

On idempotent n -ary semigroups

Jimmy Devillet

University of Luxembourg

May 22, 2020

Summary of the talk

Part I:

Characterizations of

- single-peakedness and other related properties
- the class of totally ordered quasitrivial semigroups
- the class of totally ordered commutative idempotent semigroups

→ Surprising link between social choice theory and semigroup theory

Enumeration of the class of totally ordered commutative idempotent semigroups

→ New definition of the Catalan numbers

Summary of the talk

Part II:

Characterizations of

- the class of quasitrivial n -ary semigroups
- hierarchical classes of idempotent n -ary semigroups
- the class of symmetric idempotent n -ary semigroups

→ Constructive descriptions

Reducibility criteria for symmetric idempotent n -ary semigroups

Part I: Single-peakedness and idempotent semigroups

Order

X : non-empty set

A *preorder* on X is a binary relation \precsim on X that is reflexive and transitive

\precsim total \Rightarrow \precsim is a *weak order*

\precsim antisymmetric \Rightarrow \precsim is a *partial order* and we denote it by \preceq

\preceq total \Rightarrow \preceq is a *total order* and we denote it by \leq

(X, \preceq) *partially ordered set* (or *poset*)

(X, \preceq) is called a *semilattice* if every pair $\{x, y\} \subseteq X$ has a supremum $x \vee y$

Ideal

(X, \precsim) preordered set

I nonempty subset of (X, \precsim)

I is an *ideal* if it is a directed lower set, i.e., if

- $\forall x \in X$ and $\forall y \in I$ such that $x \precsim y$ we have $x \in I$
- $\forall y, z \in I \exists u \in I$ such that $y \precsim u$ and $z \precsim u$

In a poset (X, \preceq) we define $[a, b]_{\preceq} = \{x \in X : a \preceq x \preceq b\}$

A subset C of (X, \preceq) is *convex (for \preceq)* if it contains $[a, b]_{\preceq} \forall a \preceq b \in C$

Single-peakedness

Definition. (Black, 1948)

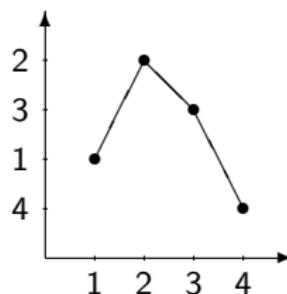
\leq' is *single-peaked for \leq* if $\forall a, b, c \in X$,

$$a < b < c \Rightarrow b < ' a \text{ or } b < ' c$$

Example. On $X = \{1, 2, 3, 4\}$ consider \leq and \leq' defined by

$$1 < 2 < 3 < 4 \quad \text{and} \quad 2 < ' 3 < ' 1 < ' 4$$

$$\text{id}: X \rightarrow X$$



Single-peakedness

Proposition

The following assertions are equivalent.

- (i) \leq' is single-peaked for \leq
- (ii) Every ideal of (X, \leq') is a convex subset of (X, \leq)

(X, \leq)

(X, \leq')

\leq' is single-peaked for \leq

Generalizations

Two generalizations of single-peakedness for weak orders:

- *single-plateauedness* (Black, 1987)
- existential single-peakedness (Fitzsimmons, 2015)

Single-plateauedness

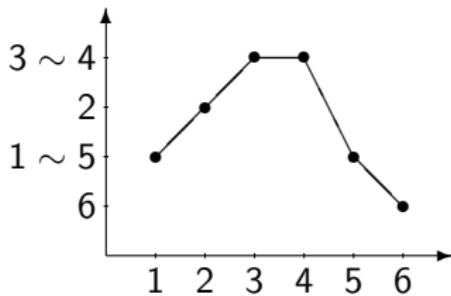
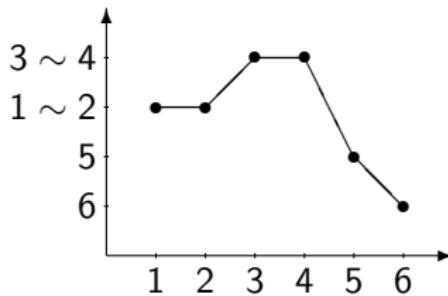
\precsim weak order on X

Definition.

