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Abstract. An oblivious transfer with access control protocol (OTAC)
allows us to protect privacy of accesses to a database while enforcing
access control policies. Existing OTAC have several shortcomings. First,
their design is not modular. Typically, to create an OTAC, an adaptive
oblivious transfer protocol (OT) is extended ad-hoc. Consequently, the
security of the OT is reanalyzed when proving security of the OTAC, and
it is not possible to instantiate the OTAC with any secure OT. Second,
existing OTAC do not allow for policy updates. Finally, in practical
applications, many messages share the same policy. However, existing
OTAC cannot take advantage of that to improve storage efficiency.

We propose an UC-secure OTAC that addresses the aforementioned
shortcomings. Our OTAC uses as building blocks the ideal functionalities
for OT, for zero-knowledge (ZK) and for an unlinkable updatable database
(UUD), which we define and construct. UUD is a protocol between an
updater U and multiple readers Rk. U sets up a database and updates
it. Rk can read the database by computing UC ZK proofs of an entry in
the database, without disclosing what entry is read. In our OTAC, UUD
is used to store and read the policies.

We construct an UUD based on subvector commitments (SVC). We
extend the definition of SVC with update algorithms for commitments
and openings, and we provide an UC ZK proof of a subvector. Our
efficiency analysis shows that our UUD is practical.
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1 Introduction

Oblivious transfer with access control protocols [17,8] (OTAC) run between a
sender U and receivers Rk. U receives as input a tuple (mi,ACPi)∀i∈[1,N ] of
messages and their associated access control policies. In a transfer phase, a
receiver Rk chooses an index i ∈ [1,N ] and obtains the message mi if Rk satisfies
the policy ACPi. U does not learn i, whereas Rk does not learn any information
about other messages.

? This research is supported by the Luxembourg National Research Fund (FNR) CORE
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In the following, we only consider OTAC in which the receivers learn all the
policies (ACPi)∀i∈[1,N ], that are stateless, i.e. fulfilment of a policy by Rk does
not depend on the history of messages received by Rk, and that are adaptive,
i.e. there are several transfers and Rk can choose i after receiving messages in
previous transfers. In §7, we discuss stateful and adaptive OTAC and OTAC with
hidden policies. Additionally, we focus on OTAC that provide anonymity and
unlinkability, i.e., OTAC where U cannot link a transfer to a receiver identity
Rk and where transfers to Rk are unlinkable with respect to each other.

Existing adaptive and stateless OTAC follow a common pattern in their design.
In the initialization phase, U computes N ciphertexts ci that encrypt mi. Some
OTAC [8,1,23] use a signature that binds ACPi to ci, while others [30,31,32,27]
use fuzzy identity-based encryption (IBE) or ciphertext-policy attribute-based
encryption (CP-ABE) to encrypt mi under ACPi. The receivers obtain (ci,
ACPi)∀i∈[1,N ]. To prove fulfilment of policies, Rk proves to an authority that she
possesses some attributes and obtains a credential or secret key for her attributes.
In the transfer phase, Rk interacts with U in such a way that Rk can decrypt ci
for her choice i only if her certified attributes satisfy ACPi. Those OTAC have
several design shortcomings.

Modularity. Although some OTAC are extensions of adaptive oblivious transfer
protocols (OT), they do not use OT as building block. Instead, the OT is
modified ad-hoc to create the OTAC, blurring which elements were part of
the OT and which ones were added to provide access control. The lack of
modularity has two disadvantages. First, when the security of the OTAC
is analyzed, the security of the underlying OT needs to be reanalyzed. Sec-
ond, the OTAC cannot be instantiated with any secure adaptive OT, and
consequently, whenever more efficient OT schemes are proposed, the OTAC
cannot use them and would need to be redesigned.

Policy Updates. All the existing OTAC do not allow for policy updates, i.e., if
a policy ACPi needs to be updated, the initialization phase needs to be rerun.
In practical applications of OTAC (e.g. medical or financial databases), it
would be desirable to update policies dynamically throughout the protocol
execution without needing to re-encrypt messages. To enable policy updates,
we would need to separate the encryptions ci of mi from the method used
to encode policies ACPi. As explained above, OTAC use signatures schemes
or CP-ABE to bind policies to ciphertexts. It would be possible to separate,
e.g., a signature on the policy ACPi from the encryption ci of mi, while still
allowing Rk to prove the association between ci and ACPi in the transfer
phase. However, a revocation mechanism to revoke the outdated signatures
would also need to be implemented, which would decrease efficiency.

Storage cost. All the existing OTAC associate each encryption ci with a policy
ACPi. However, in practical applications, multiple database records are asso-
ciated with a single policy. Therefore, if we separate the ciphertexts ci from
the method used to encode policies ACPi, it would be possible to improve
efficiency by associating a policy to multiple ciphertexts.

2



1.1 Our Contribution

We define and construct an unlinkable updatable database (UUD), a novel
building block that may be of independent interest, and we use UUD to construct
modularly OTAC that enable dynamic policy updates without the need of a
revocation mechanism, and that can associate a policy to multiple messages.

Functionality FUUD. We use the universal composability (UC) framework [15]
and define an ideal functionality FUUD in §3. We define UUD as a task between
multiple readers Rk and an updater U . U sets a database DB and updates it at
any time throughout the protocol execution. DB consists of N entries of the form
[i, vi,1, . . . , vi,L], where i identifies the database entry and (vi,1, . . . , vi,L) are the
values stored in that entry. Any Rk and U know the content of DB. A reader
Rk can read DB by computing a zero-knowledge (ZK) proof of knowledge of an
entry [i, vi,1, . . . , vi,L]. FUUD hides from U which entry was read but ensures that
it is not possible to prove that an entry is stored in DB if that is not the case.
FUUD allows Rk to remain anonymous and unlinkable when reading DB.

OTAC. In §6, we propose a functionality FOTAC. FOTAC follows previous OTAC
functionalities [8] but introduces two main modifications. First, it splits the
initialization interface into two interfaces: otac.init, in which the sender U receives
(mi)∀i∈[1,N ], and otac.policy, in which U receives (ACPi)∀i∈[1,N ]. This enables U
to make policy updates via otac.policy throughout the protocol execution. Second,
previous functionalities include an issuance phase where an issuer certifies Rk
attributes. Instead, FOTAC leaves more open and flexible how access control is
proven. U sets and updates a relation RACP that specifies what Rk must prove
to obtain access to messages. Each policy ACPi is an instance ins for RACP and,
in the transfer phase, Rk must provide a witness wit such that (wit , ins) ∈ RACP.
wit could contain, e.g., signatures from an issuer on Rk attributes, but in general
any data required by RACP.

We also describe a modular construction ΠOTAC. In the UC framework,
modularity is achieved by describing hybrid protocols. In a hybrid protocol, the
building blocks are described by their ideal functionalities, and parties in the
real world invoke those ideal functionalities. ΠOTAC uses as building block FOT,
and thus ΠOTAC can be instantiated by any secure adaptive OT. To implement
access control, ΠOTAC uses FUUD and FRACP′

ZK . U stores (ACPi)∀i∈[1,N ] in DB in
FUUD. Each entry [i, vi,1, . . . , vi,L] stores the index i and the representation ACPi
= (vi,1, . . . , vi,L) of a policy. In a transfer phase, Rk uses FUUD to read ACPi for

her choice i and then FRACP′
ZK to prove fulfilment of ACPi. One challenge when

defining a hybrid protocol is to ensure that two functionalities receive the same
input. For example, in the transfer interface of ΠOTAC, we need to ensure that
the choice i sent to FOT (to obtain mi) and to FUUD (to read ACPi) are equal.
To this end, we use the method in [11], in which functionalities receive committed
inputs produced by a functionality FNIC for non-interactive commitments.

Our modular design has the following advantages. First, it simplifies the
security analysis because security proofs in the hybrid model are simpler and
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because, by splitting the protocol into smaller building blocks, security analysis
of constructions for those building blocks are also simpler. Second, it allows
multiple instantiations by replacing each of the functionalities by any protocols
that realize them. Third, it allows the study of the UUD task in isolation, which
eases the comparison of different constructions for it.

Construction ΠUUD. In §4, we propose a construction ΠUUD for FUUD. ΠUUD

is based on subvector commitments (SVC) [22], which we extend with a UC
ZK proof of knowledge of a subvector. A SVC scheme allows us to compute
a commitment com to a vector x = (x[1], . . . ,x[N ]). com can be opened to a
subvector xI = (x[i1], . . . ,x[in]), where I = {i1, . . . , in} ⊆ [1,N ]. The size of the
opening wI is independent of N and of |I|. SVC were recently proposed as an
improvement of vector commitments [25,16], where the size of wI is independent
of N but dependent on |I|. We extend the definition of SVC to include algorithms
to update commitments and openings when part of the vector is updated.

ΠUUD works as follows. U uses a bulletin board BB to publish the database
DB and any Rk obtains DB from BB. A BB ensures that all readers obtain the
same version of DB, which we need to guarantee unlinkability. Both U and any
Rk map a DB with N entries of the form [i, vi,1, . . . , vi,L] to a vector x of length
N × L such that x[(i− 1)L + j] = vi,j for all i ∈ [1,N ] and j ∈ [1,L], and they
compute a commitment com to x. To update a database entry, U updates BB,
and U and any Rk update com. Therefore, updates do not need any revocation
mechanism. To prove in ZK that an entry [i, vi,1, . . . , vi,L] is in DB, Rk computes
an opening wI for I = {(i− 1)L + 1, . . . , (i− 1)L + L} and uses it to compute
a ZK proof of knowledge of the subvector (x[(i− 1)L + 1], . . . ,x[(i− 1)L + L]).
This proof guarantees that I is the correct set for index i.

We describe an efficient instantiation of ΠUUD in §5 that uses a SVC scheme
based on the Cube Diffie-Hellman assumption [22]. In terms of efficiency, the
storage cost grows quadratically with the vector length N × L. However, after
initializing com and the openings wI to the initial DB, the communication and
computation costs of the update and read operations are independent of N .
Therefore, our instantiation allows for an OTAC where the database of policies
can be updated and read efficiently. We have implemented our instantiation. Our
efficiency measurements in §5 show that it is practical.

We describe a variant of our instantiation where each database entry is [imin,
imax, vi,1, . . . , vi,L], where [imin, imax] ∈ [1,N ] is a range of indices. This allows
for an OTAC with reduced storage cost. If the messages (mimin

, . . . ,mimax
) are

associated with a single policy ACP, only one database entry is needed to store
ACP. In contrast, previous OTAC that use signatures or CP-ABE need to embed
a policy in every ciphertext.

ΠUUD can be regarded as an efficient way of implementing a ZK proof for a
disjunction of statements. Namely, proving that an entry [i, vi,1, . . . , vi,L] is in
DB is equivalent to computing an OR proof where the prover proves that he
knows at least one of the entries. The proof in ΠUUD is of size independent of N .
We compare our construction with related work in §7.
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2 Modular Design and FNIC

We summarize the UC framework in §A. An ideal functionality can be invoked
by using one or more interfaces. In the notation in [11], the name of a message
in an interface consists of three fields separated by dots, e.g., uud.read.ini in
FUUD in §3. The first field indicates the name of FUUD and is the same for all
interfaces. This field is useful for distinguishing between invocations of different
functionalities in a hybrid protocol. The second field indicates the kind of action
performed by FUUD and is the same in all messages that FUUD exchanges within
the same interface. The third field distinguishes between the messages that belong
to the same interface. A message uud.read.ini is the incoming message received by
FUUD, i.e., the message through which the interface is invoked. uud.read.end is
the outgoing message sent by FUUD, i.e., the message that ends the execution of
the interface. uud.read.sim is used by FUUD to send a message to the simulator
S, and uud.read.rep is used to receive a message from S.

