Cell Systems

Systems Analyses Reveal Physiological Roles and
Genetic Regulators of Liver Lipid Species

Graphical Abstract

BXD
mouse population

Liver o Metabolic phenotyping
Lipidomics 1
r P 58
Lipid QTL Lipid - phenotype
mapping association

/‘Lw/“.‘/\/'\/\‘m“\i\f/’lf/ L/\\»J“'A b/v’\/A‘ W

OMICS filtering of
QTL genes

\/
Cardiolipin signatures
of fatty liver

Validation

v o
Lipid-regulating
candidate genes

Highlights
e Lipid modules are associated with phenotypic traits and
metabolic pathways

e Specific cardiolipin species are associated with healthy or
fatty liver signatures

e Most lipid species are complex traits, regulated by loci
spread across the genome

e A new lipid QTL mining pipeline identifies plausible genes
regulating lipid species

Jha et al., 2018, Cell Systems 6, 1-12

June 27, 2018 © 2018 The Author(s). Published by Elsevier Inc.

https://doi.org/10.1016/j.cels.2018.05.016

Authors

Pooja Jha, Molly T. McDevitt,
Rahul Gupta, ..., Joshua J. Coon,
Johan Auwerx, David J. Pagliarini

Correspondence

admin.auwerx@epfl.ch (J.A.),
dpagliarini@morgridge.org (D.J.P.)

In Brief

Jha et al. demonstrate the potential of
liver lipid species to reflect liver-
associated phenotypic metabolic traits in
the BXD mouse genetic population. They
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SUMMARY

The genetics of individual lipid species and their
relevance in disease is largely unresolved. We pro-
filed a subset of storage, signaling, membrane, and
mitochondrial liver lipids across 385 mice from 47
strains of the BXD mouse population fed chow or
high-fat diet and integrated these data with comple-
mentary multi-omics datasets. We identified several
lipid species and lipid clusters with specific pheno-
typic and molecular signatures and, in particular,
cardiolipin species with signatures of healthy and
fatty liver. Genetic analyses revealed quantitative
trait loci for 68% of the lipids (IQTL). By multi-layered
omics analyses, we show the reliability of IQTLs to
uncover candidate genes that can regulate the levels
of lipid species. Additionally, we identified IQTLs
that mapped to genes associated with abnormal
lipid metabolism in human GWASs. This work pro-
vides a foundation and resource for understanding
the genetic regulation and physiological significance
of lipid species.

INTRODUCTION

An enormous number of chemically distinct molecular lipid spe-
cies arise from the various combinations of fatty acids and back-
bone structures such as glycerol. However, it is not intuitively
clear why nature has created so many different forms of lipids
(Wenk, 2005). Advancements of lipidomics technologies have
provided the first step toward generating a repertoire of all lipid
species on a systems scale. The next major challenge is to eluci-
date their regulation, function, and physiological impact and to
discover how these lipids interact to influence specific biological
processes.

Combining systems genetics with multi-omics strategies
is helpful in understanding the association of lipid species
with genes, proteins, or physiological traits (Civelek and Lusis,
2014; Hyotylainen and Oresic, 2014). Similar to the novel insights
gained from quantitative trait loci (QTL) analysis of transcripts,
proteins, or phenotypes (Andreux et al., 2012; Williams et al.,
2016; Wu et al., 2014), the QTLs of lipid species in liver can pro-
vide insights into their genetic regulation. Transcriptomic, prote-
omic, and phenotypic data can additionally be used to generate
lipid-transcript, lipid-protein, or lipid-phenotype correlations,
providing a more comprehensive view of how lipids fit into the
network of cellular processes. Likewise, reducing large lipidomic
data to clusters of co-regulated lipids enables the identification
of functionally related lipid species and helps to clarify the rela-
tionship of the lipid clusters with phenotypic traits.

It has long been possible to quantify entire classes of lipids
en masse. Recently however, it has been shown that by dis-
secting broad lipid classes into specific lipid species, one can
develop a more granular understanding of lipid-related disease
etiology, thereby improving the capacity to find and validate
drug targets. For instance, neutrophils from patients with
periodontal tissue disease accumulate specific diacylglycerol
(DAG) species, in particular 1,2-dipalmitoyl DAG (Gronert
et al., 2004). Similarly, only some molecular species of ceram-
ides were shown to be associated with certain types of cancers
or with pathways that lead to ceramide-induced apoptosis
(Koybasi et al., 2004; Kroesen et al., 2001). Given the chal-
lenges in identifying gene-environment interactions (GXxE)
influencing the levels of lipid species in humans (Franks and
McCarthy, 2016), we exploited the BXD mouse genetic refer-
ence population (GRP), descending from crosses between
C57BL/6J mothers and DBA/2J fathers (Peirce et al., 2004).
In this genetically diverse population, we can tightly control
the dietary state of the individual mice over months to analyze
how genes (genotype), environment (diet), and their interactions
influence hepatic lipid species. We used systems genetics
strategies (Civelek and Lusis, 2014) including QTL mapping,
network construction, and module-trait correlation integrated
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with multi-omics datasets (genomics, transcriptomics, prote-
omics, and phenomics) to understand the relationship between
levels of lipid species and molecular and clinical traits. These
approaches helped us to identify specific cardiolipin species
with signatures of healthy or fatty liver and candidate genes
that regulate the levels of specific lipid species.

RESULTS

Liver Lipid Profiles and Their Relationship with Clinical
and Molecular Traits

We used targeted lipidomics to measure 96 hepatic lipid spe-
cies in 385 mice belonging to 84 cohorts of the BXD GRP: 43
fed chow diet (CD) and 41 fed a high-fat diet (HFD) from 47
BXD strains. Over 29 weeks, mice underwent extensive meta-
bolic phenotyping (Williams et al., 2016). After an overnight
fast, mice were sacrificed and liver samples were collected for
lipidomics analyses. To test the quality of mass spectrometry
(MS) measurements, we performed pairwise correlation of
technical and extraction replicates, which showed consistently
robust correlations (Figures S1A and S1B). Furthermore, we
performed all possible pairwise correlations between the
measured lipid species from different groups to assess the
sensitivity of our measurements in detecting diet- and strain-
driven differences (Figure S1C). The correlation of biological
replicates within each strain in either diet was higher than within
strain-across diet (CD versus HFD) correlation, and, as ex-
pected, the correlation across strains on a given diet (either
CD or HFD) was higher than across strain-across diet correla-
tion (Figure S1C). The lipids measured include free fatty acids
(FFA, 8 species), glycerolipids (triacylglycerol [TAG, 38 species]
and diacylglycerol [DAG, 6 species]), glycerophospholipids
(phospholipids [PL, 20 species] and cardiolipins [CL, 23 spe-
cies]), and coenzyme Qg (Table S1). Hierarchical cluster analysis
demonstrated that BXD cohorts did not completely segregate
based on their diet, indicating that the GxE interaction can over-
power the strong dietary impact on lipid profiles (Figure 1A). To
obtain an overview of the interaction between lipid species, we
performed an unweighted correlation network analysis, which
showed most lipids to be highly correlated and the correlations
within class to be generally stronger (Figures 1B [p < 1e—04] and
S1D [p < 1e—03]). Some dietary effects were evident in the cor-
relation networks, such as TAG species, which formed a tight-
knit cluster in CD but were more interspersed in HFD, revealing
the change in neutral lipid homeostasis on HFD (green nodes;
Figures 1B and S1D). While the CLs, found primarily in the mito-
chondrial inner membrane, formed a tight cluster in both diets,
the PLs, which are the general cellular membrane lipids, were
highly interspersed between different lipid classes in both diets
(red and yellow nodes, respectively; Figures 1B and S1D). This
scattered PL profile is in line with the fact that PLs are the
main substrates and intermediates in the biosynthesis of various
lipid classes (Han, 2016).

