following language (see the file called
code/model/ComponentSM5.v in our implementation): let SpawnProc(A) be the set of
terms sp of the form:

SRET(a) where a € A

SBIND(sp1, sp2) where sp; € SpawnProc(B)
& spy € B — SpawnProc(A)

SCALL(cn, 1) where i € Z(cn) & O(en) = A

SSPAWN(cn, u, s, a) where u € S(en) — Z(en) — SpawnProc(S(en) * O(cn))
& seS(en)&ae A

We can interpret this language as follows (this defines the function I form
SpawnProc(A) to M"(A), and this for any level n):

I(n,SRET(a)) = ret(a)

I(n, SBIND(m, f)) = I(n,m) >= Azl(n, f(z))
I(n, SCALL(cn, 7)) = call(en, i)

I(n, SSPAWN(cn, u, s,a)) = if n = 0 then ret(a)

else spawn(As,i.I(n — 1, (u s 7)), s, a)

where spawn is a new monadic operator defined as follows (mkComp(u, s) builds a
component from an update function u and a state s):

spawn(u, s, a) = Asubs.{(mkComp(u, s) :: subs, a)

One simple property that one can for example derive about components built this
way is that when a component is applied to components subs; then it produces
components subs, such that subs; is a subset of subsy, modulo the states of the
components. Investigating such variants is left for future work.
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Chapter 7

LoCK: A Hybrid Knowledge
Calculus

As explained in Chapter [4 we chose to develop a knowledge theory, because those
theories allow reasoning about systems at a high-level of abstraction, and focusing
on the fundamental reasons, in terms of knowledge, as why those systems are
correct. Inspired by knowledge library presented in Chapter (ByK), we equipped
our framework with LoCK, a sound (hybrid) knowledge sequent calculus, which
differs and goes beyond ByK knowledge library in several ways.

First of all, as opposed to ByK, where the knowledge operators are simply
definitions within its logic of events, LoCK provides a more principled theory of
knowledge because designing it forced us to identify the primitive constructs, as
constructors of the language (see Section for syntax and Section [7.3|for seman-
tics) and principles, as derivation rules (see Section , of the theory. Moreover,
LoCK enforces an abstraction barrier, thanks to the fact that it is deeply em-
bedded in Coq, which does not exist in our simple knowledge library presented
in Chapter [l In addition, LoCK allows reasoning at a high-level of abstraction
about trusted and non-trusted knowledge (among other things), while ByK does
not distinguish between trusted and non-trusted knowledge.

Additionally, because hybrid systems have a particular architecture, whereby
generic components rely on (the #rust part of such systems) tamperproof com-
ponents to correctly provide functionalities (the trustworthy part of such systems)
that are inherited by the rest of the system (such as counting messages in MinBFT),
LoCK, among other things, captures this inheritance mechanism at a high-level of
abstraction (i.e., the knowledge exchanged between the nodes of a system) through
general reasoning principles, called lifting, which we discuss in Section (local
lifting) and Section (distributed lifting). For MinBFT, this means that if a
node A receives two messages from B with the same counter, then those messages
must be equal. This in turn is used to ensure that nodes cannot lie by sending
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Types: Data (ranged over by d)
Trust C Data (ranged over by t)
Identifier (ranged over by 1)

Functions: It € Identifier — ldentifier — P verify € Event — AuthData — B
trustHasld € Trust — ldentifier — P genFor € Data — Trust - P
sys € System know € Data — S(mem) — P
mem € CompName trusted2id € S(trust) — Identifier
trust € CompName initld € Identifier
owner € Data — Node auth2data € AuthData — list(Data)
Axioms: It is transitive and anti-reflexive

(1)
(2) all initial identifiers of sys’s trusted components are equal to initld
(3) Vt, dy, do.genFor(dy, t) — genFor(da, t) = dy = da
(4) know(d, m) is decidable

(5) —know(d, m) for all initial states m of sys’s components

Figure 7.1: LoCK’s parameters

different messages to different destinations without being noticed.

Note that LoCK provides an optional, but convenient, abstract layer to reason
about crash /Byzantine/hybrid fault tolerant distributed systems without having to
worry about low-level details. Using such an abstract layer allows reusing results
proved once and for all at the abstract knowledge level, to derive properties of
multiple concrete implementations: (1) by adequately instantiating the parameters
of the abstract model (LoCK’s parameters in our case—see Section[7.1]); and (2) by
proving that the assumptions made within the abstract model are satisfied by the
concrete implementations (see Section and Chapter [§ for examples of such
assumptions). The high-level results we present here (such as the lifting property
presented in Section can be instantiated for many implementations of hybrid
systems, i.e., they will be reusable for other implementations than MinBF'T. We
already used those results to prove the safety of two versions of MinBFT that rely
on two different trusted components (see Chapter .

7.1 LoCK’s Parameters

To be as general as possible, LoCK is parametrized by the types and functions
described in Figure Section [7.8] explains how we can instantiate those param-
eters to derive high-level properties of several versions of MinBFT. LoCK can be
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0 € KType == KTi | KTn | KTd | KTt

veKVal o= g | a | d
Te€KExp = T | L
| 71 ATe | T1VT2 | T1— T2 =10] | Vo
| Cr | <7 | &7 | © | @(a)
| vi=wvy | iy <o
KR | L) | O(a) | D)
| ZF(i) | HZI(t,i) | G(d,t

¢ € (0 € KType) x {v € KVal | oftype(v, 8)} — KExp

Figure 7.2: LoCK’s syntax

instantiated for any kind of data (Data), trusted datdl] (Trust—a subset of Data),
and identifier (ldentifier—a totally ordered set, whose ordering relation is It). Iden-
tifiers are used to identify trusted pieces of data through the trustHasld relation.
In addition, LoCK is parameterized over the following operators: (1) sys is the dis-
tributed system we want to reason about; (2) mem is the name of sys’s component
holding the knowledge, while trust is the name of its trusted component (these
could be straightforwardly generalized to lists of component names if necessary);
(3) each piece of data is tagged by a node (extracted using owner) meant to be
the one that generated the data; (4) verify(e, auth) is true iff the authenticated
piece of data auth can indeed be authenticated at e; (5) genFor captures the fact
that trusted pieces of data are meant to correspond to non-trusted pieces of data,
e.g. in MinBFT, a UI essentially corresponds to a non-trusted request (see Sec-
tion [2.1.3.3]); (6) know expresses what it means to hold some information; (7) the
trust component is in charge of recording the last trusted identifier it generated,
which is computed using trusted2id, with initial value initld; (8) auth2data extracts
the list of pieces of data contained within an authenticated piece of data. We
assume that if some trusted knowledge ¢ is generated for two different pieces of
data d; and dy, then they must be equal. In addition, we assume that know is
decidable, and that sys’s nodes have no initial memory.

7.2 LoCK’s Syntax

As shown in Figure besides standard first-order logic operators (T, L, A,
V, —, 3, V), LoCK also provides HyLoE-specific operators to state properties

LA piece of data is trusted if generated by a trusted component (e.g. Uls generated by USIGs

in MinBFT—see Section [2.1.3.3]).
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relating different points in space/time: C, <, C; to talk about initial events:
©; and to relate space/time coordinates: @. A quantifier of the form 3¢ or
of the form V¢ takes a dependent pair ¢ as argument: (1) a type ¢ and (2) a
function from values of type ¢ to expressions. The predicate oftype(v, 0) is true iff
(v,0) € {(4,KT1i), (d,KTd), (t,KTt), (a,KTn)}.

LoCK also provides general operators to capture properties about distributed
knowledge. LoCK supports the standard knowledge knows (K1) operator, which
is at the core of several knowledge calculi such as the ones mentioned above. LoCK
also adopts learns (L), owns (O) and disseminate (D) operator supported by ByK.
In addition, LoCK also includes the knows identifier (1), has identifier (HT),
and generated for (G) operators to state properties about trusted knowledge, which
were not part of any of the systems mentioned above.

In order to enable reasoning about any point in space/time some of our opera-
tors come in two flavors, one annotated with a =~ and the other with *. The ones
annotated with ~ are used to state properties about the knowledge of a system right
before handling an event, and are defined below; while the ones annotated with *
are used to state properties once events have been handled, and are primitives of
the language.

Notation. Let us now define some notation. Let 3;f stand for 3(KTi, ), and
diNiq, ..., 0.7 for I3 Niq. ... s N0, 7; and similarly for the other quantifiers. In
addition, let

T— L

_T

‘ _ K=(r) = cKt(r)
ET _ ;T\\// ! I-(i) = CZt(i)V (i=initld A ®)
E: _ CTTVL AO) O(d) = 3a.Qa) A O(d,a)
i iy = i <iyVii=i OD(d) = O(d) AD(d)

These abstractions are interpreted as follows: O(d) means that “we” own the data
d, i.e., the node at which this expression is interpreted owns the data; and OD(d)
means that “we” disseminated the data d, i.e., the node at which this expression
is interpreted disseminated the data.

7.3 LoCK’s Semantics

Figure[7.3}[7.4] and[7.5describe LoCK’s semantics: [7]. is a proposition expressing
that 7 is true at event e. First-order logic and HyLoE operators are interpreted
as expected. Let us now describe the semantics of the other knowledge operators.
First, £’s semantics is defined in terms of the learns predicate:

learns(e, d) = Jauth.auth € nfo2auth(trigger(e)) A d € auth2data(auth) A verify(e, auth)
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M1 = True

1. = False s J s

%Tlﬂ Al = [l ALl [3¢]. = 3Fv e {veKVal]|oftype(v, @.1)}.@.2(1))
[V 72]](: _ HTl]](: v [[TQ]](: [Vé]. = Vv e {veKVal]|oftype(v,p.1)}.0.2(v)
[r1 = 72le = [rile = [m2]e

Figure 7.3: LoCK’s semantics (predicate logic)

[<7]. = Fe' < efr]e
[c7]e = 3’ Cefr]e B [7]er, if pred(e) = Some(e’)
[®]. = first?(e) = true [er]e = False otherwise
[@(a)]. = loc(e)=a

Figure 7.4: LoCK’s semantics (logic of events)
[L(d)]. = learns(e, d)
[KT(d)]. = knowsT(e,d)
[[I+(i)ﬂc = ident+(e,i) SO o
[D()]. = desyse %f:l ;,?/7]]]@ I
[HZ(t,i)]. = trustHasld(¢,i) s refe = L2
[O(d,a)]. = owner(d)=a
[G(d,1)]. = genFor(d, 1)

Figure 7.5: LoCK’s semantics (knowledge)

This states that a node learns d at some event e, if ¢ was triggered by an input
that contains the data d. Moreover, in order to deal with Byzantine faults, we
also require that to learn some data one has to be able to verify its authenticity.
Then, ICT is interpreted by the knows™ predicate:

knows™ (e, d) = Im € S(mem).sysQT e|, ., = m A know(d, m)

where knows™ (e, d) states that a node knows d at some event e, if it holds d in
its memory m (i.e. know(d, m) is true), such that its memory m is the state of the
component mem right after e. Finally, ZT is interpreted by the ident™ predicate:

ident™ (e, i) = Im € S(trust).sysQT el = m A trusted2id(m) = i

trus

This states that the trusted component trust remembers the current trusted iden-
tifier ¢ after e.

