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SUMMARY

Nonalcoholic fatty liver disease (NAFLD) affects up
to 30% of the adult population in Western societies,
yet the underlying molecular pathways remain
poorly understood. Here, we identify the dimeric
Activator Protein 1 as a regulator of NAFLD. Fos-
related antigen 1 (Fra-1) and Fos-related antigen 2
(Fra-2) prevent dietary NAFLD by inhibiting prostea-
totic PPARg signaling. Moreover, established
NAFLD and the associated liver damage can be
efficiently reversed by hepatocyte-specific Fra-1
expression. In contrast, c-Fos promotes PPARg
expression, while c-Jun exerts opposing, dimer-
dependent functions. Interestingly, JunD was found
to be essential for PPARg signaling and NAFLD
development. This unique antagonistic regulation
of PPARg by distinct AP-1 dimers occurs at the
transcriptional level and establishes AP-1 as a link
between obesity, hepatic lipid metabolism, and
NAFLD.

INTRODUCTION

Given their high energy-to-weight ratio compared to carbohy-

drates and proteins, lipids are themost efficient energy substrate

in mammals. The adipose tissue is the major lipid storage

organ, and it is essential for controlling metabolic homeostasis

(Sethi and Vidal-Puig, 2007). In the healthy state, tissues such

as muscle and liver store only minor quantities of lipids (Lara-

Castro and Garvey, 2008). However, metabolic stress, as occur-

ring in obese or alcohol-abusing patients, can cause massive

ectopic lipid deposition, leading to a disease state termed

‘‘steatosis’’ or ‘‘fatty liver disease.’’ Depending on the etiology,

this disease can be further subgrouped into alcoholic or

nonalcoholic fatty liver disease (AFLD and NAFLD, respectively).

NAFLD is the most common liver disorder in industrialized

countries, and it frequently leads to severe liver inflammation

and damage, a disease state termed ‘‘nonalcoholic steatohepa-

titis’’ (NASH) (Browning and Horton, 2004). Moreover, NAFLD

contributes to hepatic insulin resistance in diabetes (Farese

et al., 2012) and is a risk factor for liver dysfunction and cancer
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development (Smedile and Bugianesi, 2005). Understanding

the cellular and molecular mechanisms leading to NAFLD, as

well as the identification of novel targets for NAFLD therapy,

has therefore become a priority (Cohen et al., 2011; Lazo and

Clark, 2008).

The Activator Protein 1 (AP-1) (Fos/Jun) protein complex is a

dimeric leucine zipper (bZIP) transcription factor. Three different

Jun proteins (c-Jun, JunB, and JunD) and four different Fos

proteins (c-Fos, FosB, Fra-1, and Fra-2) form AP-1 dimer. Jun

proteins can either form homodimers, such as c-Jun/c-Jun or

c-Jun/JunB, or heterodimers, such as c-Jun/c-Fos. In contrast,

Fos proteins exclusively form heterodimers (Halazonetis et al.,

1988). Jun and Fos proteins also form heterodimers with other

bZIP transcription factors, such as specific MAF and ATF family

members (Eferl and Wagner, 2003). Thus, a vast combinatorial

variety of AP-1 dimers with likely different molecular and biolog-

ical functions exists (Hess et al., 2004; Verde et al., 2007;Wagner

et al., 2010). Studies using genetically modifiedmice have unrav-

eled essential roles of AP-1-forming proteins in development,

inflammation, and cancer (Eferl and Wagner, 2003). Moreover,

AP-1 modulates the response to acute cellular insults, such as

oxidative stress and DNA damage (Shaulian and Karin, 2002).

Cellular stress typically activates AP-1 by augmenting transcrip-

tion, protein stability, and transactivation potential of Jun and

Fos family members (Wagner and Nebreda, 2009). In the liver,

the genetic inactivation of single Jun or Fos genes in hepatocytes

does not compromise organ homeostasis (Bakiri and Wagner,

2013; Eferl and Wagner, 2003). However, AP-1 is critical for the

liver’s response to acute stress. For example, c-Jun protects he-

patocytes from injury (Fuest et al., 2012; Hasselblatt et al., 2007)

and is essential for liver regeneration (Behrens et al., 2002) and

carcinogenesis (Eferl et al., 2003; Machida et al., 2010; Min

et al., 2012). More recently, we have documented that Fra-1,

but not Fra-2, protects hepatocytes from acetaminophen over-

dose, a paradigm for xenobiotic-mediated acute liver failure

(Hasenfuss et al., 2014). In contrast, little is known about the

role of AP-1 in chronic stress conditions and the potential contri-

bution of AP-1 to the development of hepatic metabolic disease.

Here we combined system genetics with gain- and loss-of-func-

tion mouse models to study the function of AP-1 in hepatic lipid

metabolism and NAFLD development. We show that, depending

on dimer composition, AP-1 either represses or activates the

transcription of the prosteatotic nuclear receptor Peroxisome

Proliferator-Activated Receptor g (PPARg), which promotes

hepatic lipid uptake and lipid droplet formation. Some AP-1
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Figure 1. Fra-1 Is Regulated by HFD and Inhibits NAFLD and PPARg Expression

(A) Hepatic fra-1 expression in CD and HFD (for 5 months; 60% kCal/fat) in 42 BXD inbred strains. Each data point represents the mean expression of five mice.

(B and C) Fra-1hep mice and control littermates were on CD or HFD (for 5–9months; 45% kCal/fat); nR 5/cohort. (B) Representative liver pictures and histology in

Fra-1hep and control mice; ORO, oil red O; bars, 1 cm and 100 mm. (C) Liver/body ratio, quantitation of ORO-positive areas, liver TG content, and serumALT levels.

Bar graphs are presented as mean ±SEM. See also Figure S1; Tables S2A and S2B.

Cell Metabolism

AP-1 Regulates PPARg Expression and NAFLD
proteins, such as Fra-1 and Fra-2, inhibit the PPARg pathway

and reduce hepatic lipid content. In contrast, other AP-1 pro-

teins, such as c-Fos and JunD, induce hepatic PPARg signaling

and lipid accumulation. We also show that AP-1 regulates the

PPARg pathway through direct regulation of the Pparg2 pro-

moter. Using a mouse model for inducible hepatocyte-restricted

Fra-1 expression, we demonstrate that the Fra-1-induced sup-

pression of the PPARg pathway can revert established NAFLD.

For the first time, liver-specific single-chain Jun�Fos forced

dimer mice were employed, in which dimerization of a Fos pro-

tein is restricted to a single Jun partner (Bakiri et al., 2002). The

analyses of these mouse models provide in vivo evidence that

distinct AP-1 dimers regulate the PPARg pathway in an antago-

nistic fashion. Finally, we show that JunD is essential for efficient

PPARg signaling and NAFLD formation. Overall, this study iden-

tifies AP-1 as a link between dietary obesity, hepatic lipid meta-

bolism, and NAFLD.