In our OTAC, to ensure, when needed, that FUUD and other functionalities
receive the same input, we use the method in [11]. In [11], a functionality FNIC

for non-interactive commitments is proposed. FNIC consists of four interfaces:

1. Any party Pi uses the com.setup interface to set up the functionality.
2. Any party Pi uses the com.commit interface to send a message m and obtain

a commitment com and an opening open. A commitment com consists of
(com ′, parcom,COM.Verify), where com ′ is the commitment, parcom are the
public parameters, and COM.Verify is the verification algorithm.

3. Any party Pi uses the com.validate interface to send a commitment com to
check that com contains the correct parcom and COM.Verify.

4. Any party Pi uses the com.verify interface to send (com,m, open) to verify
that com is a commitment to m with opening open.

FNIC can be realized by a perfectly hiding commitment scheme, such as Pedersen
commitments [11]. To ensure that a party Pi sends the same input m to several
ideal functionalities, Pi first uses com.commit to get a commitment com to
m with opening open. Then Pi sends (com,m, open) as input to each of the
functionalities, and each functionality runs COM.Verify to verify the commitment.
Finally, other parties in the protocol receive the commitment com from each
of the functionalities and use the com.validate interface to validate com. Then,
if com received from all the functionalities is the same, the binding property
provided by FNIC ensures that all the functionalities received the same input m.
Our functionality FUUD receives committed inputs as described in [11].

3 Functionality FUUD

FUUD interacts with readers Rk and an updater U . FUUD maintains a database
DB. DB consists of N entries of the form [i, vi,1, . . . , vi,L]. FUUD has three inter-
faces uud.update, uud.getdb and uud.read:
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1. U sends the uud.update.ini message on input (i, vi,1, . . . , vi,L)∀i∈[1,N ]. For all
i ∈ [1,N ], FUUD updates DB to contain value vi,j at position j ∈ [1,L] of
entry i. If vi,j = ⊥, no update at position j of entry i takes place.

2. Rk sends the uud.getdb.ini message to FUUD. FUUD sends DB to Rk.
3. Rk sends the uud.read.ini message on input a pseudonym P and a tuple (i,

comi , openi , 〈vi,j , comi,j , openi,j〉∀j∈[1,L]), where [i, vi,1, . . . , vi,L] is a database
entry and (comi , openi) and (comi,j , openi,j)∀j∈[1,L] are commitments and
openings to i and to the values (vi,1, . . . , vi,L). FUUD verifies the commitments
and checks that there is an entry [i, vi,1, . . . , vi,L] in DB. FUUD sends (comi ,
〈comi,j〉∀j∈[1,L]) to U .

FUUD stores counters crk for Rk and a counter cu for U . These counters are
used to check that Rk has the last version of DB. When U sends an update, cu is
incremented. When Rk receives DB, FUUD sets crk ← cu. When Rk reads DB,
FUUD checks that crk = cu, which ensures that Rk and U have the same DB.

When invoked by U or Rk, FUUD first checks the correctness of the input
and aborts if it does not belong to the correct domain. FUUD also aborts if an
interface is invoked at an incorrect moment in the protocol. For example, Rk
cannot invoke uud.read if uud.update was never invoked.

The session identifier sid has the structure (U , sid ′). Including U in sid ensures
that any U can initiate an instance of FUUD. FUUD implicitly checks that sid in a
message equals the one received in the first invocation. Before FUUD queries the
simulator S, FUUD saves its state, which is recovered when receiving a response
from S. To match a query to a response, FUUD creates a query identifier qid .

Description of FUUD. FUUD is parameterised by a universe of pseudonyms Up,
a universe of values Uv and by a database size N .

1. On input (uud.update.ini, sid , (i, vi,1, . . . , vi,L)∀i∈[1,N ]) from U :

– Abort if sid /∈ (U , sid ′).
– For all i ∈ [1,N ] and j ∈ [1,L], abort if vi,j /∈ Uv.
– If (sid ,DB, cu) is not stored:

• For all i ∈ [1,N ] and j ∈ [1,L], abort if vi,j = ⊥.
• Set DB ← (i, vi,1, . . . , vi,L)∀i∈[1,N ] and cu ← 0 and store (sid ,DB,

cu).

– Else:

• For all i ∈ [1,N ] and j ∈ [1,L], if vi,j 6= ⊥, update DB by storing vi,j
at position j of entry i.

• Increment cu and update DB and cu in (sid ,DB, cu).

– Create a fresh qid and store qid .
– Send (uud.update.sim, sid , qid , (i, vi,1, . . . , vi,L)∀i∈[1,N ]) to S.

S. On input (uud.update.rep, sid , qid) from S:

– Abort if qid is not stored.
– Delete qid .
– Send (uud.update.end, sid) to U .

2. On input (uud.getdb.ini, sid) from Rk:
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– Create a fresh qid and store (qid ,Rk).
– Send (uud.getdb.sim, sid , qid) to S.

S. On input (uud.getdb.rep, sid , qid) from S:

– Abort if (qid ′,Rk) such that qid ′ = qid is not stored.
– If (sid ,DB, cu) is not stored, set DB← ⊥.
– Else, set crk ← cu, store (Rk,DB, crk) and delete any previous tuple

(Rk,DB′, cr ′k).
– Delete (qid ,Rk).
– Send (uud.getdb.end, sid ,DB) to Rk.

3. On input (uud.read.ini, sid ,P , (i, comi , openi , 〈vi,j , comi,j , openi,j〉∀j∈[1,L]))
from Rk:

– Abort if P /∈ Up, or if [i, vi,1, . . . , vi,L] /∈ DB, or if (Rk,DB, crk) is not
stored.

– Parse the commitment comi as (com ′i , parcom,COM.Verify).
– Abort if 1 6= COM.Verify(parcom, com ′i , i, openi).
– For all j ∈ [1,L]:
• Parse the commitment comi,j as (com ′i,j , parcom,COM.Verify).
• Abort if 1 6= COM.Verify(parcom, com ′i,j , vi,j , openi,j).

– Create a fresh qid and store (qid ,P , (comi , 〈comi,j〉∀j∈[1,L]), crk).
– Send (uud.read.sim, sid , qid , (comi , 〈comi,j〉∀j∈[1,L])) to S.

S. On input (uud.read.rep, sid , qid) from S:

– Abort if (qid ′,P , (comi , 〈comi,j〉∀j∈[1,L]), cr ′k) such that qid ′ = qid is not
stored or if cr ′k 6= cu, where cu is in (sid ,DB, cu).

– Delete the record (qid ,P , (comi , 〈comi,j〉∀j∈[1,L]), cr ′k).
– Send (uud.read.end, sid ,P , (comi , 〈comi,j〉∀j∈[1,L])) to U .

FUUD guarantees anonymity and unlinkability. Namely, FUUD reveals to U
a pseudonym P rather than the identifier Rk. Rk can choose different random
pseudonyms so that read operations are unlinkable. FUUD also ensures zero-
knowledge, i.e. a read operation does not reveal the database entry read to U .
Additionally, FUUD guarantees unforgeability, i.e. Rk cannot read an entry if
that entry was not stored in DB by U .

It is straightforward to modify the uud.read interface to allow Rk to read
several database entries simultaneously. This variant allows us to reduce com-
munication rounds when Rk needs to read more than one entry simultaneously.
FUUD can also be modified to interact with two parties such that both of them
can read and update the database, or such that a party reads and updates and
the other party receives read and update operations. ΠUUD can be easily adapted
to realize the variants of FUUD discussed here.

4 Construction ΠUUD

4.1 Building Blocks

Subvector Commitments. A subvector commitment (SVC) scheme allows us to
succinctly compute a commitment com to a vector x = (x[1], . . . ,x[`]) ∈ M`.
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A commitment com to x can be opened to a subvector xI = (x[i1], . . . ,x[in]),
where I = {i1, . . . , in} ⊆ [1, `] is the set of indices that determine the positions
of the committed vector x that are opened. The size of an opening wI for xI is
independent of both the size of I and of the length ` of the committed vector.
We extend the definition of SVC in [22] with algorithms to update commitments
and openings.

SVC.Setup(1k, `). On input the security parameter 1k and an upper bound `
on the size of the vector, generate the parameters par , which include a
description of the message space M.

SVC.Commit(par ,x). On input a vector x ∈M`, output a commitment com to
x.

SVC.Open(par , I,x). On input a vector x and a set I = {i1, . . . , in} ⊆ [1, `],
compute an opening wI for the subvector xI = (x[i1], . . . ,x[in]).

SVC.Verify(par , com,xI , I,wI). Output 1 if wI is a valid opening for the set of
positions I = {i1, . . . , in} ⊆ [1, `] such that xI = (x[i1], . . . ,x[in]), where x
is the vector committed in com. Otherwise output 0.

SVC.ComUpd(par , com,x, i, x). On input a commitment com to a vector x, out-
put a commitment com ′ to a vector x′ such that x′[i] = x and, for all
j ∈ [1, `] \ {i}, x′[j] = x[j].

SVC.OpenUpd(par ,wI ,x, I, i, x). On input an opening wI for a set I valid for a
commitment to a vector x, output an opening w ′I valid for a commitment to
a vector x′ such that x′[i] = x and, for all j ∈ [1, `] \ {i}, x′[j] = x[j].

A SVC scheme must be correct and binding [22]. In §B, we recall those properties

and define correctness for the update algorithms. In §B, we also depict FCRS.Setup
CRS ,

FR
ZK and FBB, which we describe briefly below.

Ideal Functionality FCRS.Setup
CRS . ΠUUD uses the functionality FCRS.Setup

CRS for common

reference string generation in [15]. FCRS.Setup
CRS interacts with any parties P that

obtain the common reference string, and consists of one interface crs.get. A party
P uses the crs.get interface to request and receive the common reference string
crs from FCRS.Setup

CRS . In the first invocation, FCRS.Setup
CRS generates crs by running

algorithm CRS.Setup. The simulator S also receives crs.

FR
ZK. Let R be a polynomial time computable binary relation. For tuples (wit ,

ins) ∈ R we call wit the witness and ins the instance. ΠUUD uses a functionality
FR

ZK for zero-knowledge. FR
ZK runs with multiple provers Pk and a verifier V.

FR
ZK follows the functionality for zero-knowledge in [15], except that a prover Pk

is identified by a pseudonym P towards V . FR
ZK consists of one interface zk.prove.

Pk uses zk.prove to send a witness wit , an instance ins and a pseudonym P to
FR

ZK. FR
ZK checks whether (wit , ins) ∈ R, and, in that case, sends ins and P to

V.

Ideal Functionality FBB. ΠUUD uses the functionality FBB for a public bulletin
board BB [29]. A BB is used to ensure that all the readers receive the same

8



version of the database, which is needed to provide unlinkability. FBB interacts
with a writer W and readers Rk. W uses the bb.write interface to send a message
m to FBB. FBB increments a counter ct of the number of messages stored in BB
and appends [ct ,m] to BB. Rk uses the bb.getbb interface on input an index i . If
i ∈ [1, ct ], FBB takes the message m stored in [i ,m] in BB and sends m to Rk.

4.2 Description of ΠUUD

In ΠUUD, a SVC com is used to commit to the database DB with N entries of
the form [i, vi,1, . . . , vi,L]. To this end, com commits to a vector x of length N ×L
such that x[(i− 1)L + j] = vi,j for all i ∈ [1,N ] and j ∈ [1,L].