7.4 LoCK’s Rules

Syntax. Figure presents the syntax of rules. Expressions are annotated with
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a € EventRel = e1=eq|e1Ces|e1<ea|e1=ea|e1Ces| e1Ces

z € HypName (a set of hypothesis names) y € GuardName (a set of guard names)

o € KExpAt = T7@e g € Guard =y

h € Hyp = o G € Guards = ©|G,yg

H € Hyps = ©|H,h seq € Sequent = (GYHto
Afe,t,1] seqr -+ seqn

R € Rule = seq

Figure 7.6: Syntax of knowledge calculus rules

events allowing different expressions to be true at different points in space/time
in a single sequent/rule. In a sequent of the form (G) H F o, the list of guards
(G is used to relate the different events mentioned in the hypotheses / and the
conclusion o. Note that for convenience we use the same symbols for guards and
for the corresponding knowledge expressions (e¢1<eq is a guard, while <7 is an
expression).ﬂ For convenience, hypotheses and guards are all named in a sequent,
allowing rules to point to them (expressions do not depend on names). We write
Hy, Hy for the list H, appended with the list H5, and similarly for guards. A rule
R is essentially a pair of a list of sequents (R’s hypotheses) and a sequent (R’s
conclusion). In addition, the hypotheses of a rule can depend on a list of events
2, a list of trusted values 7, and a list of trusted identifiers i, allowing rules to
introduce new symbols. We omit the A[_] part in rules that do not introduce new
symbols. We sometime write H[o], for a list of hypotheses H that contains an
hypothesis of the form z : o, and similarly for guards. We then sometimes write
Hlo'] to denote the same list of hypotheses where z : o is replaced by z : o’

Semantics. Guards, hypotheses, and sequents are interpreted as follows:

[er0ea] = e10e9 [G] = Vge G.lg]
[t:7@¢] =[] [H] = Vhe H.[h]
[(G)H Fo] =[G = [H] = [o]

where (0,0) € {(CZ,0),(E,0),(<,=<),(X,2),(C,9),(=,=)}. Note that O is a

guard operator, while o is a HyLoE operator. Finally, a rule R (see Figure is
true if [seq] (R’s conclusion) follows from [seqi] A -+ A [seq,] (R’s hypotheses)
for all possible instances of ¢, 7, and 7.

Primitive Rules. We now provide a sample of LoCK’s derivation rules. As men-

2Note also that the collection of guards is not minimal for convenience.
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<G>H17H2}—0'2 <G1,G2>H|—U

thi thi
(GYHu, b HaFog 08 (G, G HFo %
<G>H[T2 ()'/] ren, <G[il//2 O(]>H|_0' ren
(GYH[z1:0'Fo (Glyr:a]) HE o &
hyp (GYHF oy (G)H,x:09F 01 cut
HYHlo|Fo Y H oy
G F G F
Figure 7.7: LoCK’s structural rules
— T 1
(GYHFT@e * (GYH[L@¢]Fo —F
(GYH,z:11 QekFT1oQe R (GYHy,Hob11@Q@e (GYHy,2:79Qe,Hobo R
HbE71i—T12Qc¢ ' GYHi,x:71 =272 Qe,Hob o F
GYHF Q@
(GYHF f(v) @e oftype(v,0) 3 Alv] (G)Hy,z:f(v)Qe,Hot o oftype(v,0) 3
(GYHF3A(B,f)ae ! (GYHy,z:3(0,f)Qe, HyF o £

(GYHF11 Qe (G)HFT2Qe A (G)YHy,x:711Qe,z' i1 Qe Hyb o

A\
(GYHFT1 AT2 Q¢ ! (GYH1,2: 11 ANT2 Qe , Ho o E

(GYHFT1 Qe (G)Hy,z: f(v)@Qe, Hot o oftype(v, )
(GYHF T VT2Qe " (G)Hy,z :¥Y{0,fyQe, Hyb o

E

(GYHFT19@e v Alv] (GYHF f(v)@e oftype(v,0)
(GYHF T Vra@e (GYHFY(0,f)@ e

I

(GYHy,2:71 Qe Hol o
(GYHy,2:79@e,Hoyl o

(GYHy,2:711 VT2 Qe , Hob o

VE

Figure 7.8: LoCK’s predicate logic rules

tioned above, LoCK is sound in the sense that we have proved that its inference
rules are sound w.r.t. the HyLoE-based semantics introduced above (we skip those
proofs here since they are all straightforward).

Figure presents LoCK’s structural rules, while Figure |[7.8| presents LoCK’s
predicate logic rules, which are all standard. For example, hyp represents hypothe-
sis rule, —g represents implication elimination; V3 /Vi, or introduction left /right;
and Vg represents or elimination.

Moreover, Figure presents LoCK’s event relation rules. The collection of
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Let 0 € {C,C, <} and (<, <) € {(<,=),(Z,E), (C, <

Ale'] (G,y:e'Oe)H[z:T7Q€]F

(GYH[z:OrQe]ko

E

(Gle'De]) HEDOr @ ¢’ O
(Gle'Te))HFDOr@e *

(G,y :pred=(e)C
(GYHEF -0 @e

(GYHF o

eYHFo

if—-0®

(Gler = ea]) H[t Q eg] ko
(Glexr = eq]y H[T @ eq]

subg

(Giy:e=eYHFo
(GYHF o

—refl

(Gler=ea)y HF o (Gler<eq]) HEF o
(GleixRes)) HF o

STR<

(Gly: e1Ces]) HE o
(Gly : e1=eg]) HE Q(a) Q e
(Gly : ex=Rez]) HE @Q(a) @ ey

(Gly: e1=Res)) HE 0

STle

(Gly IP2_01]>H|_U _
(Gly:er=ex)HbF o

(Gly:e1Cea)) HE o
(Gly: e1Ce,eCeg) HF 0

(Gly:eiCel)HF o

(Gly : exCpred=(esz), pred=(es)Ces]) H F o
(Gly:e1Ces)) HF o

split-

) (B, 2),(C,0), (=, 5)}

(GlOe]) HFT Q@ ¢

(Gle'Oe]) HEOTr Qe

(G,y:pred=(e)=e)H o
(GYHFOo Qe

(G HFo 1o

(GYH[z : T Qpred=(e)]F o

(GYH[x: CTQe]l o

(Gler = ey HF 0o {(GleiCes]) HE o

STR
(GlerCes)) HF o =

(Gly: e1Cea]) H o
(Gly: e1=es]) H - @Q(a) @ eq
(Gly : e1=es]) H - @(a) @ ey

STR1
(Gly : e1=es]) HE o =

(Gly : ey =pred=(ex)y H - o

—pred=

(Gly: e2Ceq])HE o

splitPred-

Figure 7.9: LoCK’s event relation rules

rules is by no means complete. The family of elimination rules [Jg allows turning
HyLoE operators into guards, while the families of introduction rules [J; and Uy
allow using those guards to navigate between points in space/time to prove HyLoE

expressions.

The two rules if® and if—@® provide an axiomatization of pred=.

The weak family of rules allows weakening guards, e.g., from < to <. Finally, the
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Ale'] (Giy:e'Ce)HFO —>T7Q¢
(Gyy:e'Ce)HFCr — 7@ ¢

(YHFr@e

ind

(G,y:e1=e)H Il o
(Gyy:e1Cex) HE o
(G,y:esCer)HFo

(G)H - Q(a) Q ¢
(GYH F Q(a) @ ey

(GleiCes]) HE -G Q@ eg mO

(GYHF o

(GYHF Q(a;) @e
(G)HF @Q(az) @e

<G>Iﬂ—a1:a2@e

loc

tre Gdec

(GYHFOV 0Qc¢

(Gly : e1les]) H - @Q(a) Q ey
(Gly:e1Cea)) HF @(a) @ e °°

Figure 7.10: LoCK’s logic of events rules

Let (m,k,p) € {(=, <, <), (<, =,<),(<, <, <), (=,=,=)}.

Let 7 € {(”1 =vg,11 < 72,?‘[1(1‘,1),0((1,(1),9((]7 ZL)}

(GYHF O(d,ay) @ e
(GYHF O(d,as) @ e

KeC
(GYHFKFT(d)v-Kt(d)ae ° (G HFai—a; @c lovmer
(GYH FG(d1, 1) @ e (GYHFTH(iy) @ e
(GYH F G(da, t)@e (GYHFZIH(ix)@e
(VHFdi=dy@c 1data (WHFih,=ipac 14
(GYHFvi=vy Qe
) H > G HF J @ >
(@ @ HFraee
(GYHFTQ ¢ (GYHE 1[v1] @ e
(GYHFi1mi@Qe (G)HFiKkizQe
irrefl trans

(GYH[i < i]F o

<G>H"i1pi2@€

Figure 7.11: LoCK’s knowledge rules

substitution rules suby and sub¢ allow substituting events in a sequent’s hypotheses
and conclusion. The Cg rule is the standard elimination rule for C, allowing to
navigate to previous events. The STR< and STRr allow strengthening < and L.
The STR1< and STR1 allow strengthening < and <. The split_ and splitPred_
allow splitting guards to get intermediate events.
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Figure presents LoCK’s HyLoE rules. The ind rule is an induction rule
on causal time. It says that to prove that a property is true at some event e, it
is enough to prove that it is true at the first event prior to e (the base case), and
that for any event ¢’ prior to e, if it is true right before ¢’, then it is also true
at ¢ (the inductive case). The —® rule states that if some event e¢; happened
strictly and locally before some event es, then e; cannot be the first event at that
location. The tr: rule axiomatizes the HyLoE fact that if two events e¢; and es
happen at the same location a, then either the events are equal, or one happened
before the other. The rule ®q4.. states that ® is decidable. The loc rule states
that each event happens at a single location. Finally, @, rule (note that this rule
is invertible) states that if e;C ey then e and es happen at the same location.

Figure presents LoCK’s knowledge rules. The Kge. rule says that ICT is
decidable. The lowner rule states that a given piece of data can only be owned by
a single node. The 1data rule states that trusted pieces of data can only be related
to a single piece of data. The 1id rule states that one can only know about a single
identifier at any point in time. The change rule allows changing the current event
for event agnostic expressions. Finally, the valSub rule allows substituting equal
values in any expression.

Using this calculus we derived Theorem [2] in Section [7.7, among others. In
addition, Section provides further examples of expressions that can be derived
using LoCK.

7.5 Examples of Derivations Within LoCK

Let us now provide a few simple examples to illustrate the expressiveness of our
calculus, as well as the usefulness of some of its features, such as guardsE]

7.5.1 Non-initial-events

We start by proving that if 7 happened before, then the current event cannot be
the initial event, i.e.: C7 — —® (see figure on below) E] In this first example, we
only navigate between events in the hypothesis z: we use the Lg elimination rule
to introduce a guard, that allows navigating from the point in space/time where
C7 is true (i.e., €), to the point where 7 is true (i.e., ¢’). We conclude using —®,
which says that a point that has predecessors cannot be the first event.