RESULTS

Fra-1/AP-1 Regulates Hepatic Lipid Metabolism and
NAFLD
To identify a possible function of AP-1 in metabolism, we

analyzed 42 genetically diverse mouse strains from the BXD

mouse genetic reference population (GRP) (Peirce et al., 2004).
C

Ten animals for each strain were split evenly into two cohorts

fed chow diet (CD) or high-fat diet (HFD) for 5 months. Hepatic

AP-1 mRNA expression was then analyzed using genome-wide

expression profiles from the BXD strains. Fra-1 mRNA levels

were found to be significantly reduced in the HFD-fed cohort,

while the expression of c-fos, fosB, fra-2, c-jun, junb, and jund

were not affected by the diet (Figure 1A and see Figure S1A

online). To explore whether Fra-1 could causally contribute to

HFD-associated metabolic changes in the liver, we analyzed

hepatic metabolism in Fra-1hep mice, a previously established

model of Doxycycline (Dox)-controllable hepatocyte-restricted

Fra-1 overexpression, which does not display any obvious

phenotype under basal conditions (Hasenfuss et al., 2014) (for

details on mouse strains, see Table S1). After HFD feeding, the

livers appeared less pale on the macroscopic level and weighed

significantly less in Fra-1hep mice compared to HFD-fed litter-

mate controls (Figures 1B and 1C). Liver histology indicated

a reduction in lipid droplets in mutant mice (Figure 1B),

which was confirmed by the quantitation of oil red O (ORO)-pos-

itive lipid droplets and liver triglyceride (TG) content analysis

(Figure 1C).

We next addressed the effect of Fra-1 expression on NAFLD-

associated liver damage and inflammation. Augmented serum

levels of the liver damage marker alanine aminotransferase

(ALT) and increased hepatic inflammation marker expression
ell Metabolism 19, 84–95, January 7, 2014 ª2014 Elsevier Inc. 85
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Figure 2. Fra-1 Regulates the PPARg Pathway

(A–D) Fra-1hep mice and control littermates on CD or HFD (for 5–9 months; 45% kCal/fat); n R 5 per condition. (A) (Top) Spearman correlation of R1.5-fold-

changed hepatic transcripts in Fra-1hep and control littermates (C57BL/6J) in CD (x axis) andHFD (y axis). (Bottom) Top common downregulated genes in Fra-1hep

livers. (B) KEGG pathway analyses for the top 2,000 most changed transcripts: PPAR target genes and their cellular functions are indicated. Transcripts changed

in CD, HFD, or both are highlighted in blue, red, and purple, respectively. Arrows indicate upregulation or downregulation. (C) qRT-PCR analyses of pparg and its

isoforms. (D) Immunoblot analyses in Fra-1hep and control mice. Vinculin served as loading control. Bar graphs are presented as mean ±SEM. See also Figure S2

and Table S3.
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were observed in controls after HFD feeding, but not in Fra-1hep

mice (Figures 1C and S1B). Moreover, immunohistochemistry

(IHC) for the panlymphocyte marker CD45 and the macrophage

marker F4/80 revealed a significant reduction in immune cell in-

filtrates in HFD-fed mutants compared to diet-matched controls

(Figure S1C). In the HFD-fed state, serum IL-6 levels were also

reduced in HFD-fed Fra-1hep mice compared to controls (Table

S2A). We next explored the effects of hepatic Fra-1 expression

on circulating metabolite and hormone levels. Serum TG and

cholesterol were mildly elevated in HFD-fed Fra-1hep compared

to control mice in the fasted and/or fed states, while other serum

parameters were not affected (Tables S2A and S2B). Despite

decreased NAFLD and liver damage, glucose tolerance and

insulin tolerance tests (GTT and ITT) revealed that glucose

metabolism was not improved but rather slightly worsened in

HFD-fed mutants as compared to controls (Figure S1D). Similar

effects of Fra-1 on NAFLD development were also observed in

Fra-1hep mice on a C57BL/6J background or using 60% kCal/
86 Cell Metabolism 19, 84–95, January 7, 2014 ª2014 Elsevier Inc.
fat HFD (Table S2B and data not shown). These data collectively

suggest that hepatocyte-specific Fra-1 expression protects from

dietary-induced NAFLD and secondary liver damage and inflam-

mation but has little impact on systemic obesity and glucose

metabolism.

Fra-1 Represses the PPARg Pathway
We next analyzed the molecular mechanisms underlying

reduced NAFLD in Fra-1hep mice. Genome-wide hepatic gene

expression analyses in CD- and HFD-fed Fra-1hep mice demon-

strated that the expression of �3,000 genes was changed by at

least 1.5-fold in Fra-1hep livers. The vast majority of these genes

were regulated in a similar fashion in both dietary conditions, and

many PPARg targets, e.g., adipsin and cidea, were among the

top-downregulated genes (Figure 2A). KEGG pathway analysis

(Kanehisa et al., 2012) of the top 2,000 most changed genes

established PPARg signaling among the most significantly

affected pathways in both diet conditions (Figure 2B). A highly
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significant fraction of mRNAs, which were reduced in Fra-1hep

mice, were encoded by genes with promoters containing puta-

tive AP-1 sites (p = 9.0E-13) and PPARg response elements

(PPREs) (p = 3.3E-11), as revealed by UCSC TFBS conserved

tracks analyses (http://david.abcc.ncifcrf.gov/) (Huang et al.,

2009) (Table S3). qRT-PCR, immunoblot, and IHC analyses

confirmed decreased hepatic pparg mRNA/PPARg protein

expression in CD- and HFD-fed Fra-1hep mice (Figures 2C, 2D,

and S2A).

Decreased pparg mRNA levels were due to reduced expres-

sion of pparg2mRNA, themain pparg isoform in the liver (Figures

2C and S2D) (Lee et al., 2012). Among other metabolic regula-

tors, Nr0b2, a potential PPARg target (Kim et al., 2007) and

regulator (Kim et al., 2013), which encodes the orphan nuclear

receptor SHP, was also found reduced in HFD-fed Fra-1hep

mice (Figure S2C). Moreover, we confirmed reduced mRNA

expression for several PPARg target genes, such as fabp1 and

lpl, involved in hepatic lipid uptake, and plin2, cidea, fitm1,

fitm2, and g0s2, involved in lipid droplet formation (Figure S2E).

Notably, the Fra-1-induced reduction of ppary2 expression was

reversible, as pparg2 levels reverted to baseline levels upon

switching off the transgene (Figure S2F). Kinetic analyses of

another inducible Fra-1 mouse model (Fra-1tetON mice) (Hasen-

fuss et al., 2014) revealed that hepatic pparg2mRNA decreased

as early as 4 days after Fra-1 induction (Figure S2G).