In the uud.update interface, U uses FBB to publish the DB and to update it. In
the uud.getdb interface, any Rk retrieves DB and its subsequent updates through
FBB. When DB is published for the first time, U and Rk run SVC.Commit to com-
mit to DB. When DB is updated, U and Rk update com by using SVC.ComUpd.
If Rk already stores openings wi, Rk runs SVC.OpenUpd to update them.

In the uud.read interface, Rk uses FR
ZK to prove that (comi , 〈comi,j〉∀j∈[1,L])

commit to an entry i and values vi,1, . . . , vi,L such that x[(i − 1)L + j] = vi,j
for all j ∈ [1,L], where x is the vector committed in com. R requires proving
knowledge of an opening wI for the set I = {(i− 1)L + 1, . . . , (i− 1)L + L} of
positions where the values for the database entry i are stored. Rk runs SVC.Open
to compute wI if it is not stored. R also requires a proof to associate i with I,
which we denote by I = f(i), where f is a function that on input i outputs the
indices I = {(i− 1)L + 1, . . . , (i− 1)L + L}. In §5, we show a concrete UC ZK
proof for R for the SVC scheme in [22].

Description of ΠUUD. N denotes the database size and L the size of any entry.
The function f(i) = ((i− 1)L + 1, . . . , (i− 1)L + L) maps i ∈ [1,N ] to a set of
indices where the database entry i is stored. The universe of values Uv is given
by the message space of the SVC scheme.

1. On input (uud.update.ini, sid , (i, vi,1, . . . , vi,L)∀i∈[1,N ]), U does the following:

– If (sid , par , com,x, cu) is not stored:

• U uses crs.get to obtain the parameters par from FSVC.Setup
CRS . To

compute par , FSVC.Setup
CRS runs SVC.Setup(1k,N × L).

• U initializes a counter cu ← 0 and a vector x such that x[(i−1)L+j] =
vi,j for all i ∈ [1,N ] and j ∈ [1,L]. U runs com ← SVC.Commit(par ,
x) and stores (sid , par , com,x, cu).

– Else:
• U sets cu ′ ← cu + 1, x′ ← x and com ′ ← com. For all i ∈ [1,N ] and
j ∈ [1,L] such that vi,j 6= ⊥, U computes com ′ ← SVC.ComUpd(par ,
com ′,x′, (i− 1)L + j, vi,j) and sets x′[(i− 1)L + j]← vi,j .
• U replaces the stored tuple (sid , par , com,x, cu) by (sid , par , com ′,

x′, cu ′).
– U uses the bb.write interface to append (i, vi,1, . . . , vi,L)∀i∈[1,N ] to the

bulletin board.
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– U outputs (uud.update.end, sid).

2. On input (uud.getdb.ini, sid), Rk does the following:

– If (sid , par , com,x, crk) is not stored, Rk obtains par from FSVC.Setup
CRS

and initializes a counter crk ← 0.
– Rk increments crk and uses the bb.getbb interface to read the message

(i, vi,1, . . . , vi,L)∀i∈[1,N ] stored at position crk in the bulletin board. Rk
continues incrementing the counter and reading the bulletin board until
the returned message is ⊥.

– Rk sets a tuple (i, vi,1, . . . , vi,L)∀i∈[1,N ], such that vi,j (for i ∈ [1,N ] and
j ∈ [1,L]) is the most recent update for position j of the database entry
i received from the bulletin board. If (sid , par , com,x, crk) is not stored,
(i, vi,1, . . . , vi,L)∀i∈[1,N ] contains the current database to be used to set x,
else it contains the update that needs to be performed on x.

– For i = 1 to N , if (sid , i,wI) is stored, Rk sets x′ ← x and w ′I ←
wI and, for all i ∈ [1,N ] and j ∈ [1,L] such that vi,j 6= ⊥, w ′I ←
SVC.OpenUpd(par ,w ′I ,x

′, I, (i− 1)L + j, vi,j) and x′[(i− 1)L + j] = vi,j .
Rk replaces (sid , i,wI) by (sid , i,w ′I).

– Rk performs the same operations as U to set or update com and x, and
stores a tuple (sid , par , com,x, crk).

– R outputs (uud.getdb.end, sid ,x).

3. On input (uud.read.ini, sid ,P , (i, comi , openi , 〈vi,j , comi,j , openi,j〉∀j∈[1,L])):
– Rk parses comi as (com ′i , parcom,COM.Verify).
– Rk aborts if 1 6= COM.Verify(parcom, com ′i , i, openi).
– For all j ∈ [1,L]:
• Rk parses the commitment comi,j as (com ′i,j , parcom,COM.Verify).
• Rk aborts if 1 6= COM.Verify(parcom, com ′i,j , vi,j , openi,j).

– Rk takes the stored tuple (sid , par , com,x, crk) and aborts if, for any j
∈ [1,L], x[(i− 1)L + j] 6= vi,j .

– If (sid , i,wI) is not stored, Rk computes I ← f(i), executes the algorithm
wI ← SVC.Open(par , I,x) and stores (sid , i,wI).

– Rk sets the witness wit ← (wI , I, i, openi , 〈vi,j , openi,j〉∀j∈[1,L]) and the
instance ins ← (par , com, parcom, com ′i , 〈com ′i,j〉∀j∈[1,L], crk). Rk uses

zk.prove to send wit , ins and P to FR
ZK. The relation R is

R ={(wit , ins) :

1 = COM.Verify(parcom, com ′i , i, openi) ∧
〈1 = COM.Verify(parcom, com ′i,j , vi,j , openi,j)〉∀j∈[1,L] ∧
1 = SVC.Verify(par , com, 〈vi,j〉∀j∈[1,L], I,wI) ∧ I = f(i)}

– U receives P and ins = (par ′, com ′, parcom, com ′i , 〈com ′i,j〉∀j∈[1,L], crk)

from FR
ZK.

– U takes the stored tuple (sid , par , com,x, cu) and aborts if crk 6= cu, or
if par ′ 6= par , or if com ′ 6= com.

– U sets comi ← (com ′i , parcom,COM.Verify) and 〈comi,j ← (com ′i,j ,
parcom,COM.Verify)〉∀j∈[1,L]. (COM.Verify is in the description of R.)
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– U outputs (uud.read.end, sid ,P , (comi , 〈comi,j〉∀j∈[1,L])).

Theorem 1. ΠUUD securely realizes FUUD in the (FSVC.Setup
CRS , FBB, FR

ZK)-hybrid
model if the SVC scheme is binding.

When Rk is corrupt, the binding property of the SVC scheme guarantees
that the adversary is not able to open the VC com to a value vi,j if that value
was not previously committed by U at position (i− 1)L + j. We analyze in detail
the security of ΠUUD in §C.

5 Instantiation and Efficiency Analysis

Bilinear maps. Let G, G̃ and Gt be groups of prime order p. A map e : G×G̃→ Gt
must satisfy bilinearity, i.e., e(gx, g̃y) = e(g , g̃)xy; non-degeneracy, i.e., for all
generators g ∈ G and g̃ ∈ G̃, e(g , g̃) generates Gt; and efficiency, i.e., there exists
an efficient algorithm G(1k ) that outputs the pairing group setup grp ← (p,G,
G̃,Gt, e, g , g̃) and an efficient algorithm to compute e(a, b) for any a ∈ G, b ∈ G̃.

Cube Diffie-Hellman (CubeDH) assumption. Let (p,G, G̃,Gt, e, g , g̃) ← G(1k)
and x ← Zp. Given (p,G, G̃,Gt, e, g , g̃ , gx, g̃x), for any p.p.t. adversary A,

Pr[e(g , g̃)x
3 ← A(p,G, G̃,Gt, e, g , g̃ , gx, g̃x)] ≤ ε(k).

SVC scheme. We use a SVC scheme secure under the CubeDH assumption [22],
which we extend with update algorithms for commitments and openings.

SVC.Setup(1k, `). Generate (p,G, G̃,Gt, e, g , g̃) ← G(1k). For all i ∈ [1, `], pick
zi ← Zp and compute gi ← gzi and g̃i ← g̃zi . For all i ∈ [1, `] and i′ ∈ [1, `]

such that i 6= i′, compute hi,i′ ← gzizi′ . Output par ← (p,G, G̃,Gt, e, g , g̃ ,
{gi, g̃i}∀i∈[1,`], {hi,i′}∀i,i′∈[1,`],i6=i′).

SVC.Commit(par ,x). Output com =
∏`
i=1 g

x[i]
i .

SVC.Open(par , I,x). Output wI =
∏
i∈I
∏
i′ /∈I h

x[i′]
i,i′ .

SVC.Verify(par , com,xI , I,wI). Parse I as {i1, . . . , in} ⊆ [1, `] and xI as (x[i1],
. . . ,x[in]). Output 1 if

e

(
com∏
i∈I g

x[i]
i

,
∏
i∈I

g̃i

)
= e(wI , g̃)

SVC.ComUpd(par , com,x, i, x). Output com ′ = com · gx−x[i]i .

SVC.OpenUpd(par ,wI ,x, I, i, x). If i ∈ I, output wI , else w ′I = wI ·
∏
j∈I h

x−x[i]
j,i .

Commitments. We use Pedersen commitments [26], which we recall in §D.
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Signatures. We use the structure-preserving signature (SPS) scheme in [2]. In
SPSs, the public key, the messages, and the signatures are group elements in G
and G̃, and verification must consist purely in the checking of pairing product
equations. We employ SPSs to sign group elements, while still supporting efficient
ZK proofs of signature possession. In this SPS scheme, a elements in G and b
elements in G̃ are signed.

KeyGen(grp, a, b). Let grp ← (p,G, G̃,Gt, e, g , g̃) be the bilinear map parameters.
Pick at random u1, . . . , ub, v, w1, . . . wa, z ← Z∗p and compute Ui = gui , i ∈
[1..b], V = g̃v, Wi = g̃wi , i ∈ [1..a] and Z = g̃z. Return the verification key
pk ← (grp, U1, . . . , Ub, V,W1, . . . ,Wa, Z) and the signing key sk ← (pk , u1,
. . . , ub, v, w1, . . . , wa, z).

Sign(sk , 〈m1, . . . ,ma+b〉). Pick r ← Z∗p, set R← gr, S ← gz−rv
∏a
i=1m

−wi
i , and

T ← (g̃
∏b
i=1m

−ui
a+i )

1/r, and output the signature s ← (R,S, T ).
VfSig(pk , s, 〈m1, . . . ,ma+b〉). Output 1 if e(R, V )e(S, g̃)

∏a
i=1 e(mi,Wi) = e(g,

Z) and e(R, T )
∏b
i=1 e(Ui,ma+i) = e(g, g̃).

UC ZK proof. To instantiate FR
ZK, we use the scheme in [12]. In [12], a UC ZK

protocol proving knowledge of exponents (w1, . . . , wn) that satisfy the formula
φ(w1, . . . , wn) is described as

Kw1, . . . , wn : φ(w1, . . . , wn) (1)

The formula φ(w1, . . . , wn) consists of conjunctions and disjunctions of “atoms”.

An atom expresses group relations, such as
∏k
j=1 g

Fj

j = 1, where the gj ’s are
elements of prime order groups and the Fj ’s are polynomials in the variables
(w1, . . . , wn).

A proof system for (1) can be transformed into a proof system for more
expressive statements about secret exponents sexps and secret bases sbases:

Ksexps, sbases : φ(sexps, bases ∪ sbases) (2)

The transformation adds an additional base h to the public bases. For each
gj ∈ sbases, the transformation picks a random exponent ρj and computes a
blinded base g′j = gjh

ρj . The transformation adds g′j to the public bases bases,

ρj to the secret exponents sexps, and rewrites g
Fj

j into g′j
Fjh−Fjρj .