3We omit here the A[_] part for readability.
4See DERIVED_RULE_local_before_implies_not_first_true in|code/model/CalculusSM_
derivedd.vl
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©

E

(y:e'Ce)r:7Qe Fn0 Qe -
(yx:CTQek@Qc¢ o
(@YokCT >0 Q@c¢

E

7.5.2 Collapsing

We now prove another simple, though slightly more involved, example (see figure
below), where we use guards to navigate through events in multiple formulas: both
in hypothesis x and in the conclusion. Namely, we prove: CC7 — 7, which says
that if it happened before that 7 happened before, then 7 happened beforeE] We
use the g elimination rules twice to go from the point where CC7 is true (i.e.,
¢), to the point where 7 is true (i.e., ¢”). We then use the [y, introduction rule to
navigate to the ¢’ intermediary point. Finally, we use the [J; introduction rule to
navigate to ¢”, while eliminating C (as opposed to the previous step, which keeps
the operator).

hyp

I

(y:e'Ce,y s e’'CeYz:TQe" 7@€
(y:e'Ce,y :e'CeYz:7Q@c" T Q¢
(y:e'Ce,y re’'CeYz:7Qe"FCTQe
(y:e'Ce)z:CTQe T Qe
(@)z:CCTQekCT@Qe
(oyorCcCTr—>CT@e

It

E

E

E

7.5.3 Weakening

Our next example illustrates how our weak rules become handy when navigating
between points in space/time. We show here that we can derive (G) H[z : C7 @
el Fofrom (G,y: ¢'Ce) Hjz : 7 Q €] - o, i.e., we derive C’s elimination rule.
We weaken here both  and =, to L, in order to obtain the same guard in both
branches of our derivation]

Al (G y: eEe)H[z:TQ €]k 0o
Ale'] (G,y:e'Ce)H[z:TQ €0 X (Gyy:eCe)H[z:T7Q €| Fo )
Ale'] (Gy:e'Ce)H[z: T Q€| o éea (Gyy:e=eyH[z:7Qe€ ko wea

(GYH[z:CTQe]ko E <G>H[.7::T@C]|_Uv =refl
(GYH[z:CErQe]k o E

5See DERIVED_RULE_twice_local_before_implies_once_true in code/model/
CalculussSM_derived3.v.
%See DERIVED_RULE_unlocal_before_eq_hyp_true in code/model/CalculusSM.v.
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7.5.4 Predecessor

Next, we prove that if 7 was true at pred=(e) (denoted e, below) then it must be
that 7 happened before or at e[| Once again, we use here LoCK'’s feature that
different expressions in a sequent can be true at different events: z is true at e,
while the conclusion of the root is true at e. In the following proof, II; is a proof
that © is decidable (using Gqec); s is a proof of ® (using hyp); and II; is a proof
of =@ (using hyp)—those are eluded here for readability:

h
(yrep=e)x:7Qe,0:0Qeck7@Qc¢ P
suby

(yiep=e)x:7Qep0:0Qek7Qc¢ I,
(@)z:7Qep0:0QekTQeEC y
(@)x:7Qep0:0Q@ckFLCTrQe = I

IT; (@)z:7Qep,0:0V0Q@ekFCrQe
(@)z:7Qe,FCTQe

ifo

VE

cut

where 11 is:

h
(y:epCe)x:TQep0: 0@ QekT7Qe¢, P 13

(y:epCe)z:TQep0:m@QekCT@Qe
(y:epCe)x:7Qep0:m0@QekCT Qe
(@)x:7Qep,0:mOQek-CTQe
(@)yz:TQepo:mOQectHCTrQ@Qe

O
weak
if—@®

Vi

7.5.5 Acquired knowledge

Finally, let us present another useful fact that allows getting back to the point
where the knowledge was acquired (because it was locally generated or because it
was received): if we know some piece of data d, then there was a point ¢’ in the
past, where we did not know d before ¢’ but we knew it after e’.ﬁ We state this
fact as a derived rule as follows:

(GYH FKT(d)@e
(GYH (KT (d) A=K (d) Qe (7.1)

which we prove by induction on causal time using ind. To prove the base case, we
first eliminate C using V1,. The left conjunct follows trivially from our hypothesis,
and we prove the right conjunct using weak and —®. The inductive case follows
from Kgec, i.e. that knowledge is decidable.

"See DERIVED_RULE_at_pred_implies_local_before_eq_true in code/model/
CalculusSM_derived3.v,

¥See the lemma called DERIVED_RULE_knowledge_acquired_true in the filed called code/
model/CalculusSM. v.
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7.5.6 Owns Propagated

In the following example, we show how owning some knowledge propagates trough
time, i.e., if a node owns a piece of data at event e, then it will know that piece
of data at all events that happened after event e;. To do so, we show here that we
can derive (G,y: e1Cez) H F O(d) @Q ey from (G, y: e1Cer) H F O(d) @ ey, [

(G y:e1Ceq) HE O(d) @ ey 11
(G,y:e1Ceq)y HE O(d) Q ey

cut

where II; is:

hyp

(G,y:e1Ceq) Hyx: O(d,a) @ eq,y: Q(a) @ ey FQ(a) @ ¢
(G,y:e1Cex) H,x: O(d,a) Q@ ep,y:Q(a) Qe - @a) @ey 0 Tl
(G,y:e1Cex) Hyx: O(d,a) Qeq,y: @Q(a) Qe - @(a) A O(d,a) Q ey
(G,y:e1Ceq) Hyx: @Q(a) AN O(d,a) Q@ ey F@(a) A O(d,a) Q ey
(G y:e1Ceq) Hyx: @Q(a) A O(d,a) Q eq F3,(Q(a) A O(d,a)) Q ey EII
(Gyy:e1Ceq) Hyx : O(d) Qe H O(d) Q ey E

a)
a)

A1

E

and I, is:

hyp
change

(G,y:e1Ceq) Hyx : O(dya) Q eq,y: Q(a) Qe F O(d,a) Q e
(G,y:e1Cex) Hyx: O(d,a) Qep,y: @(a) Qe - O(d,a) @ ey

7.5.7 1Id After is Id Before

In this example, we show that nodes do not “forget” identifiers, i.e., if a node knows
identifier 7 after handling an event e, it will know that identifier right before
handling any event, which happened directly after e;. To prove this behavior,
we show here that we can derive (G,y : e1Cey) H F Z7 (i) Q ey from (G, vy :
e1Ces) HEZIF(1) Q ey, m

(G,y:e1Ceg) HEIH(i) @ ey
(G,y:e1Ceg) HE CITT(i) Q@ ey
(G,y:e1Ceq) HFI™ (i) Q ey

Uz

I1

7.5.8 1d Before is 1d After

Here we show that the opposite direction also holds, by deriving (G, y : e;Ces) H
ZH(i) @ ey from (G, y: e;Ceo) H = ZI7(i) @ ey [T

9See DERIVED_RULE_owns_change_localle_true in |code/model/CalculusSM.v.
10Gee DERIVED_RULE_id_after_is_id_before_true in|code/model/CalculusSM.v|
11Gee DERIVED_RULE_id_before_is_id_after_true in /code/model/CalculusSM.v.
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(Gyy:eiCeg) HFZ™(i)Q ey Tl .
cu
(G y:e1Cex) HTH(i)@ ey

where Il is:
. - . — hyp
H,h:Z7F (i) Qpred=(eg) F ZT (i) @ pred=(eq) b
SubD¢

(G, y : pred=(es2) = e1)
(G,y :pred=(e3) = €1
(G,y: ey =pred=(es)) H,h: ZT(i) @ pred=(ey) F ZT(i) @ e;
(G,y:e1Cea) Hyh: TT(i) Qpred=(ex) FZT(i) Q ¢q - wealk
(G,y:e1Ces) H,h: CTT(i) Qeg - ZH(i) @ e F 10,
(G,y:e1Cea) Hih :IT7 (i) @ eg - ZH(i) @ ¢ Ve

—sym

YH,h:ZT(i)Qpred=(eg) FZT (i) Qe _

where II; is:
(G,y:e1Ceq) Hyh:i=initld @ eg,z: © Q ea b 2O @ e - .
(G,y:e1Cea) H,h:i=initld Q@ eg,z: ©Q es - 2O Q eg wea II,
t
(G,y:e1Ce) Hyh:i=initld @ eg,2: ®@ Q@ eq - ZF(i) Q ¢ A °t
(Gy:e1Cea) Hoh:i=intld A® Q ea FZT(1) Qe

and Il is:
(G,y:e1Cea) Hyh:i=initld@ ey, z: ©Qea O Q ey hyp I3 .
(G,y:e1Cea) Hyh:i=1initld Q eg,x: ® Q eg,m: =@ Q eg FZH(i) Q ¢4 §
and II5 is:
1k

(Gyy:e1Cea) Hyh:i=initld @ eg,y: (Fn@) Q e, 2: 0 Qeg,n: | Q ey FZH (i) Q¢

7.5.9 Causal, Equal and First
We show here that we can derive (G,y : e1Ceq) H - o from (G, y : e1Ceq) H
© @ ey and (G,y: e = (32>H|_O'E

<G,y : 61262)]{ FOQey, Il

t
(G,y:e1Ceq) HE o i
where Il is:
-0
(Gyy:e1=eyHbo chin (G,y:eiCer) Hyw: © Q es b =G Q@ e cht
(Gyy:e1=en) Hw:0Qexko g <G,y:(21|:r22>H,w:®@eg}—USTR
c

(Gyy:e1Cey HHw:© Qeg b o

and II is:

(Gyy:e1Cer) Hyw: @ Qea O Q eg
(Gyy:e1Cey) Hw:®Qeg,2: @ Qe ko

12Gee DERIVED_RULE_causalle_is_equal_if_first_true in |code/model/CalculusSM.v.

1
(G,y:eiCea) Hw:©@Qeg,z: L Qegbo _:‘
E
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7.6 Typical System Assumptions and Consequences

In order to derive general results about distributed knowledge, such as in Sec-
tion let us first present some typical assumptions about knowledge, which
we express here within LoCK (see the file called code/model/Calculussy.v for more
details). We illustrate in Section that those assumptions can be validated and
used for deriving specific properties of MinBFT.

LoCK’s Assumptions. We first start by defining those assumptions, and we then
explain their meaning:

LID = V. At.L(1) — <(OD(1)) (7.2)

KLD = V. AELKT (1) — (K= (1) v L(t) v OD(1)) (7.3)

Mon = (31)\[1_(1) VAN I+(1)) Vv (31)\7;1, /2[1 < /2 AN I_(ll) N I+(/2>> (74)
New = VALV Niq, ia. (OD(t) AZ~(i1) A I (iz)) (7.5)

— TNi(in < i A< ig NHI(L, i) A =HI(L i)

Uniq = Vt)\th tg‘v’l)w((’)D(z‘l) N OD(tz) AN %I(tl, Z) AN HI(tQ, é)) — 11 = 19 (76)

Through LID, we get to assume that if one learns some trusted data, it must be
that it was disseminated by the corresponding trusted component that owns the
data, i.e., the trusted data cannot simply appear from nowhere. Moreover, as
stated by KLD, typically if we know some trusted information, then we either knew
it before, or we just learned it, or we just disseminated it. Also, a typical property
of trusted components is Mon, which says that the identifiers maintained by those
components monotonically increase, i.e., either the recorded identifier stays the
same (left disjunction), or it increases (right disjunction). In addition, as stated
by New, if a trusted component is in charge of generating trusted identifiers, such
an identifier © must be between the one recorded before and the one recorded after
it generated 7. Finally, trusted pieces of data disseminated by a trusted component
at a given point in time are typically unique (Uniq).

Provenance of knowledge. From KLD (Equation[7.3) and using LoCK’s induction
on causal time rule (ind), we can derive{™| IC*(¢) — CL(¢) V COD(t). Then,

13See the lemma called DERIVED_RULE_trusted_KLD_implies_or_true in the file called |code/
model/CalculusSM. vl
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using LID (Equation[7.2)), and using a similar collapsing result as the one presented
in Section [7.5] above (to collapse C< into =< here), we can further derive{]

K*(t) = =(op(1)) (7.7)

Progress when disseminating. Mon and New can be combined into this following
derived rule, which captures that progress is made every time a trusted piece
of data is disseminated, i.e., disseminating trusted pieces of data must get the
recorded identifier to increase{"]

Ale']{(G) H \- Mon A New @ ¢’ (GYHHOD(t)Q e
(GYH F 35Niy i, io L~ (in) ATH(ig) AHI(t,i) N =HI(t,i) ANiy <iNi<iz@e (7.8)

This rule is a straightforward combination of Mon and New, which is convenient to
prove results such as the “uniqueness over time” derived rule presented below.
(1) Either no progress is made at e, i.e., Z= (1) and ZT(i) for some i. We then
derive a contradiction, because by New, we must have + < 7, and we conclude using
irrefl. (2) Or some progress is made at ¢, and we conclude using New.