\precsim is *single-plateaued for \leq* if $\forall a, b, c \in X$,

$$a < b < c \Rightarrow b \prec a \text{ or } b \prec c \text{ or } a \sim b \sim c$$

Examples. On $X = \{1 < 2 < 3 < 4 < 5 < 6\}$



Quasitriviality

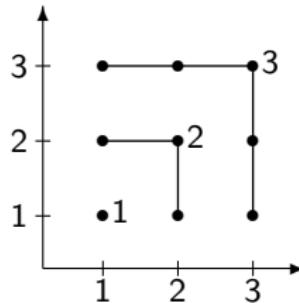
(X, G) groupoid : X nonempty set and $G: X^2 \rightarrow X$

G associative $\Rightarrow (X, G)$ semigroup

$G: X^2 \rightarrow X$ is said to be *quasitrivial* (or *conservative*) if

$$G(x, y) \in \{x, y\} \quad x, y \in X$$

Example. $G = \max_{\leq}$ on $X = \{1, 2, 3\}$ endowed with the usual \leq



Ordinal sum

(Y, \leq) totally ordered set

$\{(X_\alpha, G_\alpha) : \alpha \in Y\}$ set of semigroups such that

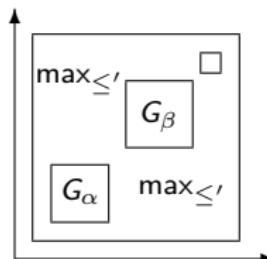
$$X_\alpha \cap X_\beta = \emptyset, \quad \alpha \neq \beta$$

Definition. (Clifford, 1954)

(X, G) is an *ordinal sum of semigroups* (X_α, G_α) if

- $X = \bigcup_{\alpha \in Y} X_\alpha$
- $G|_{X_\alpha^2} = G_\alpha \quad \forall \alpha \in Y$
- $\forall (x, y) \in X_\alpha \times X_\beta$ such that $\alpha < \beta$, we have $G(x, y) = G(y, x) = y$

$\rightarrow (X, G)$ is a semigroup



Projections

The *projection operations* $\pi_1: X^2 \rightarrow X$ and $\pi_2: X^2 \rightarrow X$ are respectively defined by

$$\begin{aligned}\pi_1(x, y) &= x, & x, y \in X \\ \pi_2(x, y) &= y, & x, y \in X\end{aligned}$$

(X, π_1) : *left zero semigroup*

(X, π_2) : *right zero semigroup*

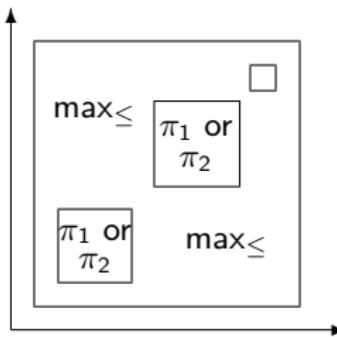
(X, G) is a *singular band* if $G \in \{\pi_1, \pi_2\}$

Quasitrivial semigroups

Theorem (Länger, 1980)

G is associative and quasitrivial if and only if

$$\exists \precsim : G|_{A \times B} = \begin{cases} \max_{\precsim}|_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim$$



Corollary

G is associative, quasitrivial, and commutative $\Leftrightarrow \exists \leq : G = \max_{\leq}$

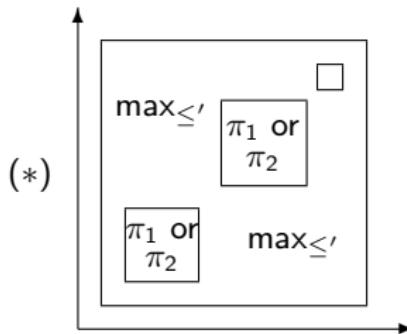
Totally ordered semigroups

$G: X^2 \rightarrow X$ is *\leq -preserving* for some \leq on X if

$$\left. \begin{array}{l} x \leq x' \\ y \leq y' \end{array} \right\} \Rightarrow G(x, y) \leq G(x', y')$$

→ (X, G) totally ordered

Totally ordered quasitrivial semigroups



single-plateauedness : $a < b < c \Rightarrow b \prec a \text{ or } b \prec c \text{ or } a \sim b \sim c$

Proposition

Let \leq on X and $G: X^2 \rightarrow X$. The following assertions are equivalent.