The proof system supports pairing product equations
∏k
j=1 e(gj , g̃j)

Fj = 1 in
groups of prime order with a bilinear map e, by treating the target group Gt as the
group of the proof system. The embedding for secret bases is unchanged, except
for the case in which both bases in a pairing are secret. In this case, e(gj , g̃j)

Fj

must be transformed into e(g′j , g̃
′
j)
Fje(g′j , h̃)−Fj ρ̃je(h, g̃′j)

−Fjρje(h, h̃)Fjρj ρ̃j .

UC ZK Proof for Relation R. To instantiate FR
ZK with the protocol in [12],

we need to instantiate R with our chosen SVC and commitment schemes. Then
we need to express R following the notation for UC ZK proofs described above.

12



In R, we need to prove that I = f(i) = {(i − 1)L + 1, . . . , (i − 1)L + L},
i.e., we need to prove that the set I of positions opened contains the posi-
tions where the database entry i is stored. To prove this statement, the pub-
lic parameters of the SVC scheme are extended with SPSs that bind g i with
(g(i−1)L+1, g̃(i−1)L+1, . . . , g(i−1)L+L, g̃(i−1)L+L), i.e., i is bound with the bases

of the positions in I. Given the parameters par ← (p,G, G̃,Gt, e, g , g̃ , {gi,
g̃i}∀i∈[1,`], {hi,i′}∀i,i′∈[1,`],i6=i′), we create the key pair (sk , pk) ← KeyGen(〈p,G,
G̃,Gt, e, g , g̃〉,L+1,L+1) and, for i ∈ [1, `], we compute si ← Sign(sk , 〈g(i−1)L+1,

. . . , g(i−1)L+L, g
i, g̃(i−1)L+1, . . . , g̃(i−1)L+L, g̃

sid〉), where sid is the session iden-
tifier. We remark that these signatures do not need to be updated when the
database is updated.

Let (U1, . . . , UL+1, V,W1, . . . ,WL+1, Z) be the public key of the signature
scheme. Let (R,S, T ) be a signature on (g(i−1)L+1, . . . , g(i−1)L+L, g

i, g̃(i−1)L+1,

. . . , g̃(i−1)L+L, g̃
sid). Let (g , h) be the parameters of the Pedersen commitment

scheme. R involves proofs about secret bases and we use the transformation
described above for those proofs. The base h is also used to randomize secret
bases in G, and another base h̃ ← G̃ is added to randomize bases in G̃. Following
the notation in [12], we describe the proof as follows.

Ki, openi , 〈vi,j , openi,j , g(i−1)L+j , g̃(i−1)L+j〉∀j∈[1,L],wI , R, S, T :

com ′i = g ihopeni ∧ 〈com ′i,j = gvi,j hopeni,j 〉∀j∈[1,L] ∧ (3)

e(R, V )e(S, g̃)(
∏

j∈[1,L]

e(g(i−1)L+j ,Wj))e(g ,WL+1)ie(g, Z)−1 = 1 ∧ (4)

e(R, T )(
∏

j∈[1,L]

e(Uj , g̃(i−1)L+j))e(UL+1, g̃
sid)e(g , g̃)−1 = 1 ∧ (5)

e

 com∏
j∈[1,L] g

vi,j
(i−1)L+j

,
∏

j∈[1,L]

g̃(i−1)L+j

 = e(wI , g̃) (6)

Equation 3 proves knowledge of the openings of the Pedersen commitments
com ′i and 〈com ′i,j〉∀j∈[1,L]. Equation 4 and Equation 5 prove knowledge of a signa-

ture (R,S, T ) on a message (g(i−1)L+1, . . . , g(i−1)L+L, g
i, g̃(i−1)L+1, . . . , g̃(i−1)L+L,

g̃sid ). Equation 6 proves that the values 〈vi,j〉∀j∈[1,L] in 〈com ′i,j〉∀j∈[1,L] are equal
to the values committed in the positions I = f(i) = {(i−1)L+1, . . . , (i−1)L+L}
of the vector commitment com. We remark that, in comparison to the relation R in
§4.2, in the witness we replace I by the secret bases 〈g(i−1)L+j , g̃(i−1)L+j〉∀j∈[1,L],
from which I can be derived. Like in R, the positions j ∈ [1,L] inside the database
entry i of the values vi,j committed in com ′i,j are revealed to the verifier.

When a range of indices [imin, imax] stores always (i.e., even after database
updates) the same tuple [vi,1, . . . , vi,L], we can improve storage efficiency as
follows. We compute signatures on tuples (g(i′−1)L+1, . . . , g(i′−1)L+L, g

imin , g imax ,

g̃(i′−1)L+1, . . . , g̃(i′−1)L+L, g̃
sid) that bind all the indices in [imin, imax] with the

bases for the positions where the tuple is stored. (i′ is used to denote the position
in the SVC where the tuple is stored.) Then, in the UC ZK proof for R, we add
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a range proof to prove that i ∈ [imin, imax], where i is committed in com ′i , to
prove that we are opening the correct subvector for i.

Efficiency Analysis. We analyze the storage, communication, and computation
costs of our instantiation of ΠUUD.

Storage Cost. Any Rk and U store the common reference string, whose size
grows quadratically with N . Throughout the protocol execution, Rk and U
also store the last update of com and the committed vector. Rk stores the
openings wI . In conclusion, the storage cost is quadratic in N × L.

Communication Cost. In the uud.update interface, U sends the tuples (i, vi,1,
. . . , vi,L)∀i∈[1,N ], which are retrieved by Rk in the uud.getdb interface. The
communication cost is linear in the number of entries updated, except for the
first update in which all entries must be initialized. In the uud.read interface,
Rk sends an instance and a ZK proof to U . The size of the witness and of
the instance grows linearly with L but is independent of N . In conclusion,
after the first update phase, the communication cost does not depend on N .

Computation Cost. In the uud.update and uud.getdb interfaces, U and Rk
update com with cost linear in the number t of updates, except for the first
update where all the positions are initialized. Rk also updates the stored
openings wI with cost linear in t× L. In the uud.read interface, if wI is not
stored, Rk computes it with cost that grows linearly with N × L. However, if
wI is stored, the computation cost of the proof grows linearly with L but is
independent of N .
It is possible to defer opening updates to the uud.read interface, so as to only
update openings that are actually needed to compute ZK proofs. Thanks
to that, the computation cost in the uud.getdb interface is independent of
N . In the uud.read interface, if wI is stored but needs to be updated, the
computation cost grows linearly with t× L but it is independent of N . The
only overhead introduced by deferring opening updates is the need to store
the tuples (i, vi,1, . . . , vi,L)∀i∈[1,N ].

In summary, after initialization of com and the openings wI , the communication
and computation costs are independent of N , so in terms of communication and
computation our instantiation of ΠUUD is practical for large databases.

Implementation and Efficiency Measurements. We have implemented our
instantiation of ΠUUD in the Python programming language, using the Charm
cryptographic framework [4], on a computer equipped with an Intel Core i5-7300U
CPU clocked at 2.60 GHz, and 8 gigabytes of RAM. The BN256 curve was used
for the pairing group setup.

To compute UC ZK proofs for Rk, we use the compiler in [12]. The public
parameters of the proof system contain a public key of the Paillier encryption
scheme, the parameters for a multi-integer commitment scheme, and the specifi-
cation of a DSA group. (We refer to [12] for a description of how those primitives
are used in the compiler.) The cost of a proof depends on the number of elements
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Table 1. ΠUUD execution times in seconds

Interface
N = 50
L = 10

N = 100
L = 5

N = 100
L = 15

N = 150
L = 10

N = 200
L = 5

N = 200
L = 15

Setup 61.35 61.37 553.71 554.52 249.61 2205.72

Update 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001

Getdb 0.0004 0.0004 0.0006 0.0004 0.0003 0.0004

Computation of com 0.0371 0.0350 0.1093 0.1035 0.0707 0.2145

One value update of com 1.59e-05 1.59e-05 1.71e-05 1.99e-05 1.69e-05 1.59e-05

Computation of wI 0.3491 0.1753 1.5659 1.0485 0.3513 3.1330

One value update of wI 0.0002 0.0001 0.0003 0.0002 0.0001 0.0003

Read proof (1024 bit key) 3.6737 2.1903 4.9621 3.6811 2.1164 5.0268

Read proof (2048 bit key) 16.6220 10.6786 25.2909 16.8730 9.8916 23.4896

in the witness and on the number of equations composed by Boolean ANDs. The
computation cost for the prover of a Σ-protocol for Rk involves one evaluation
of each of the equations and one multiplication per value in the witness. The
compiler in [12] extends a Σ-protocol and requires, additionally, a computation
of a multi-integer commitment that commits to the values in the witness, an eval-
uation of a Paillier encryption for each of the values in the witness, a Σ-protocol
to prove that the commitment and the encryptions are correctly generated, and
3 exponentiations in the DSA group. The computation cost for the verifier, as
well as the communication cost, also depends on the number of values in the
witness, and on the number of equations. Therefore, as the number of values
in the witness and the number of equations is independent of N in our proof
for relation R, the computation and communication costs of our proof do not
depend on N .

Table 1 lists the execution times of the uud.update and uud.getdb interfaces,
the computation costs for read proofs, and the costs for computing and updating
wI and com, in our implementation, in seconds. The execution times of the
interfaces of the protocol have been evaluated against the size N of the database,
and the size of each entry L of the database. In the setup phase, the public
parameters of all the building blocks are computed, and the database is set up by
computing com. In the second and third rows of Table 1, we depict the execution
times for the uud.update and uud.getdb interfaces for the updater U , and a reader
Rk respectively, after the update of a single value in an entry of the database.
In the fourth row of Table 1, we show the cost of computing com, and as can
be seen from these values, the computation times for com depend on the total
number of values N × L in the database. However, the cost of updating com
is very small, and linear in the number t of updates, and this in turn results
in small computation costs for the uud.update interface, independent of N . (As
required by our applications in §6, the committed vector that we use consists
of small numbers rather than random values in Zp.) The cost of computation
of wI also depends on the total number of values N × L in the database, while
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the cost of updating wI is linear in t× L, and thus the execution times for the
uud.getdb interface (which involves the updates of stored witnesses, in addition
to the update of com as in the case of the uud.update interface) are also small.

In the last two rows of Table 1, we show the computation costs for a read
proof. These values have been evaluated against varying key lengths for the
Paillier encryption scheme used in the proof system in our instantiation of ΠUUD.
The execution times for the read interface depend greatly upon the security
parameters of the Paillier encryption scheme, and increase linearly with the entry
size of the database L. However, the execution times are independent of the
database size N .

6 Modular Design with FUUD and Application to OTAC

First, we show how to describe a protocol modularly by using FUUD as building
block. As an example, consider the following relation R′:

R′ ={(wit , ins) :

[i, vi,1, . . . , vi,L] ∈ DB ∧ 1 = predi(i) ∧ 〈1 = predj(vi,j)〉∀j∈[1,L]}

where the witness is wit = (i, 〈vi,j〉∀j∈[1,L]) and the instance is ins = DB. predi
and predj represent predicates that i and 〈vi,j〉∀j∈[1,L] must fulfill, e.g., predicates
that require i and 〈vi,j〉∀j∈[1,L] to belong to a range or set of values.

We would like to construct a ZK protocol for R′ between a prover P and a

verifier V that uses different functionalities FRi

ZK and 〈FRj

ZK〉∀j∈[1,L] to prove each
of the statements in R′. We show how this protocol is constructed by using FUUD

and FNIC as building blocks.