Uniqueness over time. Uniq can be generalized to trusted pieces of data gener-

ated at any point in space/time by a trusted component. Namely, we can derive
the following rule within LoCK{|

<G> HF OD(tl) A HI(fl,i) A\ @(a) @ €1
(GYHFt; =1, @e

Ale'] (G) H I Mon A New A Uniq @ ¢’

(7.9)

This derived rule is critical to prove Theorem [2] in Section It says that if
two trusted pieces of data t; and 7, are disseminated at e; and es, respectively,
such that they have the same identifier and that e; and e; happened at the same
location a, then #; must be equal to t,. We can derive this result using LoCK’s
trichotomy rule tri. If e; = ey then we conclude using Uniq. If e; happened
locally before ey (and similarly if e; happened before e;) then from Mon, and using
LoCK’s induction on causal time rule ind, we derive that the identifier i; recorded

14See the lemma called DERIVED_RULE_trusted KLD_implies_gen_true in the file called
code/model/CalculusSM. vl

»See the lemma called DERIVED_RULE_disseminate_implies_count_ex_true in the file
called |code/model/CalculusSM. vl

16See the lemma called DERIVED_RULE_trusted_disseminate_unique_ex_true in the file
called |code/model/CalculusSM. v,
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after e; must be less than or equal to the one, say i,, recorded before e5. Moreover,
from New, we derive that 7 is less than or equal to i; and 75 is strictly less than .
Finally, we conclude using the trans and irrefl derivation rules.

7.7 Distributed Lifting

Using the above mentioned rules and assumptions, we derived among other things
the following lemma (see below for a proof sketch){|

Theorem 2 (Distributed Lifting). The following rule is derivable within LoCK:

Ale'] (G) H - LID A KLD A Mon A New A Uniq @ ¢’
<G> HF K:J’_(tl) AN O(tl,a) N g(dl, fl) AN %I(tl, 7) Q €1
(GYH F Kt (ta) A O(ta,a) A G(da, ta) N HI(t2,i) Q eq

<G>H|‘(11:d2@{2

This derived rule allows lifting properties of trusted components to the level of
a distributed system. It states that if all assumptions presented in Section are
satisfied at all events; and at event e¢; some node knows some trusted information
t1, owned by a, with identifier 7, and generated from some data d;; and similarly
at eg some node knows some trusted information t,, also owned by a and with
identifier 7, and generated from ds; then the two pieces of data d; and dy must be
equal. This is the crux of proving the safety properties of MinBFT’s normal-case
operation (see Chapter .

Proof Sketch 2. We derive here Theorem [2] essentially from the “provenance of
knowledge” formula [7.7) and the “uniqueness over time” derived rule [7.9] presented
above. From ICT(#1) (at e;) and ICT(15) (at e3), we can derive using Equation
that there must be two previous events ¢} and ¢/, such that #; was disseminated at
e} and t, was disseminated at e), (by their rightful owners). Because a owns both
t1 and t9 then it must be that ¢} and e}, happened at the same location. We can
then derive that t; = 5 from the derived rule [7.9] Finally, we derive that d; = d5
using LoCK’s 1data inference rule.

7.8 Knowledge and MinBFT

As we already mentioned above, proof of the MinBFT’s agreement property is a
direct consequence of the distributed lifting lemma (see Theorem. , presented
in Section [7.7] Nevertheless, to verify properties about MinBFT using LoCK, we

17See the lemma called DERIVED_RULE_trusted_knowledge unique3_ex_true in the file
called icode/model/CalculusSM. vl

117


code/model/CalculusSM.v

had to instantiate the parameters presented in Figure [7.1][¥] We only discuss here
some of the most interesting parameters. The interested reader is invited to look
at our Coq implementation for more details. We instantiate Data with a type that
contains both Uls and triples of the form view/request/UI, which is the canonical
information contained in most MinBF'T messages. Trust is instantiated with the
type of Uls, and ldentifier is instantiated with the type of counter values. The
component name mem is instantiated with LOGcomp; while trust is instantiated
with USIGcomp. The predicate know is instantiated by a predicate that states
that the data is stored in the log. Finally sys is instantiated with MinBF Tsys.

As opposed to the USIG-based version, to reason about the TrInc-based version,
we have instantiated ldentifier with the type of counter value lists, because Trlnc
maintains multiples counters. We then say that a Ul u:, with counter id ¢ and
counter value ¢, has identifier [ (a list of counter values) if the counter value in [
corresponding to 7 is ¢ (the other counters can have any values).

Because Theorem [2] relies on some assumptions (see Section , we had to
prove that those are indeed true about our MinBFT implementations. LID dif-
fers from the others because it is not a direct consequence of MinBFT’s behavior,
but follows from our generic AXIOM _auth_messages_were_sent_or_byz HyLoE
assumption, which is a constraint on event orderings that rules out impossible
message transmissions. It states that if a node receives a valid piece of data d (in
the sense that its authenticity has been checked), then either (1) a correct node
sent d following the protocol; or (2) some arbitrary event happened, for which no
information is available, and some node sent d either authenticating it itself or
impersonating some other node; or (3) some arbitrary event happened at which a
trusted component generated d. KLD is a straightforward consequence of the way
MinBFT accumulates knowledge by logging messages: a message is logged if it is
generated or received. We proved Mon using the local lifting Theorem [I] described
in Section [6.4] It is true because USIGs (and Trlncs) indeed maintain mono-
tonic counters. New and Uniq are straightforwardly true because USIGs always
increment their counters before generating a new Ul.

18Gee the files called \code/MinBFT/MinBFTknO.v, |code/MinBFT/MinBFTkn.v and |code/
MinBFT/TrInckn.v|in our implementation.
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Chapter 8

Hybrid Protocol Case Studies:
USIG- and TrInc-based MinBFT

As explained in Chapter 5| the main goal of this thesis is to design a general,
reusable and extensible framework that can be used for proving correctness of
both, homogeneous as well as hybrid fault-tolerant protocol. We already showed in
Chapter [5| that our framework can be used for proving correctness of homogeneous
fault-tolerant protocols. In this chapter, we show that our framework can be used
for proving correctness of hybrid fault-tolerant protocols as well.

In Section [8.I} we show how we exercised our framework by implementing and
verifying two versions of the seminal MinBFT hybrid protocol [Ver+13|: one based
on USIGs (as in the original version), and one based on TrIncs |[Lev+09]. As ex-
plained in Section USIGs and TrIncs have different pros and cons that make
them both interesting to use and verify correct. We proved the agreement property
of both versions using Theorem [2] which we proved within LoCK (see Section [7.7).
Because other hybrid protocols rely on trusted components that are similar to
USIGs and TrIncs, we believe that our methodology can also be used to verify the
correctness of other hybrid protocols such as [Kap+12|; [BDK17]; [Chu+07]. We
finish this chapter by explaining how we obtained executable MinBFT code (see

Section [3.2)).

8.1 Verified MinBFT properties

Using framework presented in this thesis we proved the following Coq lemma,
which is critical to prove the safety of MinBFT’s normal-case operation (the —
direction is the agreement property):[]

1See the files called: code/MinBFT/MinBFTagreement_iff.v| and |code/MinBFT/
Trincagreement_iff.v.
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Lemma agreement,_iff :
Y (eo : EventOrdering) (el e2 : Event) (r1 r2: Request) (i1 i2: nat) (11 (2 : list name),
AXTOM _auth_messages_were_sent_or_byz eo MinBFTsys
— ((send_accept r1 i1 11) € MinBFTsys ~~ el)
— ((send_accept 12 12 12) € MinBFTsys ~~ e2)
— (il = i2 > 11 = 19).

This lemma states that if a correct replica executes a request r with counter value
i1, then no other correct replica will execute the same request with a different
counter value i2 # il; and two correct replicas cannot execute two different re-
quests with the same counter value. In addition to the executed request, these
messages include the counter value generated for the request by the primary. Ac-
tually, in our implementations, replicas send “accept” messages whenever they ex-
ecute a request. As mentioned above, this lemma is a straightforward consequence
of the general Theorem [2| proved within LoCK and presented in Section [7.7]

As another straightforward consequence of Theorem [2| we have also proved the
following agreement property ]

Lemma agreement :
v (eo : EventOrdering) (el e2: Event) (r1 r2 : Request) (i : nat) (/1 12 : list name),
AXTOM _auth_messages_were_sent_or_byz eo MinBFTsys
— In (send_accept r1 i (1) (M_output_sys_on MinBFTsys e1)
— In (send_accept r2 i [2) (M_output_sys_on MinBFTsys e2)
— (is_replica el A is_replica e2)
—rl=re.

Despite the fact that we only verified the normal-case operation of MinBFT, we

also had to reason about Byzantine failures, because in the normal-case operation
primary is believed to be correct, but the other processes might behave arbitrarily
(i.e., they might be Byzantine).
Remark 2. In our proofs we only used the fact that trusted/trustworthy counters
are monotonic, possibly with gaps because of the additional restriction that repli-
cas have to execute requests one at a time without gaps. This way, the no-gap
condition does not need to be coming from trusted /trustworthy components.

Remark 3. Although properties and proofs we show here do not require reasoning
about intersecting quorums, reasoning about intersecting quorums is necessary in
case of a view-change. For example, what could happen is that the primary p
proposes some message m to some replica r; and dies right after that. Than if r;
applies m straightaway without gathering a quorum, it might be the only one doing
so, i.e., replicas might diverge (because the other replicas might run a view-change
and just ignore m).

2See the lemma called agreement in the file called code/MinBFT/MinBFTagreement.v in our
implementation.
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Differences from the Original Proof. As it turns out, our proof of agreement _iff
is significantly simpler than the original pen-and-paper proof [Ver10, pp.151-153].
The original proof of the < direction, which we claim here to be unnecessarily
convoluted, goes as follows: given that a quorum of f 4 1 replicas have committed
(r,il), and a quorum of f + 1 replicas have committed (7,i2), there must be a
replica at the intersection of the two quorums that has committed both 77 and
i2 (since there are 2f + 1 replicas in total). Then, their proof goes by cases on
whether or not that replica and the primary are correct, leading to four cases.
However, such a replica at the intersection of the two quorums is not required
because if a replica has executed a request, it must have received at least one
prepare/commit for this request containing a Ul created by the primary’s USIG.
Therefore, we can deduce that the primary’s USIG must have created Uls for the
two counter values corresponding to the two quorums mentioned above. We can
then trace back these two counters to the time that primary’s USIG generated
Uls for them, and conclude using monotonicity. Note that we do not need to go
by cases on whether replicas are correct or not because trusted components of
hybrid systems (USIGs here) cannot be tampered with, and the above reasoning
rely solely on properties that the system inherits from the trusted components.
Thanks to the operators presented in this thesis, such as ls ~» e (described in
Section , we can always reliably access these trusted components because they
cannot be compromised and because in the context of such safety proofs, they
must have been running at the time they outputted values (i.e., at the time they
created Uls in the case of USIGs). As a matter of fact, agreement_iff holds even if
the primary, except for its USIG, has been compromised. Moreover, based on the
reasoning we use to prove agreement of normal-case of MinBF T, as well as the fact
that in the normal-case primary is assumed to be correct, one can also conclude
that agreement of MinBFT’s normal-case holds for any number of replicas.

8.2 MinBFT Extraction and Evaluation

In this section, we first explain how we obtain executable OCaml code from our
Coq implementation of MinBF'T, such that USIGs run inside trusted environment.
Next, we compare performances of our verified version of MinBFT with our verified
version of PBFT. Finally, we conclude this section by presenting our trusting
computing base.

Extraction. We use Coq’s extraction mechanism to obtain executable OCaml code
from our distributed systems implemented in MoC (see Section [6.2.1)). However,
because we want to run the different components of a local subsystem separately
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(i.e., execute the trusted ones within trusted environments such as Intel SGX),
the monad structure is “erased” during extraction.ﬁ] Instead, a separate module is
created for each component, and calls to components are extracted to calls to those
modules. In addition, the functional states of MoC components are turned into
imperative ones within those modules. Running the components of a local subsys-
tem separately enables executing the trusted ones within trusted environments, in
our case Intel SGX enclaves.