Adenoviral PPARg Delivery Restores NAFLD/Steatosis
in Fra-1hep Mice
Gain- and loss-of-function studies previously established that

hepatocyte PPARg is both essential and sufficient for NAFLD

formation (Gavrilova et al., 2003; Lee et al., 2012; Matsusue

et al., 2003; Matsusue et al., 2008; Medina-Gomez et al., 2007;

Morán-Salvador et al., 2011). To determine whether reduced

NAFLD development in Fra-1hep mice is directly due to

decreased PPARg levels, HFD-fed Fra-1hep and control mice

were intravenously injected with either Adeno-PPARg or

Adeno-GFP control virus 8–10 days prior to sacrifice. Adeno-

PPARg did not have any obvious effect on liver macroscopy in

steatotic control mice (Figure 3A). In contrast, PPARg expression

increased ORO-positive lipid droplets, liver TG content, and

liver/body weight ratio in HFD-fed Fra-1hep mutant mice (Figures

3A and 3B). Moreover, Adeno-PPARg increased PPARg target

gene expression in the livers of Fra-1hep mice, as compared to

Adeno-GFP-treated mutants (Figures 3C and 3D). These data

demonstrate that the short-term induction of PPARg signaling

restores hepatic fat accumulation in HFD-fed Fra-1hepmice, sup-

porting its central function in the hepatic phenotype of Fra-1hep

mutant mice.

Reversion of NAFLD by Hepatocyte-Specific Fra-1
Expression
To examine whether Fra-1 induction in steatotic livers amelio-

rates disease symptoms, Fra-1hep and control littermates were

generated in the ‘‘Fra-1 off’’ state, and HFD-feeding was started

at 1 month of age (Figure 4A). As expected, control and mutant

mice were indistinguishable at 7 months of age in the absence

of transgene expression (Figures 4B–4D). Immunoblot analyses

confirmed comparable PPARg, Fsp27, and Fabp1 levels be-

tween control and mutant mice in the ‘‘Fra-1 off’’ state (Fig-
C

ure 4E). A cohort of Fra-1hep and control mice were kept on

HFD, but Fra-1 expression was switched on in mutant mice at

7 months of age (Fra-1 off-on). After 2 months of Fra-1 induction,

serum ALT was significantly lower in Fra-1hep mice than in con-

trol littermates and continued to improve 3 months later, while

the mice were maintained on HFD (Figure 4C). At this point the

liver was collected for macroscopy, histology, ORO-quantita-

tion, liver/body weight ratio, and liver TG content analysis,

revealing an almost complete reversion of NAFLD in Fra-1hep

mutants (Figures 4B–4D). Immunoblotting and qRT-PCR ana-

lyses confirmed transgene induction, as well as the repression

of PPARg, targets of PPARg, and inflammatory markers after

switching on Fra-1 expression (Figures 4E and 4F). These data

suggest that the Fra-1-mediated repression of the PPARg

pathway efficiently reversed established NAFLD and liver dam-

age in mice, even under continued stress of HFD feeding.

PPARg Links AP-1 to Lipid Metabolism
We next searched for correlations between AP-1 genes, PPARg,

and PPARg targets in gene expression arrays from the BXD

family of wild-type inbred mouse strains. This analysis revealed

that hepatic pparg expression, assessed with a probe detecting

both pparg isoforms, is significantly upregulated in HFD-fed

cohorts (Figure S3A). As expected, pparg mRNA levels strongly

correlated with the expression of PPARg targets, such as cidea

and adipsin (Figure S3B). Notably, and consistent with our find-

ings in Fra-1hep mice, a significant inverse correlation was found

between fra-1 and pparg and fra-1 and cidea regardless of the

diet (Figure 5A). Other PPARg targets, such as adipsin, followed

a similar trend without reaching statistical significance (Fig-

ure 5A). Interestingly, junb, a potential dimerization partner for

Fra-1, also negatively correlated with pparg (Figure 5B), indi-

cating that several AP-1 proteins consistently regulate PPARg

signaling in genetically diverse populations.

Antagonistic Regulation of Pparg2 by AP-1
The proximal promoter of the mouse Pparg2 gene (encoding

PPARg2), in which we identified several putative AP-1 sites (Fig-

ure 5C), is conserved across species (Figure S3D). Thus, we

assessed the binding of various Jun and Fos proteins to the

Pparg2 promoter. Chromatin samples were prepared from liver

tissue of mice deficient for individual AP-1 genes (Table S1)

and their respective littermates to control for antibody speci-

ficity. Chromatin immunoprecipitation (ChIP) assays revealed

that Fra-1, Fra-2, c-Fos, c-Jun, JunB, and JunD all efficiently

bound to the proximal Pparg2 promoter fragment in liver tissue

(Figure 5D). a-Flag ChIP assays also revealed a significant

enrichment for the same promoter fragment in livers from

Fra-1hep and c-Foshep mice (Figure S3E), a mouse model for

inducible c-Fos expression in the liver (Table S1). No enrichment

was observed for an unrelated genomic fragment in the same

a-Flag ChIP samples (Figure S3E). Fra-1, Fra-2, c-Fos, and Jun

proteins also bound to the human PPARG2 promoter, as

a-Fra-1, a-Fra-2, a-c-Fos, and a-pan-Jun ChIP samples, but

not control IgG ChIP samples, were enriched for the proximal

PPARG2 promoter region in human HuH7 hepatoma cells (Fig-

ure 5E). These data indicate that Jun and Fos proteins are func-

tionally involved in the direct regulation of the mouse Pparg2/

human PPARG2 promoter. We therefore analyzed the effects
ell Metabolism 19, 84–95, January 7, 2014 ª2014 Elsevier Inc. 87
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Figure 3. PPARg Delivery Restores NAFLD Development in Fra-1hep Mice

(A–D) Fra-1hep and control littermates on HFD (for 4–5 months, 45% kCal/fat) were injected with Adenoviruses expressing PPARg (Ad-PPARg) or GFP (Ad-GFP)

8–10 days prior to sacrifice. n = 3 for control genotype/cohort; n = 4 for Fra-1hep mice/cohort. (A) Liver macroscopy and histology; bars, 1 cm and 100 mm.

(B) Quantitation of ORO-positive areas, liver/body ratio, and liver TG. (C) Immunoblot analyses in Fra-1hep and control mice. Vinculin served as loading control.

(D) qRT-PCR analyses of PPARg target genes involved in lipid uptake, lipogenesis, and lipid droplet formation; Ad-GFP controls are set to 1. Bar graphs are

presented as mean ±SEM.