To identify lipids with similar physiological and molecular char-
acteristics, we performed a weighted correlation network anal-
ysis (WGCNA), which clusters correlated groups of lipids into
modules (Langfelder and Horvath, 2008). More than half of the
lipids were clustered in eight modules in both diets (66% in CD
and 58% in HFD) (Figures 1C and S2A; Table S2) and most
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module composition was conserved in both diets (Figures S2B
and S2C). We then performed correlation analysis between the
eigenlipid (first principal component) of each module and clinical
traits related to liver function (Figure 1D). In CD, the DAG (black),
TAG (brown), and CL (yellow) modules positively correlated with
obesity and other traits associated with liver dysfunction, while
the CD-specific TAG-PL purple module—containing species
with a higher degree of unsaturation (Figure 1C)—negatively
correlated with these traits (Figure 1D). In HFD, several modules
showed positive correlation with obesity-associated traits,
particularly DAG (black), TAG (brown and magenta), and CL
(blue and yellow) modules (Figure 1D). Interestingly, none of
the TAG modules correlated with the total TAG concentration
in liver or plasma despite the significant correlation with liver
weight (Figure 1D). This disparity can be explained by the fact
that we measured only 38 TAG species and 6 DAG species,
which constitutes only a fraction (~15%) of all the TAGs and
DAGs that exist in mouse liver. Therefore, this subset may not
necessarily reflect the total TAG concentration measured by
the enzymatic assay.

To identify molecular mechanisms underlying the lipid clus-
tering, we correlated the module eigenlipids with liver proteome
(2,622 proteins) from the same mouse cohort (Williams et al.,
2016). We selected all proteins that significantly correlated with
each module eigenlipid and performed KEGG enrichment anal-
ysis for all positively and negatively correlated proteins sepa-
rately. Interestingly, modules that earlier correlated with obesity
and liver dysfunction in both diets, including DAG (black),
TAG (brown and turquoise), and CL (blue and yellow) modules
(Figure 1D), positively correlated with pathways associated
with fatty acid and glycolytic metabolism, and peroxisome and
peroxisome proliferator-activated receptor signaling (Figure 1E).
Furthermore, these modules correlated negatively with oxidative
and proliferative pathways such as oxidative phosphorylation,
lysosome, and ribosome pathways (Figure 1E). Meanwhile the
TAG and PL purple module showed the opposite trend, nega-
tively correlating with fatty acid metabolic pathways and posi-
tively with oxidative pathways, following the same trend as in
the module-trait correlations (Figures 1D and 1E). Collectively,
these findings reveal that all lipid species of a lipid class do not
necessarily have the same molecular regulation and phenotypic
impact.

Identification of Cardiolipin Species as Signatures of
Healthy and Fatty Liver

From all lipids measured, we identified two clusters of lipid spe-
cies with strong diet-independent association with liver mass
(Figure 2A). A cluster of 13 species composed of TAGs and
DAGs with a low degree of unsaturation (1-3 double bonds;
dominated by lipids from the black and brown modules) corre-
lated positively with liver mass (Figure 2A, green font), whereas
another cluster of six lipids comprising highly unsaturated
TAGs (6-7 double bonds; dominated by lipids from the purple
module) along with two phosphatidylserine species correlated
negatively with liver mass (Figure 2A, orange font). Since the
diet changed the landscape of most liver lipids, we next
analyzed lipids that strongly associated with liver mass in
each individual diet (Figure 2B). Twenty-seven lipids in CD
and 40 in HFD (including all 19 lipids from Figure 2A) strongly
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Figure 1. Liver Lipid Species Profiles and Their Association with Physiological and Molecular Traits

(A) Heatmap analysis with unsupervised hierarchical clustering of 96 lipid species for each BXD cohort shows mixed dietary and genetic impact.

(B) Spearman correlation network (p < 1e—04) of all lipid species measured in CD and HFD. Lipid species are color coded as seven major lipid classes. The side-
chain fatty acid composition of lipids has been abbreviated (O, oleic acid; P, palmitic acid; Po, palmitoleic acid; S, stearic acid; L, linoleic acid; Dha, docosa-
hexaenoic acid). Refer to Table S1 for abbreviation and composition.

(C) Legend of the module composition, indicating the range of total number of carbons and degree of unsaturation.

(D) Lipid module-clinical trait correlation. Each cell is color coded by the Pearson’s correlation coefficient according to the legend color on the right. The asterisks
in the cells represent the p value of the correlation (“p < 0.05, **p < 0.01, **p < 0.001).

(E) Module and its corresponding KEGG enriched pathway correlation. Red and blue cells represent the enriched pathways with the positively (scale bar:
logio p value) and negatively (scale bar: —logso p value) correlated proteins, respectively. Lipid classes hereafter are abbreviated as follows: TAG/TG, tri-
acylglycerol; DAG, diacylglycerol; FFA, free fatty acid; PL, phospholipid (PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine;
PG, phosphatidylglycerol; Pl, phosphatidylinositol; PS, phosphatidylserine); CL, cardiolipin; MLCL, monolysocardiolipin.

See also Figures S1 and S2; Tables S1 and S2.

correlated with liver mass. Of note, liver mass was centrally
positioned in the resulting HFD network, showing dense corre-
lations with the 40 lipid species compared with the CD network
where liver mass was at the periphery of the network with 27
lipids (Figure 2B). Interestingly, a subset of nine CL and mono-
lysocardiolipin (MLCL) species showed a predominant associa-
tion with liver mass in HFD but not in CD (Figure 2B, red nodes).
This finding is noteworthy because CL—the signature phos-
pholipid of the mitochondrial inner membrane—is indispens-
able for a range of mitochondrial activities (Claypool and Koeh-

ler, 2012). Alterations in the content and/or structure of CL have
been reported in several tissues in a variety of pathological set-
tings. However, a major unresolved question is whether CL
molecules with different acyl chain compositions differ func-
tionally (Claypool and Koehler, 2012). Of these nine CL species,
only tetralinoleoyl-CL (CL(LLLL)) and its precursor/remodeling
intermediate, trilinoleoyl-MLCL (MLCL(LLL)) (neither belonging
to any module) showed negative correlation with liver mass;
whereas the other seven CLs enriched in monounsaturated
fatty acids (MUFAs), oleic (O) acid, and palmitoleic (Po) acid

Cell Systems 6, 1-12, June 27,2018 3
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Figure 2. Identification of Cardiolipin Signatures of Healthy and Fatty Liver

(A) Correlation diagram (corrgram) showing diet-independent association of lipid species with liver mass. Lipid species with Spearman’s correlation p value <0.05
with liver mass (both normalized to body weight [%] and unnormalized [weight in grams]) in both CD and HFD were selected.

(B) Spearman correlation network of diet-specific significant correlation of lipid species with liver mass in CD (left) and HFD (right).

(C) Corrgram of CLs that significantly correlate with liver mass in HFD.

(D-F) C57BL/6J mice were fed with CD or high-fat high-sucrose (HFHS) diet for 18 weeks or nicotinamide riboside (NR)-supplemented HFHS diet, 9 weeks after
the start of the HFHS diet (HFHS + NR). Levels of healthy (D) and unhealthy (E) CL species in livers of the three cohorts. Note that the CLs—CL(LOOPo),
CL(LLPoP), and CL(OOOP)—are shown in the figure with an additional CL species because the two are isobaric and were inseparable chromatographically.
(F) Corrgram showing negative correlation of obesity and NAFLD traits with healthy CL species and positive correlation with unhealthy CL species.

For (D) and (E), data are represented as means + SEM. *p < 0.05, **p < 0.001; ***p < 0.0001.

(all from the yellow module), positively correlated with liver
mass (Figure 2C). This demonstrates a change in CL remodel-
ing under HFD that depletes the CL species predominant in
healthy tissue—CL(LLLL) (Chicco and Sparagna, 2007) and its
precursor, MLCL(LLL)—suggesting that these CL species may
be signatures of healthy/normal liver. Conversely, the other
seven MUFA-enriched CLs that correlated positively with liver
mass in HFD may be considered signatures of unhealthy/
fatty liver.