1. On input DB, V uses the uud.update interface to send DB to FUUD.
2. P uses the uud.getdb interface to retrieve DB.
3. On input (i, vi,1, . . . , vi,L) and P , P checks that [i, vi,1, . . . , vi,L] ∈ DB.
4. P runs the com.setup interface of FNIC. P uses the com.commit interface of
FNIC on input i to obtain a commitment comi with opening openi . Similarly,
from j = 1 to L, P obtains from FNIC commitments comi,j to vi,j with
opening openi,j .

5. P uses the uud.read interface to send the tuple (P , i, comi , openi , 〈vi,j , comi,j ,
openi,j〉∀j∈[1,L]) to FUUD, which sends (P , comi , 〈comi,j〉∀j∈[1,L]) to V.

6. V runs the com.setup interface of FNIC. V uses the com.validate interface of
FNIC to validate the commitments comi and 〈comi,j〉∀j∈[1,L]. Then V stores
P , comi and 〈comi,j〉∀j∈[1,L] and sends a message to P to acknowledge the
receipt of the commitments.

7. P parses the commitment comi as (com ′i , parcom,COM.Verify). P sets the
witness wit ← (i, openi) and the instance ins ← (parcom, com ′i). P uses the
zk.prove interface to send wit , ins and P to FRi

ZK, where Ri is

Ri ={(wit , ins) :

1 = COM.Verify(parcom, com ′i , i, openi) ∧ 1 = predi(i)}
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8. V receives ins from FRi

ZK. V checks that pseudonym and the commitment
in ins are equal to the stored pseudonym and commitment comi . If the
commitments are equal, the binding property guaranteed by FNIC ensures
that FUUD and FRi

ZK received as input the same position i.
9. The last two steps are replicated to prove, for j = 1 to L, that vi,j fulfills

1 = predj(vi,j) by using FRj

ZK.

Application to OTAC. In §E, we depict our functionality FOTAC and our con-
struction ΠOTAC. FOTAC consists of the following interfaces:

1. The sender U uses the otac.init interface to send the messages 〈mn〉Nn=1.
2. The receiver Rk uses the otac.retrieve interface to retrieve N .
3. U uses the otac.policy interface to send (or update) the policies 〈ACPn〉Nn=1

and the relation RACP to FOTAC.
4. Rk uses the otac.getpol interface to obtain 〈ACPn〉Nn=1 and RACP.
5. Rk uses the otac.transfer to send a choice i and a witness wit to FOTAC. If

(wit ,ACPi) ∈ RACP, FOTAC sends mi to Rk.

FOTAC follows previous OTAC functionalities [8] but introduces two main modifi-
cations. First, it splits the initialization interface into two interfaces: otac.init and
otac.policy, to enable U to make policy updates. Second, previous functionalities
include an issuance phase where an issuer certifies Rk attributes, whereas FOTAC

does not have it. Instead, in the transfer phase of FOTAC, Rk must provide a
witness wit such that (wit ,ACPi) ∈ RACP. wit could contain, e.g., signatures from
an issuer on Rk attributes, but in general any data required by RACP.

ΠOTAC uses FOT, FNIC, FUUD, FRACP′
ZK , FBB and a functionality FNYM for

a secure pseudonymous channel. FOT and FNYM are depicted in §E.2. FOT is
used to implement the otac.init and otac.retrieve interfaces, as well as to allow
Rk to obtain messages obliviously in the otac.transfer interface. FOT receives a
committed input to the choice i. It is generally straightforward to adapt existing
UC OTs to realize our FOT with committed inputs.

To implement access control, ΠOTAC uses FUUD, FBB and FRACP′
ZK . In the

otac.policy interface, U uses FUUD to store the policies, and U uses FBB to store
the relation RACP. In the otac.getpol interface, Rk retrieves the policies and the
relation from FUUD and FBB.

In the otac.transfer interface, Rk reads the policy ACPi = 〈vi,j〉∀j∈[1,L] for
her choice i by using FUUD. To do so, Rk obtains commitments comi and
〈comi,j〉∀j∈[1,L] to i and to the values 〈vi,j〉∀j∈[1,L] that represent the policy from

FNIC. 〈comi,j〉∀j∈[1,L] are sent as input to FRACP′
ZK so that Rk proves fulfilment of

the policy. comi is sent as input to FOT to obtain the message mi .
RACP′ is a modification of RACP. In RACP′ , the instance ACPi = 〈vi,j〉∀j∈[1,L]

of RACP is replaced by 〈comi,j〉∀j∈[1,L], while the witness is extended to contain
wit ′ ← (wit , 〈vi,j , openi,j〉∀j∈[1,L]). I.e., the instance in RACP′ contains commit-
ments to the policy rather than the policy itself, which allows Rk to hide what
policy is being used from U .

ΠOTAC supports any policies that can be represented by tuples of values.
In [23], policies are represented by branching programs. If the ZK proof for a
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policy committed in 〈comi,j〉∀j∈[1,L] requires Rk to hide the indices j that are

used from the policy, the proof for FRACP′
ZK can follow an approach similar to

ΠUUD to compute an OR proof. I.e., the values committed in 〈comi,j〉∀j∈[1,L]
can be committed in a vector commitment, and then a position of the vector
commitment can be opened, without disclosing what position is opened.

ΠOTAC uses FOT as building block. Thanks to that, it can be instantiated
with multiple OT schemes and their security does not need to be reanalyzed.
Moreover, U can update the access control policies at any time without restarting
or modifying the OT used as building block, and without using a revocation
mechanism to disallow old policies. Additionally, when many messages are associ-
ated with the same policy, we can use our optimization in §5 so that the policies
in the database do not need to be replicated.

7 Related Work

Vector Commitments (VC). SVC schemes are an extension of VC schemes [25,16].
While an opening in SVC allows us to open a subset of positions, in VC it allows
us to open one position. Our construction could be based on a VC scheme. In that
case, the efficiency of the UC ZK proof for the uud.read interface would decrease
because we would need to prove knowledge of L openings. However, storage cost
would improve because the public parameter size of some VC schemes grows
linearly with the vector length. We note that [22,6] propose SVC with short
parameters based on hidden order groups, but those constructions are better
suited for bit vectors.

Polynomial commitments (PC) allow a committer to commit to a polynomial
and open the commitment to an evaluation of the polynomial. PC can be used
as vector commitments by committing to a polynomial that interpolates the
vector to be committed. The PC construction in [21] has the disadvantage that
efficient updates cannot be computed without knowledge of the trapdoor. A
further generalization of vector commitments and polynomial commitments are
functional commitments [24,22].

OTAC. Our OTAC is adaptive, i.e., Rk can choose an index i after receiving
other messages previously. In [5], an oblivious language-based envelope protocol
(OLBE) is proposed based on smooth projective hash functions. OLBE can be
viewed as a non-adaptive OTAC.

Our OTAC is stateless, i.e. fulfilment of a policy by Rk does not depend in
the history of messages accessed by Rk. In [17], a stateful OTAC is proposed
where policies are defined by a directed graph that determines the possible states
of Rk, the transitions between states and the messages that can be accessed at
each stage. Price oblivious transfer protocols (POT) [3,28,9] require the user to
pay a price for each message. Typically, they involve a prepaid method, where
Rk makes a deposit and later subtracts the prices paid from it without revealing
the current funds or the prices paid. Those stateful OTAC where not designed
modularly. Recently, a modular POT protocol was proposed [18] based on an
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updatable database without unlinkability [19]. Our OTAC differs from it in that
it provides unlinkability to Rk and in that it considers more complex policies
expressed by tuples of values, while in POT the policy is simply the message
price. Additionally, our OTAC can improve storage efficiency when the same
policy is applied to several messages.

Our OTAC reveals the policies to Rk. In [10,7], OTAC with hidden policies
are proposed. Our approach based on SVC cannot be followed to design modularly
OTAC with hidden policies that allow for policy updates.

8 Conclusion and Future Work

We propose an OTAC protocol that can be instantiated with any secure OT
scheme, that allows for policy updates and that can reduce storage cost when
a policy is associated to a group of messages. As building block, we define and
construct an unlinkable updatable database. Our construction based on subvector
commitments allows efficient policy updates. As future work, we plan to extend
our OTAC protocol to consider stateful policies.
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A Universally Composable Security

We prove our protocol secure in the universal composability framework [15]. The
UC framework allows one to define and analyze the security of cryptographic
protocols so that security is retained under an arbitrary composition with other
protocols. The security of a protocol is defined by means of an ideal protocol that
carries out the desired task. In the ideal protocol, all parties send their inputs
to an ideal functionality F for the task. F locally computes the outputs of the
parties and provides each party with its prescribed output.

The security of a protocol ϕ is analyzed by comparing the view of an environ-
ment Z in a real execution of ϕ against that of Z in the ideal protocol defined in
Fϕ. Z chooses the inputs of the parties and collects their outputs. In the real
world, Z can communicate freely with an adversary A who controls both the
network and any corrupt parties. In the ideal world, Z interacts with dummy
parties, who simply relay inputs and outputs between Z and Fϕ, and a simulator
S. We say that a protocol ϕ securely realizes Fϕ if Z cannot distinguish the real
world from the ideal world, i.e., Z cannot distinguish whether it is interacting
with A and parties running protocol ϕ or with S and dummy parties relaying to
Fϕ.

A protocol ϕG securely realizes F in the G-hybrid model when ϕ is allowed
to invoke the ideal functionality G. Therefore, for any protocol ψ that securely
realizes G, the composed protocol ϕψ, which is obtained by replacing each
invocation of an instance of G with an invocation of an instance of ψ, securely
realizes F .

In the ideal functionalities described in this paper, we consider static corrup-
tions. When describing ideal functionalities, we use the following conventions as
in [11].

Interface Naming Convention. An ideal functionality can be invoked by
using one or more interfaces. The name of a message in an interface consists
of three fields separated by dots, e.g., uud.read.ini in FUUD in §3. The first
field indicates the name of the functionality and is the same in all interfaces
of the functionality. This field is useful for distinguishing between invocations
of different functionalities in a hybrid protocol that uses two or more different
functionalities. The second field indicates the kind of action performed by
the functionality and is the same in all messages that the functionality
exchanges within the same interface. The third field distinguishes between
the messages that belong to the same interface, and can take the following
different values. A message uud.read.ini is the incoming message received by
the functionality, i.e., the message through which the interface is invoked.
A message uud.read.end is the outgoing message sent by the functionality,
i.e., the message that ends the execution of the interface. The message
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uud.read.sim is used by the functionality to send a message to S, and the
message uud.read.rep is used to receive a message from S.

Network vs local communication. The identity of an interactive Turing ma-
chine instance (ITI) consists of a party identifier pid and a session identifier
sid . A set of parties in an execution of a system of interactive Turing machines
is a protocol instance if they have the same session identifier sid . ITIs can
pass direct inputs to and outputs from “local” ITIs that have the same pid .
An ideal functionality F has pid = ⊥ and is considered local to all parties.
An instance of F with the session identifier sid only accepts inputs from
and passes outputs to machines with the same session identifier sid . Some
functionalities require the session identifier to have some structure. Those
functionalities check whether the session identifier possesses the required
structure in the first message that invokes the functionality. For the subse-
quent messages, the functionality implicitly checks that the session identifier
equals the session identifier used in the first message. Communication between
ITIs with different party identifiers must take place over the network. The
network is controlled by A, meaning that he can arbitrarily delay, modify,
drop, or insert messages.

