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SUMMARY

Slowing down translation in either the cytosol or the
mitochondria is a conserved longevity mechanism.
Here, we found a non-interventional natural correla-
tion of mitochondrial and cytosolic ribosomal
proteins (RPs) in mouse population genetics, sug-
gesting a translational balance. Inhibiting mitochon-
drial translation in C. elegans through mrps-5 RNAi
repressed cytosolic translation. Transcriptomics
integrated with proteomics revealed that this
inhibition specifically reduced translational effi-
ciency of mRNAs required in growth pathways while
increasing stress response mRNAs. The repression
of cytosolic translation and extension of lifespan
from mrps-5 RNAi were dependent on atf-5/ATF4
and independent from metabolic phenotypes. We
found the translational balance to be conserved
Context and Significance

Aging has long been considered a passive process. However, r
pathways in aging and age-related diseases. For instance, slo
ribosomes in the cytosol is known to extend lifespan inmodel o
which also extend lifespan when slowed down. The current stu
mitochondrial and cytosolic ribosomes maintain stoichiometric
lation is inhibited either genetically or pharmacologically, cyto
from worms to mammals. The mito-cytosolic translational
healthy aging.
in mammalian cells upon inhibiting mitochondrial
translation pharmacologically with doxycycline.
Lastly, extending this in vivo, doxycycline repressed
cytosolic translation in the livers of germ-free
mice. These data demonstrate that inhibiting mito-
chondrial translation initiates an atf-5/ATF4-depen-
dent cascade leading to coordinated repression of
cytosolic translation, which could be targeted to
promote longevity.

INTRODUCTION

The translation of mRNA into protein is essential for the growth

and survival of every cell. Translation is carried out by small

and large ribosomal subunits associating with mRNA assisted

by eukaryotic initiation factors (eIFs) and elongation factors

(eEFs) to ensure its speed and accuracy. The biogenesis of
esearch has established important, active roles formetabolic
wing down the production of new proteins generated by the
rganisms.Mitochondria exhibit their own distinct ribosomes,
dy found that these two longevity pathways are linked, and
balance. The authors found that when mitochondrial trans-

solic translation is also inhibited, a phenomenon conserved
balance identified in this study can be used to promote
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ribosomes coupled to mRNA translation has been estimated to

be the most energy-consuming process in the cell (Buttgereit

and Brand, 1995; Lane and Martin, 2010; Wieser and Krumsch-

nabel, 2001). Slowing down translation by reducing expression

of ribosomal proteins (RPs), eIFs/eEFs, or ribosomal RNA

(rRNA) results in lifespan extension in yeast, worms, and flies

(Chiocchetti et al., 2007; Hansen et al., 2007; Pan et al., 2007).

This suggests a universal mechanism of lifespan extension lies

in conserving the energy normally expended on cytosolic

mRNA translation.

Distinct from the ribosomes in the cytosol, ribosomes that

reside in the mitochondria are dedicated to translating the

mRNAs encoded by the mitochondrial DNA. Because of the

endosymbiotic ‘‘bacterial’’ origin of the mitochondria, mitochon-

drial ribosomes are structurally more similar to bacterial ribo-

somes than to their cytosolic counterparts (Greber et al., 2014,

2015; Smits et al., 2007). Compared to cytosolic ribosomes,

mitochondrial ribosomes only need to translate a relatively small

set of 13 mRNAs coding for subunits of the oxidative phosphor-

ylation (OXPHOS) complexes that are required for the generation

of ATP. Remarkably, slowing down mitochondrial translation

also extends lifespan (Houtkooper et al., 2013). Inhibiting mito-

chondrial translation genetically (e.g., by knocking down mito-

chondrial ribosomal genes) or pharmacologically (e.g., by using

the antibiotic doxycycline) results in mitonuclear protein imbal-

ance and activates the mitochondrial unfolded protein response

(UPRmt) in a process conserved from worms to mammals

(Houtkooper et al., 2013; Jovaisaite and Auwerx, 2015). The

UPRmt includes the upregulated expression of cytoprotective

genes, such as those coding for mitochondrial heat shock pro-

teins 6 and 60 (hsp-6 and hsp-60) (Haynes and Ron, 2010). Other

aspects of this response initiated by stressed mitochondria are

mediated by Atf4 (C. elegans atf-5) (Quirós et al., 2017), a cyclic

AMP-dependent transcription factor that has been implicated in

a variety of mouse longevity models (Li et al., 2014).

Although mitochondrial and cytosolic ribosomes are separate

translational apparatuses, they depend on each other to coordi-

nate mitochondrial function, in particular the synthesis of

OXPHOS proteins. A regulatory signaling route from cytosolic

translation to mitochondrial translation has been reported in

yeast and is allegedly strictly unidirectional (Couvillion et al.,

2016). However, because mitochondria produce cellular energy

and translation in the cytosol is a vast consumer of this energy,

we hypothesized that there may be bidirectional translational

control.

Here, we investigated the correlation of abundances between

mitochondrial and cytosolic RPs in the BXD genetic reference

population of mice (Wang et al., 2016). To address the direct

link between mitochondrial and cytosolic translation, we have

used a worm model of genetically impaired mitochondrial trans-

lation (RNAi-mediated knockdown of mrps-5) and observed a

decrease in cytosolic translation using polysome profiling. By

integrating ‘‘omics’’ data on three levels of biology (transcriptom-

ics of the whole worm, transcriptomics of the polysomal fraction

of the worm [highly translated transcripts], and proteomics), we

explored an integrated, system-level view of the molecular

changes induced via knockdown of mitochondrial translation

that result in longevity. To show that key elements of this process

are evolutionarily conserved, we used the antibiotic doxycycline
2 Cell Metabolism 31, 1–15, March 3, 2020
as a means to reduce mitochondrial translation in human K562

cells and in vivo in mice. The findings of this study indicate that

a bidirectional regulation exists between the two translation ma-

chineries across species, regulating longevity.

RESULTS

Mitochondrial and Cytosolic Ribosomal Proteins
Co-correlate in a Natural Population of Mice
The degree to which the mitochondrial and cytosolic ribosomes

longevity pathways regulate one another is not well understood

(illustrated in Figure 1A). However, it seems likely that cross-

communication between these systems exists, allowing for the

suppression of translation should either machinery become

compromised in order to maintain equal rates of production.

Therefore, one would expect the natural abundances of these

two translation machineries to match one another in varying

cell types, tissues, or individuals in a population. In order to eval-

uate the possible natural balance in abundances that occurs be-

tween elements of the mitochondrial and cytosolic translational

machinery, we turned to the population of BXD mouse strains.

These segregate for around 5 million sequence variants, which

in turn lead to expression variation in the transcriptome and pro-

teome with a complexity similar to human populations (Wang

et al., 2016). To resolve the relationships between the mitochon-

drial and cytosolic translation machineries in the mouse BXD

liver proteome data, we reconstructed the protein correlation

network between the individual elements of these protein com-

plexes (Figure 1B; Table S1). Using a fairly permissive cutoff

criteria (p < 5e�4), we observed robust correlations within both

the subunits of the cytoribosome and mitoribosome (p < 1e�4,

p = 0.014, respectively), and importantly, strong interactions be-

tween these translation machineries (p < 1e�4). To confirm the

robustness of this observation, we turned to a separate mouse

study (Williams et al., 2018) examining the regulation of proteins

across eight BXD strains and across four different tissues

(Figure 1B). Indeed, we found RPs from both ribosome types

clustered and co-varied as observed in the liver-specific data,

suggesting a general mechanism is in place ensuring mito-cyto-

solic translational balance. As expected, taking the average

abundance of either cytosolic or mitochondrial RPs for each

BXD strain showed variation to exist within each ribosome type

(Figure 1C), and evaluating average mitochondrial ribosome

abundances in relation to the average levels of cytosolic

ribosomes within individual BXD strains confirmed the strong

correlation between these two translation machineries (Pearson

R = 0.60, p < 0.05) (Figure 1D). Taken together, these findings

demonstrate that mitochondrial ribosome and cytosolic

ribosome abundances are tightly regulated to stay in natural

stoichiometric ratios.

Previous work in yeast has suggested a unidirectional relation-

ship between these two translation machineries, whereby

disruption of cytosolic ribosomes can concomitantly reduce

abundances of mitochondrial ribosomes but not the reverse

(Couvillion et al., 2016). To test the hypothesis that regulation

could also occur in the opposite direction, namely mitochondrial

ribosomes influencing the cytosolic ribosomes, we turned

to C. elegans with reduced levels of mitochondrial small ribo-

somal protein 5 (mrps-5). In addition to inhibiting mitochondrial
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Figure 1. A Conserved Mito-Cytosolic Translational Balance in Mice and Worms

(A) Model showing possible links between two branches of translation regulation in lifespan control; cytosolic (yellow) and mitochondrial (blue).

(B) Correlation networks in BXD mice show strong relationships between mitochondrial and cytosolic ribosomal protein levels both in liver (left) and across

multiple tissues (right), suggesting that the subunits within ribosomes and across ribosomes are co-regulated. Both networks show enriched connectivity. Liver:

73 nodes for the cytoribosome subnetwork have 610 edges (p < 1e�4, 512 are positively correlated), 38 nodes for the mitoribosome subnetwork have 88 edges

(p = 0.014, 57 are positively correlated), 374 nodes are involved in the interaction between mitoribosome and cytoribosome subnetworks (p < 1e�4, 211 are

positively correlated). Multitissue: 68 nodes for the cytoribosome subnetwork have 1,441 edges (p < 1e�4, 1,441 are positively correlated), 55 nodes for the

mitoribosome subnetwork have 491 edges (p < 1e�4, 491 are positively correlated), 703 nodes are involved in the interaction between mitoribosome and

cytoribosome subnetworks (p < 1e�4, 680 are positively correlated). For significance testing, 10,000 random networks were permuted using the same input data

and gene set size for each dataset and subset with gene sets of the same size selected at random out of the full proteomic datasets. A reported p < 1e�4 means

that none of the 10,000 random networks were as significant as the selected ribosome gene sets taken from literature.

(C) BXD mouse strains showing natural variation in cytosolic (yellow) or mitochondrial (blue) ribosome abundances in liver proteome. Each dot represents one

BXD strain’s average abundance of either the cytosolic or mitochondrial ribosomes.

(D) Averaged abundances frommitochondrial and cytosolic ribosomes in the BXD liver proteome (from C) show correlation between mitochondrial and cytosolic

abundances (Pearson 0.60, p < 7e�5).