- (i) G is associative, quasitrivial, and \leq -preserving
- (ii) $\exists \precsim : G$ is of the form (*) and \precsim is single-plateaued for \leq

Moreover, if G is commutative, then (i)-(ii) are equivalent to

- (iii) $\exists \leq' : G$ is of the form (*) and \leq' is single-peaked for \leq

Semilattices

$G: X^2 \rightarrow X$ is **idempotent** if $G(x, x) = x \ \forall x \in X$

Proposition (folklore)

(X, G) commutative idempotent semigroup $\Leftrightarrow \exists \preceq$ on X such that $G = \gamma$

$$(X, \preceq) \Leftrightarrow (X, \gamma)$$

Definition.

\preceq has the **convex-ideal property** (**CI-property** for short) **for** \leq if for all $a, b, c \in X$,

$$a < b < c \Rightarrow b \preceq a \vee c$$

Definition.

\preceq is **internal for** \leq if for all $a, b, c \in X$,

$$a < b < c \Rightarrow (a \neq b \vee c \quad \text{and} \quad c \neq a \vee b)$$

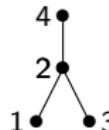
Order-preserving semilattice operations

Proposition

Let \leq on X and $G: X^2 \rightarrow X$. The following assertions are equivalent.

- (i) G is associative, idempotent, commutative, and \leq -preserving
- (ii) $\exists \preceq : G = \gamma$ and \preceq satisfies
 - (a) CI-property for \leq
 - (b) internality for \leq
- (iii) $\exists \preceq : G = \gamma$ and \preceq satisfies
 - (a) Every ideal of (X, \preceq) is a convex subset of (X, \leq)
 - (b) $\forall a \leq b \in X$, we have $a \gamma b \in [a, b]_{\leq}$

(X, \leq)



(X, \preceq)

Enumeration of order-preserving semilattice operations

Assume that $X = \{1, \dots, n\}$, is endowed with the usual \leq defined by

$$1 < \dots < n$$

$\{\leq$ -preserving semilattice operations on $X\}$

\uparrow

$\{\text{ordered rooted binary trees with } n \text{ vertices}\}$

Proposition

The number of \leq -preserving semilattice operations on X is the n th Catalan number.

Part II: Idempotent n -ary semigroups

n-ary semigroups

(X, F) *n*-ary groupoid : X nonempty set and $F: X^n \rightarrow X$

Definition. (Dörnte, 1928)

$F: X^n \rightarrow X$ is *associative* if

$$\begin{aligned} F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1}) \\ = F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1}) \end{aligned}$$

for all $x_1, \dots, x_{2n-1} \in X$ and all $1 \leq i \leq n-1$.

$\implies (X, F)$ is an *n-ary semigroup*

$F: X^n \rightarrow X$ is

- *quasitrivial* if $F(x_1, \dots, x_n) \in \{x_1, \dots, x_n\} \forall x_1, \dots, x_n \in X$
- *idempotent* if $F(x, \dots, x) = x \forall x \in X$
- *symmetric* if F is invariant under the action of permutations

n-ary extensions

(X, G) semigroup

Define a sequence $(G^m)_{m \geq 1}$ of $(m + 1)$ -ary operation inductively by the following rules : $G^1 = G$ and

$$G^m(x_1, \dots, x_{m+1}) = G^{m-1}(x_1, \dots, x_{m-1}, G(x_m, x_{m+1})), \quad m \geq 2.$$

Setting $F = G^{n-1}$, the pair (X, F) is the *n-ary extension* of (X, G) .

G is a *binary reduction* of F

$\rightarrow (X, F)$ is an *n*-ary semigroup

Not every *n*-ary semigroup is obtained like this

Example.