Query identifiers. Some interfaces in a functionality can be invoked more
than once. When the functionality sends a message uud.read.sim to S in
such an interface, a query identifier qid is included in the message. The
query identifier must also be included in the response uud.read.rep sent by S.
The query identifier is used to identify the message uud.read.sim to which S
replies with a message uud.read.rep. We note that, typically, S in the security
proof may not be able to provide an immediate answer to the functionality
after receiving a message uud.read.sim. The reason is that S typically needs
to interact with the copy of A it runs in order to produce the message
uud.read.rep, but A may not provide the desired answer or may provide a
delayed answer. In such cases, when the functionality sends more than one
message uud.read.sim to S, S may provide delayed replies, and the order of
those replies may not follow the order of the messages received.

Aborts. When an ideal functionality F aborts after being activated with a mes-
sage sent by a party, we mean that F halts the execution of its program and
sends a special abortion message to the party that invoked the functionality.
When an ideal functionality F aborts after being activated with a message
sent by S, we mean that F halts the execution of its program and sends a
special abortion message to the party that receives the outgoing message
from F after F is activated by S.

B Security Definitions of the Building Blocks of ΠUUD

Security of Subvector Commitments. We recall the correctness and binding
properties [22] and define correctness for the update algorithms.

Correctness. Correctness requires that for any par ← SVC.Setup(1k, `), x
← (x[1], . . . ,x[`]) ∈ M`, com ← SVC.Commit(par ,x), I = {i1, . . . , in} ⊆
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[1, `] and wI ← SVC.Open(par , I,x), SVC.Verify(par , com,xI , I,wI) outputs
1 with probability 1, where xI = (x[i1], . . . ,x[in]).
For the update algorithms, correctness requires that, for any par , x, com,
I and wI computed as shown above, and for any i ∈ [1, `], x ∈ M, com ′

← SVC.ComUpd(par , com,x, i, x) and w ′I ← SVC.OpenUpd(par ,wI ,x, I, i,
x), SVC.Verify(par , com ′,x′I , I,w

′
I) outputs 1 with probability 1, where x′I =

(x′[i1], . . . ,x′[in]) and x′ is such that x′[i] = x and for all j ∈ [1, `] \ {i},
x′[j] = x[j].

Binding. This property requires that no adversary can output a commitment
com, two sets of positions I = {i1, . . . , in} ⊆ [1, `] and J = {j1, . . . , jn′} ⊆
[1, `], two subvectors xI = (x[i1], . . . ,x[in]) and xJ = (x′[j1], . . . ,x′[jn′ ]) and
two openings wI and wJ such that SVC.Verify accepts both but there exists
an index i ∈ I ∩ J such that x[i] 6= x′[i], i.e., for ` polynomial in k:

Pr



par ← SVC.Setup(1k, `); (com, I, J,xI ,xJ ,wI ,wJ)← A(par) :
1 = SVC.Verify(par , com,xI , I,wI) ∧
1 = SVC.Verify(par , com,xJ , J,wJ) ∧
I = {i1, . . . , in} ⊆ [1, `] ∧ J = {j1, . . . , jn′} ⊆ [1, `] ∧
xI = (x[i1], . . . ,x[in]) ∈Mn ∧
xJ = (x′[j1], . . . ,x′[jn′ ]) ∈Mn′ ∧
∃ i ∈ I ∩ J such that x[i] 6= x′[i]


≤ ε(k) .

Description of FCRS.Setup
CRS . FCRS.Setup

CRS is parameterized by CRS.Setup, a ppt algo-

rithm. FCRS.Setup
CRS interacts with any parties P that obtain the common reference

string:

1. On input (crs.get.ini, sid) from any party P:

– If (sid , crs) is not stored, run crs ← CRS.Setup and store (sid , crs).
– Create a fresh qid and store (qid ,P).
– Send (crs.get.sim, sid , qid , crs) to S.

S. On input (crs.get.rep, sid , qid) from the simulator S:

– Abort if (qid ,P) is not stored.
– Delete the record (qid ,P).
– Send (crs.get.end, sid , crs) to P.

Description of FR
ZK. FR

ZK is parameterized by a description of a relation R and
by a universe of pseudonyms Up. FR

ZK interacts with provers Pk and a verifier V .

1. On input (zk.prove.ini, sid ,wit , ins,P) from Pk:

– Abort if sid 6= (V, sid ′), or if (wit , ins) /∈ R, or if P /∈ Up.
– Create a fresh qid and store (qid , ins,P).
– Send (zk.prove.sim, sid , qid , ins) to S.

S. On input (zk.prove.rep, sid , qid) from S:

– Abort if (qid , ins,P) is not stored.
– Parse sid as (V, sid ′).
– Delete the record (qid , ins,P).
– Send (zk.prove.end, sid , ins,P) to the verifier V.
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Description of FBB. FBB is parameterized by a universe of messages Um. FBB

interacts with a writer W and readers Rk.

1. On input (bb.write.ini, sid ,m) from W:

– Abort if sid /∈ (W, sid ′).
– Abort if m /∈ Um.
– If (sid ,BB, ct) is not stored, set BB← ⊥ and ct ← 0.
– Increment ct , append [ct ,m] to BB and update ct and BB in (sid ,BB,

ct).
– Create a fresh qid and store qid .
– Send (bb.write.sim, sid , qid ,m) to S.

S. On input (bb.write.rep, sid , qid) from S:

– Abort if qid is not stored.
– Delete qid .
– Send (bb.write.end, sid) to W.

2. On input (bb.getbb.ini, sid , i) from Rk:

– Create a fresh qid and store (qid ,Rk, i).
– Send (bb.getbb.sim, sid , qid) to S.

S. On input (bb.getbb.rep, sid , qid) from S:

– Abort if (qid ′,Rk, i) such that qid ′ = qid is not stored.
– If (sid ,BB, ct) is stored and i ∈ [1, ct ], take [i ,m] from BB and set

m ′ ← m, else set m ′ ← ⊥.
– Send (bb.getbb.end, sid ,m ′) to Rk.

C Security Analysis of ΠUUD

To prove that ΠUUD securely realizes FUUD, we must show that for any envi-
ronment Z and any adversary A there exists a simulator S such that Z cannot
distinguish whether it is interacting with A and the protocol in the real world or
with S and FUUD. S thereby plays the role of all honest parties in the real world
and interacts with FUUD for all corrupt parties in the ideal world.
S runs copies of the functionalities FSVC.Setup

CRS , FBB and FR
ZK. In the descrip-

tions of our simulators below, for brevity, we omit part of the communication
between S and A. Whenever a copy of any of those functionalities sends a message
(∗. ∗ .sim) to S, S implicitly forwards that message to A and runs again a copy of
that functionality on input the response provided by A. When any of the copies
of those functionalities aborts, S implicitly forwards the abortion message to A
if the functionality sends the abortion message to a corrupt party.

In §C.1, we analyze the security of ΠUUD when (a subset of) readers Rk are
corrupt. In §C.2, we analyze the security of ΠUUD when U is corrupt. We do not
analyze in detail the security of ΠUUD when U and (a subset of) readers Rk are
corrupt. We note that, in ΠUUD, honest readers communicate with U but not
with other readers. Therefore, for this case the simulator and the security proof
are similar to the case where only U is corrupt.
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C.1 Security Analysis of ΠUUD when Rk are Corrupt

We describe S for the case in which (a subset of) readers Rk are corrupt.

Initialization of S. S runs the crs.get interface of an instance of FSVC.Setup
CRS to

get the parameters par .
Honest U sends an update. On input the message (uud.update.sim, sid , qid ,

(i, vi,1, . . . , vi,L)∀i∈[1,N ]) from functionality FUUD, S runs the bb.write inter-
face of a copy of FBB on input (i, vi,1, . . . , vi,L)∀i∈[1,N ] to write the update into
the bulletin board in FBB. S follows the same steps described in ΠUUD in order
to set and update a tuple (sid , par , com,x, cu). Then S sends (uud.update.rep,
sid , qid) to FUUD.

A requests database. WhenA invokes the bb.getbb interface on input an index
i , S sends (uud.getdb.ini, sid) to FUUD. When FUUD sends (uud.getdb.sim,
sid , qid), S sends (uud.getdb.rep, sid , qid) to FUUD. When FUUD sends the
message (uud.getdb.end, sid ,DB), S runs the bb.getbb interface of FBB on
input i to send the update (i, vi,1, . . . , vi,L)∀i∈[1,N ] to A. We recall that the
update was already stored in FBB when it was sent by the honest U .

A requests and receives par . When A invokes the crs.get interface, S runs a
copy of FSVC.Setup

CRS on that input to send par to A.
A sends a proof. When A invokes the zk.prove interface on input a pseudonym

P , a witness wit and an instance ins, S runs a copy of FR
ZK on that in-

put. Then S parses ins as (par ′, com ′, parcom, com ′i , 〈com ′i,j〉∀j∈[1,L], crk) and
wit as (wI , I, i, openi , 〈vi,j , openi,j〉∀j∈[1,L]). S sets comi ← (com ′i , parcom,
COM.Verify) and 〈comi,j ← (com ′i,j , parcom,COM.Verify)〉∀j∈[1,L]. S sends
(uud.read.ini, sid ,P , (i, comi , openi , 〈vi,j , comi,j , openi,j〉∀j∈[1,L])) to the func-
tionality FUUD. When FUUD sends the message (uud.read.sim, sid , qid , (comi ,
〈comi,j〉∀j∈[1,L])), S does the following:
– S retrieves the stored tuple (sid , par , com,x, cu). If crk 6= cu, or if par ′

6= par , or if com ′ 6= com, S sends FUUD a message that makes FUUD

abort.
– Else, if for any j ∈ [1,L], x[(i− 1)L + j] 6= vi,j , S outputs failure.
– Else, S sends (uud.read.rep, sid , qid) to FUUD.

Theorem 2. When (a subset of) readers Rk are corrupt, ΠUUD securely realizes

FUUD in the (FSVC.Setup
CRS ,FBB,FR

ZK)-hybrid model if the SVC scheme is binding.

Proof of Theorem 2. We show by means of a series of hybrid games that the
environment Z cannot distinguish the real-world protocol from the ideal-world
protocol with non-negligible probability. We denote by Pr [Game i] the proba-
bility that the environment distinguishes Game i from the real-world protocol.

Game 0: This game corresponds to the execution of the real-world protocol.
Therefore, Pr [Game 0] = 0.

Game 1: Game 1 follows Game 0, except that Game 1 runs an initialization
phase to set a counter cu and the parameters par . Game 1 stores and
updates a tuple (sid , par , com,x, cu). These changes do not alter the view of
the environment. Therefore, |Pr [Game 1]− Pr [Game 0]| = 0.
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Game 2: Game 2 follows Game 1, except that, when the adversary sends a
valid proof with witness wit and instance ins , Game 2 outputs failure if, for
any j ∈ [1,L], x[(i− 1)L + j] 6= vi,j , where x is in the stored tuple (sid , par ,
com,x, cu). The probability that Game 2 outputs failure is bound by the
following claim.

Theorem 3. Under the binding property of the SVC scheme, we have that
|Pr [Game 2]− Pr [Game 1]| ≤ Advbin−svcA .

Proof of Theorem 3. We construct an algorithm B that, given an adversary
that makes Game 2 fail with non-negligible probability, breaks the binding
property of the SVC scheme with non-negligible probability. B behaves as
Game 2 with the following modifications:
– When the challenger sends the parameters par , B stores par as common

reference string in the copy of FSVC.Setup
CRS .