Cell Metabolism

AP-1 Regulates PPARg Expression and NAFLD
of Fos and Jun proteins on PPARG2 promoter activity. Reporter

assays revealed that the activity of a human PPARG2 luciferase

reporter was inhibited by transfecting Fra-1 and also by Fra-2 in

HuH7 and 293T cells (Figures 5F and S3F). In contrast, the

PPARG2 luciferase reporter was activated by c-Fos and in-

hibited by a dominant-negative Dc-Jun construct, which lacks

a transactivation domain (Figures 5F and S3F). Finally, PPARG2

reporter activation by c-Fos was efficiently inhibited by cotrans-
88 Cell Metabolism 19, 84–95, January 7, 2014 ª2014 Elsevier Inc.
fecting increasing amounts of Fra-2 (Figure 5G). These data

demonstrate that c-Fos and Fra-1/2 regulate the PPARG2 pro-

moter in an antagonistic manner.

AP-1 Dimer-Specific Regulation of PPARg Signaling
The consequences of hepatic c-Fos expression were analyzed in

c-Foshep mice. As early as 1 week after c-Fos induction, a strong

increase in ppary2 mRNA, PPARg protein, and PPARg target
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Figure 4. Fra-1 Expression Reverts NAFLD and Liver Damage

(A) Fra-1hep and control littermates were maintained in the ‘‘Fra-1 off’’ state, and HFD (45% kCal/fat) was supplied from 1 month of age. Mice were analyzed at

7 months (Fra-1 off, n = 2/cohort) or kept on HFD until 12 months, while transgene expression was induced (Fra-1 off-on, n = 6 per cohort).

(B) Liver macroscopy and histology; bars, 1 cm and 100 mm.

(C) Quantitation of ORO-positive areas and serum ALT.

(D) Liver/body ratio, and liver TG content.

(E) Immunoblot analyses in Fra-1hep and control mice. Vinculin served as loading control.

(F) qRT-PCR analyses of fra-1, pparg isoforms, PPARg target genes, and inflammation markers (Fra-1 off-on). Bar graphs are presented as mean ± SEM.
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gene expression was observed in c-Foshep mice, while ppary1

was only mildly affected and nr0b2 unchanged (Figures 6A,

6B, S4A, and S4B). After switching off transgene expression,

c-fos, ppary2, and PPARg target genes reverted to baseline

levels (on-off, Figure 6A). The reversible induction of ppary2

expression was confirmed in c-Foshep mice after 8 weeks of

transgene induction (Figure S4B). Next, we studied the effect

of Jun�c-Fos forced dimers (Bakiri et al., 2002) on hepatic

PPARg signaling using transgenic mice, in which dimerization

of c-Fos is restricted to c-Jun, JunB, or JunD (Table S1). The

expression of all Jun�c-Fos dimers, such as c-Jun�c-Fos,
C

JunB�c-Fos, and JunD�c-Fos, increased ppary2 mRNA and

PPARg target gene expression in the livers of mutant mice,

with c-Jun�c-Fos causing the strongest induction (Figure 6C).

As the expression of c-Fos or Jun�c-Fos forced dimers rapidly

caused lethal liver dysplasia (data not shown), the long-term

consequences of increased PPARg signaling on lipid meta-

bolism and NAFLD could not be further investigated.

We next explored the effect of Fra-2 and Fra-2/AP-1 dimers on

PPARg signaling and hepatic lipid metabolism. In contrast to

c-Fos and Jun�c-Fos dimers, hepatocyte-restricted Fra-2

monomer expression in Fra-2hep mice inhibited the PPARg
ell Metabolism 19, 84–95, January 7, 2014 ª2014 Elsevier Inc. 89
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Figure 5. Several AP-1 Proteins Regulate

the PPARg Pathway

(A and B) Correlation plots for fra-1 with pparg,

cidea, and adipsin (A) and for Jun members with

pparg (B) in CD and HFD (5 months; 60% kCal/fat)

in the BXD inbred family. Each data point repre-

sents the average expression from five pooled

mice. Pearson’s r was used to analyze correla-

tions, and p values are indicated.

(C) Proximal murine Pparg2 promoter: position of

the putative AP-1 binding TPA-responsive element

(TRE) is indicated relative to the transcription start.

The ChIP-PCR amplicon is depicted in red.

(D) ChIP assays using hepatic chromatin from

AP-1-deficient mice. Endpoint PCR products

representative of three independent experiments

are shown.

(E) ChIP assays in Huh7 cells; primers amplifying a

region homologous to (C) were used. Data are

representative of three independent experiments.

(F and G) Human PPARG2 reporter assays in

HuH7 cells. Data are mean ± SEM of four inde-

pendent experiments in (F). Technical replicates of

one representative experiment (n = 2) are shown,

and ectopic c-Fos and Fra-2 expression is

confirmed by immunoblot in (G). RLU, relative

luminescence units. DJun, truncated c-Jun. Con-

trol (empty vector) is set to 1. Bar graphs are pre-

sented as mean ±SEM. See also Figure S3.
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pathway and prevented NAFLD development (Figures S4C–

S4G). c-Jun�Fra-2-forced dimers in c-Jun�Fra-2hep mice sup-

pressed PPARg signaling and NAFLD development to a similar

extent as Fra-2 monomers (Figures 6D, 6E, and S4H–S4J). In

contrast to most established PPARg target genes, nr0b2

levels were unaffected in Fra-2hep mice (Figure S4G), while a

mild upregulation of nr0b2 mRNA was observed in CD-fed

c-Jun�Fra-2hep mice (Figure S4J). These data collectively sug-

gest an antagonistic regulation of the PPARg pathway and lipid

metabolism by c-Fos/AP-1 and Fra-2/AP-1 dimers in vivo.

JunD Is Essential for NAFLD Development
To investigate whether individual Jun or Fosmembers are essen-

tial for hepatic PPARg expression and lipid metabolism, we

employed loss-of-function mutant mice. Individual gene inacti-

vation of Fra-1, Fra-2, or c-Fos had no effect on hepatic pparg2

expression, nor on HFD-induced NAFLD (Figure S5A; data not

shown). Similarly, the single inactivation of c-Jun or Junb did
90 Cell Metabolism 19, 84–95, January 7, 2014 ª2014 Elsevier Inc.
not affect hepatic pparg2 expression

(Figure S5A), while JunD�/� mice dis-

played decreased pparg2 levels in the

liver under basal conditions (Figure S5A).

We therefore analyzed HFD-induced

NAFLD development in JunD-deficient

mice. Liver macroscopy, histology, liver

TG content analyses, and ORO quantita-

tion revealed decreased HFD-induced

NAFLD in JunD�/� livers (Figures 7A and

7B). qRT-PCR, immunoblot, and IHC

analysis confirmed decreased pparg2

mRNA/PPARg protein levels in HFD-fed
JunD�/� mice compared to controls in both diet conditions (Fig-

ures 7C and S5B). qRT-PCR analyses revealed reduced expres-

sion of the PPARg targets cidea and fitm1 in JunD�/� livers,

whereas nr0b2 expression was not affected (Figure S5C).