(\mathbb{R}, F) where $F: \mathbb{R}^3 \rightarrow \mathbb{R}$ is defined by

$$F(x, y, z) = x - y + z, \quad x, y, z \in \mathbb{R}$$

Quasitrivial n -ary semigroups

Combining a result of Ackerman (2011) with a result of Dudek and Mukhin (2006) we conclude the following result.

Theorem

Every quasitrivial n -ary semigroup is the n -ary extension of a semigroup

But the binary reduction is in general neither quasitrivial nor unique.

Example

$$F(x, y, z) = x + y + z \pmod{2}$$

$$G(x, y) = x + y \pmod{2} \quad G'(x, y) = x + y + 1 \pmod{2}$$

$G': Y^2 \rightarrow Y$ is said to be *conjugate* to $G: X^2 \rightarrow X$ if $\exists \varphi: X \rightarrow Y$ bijection such that

$$\varphi(G(x, y)) = G'(\varphi(x), \varphi(y)), \quad x, y \in X$$

Neutral elements

$e \in X$ is said to be a *neutral element for F* if

$$F(x, e, \dots, e) = F(e, x, e, \dots, e) = \dots = F(e, \dots, e, x) = x, \quad x \in X$$

E_F : set of neutral elements of F

Example. $F(x, y, z) = x + y + z \pmod{2}$

If $E_F \neq \emptyset$, then

$$E_F \longleftrightarrow \{\text{binary reductions of } F\}$$

Proposition

If $F: X^n \rightarrow X$ is associative and quasitrivial, then $|E_F| \leq 2$

Quasitrivial n -ary semigroups

Theorem

Let $F: X^n \rightarrow X$ be associative and quasitrivial. The following assertions are equivalent.

(i) $|E_F| \leq 1$

(ii) The associative and quasitrivial $G: X^2 \rightarrow X$ defined by

$$G(x, y) = F(x, \dots, x, y) = F(x, y, \dots, y), \quad x, y \in X$$

is the unique binary reduction of F

Quasitrivial n -ary semigroups

Theorem

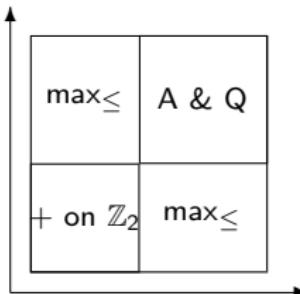
Let $F: X^n \rightarrow X$ be associative and quasitrivial and let $e_1 \neq e_2 \in X$. The following assertions are equivalent.

- (i) $E_F = \{e_1, e_2\}$
- (ii) n is odd and the associative $G_{e_1}, G_{e_2}: X^2 \rightarrow X$ defined by

$$G_{e_1}(x, y) = F(x, e_1, \dots, e_1, y) \text{ and } G_{e_2}(x, y) = F(x, e_2, \dots, e_2, y), \quad x, y \in X$$

are the only binary reductions of F

Moreover, if any of the assertions (i) – (ii) is satisfied, then $G_{e_1} \neq G_{e_2}$ and neither of them is quasitrivial



Towards idempotent n -ary semigroups

$\forall k \in \{1, \dots, n\}$, let

$$D_k^n = \bigcup_{\substack{S \subseteq \{1, \dots, n\} \\ |S| \geq k}} \{(x_1, \dots, x_n) \in X^n : \forall i, j \in S, x_i = x_j\}$$

\mathcal{F}_k^n : class of associative n -ary operations $F: X^n \rightarrow X$ that satisfy

$$F(x_1, \dots, x_n) \in \{x_1, \dots, x_n\}, \quad (x_1, \dots, x_n) \in D_k^n$$

$\rightarrow \mathcal{F}_1^n$: class of associative and quasitrivial n -ary operations $F: X^n \rightarrow X$

$\rightarrow \mathcal{F}_n^n$: class of associative and idempotent n -ary operations $F: X^n \rightarrow X$

$$\mathcal{F}_1^n \subseteq \mathcal{F}_2^n \subseteq \dots \subseteq \mathcal{F}_n^n$$

