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Summary of the talk

Part I :

Characterizations of

single-peakedness and other related properties

the class of totally ordered quasitrivial semigroups

the class of totally ordered commutative idempotent semigroups

→ Surprising link between social choice theory and semigroup theory

Enumeration of the class of totally ordered commutative idempotent
semigroups

→ New definition of the Catalan numbers



Summary of the talk

Part II :

Characterizations of

the class of quasitrivial n-ary semigroups

hierarchical classes of idempotent n-ary semigroups

the class of symmetric idempotent n-ary semigroups

→ Constructive descriptions

Reducibility criteria for symmetric idempotent n-ary semigroups



Part I: Single-peakedness and idempotent
semigroups



Order

X : non-empty set

A preorder on X is a binary relation - on X that is reflexive and transitive

- total ⇒ - is a weak order

- antisymmetric ⇒ - is a partial order and we denote it by �

� total ⇒ � is a total order and we denote it by ≤

(X ,�) partially ordered set (or poset)

(X ,�) is a called a semilattice if every pair {x , y} ⊆ X has a supremum x g y



Ideal

(X ,-) preordered set

I nonempty subset of (X ,-)

I is an ideal if it is a directed lower set, i.e., if

∀ x ∈ X and ∀ y ∈ I such that x - y we have x ∈ I

∀ y , z ∈ I ∃ u ∈ I such that y - u and z - u

In a poset (X ,�) we define [a, b]� = {x ∈ X : a � x � b}

A subset C of (X ,�) is convex (for �) if it contains [a, b]� ∀ a � b ∈ C



Single-peakedness

Definition. (Black, 1948)

≤′ is single-peaked for ≤ if ∀ a, b, c ∈ X ,

a < b < c ⇒ b <′ a or b <′ c

Example. On X = {1, 2, 3, 4} consider ≤ and ≤′ defined by

1 < 2 < 3 < 4 and 2 <′ 3 <′ 1 <′ 4

id : X → X
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Single-peakedness

Proposition

The following assertions are equivalent.

(i) ≤′ is single-peaked for ≤
(ii) Every ideal of (X ,≤′) is a convex subset of (X ,≤)

(X ,≤)

•1

•2

•3

•4

(X ,≤′)
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•4

≤′ is single-peaked for ≤



Generalizations

Two generalizations of single-peakedness for weak orders:

single-plateauedness (Black, 1987)

existential single-peakedness (Fitzsimmons, 2015)



Single-plateauedness

- weak order on X

Definition.

- is single-plateaued for ≤ if ∀ a, b, c ∈ X ,

a < b < c ⇒ b ≺ a or b ≺ c or a ∼ b ∼ c

Examples. On X = {1 < 2 < 3 < 4 < 5 < 6}
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Quasitriviality

(X ,G) groupoid : X nonempty set and G : X 2 → X

G associative ⇒ (X ,G) semigroup

G : X 2 → X is said to be quasitrivial (or conservative) if

G(x , y) ∈ {x , y} x , y ∈ X

Example. G = max≤ on X = {1, 2, 3} endowed with the usual ≤

r r rr r rr r r
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Ordinal sum

(Y ,≤) totally ordered set

{(Xα,Gα) : α ∈ Y } set of semigroups such that

Xα ∩ Xβ = ∅, α 6= β

Definition. (Clifford, 1954)
(X ,G) is an ordinal sum of semigroups (Xα,Gα) if

X =
⋃
α∈Y Xα

G |X 2
α

= Gα ∀α ∈ Y

∀ (x , y) ∈ Xα × Xβ such that α < β, we have G(x , y) = G(y , x) = y

→ (X ,G) is a semigroup

-
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Projections

The projection operations π1 : X 2 → X and π2 : X 2 → X are respectively
defined by

π1(x , y) = x , x , y ∈ X

π2(x , y) = y , x , y ∈ X

(X , π1) : left zero semigroup

(X , π2) : right zero semigroup

(X ,G) is a singular band if G ∈ {π1, π2}



Quasitrivial semigroups

Theorem (Länger, 1980)

G is associative and quasitrivial if and only if

∃ - : G |A×B =

{
max- |A×B , if A 6= B,

π1|A×B or π2|A×B , if A = B,
∀A,B ∈ X/∼

-
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Corollary

G is associative, quasitrivial, and commutative ⇔ ∃ ≤ : G = max≤



Totally ordered semigroups

G : X 2 → X is ≤-preserving for some ≤ on X if

x ≤ x ′

y ≤ y ′

}
⇒ G(x , y) ≤ G(x ′, y ′)

→ (X ,G) totally ordered



Totally ordered quasitrivial semigroups

(∗)

-
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max≤′

single-plateauedness : a < b < c ⇒ b ≺ a or b ≺ c or a ∼ b ∼ c

Proposition

Let ≤ on X and G : X 2 → X . The following assertions are equivalent.