Trusted execution. We use Graphene-SGX |[TPV17| in order to run MinBFT’s
trusted USIG components inside Intel SGX enclaves|| Graphene-SGX is a library
for running unmodified applications inside SGX enclaves. Because Graphene-
SGXs driver closes enclaves after each call, and because only part of the extracted
code is meant to run inside SGX enclaves, our SGX-based runtime environment
uses a TCP interface for replicas to interact with USIGs running in Graphene-
SGX enclaves. Moreover, because to the best of our knowledge, at the time of
writing, Intel SGX only supports C applications, our SGX-based runtime environ-
ment includes C wrappers around the OCaml code of the USIG components, as
well as OCaml wrappers around the TCP interface implemented in C (these wrap-
pers use [19g]). Note that to support calling the interfaces of trusted components
through the above mentioned TCP interface, one has to write custom serializer-
s/ deserializers.ﬁ We leave it for future work to generate those automatically.

Remark 4. Instead of Graphene-SGX, one could port the OCaml runtime inside
Intel SGX, i.e., create OCalls’ for all required OCaml runtime library calls that
are not included in the SGX libraries. Beside the fact that this solution can bring
security issues, because each OCall requires switching between enclave and non-
enclave memory it might be very slow.

Evaluation. As for verified PBFT (see Section [5.3)), we ran our experiments using
a desktop with 16GB of memory and 8 i7-6700 cores running at 3.40GHz. We also
used Async [19a] to handle sender/receiver threads. The experiments we report
here are with one client and the replicated service is a state machine whose state
is a number and whose operation is addition.

We ran a local simulation to measure the performance of our MinBFT imple-
mentation without network and signatures: when 1 client sends 1 million requests,
it takes on average 1.7 microseconds for the client to receive f+ 1 (f = 1) replies.

3The monad erasure we perform is very simple and standard (see code/MinBFT/runtime_w_
sgx/MinBFTinstance.v).

“See \code/MinBFT/runtime_w_sgx/README.md or Appx. [6] for further details.

5See for example |code/MinBFT/runtime_w_sgx/tcp_client.c and |code/MinBFT/runtime_
w_sgx/tcp_server.c
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Figure 8.1: Performance of verified MinBFT (f € {1,2,3}) on a single machine

We obtained exactly the same numbers when we run our verified version of PBFT
(see Section [5.3).

As the Figure shows, for f € {1,2,3} the average latency of our USIG-
based version of MinBFT is lower than the average latency of the verified version
of PBFT presented in Section[5.3] Although Graphine-SGX incurs some overhead,
we believe that our MinBFT implementation is faster because: (1) MinBFT uses
less communication steps than PBFT; and (2) our MinBFT implementation uses
less expensive crypto (i.e., HMACs as opposed to RSA in Section . When
we run our MinBFT implementation on several machines, connected via gigabit
Ethernet network, we obtained similar results (see Figure . In order to conduct
this experiment, we add a functionality during extraction that allows replicas to
garbage collect from time to time.

We also compared our verified MAC version of PBFT with our MinBFT imple-
mentation (see Figure . In this case both implementations have similar perfor-
mance because PBFT clients do not use PK for signing their requests (see [Cas01,
Page 41|) while MinBFT clients do.

8.3 Hybrid Protocols: TCB & Proof Effort

Trusted Computing Base. The TCB of our system is composed of: (1) the
fact that our HyLoE model faithfully reflects the behavior of hybrid systems (see
Section[6.1); (2) the validity of the assumptions described in Section (3) Coq’s
logic and implementation; (4) our runtime environment implemented in OCaml
(Section[8.2)); (5) and the hardware and software on which our framework is running
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Figure 8.3: Comparison of verified PBFT based on MACs and verified MinBFT

(including the trusted environments such as SGX).

Proof Effort. Developing hybrid part of our framework and partially verifying
MinBFT took us about one person year, i.e., developing the whole framework
presented in this thesis took us about two and a half person years. Our hybrid part
of the model is about 10000 lines of specifications and 8500 lines of proofs, i.e., the
whole model presented in this thesis consists of about 1450 lines of specifications
and 12500 lines of proofs. Our MinBFT proofs (USIG-based and TrInc-based) are
about 7000 lines of specifications and 4500 lines of proofs.

124



Chapter 9

Conclusions and Future Work

This thesis presents a theorem-prover based framework that can be used for reason-
ing about implementations of homogeneous fault-tolerant protocols, which rely on
synchrony or asynchrony, as well as about implementations of hybrid fault-tolerant
protocols. Our framework comes with:

e HyLoE—a logic to model homogeneous/hybrid systems;

e MoC—a programming language to implement systems composed of interact-
ing components;

e LoCK—a knowledge theory to reason about systems at a high-level of ab-
straction without having to worry about low-level implementation details.

In addition, our framework introduces novel proof techniques to lift properties
about (trusted) components to the level of distributed systems. To show usability
of this framework, we formally verified several BFT-SMR protocols that rely on
different system and fault models: the seminal synchronous protocol called SM,
the seminal practical asynchronous protocol called PBFT and the seminal hybrid
protocol called MinBFT.

Although the main goal of this thesis was to design a general, reusable and
extensible framework, much remains to be done in this field. In the paragraphs
below, we provide more details.

Replicated service. Ideally, both the replication mechanism and the instances of
the replicated service should be verified. However, we focus here on the replica-
tion mechanism, which has to be done only once, while formal verification of the
instances of the replicated service needs to be done for every service and for every
replica instance.

Diversity and rejuvenation. To enable correct functioning of the system during its
lifetime and in order to avoid persistent and shared vulnerabilities, replicas need to
be rejuvenated periodically [CLO2|; [Sou07], need to be diverse enough [Jaj+11],
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and ideally need to be physically far apart. We leave reasoning about diversity
and rejuvenation for future work.

Collision resistant assumption. Our current collision resistant assumption (see Sec-
tion is too strong because it is always possible to find two distinct messages
that are hashed to the same hash. We leave it to future work to turn it into a
more realistic probabilistic assumption.

Linearizability. The main goal of this thesis was not to prove linearizability, espe-
cially because in [Wil+15]; [Woo+16| the authors present a methodology for prov-
ing linearizability. Our main objective was to come up with an innovative frame-
work to reason about typical safety properties (agreement and validity [CGR11]).
We leave extending our framework with reusable patterns for proving linearizabil-
ity for future work.

IC2. We demonstrate that our framework can be used to prove properties of syn-
chronous BF'T protocols by proving that both our implementations of the SM pro-
tocol satisfy the safety part of the IC1 property, originally introduced in [LSP82].
We leave verifying IC2, which is also introduced in [LSP82|, as well as the liveness
part of IC1 for future work.

Reason about garbage collection and view-changes at knowledge level. Although we
have proved a critical safety property of PBFT, including its garbage collection and
view-change procedures (which are essential in practical protocols), we have not
yet developed generic abstractions to specifically reason about garbage collection
and view-changes that can be reused in other protocols. We leave developing these
abstractions for future work.

Different system assumptions of hybrids. Our framework supports reasoning about
different failure assumptions of hybrid systems——crash vs. Byzantine. We leave
adding support for reasoning about the different system assumptions of hybrid
systems for future work—synchrony vs. asynchrony.

MoC to imperative code. In the future, we would like to implement a formally
verified compiler from a programming language we use for implementing systems
composed of interacting components (MoC) to imperative code.

Improve compositionality of MoC. Our current version of MoC is build such that a
local subsystem is defined as a pair of a main component and a list of components.
This means that two local subsystems can be composed either by: (1) introducing
a new main component and merging lists of components into one list; or (2) de-
composing one of those local subsystems into a list of components (this list would
also include its main component) and then by appending that list to the list of
components of the other system. In the future, we plan to develop a version of
MoC which will be more compositional.

Local lifting lemmas for higher-level components. As explained in Section our
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local lifting lemma (see Theorem (1)) assumes that trusted components need to be
at level 1. We leave developing local lifting lemmas for higher-level components
for future work.

Automation of LoCK. In the future, we would like to extend our knowledge theory
(LoCK) so that some proofs about distributed knowledge could be automated.
We have started developing proof tactics similar to Coq’s intro and destruct (see
Chapter . In addition, we would like to develop both simple “brute-force” proof
search engines, and decision procedures for fragments of LoCK.

LoCK to running code. We would also like to investigate whether our knowledge
theory (LoCK) specifications could be compiled to running code.

MinBFT's garbage collection and view-change. We leave implementing and formally
verifying MinBFT’s garbage collection and view-change mechanisms for future
work, because the normal phase operation provides the necessary and sufficient
context to address the challenges of reasoning about hybrid systems.

Liveness/timeliness. In the future, we plan to also tackle liveness/timeliness. In-
deed, proving the safety of a distributed system is far from being enough: a pro-
tocol that does not run (which is not live) is useless. Following the same line of
reasoning, we want to tackle timeliness because, for real world systems, it is not
enough to prove that a system will eventually reply. One often desires that the
system replies in a timely fashion.
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Appendix A

Opening the LID

A.1 Primitive Principles Behind LID

Section [7.6] presents typical assumptions about knowledge, expressed within LoCK.
In particular, it presents the following LID assumption in Equation [7.2] which
states that if one learns about a trusted piece of data, then this trusted piece of
data must have been disseminated by its owner in the past:

A.L(1) = <(OD(1))

As mentioned in Section [7.8, LID essentially follows from our generic commu-
nication assumption called AXIOM _auth_messages_were_sent_or_byz[] Given a
distributed system such as MinBFT, it is not complicated to prove that LID (its
HyLoE interpretation) holds assuming AXIOM _auth_messages_were_sent_or_byz.
However, it requires using induction in HyLoE, which we are trying to avoid: we
are aiming at having all the inductive reasoning done in LoCK in order to keep the
reasoning done in HyLoE as simple as possible. The reason for the inductive na-
ture of this proof is that LID allows going back directly to the owner of the learned
trusted piece of data, while AXIOM _auth_messages_were_sent_or_byz only allows
getting back to some point in space/time, where the trusted piece of data was dis-
seminated: it does not have to be disseminated by the owner at that point because
the data might have been relayed by an intermediary node. As it turns out, LID
can be derived within LoCK from more primitive principles, which we present
next P
Let Com be the following LoCK expression:

Vet L(1) = (3ard.<(ND(d) A tEd A C)) V <OD(t)

lsee \code/model/ComponentAxiom. v| for more details

2See |code/model/CalculusSM_derived4 . v| for more details.
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As for C, t€d is not discussed in the main body of this thesis because it is
scarcely used. It expresses that the trusted piece of data ¢ occurs in the piece
of data d. NMD(d) is defined as N' A D(d), where N' = F,\a.@(a). We have
proved that Com is a straightforward consequence of the communication axiom
AXIOM _auth_messages_were_sent_or_byz, i.e., we have proved (assuming a few

simple properties that relate HyLoE parameters and LoCK parameters)ﬂ

Veo € EO. AXIOM_auth_messages_were_sent_or_byz eo sys (A1)
— Ve € Event(eo).[Com] .

We can then derive the following derived rule:

Ale’]  (G) H I~ Com A KLD A NKD A KIK @ ¢’
LID
(GYHFLID@ e (A.2)

where KLD is defined in Equation [7.3]in Section [7.6] and

NKD
KIK

Yadd ND(d) — C — KT (d)
Yard Ve At KT (d) = t€d — K (t)

NKD says that nodes must know about the pieces of data they disseminate; while
KIK says that if a node know a piece of data, then it must know about all the
trusted pieces of data contained in that piece of data.

A.2 A Proof of the LID Derived Rule

Let us now discuss the proof of the LID derived rule[] First of all, we show that
we can derive JICT(¢) from NKD, KIK, M'D(d), C, and t€d (we combine some steps
for readability):

(GYHFKIK@e II
(GYHFND(d)Qe (GYHFCQe (GYH,x:Kt(d)QeFKt+(t)@e
(GYH FNKD @ ¢ (GYH,z:NKD@ e - KKt (t) @ e
(YHEFKt(t)@e

cut + thiny

VE+ —g +thiny

cut

where IT is

hyp
(YH,z:Kt(d)@eFKT(d)@e (GYHFteEd@Qe TNy
(GYH,z :KT(d)Qe,y:KIKQeF KT (1) Qe

Ve+ —E +thing

and II; is

h
(YH,z:Kt(d)Qe,y: KT(t)@ekKt(t)@e P

3See ASSUMPTION_authenticated_messages_were_sent_or_byz_true in |code/model/
CalculussSM_derived4.v.