We next tested whether this change in the profile of nine CL
species is a general phenomenon in other dietary-induced
models of hepatic steatosis and mitochondrial dysfunction and

4 Cell Systems 6, 1-12, June 27, 2018

whether the profile can be reverted by ameliorating hepatic stea-
tosis by enhancing mitochondrial function. We have previously
shown that nicotinamide riboside (NR) treatment ameliorates
high-fat high-sucrose (HFHS) diet-induced fatty liver disease
by boosting nicotinamide adenine dinucleotide (NAD™) levels
and thereby enhancing mitochondrial function (Gariani et al.,
2016). Therefore, we performed lipidomic profiling from the livers
of C57BL/6J mice—the most commonly used laboratory mouse
strain—fed on (1) CD, (2) HFHS diet for 18 weeks, or (3) HFHS +
nicotinamide riboside (NR), added 9 weeks after the start of the
HFHS diet (therapeutic approach) (Gariani et al., 2016). In line
with our findings from the HFD-fed BXD study, HFHS diet
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decreased the CL signatures of healthy/normal liver—CL(LLLL)
and MLCL(LLL)—whereas it increased the six CL signatures
of unhealthy/fatty liver—MLCL(LOO), MLCL(LLO), CL(LOOPo),
CL(LLPoP), CL(LOOO), CL(OOOP)—enriched in MUFAs (Figures
2D and 2E). CL(OOO0O0), detected in the BXD study (Figures 2B
and 2C), was too low to be detected in all samples from the
NR study. Interestingly, NR treatment increased the levels of
the healthy CLs, whereas it decreased the levels of the unhealthy
CLs (Figures 2D and 2E). Importantly, the two healthy CLs corre-
lated negatively with obesity and NAFLD traits while the un-
healthy CLs showed positive correlation (Figure 2F). These
data show that all lipid species within a class do not necessarily
behave similarly, as demonstrated here with specific CL species
that have signatures of healthy or fatty liver.

Liver Lipids Are Influenced by Multiple Genomic Loci

We next analyzed globally how genotype and diet influence lipid
species (Figure 3A). Sixty-three percent of the measured lipids
were significantly affected by diet: 28 upregulated in CD (green

Figure 3. Genetics of Lipid Species

(A) Circos plot of all lipids measured. Blue bars in
the outermost ring represent the log, fold change
(HFD versus CD) of the lipids. Lipids increased in
CD or HFD are shown in green and blue font,
respectively. Orange bars represent the correla-
tion of lipids between CD and HFD. Significant
correlations (adjusted p value <0.05) are repre-
sented by asterisks. Red bars represent lipid h? in
CD (light red) and HFD (dark red). The inner ring of
yellow bars represents the strength of IQTLs in CD
(light yellow) and HFD (dark yellow). Number of
bars per lipid is equivalent to the number of IQTLs.
The lines between the two innermost rings stem
from the peak IQTL bar (with LOD > 3) and termi-
| nate on their approximate chromosomal position
TAG(52:4) | w of the innermost ring. Lipid pairs marked with “_1”
TAG(52:5) “ | and “_2" (TAGs 54:5, 54:6, 56:7; P1(22:6_18:0) and

| CL(LLPoP)) indicate two isobaric peaks.

(B) Schematic representation of the IQTLs. A total
of 136 IQTLs (55 CD and 81 HFD) were mapped
from 37/46 lipids in CD/HFD. The number of QTLs
(red font) per lipid species (blue font) is indicated.
See also Figure S3 and Tables S3-S5.

font) and 33 upregulated in HFD (blue
font) (Figure 3A and Table S3). Approxi-
mately half of the lipids correlated posi-
tively between the diets, 24 of them being
significant (orange bars, Figure 3A and
Table S3). Next, we assessed the herita-
bility (h% percentage of trait variation
attributed to additive genetic factors) for
all lipid species within dietary groups
(CD [light red] and HFD [dark red], Fig-
ure 3A) and across both diets combined
(CD + HFD/mixed) (Belknap, 1998) (Table
S4). Within a dietary cohort, 30%-60%
of the observed variance in lipid levels
could be explained by genetic differences
across strains (i.e., h®> > 30%) for the
strong majority of lipid species (66% in CD and 76% in HFD).
Conversely, when dietary cohorts were combined, only 13% of
lipids had h? above 30% (Table S4).

Next, we mapped QTLs for all lipid species (IQTL) and lipid
modules (modQTL) (Table S5). Most chromosomes contained
at least one IQTL, and some hotspot regions on chromosomes
2,4,6,9, 15, and X were quite distinct (Figure 3A). We detected
136 IQTLs: 55 in CD and 81 in HFD from 37 and 46 lipid species,
respectively (Figure 3B). While over half of these lipids had only
one QTL (26 CD and 21 HFD), the remaining lipids had more
than one IQTL (11 in CD and 25 in HFD), indicating a polygenic
regulation of these lipid species (Figure 3B). IQTLs were typically
unique to either CD or HFD, with only one lipid species,
TAG(58:8), mapping to the same locus on chromosome 11
(118.9-118.5 Mb) in both diets (Figure S3A). Interestingly, this
locus harbors genes involved in lipid (Acox?, Fasn, P4hb,
St6galnac1) and carbohydrate (Afmid, Gaa, Galk1) metabolic
processes. Importantly, these genes (among others in this re-
gion) also have cis-e/pQTLs in liver and coding sequence
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Figure 4. Genetic Assessment of IQTLs

(A) Manhattan plot of lipid species in CD and HFD. Names of the lipid species with genome-wide p value <0.05 are indicated.
(B) All genes under the IQTLs (+5 Mb from the peak) were filtered through four independent pipelines as indicated. Genes fulfilling two or more of the filtering

criteria were analyzed for enrichment of GO biological process (BP).
(C) Enriched GO BP from 566 filtered IQTL genes.

(D) IQTL position of the top 14 QTLs (p < 0.05). The candidate genes fulfilling four (red font), three (orange font), and two (gray font) of the four filtering criteria are
indicated below each IQTL peak. Genes indicated with asterisks are associated with metabolic phenotypes.

(E) KEGG enrichment analysis of genes under the top 14 IQTLs passing two or more of the filtering criteria.

For (A) and (D), blue and black dotted lines represent suggestive and significant QTL threshold, respectively. See also Tables S5 and S6.

variants in the BXDs (Figure S3A). Furthermore, TAG(58:8) levels
were not significantly different across diets and were among
those having high h? in both dietary cohorts (h? > 40%) and
also when dietary cohorts were combined (33.5%) (Figure S3B).
This indicates that TAG(58:8) is predominantly under the same
genetic control in both diets. The lack of cross-diet overlap in
the rest of the IQTLs suggests that GxE factors regulate nearly
all lipid species.

Genetic Assessment of the IQTLs

To assess the efficacy of IQTLs and find candidate genes that
regulate lipid levels, we performed an in-depth analysis of all sig-
nificant and suggestive IQTLs (Figure 4A, IQTLs above the blue
dotted line; 55in CD and 81 in HFD). All genes under these IQTLs
were filtered along four parallel pipelines (Figure 4B): genes un-

6 Cell Systems 6, 1-12, June 27, 2018

der 1QTLs (1) with non-synonymous SNPs in BXDs, (2) with
self-regulating QTLs (cis-e- and/or p-QTL), (3) with significant
correlation (p < 0.05) with the lipid itself, and (4) with variable
transcript expression (SD > 0.25). While the integration of prote-
omics data was advantageous, transcriptomics data were sub-
stantially more consequential to candidate selection as more
genes were assayed (~20,000 with transcriptomic versus
~2,600 with proteomic data), and this also avoids post-transla-
tional and protein regulation variations. Genes passing two of
the four filters in either diet (299 of 2,845 genes in CD and 327
of 3,818 in HFD) were analyzed for gene ontology (GO) pathway
enrichment (Figure 4B). Remarkably, the filtered IQTL candidate
genes were enriched in lipid metabolic pathways (Figure 4C). We
next applied the same filtering criteria for the top 14 IQTLs (Fig-
ure 4A, IQTLs above the black dotted line) comprising 4 CL,
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Figure 5. FFA Module Identifies a Genetic Hotspot Locus Associated with Fatty Acid Metabolism and Signaling

(A) Red module QTL showing significant peak on chromosome 4 (left) in HFD and the weighted correlation network of the FFAs (right) in the red module.

(B) Hotspot region on chromosome 4 showing the overlapping QTL of the red module and the individual FFAs of the module. modQTL genes involved in fatty acid
metabolic processes and signaling are indicated along with their biological function.

(C) Schematic representation of monounsaturated fatty acid (MUFA) synthesis.