(i) G is associative, quasitrivial, and ≤-preserving

(ii) ∃ - : G is of the form (∗) and - is single-plateaued for ≤
Moreover, if G is commutative, then (i)-(ii) are equivalent to

(iii) ∃ ≤′ : G is of the form (∗) and ≤′ is single-peaked for ≤



Semilattices

G : X 2 → X is idempotent if G(x , x) = x ∀ x ∈ X

Proposition (folklore)

(X ,G) commutative idempotent semigroup ⇔ ∃ � on X such that G = g

(X ,�) ⇔ (X ,g)

Definition.

� has the convex-ideal property (CI-property for short) for ≤ if for all a, b, c ∈ X ,

a < b < c ⇒ b � a g c

Definition.

� is internal for ≤ if for all a, b, c ∈ X ,

a < b < c ⇒ (a 66= b g c and c 6= a g b)



Order-preserving semilattice operations

Proposition

Let ≤ on X and G : X 2 → X . The following assertions are equivalent.

(i) G is associative, idempotent, commutative, and ≤-preserving

(ii) ∃ � : G = g and � satisfies

(a) CI-property for ≤
(b) internality for ≤

(iii) ∃ � : G = g and � satisfies

(a) Every ideal of (X ,�) is a convex subset of (X ,≤)

(b) ∀ a ≤ b ∈ X , we have a g b ∈ [a, b]≤

(X ,≤)
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Enumeration of order-preserving semilattice operations

Assume that X = {1, . . . , n}, is endowed with the usual ≤ defined by

1 < . . . < n

{≤ -preserving semilattice operations on X}
l

{ordered rooted binary trees with n vertices}

Proposition

The number of ≤-preserving semilattice operations on X is the nth Catalan
number.



Part II: Idempotent n-ary semigroups



n-ary semigroups

(X ,F ) n-ary groupoid : X nonempty set and F : X n → X

Definition. (Dörnte, 1928)
F : X n → X is associative if

F (x1, . . . , xi−1,F (xi , . . . , xi+n−1), xi+n, . . . , x2n−1)

= F (x1, . . . , xi ,F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)

for all x1, . . . , x2n−1 ∈ X and all 1 ≤ i ≤ n − 1.

=⇒ (X ,F ) is an n-ary semigroup

F : X n → X is

quasitrivial if F (x1, . . . , xn) ∈ {x1, . . . , xn} ∀ x1, . . . , xn ∈ X

idempotent if F (x , . . . , x) = x ∀ x ∈ X

symmetric if F is invariant under the action of permutations



n-ary extensions

(X ,G) semigroup

Define a sequence (Gm)m≥1 of (m + 1)-ary operation inductively by the
following rules : G 1 = G and

Gm(x1, . . . , xm+1) = Gm−1(x1, . . . , xm−1,G(xm, xm+1)), m ≥ 2.

Setting F = G n−1, the pair (X ,F ) is the n-ary extension of (X ,G).

G is a binary reduction of F

→ (X ,F ) is an n-ary semigroup

Not every n-ary semigroup is obtained like this

Example.

(R,F ) where F : R3 → R is defined by

F (x , y , z) = x − y + z , x , y , z ∈ R



Quasitrivial n-ary semigroups

Combining a result of Ackerman (2011) with a result of Dudek and Mukhin
(2006) we conclude the following result.

Theorem

Every quasitrivial n-ary semigroup is the n-ary extension of a semigroup

But the binary reduction is in general neither quasitrivial nor unique.

Example
F (x , y , z) = x + y + z (mod 2)

G(x , y) = x + y (mod 2) G ′(x , y) = x + y + 1 (mod 2)

G ′ : Y 2 → Y is said to be conjugate to G : X 2 → X if ∃ϕ : X → Y bijection
such that

ϕ(G(x , y)) = G ′(ϕ(x), ϕ(y)), x , y ∈ X



Neutral elements

e ∈ X is said to be a neutral element for F if

F (x , e, . . . , e) = F (e, x , e, . . . , e) = · · · = F (e, . . . , e, x) = x , x ∈ X

EF : set of neutral elements of F

Example. F (x , y , z) = x + y + z (mod 2)

If EF 6= ∅, then
EF ←→ {binary reductions of F}

Proposition

If F : X n → X is associative and quasitrivial, then |EF | ≤ 2



Quasitrivial n-ary semigroups

Theorem

Let F : X n → X be associative and quasitrivial. The following assertions are
equivalent.