Proposition

$$\mathcal{F}_1^n = \mathcal{F}_2^n = \dots = \mathcal{F}_{n-2}^n \subseteq \mathcal{F}_{n-1}^n \subseteq \mathcal{F}_n^n, \quad n \geq 3$$

Towards idempotent n -ary semigroups

A group $(X, *)$ with neutral element e has *bounded exponent* if $\exists m \geq 1$ such that

$$\underbrace{x * \cdots * x}_{m \text{ times}} = e, \quad x \in X$$

An element $z \in X$ is an *annihilator* of $F: X^n \rightarrow X$ if

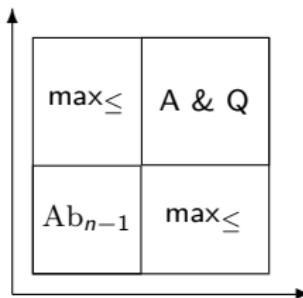
$$F(x_1, \dots, x_n) = z, \quad \text{whenever } z \in \{x_1, \dots, x_n\}$$

Towards idempotent n -ary semigroups

Definition

\mathcal{H} : class of operations $G: X^2 \rightarrow X$ such that $\exists Y \subseteq X$ with $|Y| \geq 3$ for which

- (a) $(Y, G|_{Y^2})$ is an Abelian group whose exponent divides $n - 1$
- (b) $G|_{(X \setminus Y)^2}$ is associative and quasitrivial
- (c) Any $x \in X \setminus Y$ is an annihilator for $G|_{(\{x\} \cup Y)^2}$



Theorem

$$F \in \mathcal{F}_{n-1}^n \setminus \mathcal{F}_1^n \Leftrightarrow F \text{ is reducible to } G \in \mathcal{H}$$

Towards idempotent n -ary semigroups

Theorem

$$F \in \mathcal{F}_{n-1}^n \setminus \mathcal{F}_1^n \iff F \text{ is reducible to } G \in \mathcal{H}$$

Sketch of the proof

\Leftarrow : Check the axioms

\Rightarrow : Follows from the following steps

- (1) $\forall x_1, \dots, x_n \in X: F(x_1, \dots, x_n) \notin \{x_1, \dots, x_n\} \Rightarrow x_1, \dots, x_n, F(x_1, \dots, x_n) \in E_F$
- (2) Step (1) $\Rightarrow F = G_e^{n-1} \forall e \in E_F$
- (3) Check that G_e inherits the good properties from F

Symmetric idempotent n -ary semigroups

A *symmetric n -ary band* is a symmetric idempotent n -ary semigroup

Examples

- (X, γ) semilattice $\Rightarrow (X, \gamma^{n-1})$ symmetric n -ary band
- $(X, *)$ Abelian group whose exponent divides $n - 1$
 $\Rightarrow (X, *^{n-1})$ symmetric n -ary band

$$*^{n-1}(x, \dots, x) = \underbrace{x * \dots * x}_{=e} * x = x$$

n-ary semilattices of *n*-ary semigroups

Extend the concept of semilattices of semigroups (Clifford, Yamada, ...) to *n*-ary semigroups

(Y, γ^{n-1}) *n*-ary semilattice

$\{(X_\alpha, F_\alpha) : \alpha \in Y\}$ set of *n*-ary semigroups such that

$$X_\alpha \cap X_\beta = \emptyset, \quad \alpha \neq \beta$$

Definition

(X, F) is an *n*-ary semilattice (Y, γ^{n-1}) of *n*-ary semigroups (X_α, F_α) if

- $X = \bigcup_{\alpha \in Y} X_\alpha$
- $F|_{X_\alpha^n} = F_\alpha \quad \forall \alpha \in Y$
- $\forall (x_1, \dots, x_n) \in X_{\alpha_1} \times \dots \times X_{\alpha_n}$

$$F(x_1, \dots, x_n) \in X_{\alpha_1 \gamma \dots \gamma \alpha_n}$$

We write $(X, F) = ((Y, \gamma^{n-1}), (X_\alpha, F_\alpha))$

Not an *n*-ary semigroup in general!