(D) Stearoyl-CoA desaturase (SCD) activity index represented as ratios of MUFA to saturated fatty acid (SFA). Data are represented as means + SEM.
(E) Spearman correlation between hepatic expression of SCD transcript and protein (SWATH) with SCD activity index.

(F) Pearson’s correlation between the basal RER and the red module.

For (A) and (B), blue and black dotted lines represent suggestive and significant QTL threshold, respectively.

6 TAG, 2 PL, and the FFA 16:0 and 16:1n7 IQTLs (Figure 4D).
These IQTLs had many genes fulfilling 3—4 of our filtering criteria
(Figure 4D, genes indicated in orange and red font) and several
with known association with metabolic and liver-associated phe-
notypes (Figure 4D, genes indicated with asterisks). In total, 104
candidate genes that fulfilled two or more of the filtering criteria
from these 14 IQTLs were subsequently analyzed for enrichment
of KEGG pathways. In line with the above findings, these genes
were enriched in fatty acid metabolic processes in addition to in-
flammatory response (Figure 4E). We have provided an exhaus-
tive list of candidate genes (based on the filtering pipeline of
Figure 4B) for each IQTL (Table S6; CD and HFD IQTLs provided
in separate excel sheets). Additionally, genes under the IQTLs
that pass at least two filters are tabulated in Table S5. Taken
together, these data show that lipid species of the same class
can be regulated by several loci throughout the genome and

demonstrate the utility of integrating multi-omics datasets with
IQTLs in the identification of putative genetic regulators of lipid
species.

The FFA Module Maps to a Genetic Hotspot Associated
with Fatty Acid Metabolism and Signaling

Next, we analyzed one of the diet-specific hotspot IQTL regions to
demonstrate the validity of our IQTLs at the genetic and physiolog-
ical level. Module-level QTL scans showed a QTL for the red mod-
ule (comprising six of the eight FFAs measured) only in HFD and
not CD on chromosome 4 (Figure 5A). The QTL for the red module
overlapped with that of its constituent FFAs and contained several
genes passing one or more of our filtering criteria (from Figure 4B),
including 12 genes involved in fatty acid metabolism, insulin,
interferon, and Toll-like receptor signaling, suggesting a robust
hotspot region of these metabolic processes associated with
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FFAs (Figure 5B) (Jump, 2011; Malhi and Gores, 2008). Among
these 12 genes, it is important to highlight methylthioadenosine
phosphorylase (MTAP), which passes all four filtering criteria.
MTAP deficiency has recently been shown to increase the risk
for progression of chronic liver disease due to compromised liver
proteome methylation (Bigaud and Corrales, 2016).

Having identified the potential genetic regulatory region of
these FFAs under HFD, we next tested whether oleic and palmi-
toleic acids of the module—showing the strongest strength of
association (Figure 5A [right], thickness of edges)—show the
typical biological profile of stearoyl-CoA desaturase (SCD)-
mediated MUFA synthesis under HFD (Figure 5C, adapted
from Jump, 2011). Indeed, SCD activity index, as assessed by
the ratios of MUFA to saturated fatty acid (SFA)—16:1n7/16:0
and 18:1n9/18:0—was significantly increased in HFD cohorts
(Figure 5D). Additionally, the lipid ratios as readouts of the SCD
activity index showed positive correlation with both mRNA and
protein levels of SCD in HFD, but not in CD (Figure 5E).

Since fat is the predominant energy source in HFD (60.3% kcal
from fat; 27.3% kcal from carbohydrate) as opposed to carbohy-
drate in CD (6.2% kcal from fat; 44.2% kcal from carbohydrate),
we tested whether the FFAs in this module reflect this at the phys-
iological level. To do so, we tested whether the red module eigen-
lipid correlated negatively with respiratory exchange ratio (RER).
RER is a measurement of the primary energy substrate used by
an organism: lower RER values indicate fat as the predominant en-
ergy source, while higher values indicate higher contribution from
carbohydrates. Indeed the red module correlated negatively with
RERin HFD cohorts, which have lower basal RER (Figure 5F; black
dots confined toward left of the x axis), whereas no significant cor-
relation was observed in CD cohorts (Figure 5F; green dots spread
toward the right of the x axis). These findings demonstrate the val-
idity of our QTL mapping and highlight the potential utility of
WGCNA clustering of lipids in modules for lipidomics analysis
and the identification of biologically relevant modQTLs.

Identification of IQTL Genes Associated with Abnormal
Lipid Metabolism in Human GWASs and Mapping of
IQTLs in TAG Biosynthetic Pathway

Human genome-wide association studies (GWASs) have
identified many genetic variants associated with plasma lipids
and abnormal lipid metabolism (http://jjwanglab.org/gwasdb,
https://www.ebi.ac.uk/gwas/). Taking advantage of these genes
identified in GWASSs (Table S7), we screened the IQTLs for the
presence of any human GWAS genes associated with abnormal
lipid metabolism (Figure 6A). We screened only those genes un-
der the IQTLs which fulfilled at least two of the four filtering
criteria, shown in Figure 4B. Twenty-seven IQTLs (7 CD and 20
HFD) harbored 20 out of 494 genes pre-selected from human
GWASSs for abnormal lipid metabolism (Figure 6A; see Table
S7 for extended information on the identified hits). To test the
probability of this overlap by chance, we performed 10,000 per-
mutations, each of which involved comparing the number of
genes that overlap between a random set of 494 human genes
and the 566 BXD IQTL genes (from Table S5). The distribution
of the overlap across all permutations formed the null distribu-
tion. Only 1.49% of random trials had an overlap greater than
or equal to the true overlap of 20 genes (Figure S3C) correspond-
ing to a p value of 0.0149. This indicates that the probability that
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20 or more GWAS genes found to overlap by chance under the
calculated null distribution is only 1.49%.

Of note, the QTL position of three lipid species TAG(54:6)_2,
TAG(56:8), and PI(20:4_16:0) mapped to genes implicated in
NAFLD in human GWASs, including TM6SF2, NCAN, CILP2,
PPP1R3B, and LYPLAL1 (Anstee and Day, 2013; Kahali et al.,
2015; Lusis et al., 2016) (Figures 6A and 6B). TAG(54:6)_2 map-
ped to Tm6sf2 (influences TG secretion and hepatic lipid droplet
content), and Ncan (cell adhesion) on chromosome 8. Notably,
these two genes along with Cilp2 (carbohydrate binding) have
protein-coding variants in the BXDs. Additionally, the region of
Ncan, Tm6sf2, and Cilp2 is syntenic with the localization of these
genes on human chromosome 19 (Figure 6B, middle), suggest-
ing a conserved role/regulation of these genes in both mice
and humans. TAG(56:8) mapped to Ppp1r3b (limits glycogen
breakdown) on chromosome 8 and PI(20:4_16:0) mapped to
Lyplal1 (having lysophospholipase activity) on chromosome 1
(Figure 6B), both of which have coding variants and cis-eQTLs
in liver, heart, muscle, and adipose tissue of BXDs. Taken
together, these links from human GWASSs to IQTLs provide a ba-
sis for understanding both the function of numerous under-
studied and/or uncharacterized GWAS genes and the role of
the individual lipid species in health and disease.

Next, we tested whether the total TAG content mapped to any
of the eight genes (PNPLA3, GCKR, TRIB1, LYPLAL1, PPP1R3B,
TM6SF2, NCAN, and CILP2) proven to cause or increase the sus-
ceptibility to hepatic steatosis/NAFLD in human GWASSs (Anstee
and Day, 2013; Kahalietal., 2015; Lusis et al., 2016). Hepatic TAG
quantification (normalized to protein levels) in BXDs did not show
any significant difference between the CD and HFD cohorts (Fig-
ure S4A). However, the TAG content in CD cohorts correlated
with proteins and transcripts that were enriched in lipid metabolic
processes (Figure S4B) and the TAG content in HFD cohorts
correlated positively with body weight and fat mass and nega-
tively with the lean mass (Figure S4C). This association of hepatic
TAG content with its expected physiological and molecular func-
tion affirms the reliability of the TAG measurement despite no sig-
nificant dietary difference. QTL mapping of the hepatic TAG con-
tent showed two suggestive QTLs at chromosomes 4 and 17 in
HFD cohorts, whereas no QTL was observed in CD (Figure S4D).
Notably, TAG content did not map to any of the eight human
NAFLD GWAS genes stated above, nor to any of the individual
TAG IQTLs. This indicates a diverse genetic regulation of individ-
ual TAG species, different from the regulation of total TAG con-
tent, and highlights the importance of examining individual TAG
species. Therefore, we examined whether genes known to be
involved in the TAG biosynthesis pathway (Table S7) were found
to fulfill any one of the four filtering criteria shown in Figure 4B in
either diet for individual TAG, FFA, and PLIQTLs. Fourteen genes
(4CD, 7 HFD, and 3 CD + HFD) involved in TAG biosynthesis were
found under 30 IQTLs (Figure 6C). Collectively, our data demon-
strate the complexity of the genetic regulation of different lipid
species and the importance of studying individual lipid species
to find common targets between mice and humans.