(E) Representative polysome profiles showing decreased cytosolic polysome abundances in worms with impaired mitochondrial ribosomal biogenesis (mrps-5

RNAi). Lysate is normalized to protein levels. The subunits (40S and 60S), monosomal peak (80S), and polysomal peak numbers are indicated (P1–P6).

(F) Quantification of polysome peak sizes of representative experiment with n = 4 per condition normalized to P1 peak of empty vector control worms. Error bars

represent mean ± SD and significance was tested with Student’s t test, and p values were adjusted to correct for multiple testing using the Holm-�Sı́dák method,

with a = 0.05.

See also Figure S1 and Table S1.

Please cite this article in press as: Molenaars et al., A Conserved Mito-Cytosolic Translational Balance Links Two Longevity Pathways, Cell Metabolism
(2020), https://doi.org/10.1016/j.cmet.2020.01.011
translation, RNAi ofmrps-5 induces the UPRmt, alters mitochon-

drial function, prevents aging-associated functional decline, and

extends lifespan in C. elegans (Houtkooper et al., 2013). To

assess the status of cytosolic translation in mrps-5 worms, we

used a polysome profiling technique whereby free ribosomal

subunits, monosomes (mRNA with one ribosome associated),

and polysomes (mRNA with two or more ribosomes associated),

are separated over a sucrose density gradient and quantified by

optical density. Remarkably, in mrps-5 RNAi treated worms, we

observed a shift from polysomes to monosomes, suggesting

that more cytosolic mRNAs are being translated by a single ribo-

some instead of multiple following mitochondrial translation inhi-

bition (Figure 1E). Indeed, quantification of the profiles confirmed

a significant reduction of polysomal peaks in themrps-5 worms,

revealing a suppression of cytosolic translation occurring in

worms with an impaired mitochondrial ribosome (Figure 1F). To

establish if this is a universal effect caused by mitochondrial dis-

turbances, we performed polysome profiling in worms treated
with either eat-3 or fzo-1RNAi, which do not target themito-ribo-

some but do target mitochondrial fusion. Both these conditions

activated the UPRmt and decreased respiration (Liu et al.,

2019) but did not repress cytosolic translation (Figures S1A

and S1B).

Together, these observations demonstrate that in addition

to the established communication from the cytosol and

mitochondria, a second and novel relationship exists whereby

the mitochondrial ribosome communicates with the cytosolic

translational machinery.

mrps-5 RNAi-Treated Worms Display Reduced
Translational Efficiency of Cytosolic Ribosomal Proteins
Having observed a decrease in global translation occurring in

mrps-5 RNAi-treated worms, we next inquired as to what genes

are specifically repressed at the translational level, i.e., in our pol-

ysomal fractions. In order to do so, we generated RNA

sequencing (RNA-seq) libraries of polysomal and monosomal
Cell Metabolism 31, 1–15, March 3, 2020 3
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Figure 2. mrps-5 RNAi-Treated Worms Show Reduced Translational Efficiencies for Cytosolic Ribosomal Genes

(A) Schematic showing RNA isolated frompolysome profiles, from highly translated fractions (yellow, polysome) and lesser translated fractions (blue,monosome).

RNA-seq transcriptomics was performed on polysomal and monosomal fractions formrps-5 RNAi and control worms. Transcripts (log2 transformed normalized

counts) are depicted (scatterplots). Biological triplicates were used for each condition.

(B and C) Partial least-squares discriminant analysis (PLS-DA) for monosomal (B) and polysomal (C) RNA libraries showing clear distinction betweenmrps-5RNAi

and control samples. Analysis was used to derive VIP scores for genes contributing most to the group separation.

(D) Translational efficiencies (TEs) of transcripts, defined as the log2 ratio of polysomal versus monosomal differences between mrps-5 RNAi and control gene

expression, shows shifts in transcripts from either the monosome to the polysome (high TE, yellow) or the polysome to the monosome (low TE, blue). Insets

schematically depict the shifts observed in the histogram. Cutoff lines and VIP scores were used to remove noise for calculating enrichment of biological

processes in low or high TE mRNAs.

(legend continued on next page)
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fractions of RNA frommrps-5 and control worms for comparison.

The RNA-seq transcriptomes provided reliable quantification of

over 16,000 genes covering the majority of the worm genome,

allowing for a global description of the differences existing

between monosome and polysomal RNA fractions (Figure 2A;

Table S2).

To capture the broad-spectrum set of changes that discrimi-

nate between mrps-5 and control worms at either the monoso-

mal or polysomal levels, we performed a partial least-squares

discriminant analysis (PLS-DA) on the samples for each condi-

tion. We found this to effectively distinguishmrps-5 from control

worms (Figures 2B and 2C; Table S2). Notably, this method is

effective as a feature selector in addition to a sample classifier

and is therefore useful in that it provides a variable of importance

(VIP) ranking for each gene corresponding to its contribution in

group discrimination (Boulesteix and Strimmer, 2007). This VIP

score correlates highly to traditional p value ranking (Figures

S2A and S2B) though it allows for a broader set of changes to

be considered, which is more representative of the multifactorial

nature of complex biological phenotypes. To explore the biolog-

ical differences between groups in this way, we assessed genes

with a high VIP score (>1) and turned to the Database for Anno-

tation, Visualization and Integrated Discovery (DAVID) bioinfor-

matics resource (Huang da et al., 2009). DAVID analysis clusters

enrichments in Gene Ontology (GO) and various pathway data-

bases, including Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Interprot, based on recurrence and similarities of

genes in enriched pathways. With this method, we noted a

wide variety of changes between mrps-5 RNAi and control

worms (Table S2). For instance, changes in themrps-5monoso-

mal RNA included an upregulation of RNAs coding for mitochon-

drial transit peptides (e.g., genes asg-2, atad-3, cyc-2.1) and a

suppression of RNAs important for cuticle formation and other

developmental pathways (e.g., genes bli-6, col-81, rol-1). A par-

allel upregulation of RNAs coding for mitochondrial transit pep-

tides in the polysomes of mrps-5 (e.g., genes aco-2, coq-8,

phb-2) was also found along with a similar suppression of

RNAs coding for proteins important for reproduction and growth

(e.g., genes acn-1, epi-1, ptr-4) (Table S2).

In order to identify what transcripts were shifting from polyso-

mal to monosomal fractions, and vice versa, we calculated the

translational efficiency (TE) of each gene. The TE is defined as

the ratio of the polysomal RNA to the monosomal RNA fraction

formrps-5 RNAi relative to control worm. Upon log2 transforma-

tion, a positive TE value then corresponds to transcripts that shift

from the monosome to the polysome in mrps-5 RNAi relative to

control, whereas negative TE values correspond to a shift in the

opposite direction (Figure 2D; Table S2). Setting a low minimal

fold-change TE cutoff of 1.25 with a significant VIP score in at

least one of the two group comparisons, we assessed genes
(E) Top 10 biological processes with highest enrichments scores in low TE (blue) or

Ontologies (GO). Decreased TEwas observed in pathways such as ribosome biog

indicated with dotted line) were considered significantly enriched.

(F) Selection of mRNAs with either low TE (blue) or high TE (yellow), which cont

membrane,’’ respectively). Boxplots depict abundances (counts per million) of

worms, used to calculate TEs.

(G) Individual cytosolic ribosomal proteins have a low TE in mrps-5 RNAi compa

See also Figure S2 and Table S2.
with altered TE using DAVIDGO term clustering. This analysis re-

vealed that uponmrps-5RNAi, genes with a high TEwere coding

for membrane components, proteins involved in stabilization of

membrane potential, and proteins used in oxygen transport

that include genes such as aat-7, dpy-19, and rom-5 (Figures

2E and 2F; Table S2). This observation is likely reflecting the

worm’s need to adapt to its altered mitochondrial biology. Strik-

ingly, genes with a low TE were by and large coding for proteins

involved in translation and ribosomebiogenesis (Figure 2E; Table

S2), suggesting that mrps-5 RNAi worms suppress the transla-

tion of cytosolic ribosome components. These genes included

translation elongation factors such as eif-3.B, eif-3.C, and

eif-3.D (Figure 2F), in addition to those coding for the vast major-

ity of RPs. Remarkably, visualizing the TE of the ribosome-asso-

ciated proteins individually highlights what amounts to be almost

a complete repression of the genes coding for the RPs that

assemble the cytosolic ribosome (Figure 2G). These findings

demonstrate the mrps-5-deficient mitochondrial translation

machinery wields a strong regulatory influence over the cytosolic

ribosomal translation machinery.

mrps-5 Worms Suppress Growth Pathways and
Upregulate Stress Responses at Both the Proteome and
Transcriptome Levels
To better understand how the transcriptional responses ensuing

frommrps-5RNAi impact the proteome, we next performed both

whole worm RNA-seq and sequential window acquisition of all

theoretical (SWATH) mass spectrometry proteomics of mrps-5

RNAi versus empty vector control worms. Our whole-worm

RNA profiling tracked the abundances of over 16,000 transcripts

(Table S3), whereas proteomics was able to quantify over 1,700

proteins (Table S4). Again, the worm samples were readily distin-

guished through PLS-DA (Figures 3A–3C), attributable to the

large differences inherent between mrps-5 RNAi worms and

controls reflected at both the transcript and protein levels. Using

the VIP scores from the PLS-DA classification, we found major

changes in the mrps-5 RNAi worms. These are characterized

by an upregulation of oxidation-reduction and glycolysis-related

genes and a downregulation of development, growth, and repro-

duction-related genes at the transcript level (Table S3). At the

protein level, we found an upregulation of mitochondrial (transit

peptides) and nucleosome assembly proteins and a downregu-

lation of the mitochondrial respiratory chain (complex I) subunits

along with proteins involved in development and reproduction

(Table S4).

To better understand whether the changes detected at the

transcript and protein levels were representative of one another,

we assessed the 1,407 protein-transcript pairs overlapping be-

tween both ‘‘omics’’ datasets (Table S5). Given their good corre-

lation in abundance (Figures 3D and 3E), we proceeded to check
high TE (yellow) transcripts using DAVID analysis clusters enrichments in Gene

enesis and translation. Clusters with an ‘‘enrichment score’’ above 1.3 (p < 0.05,

ributed to the biological enrichments (‘‘translation’’ or ‘‘integral component of

mRNA in the monosome and polysome for control and mrps-5 RNAi treated

red to control worms.
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Figure 3. Proteome-Transcriptome Cross-Comparison of mrps-5 RNAi Worms Reveals Transcriptional Suppression of Growth Pathways

and Upregulation of Stress Responses

(A) Schematic showing RNA (light blue) and proteins (light green) isolated from whole worms for RNA-seq or SWATH proteomics. Transcripts or proteins (Log2-

transformed normalized counts) are depicted (scatterplots). RNA-seq was performed in biological triplicates and proteomics was performed in biological

quintuple per condition.