As previously reported (Thépot et al., 2000), JunD�/�mice had

a reduced body weight, and this effect was maintained in HFD

(Figure 7B). Total liver and fat pad weights were specifically

decreased after HFD feeding in JunD�/�mice compared to litter-

mate controls (Figure 7B; Table S4). Interestingly, reduced

pparg2 mRNA was also observed in heart tissue of HFD-fed

JunD�/�mice (Figure S5D), indicating that AP-1might also regu-

late the PPARg pathway in other organs.

DISCUSSION

Combined forward and reverse genetic approaches have a

strong potential for discovering new regulators of metabolism.

The initial identification of Fra-1 as a potential obesity-related
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(C–E) (C) qRT-PCR analyses in JunB�c-Foshep (n = 6), JunD�c-Foshep (n = 5), and c-Jun�c-Foshep(n = 4) (transgene on for 1 month) and control (n = 5) mice. Liver

macroscopy and histology (D) and immunoblot analyses (E) of c-Jun�Fra-2hepmice (c-Jun�Fra-2 switched on at 1month) and control littermates onCDorHFD (for

4months; 60%kCal/fat). Vinculin servedas loading control; bars, 1 cmand50mm;nR5per condition.Bargraphsarepresentedasmean±SEM.SeealsoFigureS4.

Cell Metabolism

AP-1 Regulates PPARg Expression and NAFLD
gene in livers from the BXD population of inbred mouse strains

prompted us to further explore the role of AP-1 proteins. Subse-

quent mechanistic studies led to the discovery that AP-1 can

function as a molecular link between obesity and liver meta-

bolism. First, this study established AP-1 as a potent regulator

of lipid metabolism and NAFLD development. Second, gene

pathway analysis and BXD population genetics highlighted the

AP-1 complex as a regulator of hepatic PPARg signaling. Third,

we demonstrate that Fra-1 repressed the PPARg-dependent

expression of genes involved in lipid uptake/lipid droplet forma-

tion and thereby efficiently improved established steatosis, liver
C

damage, and inflammation. Fourth and maybe most intriguingly,

themousePparg2 and the humanPPARG2 promoter were found

to be regulated in an antagonistic fashion by distinct AP-1 dimers

(Figure 7D).

PPARg promotes lipid uptake by increasing the expression of

lipid transporters, such as fatty acid binding proteins (Fabps),

and by promoting lipid storage in lipid droplets. Lipid droplet

proteins (LDPs) inhibit TG lipolysis, thereby preventing lipid-

droplet breakdown (Fujimoto et al., 2008; Puri et al., 2008;

Sun et al., 2012). Several LDPs are regulated by PPARg at

the transcriptional level (reviewed in Tontonoz and Spiegelman,
ell Metabolism 19, 84–95, January 7, 2014 ª2014 Elsevier Inc. 91
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(A–C) Analyses of JunD�/� and JunD+/� control

littermates (males and females) on CD or HFD (for

9 months; 45% kCal/fat); n R 7 per condition. (A)

Representative liver macroscopy and histology;

bars, 1 cm and 100 mm. (B) Macroscopic param-

eters, liver TG content, and quantitation of ORO-

positive areas; relative levels are plotted and

sex-matched controls set to 1. Bar graphs are

presented as mean ±SEM. (C) Immunoblot anal-

ysis for PPARg and Vinculin.

(D) Antagonistic regulation of PPARg expression

by different AP-1 dimers: c-Fos induces PPARg as

a dimer with any Jun protein, while Fra-1 and Fra-2

repress PPARg, likely by dimerizing with c-Jun,

thereby affecting hepatic lipid metabolism and

NAFLD. See also Figure S5 and Table S4.
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2008) and promote NAFLD in mice, including Cidea, Plin2,

and Fsp27 (Chang et al., 2006; Dalen et al., 2004; Matsusue

et al., 2008; Sun et al., 2012; Varela et al., 2008; Zhou et al.,

2012). Similarly, deletion of the fatty acid transporter Fabp1

reduced the dietary induction of NAFLD (Newberry et al.,

2003, 2006). Previous studies suggested that hepatic PPARg

also promotes hepatic lipogenesis (Matsusue et al., 2003;

Medina-Gomez et al., 2007). In Fra-1hep mice, which display a

dramatic reduction in PPARg levels, decreased expression of

the Stearoyl-CoA desaturase-1 (SCD-1), a key enzyme in the

generation of unsaturated fatty acids, was observed. However,

no consistent changes in the expression of SREBP-1/2, the

main transcriptional regulators of de novo lipogenesis, or in

the SREBP-1/2 targets FAS and ACC were observed. Since

FAS and ACC catalyze the rate-limiting steps in fatty acid syn-

thesis, altered lipogenesis likely does not play a major role in

the Fra-1-mediated repression of NAFLD. Instead, decreased

hepatic lipid uptake and lipid droplet formation are most likely

the primary cause for reduced steatosis formation in Fra-1hep,

Fra-2hep, and c-Jun�Fra-2hep mice. Previous reports have

shown that PPARg induced the expression of Nr0b2 (Kim

et al., 2007). In line with this, HFD-fed Fra-1hep mice displayed

reduced pparg2 and nr0b2 levels, which appeared normalized

after Adeno-PPARg treatment. More recently, Nrob2 was

shown to be required for hepatic PPARg expression and

NAFLD (Kim et al., 2013). However, we did not observe a

consistent correlation between pparg2 and nr0b2 expression

across dietary conditions in our AP-1 mutant mouse models.

Therefore, AP-1 likely regulates pparg2 and NAFLD indepen-

dently of Nr0b2.
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Hepatocyte-specific Pparg deletion,

like Fra-1 overexpression, has been

shown to reduce liver TG and to increase

serum TG levels in the obese ob/ob mice

and the AZIP lipodystrophy model, likely

due to decreased hepatic lipid uptake

(Gavrilova et al., 2003; Matsusue et al.,

2003). Moreover, PPARg2-dependent

hepatic steatosis has been suggested

to buffer systemic TG levels (Medina-
Gomez et al., 2007). Similar to mice with hepatocyte-restricted

Pparg deletion, Fra-1hep mice displayed worsened glucose

metabolism after HFD feeding, despite a reduction in NAFLD.

Thus, hepatic Fra-1 overexpression largely phenocopies the

effects of hepatocyte-specific Pparg deletion on lipid and

glucose metabolism. As elevated serum TG levels are associ-

ated with diabetes development, increased serum TG levels

likely contribute to the deterioration of glucose metabolism in

HFD-fed Fra-1hep and Pparg-deficient mice.