DISCUSSION

Data on the genetic regulation and physiological significance of
individual lipid species on a population scale is very limited for
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Figure 6. IQTL Genes Associated with Abnormal Lipid Metabolism in Human GWASs and with TAG Biosynthetic Pathway
(A) 1QTL genes fulfilling two or more filtering criteria as shown in Figure 4B were screened for any known association with abnormal lipid metabolism in human
GWASSs. The screening identified 20 GWAS genes from 27 IQTLs (top). Each box of the table represents the IQTL(s) for the indicated gene(s) and the GWAS

phenotype associated with the genes.

(B) QTL position of the three lipid species (TAG(54:6)_2, TAG(56:8), and P1(20:4_16:0)) that map to the indicated genes (in red) implicated in hepatic steatosis in
human GWASs. The loci of Cilp2, Tm6sf2, and Ncan is syntenic in mice (left) as well as in humans (middle). The genomic location of the genes is shown inred in the
positive strand for NCAN and CILP2 and in the negative strand for TM6SF2. Blue and black dotted lines represent suggestive and significant QTL threshold,

respectively.

(C) Schematic representation of TAG biosynthetic pathways showing only those candidate genes that are under the IQTLs and fulfill one or more of our filtering
criteria. IQTLs are represented in gray. Genes under CD IQTLs are in blue, those under HFD IQTLs in red, and those under both CD and HFD IQTLs in purple.

See also Figures S3C and S4; Table S7.

both mouse (Hui et al., 2015) and human populations (Gronert
et al., 2004; Koybasi et al., 2004; Kroesen et al., 2001). Here,
we profiled a subset of liver lipid species from different classes
and integrated them with multi-omics datasets (genetics, tran-
scriptomics, proteomics, and phenomics) to understand their
genetic, environmental, and GxE regulations and physiological
roles. We identified individual lipid species and lipid modules
that affect different clinical traits, revealing a link between their
levels and their physiological and molecular functions. In partic-
ular, specific CL species were identified that associate either
positively or negatively with obesity and NAFLD signatures.
Lastly, we demonstrate the reliability of IQTLs through several
examples that were supported by multi-omics analysis and pro-

vide a resource of candidate genes that can regulate many of the
lipid species we measured. Our findings illustrate the importance
of studying individual lipid species and provide a platform for
further mechanistic studies of lipid species.

Similar to the plasma lipids in our companion article (Jha et al.,
2018), hepatic lipid species are also correlated across lipid class.
By clustering lipids into modules, we established functional links
between these modules and their molecular and physiological
signatures. Two observations were particularly distinct between
the plasma and liver lipids. First, in contrast to the plasma
lipid profile, where unsupervised hierarchical clustering distinctly
separated the CD and HFD groups (Jha et al., 2018), the liver lipid
profile did not show a distinct dietary separation. Second, the h?
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of the liver lipids was lower than that of plasma lipids. These dif-
ferences can be attributed to the fact that (1) liver, being the hub
of most metabolic processes, is more dynamic and influenced
by a multitude of factors (diet, hormones, stress) versus the
plasma lipid profile, which represents an equilibrium state as a
result of metabolic processes from all peripheral tissues; and
(2) additional steps such as tissue homogenization and normali-
zation to protein levels are required for liver lipidomics,
increasing the possibility of technical error.

A high-fat dietary challenge had a striking impact on the cardi-
olipin profile, wherein the CL signatures of healthy liver (CL(LLLL)
and MLCL(LLL)) were decreased and the signatures of fatty liver
(MUFA-enriched CLs and MLCLs) were increased. Notably,
CL(LLLL) comprises the majority of CLs in the inner mitochon-
drial membrane, and a loss in CL(LLLL) content typically reflects
the loss of mitochondrial mass (Koekemoer and Oelofsen, 2001).
While a decrease in CL(LLLL) has been categorically associated
with heart failure, senescence, and Barth syndrome (Chicco
and Sparagna, 2007), its role in hepatic steatosis/NAFLD has
not been clearly established (Cole et al., 2016). Therefore, we
validated our findings from the HFD-BXD study in another
model of HFHS-induced hepatic steatosis, which confirmed
that indeed healthy CLs decrease in NAFLD and negatively
correlate with obesity and NAFLD traits and, conversely, un-
healthy CLs increase in NAFLD and positively correlate with
obesity and NAFLD traits. This suggests that this change in the
CL profile, in particular a decrease in CL(LLLL) content, could
be one of the underlying causes of hepatic steatosis and/or
may in itself serve as a disease biomarker. If this is the case, in-
terventions to ameliorate steatosis should be accompanied by
increase in healthy CLs and a decrease in unhealthy CLs, as illus-
trated by treating mice having NAFLD with the NAD* precursor,
NR. This finding adds to the conceptual understanding of the
pathways via which NR may act to boost mitochondrial function
(Gariani et al., 2016), i.e., by increasing CL(LLLL) and MLCL(LLL)
content in liver.

QTL analysis showed that about half of the lipids (having QTLs)
mapped to multiple QTLs, suggesting a polygenic regulation of
lipid species. This is in line with the diverse functional roles of
lipids in signaling, in protein binding, in membrane function,
and as energy substrates (Han, 2016). These results furthermore
show that lipid species are complex traits affected not only by
the environment but also by multiple genetic pathways, i.e.,
not regulated primarily by single rate-limiting enzymatic path-
ways. The complexity of lipidomics can be better appreciated
when compared and contrasted with metabolomics/metabolites
where often there is one key regulatory enzyme for a reaction ora
pathway to which metabolite QTLs will frequently map (Wu et al.,
2014). In contrast, for most lipid species it is uncommon that one
enzyme regulates the level of a particular lipid species. The num-
ber of genes and proteins in a particular lipid biosynthetic
pathway is far fewer than the species in each class of lipid (Que-
henberger and Dennis, 2011), indicating that (1) one gene regu-
lates a number of lipid species and (2) many genes can regulate
one lipid species.

To prove the reliability of the IQTLs, we performed a multi-
omics analysis of candidate genes under the IQTLs, which pro-
vided compelling candidate genes and enriched pathways asso-
ciated with lipid metabolic processes. If the mouse is to serve as
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a model of metabolic and lipid traits in humans, it is important
that the relevant pathways are conserved in the two species.
One measure of such conservation is the degree of overlap be-
tween mouse QTLs and human GWAS data. Our data show
several IQTLs harboring human GWAS candidate genes for lipids
and associated metabolic traits. Although with this overlap we
cannot infer whether the lipid-modulating allele associated with
the gene is acting in the same direction in both mouse and hu-
man, for genes that have been mechanistically examined in the
literature this directionality can be checked. These findings build
a strong foundation for future mechanistic studies to find com-
mon links between the genetic control of lipid metabolism be-
tween mouse and human, as has been successfully achieved
by the hybrid mice diversity panel (HMDP) for other traits, such
as osteoporosis, obesity, blood cell levels, and heart failure (Lu-
sis et al., 2016). Hence, we provide here candidate genes for all
IQTLs as a cornerstone for future research on the regulation of
individual lipids across species with human translational value.