“See  DERIVED_RULE_implies_all_trusted_learns_if_gen2_true in |code/model/
CalculusSM_derived4.v for more details.
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The rule we just derived is then:

(GYHFNKD@Q e (GYHFKIK@Qe (GYHFND(d)@Qe (GYHFCQe (GYHFi€dQe
(GYHFKt(t)Qe

DITK

Let us now go back to Equation [A.2] We proved the validity of this derived rule
in LoCK by induction. As it turns out, we used a different rule than ind, which
allows us to go by induction on the happened before relation, as opposed to ind,
which goes by induction on the direct predecessor relation (from now on we will
call both rules ind for simplicity)f]
Ale] (GYHF (V<7) > 7@c
(GYHFT@e

ind

Note the use of the V47 operator. This (primitive) operator is also not discussed in
the main body of this thesis for space reasons and because it is only used scarcely.
Its semantics is:

[V<rle = Ve’ < e.[V<7].s

In our proof of Equation [A.2] we will also use the following derived rule, which
is similar to Equation where V47 =V 7 V T:ﬁ

Ale/] (G)HFEERLD@e'  (G)HFEVLID@ e
(GYH F Kt (d) —» =(OD(d)) @ e

KID

In addition, we will also use the following derived rule, which strengthens a V< to
a V5 by navigating to a later point in space/time (from ¢’ to e below)ﬂ

(Gyu:e'<e) HEV<T Qe
(Gyu:e'<e) H-V4T Q¢

STRV<

Finally, we will also use the following derived rule, which allows weakening < to
= by navigating to an earlier point in space/time, i.e., from ¢ to ¢’ below:ﬂ

(G,u:e’'<e) HF <7@ ¢
(Giu:e/<e) HE <T@ ¢

Let us now derive Equation

WEAK<

B hyp
Ve+ —E +Ve
cut 4+ thiny

II; (G)H,z:V<LIDQ@e,y: L(t)Qe,z: <OD(t) Q e <(OD(t)) @
(G)H tCom @ ¢ (G)H,z:V<LID@e,y: L(t) Q@e,z:Com @ e - <(OD(t)) Qe
(GYH,z :V<LID @ e,y : L(t) Q e - <(OD(1)) @ ¢
(G)H F V<LID — LID @ ¢
(G)HFLID@Q e

—1 +V1

ind

5See |code/model /PRIMITIVE_RULE_induction_true|for a proof of the validity of this rule.

6See DERIVED_RULE_KLD_implies_gen2_true in|code/model/CalculusSM_derived4. v

"See DERIVED_RULE_forall_node_before_eq_trans_true in |code/model/CalculusSM_
derived4.v.

®See DERIVED_RULE_unhappened_before_if_causal_trans in|code/model/CalculusSM. v,
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where II; is

— . ; STRVZ + hyp
(Gyu:e'<e) H,z: VXLID @ e - VSLID @ ¢ D)

(G u:e'<e)H,xz:V4LIDQ e, k: Kt (t) @e' - <(OD(t)) Qe
(G,u:e'<e)H,2:V4LID@ e, 2: ND(d)Q e',i: t€d @e',c:CQ e k: KT (1) Qe F <(OD(1)) Qe
(Gyu:e'<e)H,x :V<LID @ e,z : ND(d) Q@ ¢’,i: 1€ Q e',c: CQ ¢/ F <(OD(t)) @ ¢
(GYH,z :V<LID @ e, 2 : (FaAd.<(ND(d) At€Ed AC)) @ e <(OD(t)) @e
(GYH,z :VLID @ e,y : L(t) Q e,z : (FaAd.<X(ND(d) AtEAAC)) Q e <(OD(t)) Qe

cut + KID + thiny,+ —g

thiny

combo
Je+ <g+ A

thiny

and where 11, is:

WEAK< + hyp
(Gyu:e'<e)Hyx :V<LID @ e,k : KT (1) @ ¢/,d: 2(OD(d)) Q@ ¢’ - <(OD(t)) @ ¢

and combo is actually a sequence of following rules: cut, DITK, thin, and hyp.
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Appendix B
LoCK Tutorial

We briefly explain here how to use LoCK to prove lemmas. We provide several
examples in the following files: code/model/CalculusSM.v) code/model/CalculusSM2.
vl, |code/model/CalculusSM_derived.v, |code/model/CalculusSM_derived2.v| |code/model/
CalculusSM_derived3.v, and |code/model/CalculusSM_derived3.v. The names of the
lemmas in those files either start with PRIMITIVE for primitive rules, or by DERIVED for
derived rules. The example we use here is DERIVED_RULE_unlocal_before_eq_hyp_true,
which we proved in [code/model/CalculusSM. v, and which we discuss in Section [7.5}

Definition DERIVED_RULE_unlocal_before_eq_hyp
u % (eo : EventOrdering) e RHK a b :=
MkRulel
(fune’=[((u:e’'Ce),R)yH (z:a@ e), KF b))
(RyH,z:C a@ €), KF b).

Lemma DERIVED _RULE _unlocal_before_eq_hyp_true :
Y u z (eo : EventOrdering) e R H K a b,
rule_true (DERIVED _RULE_unlocal _before_eq_-hyp uze R H K a
b).
Proof.
start_proving_derived si.
LOCKelim z.

{ LoCKapply (PRIMITIVE_RULE_unlocal _before_hyp_true u).
LOCKapply@ v PRIMITIVE_RULE _local_if_localle_true.
inst_hyp el st. }

{ LoCKapply (DERIVED_RULE_add_localle_refl _true u e).
inst_hyp e st. }
Qed.

First we start the proof with the tactic: start_proving_derived s¢, which
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allows us to focus on the conclusion of the rule, and moves the hypotheses of the
rule to the hypotheses in Coq (those hypotheses are called st). We can then start
applying rules.

Every time we apply a rule, we use the proof that the rule is true. For example,
LOCKapply (PRIMITIVE_RULE_unlocal_before_hyp_true u), applies the PRIM-
ITTVE_RULE _unlocal_before_hyp rule, which we have proved to be valid in the
lemma PRIMITIVE_RULE _unlocal _before_hyp_true. Incidentally, this rule is the
U elimination rule presented in Figure [7.9] The LOCKelim tactic automatically
tries to apply the appropriate (elimination) rule. Here because the hypothesis z is
of the form C7, which is defined as C7 V 7 (see Section [7.2)), LOCKelim automati-
cally applies the or elimination rule. From this, we get two branches, one for each
branch of the or, which is why we have two blocks below that tactic: the first one
is the proof of the left branch, and the second one is the proof of the right branch.

We use a couple more useful tactics in this proof, which we describe next.
To prove the left branch, we use the LOCKapply@ u rule tactic, which is similar
to LOCKapply, but in addition gets either the guards or the hypotheses (depend-
ing on whether the name v is a guard name or an hypothesis name) in the right
shape whenever a rule mentions a guard or an hypothesis. For example DE-
RIVED_RULE_add_localle_refl_true, is the validity proof of one of our weakening
rule (see the rule called weak in Figure in Section [7.4). The guards in the
conclusion of that rule are of the form G4,y : ¢/Ce, G5. The tactic LOCKapply®@
helps turn the guards in the current sequent into that precise shape by pointing
to the guard name y (u in our proof above).

Finally inst_hyp e st, instantiates the hypotheses of our rule, namely the
function (fun ¢’ = [((u: ¢’ C ¢), R) H, (z: a @ ¢’), K F b]) with the event
variable e, and call the instances st.

Let us now end this section with a summary of the tactics we provide as part
of LoCK:

e start_proving_derived st: to start proving a derived rule.
e start_proving_primitive st ct hi: to start proving a primitive rule.

e inst_hyp v st: to instantiate the hypotheses of a rule with v, which must
either be an event, or a node name, or a trusted piece of data, or a non-
trusted piece of data, or an identifier.

e LOCKapply: to apply a rule.
e LOCKapply@: to apply a rule on a given guard or hypothesis.

e LOCKintro: an “introduction” tactic, which can be extended at will.

134



LOCKelim: an “elimination” tactic, which can be extended at will.

LOCKauto: an “auto” tactic, which can be extended at will, and which cur-
rently tries to apply a few simple rules, such as the “hypothesis” rule.

LOCKclear: to clear an hypothesis or a guard.

simseqs j: to get the sequents in the right shape after having applied a rule
(one should not need to use this tactic, because it is done by LOCKapply and
LOCKapply®@).

causal_norm_with u: to focus on a particular guard (one should not need
to use this tactic, because it is done by LOCKapply®@).

norm_with 2 to focus on a particular hypothesis (one should not need to
use this tactic, because it is done by LOCKapply@).
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Appendix C

OCaml Runtime Environments

We implemented two runtime environments to execute MoC distributed systems.
One of them relies on SGX to execute trusted components, while the other simpler
one runs trusted components as the other “normal” components. We discuss both
environments below.

SGX-free runtime. Beside the runtime environment discussed in Section
and below, that uses Intel SGX, we developed an additional runtime environment
(located in code/MinBFT/runtime_wo_sgx) that does not depend on any trusted en-
vironment for two reasons: it enables testing our framework on platforms that
do not contain any trusted execution environment; and it can be very useful for
debugging.

SGX-based runtime. As mentioned in Section using framework presented
in this thesis, one can extract OCaml code from distributed systems implemented
using MoC, such that trusted components execute inside Intel SGX enclaves. We
chose to rely on Graphene-SGX |[TPV17] to do this because, to the best of our
knowledge, one cannot directly run OCaml code inside SGX enclaves. Instead of
using Graphene-SGX, one could run OCaml’s runtime environment inside SGX en-
claves, which would require creating OCALLSs for all system calls made by OCaml’s
runtime environment that are not included in the libraries provided by SGX. Be-
sides the fact that this solution could lead to security issues, it might be very
slow.

Here, using a concrete example, i.e., a createUI call, we explain the interaction
between a replica’s main component and the Graphene-SGX enclave that runs this
replica’s USIG component. As mentioned above, because Graphene-SGX closes
enclaves after each call, we implemented a loop around the USIG service to keep
it running forever, as well as a TCP interface to access this loop. Also, because
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Graphene-SGX, to the best of our knowledge, provides only a C interface, we
implemented this loop and this TCP interface in C. As shown in Fig. [C.I} when
the main component of a replica calls the createUI function of its USIG, this call
is forwarded to the client of this TCP interface. Moreover, because we extract
MoC code to OCaml, we had to implement an OCaml/C wrapper around our
TCP interface implemented C. Next, the TCP client forwards the value it received
through this call to createUI to the TCP server, which runs inside a Graphene-
SGX enclave. To transfer this OCaml value across the TCP connection, we had
to implement a custom serializer to convert that value to a C structure. Finally,
when the TCP server running a Graphene-SGX enclave receives this C structure,
it uses a custom deserializer to convert it back to an OCaml value, which the
server uses to call the OCaml createUI function (again using a C/OCaml wrapper
around the USIG code). Note that similar steps have to executed to deliver the
value computed by the USIG, back to the main component.
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Appendix D

Summary of Notation

To help readers relate this thesis with its implementation, we provide in Ta-
ble a summary of the notation we use throughout this thesis. Table
summarizes the ByLoE and HyLoE notation; Table summarizes the MoC no-
tation; and Table summarizes the ByK notation; and Table summarizes
the LoCK notation. In addition, Table [D.5| provides pointers to the rules in our
implementations.