(i) |EF | ≤ 1

(ii) The associative and quasitrivial G : X 2 → X defined by

G(x , y) = F (x , . . . , x , y) = F (x , y , . . . , y), x , y ∈ X

is the unique binary reduction of F



Quasitrivial n-ary semigroups

Theorem

Let F : X n → X be associative and quasitrivial and let e1 6= e2 ∈ X . The following
assertions are equivalent.

(i) EF = {e1, e2}
(ii) n is odd and the associative Ge1 ,Ge2 : X 2 → X defined by

Ge1 (x , y) = F (x , e1, . . . , e1, y) and Ge2 (x , y) = F (x , e2, . . . , e2, y), x , y ∈ X

are the only binary reductions of F

Moreover, if any of the assertions (i) − (ii) is satisfied, then Ge1 6= Ge2 and neither of
them is quasitrivial

-
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Towards idempotent n-ary semigroups

∀k ∈ {1, . . . , n}, let

Dn
k =

⋃
S⊆{1,...,n}
|S|≥k

{(x1, . . . , xn) ∈ X n : ∀i , j ∈ S , xi = xj}

Fn
k : class of associative n-ary operations F : X n → X that satisfy

F (x1, . . . , xn) ∈ {x1, . . . , xn}, (x1, . . . , xn) ∈ Dn
k

→ Fn
1 : class of associative and quasitrivial n-ary operations F : X n → X

→ Fn
n : class of associative and idempotent n-ary operations F : X n → X

Fn
1 ⊆ Fn

2 ⊆ · · · ⊆ Fn
n

Proposition

Fn
1 = Fn

2 = · · · = Fn
n−2 ⊆ Fn

n−1 ⊆ Fn
n , n ≥ 3



Towards idempotent n-ary semigroups

A group (X , ∗) with neutral element e has bounded exponent if ∃m ≥ 1 such
that

x ∗ · · · ∗ x︸ ︷︷ ︸
m times

= e, x ∈ X

An element z ∈ X is an annihilator of F : X n → X if

F (x1, . . . , xn) = z , whenever z ∈ {x1, . . . , xn}



Towards idempotent n-ary semigroups

Definition
H : class of operations G : X 2 → X such that ∃Y ⊆ X with |Y | ≥ 3 for which

(a) (Y ,G |Y 2 ) is an Abelian group whose exponent divides n − 1

(b) G |(X\Y )2 is associative and quasitrivial

(c) Any x ∈ X \ Y is an annihilator for G |({x}⋃ Y )2

-
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Theorem

F ∈ Fn
n−1 \ Fn

1 ⇔ F is reducible to G ∈ H



Towards idempotent n-ary semigroups

Theorem

F ∈ Fn
n−1 \ Fn

1 ⇔ F is reducible to G ∈ H

Sketch of the proof

⇐ : Check the axioms

⇒ : Follows from the following steps

(1) ∀ x1, . . . , xn ∈ X : F (x1, . . . , xn) /∈ {x1, . . . , xn} ⇒ x1, . . . , xn,F (x1, . . . , xn) ∈ EF

(2) Step (1) ⇒ F = Gn−1
e ∀ e ∈ EF

(3) Check that Ge inherits the good properties from F



Symmetric idempotent n-ary semigroups

A symmetric n-ary band is a symmetric idempotent n-ary semigroup

Examples

(X ,g) semillatice ⇒ (X ,gn−1) symmetric n-ary band

(X , ∗) Abelian group whose exponent divides n − 1

⇒ (X , ∗n−1) symmetric n-ary band

∗n−1(x , . . . , x) = x ∗ · · · ∗ x︸ ︷︷ ︸
=e

∗ x = x



n-ary semilattices of n-ary semigroups

Extend the concept of semilattices of semigroups (Clifford, Yamada,. . .) to n-ary
semigroups

(Y ,gn−1) n-ary semilattice

{(Xα,Fα) : α ∈ Y } set of n-ary semigroups such that

Xα ∩ Xβ = ∅, α 6= β

Definition
(X ,F ) is an n-ary semilattice (Y ,gn−1) of n-ary semigroups (Xα,Fα) if

X =
⋃
α∈Y Xα

F |Xn
α

= Fα ∀α ∈ Y

∀ (x1, . . . , xn) ∈ Xα1 × · · · × Xαn

F (x1, . . . , xn) ∈ Xα1g···gαn

We write (X ,F ) = ((Y ,gn−1), (Xα,Fα))

Not an n-ary semigroup in general!