Interestingly, total hepatic TAG content did not have any sig-
nificant QTL overlap with individual TAG IQTLs. This highlights
a key point: the regulation of individual lipid species is diverse
and distinct from the total concentration of the class to which
they belong. Therefore, it is necessary to have more focused
studies on individual lipid species, which can uncover their func-
tions as well. In agreement with this, we have illustrated in our
companion article (Jha et al., 2018) that specific TAG species
can have positive or negative signatures of NAFLD. Future
work on other important lipid classes including extensive
coverage of ceramides, DAGs, and eicosanoids will be helpful
in dissecting other equally relevant NAFLD and metabolic syn-
drome signatures.

In summary, this liver-centric lipidomics study provides a
framework to uncover the genetic regulation and physiological
impact of individual lipid species, with an ultimate goal to
improve our understanding of diseases linked to abnormal lipid
metabolism. This insight may help to identify new drug targets
involved in lipid disorders and guide the development of clinically
relevant disease signatures.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Q6 internal standard Avanti Polar Lipids Cat# 900150

PC(15:0/15:0) internal standard Avanti Polar Lipids Cat# 850350P

PS(17:0/17:0) internal standard Avanti Polar Lipids Cat# 840028P

PE(15:0/15:0) internal standard Avanti Polar Lipids Cat# 850704P

PA(17:0/17:0) internal standard Avanti Polar Lipids Cat# 830856P

PG(15:0/15:0) internal standard Avanti Polar Lipids Cat# 840446P

CL(56:0) internal standard Avanti Polar Lipids Cat# 750332P

FA(15:0/15:0) internal standard, Sigma-Aldrich Cat# 91446

Pentadecanoic Acid

SPLASH Lipidomix Mass Spec Standard Avanti Polar Lipids Cat# 330707

Critical Commercial Assays

AST: AST Flex reagent cartridge Siemens Healthcare Cat# DF41A

ALT: ALTI Flex® reagent cartridge Siemens Healthcare Cat# DF143

LDL: ALDL Flex reagent cartridge Siemens Healthcare Cat# DF131

HDL: AHDL Flex reagent cartridge Siemens Healthcare Cat# DF48B

Cholesterol: CHOL Flex reagent cartridge Siemens Healthcare Cat# DF27

Plasma TG: TGL Flex reagent cartridge Siemens Healthcare Cat# DF69A

LDH: LDI Flex reagent cartridge Siemens Healthcare Cat# DF54

HR Series NEFA-HR(2) FUJIFILM Wako Dignostics http://www.wakodiagnostics.com/
r_nefa.html

Glucose: GLUC Flex reagent cartridge Siemens Healthcare Cat# DF40

Mercodia Mouse Insulin ELISA kit Mercodia Cat# 10-1247-01

Liver TG: Serum Triglyceride Determination Kit Sigma-Aldrich Cat#TR0100

Deposited Data

BXD liver lipidomics data [raw] This paper https://chorusproject.org/anonymous/
download/experiment/
26fdcc1032254f5fa7095¢c1aa1e829d8
https://chorusproject.org/anonymous/
download/experiment/
73040a708ca24efeb84c92bd5e0d9b8c

BXD liver lipidomics data [normalized] This paper http://www.genenetwork.org/

BXD mouse genotype data
BXD mouse metabolic phenotype data
BXD mouse liver transcriptome data

http://www.genenetwork.org/
http://www.genenetwork.org/

http://www.genenetwork.org/

GN Accession: GN602. RecordIDs
19803-19994

GN Accession: GN600
GN Accession: GN602
GN Accession: GN432 (CD),

GN431 (HFD)
BXD mouse liver SWATH proteomics data http://www.genenetwork.org/ GN Accession: GN540 (CD),
GN541 (HFD)
GWASdb2 (Li et al., 2016) http://jjwanglab.org/gwasdb
GWAS Catalog (MacArthur et al., 2017) https://www.ebi.ac.uk/gwas/
Software and Algorithms
R The R Foundation https://www.r-project.org/
MATLAB Mathworks https://www.mathworks.com

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
MATLAB Bioinformatics Toolbox Mathworks https://www.mathworks.com/products/

corrgram

R/qtl (v 1.39-5) package
Unweighted correlation network

The R Foundation

(Broman et al., 2003)
custom package imsblnfer

bioinfo.html
https://cran.r-project.org/web/packages/
corrgram/index.html

http://www.rgtl.org/

Github (https://github.com/
wolski/imsblnfer)

WGCNA (Langfelder and Horvath, 2008) https://labs.genetics.ucla.edu/
horvath/CoexpressionNetwork/
Rpackages/WGCNA/

biomaRt Bioconductor http://bioconductor.org/packages/
biomaRt/

clusterProfiler (Yu et al., 2012) https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html
Circos (Krzywinski et al., 2009) http://circos.ca/

Tracefinder Thermo Scientific Cat# OPTON-30626

GraphPad Prism 7 GraphPad https://www.graphpad.com/

Other

Q Exactive mass spectrometer, Build 2.3 SP2 Thermo Scientific https://www.thermofisher.com/order/

catalog/product/IQLAAEGAAPFALGMAZR

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Johan
Auwerx (admin.auwerx@epfl.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

BXD strains were obtained from University of Tennessee Health Science Center (Memphis, TN, USA) and JAX (The Jackson Lab-
oratory) and bred at the Ecole Polytechnique Fédérale de Lausanne (EPFL) animal facility for more than two generations before
incorporation into the study. Cohorts of 47 BXD strains with ~5 males each on CD and HFD were used in this study. Mice
from 43 strains were fed a chow diet [CD; 2018 Teklad Global 18% Protein Rodent Diet (6.2% kcal from fat; 44.2% kcal from car-
bohydrate; 18.6% kcal from protein)] and from 41 strains a high fat diet [HFD; Harlan Teklad, TD.06414 (60.3% kcal from fat;
27.3% kcal from carbohydrate; 18.4% kcal from protein)] for 21 weeks, starting 8 weeks of age. During the course of 21 weeks,
mice underwent extensive metabolic phenotyping as described (Williams et al., 2016). At week 29, animals were fasted overnight
before sacrifice at 9:00 am. Blood was collected from isoflurane-anesthetized mice via the vena cavae, and immediately after-
wards animals were perfused with 4°C PBS, through the left ventricle, then organs were harvested. Blood was collected in
lithium-heparin (LiHep)-coated tubes (Microvette CB 300 Hep-Lithium, Sarstedt) shaken and kept in ice. The blood samples
were centrifuged at 4500 revolutions per minute (rpm) for 10 min at 4°C before being flash-frozen in liquid nitrogen for subsequent
measurement of plasma lipid species (see companion article [Jha et al., 2018]) and plasma clinical traits. Due to breeding limita-
tions and unforeseen deaths of some mice during the course of phenotyping, all strains do not have 5 mice each, average being
3-5 mice/strain.

For in vivo validation of CL species, liver samples were used from our previous study (Gariani et al., 2016). In brief, male C57BL/6J
mice were separated into three groups of 6-9 mice per group, at the age of 7 weeks. Animal cohorts were fed a CD, a Western high-fat
and high-sucrose (HFHS) diet [HFHS; Harlan Teklad, TD.08811, (44.6% kcal from fat; 40.7% kcal from carbohydrate; 14.7% kcal
from protein)] or a HFHS diet that was supplemented with NR (400 mg/kg/day) at week 16 till week 25 (9 weeks). Mice were sacrificed
after a 4 hour fast at 9:00 am. All experiments were approved by the Swiss cantonal veterinary authorities of Vaud under licenses
2257, 2257.1 and 2465.
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Fatty Acid Composition (%) in the Diet of BXD Cohorts

Fatty acids Symbol CD HFD
Palmitic C16:0 0.7 8.02
Stearic C18:0 0.2 3.93
Oleic C18:1n9 1.2 14.68
Linoleic C18:2n6 3.1 4.7
Linolenic C18:3n3 0.3 0.55
Saturated fat 0.9 12.48
Monounsaturated fat 1.3 16.05
Polyunsaturated fat 3.4 5.4
Total fat 6.2 34.3

METHOD DETAILS

Plasma Clinical Traits of BXD Cohorts
Plasma parameters were measured on 2 times diluted samples (1:1 ratio of plasma to diluent) using Dimension®Xpand Plus (Siemens
Healthcare Diagnostics AG, Dudingen, Switzerland). The biochemical tests were performed according to the manufacturer instruc-
tions for each parameter: AST (Siemens Healthcare, DF41A), ALT (Siemens Healthcare, DF143), Glucose (Siemens Healthcare,
DF40), HDL (Siemens Healthcare, DF48B), LDL (Siemens Healthcare, DF131), Cholesterol (Siemens Healthcare, DF27), LDH
(Siemens Healthcare, DF54), TG (Siemens Healthcare, DF69A) and FFA (FUJIFILM Wako Dignostics, NEFA-HR (2)). Insulin concen-
tration was measured with an ELISA assay kit (Mouse Insulin ELISA Kit; Mercodia).