Our data suggest a functional antagonism between activating

c-Fos/AP-1 and repressing Fra/AP-1 dimers. Interestingly,

c-Jun/c-Fos dimers increased, whereas c-Jun/Fra-2 dimers

reduced, PPARg2 expression, suggesting a partner-dependent

effect of c-Jun on Pparg2 promoter activity. Previous studies in

other organs suggested overlapping functions of c-Fos and

Fra-1/2 (Fleischmann et al., 2000; Matsuo et al., 2000). Thus,

we here identify Pparg as the first gene to be antagonistically

regulated by different Fos proteins. This finding raises the

intriguing question, how do structurally similar protein com-

plexes, such as c-Fos/AP-1 and Fra/AP-1 dimers, have opposite

effects on the same promoter?While further research is required

to address this question, several AP-1 corepressors, such as

Sirt1 (Purushotham et al., 2009) and HDAC3 (Feng et al., 2011;

Knutson et al., 2008; Sun et al., 2012), are involved in hepatic

lipid metabolism.We speculate that specifically Fra/AP-1 dimers

might interact with such corepressors to inhibit Pparg2 promoter

activity.

Among Jun proteins, JunD was found to be important for

NAFLD development in the liver. As JunD�/� mice are leaner

and display reduced adiposity, the possibility that extrahepatic
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functions of JunD contribute to decreased NAFLD development

in JunD�/�mice cannot be excluded. However, JunD is essential

for normal pparg2 mRNA/PPARg protein expression and bound

to the Pparg2 promoter in liver tissue, suggesting JunD as a

physiologically relevant regulator of hepatic PPARg signaling.

Given the key function of PPARg in NAFLD development,

reduced PPARg signaling in the liver likely contributes to NAFLD

resistance in JunD�/� mice.

The described data from gain- and loss-of-function mouse

models, together with the correlations between AP-1 compo-

nents and the PPARg pathway in the BXD cohort, establish

AP-1 as an important regulator of PPARg signaling and NAFLD.

HFD affects a plethora of cellular signaling cascades, such as the

Insulin (Kim and Kahn, 1994), the JNK (Hibi et al., 1993), and the

PKC (Boyle et al., 1991) pathways. As these pathways are also

known regulators of AP-1 expression and activity, exploring

how they affect AP-1 levels and dimerization during obesity is

certainly an important challenge for future experiments. More-

over, extensive crosstalk between AP-1 and transcription factors

of the NF-kB (Fujioka et al., 2004) and the nuclear receptor family

(Glass and Saijo, 2010; Ricote and Glass, 2007; Wan et al., 2007)

has been described. Future studies should reveal the molecular

interplay of these pathways with AP-1 signaling in the context of

NAFLD in both mice and human.

EXPERIMENTAL PROCEDURES

Animal Procedures

Mice were maintained in a 12 hr light/12 hr dark cycle with food and water ad

libitum. Chow (D8604, Harlan), 45% kCal/fat HFD (D12451, Research Diets)

and 60% kCal/fat HFD (D12492, Research Diets), was used as specified in

the figure legends. If not indicated otherwise, male mice were used, and

HFD feeding was started between 4 and 8 weeks of age. Dox (1 g/l) was

supplied in sucrose-containing (100 g/l) drinking water. The BXD mice were

sacrificed after overnight fasting, while in other experiments the mice

were sacrificed in CO2 chambers between 2 and 5 p.m. in the fed state.

Fasted cholesterol and TG measurements were performed using serum from

overnight fasted mice. For intraperitoneal GTT and ITT tests, mice were fasted

for 6 hr (GTT) or 8 hr (ITT) and intraperitoneally injected with 1 mg glucose/kg

body weight (GTT) or 0,5 U insulin/kg body weight (ITT). Glucose and insulin

were diluted in PBS to an injectable volume. Blood glucose was determined

by tail puncture for all time points. All mouse experiments were performed in

accordance with local and institutional regulations. Details on mouse strains

can be found in Table S1.

Blood Analyses

Blood was collected from the submandibular vein, by tail puncture or by

cardiac puncture at experimental endpoints. Unless otherwise specified,

parameters were analyzed in the fed state. Serum ALT, TG, and cholesterol

levels were determined using a Reflovet blood chemistry analyzer and

glucose using an Accucheck glucose analyzer (Aviva). Serum leptin, resistin,

adiponectin, and IL-6 were measured using Quantikine ELISA kits (R&D),

and serum insulin was determined with an ultrasensitive ELISA (Mercodia).

Serum b-HB and FFA were measured using enzymatic assays (Cayman

Chemicals).

qRT-PCR/Immunoblot Analysis

qRT-PCR was performed using the GoTaq qPCR Master Mix and an Eppen-

dorf light cycler. Expression levels were calculated using the DCt-method.

Data were normalized to a housekeeping gene (rps27 or rpl0). Primer

sequences are available upon request. Immunoblot analysis was performed

using standard protocols and following antibodies: ACC, PPARg, CEBPb,

c-Jun, phospho-CREBP, total CREB (Cell Signaling), Vinculin (Sigma), PPARg,

Parp-1, CEBPa, c-Fos, Fra-1 (Santa Cruz), HNF4, FAS, Fabp1 (Abcam), Fsp27
C

(Novus Biologicals), and SREBP-1/2 (BD Bioscience). Nuclear extracts from

liver tissue were obtained using the NE-PER Nuclear Protein Extraction Kit

(Pierce).

Histology

H&E and ORO staining were performed using standard procedures. ORO-

positive areas were quantified as previously described (Mehlem et al.,

2013). IHC was performed as described (Hasenfuss et al., 2014) using the

following antibodies: PPARg (Cell Signaling), CD45 (Abcam), and F4/80 (AbD

Serotec).

RNA Microarray

RNA was isolated using the RNEasy Midi Kit (QIAGEN), and RNA integrity was

evaluated using an Agilent 2100 Bioanalyzer. Samples of RNA integrity score

above 7.8 were used for microarray analysis. A total of 100 ng of RNA was

labeled with Cy3 (RNA pool from at least five control mice, which were either

fed CD or HFD) or Cy5 (RNA samples from individual mutants, which

were either fed CD or HFD) using the Low Input Quick Amp Labeling Kit

Version 6.5 (Agilent). Labeled RNAs were purified using RNeasy spin columns

(QIAGEN) and hybridized to a mouse gene expression array G3 8x60K (Agilent

microarray design ID 028005, P/N G4852A). On each array, the Cy3-labeled

control pool and one Cy5 labeled mutant sample were hybridized at

65�C for 17 hr. The microarray was scanned on a 2505C DNA microarray

scanner (Agilent), and images were analyzed using the Feature Extraction

Software Version 10.7 (Agilent). Multiple testing correction was performed

using the Benjamin-Hochberg procedure. Data are deposited in NCBI’s

Gene Expression Omnibus and are accessible through GEO Series acces-

sion number GSE52275 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE52275). Hepatic gene expression of the BXD strains was analyzed

using Mouse Gene 1.0 ST Arrays (Affymetrix) and are accessible on http://

www.genenetwork.org. Standard array analysis methods were used, e.g.,

RMA normalization, as described elsewhere (Irizarry et al., 2003).