Strong n-ary semilattices of n-ary semigroups

Extend the concept of strong semilattices of semigroups (Kimura,. . .) to n-ary
semigroups

Definition
Let (X ,F ) = ((Y ,gn−1), (Xα,Fα)). Suppose that ∀α � β ∈ Y
∃ϕα,β : Xα → Xβ homomorphism such that

(a) ϕα,α is the identity on Xα

(b) ∀α � β � γ ∈ Y we have ϕβ,γ ◦ ϕα,β = ϕα,γ

(c) ∀ (x1, . . . , xn) ∈ Xα1 × · · · × Xαn we have

F (x1, . . . , xn) = Fα1g···gαn (ϕα1,α1g···gαn (x1), . . . , ϕαn,α1g···gαn (xn))

(X ,F ) is a strong n-ary semilattice of n-ary semigroups

We write (X ,F ) = ((Y ,gn−1), (Xα,Fα), ϕα,β)



Strong n-ary semilattices of n-ary semigroups

Proposition

Every strong n-ary semilattice of n-ary semigroups is an n-ary semigroup



Description of symmetric n-ary bands

Theorem

The following assertions are equivalent.

(i) (X ,F ) is a symmetric n-ary band

(ii) (X ,F ) is a strong n-ary semilattice of n-ary extensions of Abelian groups whose
exponents divide n − 1

Sketch of the proof

(ii) ⇒ (i): Check the axioms

(i) ⇒ (ii): Follows from the following steps

(1) ∀ x ∈ X , define `x : X → X by `x (y) = F (x , . . . , x , y) ∀ y ∈ X

(2) The binary relation ∼ on X defined by

x ∼ y ⇔ `x = `y , x , y ∈ X ,

is a congruence on (X ,F ) such that (X/∼, F̃ ) is an n-ary semilattice

(3) ∀ x ∈ X , ([x]∼,F |[x]n∼
) is the n-ary extension of an Abelian group whose

exponent divides n − 1

(4) ∀ [x]∼ �F̃ [y ]∼ ∈ X/∼, the map `y |[x]∼ : [x]∼ → [y ]∼ is a homomorphism

(5) Check that (X ,F ) = ((X/∼, F̃ ), ([x]∼,F |[x]n∼
), `y |[x]∼ )



Reducibility of symmetric n-ary bands

Theorem

(X ,F ) = ((Y ,gn−1), (Xα,Fα), ϕα,β) is the n-ary extension of a semigroup
(X ,G) if and only if ∃ e : Y → X such that

(a) ∀α ∈ Y , e(α) = eα ∈ Xα

(b) ∀α � β ∈ Y , we have ϕα,β(eα) = eβ

Moreover, (X ,G) = ((Y ,g), (Xα,Gα), ϕα,β) where G n−1
α = Fα ∀α ∈ Y



Example of symmetric ternary band

•β

•α
ϕα,β α g β = β

X = {1, 2, 3}, Xα = {1}, Xβ = {2, 3}

(Xα,Fα) ternary extension of the trivial group on {1}

(Xβ ,Fβ) isomorphic to the ternary extension of (Z2,+)

ϕα,β : Xα → Xβ defined by ϕα,β(1) = 2

ϕα,α = id|Xα : Xα → Xα

ϕβ,β = id|Xβ : Xβ → Xβ



Example of a symmetric ternary band

F : X 3 → X defined by

F |{1}3 = Fα, F |{2,3}3 = Fβ

F (1, 1, 2) = Fβ(ϕα,β(1), ϕα,β(1), ϕβ,β(2)) = Fβ(2, 2, 2) = 2 =
F (1, 2, 1) = F (2, 1, 1)

F (1, 1, 3) = Fβ(ϕα,β(1), ϕα,β(1), ϕβ,β(3)) = Fβ(2, 2, 3) = 3 =
F (1, 3, 1) = F (3, 1, 1)

F (1, 2, 2) = F (2, 1, 2) = F (2, 2, 1) = 2

F (1, 3, 3) = F (3, 1, 3) = F (3, 3, 1) = 2

F (1, 2, 3) = F (1, 3, 2) = F (2, 1, 3) = F (3, 1, 2) = F (2, 3, 1) =
F (3, 2, 1) = 2

→ (X ,F ) is a strong ternary semilattice of ternary extensions of Abelian groups
whose exponents divide 2

Reducible to a semigroup (take e : {α, β} → X defined by e(α) = 1 and
e(β) = 2)



Top 5 results

1 Characterizations of classes of totally ordered idempotent semigroups by
means of single-peakedness

2 nth Catalan number = number of totally ordered commutative
idempotent semigroups on {1, . . . , n}

3 Characterization of the class of quasitrivial n-ary semigroups by means of
binary reductions that are constructed in terms of ordinal sums

4 Characterization of the class of symmetric idempotent n-ary semigroups
by means of strong n-ary semilattices

5 Necessary and sufficient condition for any symmetric idempotent n-ary
semigroup to be reducible to a semigroup
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