HyLoE Notation Meaning & File

a set of events

see Event field in the EventOrdering class (code/model/| |
EventOrdering.v)

a set of authenticated pieces of data

see the AuthenticatedData record (code/model/Crypto.v)

a set of keys

see class Keys (code/model/Crypto.v)

a causal ordering relation

see happenedBefore field in the EventOrdering class (code/model/
EventOrdering.v)

the location where the event e happens

see loc field in the EventOrdering class
(code/model/EventOrdering.v)

explains why event ¢ happened

see trigger field in the EventOrdering class (code/model/
EventOrdering.v)

an event happened at a correct node that followed the given protocol
see constructor trigger_info_data in the trigger_info (code/model/| |
EventOrdering.v)

Event

AuthData

Keys

<

loc(e)

trigger(e)

TImsg(msg)

141


code/model/EventOrdering.v
code/model/EventOrdering.v
code/model/Crypto.v
code/model/Crypto.v
code/model/EventOrdering.v
code/model/EventOrdering.v
code/model/EventOrdering.v
code/model/EventOrdering.v
code/model/EventOrdering.v
code/model/EventOrdering.v
code/model/EventOrdering.v

TItrust(it)

an event happened at a compromised node and the trusted compo-
nent was called

see constructor trigger_info_trusted in the trigger_info (code/model/
EventOrdering.v)

TIarbitrary

an event happened at a compromised node and the trusted compo-
nent was not called

see constructor trigger_info_arbitrary in the trigger_info (code/
model /EventOrdering.v)

pred(e)

local direct predecessor of ¢
see direct_pred field in the EventOrdering class (code/model/
EventOrdering.v)

keys(e)

the keys available at ¢
see keys field in the EventOrdering class
(code/model/EventOrdering.v)

nfo2auth(nfo)

a list of the authenticated pieces of data included in nfo
see bind_op_list, get_contained_authenticated_data and trigger_op
(code/model/EventOrdering.v)

first?(e) = true

pred(e) = None
see definition isFirst (code/model/EventOrdering.v)

pred(eg) = Some(eq)

€1 C €2 see direct_pred field in the EventOrdering class (code/model/

EventOrdering.v)
_ e’ if ¢/ C e, and e otherwise
() see definition local _pred (code/model/EventOrdering.v)
1 < en e1 < 62.\/. .61 = €2
- see definition happenedBeforeLe (code/model/EventOrdering.v)

e1 C e er < 62./\.1.00(61) = loc(eq)
see definition localHappenedBefore (code/model/EventOrdering.v)
e1 < eg Aloc(er) = loc(ea)

e1 £ eg

see definition localHappenedBeforeLe
(code/model/EventOrdering.v)

Table D.1: Summary of our ByLoE and HyLoE notation

MoC Notation

Meaning & File

S(cen)

the type of the state of component cn
see stateFun class (code/model/ComponentSM. v)

the type of inputs of component cn

L(en) see cio_I field in the ComponentlO record
(code/model/ComponentSM. v)
O(en) the type of output of component cn
see cio_O field in the ComponentlO record
(code/model/ComponentSM. v)
n the collection of components at level n
Component

see definition n_proc (code/model/ComponentSM.v)
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M™(T)

level n component monad of type T
see definition M_n (code/model/ComponentSM. v)

Upd” (cn)

type of the update function of the component called c¢n
see definition M_Update (code/model/ComponentSM.v)

ret(a)

return operator of our component monad

see definition ret (code/model/ComponentSM. v)

m >>=f

bind operator of our component monad
see definition bind (code/model/ComponentSM.v)

call

call operator of our component monad
see definition call_proc (code/model/ComponentSM. v)

[s@Q~ e

local subsystem [s after it has executed the list of events locally pre-
ceding e, excluding e
see definition M_run_ls_before_event (code/model/ComponentSM.v)

Is@te

local subsystem /s after it has executed the list of events locally pre-
ceding e, including e

see definition M_run_ls_on_event (code/model/ComponentSM. v)

ls]

cn

accesses the state of a component named cn of a local subsystem s
see definition state_of_component (code/model/ComponentSM. v)

comp| .,

returns the component comp if its name is cn, otherwise it is undefined
see definition on_state_of_component (code/model/ComponentSM.v)

Is@~el,,

returns the state of /s’s component called c¢n before the event e
see definition M_byz_state_ls_before_event_of_trusted (code/model/
ComponentSM. v)

Is@tel,

n

returns the state of /s’s component called cn after the event e

see definition M_byz_state_ls_on_event_of_trusted (code/model/ |
ComponentSM. v)

SQ@~ el

cn

computes the state of a component cn of a system S before a given
event e

see definition M_byz_state_sys_before_event (code/model/
ComponentSM. v)

sSatel,,

computes the state of a component ¢n of a system S after a given
event e

see definition M _byz_state_sys_on_event
(code/model/ComponentSM. v)

ls ~ e

returns the outputs of is’s main component at ¢ when all the events
preceding e are non-Byzantine, and returns the outputs of the trusted
component otherwise

see definition M_byz_output_ls_on_event
(code/model/ComponentSM. v)

S(loc(e)) ~ e
see definition M_byz_output_sys_on_event (code/model/
ComponentSM. v)

dels~e

the d occurs within the outputs computed by is ~ e
this is simply the membership relation as one can see in (code/model/
ComponentSM. v)
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RET(a)

return operator of our simple deep embedding (see Section [6.4)
see constructor PROC_RET in the Proc
(code/model/ComponentSM2.v)

BIND(])l, ])2)

bind operator of our simple deep embedding (see Section|6.4)
see constructor PROC_BIND in the Proc
(code/model/ComponentSM2.v)

CALL(cn, 1)

call operator of our simple deep embedding (see Section|6.4)

see constructor PROC_CALL in the Proc
(code/model/ComponentSM2.v)

Table D.2: Summary of our MoC notation

ByK Notation Meaning & File

e i the type of “raw” data that nodes have knowledge of
- see lak_data in LearnAndKnows class (code/model/LearnAndKnows . v)

byk._info the type of information that might be shared by different pieces of data
- see lak_info in LearnAndKnows class (code/model/LearnAndKnows . v)

byk_mem the type of objects used to store one’s knowledge |
T see lak_memory in  LearnAndKnows class (code/model/

LearnAndKnows . v)
byk_data2info extracts the information_contained in some piece of data
‘ see lak_data2info in  LearnAndKnows class (code/model/

LearnAndKnows. v)

what it means to know some piece of data

e see lak_knows in LearnAndKnows class
(code/model/LearnAndKnows.v)
the system that one wants to reason about
byk_sys

see lak_system in LearnAndKnows class
(code/model/LearnAndKnows.v)

byk_data2owner

extracts the “owner” of some piece of data
see lak_data2owner in LearnAndKnows class
(code/model/LearnAndKnows. v)

byk_data2msg

converts a piece of data to a message
see dis_data2msg in Disseminate class (code/model/Disseminate.v)

byk_data2auth

extracts some piece of authenticated data from some piece of raw data
see lak_data2auth in LearnAndKnows class (code/model/
LearnAndKnows . v)

byk_data2auth_list

extracts all pieces of authenticated data from some piece of raw data
see lak_data2auth_list in LearnAndKnows class (code/model/
LearnAndKnows . v))

byk_verify

verifies the correctness of authenticity of a piece of data

see lak_verify in LearnAndKnows class
(code/model/LearnAndKnows.v)

byk_max_sign

the total number of processes that can sign messages in the system
see dis_max_sign in AuthKnowledge class
(code/model/Disseminate. v)
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code/model/ComponentSM2.v
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code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/Disseminate.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/LearnAndKnows.v
code/model/Disseminate.v

creates a piece of data from some piece of information and a signature
see dis_extend_info in  AuthKnowledge class (code/model/
Disseminate.v)

byk_ext_info

creates a piece of data from a piece of data and a signature
see dis_extend_data in AuthKnowledge class (code/model/
Disseminate.v)

byk_ext_data

allows casting a pieces of knowledge byk_data into a pieces of data |
see dis_data2data in  AuthKnowledge class (code/model/
Disseminate.v)

byk_data2data

extracts a signature from a piece of data
see dis_data2sign in AuthKnowledge class
(code/model/Disseminate.v)

byk_data2sign

converts a piece of data into its canonical form, which is a list of pairs
of (1) a piece of data/information and (2) a signature

see dis_data2can in AuthKnowledge class
(code/model/Disseminate.v)

byk_data2can

Table D.3: Summary of our ByK notation

LoCK Notation Meaning

Data a set of pieces of data
see kc_data field in the KnowledgeComponents class (code/model/
CalculusSM.v)

Trust a set of trusteq pieqes of data
see kc_trust field in the KnowledgeComponents class (code/model/
CalculusSM.v)

Identifier a set of dat.a idgntifiers
see ke_id field in the KnowledgeComponents class
(code/model/CalculusSM.v)

trustHasld relates trusted pieces of data and identifiers
see kc_trust_has_id field in the KnowledgeComponents class (code/
model/CalculusSM.v)

oy the distributed system one wants to reason about |
see kc_sys field in the KnowledgeComponents class (code/model/
CalculusSM.v)

mem the name of the component holding the knowledge
see kc_mem field in the KnowledgeComponents class (code/model/
CalculusSM.v)

trust the name of the trusted component
see |0 Trusted class (code/model/EventOrdering.v) and see trusted-
StateFun class (code/model/ComponentSM. v)
identifies the node that generated a given piece of data

owner : :
see kc_data_owner field in the KnowledgeComponents class (code/
model/CalculusSM.v)
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code/model/Disseminate.v
code/model/Disseminate.v
code/model/Disseminate.v
code/model/Disseminate.v
code/model/Disseminate.v
code/model/Disseminate.v
code/model/Disseminate.v
code/model/Disseminate.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/EventOrdering.v
code/model/ComponentSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v

verify(e, auth)

returns true if the authenticated piece of data auth can indeed be
authenticated at e, and false otherwise
see definition kc_verify (code/model/CalculusSM.v)

genFor

know

relates trusted pieces of data and non-trusted pieces of data

see kc_generated_for field in the KnowledgeComponents class (code/
model/CalculusSM.v)

expresses what it means to hold some information

trusted?2id

initld

see kc_knows field in the KnowledgeComponents class (code/model/ |
CalculusSM.v)

returns the trusted identifier maintained by the trusted component

see kc_trust_has_id field in the KnowledgeComponents class (code/
model/CalculusSM.v)

initial value of the identifier maintained by the trusted component

auth2data

Ts J—y /\y Vs —, H,V

see ke_init_id field in the KnowledgeComponents class (code/model/ |
CalculusSM.v)

extracts the pieces of data contained within an authenticated piece of
data

see kc_auth2data field in the KnowledgeComponents class (code/
model/CalculusSM.v)

standard first-order logic operators

see constructors: KE_-TRUE, KE_FALSE, KE_AND, KE_OR,
KE_IMPLIES, KE_EX, KE_ALL, respectively (code/model/
CalculusSM.v)

HyLoE-specific operators to state properties relating different points in
space/time

see constructors: KE_RIGHT_BEFORE, KE_HAPPENED_BEFORE,
KE_LOCAL_BEFORE, respectively (code/model/CalculusSM.v)

the HyLoE-specific operator to talk about initial event

see constructor KE_FIRST (code/model/CalculusSM.v)

the HyLoE-specific operators to relate space/time coordinates
see constructor KE_AT (code/model/CalculusSM.v)

it

knows
see constructor KE_LKNOWS (code/model/CalculusSHM. v)

learns
see constructor KE_LEARNS (code/model/CalculusSM.v)

owns

see constructor KE_LHAS_OWNER (code/model/CalculusSM.v)

disseminate
see constructor KE_DISS (code/model/CalculusSM.v)

I+

knows identifier
see constructor KE_ID_AFTER (code/model/CalculusSM. v)

HI

has identifier
see constructor KE_LHAS_ID (code/model/CalculusSM.v)

generated

see constructor KE_GEN_FOR (code/model/CalculusSM.v)