Gene Pathway Analysis

Microarray data were analyzed separately in CD and HFD conditions by

comparing control to mutant livers. All nominally significant changes with

fold change R1.5 were retained. Gene sets were then winnowed using multi-

ple testing correction (Benjamin-Hochberg) and entered independently into

Web Gestalt (http://bioinfo.vanderbilt.edu/webgestalt/). Enriched pathways

were generated based on KEGG gene ontology annotations. The PPARg

signaling pathway was found significantly modulated in both dietary condi-

tions. The two independently generated pathways were then overlaid and

redrawn to generate the pathway diagram.

Cell Culture and Reporter Assay

HuH7 and 293T cells were cultured in DMEM/10%FCS at 37�C and 5% CO2.

For reporter assays, 0.8 3 105 HuH7 or 293T cells were plated per well of

a 24-well plate. Twenty-four hours later, 0.01 mg Renilla vector, 0.2 mg

PPARG2-luc vector (Saladin et al., 1999), and 0.6 mg pCMV-AP-1 or pCMV-

empty control vector were transfected using Lipofectamine 2000 (Invitrogen).

Cells were harvested 48 hr after transfection, and luciferase activity was

analyzed using the Dual-Glo Luciferase Assay (Promega).

Liver TG Content Analysis

Frozen liver tissue (25–75 mg) was homogenized in chloroform/methanol

(8:1 v/v; 500 ml per 25 mg tissue) and shaken at RT for 8–16 hr. H2SO4 was

added to a final concentration of 0.28 M. After centrifugation, the lower phase

was collected and dried, and TG content was measured using an enzymatic

assay (Caymen Chem).

Chromatin Immunoprecipitation

ChIP was performed using the following antibodies: Flag (F3165, Sigma), Fra-1

(SC-183, Santa Cruz), Fra-2 (rat, CNIO polyclonal), c-Fos (PC-05, Calbio-

chem), c-Jun (BD), JunB (SC-73, Santa Cruz), and JunD (CS5000, Cell

Signaling). Pan Jun ChIP with HuH7 cells has been performed with a mixture

of two antibodies raised against an epitope present in all Jun proteins. For de-

tails on the ChIP protocol, see also Supplemental Experimental Procedures.
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Statistical Analysis

Statistical significance was calculated using Student’s two-tailed t test if not

indicated otherwise: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

For procedure details, see Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, four tables, and Supplemental

Experimental Procedures and can be found with this article at http://dx.doi.

org/10.1016/j.cmet.2013.11.018.
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E.F. (2000). Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev.

14, 2695–2700.

Fuest, M., Willim, K., MacNelly, S., Fellner, N., Resch, G.P., Blum, H.E., and

Hasselblatt, P. (2012). The transcription factor c-Jun protects against sus-

tained hepatic endoplasmic reticulum stress thereby promoting hepatocyte

survival. Hepatology 55, 408–418.

Fujimoto, T., Ohsaki, Y., Cheng, J., Suzuki, M., and Shinohara, Y. (2008). Lipid

droplets: a classic organelle with new outfits. Histochem. Cell Biol. 130,

263–279.

Fujioka, S., Niu, J., Schmidt, C., Sclabas, G.M., Peng, B., Uwagawa, T., Li, Z.,

Evans, D.B., Abbruzzese, J.L., and Chiao, P.J. (2004). NF-kappaB and AP-1

connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity.

Mol. Cell. Biol. 24, 7806–7819.

Gavrilova, O., Haluzik, M., Matsusue, K., Cutson, J.J., Johnson, L., Dietz, K.R.,

Nicol, C.J., Vinson, C., Gonzalez, F.J., and Reitman, M.L. (2003). Liver perox-

isome proliferator-activated receptor gamma contributes to hepatic steatosis,

triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278,

34268–34276.

Glass, C.K., and Saijo, K. (2010). Nuclear receptor transrepression pathways

that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol.

10, 365–376.

Halazonetis, T.D., Georgopoulos, K., Greenberg, M.E., and Leder, P. (1988).

c-Jun dimerizes with itself and with c-Fos, forming complexes of different

DNA binding affinities. Cell 55, 917–924.

Hasenfuss, S.C., Bakiri, L., Thomsen, M.K., Hamacher, R., and Wagner, E.F.

(2014). Activator protein 1 transcription factor fos-related antigen 1 (fra-1) is

dispensable for murine liver fibrosis, but modulates xenobiotic metabolism.

Hepatology 59, 261–273.

Hasselblatt, P., Rath, M., Komnenovic, V., Zatloukal, K., and Wagner, E.F.

(2007). Hepatocyte survival in acute hepatitis is due to c-Jun/AP-1-dependent

expression of inducible nitric oxide synthase. Proc. Natl. Acad. Sci. USA 104,

17105–17110.

Hess, J., Angel, P., and Schorpp-Kistner, M. (2004). AP-1 subunits: quarrel and

harmony among siblings. J. Cell Sci. 117, 5965–5973.

Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993). Identification of an

oncoprotein- and UV-responsive protein kinase that binds and potentiates the

c-Jun activation domain. Genes Dev. 7, 2135–2148.

Huang, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integra-

tive analysis of large gene lists using DAVID bioinformatics resources. Nat.

Protoc. 4, 44–57.

Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J.,

Scherf, U., and Speed, T.P. (2003). Exploration, normalization, and summaries

of high density oligonucleotide array probe level data. Biostatistics 4, 249–264.

Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012). KEGG

for integration and interpretation of large-scale molecular data sets. Nucleic

Acids Res. 40 (Database issue), D109–D114.

Kim, S.J., and Kahn, C.R. (1994). Insulin stimulates phosphorylation of c-Jun,

c-Fos, and Fos-related proteins in cultured adipocytes. J. Biol. Chem. 269,

11887–11892.

Kim, H.I., Koh, Y.K., Kim, T.H., Kwon, S.K., Im, S.S., Choi, H.S., Kim, K.S., and

Ahn, Y.H. (2007). Transcriptional activation of SHP by PPAR-gamma in liver.

Biochem. Biophys. Res. Commun. 360, 301–306.

Kim, S.C., Kim, C., Axe, D., Cook, A., Lee, M., Li, T., Smallwood, N., Chiang,

J.Y., Hardwick, J.P., Moore, D.D., and Lee, Y.K. (2013). All-trans-retinoic

acid ameliorates hepatic steatosis in mice via a novel transcriptional cascade.