(B and C) PLS-DA for transcriptome (B) and proteome (C) shows clear distinction between mrps-5 RNAi and control samples. PLS-DA was used to derive VIP

scores for genes contributing most to the group separation.

(D and E) Significant correlations of 0.44 and 0.43 were observed in the fold changes between the 1,407 transcript-protein pairs overlapping the mRNA-protein

datasets for control (D) and mrps-5 RNAi (E) samples, respectively.

(F) Co-regulation plot of transcript and protein fold changes of mrps-5 RNAi versus control samples. Quadrants are defined as Q1 co-upregulated, Q2 post-

transcriptionally increased, Q3 co-downregulated, and Q4 post-transcriptionally suppressed. Dashed lines indicate cutoff used to eliminate noise of near 0-fold

(legend continued on next page)
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their differences in a co-regulation analysis. This was achieved

by investigating fold changes occurring at the transcript level

versus those occurring at the protein level for each individual

gene and protein (Figure 3F). To reduce noise, we omitted genes

with near 0-fold changes (those within dashed lines in Figure 3F)

and again used the PLS-DA-derived (Figures 3B and 3C) VIP

scores for selection criteria, whereby a VIP score >1 identified

genes contributing to the difference between control and

mrps-5RNAi-treated worms. Our co-regulation analysis showed

that the majority (67%) of genes were similarly regulated at the

protein and transcript levels in mrps-5 RNAi worms (Figure 3F,

pie chart inset and scatterplot, in which 36% were co-upregu-

lated [Q1] and 31% were co-downregulated [Q3]). Manual in-

spection of co-upregulated (Q1) genes revealed an increase in

antioxidant-related defense genes such as sod-1, coq-3, and

coq-6 as well as the UPRmt proteins hsp-6 and hsp-60, the latter

of which are in linewith whatwe previously reported (Houtkooper

et al., 2013). Co-downregulated genes (Q3) included growth-

and translation-related genes such as eif-3.E, eif-3.G, rpl-11.1,

and rpl-25.2 (Figure 3G). Whereas only a minority (9%) of genes

were downregulated at the transcript level and upregulated at

the protein level (Q2), our co-regulation analysis demonstrated

that a sizeable proportion of genes (24%) exhibited an upregula-

tion at the transcript level and a downregulation at the protein

level (Q4). Manual inspection showed these genes to be predom-

inantly related to cellular respiration, such as the NADH:ubiqui-

none oxidoreductase core subunit genes nduf-6, nduf-7, nuo-

2, nuo-3, and nuo-6 (Figure 3G). Whereas the upregulation at

the mRNA level likely reflects the worm’s need to adapt to a

loss of respiratory capacity from mrps-5 RNAi, the OXPHOS

complexes cannot be assembled properly because of the lack

of their mitochondrial-translated partners and are downregu-

lated on the protein level.

To better understand changes present in each quadrant of our

co-regulation plot, we performed GO term enrichment analyses

(Figures 3H–3K; Table S5). Whereas the genes associated with

upregulated proteins and downregulated transcripts had rela-

tively few enriched GO terms (Figure 3H), the remaining quad-

rants showed strong enrichments. Co-upregulated (Q1) genes

enriched for mitochondrial-related processes likely reflect an

active adaptation in mitochondria to the knockdown of mrps-5

(Figure 3I). Co-downregulated (Q3) gene enrichments supported

a role for decreased growth and development, with such terms

as ‘‘nematode larval development’’ and ‘‘structural constituent

of cuticle’’ being most prominent (Figure 3J). Meanwhile, as

observed in the individual gene analysis, genes with upregulated

transcripts and downregulated proteins showed enrichments for

OXPHOS (Figure 3K). Taken together, co-suppression of the

individual translation-related genes in Q2 (Figure 3G) with the

suppression of developmental-related processes (Figure 3J)

supports the idea that mitochondrial ribosomes crosstalk with

cytosolic growth pathways to adapt the worm to a low energy
change (mRNA and protein cutoffs each relative to the standard deviation of th

considered as significant hits. Pie chart inset shows percentage regulated, revea

(G) Examples of co-upregulated, co-downregulated, or post-transcriptionally sup

(H–K) Top five biological processes enriched in each quadrant of the co-regulation

(K) Q4.

See also Tables S3, S4, and S5.
state. Indeed, this adaptation is reflected in protein components

of the worm’s respiratory chain, in which OXPHOS proteins were

suppressed despite their transcriptional upregulation (Figures

3G and 3K).

The Mitochondrial-to-Cytosolic Translation Response
and Lifespan Are Dependent on the atf-5/Atf4

Transcription Factor but Can Be Decoupled from
Metabolic Phenotypes
Our proteome-transcriptome co-regulation analysis of mrps-5

RNAi worms indicates that the increase of cytoprotective genes

and decrease of growth and biogenesis-related genes is to a sig-

nificant extent a transcriptionally regulated phenotype. This sug-

gests that transcription factors may be core mediators of this

process. Recent studies identified the transcription factor Atf4

(atf-5 in C. elegans) as a key player in communication frommito-

chondria toward the cytosol during mitochondrial stress induced

by inhibition of eithermitochondrial import, OXPHOS,membrane

potential, or mitochondrial translation (Quirós et al., 2017).

Elevated levels of ATF4 were also observed in many mouse

longevity models that involve the suppression of cytosolic trans-

lation (Li et al., 2014). Given these reports, we investigated a po-

tential role of C. elegans atf-5 in coordinating the balance be-

tween cytosolic and mitochondrial translation. Using polysome

profiling, we observed that the decreased cytosolic translation

occurring in mrps-5 RNAi worms is almost fully restored to

control levels upon additional feeding of atf-5 RNAi to worms

(Figures 4A, S3A, and S3B). Indeed, quantification of the peaks

in the polysome profiles showed significant rescue of the

repressed polysomal peaks in mrps-5 worms when atf-5 was

also knocked down (Figures 4B, S3A, and S3B). This epistasis

experiment implicated atf-5 as a mediator of the suppression

of cytosolic translation that is induced by the suppression of

mitochondrial translation via mrps-5 knockdown.

In order to test if atf-5 also plays a role in the lifespan extension

of mrps-5 RNAi worms, we performed lifespan experiments in

which we silenced both mrps-5 and atf-5 through double RNAi

(Figure 4C). We observed significant lifespan extension in the

mrps-5 RNAi treated worms as reported before (Houtkooper

et al., 2013). This lifespan extension was dependent on atf-5

because themrps-5/atf-5 double RNAi condition led to amarked

reduction of lifespan compared tomrps-5RNAi alone, although it

was not a complete reversal of the lifespan of controls (Figure 4C;

Table S6).

In addition to repressed cytosolic translation, mrps-5 RNAi

worms also have metabolic phenotypes, including reduced respi-

ration (Houtkooper et al., 2013). We next aimed to elucidate

whether the changes in translation can be decoupled from

changes in metabolism. Because both the cytosolic translation

and lifespan phenotype were dependent on atf-5, we explored if

atf-5 RNAi also rescued the metabolic phenotypes. As described

before, we found lower basal respiration in mrps-5 RNAi-treated
eir distributions), and VIP scores >1 for both mRNA and protein levels were

ling a majority of changes being co-regulated.

pressed genes, derived from the significant hits of (F).

plot, derived from the significant hits of (F). (H) pertains to Q2, (I) Q1, (J) Q3, and
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Figure 4. Atf-5 Mediates the Balance between Mitochondrial and Ribosomal Protein Translation and Lifespan Extension, but Not the Meta-
bolic Phenotype in mrps-5 RNAi Worms

(A) Representative polysome profiles of control (black), mrps-5 RNAi/EV (red), and mrps-5 RNAi + atf-5 RNAi (yellow) worms show mrps-5 mediated cytosolic

translational suppression is dependent on the atf-5 transcription factor. Lysate is normalized to protein levels. The subunits (40S and 60S), monosomal peak

(80S), and polysomal peak numbers are indicated (P1–P6).

(B) Quantification of polysome peak sizes of representative experiment with n = 4 per condition normalized to P1 peak of empty vector control worms. Bars

represent mean ± SD and significance was tested with Student’s t test, and p values were adjusted to correct for multiple testing using the Holm-�Sı́dák method,

with a = 0.05.

(C) Lifespan curves of control (black),mrps-5RNAi (red), andmrps-5/atf-5RNAi (yellow) and atf-5RNAi (brown) worms showmrps-5-mediated lifespan extension

is dependent on the atf-5 transcription factor. n = 120 worms per condition. Survivival curves were compared using the Log-rank (Mantel-Cox) method.

(D) Seahorse respirometry measurements of control, mrps-5 RNAi/EV, mrps-5/atf-5 double RNAi, and atf-5 RNAi/EV worms show reduced basal oxygen

consumption rate (OCR) in bothmrps-5 RNAi/EV andmrps-5/atf-5 RNAi-treated worms compared to controls. Data points represent average OCR per worm per

well, with 15–19 wells per condition. Bars represent mean ± SEM, significance was tested with Student’s t test, and p values were adjusted to correct for multiple

testing using the Holm-�Sı́dák method, with a = 0.05.

(E) Ratio between the relative abundances of pyruvate (glycolysis) and a-ketoglutarate (TCA cycle) of control, mrps-5 RNAi/EV, mrps-5/atf-5 double RNAi, and

atf-5 RNAi/EV worms shows a similar metabolic shift toward glycolysis in both mrps-5 RNAi/EV and mrps-5/atf-5 RNAi-treated worms compared to control

worms asmeasured bymass spectrometry. Bars represent mean ± SEMwith n = 5 per condition, significance was tested with Student’s t test, and p values were

adjusted to correct for multiple testing using the Holm-�Sı́dák method, with a = 0.05.

(F) No difference was observed in energy charge measured by mass spectrometry. Bars represent mean ± SEM with n = 5 per condition and significance was

tested with Student’s t test, and p values were adjusted to correct for multiple testing using the Holm-�Sı́dák method, with a = 0.05.

