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Summary of the talk

Part I:

Characterizations of
@ single-peakedness and other related properties
@ the class of totally ordered quasitrivial semigroups

@ the class of totally ordered commutative idempotent semigroups

— Surprising link between social choice theory and semigroup theory

Enumeration of the class of totally ordered commutative idempotent
semigroups

— New definition of the Catalan numbers



Summary of the talk

Part Il:

Characterizations of
@ the class of quasitrivial n-ary semigroups
@ hierarchical classes of idempotent n-ary semigroups

@ the class of symmetric idempotent n-ary semigroups

— Constructive descriptions

Reducibility criteria for symmetric idempotent n-ary semigroups



Part |: Single-peakedness and idempotent
semigroups



Order

X: non-empty set

A preorder on X is a binary relation X on X that is reflexive and transitive
< total = = is a weak order

= antisymmetric = =X is a partial order and we denote it by <

= total = = is a total order and we denote it by <

(X, xX) partially ordered set (or poset)

(X, R) is a called a semilattice if every pair {x,y} C X has a supremum x Y y



|deal

(X, 2) preordered set
I nonempty subset of (X, 3)

I is an ideal if it is a directed lower set, i.e., if
@ Vx € X and Vy € I such that x = y we have x € /
@ Vy,zelJuelsuchthaty Suandz3u

In a poset (X, <) we define [a,b]< = {x € X: a < x 2 b}

A subset C of (X, <) is convex (for <) if it contains [a,b]x Va < be C



Single-peakedness

Definition. (Black, 1948)
<’ is single-peaked for < if Va,b,c € X,

a<b<c = b<'a o b<'c

Example. On X = {1,2,3,4} consider < and <’ defined by

1<2<3<4 and 2<'3<1<4

id: X = X
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Single-peakedness

Proposition

The following assertions are equivalent.
(i) <’ is single-peaked for <
(ii) Every ideal of (X, <’) is a convex subset of (X, <)

4 4
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2 3

1 2
(X,<) X, <)

<’ is single-peaked for <



Generalizations

Two generalizations of single-peakedness for weak orders:

@ single-plateauedness (Black, 1987)

@ existential single-peakedness (Fitzsimmons, 2015)



Single-plateauedness

< weak order on X

Definition.

=< is single-plateaued for < if Va, b,c € X,

a<b<c = b=<a o b<c or a~b~c

Examples. On X = {1 <2<3<4<5<6}

3~4 3~4
2 1~2
1~5 5
6 6

123456 123456



Quasitriviality
(X, G) groupoid : X nonempty set and G: X? — X
G associative = (X, G) semigroup
G: X? — X is said to be quasitrivial (or conservative) if

G(x,y) € {x,y} xyeX

Example. G = max< on X = {1, 2,3} endowed with the usual <




Ordinal sum

(Y, <) totally ordered set

{(Xa, Ga): a € Y} set of semigroups such that
XaNXg=2, a#p

Definition. (Clifford, 1954)

(X, G) is an ordinal sum of semigroups (Xu, Go) if
@ X =UseyXa
o G‘Xg =Gy VaeyY

@ V(x,y) € Xo x Xg such that a < 3, we have G(x,y) = G(y,x) =y

— (X, G) is a semigroup




Projections

The projection operations m : X?> — X and m: X? — X are respectively
defined by

mi(x,y) = x, x,y € X

—~ o~

m(x,y) = vy, x,y € X

(X,m): left zero semigroup
(X, m2): right zero semigroup

(X, G) is a singular band if G € {my, 72}



Quasitrivial semigroups

Theorem (Langer, 1980)

G is associative and quasitrivial if and only if

maxj |A><B, ifA;éB,

! VABEX/~
T1|axB of m2|axs, if A= B,

33 :Glaxs = {

max<
- |71 or

2

(1 on max<
T2 -

G is associative, quasitrivial, and commutative & I < : G = max<




Totally ordered semigroups

G: X>=> Xis <-preserving for some < on X if

x < x'

7
ygy,} = Glay) < G(x.y)