– When the adversary sends a valid proof with witness wit = (wI , I, i,
openi , 〈vi,j , openi,j〉∀j∈[1,L]) and instance ins = (par , com, parcom, com ′i ,
〈com ′i,j〉∀j∈[1,L], crk) such that, for any j ∈ [1,L], x[(i − 1)L + j] 6=
vi,j , where x is in the stored tuple (sid , par , com,x, cu), B runs wI
← SVC.Open(par , I,x) and sends (com, I, I, 〈vi,j〉∀j∈[1,L], 〈x[(i − 1)L +
j]〉∀j∈[1,L],wI ,w ′I) to the challenger.

This concludes the proof of Theorem 3.

The distribution of Game 2 is identical to our simulation. This concludes the
proof of Theorem 2.

C.2 Security Analysis of ΠUUD when U is Corrupt

We describe S for the case in which U is corrupt.

Initialization of S. S runs the crs.get interface of an instance of FSVC.Setup
CRS to

get the parameters par .
A requests and receives par . S proceeds as in the case where Rk is corrupt.
A sends update. When A invokes the bb.write interface on input the message

(i, vi,1, . . . , vi,L)∀i∈[1,N ], S sends (uud.update.ini, sid , (i, vi,1, . . . , vi,L)∀i∈[1,N ])
to FUUD. When FUUD sends the message (uud.update.sim, sid , qid , (i, vi,1,
. . . , vi,L)∀i∈[1,N ]), S sends (uud.update.rep, sid , qid) to FUUD. When FUUD

sends (uud.update.end, sid), S follows the same steps described in ΠUUD in
order to set and update a tuple (sid , par , com,x, cu). Finally, S runs the
bb.write interface of a copy of FBB on input (i, vi,1, . . . , vi,L)∀i∈[1,N ].

Honest Rk requests database. When FUUD sends (uud.getdb.sim, sid , qid),
S runs the bb.getbb interface of FBB on input a random index i . Then S
sends (uud.getdb.rep, sid , qid) to FUUD.

Honest Rk sends a proof. On input from FUUD the message (uud.read.sim,
sid , qid , (comi , 〈comi,j〉∀j∈[1,L])), S sends (uud.read.rep, sid , qid) to FUUD and
receives the message (uud.read.end, sid ,P , (comi , 〈comi,j〉∀j∈[1,L])) from the
functionality FUUD. S does the following:
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– S retrieves the stored tuple (sid , par , com,x, cu).

– S parses comi as (com ′i , parcom,COM.Verify) and 〈comi,j〉∀j∈[1,L] as the
tuples 〈(com ′i,j , parcom,COM.Verify)〉∀j∈[1,L].

– S sets ins ← (par , com, parcom, com ′i , 〈com ′i,j〉∀j∈[1,L], cu).

– S sets the message corresponding to the zk.prove interface of FR
ZK to send

P and ins to A. Note that S does not know the witness, so it does no
run a copy of the functionality. Instead, S sets the message as if it was
sent by a copy of FR

ZK.

Theorem 4. When U is corrupt, ΠUUD securely realizes FUUD in the (FSVC.Setup
CRS ,

FBB,FR
ZK)-hybrid model.

Proof of Theorem 4. There are two differences between the real world protocol
and S. First, S uses a random index i to run the bb.getbb interface of FBB. This
change does not alter the view of the environment because FBB does not disclose
i to the adversary. Second, S does not run FR

ZK because S does not know the
witness of the proof. Because FR

ZK does not leak the witness to the adversary
and the pseudonym and the instance are not modified, this change does not alter
the view of the environment.

D Building Blocks of Our Instantiation of ΠUUD

Commitment scheme for FNIC. A commitment scheme consists of algorithms
CSetup, Com and VfCom. CSetup(1k ) generates the parameters parc, which in-
clude a description of the message spaceM. Com(parc , x ) outputs a commitment
com to x ∈M and an opening open. VfCom(parc , com, x , open) outputs 1 if com
is a commitment to x with opening open or 0 otherwise.

We use the Pedersen commitment scheme [26]. CSetup(1k ) takes a group G of
prime order p with generator g , picks random α, computes h ← gα and sets the
parameters parc ← (G, g , h), which include a description of the message spaceM
← Zp. Com(parc , x ) picks random open ← Zp and outputs a commitment com
← gxhopen to x ∈M and an opening open. VfCom(parc , com, x , open) outputs 1
if com = gxhopen . In [11], it is shown that Pedersen commitments realize FNIC.

Signature schemes. We use a signature scheme for the ZK proof for relation R in §5.
A signature scheme consists of the algorithms KeyGen, Sign and VfSig. KeyGen(1k )
outputs a secret key sk and a public key pk , which include a description of the
message space M. Sign(sk ,m) outputs a signature s on the message m ∈ M.
VfSig(pk , s,m) outputs 1 if s is a valid signature on m and 0 otherwise. This
definition can be extended to blocks of messages m̄ = (m1, . . . ,mn). In this case,
KeyGen(1k , n) receives the maximum number n of messages as input. A signature
scheme must be existentially unforgeable [20].
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E Oblivious Transfer with Access Control

E.1 Functionality FOTAC

FOTAC interacts with a sender U and receiversRk. FOTAC consists of the following
interfaces:

1. U uses the otac.init interface to send the messages 〈mn〉Nn=1.
2. The receiver Rk uses the otac.retrieve interface to retrieve N .
3. U uses the otac.policy interface to send (or update) the policies 〈ACPn〉Nn=1

and the relation RACP to FOTAC.
4. Rk uses the otac.getpol interface to obtain 〈ACPn〉Nn=1 and RACP.
5. Rk uses the otac.transfer to send a choice i and a witness wit to FOTAC. If

(wit ,ACPi) ∈ RACP, FOTAC sends mi to Rk.

The relation RACP is

RACP′ ={(wit , ins) :

1 = f(wit , 〈vi,j〉∀j∈[1,L])}

The instance otac.policy = 〈vi,j〉∀j∈[1,L] of RACP is a policy represented as a tuple
of values. The function f evaluates whether the witness wit satisfies the policy.
wit can contain different elements depending on f . It can, e.g., contain signatures
of the attributes of Rk certified by an issuer.

Description of FOTAC. FOTAC is parameterised by universes of messages Um
and policies Upol.

1. On input (otac.init.ini, sid , 〈mn〉Nn=1) from U :

– Abort if sid /∈ (U , sid ′), or if (sid , 〈mn〉Nn=1, 0) is already stored.
– Abort if for n = 1 to N , mn /∈ Um.
– Store (sid , 〈mn〉Nn=1, 0).
– Send (otac.init.sim, sid ,N ) to S.

S. On input (otac.init.rep, sid) from S:

– Abort if (sid , 〈mn〉Nn=1, 0) is not stored, or if (sid , 〈mn〉Nn=1, 1) is already
stored.

– Store (sid , 〈mn〉Nn=1, 1).
– Send (otac.init.end, sid) to U .

2. On input (otac.retrieve.ini, sid) from Rk:

– Create a fresh qid and store (qid ,Rk).
– Send (otac.retrieve.sim, sid , qid) to S.

S. On input (otac.retrieve.rep, sid , qid) from S.

– Abort if (qid ′,Rk) such that qid ′ = qid is not stored.
– If (sid , 〈mn〉Nn=1, 1) is not stored, set N ← ⊥.
– Else, store (sid ,Rk,N ).
– Delete (qid ,Rk).
– Send (otac.retrieve.end, sid ,N ) to Rk.
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3. On input (otac.policy.ini, sid , 〈ACPn〉Nn=1,RACP) from U :

– Abort if (sid , 〈mn〉Nn=1, 1) is not stored or if the number of policies is not
equal to number of messages received.

– For all n ∈ [1,N ], abort if ACPn /∈ Upol.
– If (sid , 〈ACPn〉Nn=1,RACP, cu) is not stored:

• For all n ∈ [1,N ], abort if ACPn = ⊥.
• Abort if RACP = ⊥.
• Store (sid , 〈ACPn〉Nn=1,RACP, cu).

– Else:

• For all n ∈ [1,N ], if ACPn 6= ⊥, update ACPn in the stored tuple
(sid , 〈ACPn〉Nn=1,RACP, cu).
• If RACP 6= ⊥, update RACP in (sid , 〈ACPn〉Nn=1,RACP, cu).
• Increment cu and update cu in (sid , 〈ACPn〉Nn=1,RACP, cu).

– Create a fresh qid and store qid .
– Send (otac.policy.sim, sid , qid , 〈ACPn〉Nn=1,RACP) to S.

S. On input (otac.policy.rep, sid , qid) from S:

– Abort if qid is not stored.
– Delete qid .
– Send (otac.policy.end, sid) to U .

4. On input (otac.getpol.ini, sid) from Rk:

– Create a fresh qid and store (qid ,Rk).
– Send (otac.getpol.sim, sid , qid) to S.

S. On input (otac.getpol.rep, sid , qid) from S:

– Abort if (qid ′,Rk) such that qid ′ = qid is not stored.
– If (sid , 〈ACPn〉Nn=1,RACP, cu) is not stored, set 〈ACPn〉Nn=1 ← ⊥ and RACP

= ⊥.
– Else, set crk ← cu, store (Rk, 〈ACPn〉Nn=1,RACP, crk) and delete any

previous tuple (Rk, 〈ACP′n〉Nn=1,RACP, cr ′k).
– Delete (qid ,Rk).
– Send (otac.getpol.end, sid , 〈ACPn〉Nn=1,RACP) to Rk.

5. On input (otac.transfer.ini, sid , i ,wit) from Rk:

– Abort if (sid ,R′k,N ) or (R′k, 〈ACPn〉Nn=1,RACP, crk) such that R′k = Rk
are not stored.

– Abort if i /∈ [1,N ], or if (wit ,ACPi) /∈ RACP.
– Create a fresh qid and store (qid ,mi , crk), where mi is stored in the tuple

(sid , 〈mn〉Nn=1, 1).
– Send (otac.transfer.sim, sid , qid) to S.

S. On input (otac.transfer.rep, sid , qid) from S:

– Abort if (qid ,mi , crk) is not stored, or if crk 6= cu, where cu is stored in
the tuple (sid , 〈ACPn〉Nn=1,RACP, cu).

– Delete the record (qid ,mi , crk).
– Send (otac.transfer.end, sid ,mi) to Rk.
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E.2 Building Blocks of ΠOTAC

Functionality FOT. FOT interacts with a sender U and receivers Rk, and
consists of four interfaces ot.init, ot.retrieve, ot.request and ot.transfer.

1. U uses the ot.init interface to send the messages 〈mn〉Nn=1 to FOT. FOT stores
〈mn〉Nn=1. The simulator S learns N .

2. Rk uses the ot.retrieve interface to receive the number N of messages input
by U to FOT. The simulator S learns N .

3. Rk uses the ot.request interface to send a pseudonym P , an index σ ∈ [1,N ],
a commitment comσ and an opening openσ to FOT. FOT parses the commit-
ment comσ as (com ′σ, parcom,COM.Verify) and verifies the commitment by
running COM.Verify. FOT stores [Rk,P , σ, comσ] and sends P and comσ to
U .

4. U uses the ot.transfer interface to send P and comσ to FOT. If a tuple [Rk,
P , σ, comσ] is stored, FOT sends the message mσ to Rk.

FOT is similar to existing functionalities for OT [14], except that it receives a
commitment comσ to the index σ and an opening openσ for that commitment.
In addition, the transfer phase is split up into two interfaces ot.request and
ot.transfer, so that U receives comσ in the request phase. These changes are
needed to use FOT in our OTAC protocol in order to ensure that Rk sends the
same index σ to FOT and to FUUD. It is generally easy to modify existing UC
OT protocols so that they realize our functionality FOT.