See also Figure S3 and Table S6.
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worms compared to the control worms (Houtkooper et al., 2013)

(Figure 4D). When these worms were simultaneously treated

with atf-5 RNAi (to block the cross-organellar translational feed-

back), basal respiration remained similar to that of the mrps-5

RNAi-treated worms. This indicates that atf-5 RNAi does not

rescue the reduced mitochondrial respiration in the mrps-5

RNAi worms. To substantiate these observations, we performed

metabolomicson theworms subjected to these variousRNAi con-

ditions. In line with the reduced mitochondrial activity, we

observed lower amounts of tricarboxylic acid (TCA) cycle interme-

diates in the mrps-5 worms compared to control worms (Fig-
8 Cell Metabolism 31, 1–15, March 3, 2020
ure S3C). This was accompanied by increased pyruvate levels

(Figure S3C), suggesting increased glycolysis as a probable

means to maintain energy homeostasis in the mrps-5 RNAi-

treatedworms. Taking the ratio between a TCA cycle intermediate

(a-ketoglutarate) and a glycolysis intermediate (pyruvate), we see

a significant shift from mitochondrial metabolism toward glycol-

ysis in the mrps-5 worms (Figure 4E). Again, when these worms

were simultaneously treated with both mrps-5 and atf-5 RNAi, a

similar metabolic shift was observed, just like in mrps-5 RNAi

alone (Figure 4E). Finally, from our metabolomics data we calcu-

lated the energy charge, an index used to measure the energy
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Figure 5. The Balance between Mitochondrial and Ribosomal Protein Translation Is Conserved in Human Cells

(A) Schematic of doxycycline (DOX)-mediated inhibition of mitochondrial ribosomes with amoxicillin (AMOX) not interfering with mitochondria as control anti-

biotic.

(B) Polysome profiles of DMSO and AMOX controls and DOX-treated K562 cells show doxycycline-induced suppression of cytosolic translation.

(C) Western blot analyses of AMOX control and DOX-treated K562 cells show DOX-induced expression of ATF4. Bars represent mean ± SD and significance was

tested with one-way ANOVA with multiple comparisons, with a = 0.05.
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status: ([ATP]+1⁄2[ADP])/([ATP]+[ADP]+[AMP]). We observed no

changes between worms subjected to any of the different RNAi

conditions (Figure 4F). These data again support the notion that

metabolic changes imposed by mrps-5 RNAi are not causing

the changes in cytosolic translation.

Moreover, we found that the mito-cytosolic translational bal-

ance does not depend on the UPRmt. In the atfs-1(cmh15)mutant,

which is unable tomount aUPRmt response (Denget al., 2019),we

found that the expression of cytosolic translation genes eif-3.c,

eif3-g, and rpl-14was still downregulated uponmrps-5RNAi (Fig-

ure S3D). Furthermore, although it was recently suggested that

ATF4/ATF-5 displays crosstalk with the oxidative stress-response

transcription factor NRF2/SKN-1 (Kasai et al., 2019), reactive ox-

ygen species (ROS) was not induced following eithermrps-5RNAi

or doxycycline treatment, and supplementation with the antioxi-

dant N-acetylcysteine did not suppress the lifespan extension in

these conditions, suggesting independence from oxidative stress

signaling (Houtkooper et al., 2013). In line with this, double knock-

down of both mrps-5 and skn-1 still repressed the expression of

eif-3.c, eif-3.g, and rpl-14, similar tomrps-5 RNAi alone, suggest-

ing that this repression is independent of skn-1 (Figure S3E).

In conclusion, we show that atf-5 is specifically regulating the

mito-cytosolic translational balance and lifespan extension in

mrps-5worms, whereas our respiration andmetabolomics mea-

surements allow us to decouple mitochondrial respiration from

cytosolic translation in our model with altered mitochondrial

translation.

TheMitochondrial-to-Cytosolic Translation Response Is
Conserved in Mammalian Cells
In order to see if this communication between mitochondrial

translation machinery and cytosolic translation machinery is

conserved in mammalian cells, we turned to a pharmacological

model of reducing mitochondrial translation with the antibiotic

doxycycline. Doxycycline is in the tetracycline family of antibi-

otics that inhibits mitochondrial translation by binding the 30S

mitochondrial ribosomal subunit, whereas other antibiotics

such as amoxicillin target bacterial cell wall synthesis. Amoxi-
cillin is used here as a control in line with our previous work

(Houtkooper et al., 2013; Moullan et al., 2015) (Figure 5A). The

human K562 leukemia cell line was treated with DMSO, amoxi-

cillin, or doxycycline and subjected to polysome profiling. We

found that doxycycline treatment resulted in an overall repres-

sion of all peaks, including the monosomal and polysomal frac-

tions, revealing a global repression of cytosolic translation as a

result of mitochondrial translation inhibition (Figure 5B). In line

with our observations that the C. elegans atf-5 is involved in

this response, we observed that protein expression of ATF4,

the mammalian homolog of atf-5, is upregulated in doxycycline-

but not amoxicillin-treated K562 cells (Figure 5C). Taken

together, these findings suggest that ATF4/atf-5 is mediating

the communication between mitochondrial and cytosolic trans-

lation machineries in a manner that is conserved from nema-

todes to mammals.

TheMitochondrial-to-Cytosolic Translation Response Is
Conserved In Vivo in Mice
Having observed a conserved repression of cytosolic translation

upon inhibition of mitochondrial translation in mammalian cells

with doxycycline treatment, we next investigated these effects

in vivo in mice. We treated mice for 2 weeks with doxycycline

or amoxicillin in their drinking water, using doses that were pre-

viously reported to induce a mitonuclear protein imbalance

(Moullan et al., 2015). To eliminate potential indirect effects of

the antibiotics through the microbiome, we performed the anti-

biotic treatments on germ-free C57BL/6J mice. We found that

doxycycline treatment resulted in suppression of global transla-

tion in liver in a dose-dependent manner (Figures S4A and S4B).

Following this, we performed RNA-seq of the polysomal and to-

tal RNAs of liver tissue harvested from the antibiotic-treatedmice

(Figure 6A; Table S7). Similar to what was observed in worms, we

found the samples were readily classified through PLS-DA

(Figures 6B and 6C) and again used VIP scores to distinguish

differentially expressed genes (VIP > 1). DAVID analysis of

the RNA-seq results showed a striking downregulation of trans-

lation-related mRNAs in the polysomal RNA fractions of
Cell Metabolism 31, 1–15, March 3, 2020 9
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Liver, Resulting in a Conserved Transcriptional Signature for Longevity Assurance

(A) Schematic showing RNA isolated from either the polysomal fraction or total RNA from livers of germ-free mice treated with either DOX (red) or AMOX control
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VIP scores for genes contributing most to the group separation.

(legend continued on next page)
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doxycycline-treated mice (Figure 6D; Table S7) and an upregula-

tion of various cellular defense processes including oxidation

reduction (Figure 6E), which is in line with our observations in

mrps-5 deficient C. elegans. This suppression of cytosolic ribo-

somes was greater in the polysomal RNA fraction (Figure 6F)

than in total RNA (Figure S4C), resulting in a suppression of the

TE of ribosomal genes occurring in doxycycline-treated mice

(Figure S4D; Table S7). Mitochondrial ribosomes were most

strongly suppressed at the total RNA level (Figures S4E and

S4F). In line with our findings in C. elegans, DAVID enrichment

analyses showed cytoprotective processes to have high TEs

and developmental processes to have low TEs, and visual

inspection confirmed the near total suppression of RP genes’

TEs (Figure S4D; Table S7). Taken together, these findings

indicate that in vivo pharmacological inhibition of mitochon-

drial translation co-suppresses cytosolic translation, directly

reducing cytosolic RP transcript TE. This confirms that the

balance between mitochondrial and cytosolic translation is

conserved in nematodes and mammals.

Having observed a strong conservation of the molecular phe-

notypes inmrps-5 RNAi-treated worms and doxycycline-treated

mouse livers, we next asked what molecular signatures were

specifically conserved between the two models. To do so, we

performed a mouse-worm cross-species comparison of both

total and polysomal RNA-seq libraries for orthologous genes

(Figure 6G). Total and polysomal RNA abundances showed

interspecies correlations of 0.42 and 0.39, respectively. Assess-

ing the overlap of differentially expressed murine and C. elegans

genes (Figure 6H) showed a conserved upregulation of genes

coding for mitochondrial transit peptides and oxidation reduc-

tion in the total RNA and a downregulation of genes involved in

mRNA translation in the polysomal RNA (Table S8).

Taken all together, our findings suggest that a conserved pro-

gram for mito-cytosolic translational balance is activated across

species when mitochondrial translation is inhibited by distinct

and diverse methods. Our findings demonstrate that this leads

to ATF4/atf-5-mediated signaling to slow down cytosolic transla-

tion while upregulating cyto-protective genes. Considering the

remarkable longevity induced by mrps-5 and doxycycline treat-

ments (Houtkooper et al., 2013), we propose that mito-cytosolic

translational balance can ultimately be used to assure longevity

in C. elegans and possibly also other organisms (Figure 6I).

DISCUSSION

In this study, we used a systems biology approach operating on

multiple levels of biology to elucidate the relationship between

mitochondrial and cytosolic translation. This included analyzing

mouse population transcriptomics, worm proteome-transcrip-
(D and E) Downregulated (D) or upregulated (E) top 10 biological processes enri

suppression of translation-related transcripts after DOX treatment. A VIP score >

(F) Individual cytosolic ribosomal proteins are D in the polysomal RNA in DOX-tr

(G) Scheme depicting mouse-worm cross-species comparison of total and poly

(H) A conserved transcriptional response for a polysomal downregulation of ‘‘m

peptides’’ and ‘‘oxidation reduction’’-related genes was found in the mouse-wor

(I) Model depicting how downregulating mitochondrial translation results in a co

upregulation of mito-protective gene pathways ultimately leading toward longev

See also Figure S4 and Tables S7 and S8.
tome regulation, and polysome fractioned transcriptomics from

both worms and mice with impaired mitochondrial ribosomes.

Through this approach, we identified a mito-cytosolic transla-

tional balance whereby the functional ability and abundance

levels of mitochondrial ribosomes are communicated to the

cytosolic ribosomes to suppress cytosolic translation. This was

found conserved across species and in different genetic back-

grounds. Furthermore, we have shown evidence that this

communication is dependent on the transcription factor ATF4.

Taken together, our findings establish the presence of a retro-

grade communication process between mitochondrial and cyto-

solic ribosomes.