— (X, G) totally ordered



Totally ordered quasitrivial semigroups

O

maX«r
= |m1 or

M1 O maxcs
i) -

single-plateauedness : a<b<c = b<aor b<c or a~b~c

Proposition

Let < on X and G: X? — X. The following assertions are equivalent.
(i) G is associative, quasitrivial, and <-preserving
(i) 33 : G is of the form (x) and 3 is single-plateaued for <
Moreover, if G is commutative, then (i)-(ii) are equivalent to

(i) 3<’ : G is of the form (*) and <’ is single-peaked for <




Semilattices

G: X? = X is idempotent if G(x,x) =xVx € X

Proposition (folklore)

(X, G) commutative idempotent semigroup < 3 =< on X such that G = Y

(X;2) & (X,Y)

Definition.

= has the convex-ideal property (Cl-property for short) for < if for all a, b, c € X,

a<b<c = bRavc

Definition.

=< is internal for < if for all a, b, c € X,

a<b<c = (a#bYc and c#aYb)



Order-preserving semilattice operations

Proposition

Let < on X and G: X? — X. The following assertions are equivalent.
(i) G is associative, idempotent, commutative, and <-preserving
(i) 3= : G =Y and =X satisfies

(a) Cl-property for <
(b) internality for <
(i) 3< : G =Y and = satisfies
(a) Every ideal of (X, <) is a convex subset of (X, <)
(b) Ya< be X, we have aY b € [a, b]<

4

3 4

2 2

1 1 3
(X.<) (X,2)



Enumeration of order-preserving semilattice operations

Assume that X = {1,..., n}, is endowed with the usual < defined by

1<...<n

{< -preserving semilattice operations on X}

I

{ordered rooted binary trees with n vertices}

Proposition

The number of <-preserving semilattice operations on X is the nth Catalan
number.




Part Il: Idempotent n-ary semigroups



n-ary semigroups

(X, F) n-ary groupoid : X nonempty set and F: X" — X

Definition. (Dérnte, 1928)
F: X" — X is associative if

F(xt, ..., xi—1, F(Xiy -« oy Xitn—1); Xitny - - -y X2n—1)

= F(X17 cees Xiy F(Xi+17 s 7Xf+n)>xf+n+17 s 7X2n71)

forall x1,...,xn—1 € Xandall1<i<n-—1.
= (X, F) is an n-ary semigroup

F: X"—= Xis
@ quasitrivial if F(x1,...,Xn) € {X1,...,Xn} VX1,...,%n € X
@ idempotent if F(x,...,x)=xVx€ X

@ symmetric if F is invariant under the action of permutations



n-ary extensions
(X, G) semigroup

Define a sequence (G™)m>1 of (m + 1)-ary operation inductively by the
following rules : G! = G and

G™(X1y oy Xmy1) = Gm*l(xl7 ooy Xm—1, G(Xm, Xm+1)), m> 2.

Setting F = G"~, the pair (X, F) is the n-ary extension of (X, G).
G is a binary reduction of F

— (X, F) is an n-ary semigroup

Not every n-ary semigroup is obtained like this

Example.

(R, F) where F: R® — R is defined by

F(X,y72):X—y—|—Z, X7Y7ZER



Quasitrivial n-ary semigroups

Combining a result of Ackerman (2011) with a result of Dudek and Mukhin
(2006) we conclude the following result.

Every quasitrivial n-ary semigroup is the n-ary extension of a semigroup I

But the binary reduction is in general neither quasitrivial nor unique.

Example
F(x,y,z) = x+y+ z (mod 2)

G(x,y) = x+y (mod 2) G'(x,y) = x+y+1(mod?2)

G': Y? = Y is said to be conjugateto G: X? — X if 3p: X — Y bijection
such that
e(G(x,y)) = G'(p(x).0(y),  xy€X



Neutral elements

e € X is said to be a neutral element for F if

F(x,e,...,e)=F(e,x,e,...,e)=---=F(e,...,e,x) = x,

Er: set of neutral elements of F
Example. F(x,y,z) = x+y + z (mod 2)

If Er # O, then
EF <— {binary reductions of F}

xeX

Proposition

If F: X" — X is associative and quasitrivial, then |Ef| < 2




Quasitrivial n-ary semigroups

Theorem

Let F: X" — X be associative and quasitrivial. The following assertions are
equivalent.