Strong n -ary semilattices of n -ary semigroups

Extend the concept of strong semilattices of semigroups (Kimura, ...) to n -ary semigroups

Definition

Let $(X, F) = ((Y, \gamma^{n-1}), (X_\alpha, F_\alpha))$. Suppose that $\forall \alpha \preceq \beta \in Y$
 $\exists \varphi_{\alpha, \beta} : X_\alpha \rightarrow X_\beta$ homomorphism such that

- (a) $\varphi_{\alpha, \alpha}$ is the identity on X_α
- (b) $\forall \alpha \preceq \beta \preceq \gamma \in Y$ we have $\varphi_{\beta, \gamma} \circ \varphi_{\alpha, \beta} = \varphi_{\alpha, \gamma}$
- (c) $\forall (x_1, \dots, x_n) \in X_{\alpha_1} \times \dots \times X_{\alpha_n}$ we have

$$F(x_1, \dots, x_n) = F_{\alpha_1 \gamma \dots \gamma \alpha_n}(\varphi_{\alpha_1, \alpha_1 \gamma \dots \gamma \alpha_n}(x_1), \dots, \varphi_{\alpha_n, \alpha_1 \gamma \dots \gamma \alpha_n}(x_n))$$

(X, F) is a *strong n -ary semilattice of n -ary semigroups*

We write $(X, F) = ((Y, \gamma^{n-1}), (X_\alpha, F_\alpha), \varphi_{\alpha, \beta})$

Strong n -ary semilattices of n -ary semigroups

Proposition

Every strong n -ary semilattice of n -ary semigroups is an n -ary semigroup

Description of symmetric n -ary bands

Theorem

The following assertions are equivalent.

- (i) (X, F) is a symmetric n -ary band
- (ii) (X, F) is a strong n -ary semilattice of n -ary extensions of Abelian groups whose exponents divide $n - 1$

Sketch of the proof

(ii) \Rightarrow (i): Check the axioms

(i) \Rightarrow (ii): Follows from the following steps

- (1) $\forall x \in X$, define $\ell_x: X \rightarrow X$ by $\ell_x(y) = F(x, \dots, x, y) \forall y \in X$
- (2) The binary relation \sim on X defined by

$$x \sim y \Leftrightarrow \ell_x = \ell_y, \quad x, y \in X,$$

is a congruence on (X, F) such that $(X/\sim, \tilde{F})$ is an n -ary semilattice

- (3) $\forall x \in X$, $([x]_\sim, F|_{[x]_\sim^n})$ is the n -ary extension of an Abelian group whose exponent divides $n - 1$
- (4) $\forall [x]_\sim \preceq_{\tilde{F}} [y]_\sim \in X/\sim$, the map $\ell_y|_{[x]_\sim}: [x]_\sim \rightarrow [y]_\sim$ is a homomorphism
- (5) Check that $(X, F) = ((X/\sim, \tilde{F}), ([x]_\sim, F|_{[x]_\sim^n}), \ell_y|_{[x]_\sim})$

Reducibility of symmetric n -ary bands

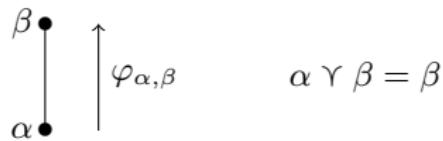
Theorem

$(X, F) = ((Y, \gamma^{n-1}), (X_\alpha, F_\alpha), \varphi_{\alpha, \beta})$ is the n -ary extension of a semigroup (X, G) if and only if $\exists e: Y \rightarrow X$ such that

- (a) $\forall \alpha \in Y, e(\alpha) = e_\alpha \in X_\alpha$
- (b) $\forall \alpha \preceq \beta \in Y, \text{ we have } \varphi_{\alpha, \beta}(e_\alpha) = e_\beta$

Moreover, $(X, G) = ((Y, \gamma), (X_\alpha, G_\alpha), \varphi_{\alpha, \beta})$ where $G_\alpha^{n-1} = F_\alpha \ \forall \alpha \in Y$