Communication occurring from the cytosolic ribosomes regu-

lates mitochondrial protein abundance (Couvillion et al., 2016;

Fujiki and Verner, 1993; Surguchov et al., 1983). Indeed, mito-

chondria are dependent on cytosolic translation, because the

vast majority of the �1,200 mitochondrial proteins, including

mitochondrial RPs, are synthesized by cytosolic ribosomes (At-

timonelli et al., 2002). However, given the energy requirement for

cytosolic ribosome biogenesis and function coupled with the

mitochondrial function as the main source of cellular energy, a

clear need exists for the cytosolic and mitochondrial ribosomes

to communicate their operational state to each other. Indeed,

evidence for othermechanisms of communication from themito-

chondria to the nucleus has been well documented. When a

mitonuclear protein imbalance occurs because of inhibition of

mitochondrial translation, the UPRmt is activated, which triggers

a nuclear transcriptional response to ultimately restore mito-

chondrial proteostasis (Haynes and Ron, 2010; Houtkooper

et al., 2013). However, the effect on cytosolic proteostasis in a

situation in which mitochondrial translation was inhibited was

still unclear. Also, a cytosolic proteostatic response occurs

when mitochondrial proteins are not properly targeted to mito-

chondria and erroneously accumulate in the cytosol (Wrobel

et al., 2015). Similarly, it has been shown that defective mito-

chondrial tRNA taurine modifications can also result in global

cellular proteostasis activation mechanisms (Fakruddin et al.,

2018), which again points to an intrinsic protein homeostasis

network between the mitochondria and cytosol. Indeed, our

work builds upon these prior observations of inter-organelle

communication and establishes the ribosomes as cross-

communicating complexes between subcellular organelles.

Our findings provide a framework to better understand prior ob-

servations in mitochondrial biology. For example, dysfunction in

mitochondrial ribosomes was shown to block cell proliferation

prior to any loss of mitochondrial respiration (Richter et al.,

2013). Our findings suggest that themito-to-cytosolic translation

balance could play a role in this anti-proliferation signal from the

mitochondrial ribosomes by slowing down cytosolic translation.
ched in the polysomal RNA of DOX-treated mice compared to AMOX show a

1 was used to identify differentially expressed genes.

eated mouse livers.

somal RNA-seq libraries.

RNA translation’’-related proteins and total RNA upregulation of ‘‘mito transit

m cross-species comparison (related to G).

ordinated downregulation of cytosolic translation via Atf4/atf-5, along with an

ity in C. elegans and possibly mammals.
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Similarly, our findings can help explain the anti-carcinogenic ac-

tivity of antibiotics such as doxycycline and tigecycline (Kuntz

et al., 2017; Skrti�c et al., 2011). With cytosolic translation already

established as a target for cancer therapy (Bhat et al., 2015;

Faller et al., 2015; Pelletier et al., 2018), our work points to the

possibility that this could be achieved through the cellular mech-

anisms in place to achieve mito-cytosolic translation balance.

The loss of respiration is one of the downstream effects

of impaired mitochondrial translation in the mrps-5 worms

(Houtkooper et al., 2013). Althoughwe observed a strong upregu-

lation of transcripts coding for mitochondrial OXPHOS proteins,

the levels of these proteins were in fact downregulated in a way

that likely explains the observed loss of respiration. OXPHOS in

themitochondria is carried out by five different protein complexes,

four of which are dependent on mtDNA-encoded subunits. Inter-

estingly, many of the genes that were up at the transcript level

and down at the protein level (such as nuo�6, nuo�3, nuo�2,

nduf�7, and nduf�6) were mainly nuclear genes coding for

OXPHOS complex I proteins. The vast majority of OXPHOS com-

plex I proteins are transcribed from nuclear DNA (38 genes)

compared tomtDNA (7 genes) (Bar-Yaacov et al., 2012), suggest-

ing the mrps-5 worms may be trying to redress their loss of

respiration capacity by upregulating translation of complex pro-

teins. However, the translation impairment of mtDNA-encoded

components of OXPHOS complexes and the resulting stochio-

metric imbalance make it seem likely that the unassembled

nuclear-encoded complex proteins are degraded. This, in turn,

may aggravate mitochondrial proteotoxic stress. Interestingly,

this protein-specific degradation of members of stoichiometric

complexes was observed before in human fibroblast (Liu et al.,

2017). We suggest that mitochondrial (OXPHOS) proteins are

degraded when they are not properly integrated in their preferred

structures, i.e., theOXPHOScomplexes. This has been previously

reported in patients with mutations in the complex IV protein

COA6, where the authors observed not only a complete absence

of COA6 but also reduced levels of other complex IV proteins

such as COX1, COX2, and COX4 (Baertling et al., 2015).

Inhibiting mitochondrial translation obviously leads to

numerous downstream metabolic effects. Surprisingly, we

showed that while atf-5 is required for the mito-cytosolic transla-

tional balance and lifespan extension in mrps-5 worms, it

appears dispensable for the metabolic phenotypes such as

mitochondrial respiration and metabolite profiles. Metabolic re-

programming is an important consequence of inhibiting mito-

chondrial translation, but our results suggest that this is not the

driving force behind the mito-cytosolic translational balance.

Rather, we propose it goes hand in hand with the mito-cytosolic

translational balance regulated by atf-5 in order to activate cyto-

protection and maintain cellular homeostasis. This concept is

supported by previous work showing that mrps-5 RNAi still ex-

tends lifespan in the AMPK (aak-2) mutant, demonstrating that

it is not exclusively metabolic effects that are important for the

observed lifespan extension (Houtkooper et al., 2013).

We found thatAtf4plays a role in orchestrating the communica-

tion from themitoribosome to the cytoribosome. Interestingly, up-

regulationof this transcription factor hasbeen linked to longevity in

mice (Li et al., 2014), and overexpression of the orthologous tran-

scription factor in yeast (GCN4) extended lifespan (Mittal et al.,

2017),both in linewith the longevity ofmrps-5RNAi-treatedworms
12 Cell Metabolism 31, 1–15, March 3, 2020
(Houtkooper et al., 2013), which was dependent on atf-5. In the

yeast overexpression study, it was observed that Gcn4 acts as a

repressor of protein synthesis (Mittal et al., 2017), in line with our

observations in nematode and mammalian models. We did not

observe changes in atf-5 mRNA in our mrps-5 RNAi-treated

worm transcriptomics or in Atf4mRNA in our doxycycline-treated

mice transcriptomics.Although the regulationofAtf4and its ortho-

logsGcn4 and atf-5 is not fully understood, it is known that differ-

ential contribution of two upstream open reading frames (uORFs)

in the 50 leader of themouseAtf4mRNA regulatesAtf4 expression

(Vattem andWek, 2004). Translation of ATF4 can be increased by

phospho-eIF2a, phosphorylated by one of the four eIF2a kinases

(PERK, GCN2, PKR, HRI) (Harding et al., 2000). However, the acti-

vated ATF4 induced by mitochondrial stress (e.g., doxycycline

treatment), was not dependent on any of the individual eIF2a ki-

nases in mammalian cells (Quirós et al., 2017). More recently, it

was shown that there are also GCN2- and EIF2a-independent

ways to activate ATF4, for instance, in the case of methionine re-

striction (Mazor and Stipanuk, 2016). Understanding how ATF4

activation is regulated after inhibition of mitochondrial ribosomes

may be valuable to target the aging process.

Slowing down cytosolic mRNA translation itself can extend

lifespan (Hansen et al., 2007; Pan et al., 2007). Other longevity

mechanisms are also known to be marked by reduced cytosolic

translation such as the reduction of mTORC1 (Genolet et al.,

2008) or insulin signaling (Stout et al., 2013), which both also

extend lifespan in many organisms (Bl€uher et al., 2003; Harrison

et al., 2009; Jia et al., 2004; Kaeberlein et al., 2005; Kapahi et al.,

2004; Tissenbaum and Ruvkun, 1998; Vellai et al., 2003). In all

likelihood, the mechanism leading to the observed reduction of

cytosolic translation in the context of longevity is multifactorial.

Because C. elegans mRNAs are known to, by and large, be

lacking TOP 50UTR sequences (Thoreen et al., 2012), it seems

unlikely that the 50UTRs are playing an important role in the regu-

lation of mRNA translation. Therefore, we suggest an alternative

mechanism may be at play involving mRNA binding proteins,

many of which we found downregulated in the proteome of

mrps-5 RNAi worms. One of these downregulated proteins is

polyA binding protein 2 (pab-2), which is associated with several

ribosomal proteins and localizes to polysomes; its knockdown

also results in a reduction of polysomes (Lemieux and Bachand,

2009). Exploring this and other putative mechanisms that are

responsible for the repression of mRNA translation in our models

of longevity will be a very exciting area of future work.

Our cross-species analyses resulted in a transcriptional signa-

ture that was changing similarly in both worms and mice upon

inhibition of mitochondrial translation. Most of the upregulated

hits in our signature were mitochondrial proteins suggesting a

mitochondrial quality control system. This signature involved

cytoprotective transcriptional changes, including an upregulation

of oxidation-reduction processes, and was characterized by a

reduction of translation EFs. These findings are in line with

the observation that inhibiting mitochondrial translation is a

conserved longevity mechanism (Houtkooper et al., 2013). Our

work here shows that this inhibition can also induce a previously

unknown mito-cytosolic translational balance whereby cytosolic

translation is also lowered, linking to another longevity mecha-

nism (MacInnes, 2016). Finally, we identified a cyto-protective

transcriptional signature characteristic of this response, and
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together these changes have the potential to drive healthy aging

(Figure 5I).

