GAN Applications with Discrete Data
Reproducing and Bringing State-of-the-Art to Industry

Ramiro CAMINO

SEDAN Lab, SnT, University of Luxembourg, Luxembourg
ramiro.camino@uni.lu — (+352) 46 66 44 - 6855

Abstract

Gaining insight into financial transactions is a legal require-
ment for banks and financial service providers. Unfortunately, for
most data available to banks and service provider, the truth about
the transaction purpose is unknown and illicit activities have a low
base rate. Additionally, after reporting suspicious activity, banks
will no hearing back from investigations. Consequently, many su-
pervised approaches, which inherently rely on the ground truth,
cannot be used. In the following we study the use of Generative
Adversarial Networks (GAN) for data augmentation to increase
the scarce amount of known fraudulent cases, and for data im-
putation to improve the quality of samples.

Introduction

* |Issues analyzing financial transactions and accounts:

— Class imbalance: e.g. fraud small / non-fraud big
— Unavailability and unreliability of labels

— Missing values along multiple features

— Impossibility to share private data

* Possible applications of GANSs:

— Data augmentation for the minority class

— Data imputation for missing values

— Synthetic data generation to replace private data
— Unsupervised feature extraction

» State-of-the-Art for GANSs:

— Plenty of work and promising results for continuous do-
mains like images, video and sound

— Studies involving discrete samples are mainly focused
on sequences of words, characters or symbols

Related Work
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Figure 1: Generative Adversarial Network (GAN) [4]. The generator
weights can be trained thanks to the error backpropagated from the
discriminator loss and through the discriminator weights.
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Figure 2: When sampling from a discrete distribution, the backpropa-
gation fails because the sample operation is non-differentiable.
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Figure 3: MedGAN [2] first pre-trains an autoencoder. During the sec-
ond training phase, the decoder transforms the generator outputs into
samples where each feature is considered as a binary variable.
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Figure 4: ARAE [7] trains and autoencoder and a WGAN [1] with al-
ternating steps. The discriminator is replaced by a critic (along with
the according loss), and takes as input codes instead of samples.
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Figure 5: The Gumbel-Softmax [6] and the Concrete-Distribution [10]
were simultaneously proposed to sample from discrete distributions in
the domain of VAEs [8]. Later [9] adapted the technique to GANSs for
sequences of discrete elements as shown in this diagram.
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Figure 6: In [5] authors propose to add a gradient penalty to the
WGAN loss (hence the name WGAN-GP) to improve training. Addi-
tionaly, the authors claim that with WGAN-GP it is possible to generate
discrete sequences training directly with softmax outputs.
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Figure 7: Proposed architecture for either generator or decoder mod-
els. After the model output, we place in parallel a dense layer per
categorical variable, followed by an activation and a concatenation
to obtain the final output. The choice between Gumbel-Softmax or
Softmax depends on the model. The reconstruction losses should be
transformed into the sum of one cross entropy loss per variable.

Experiments

« Split dataset in Dy,.,;, and Dy,q;

* Train generative model with Dy, ,;,

* Generate D1 With the trained model
* Experiments proposed in [2]:

— Probabilities by dimension: compare proportion of
ones per dimension between Dycst and Dy,

— Predictions by dimension: train one predictive model
per dimension with D;,...;, and evaluate with Dy.4; re-
peat but training Dy, and compare results.

* Predictions by categorical: analogous experiment but
training one predictive model per categorical variable.

« Example results shown in Figure 8

Conclusions

« Compared to unmodified MedGAN and ARAE, all ap-
proaches improve the performance across all datasets

« Even though we cannot identify a clear best model

* The performance improvement comes at the cost of re-
quiring to add extra information (the variable sizes). In
some cases, this information may not be available.

Future Work

* Analyze datasets with mixed variable types
» Explore more hyperparameters and architecture options
* Experiment with oversampling and undersampling

* Improve validation with domain specific metrics
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Figure 8: Experiments for the US Census 1990 [3]. Each column cor-
responds to a metric and each row a to sample from a different model.
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