Example of symmetric ternary band



$$X = \{1, 2, 3\}, X_\alpha = \{1\}, X_\beta = \{2, 3\}$$

(X_α, F_α) ternary extension of the trivial group on $\{1\}$

(X_β, F_β) isomorphic to the ternary extension of $(\mathbb{Z}_2, +)$

$\varphi_{\alpha,\beta}: X_\alpha \rightarrow X_\beta$ defined by $\varphi_{\alpha,\beta}(1) = 2$

$\varphi_{\alpha,\alpha} = \text{id}|_{X_\alpha}: X_\alpha \rightarrow X_\alpha$

$\varphi_{\beta,\beta} = \text{id}|_{X_\beta}: X_\beta \rightarrow X_\beta$

Example of a symmetric ternary band

$F: X^3 \rightarrow X$ defined by

- $F|_{\{1\}^3} = F_\alpha, F|_{\{2,3\}^3} = F_\beta$
- $F(1, 1, 2) = F_\beta(\varphi_{\alpha,\beta}(1), \varphi_{\alpha,\beta}(1), \varphi_{\beta,\beta}(2)) = F_\beta(2, 2, 2) = 2 = F(1, 2, 1) = F(2, 1, 1)$
- $F(1, 1, 3) = F_\beta(\varphi_{\alpha,\beta}(1), \varphi_{\alpha,\beta}(1), \varphi_{\beta,\beta}(3)) = F_\beta(2, 2, 3) = 3 = F(1, 3, 1) = F(3, 1, 1)$
- $F(1, 2, 2) = F(2, 1, 2) = F(2, 2, 1) = 2$
- $F(1, 3, 3) = F(3, 1, 3) = F(3, 3, 1) = 2$
- $F(1, 2, 3) = F(1, 3, 2) = F(2, 1, 3) = F(3, 1, 2) = F(2, 3, 1) = F(3, 2, 1) = 2$

→ (X, F) is a strong ternary semilattice of ternary extensions of Abelian groups whose exponents divide 2

Reducible to a semigroup (take $e: \{\alpha, \beta\} \rightarrow X$ defined by $e(\alpha) = 1$ and $e(\beta) = 2$)

Top 5 results

- ① Characterizations of classes of totally ordered idempotent semigroups by means of single-peakedness
- ② n th Catalan number = number of totally ordered commutative idempotent semigroups on $\{1, \dots, n\}$
- ③ Characterization of the class of quasitrivial n -ary semigroups by means of binary reductions that are constructed in terms of ordinal sums
- ④ Characterization of the class of symmetric idempotent n -ary semigroups by means of strong n -ary semilattices
- ⑤ Necessary and sufficient condition for any symmetric idempotent n -ary semigroup to be reducible to a semigroup

References

- 1 M. Couceiro and J. Devillet. Every quasitrivial n -ary semigroup is reducible to a semigroup. *Algebra Universalis*, 80(4), 2019.
- 2 M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idempotent discrete uninorms. *Fuzzy Sets and Syst.*, 334:60–72, 2018.
- 3 M. Couceiro, J. Devillet, and J.-L. Marichal. Quasitrivial semigroups: characterizations and enumerations. *Semigroup Forum*, 98(3):472–498, 2019.
- 4 M. Couceiro, J. Devillet, J.-L. Marichal, and P. Mathonet. Reducibility of n -ary semigroups: from quasitriviality towards idempotency. arXiv:1909.10412.
- 5 J. Devillet. Bisymmetric and quasitrivial operations: characterizations and enumerations. *Aequat. Math.*, 93(3):501–526, 2019.
- 6 J. Devillet and G. Kiss. Characterizations of biselective operations. *Acta Math. Hungar.*, 157(2):387–407, 2019.
- 7 J. Devillet, G. Kiss, and J.-L. Marichal. Characterizations of quasitrivial symmetric nondecreasing associative operations. *Semigroup Forum*, 98(1):154–171, 2019.
- 8 J. Devillet, J.-L. Marichal, and B. Teheux. Classifications of quasitrivial semigroups. *Semigroup Forum*, in press.
- 9 J. Devillet and P. Mathonet. On the structure of symmetric n -ary bands. arXiv:2004.12423.
- 10 J. Devillet and B. Teheux. Associative, idempotent, symmetric, and order-preserving operations on chains. *Order*, in press.