Limitations of Study
Although inhibitingmitochondrial ribosomes inC. elegans extends

lifespan and its dependence on atf-5 was robustly demonstrated

in our study, it remains to be determined whether inhibition of

mitochondrial translation and activation of ATF4 can extend life-

span in mice and humans. Furthermore, because of the fact that

our pharmacological intervention was an antibiotic, our work

in vivo was carried out in germ-free mice and therefore may not

fully recapitulate what may occur in wild-type mice. Likewise,

our in vivo study focused on liver tissue, and it remains to be

seen if these observations are also conserved in other tissues.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-ATF4 (1:1000) Cell Signaling Technology Cat# 11815 RRID: AB_2616025

Mouse monoclonal anti-b-Actin (1:5000) Sigma-Aldrich Cat# A5441 RRID: AB_476744

Donkey anti-Rabbit IgG (1:10000) LI-COR Biosciences Cat# 925-68073 RRID: AB_2716687

Goat anti-mouse IgG (1:10000) LI-COR Biosciences Cat# 925-32210 RRID: AB_2687825

Bacterial and Virus Strains

Escherichia coli: OP50 Caenorhabditis Genetics Center RRID:WB-STRAIN:OP50

Escherichia coli: HT115 (DE3) Caenorhabditis Genetics Center RRID:WB-STRAIN:HT115(DE3)

Ahringer C. elegans RNAi library Source BioScience https://www.sourcebioscience.com/products/

life-science-research/clones/rnai-resources/c-

elegans-rnai-collection-ahringer/

Chemicals, Peptides, and Recombinant Proteins

Cycloheximide Sigma-Aldrich Cat# C6255

Doxycycline Sigma-Aldrich Cat# D9891

Amoxicillin Sigma-Aldrich Cat# A8523

DMSO Sigma -Aldrich Cat# D8418

5-FU Sigma -Aldrich Cat# f6627

Sodium azide Sigma-Aldrich Cat# s8032

FCCP Abcam Cat# ab120081

Critical Commercial Assays

BCA protein assay Reagent A Thermo Fisher Scientific Cat# 23223

TRIzol (LS) Invitrogen Cat# 15596026 (#10296010)

RNeasy MinElute Cleanup Kit QIAGEN Cat# 74204

NEBNext Ultra Directional RNA Library Prep Kit NEB Cat# E7420

rRNA depletion kit NEB Cat# E6310

QuantiTect Reverse Transcription Kit QIAGEN Cat# 205314

LightCycler� 480 SYBR Green I Master Roche Cat# 04887352001

Deposited Data

C. elegans and Mouse RNA-seq data This paper GEO: GSE122097

C. elegans Proteomics data This paper PRIDE: PXD009223

BXD mouse liver proteome data (reprocessed) This paper Table S1

BXD mouse liver proteome data genenetwork.org GN540

BXD mouse multi tissue proteome data Molecular and Cellular

Proteomics Journal

https://doi.org/10.1074/mcp.RA118.000554

Experimental Models: Cell Lines

Human: K562 cells ATCC CCL-243 RRID:CVCL_0004

Experimental Models: Organisms/Strains

C. elegans: N2 Bristol Caenorhabditis Genetics Center

(CGC); https://cbs.umn.edu/cgc/home

CGC:10570

RRID:WB-STRAIN:

N2_(ancestral)

C. elegans: atfs-1(cmh15) (Deng et al., 2019) N/A

Mouse: C57BL/6J germ-free Micalis Institute (INRA Research

Center of Jouy-en-Josas)

N/A

(Continued on next page)
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Oligonucleotides

F35G12.2 forward primer: 50-
ACTGCGTTCATCCGTGCCGC-30

Sigma-Aldrich N/A

F35G12.2 reverse primer: 50-
TGCGGTCCTCGAGCTCCTTC-30

Sigma-Aldrich N/A

pmp-3 forward primer: 50-
GCTGGAGTCACTCATCGTGTTA �30

Sigma-Aldrich N/A

pmp-3 reverse primer: 50-
CCGGCCAATCATCCTCTTGA �30

Sigma-Aldrich N/A

mrps-5 forward primer: 50-
ACTGGCCGAACGAAAAGGTCT �30

Sigma-Aldrich N/A

mrps-5 reverse primer: 50-
AGTGGAAATCGGTGACGCCACAA �30

Sigma-Aldrich N/A

atf-5 forward primer: 50-
GTGCGAAGAAATCGAGCGTC �30

Sigma-Aldrich N/A

atf-5 reverse primer: 50-
GCTCCAACTCGGATACCTGAT �30

Sigma-Aldrich N/A

skn-1 forward primer: 50-
TCAATTTATGGAGTGTCGTCCA �30

Sigma-Aldrich NA

skn-1 reverse primer: 50-
CCGTTGATCATCACGCCAAC �30

Sigma-Aldrich N/A

eif-3.c forward primer: 50-
TTTCCAGGAAGGAACGAGCG �30

Sigma-Aldrich N/A

eif-3.c reverse primer: 50-
CCGTCTTGTCCTTGTCCTCC �30

Sigma-Aldrich N/A

eif-3.g forward primer: 50-
GCATTAACGCAATGGCTCCC �30

Sigma-Aldrich N/A

eif-3.g reverse primer: 50-
TCGGTACGTGTTCCATCAGC �30

Sigma-Aldrich N/A

rpl-14 forward primer: 50-
CAAGCTCACCGACTTCGAGA �30

Sigma-Aldrich N/A

rpl-14 reverse primer: 50-
GAGCTCCACTCGGACGATTC �30

Sigma-Aldrich N/A

Software and Algorithms

R (v3.4.3) R https://www.r-project.org

FastQC (Andrews, 2010) https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

iGraph v1.2.1 package iGraph https://cran.r-project.org/web/

packages/igraph/

RTA v2.7.7 Illumina, Real-Time Analysis illumina.com

Bcl2fastq v2.17 Illumina illumina.com

Trimmomatic v0.32 (Bolger et al., 2014) http://www.usadellab.org/

HISAT2 v2.0.4 (Kim et al., 2015) https://ccb.jhu.edu/software/

hisat2/index.shtml

HTSeq v0.6.1 (Anders et al., 2015) https://htseq.readthedocs.io/en/

release_0.10.0/

Comet v2016.01 r3 https://doi.org/10.1002/

pmic.201200439

v2016.01 r3

OpenSWATH v2.1.0 N/A http://www.openswath.org/

MSstats v3.12.0 N/A http://msstats.org/

Limma/voom (Ritchie et al., 2015)/

(Law et al.,2014)

https://bioconductor.org/packages/

release/bioc/html/limma.html

(Continued on next page)
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edgeR (Robinson et al., 2010) https://bioconductor.org/packages/

release/bioc/html/edgeR.html

HiSeq control software HCS v3.4.0 Illumina https://support.illumina.com/downloads/

hiseq-x-hcs-v3-4-0.html

Bioconductor v3.5 Bioconductor https://www.bioconductor.org/install/

GraphPad Prism v7.03 GraphPad Software, Inc. https://www.graphpad.com/scientific-

software/prism/

ImageJ National Institutes of Health https://imagej.nih.gov/ij/

Bruker TASQ software v2.1.22.3 Bruker https://www.bruker.com/products/

mass-spectrometry-and-separations/

ms-software/tasq.html
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LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Riekelt H. Houtkooper (r.h.houtkooper@amsterdamumc.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nematode Growing Conditions and RNAi Experiments
Worms were cultured at 20�C on nematode growth medium (NGM) agar plates seeded with OP50 strain Escherichia coli. In brief,

synchronized N2 worms were harvested and snap frozen at L4 larval stage for either total mRNA isolation, polysome profiling, pro-

teomics, ormetabolomics. For RNAi knock down experiments, synchronized L1wormswere plated onNGMi (containing 2 mM IPTG)

with a bacterial lawn of either E. coli HT115 (RNAi control strain, containing an empty vector) or mrps-5, atf-5, eat-3, fzo-1, or skn-1

RNAi bacteria from the Ahringer C. elegans RNAi library. For double RNAi experiments bacteria were mixed in a 50/50 ratio and the

control RNAi conditions were mixed with the empty vector (EV) RNAi bacteria HT115 in a 50/50 ratio. Lifespan tests were performed

at 20�C as described (Houtkooper et al., 2013). In brief, synchronized worms were grown on NGM plates seeded with OP50 until

reaching the L4 stage and then transferred to RNAi plates (F0). F0 adults were synchronized after 24h and transferred to NGMi

RNAi plates to generate F1 offspring. At the L4 stage, F1 worms were transferred to plates containing 10 mM 5-Fluorouracil (5-FU,

Sigma) to prevent growth of progeny. Worms were transferred to fresh RNAi plates once a week and after two transfers no 5-FU

was added to plates.

K562 Cell Culture
K562 cells (female origin) were cultured at 37�C and in 5%CO2 in antibiotic-free RPMI 1640medium (Thermo Fischer Scientific) sup-

plemented with 10% FBS (Bodinco) and 25 mMHEPES (VWR Life Science). After 48 treatment with either 20 mM amoxicillin (Sigma),

20 mMdoxycycline (Sigma), or DMSO (Sigma) as a vehicle control (0.05% inmedia), cells were harvested for western blotting or poly-

some profiling.

C57BL/6J Germ-Free Mice

C57BL/6J germ-freemalemicewere housed 4 animals per cage and randomly assigned to the 3 experimental groupswith N = 8mice

per treatment. The germ-free mice were housed in sterile flexible-film isolators (Getinge France, Les Ulis, France). They were given

free access to autoclaved tap water and a gamma-irradiated (45 kGy) standard diet (R03; Scientific Animal Food and Engineering,

Augy, France). The isolators were maintained at 20-24�C and on a 12-h light/dark cycle (lights on at 07:30am). The germ-free status

wasmonitored weekly bymicroscopic examination and aerobic and anaerobic cultures of freshly voided feces. At the age of 9 weeks

mice were treated for twoweeks with either amoxicillin (50mg/kg/d), or one of two doses of doxycycline (50mg/kg/d or 500mg/kg/d)

in the drinking water supplementedwith 5%sucrose.Micewere sacrificed after 12 hours of fasting, and the livers were harvested and

snap frozen in liquid N2. Liver tissue (�20 mg) was ground in liquid N2 in a mortar and pestle and used for either mRNA isolation or

polysome profiling. Procedures were carried out in accordance with the European guidelines for the care and use of laboratory an-

imals; they were approved by the Ethics Committee of AgroParisTech and the INRA Research Center of Jouy-en-Josas (approval

reference: 14–40).

METHOD DETAILS

BXD Strains
The BXDmouse liver proteome data used for network analyses were used from a prior publication (Williams et al., 2016) that consists

of 73 cohorts of BXDmice—38 strains on chow diet and 35 strains on high fat diet for proteomics, and were combined. Note that the
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raw liver proteomics data from PXD003266 from 2016 were re-analyzed using the newer SWATH search library from PXD005044

from 2018, which was designed to improve coverage for mitochondrial proteins. These re-processed and normalized and processed

mouse data are also available as Table S1. BXD mouse multi-tissue data were used from a prior publication (Williams et al., 2018)

using datasets available in the Gene Expression Omnibus (GEO; GSE60149, GSE60150, GSE60151, and GSE60489). BXD mouse

liver proteome data for average abundance quantification (Figures 1C and 1D) were downloaded from www.genenetwork.

org (GN540).