Clinical traits used for correlation of lipid signatures with metabolic phenotypes in C57BL/6J mice (Figure 2F) was obtained from
our previous study (Gariani et al., 2016). BXD metabolic and clinical data can be obtained from (Williams et al., 2016) and also avail-
able on GeneNetwork (http://www.genenetwork.org).

Body Composition (EchoMRI)

In addition to the body weight measurements taken each week and before each phenotyping experiment, body composition was
recorded at 16, 23, and 25 weeks of age. To do so, each mouse was placed briefly in an EchoMRI (magnetic resonance imaging)
machine (the 3-in-1, EchoMedical Systems), where lean and fat mass are recorded, along with total body weight, taking ~1 min
per individual. Data was normalized to total body weight.

TAG Measurement of BXD Livers

For BXDs, 15 pl of the liver lipid extract (same extract as used for liver lipid MS measurement, see companion article [Jha et al., 2018])
was used for TAG quantification using the Serum Triglyceride determination kit (Sigma-Aldrich), as per manufacturer’s instructions.
The organic solvent mix used for dissolving lipids for the MS (mixture of acetonitrile (ACN)/isopropyl alcohol (IPA)/water (H20),
(65:30:5, v/v/v, 100 plL)) was used as a blank and for standard curves.

NAD* Measurement of C57BL/6J Livers

~20 mg of frozen liver samples were used for NAD" extraction in 10% perchloric acid and neutralized in 3 M K,COgz on ice.
After centrifugation, the supernatant was filtered and the internal standard (NAD-C13) was added and loaded onto a column
(150 A ~ 2.1 mm; Kinetex EVO C18, 100 /0-\). HPLC was run for 1 min at a flow rate of 300 mL/min with 100% buffer A (Methanol/
H20, 80/20, v/v). Then, a linear gradient to 100% buffer B [H,O + 5 mM ammonium acetate] was performed (at 1 to 6 min). Buffer
B (100%) was maintained for 3 min (at 6 to 9 min), and then a linear gradient back to 100% buffer A (at 9 to 13 min) began. Buffer
A was then maintained at 100% until the end (at 13 to 18 min). NAD" eluted as a sharp peak at 3.3 min and was quantified on the
basis of the peak area ratio between NAD* and the internal standard and normalized to tissue weight.

Lipidomics Sample Preparation and Analysis

Internal Standards (IS) Used

For BXD liver samples we used Q6, PC(15:0/15:0), PS(17:0/17:0), PE(15:0/15:0), PA(17:0/17:0), PG(15:0/15:0), CL(56:0) and FA(15:0/
15:0) as internal standards. For NAFLD signature validation experiments in mice (Figure 2), we used the standard mix SPLASH®
Lipidomix® Mass Spec Standard | 330707, supplemented with Q6 and CL(56:0).
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Extractions

Liver samples were weighed and homogenized using a Potter-Elvehjem tissue grinder in 1.5 mL homogenization buffer (8 M urea,
50 mM TEAB, 100 mM NaCl, 1 mM CaCl, protease and phosphatase inhibitors (Roche)). Protein concentration was determined
by BCA and all samples were diluted to 8 mg/mL with homogenization buffer. Samples were aliquoted with each tube containing
1 mg of protein (125 pL) and flash frozen in liquid N, and stored at -80°C. Frozen aliquots of liver extracts were thawed on ice and
processed for lipid extraction as previously described (Stefely et al., 2016). In brief, liver extracts were thawed on ice then internal
standards were added (20 plL) and samples were vortexed (30 s). Chloroform/methanol (1:1, v/v, 1000 plL) was added and samples
were vortexed (60 s). Subsequently, HCI (1 M, 200 pL) was added to induce phase separation, followed by vortexing (60 s) and centri-
fugation (3,000 g, 3 min, 4°C) to complete phase separation. 550 uL of the organic phase was dried under Ar,(g). The organic residue
was reconstituted in ACN/IPA/H,0 (65:30:5, v/v/v, 100 plL) by vortexing (60 s) and transferred to a glass vial for LC-MS analysis.
Samples were stored at -80°C until further use. LC-MS analysis was performed on an Ascentis Express C18 column held at 50°C
(150 mm x 2.1 mm x 2.7 pm particle size; Supelco) using an Accela LC Pump (500 pL/min flow rate; Thermo). Mobile phase A con-
sisted of 10 mM ammonium acetate in ACN/H,0 (70:30, v/v) containing 250 pL/L acetic acid. Mobile phase B consisted of 10 mM
ammonium acetate in IPA/ACN (90:10, v/v) with the same additives. 10 uL of sample were injected by an HTC PAL autosampler
(Thermo). Initially, mobile phase B was held at 40% for 30 s and then increased to 50% over an additional 30 s. It was then increased
to 55% over 4 min after which, it was increased to 99% over 6 min and held there for 3 min. Prior to the next injection, the column was
reequilibrated for 2 min. The LC system was coupled to a Q Exactive mass spectrometer (Build 2.3 SP2) by a HESI Il heated ESI
source kept at 325°C (Thermo). The inlet capillary was kept at 320°C, sheath gas was set to 35 units, auxiliary gas to 15 units,
and the spray voltage was set to 3,000 V in negative mode and 4,000 V in positive mode.

Several scan functions, including targeted and untargeted, were used to ensure optimal data acquisition for each lipid class. For
fatty acids, selected ion monitoring (SIM) scans were taken from 0-3 min. MS' data was acquired in negative mode for 220-600 m/z at
a resolving power of 17,500 and an AGC target of 1 x 10°. For phospholipids, diacylglycerols, and CoQ, parallel reaction monitoring
(PRM) was used. The instrument was run in negative mode with a resolving power of 17,500, an AGC target of 2 x 10°, a maximum
injection time of 75 ms, and isolation window of 1.2 Th. Scans targeting each species were scheduled between 0-10.3 min based on
previously determined retention times. For triglycerides, a separate set of runs was done where in addition to the targeted method
described above, the MS was operated in positive mode from 10.1-13 min with resolving power set at 17,500 and the AGC target set
to 5 x 10°. lons from 750-1,100 m/z were isolated (Top 2) and fragmented.

Measurement, Normalization and Quality Control

The selection of lipid species for measurement was based on their abundance, stability, polarity and ease of ionization. For the BXDs,
peaks were automatically integrated using TraceFinder software (Thermo) and integrations were checked manually. NR mice were
processed as described in our companion article [Jha et al., 2018]. Lipids were normalized in three different ways - to internal stan-
dards (of each class), to total lipids in each sample and to all lipids in each class. Basic quality check and QTL analysis was performed
from all the datasets, however the dataset normalized to total lipids was used for all the analyses and figures shown in the manuscript
due to the overall low relative standard deviation in this dataset (data not shown). Additionally, normalization to total lipids has two
major advantages over the other normalization methods; 1) All lipids measured did not have a true internal standard, 2) for lipid clas-
ses that have few lipid species measured, normalizing to class will be largely driven by one or two highly abundant lipids. Quality
assessment of the MS measurements was performed by comparing the reproducibility of the technical and extraction replicates
(see Figures S1TA-S1C). Note: lipid pairs marked with “_1” and “_2” (TAGs 54:5, 54:6, 56:7; PI(Dha_S) and CL(LLOPo) indicate
two isobaric peaks. The TAGs are isobaric peaks with different fatty acid compositions while the Pl and CL are isobaric because
they have the same fatty acid composition but are likely ordered differently to cause chromatographic separation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatic and Genetic Analyses

Data normality for each lipid species was checked by the Shapiro-Wilk test in R, with a W > 0.90 considered normal distribution.
Correlations are Pearson’s r or Spearman’s rho, as indicated. Student’s t-test was used for two group comparisons in normal
data of equal variances, and Welch'’s t-test otherwise. Heatmaps were generated using the “heatmap.2” function in R. Unweighted
correlation network graphs were performed using Spearman correlation, keeping all edges with P values less than 1e-4, 1e-03 or 0.05
(indicated in the figure) in R using the custom package imsblnfer, currently on Github (https://github.com/wolski/imsbinfer). GO and
KEGG pathway enrichment analysis for was performed using the R package “clusterProfiler” (Yu et al., 2012) (https://bioconductor.
org/packages/release/bioc/html/clusterProfiler.nhtml). Enriched pathways after Benjamini-Hochberg correction (p < 0.05) are shown
in the figures. For Circos plot (Figure 3) data were pre-processed in R followed by plot construction using web based http://circos.ca/
(Krzywinski et al., 2009) and then modified in Adobe lllustrator.