Hepatology. Published online August 26, 2013. http://dx.doi.org/10.1002/hep.

26699.

http://dx.doi.org/10.1016/j.cmet.2013.11.018
http://dx.doi.org/10.1016/j.cmet.2013.11.018
http://dx.doi.org/10.1002/hep.26699
http://dx.doi.org/10.1002/hep.26699


Cell Metabolism

AP-1 Regulates PPARg Expression and NAFLD
Knutson, S.K., Chyla, B.J., Amann, J.M., Bhaskara, S., Huppert, S.S., and

Hiebert, S.W. (2008). Liver-specific deletion of histone deacetylase 3 disrupts

metabolic transcriptional networks. EMBO J. 27, 1017–1028.

Lara-Castro, C., and Garvey, W.T. (2008). Intracellular lipid accumulation in

liver and muscle and the insulin resistance syndrome. Endocrinol. Metab.

Clin. North Am. 37, 841–856.

Lazo, M., and Clark, J.M. (2008). The epidemiology of nonalcoholic fatty liver

disease: a global perspective. Semin. Liver Dis. 28, 339–350.

Lee, Y.J., Ko, E.H., Kim, J.E., Kim, E., Lee, H., Choi, H., Yu, J.H., Kim, H.J.,

Seong, J.K., Kim, K.S., and Kim, J.W. (2012). Nuclear receptor PPARg-regu-

lated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is respon-

sible for the lipid accumulation in diet-induced hepatic steatosis. Proc. Natl.

Acad. Sci. USA 109, 13656–13661.

Machida, K., Tsukamoto, H., Liu, J.C., Han, Y.P., Govindarajan, S., Lai, M.M.,

Akira, S., and Ou, J.H. (2010). c-Jun mediates hepatitis C virus hepatocarcino-

genesis through signal transducer and activator of transcription 3 and nitric

oxide-dependent impairment of oxidative DNA repair. Hepatology 52,

480–492.

Matsuo, K., Owens, J.M., Tonko, M., Elliott, C., Chambers, T.J., and Wagner,

E.F. (2000). Fosl1 is a transcriptional target of c-Fos during osteoclast differen-

tiation. Nat. Genet. 24, 184–187.

Matsusue, K., Haluzik, M., Lambert, G., Yim, S.H., Gavrilova, O., Ward, J.M.,

Brewer, B., Jr., Reitman, M.L., andGonzalez, F.J. (2003). Liver-specific disrup-

tion of PPARgamma in leptin-deficient mice improves fatty liver but aggravates

diabetic phenotypes. J. Clin. Invest. 111, 737–747.

Matsusue, K., Kusakabe, T., Noguchi, T., Takiguchi, S., Suzuki, T., Yamano,

S., and Gonzalez, F.J. (2008). Hepatic steatosis in leptin-deficient mice is pro-

moted by the PPARgamma target gene Fsp27. Cell Metab. 7, 302–311.

Medina-Gomez, G., Gray, S.L., Yetukuri, L., Shimomura, K., Virtue, S.,

Campbell, M., Curtis, R.K., Jimenez-Linan, M., Blount, M., Yeo, G.S., et al.

(2007). PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue

expandability and peripheral lipid metabolism. PLoS Genet. 3, e64.

Mehlem, A., Hagberg, C.E., Muhl, L., Eriksson, U., and Falkevall, A. (2013).

Imaging of neutral lipids by oil red O for analyzing themetabolic status in health

and disease. Nat. Protoc. 8, 1149–1154.

Min, L., Ji, Y., Bakiri, L., Qiu, Z., Cen, J., Chen, X., Chen, L., Scheuch, H.,

Zheng, H., Qin, L., et al. (2012). Liver cancer initiation is controlled by AP-1

through SIRT6-dependent inhibition of survivin. Nat. Cell Biol. 14, 1203–1211.
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Thépot, D., Weitzman, J.B., Barra, J., Segretain, D., Stinnakre, M.G., Babinet,

C., and Yaniv, M. (2000). Targeted disruption of the murine junD gene results in

multiple defects in male reproductive function. Development 127, 143–153.

Tontonoz, P., and Spiegelman, B.M. (2008). Fat and beyond: the diverse

biology of PPARgamma. Annu. Rev. Biochem. 77, 289–312.

Varela, G.M., Antwi, D.A., Dhir, R., Yin, X., Singhal, N.S., Graham, M.J.,

Crooke, R.M., and Ahima, R.S. (2008). Inhibition of ADRP prevents diet-

induced insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 295,

G621–G628.

Verde, P., Casalino, L., Talotta, F., Yaniv, M., and Weitzman, J.B. (2007).

Deciphering AP-1 function in tumorigenesis: fra-ternizing on target promoters.

Cell Cycle 6, 2633–2639.

Wagner, E.F., and Nebreda, A.R. (2009). Signal integration by JNK and p38

MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537–549.

Wagner, E.F., Schonthaler, H.B., Guinea-Viniegra, J., and Tschachler, E.

(2010). Psoriasis: what we have learned from mouse models. Nat. Rev.

Rheumatol. 6, 704–714.

Wan, Y., Chong, L.W., and Evans, R.M. (2007). PPAR-gamma regulates osteo-

clastogenesis in mice. Nat. Med. 13, 1496–1503.

Zhou, L., Xu, L., Ye, J., Li, D., Wang, W., Li, X., Wu, L., Wang, H., Guan, F., and

Li, P. (2012). Cidea promotes hepatic steatosis by sensing dietary fatty acids.

Hepatology 56, 95–107.
ell Metabolism 19, 84–95, January 7, 2014 ª2014 Elsevier Inc. 95


	Regulation of Steatohepatitis and PPARγ Signaling by Distinct AP-1 Dimers
	Introduction
	Results
	Fra-1/AP-1 Regulates Hepatic Lipid Metabolism and NAFLD
	Fra-1 Represses the PPARγ Pathway
	Adenoviral PPARγ Delivery Restores NAFLD/Steatosis in Fra-1hep Mice
	Reversion of NAFLD by Hepatocyte-Specific Fra-1 Expression
	PPARγ Links AP-1 to Lipid Metabolism
	Antagonistic Regulation of Pparg2 by AP-1
	AP-1 Dimer-Specific Regulation of PPARγ Signaling
	JunD Is Essential for NAFLD Development

	Discussion
	Experimental Procedures
	Animal Procedures
	Blood Analyses
	qRT-PCR/Immunoblot Analysis
	Histology
	RNA Microarray
	Gene Pathway Analysis
	Cell Culture and Reporter Assay
	Liver TG Content Analysis
	Chromatin Immunoprecipitation
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References