() |Erl <1
(i) The associative and quasitrivial G: X? — X defined by

G(x,y) = F(x,...,x,¥y) = F(x,y,...,y), x,y €X

is the unique binary reduction of F




Quasitrivial n-ary semigroups

Theorem
Let F: X" — X be associative and quasitrivial and let e; # e2 € X. The following
assertions are equivalent.

(i) Er ={e1, e}

(i) nis odd and the associative Gg,, Ge, : X2 — X defined by

Ge,(x,y) = F(x,€e1,...,e1,y) and Ge(x,y) = F(x,e,...,€,y), x,y €X

are the only binary reductions of F

Moreover, if any of the assertions (i) — (ii) is satisfied, then Ge, # Ge, and neither of
them is quasitrivial
”

max< | A & Q

H on Zy Mmax<




Towards idempotent n-ary semigroups
Vk € {1,...,n}, let

D} = U {(x1,...,xn) € X": Vi,j €S, xj =xj}
SCHL,....n}
[S|>k

Fi: class of associative n-ary operations F: X" — X that satisfy

F(x1,...,xn) € {x1,...,Xn}, (x1,...,xn) € Dy

— F{': class of associative and quasitrivial n-ary operations F: X" — X

— FP1: class of associative and idempotent n-ary operations F: X" — X

FCFC-CFy

Proposition

Fl=F=-=F oS F,_1CFy, n=3




Towards idempotent n-ary semigroups

A group (X, %) with neutral element e has bounded exponent if 3m > 1 such
that

Xk ok X = e, X € X

——

m times

An element z € X is an annihilator of F: X" — X if

F(xi,...,xa) = 2z, whenever z € {xi,...,Xn}



Towards idempotent n-ary semigroups

Definition

H: class of operations G: X2 — X such that 3Y C X with |Y| > 3 for which
(a) (Y, Gly2) is an Abelian group whose exponent divides n — 1
(b) Gl(x\y)2 is associative and quasitrivial

(c) Any x € X'\ Y is an annihilator for G|} vy

max< | A & Q

Ab,_1| max<

FeF) \F <& Fisreducibleto G € H




Towards idempotent n-ary semigroups

FeF)_\F <& Fisreducibleto G €H

Sketch of the proof

<: Check the axioms

= Follows from the following steps
(1) Vxi,..0,%0 € X2 F(X1yeovyXn) & {X1,.- s Xn} = X1,..., Xn, F(x1,...,%n) € EF
(2) Step (1) = F=G 1 Vec Er
(3) Check that G inherits the good properties from F



Symmetric idempotent n-ary semigroups

A symmetric n-ary band is a symmetric idempotent n-ary semigroup

Examples
@ (X, Y) semillatice = (X, Y"~!) symmetric n-ary band
@ (X, x) Abelian group whose exponent divides n — 1
= (X, *""!) symmetric n-ary band



n-ary semilattices of n-ary semigroups

Extend the concept of semilattices of semigroups (Clifford, Yamada,...) to n-ary
semigroups

(Y, Y""1) n-ary semilattice
{(Xa, Fa): a € Y} set of n-ary semigroups such that
XaNXsg =2, a#p
Definition
(X, F) is an n-ary semilattice (Y, Y"~1) of n-ary semigroups (Xa, Fo) if
@ X =Uqey Xa

o F‘X(ZZFQVCYGY
@ V(x1,...,xn) € Xay X -+ X Xa,

F(Xh cee 7Xn) € Xal\(.uy&n
We write (X, F) = (Y, Y"1), (Xa, Fa))

Not an n-ary semigroup in general!