“we” own the data d
see definition KE_OWNS (code/model/CalculusSM.v)
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code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v

“we” disseminated the data d

OD(d) see definition KE_DISS_OWN (code/model/CalculusSM.v)

if one learns some trusted piece data, it must have been disseminated
LID by the corresponding trusted component

see definition ASSUMPTION _learns_if_gen (code/model/

CalculusSM.v)

if we know some trusted information, then we either knew it before, or
. we just learned it, or we just disseminated it

see  definition ASSUMPTION _learns_or_gen (code/model/

CalculusSM.v)

the identifiers maintained by trusted components monotonically in-
Mon crease s

see definition ASSUMPTION _monotonicity (code/model/

CalculusSM.v)

an identifier generated by a trusted component i must be between the
e one it recorded before and the one it recorded after it generated i

see  definition  ASSUMPTION _generates_new  (code/model/

CalculusSM.v)

a trusted pieces of data disseminated by a trusted component at a
Uniq given point in space/time must be unique

see definition ASSUMPTION_disseminates_unique (code/model/
CalculusSM.v)

3if! de! Htfa 3nf

3(KTi, f), I(KT4, f), I(KTt, /), and I(KTn, f), respectively i.e., existen-
tial quantifier for our different kinds of values

see KE_EX_ID, KE_EX_DATA, KE_EX_TRUST, and
KE_EX_NODE, respectively (code/model/CalculusSM.v)

Vi,f1 Vd.f’ vtfs vnf

V(KTi, f), V(KTd, f), V(KTt, /), and V(KTn, ), respectively i.e., univer-
sal quantifier for our different kinds of values

see KE_ALL_ID, KE_ALL_DATA, KE_ALL_TRUST, and
KE_ALL_NODE, respectively (code/model/CalculusSM.v)

3; Ai. ... i \ip,.7, i.€., universal multi-quantifier for node (and similarly
for the other values)

Fidin, . dnT see KE_EX_IDs (code/model/CalculusSM.v)
ViAi....ViXiy.T, i.e., universal multi-quantifier for node (and similarly
Vit oo T for the other values)
e see KE_ALL_IDs (code/model/CalculusSM.v)
. negation
see KE_NOT (code/model/CalculusSM.v)
=< happened before or equal, i.e., <7V 7
- see KE_HAPPENED _BEFORE_EQ (code/model/CalculusSM.v)
Cr happened locally before or equal, i.e., C7 V 7 ]
= see KE_LOCAL_BEFORE_EQ (code/model/CalculusSM.v)
. direct predecessor or equal, i.e., C7 V (T A ©)
= see KE_RIGHT_BEFORE_EQ (code/model/CalculusSM.v)
i < i identifier is less than or equal to, i.e., i1 < iz V i3 = i

see KE_ID_LE (code/model/CalculusSM. v)
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code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
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[7] interpretation of LoCK expressions
‘ see interpret (code/model/CalculusSM.v)

(GVH - o syntax of sequents
see MkSeq (code/model/CalculusSM. v)

Hy H, appgnd.operation on sequent hypothes_es

’ this is simply the append operation on lists

(code/model/CalculusSM.v)
Table D.4: Summary of our LoCK notation

Thesis name Implementation name

O for (<) see PRIMITIVE_RULE_unhappened_before_hyp in |code/model/
CalculusSM.v

O; for (<) see PRIMITIVE_RULE_unhappened_before_if_causal in
code/model/CalculusSM.v

Ok for () see DERIVED_RULE_unlocal_before_hyp in code/model /| |
CalculusSM.dq

O for () see DERIVED_RULE_unlocal_before_if_causal in |code/model/
CalculusSM.v

Ore see PRIMITIVE_RULE_unhappened_before_if_causal_trans_eq in
code/model/CalculusSM.v

if-0O see PRIMITIVE_RULE_introduce_direct_pred in |code/model/||
CalculusSM.v

if® see PRIMITIVE_RULE_introduce_direct_pred_eq in |code/model/| |
CalculusSM.v

weak for (<, <) see PRIMITIVE_RULE_causal_if_causalle_true in |code/model/
CalculusSM.v

weak for (C, C) see PRIMITIVE_RULE_local_if_localle in code/model /! |
CalculusSM.v

weak for (C, <) see PRIMITIVE_RULE_local_if_causal in
code/model/CalculusSM.v

weak for (C, <) see PRIMITIVE_RULE_localle_if_causalle in |code/model/
CalculusSM.v

weak for (C, ) see PRIMITIVE_RULE_direct_pred_if_local_pred in |code/model/
CalculusSM.v

weak for (=, ) SeePRIMITIVE_RULE_localle_if_eqincode/model/CalculusSM.v_j

suby see PRIMITIVE_RULE_subst_causal_eq_-hyp in |code/model/
CalculusSM.v

subg see PRIMITIVE_RULE_subst_causal_eq_concl in |code/model/| |
CalculusSM.v

=, ef1 see PRIMITIVE_RULE_add_eq_refl in|code/model/CalculusSM.v| |

-0 see PRIMITIVE_RULE not_first in|code/model/CalculusSM.v|

®Odec see PRIMITIVE_RULE_first_dec in|code/model/CalculusSM.v

I This rule, as well as [y, are not primitive anymore because C is not a primitive operator
of LoCK anymore. However, we still present it as such for simplicity (see KE_LOCAL_BEFORE in
code/model/CalculusSM. v)).
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code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v

ind see PRIMITIVE_RULE_pred_induction in code/model/CalculusSM.v| |
tri see PRIMITIVE_RULE_tri_if_same_loc in

code/model/CalculusSM.v
sym see PRIMITIVE_RULE_id_eq_sym in/code/model/CalculusSM.v

trans for (=, <, <)

see PRIMITIVE_RULE_id_lt_trans_eq_1t in code/model/
CalculusSM.v

trans for (<, =, <)

see PRIMITIVE_RULE_id_lt_trans_lt_eq in code/model// |
CalculusSM.v

trans for (<, <, <)

see PRIMITIVE_RULE_id_lt_trans_1t_1t in code/model/| |
CalculusSM.v

trans for (=,=,=) | see PRIMITIVE_RULE_id_eq_trans_true in code/model/
CalculusSM. v

e see PRIMITIVE_RULE_decidable_knows in
code/model/CalculusSM.v

irrefl see PRIMITIVE_RULE_id_lt_elim in|/code/model/CalculusSM.v

lowner see PRIMITIVE_RULE_has_owner_implies_eq in
code/model/CalculusSM.v

ldata see PRIMITIVE_RULE_collision_resistant in |code/model/| |
CalculusSM.v

lid see PRIMITIVE_RULE_ids_after_imply_eq_ids in |code/model/| |
CalculusSM.v

Ty see PRIMITIVE_RULE_true in|code/model/CalculusSM.v

dg see PRIMITIVE_RULE_false_elim in|code/model/CalculusSM.v

—E see PRIMITIVE_RULE_implies_elimin code/model/CalculusSM.v |

—1 see PRIMITIVE_RULE_implies_intro in|code/model/CalculusSM.v| |

VE see PRIMITIVE_RULE_or_elim in|code/model/CalculusSM.v ]

V11 see PRIMITIVE_RULE_or_intro_left in|code/model/CalculusSM.v| |

Vip SeePRIMITIVE_RULE_OI_intro_rightincode/model/CalculusSM.v_

AE see PRIMITIVE_RULE_and_elim in code/model/CalculusSM.v N

N1 see PRIMITIVE_RULE_and_intro injcode/model/CalculusSM.v

e (for KTi)

SeePRIMITIVE_RULE_eXists_id_elimincode/model/CalculusSM.v_

e (for KTd)

see PRIMITIVE_RULE_exists_data_elim in code/model/| |
CalculusSM.v

e (for KTt)

see PRIMITIVE_RULE_exists_trust_elim in code/model/
CalculusSM.v

e (for KTn)

see PRIMITIVE_RULE_exists_node_elim in code/model/| |
CalculusSM.v

3; (for KTi)

see PRIMITIVE_RULE_id_count_intro in|code/model/CalculusSM. v |

3; (for KTd)

see PRIMITIVE_RULE_exists_data_intro in code/model/| |
CalculusSM.v

3; (for KTt)

see PRIMITIVE_RULE_exists_trust_intro in code/model/| |
CalculusSM.v

3; (for KTn)

see PRIMITIVE_RULE_exists_node_intro in code/model/| |
CalculusSM.v

Vg (for KTi)

see PRIMITIVE_RULE_all_id_elim in|code/model/CalculusSM.v

Ve (for KTd)

see PRIMITIVE_RULE_all_data_elim in|code/model/CalculusSM.v| |

Vg (for KTt)

see PRIMITIVE_RULE_all_trust_elim in|code/model/CalculusSM.v, |
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code/model/CalculusSM.v
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code/model/CalculusSM.v
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code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v

Ve (for KTn) see PRIMITIVE_RULE_all_node_elim in|code/model/CalculusSM.v| |
V; (for KTi) see PRIMITIVE_RULE_all_id_intro in|code/model/CalculusSM.v| |
V1 (for XTd) see PRIMITIVE_RULE_all_data_intro in|code/model/CalculusSM. v
V: (for KTt) see PRIMITIVE_RULE_all_trust_intro in

code/model/CalculusSM.v

see PRIMITIVE_RULE_all_node_intro in|code/model/CalculusSM.v] |

Ce see  PRIMITIVE_RULE_unright_before_hyp in code/model/ |
CalculusSM.v
Og for C see PRIMITIVE_RULE_unright_before_hyp_if_causal in
code/model/CalculusSM.v
O; for C see PRIMITIVE_RULE_unright_before_if_causal in |code/model/| |
CalculusSM.v
STR- see PRIMITIVE_RULE_split_local_before_eq2 in |code/model/
B CalculusSM.v
STR< see PRIMITIVE_RULE_split_happened_before_eq2 in code/model/ |
a CalculusSM.v
STR1< see  PRIMITIVE_RULE_at_implies_localle in code/model/| |
a CalculusSM.v
STR1« see PRIMITIVE_RULE_at_implies_local in code/model// |
CalculusSM.v
split- see  PRIMITIVE_RULE_split_local_before in code/model/
CalculusSM.v
= SeePRIMITIVE_RULE_causal_eq_symincode/model/CalculusSM.V_i
=pred= see PRIMITIVE_RULE_weaken_direct_pred_to_local_pred in|code/
model/CalculusSM.v
@1, see PRIMITIVE_RULE_at_change_localle in code/model/
CalculusSM.v
loc see PRIMITIVE_RULE_at_implies_same_node in

code/model/CalculusSM.v

change for i1 = iy

see  PRIMITIVE_RULE_id_eq_change_event in |code/model/||
CalculusSM.v

change for dy = do

see PRIMITIVE_RULE_data_eq_change_event in |code/model/
CalculusSM2.v

change for t; = (o

see PRIMITIVE_RULE_trust_eq_change_event in |code/model/||
CalculusSM.v

change for a; = as

see PRIMITIVE_RULE_node_eq_change_event in |code/model/| |
CalculusSM2.v

change for i1 < i

see  PRIMITIVE_RULE_id_lt_change_event in code/model /| |
CalculusSM.v

change for HZ(t, 1)

see PRIMITIVE_RULE_has_id_change_event in |code/model/
CalculusSM.v

change for O(d, a)

see PRIMITIVE_RULE_has_owner_change_event in |code/model/||
CalculusSM.v

change for G(d, t)

see PRIMITIVE_RULE_gen_for_change_event in
code/model/CalculusSM.v

valSub for
(HZ(2,4))

see PRIMITIVE_RULE_trust_has_id_subst in code/model/
CalculusSM.v
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code/model/CalculusSM2.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM2.v
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code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v
code/model/CalculusSM.v

valSub
(O(d, a))

for

see PRIMITIVE_RULE_subst_node_in_has_owner
CalculusSM.v

in code/model/w

Table D.5: Pointers to our rules
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