Network Analysis
Correlation network graphs were calculated using the above-referenced BXD proteome data using the iGraph v1.2.1 package in R. In

the liver proteomics data, 77 cohorts were measured. 73 distinct cytosolic ribosome genes were quantified while 38 distinct mito-

chondrial ribosome genes were quantified. In the cross-tissue data, 40 samples from 5 tissues were measured. The cytosolic

ribosome had 68 proteins quantified, while the mitochondrial ribosome had 55 proteins quantified. A fixed p value cutoff for both net-

works was used (p < 5e-4), with varying corresponding rho due to varying n. Note that protein expression is generally more highly

variable across 40 samples from 5 tissues than it is across 77 samples just from liver. Nodes that have 0 or 1 edge connection to

the rest of the network were visually suppressed, but are still counted in the edge and node counts reported. For significance testing,

10,000 random networks were permuted using the same input data and gene set size for each dataset and subset with gene sets of

the same size selected at random out of the full proteomic datasets. A reported p < 1e-4 means that none of the 10,000 random net-

works were as significant as the selected ribosome gene sets taken from literature. Testing was only performed for overall edge

counts.

Polysome Profiling
Gradients of 17%–50% sucrose (11 ml) in gradient buffer (110 mMKAc, 20 mMMgAc2 and 10 mMHEPES pH 7.6) were prepared on

the day before use in thin-walled, 13.2 mL polypropylene (14 3 89 mm) centrifuge tubes (Beckman-Coulter, USA). Approximately

5000 nematodes were lysed in 500 mL polysome lysis buffer (gradient buffer containing 100 mM KCl, 10 mM MgCl2, 0.1% NP-

40, 2 mM DTT, 0.5 mM cycloheximide and RNaseOUT (Thermo Fischer Scientific) using a Dounce homogenizer (Wheaton, USA)

as described before (Molenaars et al., 2018). Mouse livers and K562 cells were lysed similarly with polysome lysis buffer but contain-

ing 5 mM cycloheximide. The samples were centrifuged at 1200 g for 10 min to remove debris and the supernatant was subjected to

BCAprotein assay (company). In all, 500 mg of total protein for each sample was loaded on top of the sucrose gradients. The gradients

were ultra-centrifuged for 2 h at 40,000 g in a SW41Ti rotor (Beckman-Coulter, USA). The gradients were displaced into a UA6 absor-

bance reader (Teledyne ISCO, USA) using a syringe pump (Brandel, MD, USA) containing 60%sucrose. Absorbancewas recorded at

an OD of 254 nm. All steps of this assay were performed at 4�C or on ice and all chemicals came from Sigma-Aldrich (St. Louis, MO,

USA) unless stated otherwise. Polysome peakswere quantified bymeasuring area under the curve (AUC) in ImageJ. Significancewas

tested with Student’s t test, and p values were adjusted to correct for multiple testing using the Holm-�Sı́dák method, with

alpha = 0.05.

Seahorse Respirometry in C. elegans
Seahorse measurements were performed as described (Koopman et al., 2016). In brief, synchronized N2 worms grown on different

RNAi conditions were collected at L4 larval stage, washed three times with M9 buffer, and ± 20 worms were transferred to 200 ml M9

buffer in a Seahorse XF96 microplate to measure respiration. Prior to and during the measurement the heater of the Seahorse respi-

rometer was turned off. The chemical uncoupler FCCP (Abcam) and the complex IV inhibitor sodium azide (Sigma) treatments were

used at a final concentration of 10 mM and 40 mM, respectively.

Metabolomics in C. elegans
A75 mLmixture of the following internal standards inwater was added to each freeze-dried sample: adenosine-15N5-monophosphate

(100 mM), adenosine-15N5-triphosphate (1 mM), D4-alanine (100 mM), D7-arginine (100 mM), D3-aspartic acid (100 mM), D4-citric acid

(100 mM), 13C1-citrulline (100 mM), 13C6-fructose-1,6-diphosphate (100 mM), guanosine-15N5-monophosphate (100 mM), guanosi-

ne-15N5-triphosphate (1 mM), 13C6-glucose (1 mM), 13C6-glucose-6-phosphate (100 mM), D3-glutamic acid (100 mM), D5-glutamine

(100 mM), 13C6-isoleucine (100 mM), D3-leucine (100 mM), D4-lysine (100 mM), D3-methionine (100 mM), D6-ornithine (100 mM), D5-

phenylalanine (100 mM), D7-proline (100 mM), 13C3-pyruvate (100 mM), D3-serine (100 mM), D5-tryptophan (100 mM), D4-tyrosine

(100 mM), D8-valine (100 mM). Subsequently, 425 mL water, 500 mL methanol was added and worms were homogenized with a

5 mm steel bead using a TissueLyser II (QIAGEN) for 5 min at frequency of 30 times/sec, and 1 mL chloroform was added to the

same 2 mL tube before thorough mixing and centrifugation for 10 min at 14.000 rpm. The top layer, containing the polar phase,

was transferred to a new 1.5 mL tube and dried using a vacuum concentrator at 60�C. Dried samples were reconstituted in

100 mL methanol/water (6/4; v/v). Metabolites were analyzed using a Waters Acquity ultra-high performance liquid chromatography

system coupled to a Bruker Impact II Ultra-High Resolution Qq-Time-Of-Flight mass spectrometer. Samples were kept at 15�C dur-

ing analysis and 5 mL of each sample was injected. Chromatographic separation was achieved using aMerck Millipore SeQuant ZIC-

cHILIC column (PEEK 100 3 2.1 mm, 3 mm particle size). Column temperature was held at 30�C. Mobile phase consisted of (A) 1:9

acetonitrile:water and (B) 9:1 acetonitrile:water, both containing 5 mM ammonium acetate. Using a flow rate of 0.25 mL/min, the LC

gradient consisted of: 100% B for 0-2 min, ramp to 0% B at 28 min, 0% B for 28-30 min, ramp to 100% B at 31 min, 100% B for

31-35 min. MS data were acquired using negative ionization in full scan mode over the range of m/z 50-1200. Data were analyzed

using Bruker TASQ software version 2.1.22.3. All reported metabolite intensities were normalized to the number of worms in each
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sample, as well as to internal standards with comparable retention times and response in the MS. Metabolite identification has been

based on a combination of accurate mass, (relative) retention times and fragmentation spectra, compared to the analysis of a library

of standards.

Western Blotting
For extraction of protein, K562 pellets were resuspended in RIPA buffer with cOmplete Mini Protease Inhibitor Cocktail (Sigma-

Aldrich). Lysates were incubated on ice for 10 min and then centrifuged at 16,000 x g for 10 min in a pre-chilled centrifuge to remove

debris and quantification was carried out with BCA protein assay. Equal amounts of protein (25-50 mg) were loaded onto NuPAGE�
Novex 4%–12% Bis-Tris Gel 1.5 mm, 10 Well (Invitrogen) and subsequently transferred to nitrocellulose membranes using iBlot 2

Transfer Stacks (Invitrogen) for 7 min at 14 V in iBlot 2 Dry Blotting System (Invitrogen). Western blotting was performed with

antibodies against ATF4 (Cell Signaling Technology, #11815), b-actin (Sigma-Aldrich, #A5441), IRDye� 680RD Donkey anti-Rabbit

secondary antibody (Li-Cor, #925-68073), and IRDye� 800CWGoat anti-Mouse secondary antibody (Li-Cor, #925-32210) and visu-

alized using the Odyssey� Imaging System.

Isolation of mRNA (Total, Monosomal, and Polysomal)
For isolation of total mRNA, whole worms or liver tissue were homogenized with a 5 mm steel bead using a TissueLyser II (QIAGEN)

for 5 min at frequency of 30 times/sec in the presence of TRIzol (Invitrogen), then the isolation was continued according to manufac-

turer’s protocol. Polysomal or monosomal fractions from two experiments were pooled andmRNAwas extracted using TRIzol Liquid

Sample (LS) (Invitrogen) according to the manufacturer’s protocol. For RNaseq, contaminating genomic DNA was removed using

RNase-Free DNase (QIAGEN) and samples were cleaned up with the RNeasy MinElute Cleanup Kit (QIAGEN).

Library Preparation
RNA libraries were prepared and sequenced with the Illumina platform by Genome Scan (Leiden, Netherlands). Libraries were pre-

pared using the NEBNext Ultra Directional RNA Library Prep Kit (NEB #E7420) according to manufacturer’s protocols. Briefly, rRNA

was depleted from total RNA using the rRNA depletion kit (NEB# E6310). After fragmentation of the rRNA-reduced RNA, a cDNA syn-

thesis was performed in order to ligate with the sequencing adapters and PCR amplification of the resulting product. Quality and

yields after sample preparation were measured with the Fragment Analyzer (Agilent). Sizes of the resulting products were consistent

with the expected size distribution (a broad peak between 300-500 bp). Clustering and DNA sequencing using the Illumina cBot and

HiSeq 4000was performed according tomanufacturer’s protocol with a concentration of 3.0 nMof DNA. HiSeq control software HCS

v3.4.0, image analysis, base calling, and quality check was performed with the Illumina data analysis pipeline RTA v2.7.7 and

Bcl2fastq v2.17.

Read Mapping, Statistical Analyses, and Data Visualization
Reads were subjected to quality control FastQC (Andrews, 2010) trimmed using Trimmomatic v0.32 (Bolger et al., 2014) and aligned

to either the C. elegans (worm) orM. musculus (mouse) genomes obtained from Ensembl, wbcel235.v91 and GRCm38v87, respec-

tively, using HISAT2 v2.0.4 (Kim et al., 2015). Worm and mouse samples were analyzed separately; different fractions (total, mono-

somal, polysomal) within each species were analyzed together. Counts were obtained using HTSeq (v0.6.1, default parameters)

(Anders et al., 2015) using the corresponding GTF taking into account the directions of the reads. Statistical analyses were performed

using the edgeR (Robinson et al., 2010) and limma/voom (Ritchie et al., 2015) R packages. All genes with more than 2 counts in at

least 4 of the samples were kept. Count data were transformed to log2-counts per million (logCPM), normalized by applying the

trimmed mean of M-values method (Robinson et al., 2010) and precision weighted using voom (Law et al., 2014). All data analyses

and visualizations were done using transcript data with a count value greater than 0. Differential expression was assessed using

either an empirical Bayes moderated t test within limma’s linear model framework including the precision weights estimated by

voom (Ritchie et al., 2015; Law et al., 2014), or a Partial least-squares discriminant analysis (PLS-DA) using mixomics (Rohart

et al., 2017) setting a variable of importance (VIP) score of greater than 1 as significant. Resulting p values (where applicable)

were corrected for multiple testing using the Benjamini-Hochberg false discovery rate. Genes were re-annotated using biomaRt us-

ing the Ensembl genome databases (v91). Data visualization was performed using gplots (Warnes et al., 2016) and ggplot2 (Wickham,

2009) selecting colors fromRcolorBrewer (Neuwirth, 2014). Data processing and visualization was performed using R v3.4.3 and Bio-

conductor v3.5. The RNA-seq data are available on GEO under the ID GSE122097.