Strong n-ary semilattices of n-ary semigroups

Extend the concept of strong semilattices of semigroups (Kimura,...) to n-ary
semigroups

Definition
Let (X,F) = ((Y,Y"1),(Xa, Fa)). Suppose that Va < g € Y
J¢a,8: Xa = Xg homomorphism such that

(2a) @a,a is the identity on X,
(b) ¥a < B =7 €Y wehave pp. 0 Pas = Par
(c) V(x1y.-.y%n) € Xay X -+ X Xq, we have

F(Xl, . ,Xn) = F0L1V'“Y04n(SDOtlleY'“YOtn(Xl)a ey (pamaly...\(an(Xn))

(X, F) is a strong n-ary semilattice of n-ary semigroups

We write (X, F) = (Y, Y"™1), (Xa, Fa), ¥a,5)



Strong n-ary semilattices of n-ary semigroups

Proposition

Every strong n-ary semilattice of n-ary semigroups is an n-ary semigroup




Description of symmetric n-ary bands

The following assertions are equivalent.

(i) (X,F) is a symmetric n-ary band
(i) (X, F) is a strong n-ary semilattice of n-ary extensions of Abelian groups whose
exponents divide n — 1

Sketch of the proof
(i) = (i): Check the axioms
(i) = (ii): Follows from the following steps

(1) Vx € X, define £x: X = X by x(y) = F(x,...,x,y) Vy € X
(2) The binary relation ~ on X defined by

X~y & Ue=14y, x,y € X,

is a congruence on (X, F) such that (X/~, F) is an n-ary semilattice
(3) Vx € X, ([x]~, Fljn ) is the n-ary extension of an Abelian group whose
exponent divides n — 1
(4) VIxl~ 2¢ vl~ € X/~, the map &y} : [X]~ = [y]~ is a homomorphism
(5) Check that (X, F) = ((X/~, F), ([x]~, Flpqn ) 8ylixg)



Reducibility of symmetric n-ary bands

Theorem

(X,F) = ((Y,Y"™),(Xa, Fa), @a,p) is the n-ary extension of a semigroup
(X, G) if and only if 3e: Y — X such that

(a) YaeY, e(a) =es € Xa
(b) Ya <X B €Y, we have p, s(e.) = €3
Moreover, (X, G) = ((Y,Y), (Xa, Ga), Pa,p) Where G271 = F, Va € Y




Example of symmetric ternary band

B
I ]@a,ﬁ aYp=p

a
X ={1,2,3}, Xoa = {1}, X5 ={2,3}
(Xa, Fa) ternary extension of the trivial group on {1}
(Xg, Fs) isomorphic to the ternary extension of (Z,+)
©Ya,8: Xa — Xp defined by pq (1) =2
Goe = id|x, | Xa — Xa

wp,p = id|x,: Xg — Xp



Example of a symmetric ternary band

F: X® — X defined by
@ Flays = Fa, Flpagyps = Fs

F(17 172) = Fﬁ(wﬂ,ﬁ(l)v50047[‘3(1)7905»(3(2)) = Fﬁ(272’2) =2=
F(1,2, 1) = F(2,1,1)

° F(17 173) = FB(WOAB(]')?5004,3(1)7905»13(3)) = Fﬁ(27273) =3=
F(1,3, 1) = F(3,1,1)
F(172,2) = F(2,172) = F(2,2,1) =2
F(1,3,3) = F(3,1,3) = F(3,3,1) =2
F(1,2,3) = F(1,3, 2) = F(27 1,3) = F(3, 1,2) = F(2,3, 1) =
F(3,2, 1) =2

— (X, F) is a strong ternary semilattice of ternary extensions of Abelian groups
whose exponents divide 2

Reducible to a semigroup (take e: {«, 3} — X defined by e(a) =1 and
e(8) =2)
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Top 5 results

Characterizations of classes of totally ordered idempotent semigroups by
means of single-peakedness

nth Catalan number = number of totally ordered commutative
idempotent semigroups on {1,...,n}

Characterization of the class of quasitrivial n-ary semigroups by means of
binary reductions that are constructed in terms of ordinal sums

Characterization of the class of symmetric idempotent n-ary semigroups
by means of strong n-ary semilattices

Necessary and sufficient condition for any symmetric idempotent n-ary
semigroup to be reducible to a semigroup
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