Description of FOT. Functionality FOT runs with a sender U and receivers Rk,
and is parameterised with a maximum number of messages Nmax, a universe of
pseudonyms Up and a message space M.

1. On input (ot.init.ini, sid , 〈mn〉Nn=1) from U :
– Abort if sid /∈ (U , sid ′), or if (sid , 〈mn〉Nn=1, 0) is already stored, or if

N > Nmax.
– Abort if for n = 1 to N , mn /∈M.
– Store (sid , 〈mn〉Nn=1, 0).
– Send (ot.init.sim, sid ,N ) to S.

S. On input (ot.init.rep, sid) from S:
– Abort if (sid , 〈mn〉Nn=1, 0) is not stored, or if (sid , 〈mn〉Nn=1, 1) is already

stored.
– Store (sid , 〈mn〉Nn=1, 1) and initialize an empty table Tblot.
– Send (ot.init.end, sid) to U .

2. On input (ot.retrieve.ini, sid) from Rk:
– Create a fresh qid and store (qid ,Rk).
– Send (ot.retrieve.sim, sid , qid) to S.

S. On input (ot.retrieve.rep, sid , qid) from S.
– Abort if (qid ′,Rk) such that qid ′ = qid is not stored.
– If (sid , 〈mn〉Nn=1, 1) is not stored, set N ← ⊥.
– Else, store (sid ,Rk,N ).
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– Delete (qid ,Rk).
– Send (ot.retrieve.end, sid ,N ) to Rk.

3. On input (ot.request.ini, sid ,P , σ, comσ, openσ) from Rk:
– Abort if P /∈ Up
– Abort if(sid ,Rk,N ) is not stored.
– Abort if σ /∈ [1,N ].
– Parse comσ as (com ′σ, parcom,COM.Verify).
– Abort if COM.Verify is not a ppt algorithm, or if 1 6= COM.Verify(parcom,

com ′σ, openσ, σ).
– Create a fresh qid and store (qid ,Rk,P , σ, comσ).
– Send (ot.request.sim, sid , qid , comσ) to S.

S. On input (ot.request.rep, sid , qid) from S:
– Abort if (qid ,Rk,P , σ, comσ) is not stored.
– Append [Rk,P , σ, comσ] to Tblot.
– Delete the record (qid ,Rk,P , σ, comσ).
– Send (ot.request.end, sid ,P , comσ) to U .

4. On input (ot.transfer.ini, sid ,P , comσ) from U :
– Abort if there is no entry [Rk,P , σ, comσ] in Tblot.
– Create a fresh qid and store (qid , σ).
– Send (ot.transfer.sim, sid , qid) to S.

S. On input (ot.transfer.rep, sid , qid) from S:
– Abort if (qid , σ) is not stored.
– Set v ← mσ.
– Delete the record (qid , σ).
– Send (ot.transfer.end, sid , v) to R.

Functionality FNYM. FNYM models an idealized secure pseudonymous channel.
We use FNYM to describe our protocol in order to abstract away the details
of real-world pseudonymous channels. FNYM is similar to the functionality for
anonymous secure message transmission in [13]. FNYM interacts with senders
Tk and a replier R and consists of two interfaces nym.send and nym.reply. Tk
uses nym.send to send a message m and a pseudonym P to R. R uses nym.reply
to send a message m and a pseudonym P . FNYM checks if there is a party Tk
associated with pseudonym P that is awaiting a reply, and in that case sends m
and P to Tk. Therefore, R replies to messages from Tk by specifying P .

Description of FNYM. FNYM is parameterized by a message space M, a
universe of pseudonyms Up, and a leakage function l , which leaks the message
length.

1. On input (nym.send.ini, sid ,m,P) from Tk:

– Abort if sid 6= (R, sid ′), or if m /∈ M, or if P /∈ Up.
– Create a fresh qid and store (qid ,P , Tk,m).
– Send (nym.send.sim, sid , qid , l(m)) to S.

S. On input (nym.send.rep, sid , qid) from S:

– Abort if (qid ,P , Tk,m) is not stored.
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– Store (sid ,P , Tk).
– Delete the record (qid ,P , Tk,m).
– Parse sid as (R, sid ′).
– Send (nym.send.end, sid ,m,P) to R.

2. On input (nym.reply.ini, sid ,m,P) from R:

– Abort if sid 6= (R, sid ′), or if m /∈ M, or if P /∈ Up.
– Abort if there is not a tuple (sid ,P ′, Tk) stored such that P ′ = P .
– Create a fresh qid and store (qid ,P , Tk,m).
– Delete the tuple (sid ,P , Tk).
– Send (nym.reply.sim, sid , qid , l(m)) to S.

S. On input (nym.reply.rep, sid , qid) from S:

– Abort if (qid ,P , Tk,m) is not stored.
– Delete the record (qid ,P , Tk,m).
– Send (nym.send.end, sid ,m,P) to Tk.

E.3 Construction ΠOTAC

ΠOTAC uses an ideal functionality FOT as building block. FOT is used to imple-
ment the otac.init and otac.retrieve interfaces, as well as to allow Rk to obtain
messages obliviously in the otac.transfer interface.

To implement access control, ΠOTAC uses the functionalities FUUD, FBB and
FRACP′

ZK . In the otac.policy interface, U uses FUUD to store the policies, and U
uses FBB to store the relation RACP. In the otac.getpol interface, Rk retrieves
the policies and the relation from FUUD and FBB.

In the otac.transfer interface, Rk reads the policy ACPi = 〈vi,j〉∀j∈[1,L] for
her choice i by using FUUD. To do show, Rk obtains commitments comi and
〈comi,j〉∀j∈[1,L] to i and to the values 〈vi,j〉∀j∈[1,L] that represent the policy.

〈comi,j〉∀j∈[1,L] are sent as input to FRACP′
ZK so that Rk proves fulfilment of the

policy. comi is sent as input to FOT to obtain the message mi .
RACP′ is a modification of RACP. In RACP′ , the instance 〈vi,j〉∀j∈[1,L] of RACP is

replaced by 〈comi,j〉∀j∈[1,L], while the witness is extended to contain wit ′ ← (wit ,
〈vi,j , openi,j〉∀j∈[1,L]). I.e., the instance in RACP′ contains commitments to the
policy rather than the policy itself, which allows Rk to hide what instance is
being used from U . The relation RACP′ is

RACP′ ={(wit ′, ins ′) :

〈1 = COM.Verify(parcom, com ′i,j , vi,j , openi,j)〉∀j∈[1,L] ∧
1 = f(wit , 〈vi,j〉∀j∈[1,L])}

Description of ΠOTAC. ΠOTAC is parameterised by universes of pseudonyms Up,
messages Um and policies Upol.

1. On input (otac.init.ini, sid , 〈mn〉Nn=1):

– U uses the ot.init interface to send the messages 〈mn〉Nn=1 to FOT.
– U outputs (otac.init.end, sid).

2. On input (otac.retrieve.ini, sid):
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– Rk uses the ot.retrieve interface of FOT to retrieve the number of messages
N .

– Rk outputs (otac.retrieve.end, sid ,N ).

3. On input (otac.policy.ini, sid , 〈ACPn〉Nn=1,RACP):

– U parses 〈ACPn〉Nn=1 as (n, vn,1, . . . , vn,L)∀n∈[1,N ]. Upol admits policies
that can be represented by tuples of values.

– U uses the uud.update interface to send (n, vn,1, . . . , vn,L)∀n∈[1,N ] to
FUUD.

– U uses the bb.write interface of FBB to write RACP into the bulletin board.
– U outputs (otac.policy.end, sid).

4. On input (otac.getpol.ini, sid):

– Rk uses the uud.getdb interface of FUUD to retrieve the policies DB =
(n, vn,1, . . . , vn,L)∀n∈[1,N ] = 〈ACPn〉Nn=1.

– If (sid , crk, 〈ACPn〉Nn=1,RACP) is not stored, Rk sets crk ← 0.
– Rk increments crk and uses the bb.getbb interface of FBB to receive the

description of a relation RACP. Rk continues incrementing the counter
and reading the bulletin board until the returned message is ⊥. Then
Rk takes the previous crk and the last description of a relation RACP

received from FBB, stores (sid , crk, 〈ACPn〉Nn=1,RACP) and deletes any
previous tuple (sid , crk, 〈ACPn〉Nn=1,RACP).

– Rk outputs (otac.getpol.end, sid , 〈ACPn〉Nn=1,RACP).

5. On input (otac.transfer.ini, sid , i ,wit):

– In the first execution of this interface, Rk runs the com.setup interface
of FNIC.

– Rk picks the policy ACPi = (i , vi,1, . . . , vi,L) and RACP from the stored
tuple (sid , crk, 〈ACPn〉Nn=1,RACP).

– Rk aborts if (wit ,ACPi) /∈ RACP.
– Rk uses the com.commit interface of FNIC to obtain commitments and

openings (comi , openi , 〈comi,j , openi,j〉∀j∈[1,L] to i and vi,1, . . . , vi,L.
– Rk picks a random pseudonym P ← Up.
– Rk uses the uud.read interface to send (P , (i , comi , openi , 〈vi,j , comi,j ,

openi,j〉∀j∈[1,L])) to FUUD.
– U receives (P , (comi , 〈comi,j〉∀j∈[1,L])) from FUUD.
– In the first execution of this interface, U runs the com.setup interface of
FNIC.

– U uses the com.validate interface of FNIC to validate the commitments
(comi , 〈comi,j〉∀j∈[1,L]).

– U uses the nym.reply interface of FNYM to send to Rk a message that
acknowledges receipt of the commitments. (Here, we assume that FUUD

uses the nym.send interface of FNYM to send a message from Rk to U .)
– Rk sets the instance ins ′ ← (〈comi,j〉∀j∈[1,L]) and the witness wit ′ ←

(wit , (〈vi,j , openi,j〉∀j∈[1,L])).
– Rk uses the zk.prove interface to send wit ′, ins ′ and P to FRACP′

ZK .

– U receives ins ′ and P from FRACP′
ZK . U aborts if the commitments in ins ′

or the pseudonym are not equal to the ones received from FUUD.
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– U uses the nym.reply interface of FNYM to send to Rk a message that
acknowledges receipt of the ZK proof. (Here, we assume that FRACP′

ZK uses
the nym.send interface of FNYM to send a message from Rk to U .)

– Rk uses the ot.request interface to send P , i , comi , and openi to FOT.
– U receives P and comi from FOT. U aborts if comi or the pseudonym is

not equal to the commitment received from FUUD.
– U uses the ot.transfer interface to send P and comσ to FOT.
– Rk receives mi from FOT.
– Rk outputs (otac.transfer.end, sid ,mi).

E.4 Security Analysis of ΠOTAC

Theorem 5. ΠOTAC securely realizes FOTAC in the (FOT, FNIC, FUUD, FRACP′
ZK ,

FBB, FNYM)-hybrid model.

When U is corrupt, our simulator S proceeds by running the receiver part
of ΠOTAC, with two modifications. First, the choice i is replaced by a random
choice. This change does not alter the view of the environment because FOT

does not leak any information on i to the adversary. Second, because S does not
know wit , S does not run FRACP′

ZK . Instead, S creates the message sent by FRACP′
ZK

to the adversary. This change does not alter the view of the environment because
FRACP′

ZK does not leak any information on wit to the adversary.
When Rk is corrupt, S proceeds by running the sender part of ΠOTAC, with

the following modifications. First, when the honest U inputs the messages, S
sends N random messages to FOT. When the adversary sends its choice i , S
obtains mi from FOTAC and replaces the random message stored in FOT by mi

before the ot.transfer interface of FOT is run.
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