Translational Efficiency Calculations

Translational efficiencies (TEs) were acquired by considering the ratio of a highly translated ribosome-mRNA fraction (i.e., polysomal

RNA) over a lower translated ribosome-mRNA fraction (i.e., either monosomal RNA for C. elegans or total RNA for M. musculus).

Monosomal RNA was used for C. elegans as it showed an increase in abundance in our polysome profiles. The monosomal fraction

did not show an increase in abundance in M. musculus and therefore total RNA was used. This ratio (highly translated ribosome-

mRNA fraction / lower translated ribosome-mRNA fraction) was then compared between treated samples (i.e., mrps-5 for

C. elegans or doxycycline treatment for M. musculus) and control samples (i.e., empty vector for C. elegans or Amoxicilin treatment

forM. musculus). This resulted in TE being defined as: log2[ (treatedpolysome / treatedmonosome) / (controlpolysome / controlmonosome)] in

the case of C. elegans and log2[ (treatedpolysome / treatedtotal) / (controlpolysome / controltotal)] in the case ofM. musculus. Means from

each set of replicates were used to calculate the ratios. A TE value was defined as significant if the gene in question had a PLS-DA VIP
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score above 1, in either the polysomal RNA (for bothC. elegans andM.musculus) or monosomal RNA (forC. elegans) or total RNA (for

M. musculus), and changed at least 1.25 fold in its TE (to eliminate noise of near zero TEs).

Reverse Transcription and qPCR

For qPRC, 1 mg of extracted RNA was pre-treated with gDNA Wipeout Buffer and reverse transcribed into cDNA according to the

manufacturer’s instructions using the QuantiTect Reverse Transcription Kit (QIAGEN). Quantitative gene expression analysis was

performed using the LightCycler� 480 SYBR Green I Master (Roche) and measured using the LightCycler� 480 Instrument (Roche).

Relative expression was calculated with the linRegPCR method ((Ruijter et al., 2009) and normalized to reference genes (F35G12.2

and pmp-3). A complete list of primers is available in Key Resources Table.

Protein-Transcript Cross Comparison
Fold change (log2 transformed) of the genes in common between the transcriptome and proteome data were plotted in a co-regu-

lation plot, with mRNA or protein data on the X or y axis, respectively. A cutoff was used to eliminate noise of near zero-fold change

when identifying genes differentially expressed in the plot. Selecting cutoffs relative to each dataset allowed us to address the large

difference in fold changes observed between the different mRNA and protein datasets, and we therefore used a quarter of the stan-

dard deviation of each log2-transformed dataset’s distribution as a standard threshold for noise (dashed line in plot). This corre-

sponded to a value of 1.13 (0.179 in log2 scale) for the transcriptome and 1.01 (0.016 in log2 scale) for the proteome. Values above

these cutoffs in each respective dataset that had VIP scores above 1 were considered as significant in the quadrants of the co-regu-

lation plot.

Worm-Mouse Cross Comparison

Worm and mouse orthologous genes were acquired using the R package annotationTools (Kuhn et al., 2008) and HomoloGene v68

species annotation.

Ribosomal Gene Lists

Cytosolic andmitochondrial ribosomal gene lists for bothC. elegans andM.musculuswere downloaded from the Ribosomal Protein

Gene Database (http://ribosome.med.miyazaki-u.ac.jp/).

Functional Annotation of Gene Sets

Gene sets were analyzed for functional enrichments using the DAVID bioinformatics resource version 6.8 (Huang da et al., 2009).

Functional annotation clustering was performed using DAVID defined default settings incorporating gene sets from Gene Ontologies

(biological process, cellular component, and molecular function), functional categories (including Clusters of Orthologous Groups

(COG) ontologies, UP keywords, UP seq features), pathways (including KEGG), and protein domains (including INTERPRO PIR su-

perfamily and SMART). Background datasets to check enrichments against included themeasured transcriptome (for enrichments at

mRNA level within a single species), measured proteome (for enrichments at the protein level), gene overlap between the measured

transcriptome and proteome (for enrichments of the co-regulation analysis), or genes in common between mouse and worms (for

cross-species enrichment). Resulting clusters were manually annotated for purposes of visualization and summarization. Clusters

with an ‘Enrichment Score’ above 1.3 (p < 0.05) were considered significantly enriched.

Protein Isolation for SWATH Proteomics

Worm pellets were freeze-dried overnight and stored at room temperature until use.C. elegans proteins were isolated using the stan-

dard protocol used for tissue preparation (Wu et al., 2017) with the exception that, to ensure that the cuticle was fully ruptured, during

the protein isolation from total cells in 8M urea, the samples were sonicated at a high power (150 W) for 10x10 cycles of 10 s

(UP200St-G sonicator, Hielsher, Germany). In brief (see above source for more details): proteins were extracted in an 8M urea buffer,

300 mg were aliquoted and precipitated by acetone overnight, then reduced with DTT, alkylated with IAA, and digested with trypsin at

a 1:25 ratio. C18 spin columns (The Nest Group) were used for cleanup.

SWATH Proteomics – Library Acquisition
For library acquisition, 150 mgof digestedpeptide from three sets of pooledN2wild-type adultC. eleganswerepH fractionated (protocol

#84868, Thermo Fisher Scientific) into 10 fractions. The resulting 30 fractions were separated on an Eksigent liquid chromatography

machine coupled with a 20 cm PicoFrit emitter injected on an AbSciex 5600+ TripleTOF using a 120 min gradient going from 2% to

35% acetonitrile at 300 nL/minute. At the MS1 level, the 20 most intense precursors were selected in the range of 350 – 1460 m/z

with a 500 ms survey scan. At the MS2 level, spectra were acquired at 150 ms survey scans between 50 - 2000 m/z. These samples

were used for preparing a spectral library to support the DIA/SWATH data (Röst et al., 2014). iRT peptides (Biognosys) were added to all

samples, for both DDA injections (library acquisition) and DIA injections (for quantification).

SWATH Proteomics – Sample Acquisition

For all samples measured for quantitative DIA (SWATH) acquisition, 1 mg of non-fractionated sample were injected in the same Ab-

Sciex 5600+ TripleTOF using the same parameters except using a 60 min gradient and in data-independent acquisition mode using

64 m/z windows. The output .wiff files from both DIA and DDA acquisition mode were converted to centroided mzXML files using

FileConverter v2.2.0. For library generation from the DDA mzXML files, samples were searched against the canonical UniProtKB

C. elegans proteome database containing 27481 proteins and searched with Comet v2016.01 r3. Reverse decoy proteins were

generated and up to 2 tryptic missed cleavages were allowed with a precursor mass error of 50 ppm and fragment error of

0.1 Da. Cysteine carbamidomethylation was used as the fixed modification and methionine oxidation as the variable modification.

PeptideProphet was used to search the data and scored with iProphet. A 1% protein FDR was used for significance cutoff.
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The in-house results from the DDA runs were combined with extensive published C. elegans DDA data (PXD004584) and (Narayan

et al., 2016). The light channel from these SILAC-labeled samples was also searched with Comet as above, using the same param-

eters, using CiRT peptides instead of iRT peptides (Parker et al., 2015). The results from the in-house and downloaded DDA files

were combined, and peptides with retention time variance of R 150 were removed. For peptides identified in-house and in the

downloaded dataset, the in-house peptide was retained and the other peptide discarded. The final assembled library contains

67’612 peptides (of which 18’072 from the in-house DDA runs and 49’540 from the downloaded DDA runs), corresponding to

9’438 unique proteins. This library was then used as the reference library for OpenSWATH v2.1.0. OpenSWATH was run on all

DIA acquisitions, followed by mProphet scoring using the msproteomicstools package available on GitHub (September 2017).

10750 peptides corresponding to 1715 proteotypic proteins were quantified. Protein data were generated from the peptide matrix

using MSstats v3.12.0. Differential expression was determined using either a Student’s t test (with p values corrected for multiple

testing using the Benjamini-Hochberg false discovery rate, presented for reference) or partial least-squares discriminant analysis

(PLS-DA) with mixomics (Rohart et al., 2017) setting a variable of importance (VIP) score of greater than 1 as significant. The DIA

data and the assembled library file are available on PRIDE under the ID PXD009223.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details and tests used, the number and representation of n and any other forms of quantification present are specified in the

respective figure legends and results section. Statistical analyses for quantified polysome profiles and western blotting (WB) were

performed using the Prism 7 software (GraphPad Software, La Jolla, CA, USA). Significance was tested with Student’s t test, and

p-values were adjusted to correct for multiple testing using the Holm-�Sı́dák method. All other statistics were performed as described

in each respective methods section and unless otherwise noted, were performed using R v3.4.3. Gene expression was considered

differential relative to control using the variable of importance (VIP) score from a partial least-squares discriminant analysis (PLSA-DA)

greater than 1. In all supplemental tables where relevant, p-values (Bayes moderated t test for transcriptomics or Student’s t test for

proteomics), and adjusted p-values (Benjamini-Hochberg method) are presented in addition to the VIP scores (from PLS-DA). For

lifespan studies, survival curves were calculated using the log-rank (Mantel-Cox) method.

DATA AND CODE AVAILABILITY

The accession number for theC. elegans andmice RNA sequencing data reported in this paper is GEO: GSE122097. The proteomics

DIA data and the assembled library file are available on PRIDE under the ID PXD009223. The reference liver mouse transcriptomics

and proteomics data examined in Figure 1 are available under GEO at GSE60149 and PRIDE at PXD003266. The reference multi-

tissue mouse transcriptome data are available under GEO GSE60149, GSE60150, GSE60151, and GSE60489 and are from the

same mice despite the non-continuous and separate entries. The multi-tissue proteomics data are from PXD005044. Note that

the raw liver proteomics data from PXD003266 from 2016 were re-analyzed using the newer SWATH search library from

PXD005044 from 2018, which was designed to improve coverage for mitochondrial proteins. These re-processed and normalized

and processed mouse data are also available as Table S1.
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