QTL calculations were performed using the R/qtl (v 1.39-5) package (Arends et al., 2010) on the log, transformed data. The BXD
genotype used for QTL calculations is provided in the Table S8. Parametric QTL calculation was performed for normally distributed
lipids and non-parametric for those that were not normally distributed. QTLs with logarithm of the odds ratio (LOD) score >2.5 and
p-value <0.40 were used for all the analysis, which includes both significant (p-value < 0.05) and suggestive QTLs (p-value between
0.05 and 0.40) at genome-wide significant threshold, computed by permutation analysis. [Genome-wide p-values of 0.63 correspond
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approximately to a local p-value of 0.05, i.e. which is significant in case of prior knowledge used to search for a QTL at that specific
location]. All significant and suggestive threshold lines in the paper represent genome-wide p-value of 0.05 and 0.63 respectively.

All graphs and analyses were performed either in R or GraphPad. For R, standard R plotting packages included in gplots or
ggplot2—e.g., stripchart, plotCl, and barplot2 were used. Final figures were prepared with Adobe lllustrator.

QTL Candidate Gene Retrieval

To perform QTL candidate gene retrieval biomaRt was used in R to obtain lists of genes located within each QTL region (+ 5 Mb
around the mapped SNP). Gene lists were imported into MATLAB for subsequent parallel filtering of candidate genes as follows:
() genes with non-synonymous SNPs, insertion/deletion/splice site mutations, or high impact non-coding SNPs in the BXDs
(Wang et al., 2016); (ii) genes under the IQTLs with cis e- and/or p-QTLs; (iii) genes/ proteins with significant correlation (p<0.05)
with the lipid itself; and (iv) genes with variable transcript expression (standard deviation >0.25) across BXD strains. Pearson’s cor-
relation was used to correlate transcript and protein abundances with log.-transformed lipid levels. GeneNetwork was used to obtain
liver gene transcript and peptide values for each BXD strain for mRNA standard deviation and mRNA/protein correlation calculations.
Genes passing two or more of the above filtering criteria are provided in Table S5 and a detailed list of each IQTL candidate gene with
the information on each filtering criteria is provided in Table S6.

BXD IQTL and Human GWAS Genes Overlap

Human GWAS genes (having p-value <1e-07) were retrieved from the database GWASdb2 (http://jjwanglab.org/gwasdb) (Li et al.,
2016) and complemented with the data from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) (MacArthur et al., 2017). The cate-
gories of GWAS genesets retrieved from these databases included “Abnormality of lipid metabolism” and “fatty liver disease”. Addi-
tionally, published papers reporting the relevant GWAS studies, not included in the above-mentioned databases (in particular, the
references indicated by their PMID in Table S7) were manually mined to retrieve the candidate genes having p-value <1e-07. Taken
together, the compiled list comprised of 494 genes (Table S7). Only those IQTL genes (+ 5 Mb on either side of the peak QTL), which
passed at least 2 filtering criteria (as shown in Figure 4B) were matched for any evidence of them being associated with abnormal lipid
metabolism in human GWAS (i.e. matched for their presence in 494 human GWAS gene list).

Weighted Gene Correlation Network Analysis

Weighted gene correlation network analysis (WGCNA) (Figures 1 and S2) was performed as described (Langfelder and Horvath,
2008) by using the WGCNA R software package (v1.51). To construct the weighted lipid coexpression network, we calculated a cor-
relation matrix containing all pairwise Pearson’s correlations between all pairs of lipids across all BXD strains for both CD and HFD.
We defined a “signed hybrid” network in which the adjacency takes values between 0 and 1 when the correlation is positive and 0 if
the correlation is negative. A power of 27 was chosen for both CD and HFD datasets. We selected the minimum power in which both
datasets followed the Scale-Free Topology Criterion (model fitting index R? > 0.8) and showed a similar connectivity. The selection of
a high power (threshold) has the effect of suppressing low correlations that may be due to noise, penalize weaker connections and
strengthen stronger connections. The result is a network adjacency that is zero for negatively correlated lipids and is positive for posi-
tively correlated lipids. Adjacency of weakly correlated lipids is nearly zero due to the power transformation. Next, the lipids were
hierarchically clustered using the distance measure and modules were determined by choosing a height cutoff for the resulting
dendrogram by using a dynamic tree-cutting algorithm, selecting a minimum module size of 5. Modules with a correlation higher
than 0.75 were merged. The resulting lipid modules were assigned color names and identified using the eigenvector of each module,
named as module eigenlipid. Module eigenlipid (ME) is defined as the first principal component of the standardized expression pro-
files and can be considered the best summary of the standardized module expression data. Each module is represented by different
colors; lipids not grouped in any module (34% in CD and 42% in HFD) were represented in grey color. By and large, modules were
dominated by lipids from the same class (Figure S2A). Modules containing lipids from the same class exhibited high adjacency be-
tween them in both diets (eg. CL modules). Correspondence analysis between CD and HFD was performed by calculating the over-
laps of each pair of CD-HFD modules and analyzed using the Fisher’s exact test (Figure S2B). From the 8 modules identified in both
diets, 3 of them showed total correspondence between CD and HFD: DAG (black), FFA (red) and TAG (brown) modules; while the 3 CL
modules (green, blue and yellow) showed a very high correspondence between CD and HFD (Figure S2B). Module-trait relationships
(Figure 1D) were calculated by Pearson’s correlation between MEs and selected metabolic phenotypes in order to identify modules
related to metabolic functions. For module pathway association (Figure 1E), KEGG enrichment analysis was performed for all posi-
tively and negatively correlated proteins (p < 0.05) separately, with the modules. Module QTL (modQTL) was calculated from the
values of the MEs as phenotype traits using the R package R/qtl (v 1.39-5) (Broman et al., 2003) using the same methods and criteria
as for IQTLs.

Enrichment Analysis of Proteins and Transcripts with Liver TAG Concentration

KEGG enrichment analysis was performed for all proteins and transcripts that correlated with total liver TAG levels (Figure 6B). For
liver proteomics correlation: 333 proteins in CD and 74 in HFD out of 2,622 measured proteins (by SWATH) significantly correlated
with liver total TAG concentration. For liver transcriptomics correlation: 1,752 transcripts in CD and 879 transcripts in HFD out of
35,556 transcripts measured (using Affy Mouse Gene 1.0ST) significantly correlated with total liver TAG concentration. Benjamini-
Hochberg corrected (p < 0.05) enriched pathways are shown in the figure. No significant enrichment was observed in HFD cohorts.
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DATA AND SOFTWARE AVAILABILITY

Raw MS data files are available through the CHORUS project data repository (Project ID 1432, Experiment ID 3217 and 3218). Addi-
tionally, normalized MS data is deposited in GeneNetwork (http://www.genenetwork.org) as a resource for public use. To access and
analyze the data in GeneNetwork, choose “Mouse (mm10)” for “Species”, “BXD” for “Group”, “Phenotypes” for “Type”, “BXD
Published Phenotype” for “Data Set” and enter “LiverLipidomics” for “Get Any”. Normalized MS data (normalized to total lipids)
is provided in Table S1. Lipid QTLs are provided in Table S5. IQTL genes passing two of the four filtering criteria (as shown in
Figure 4B) are provided in Table S5 and the exhaustive list for the same is provided in Table S6. BXD genotype data used for QTL
calculation is provided in Table S8.
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