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SUMMARY

The genetics of individual lipid species and their
relevance in disease is largely unresolved. We pro-
filed a subset of storage, signaling, membrane, and
mitochondrial liver lipids across 385 mice from 47
strains of the BXD mouse population fed chow or
high-fat diet and integrated these data with comple-
mentary multi-omics datasets. We identified several
lipid species and lipid clusters with specific pheno-
typic and molecular signatures and, in particular,
cardiolipin species with signatures of healthy and
fatty liver. Genetic analyses revealed quantitative
trait loci for 68% of the lipids (lQTL). By multi-layered
omics analyses, we show the reliability of lQTLs to
uncover candidate genes that can regulate the levels
of lipid species. Additionally, we identified lQTLs
that mapped to genes associated with abnormal
lipid metabolism in human GWASs. This work pro-
vides a foundation and resource for understanding
the genetic regulation and physiological significance
of lipid species.

INTRODUCTION

An enormous number of chemically distinct molecular lipid spe-

cies arise from the various combinations of fatty acids and back-

bone structures such as glycerol. However, it is not intuitively

clear why nature has created so many different forms of lipids

(Wenk, 2005). Advancements of lipidomics technologies have

provided the first step toward generating a repertoire of all lipid

species on a systems scale. The next major challenge is to eluci-

date their regulation, function, and physiological impact and to

discover how these lipids interact to influence specific biological

processes.
Cell Systems 6, 1–12
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Combining systems genetics with multi-omics strategies

is helpful in understanding the association of lipid species

with genes, proteins, or physiological traits (Civelek and Lusis,

2014; Hyotylainen andOresic, 2014). Similar to the novel insights

gained from quantitative trait loci (QTL) analysis of transcripts,

proteins, or phenotypes (Andreux et al., 2012; Williams et al.,

2016; Wu et al., 2014), the QTLs of lipid species in liver can pro-

vide insights into their genetic regulation. Transcriptomic, prote-

omic, and phenotypic data can additionally be used to generate

lipid-transcript, lipid-protein, or lipid-phenotype correlations,

providing a more comprehensive view of how lipids fit into the

network of cellular processes. Likewise, reducing large lipidomic

data to clusters of co-regulated lipids enables the identification

of functionally related lipid species and helps to clarify the rela-

tionship of the lipid clusters with phenotypic traits.

It has long been possible to quantify entire classes of lipids

en masse. Recently however, it has been shown that by dis-

secting broad lipid classes into specific lipid species, one can

develop a more granular understanding of lipid-related disease

etiology, thereby improving the capacity to find and validate

drug targets. For instance, neutrophils from patients with

periodontal tissue disease accumulate specific diacylglycerol

(DAG) species, in particular 1,2-dipalmitoyl DAG (Gronert

et al., 2004). Similarly, only some molecular species of ceram-

ides were shown to be associated with certain types of cancers

or with pathways that lead to ceramide-induced apoptosis

(Koybasi et al., 2004; Kroesen et al., 2001). Given the chal-

lenges in identifying gene-environment interactions (GxE)

influencing the levels of lipid species in humans (Franks and

McCarthy, 2016), we exploited the BXD mouse genetic refer-

ence population (GRP), descending from crosses between

C57BL/6J mothers and DBA/2J fathers (Peirce et al., 2004).

In this genetically diverse population, we can tightly control

the dietary state of the individual mice over months to analyze

how genes (genotype), environment (diet), and their interactions

influence hepatic lipid species. We used systems genetics

strategies (Civelek and Lusis, 2014) including QTL mapping,

network construction, and module-trait correlation integrated
, June 27, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 1
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with multi-omics datasets (genomics, transcriptomics, prote-

omics, and phenomics) to understand the relationship between

levels of lipid species and molecular and clinical traits. These

approaches helped us to identify specific cardiolipin species

with signatures of healthy or fatty liver and candidate genes

that regulate the levels of specific lipid species.

RESULTS

Liver Lipid Profiles and Their Relationship with Clinical
and Molecular Traits
We used targeted lipidomics to measure 96 hepatic lipid spe-

cies in 385 mice belonging to 84 cohorts of the BXD GRP: 43

fed chow diet (CD) and 41 fed a high-fat diet (HFD) from 47

BXD strains. Over 29 weeks, mice underwent extensive meta-

bolic phenotyping (Williams et al., 2016). After an overnight

fast, mice were sacrificed and liver samples were collected for

lipidomics analyses. To test the quality of mass spectrometry

(MS) measurements, we performed pairwise correlation of

technical and extraction replicates, which showed consistently

robust correlations (Figures S1A and S1B). Furthermore, we

performed all possible pairwise correlations between the

measured lipid species from different groups to assess the

sensitivity of our measurements in detecting diet- and strain-

driven differences (Figure S1C). The correlation of biological

replicates within each strain in either diet was higher than within

strain-across diet (CD versus HFD) correlation, and, as ex-

pected, the correlation across strains on a given diet (either

CD or HFD) was higher than across strain-across diet correla-

tion (Figure S1C). The lipids measured include free fatty acids

(FFA, 8 species), glycerolipids (triacylglycerol [TAG, 38 species]

and diacylglycerol [DAG, 6 species]), glycerophospholipids

(phospholipids [PL, 20 species] and cardiolipins [CL, 23 spe-

cies]), and coenzyme Q9 (Table S1). Hierarchical cluster analysis

demonstrated that BXD cohorts did not completely segregate

based on their diet, indicating that the GxE interaction can over-

power the strong dietary impact on lipid profiles (Figure 1A). To

obtain an overview of the interaction between lipid species, we

performed an unweighted correlation network analysis, which

showed most lipids to be highly correlated and the correlations

within class to be generally stronger (Figures 1B [p < 1e�04] and

S1D [p < 1e�03]). Some dietary effects were evident in the cor-

relation networks, such as TAG species, which formed a tight-

knit cluster in CD but were more interspersed in HFD, revealing

the change in neutral lipid homeostasis on HFD (green nodes;

Figures 1B and S1D). While the CLs, found primarily in the mito-

chondrial inner membrane, formed a tight cluster in both diets,

the PLs, which are the general cellular membrane lipids, were

highly interspersed between different lipid classes in both diets

(red and yellow nodes, respectively; Figures 1B and S1D). This

scattered PL profile is in line with the fact that PLs are the

main substrates and intermediates in the biosynthesis of various

lipid classes (Han, 2016).

To identify lipids with similar physiological andmolecular char-

acteristics, we performed a weighted correlation network anal-

ysis (WGCNA), which clusters correlated groups of lipids into

modules (Langfelder and Horvath, 2008). More than half of the

lipids were clustered in eight modules in both diets (66% in CD

and 58% in HFD) (Figures 1C and S2A; Table S2) and most
2 Cell Systems 6, 1–12, June 27, 2018
module composition was conserved in both diets (Figures S2B

and S2C). We then performed correlation analysis between the

eigenlipid (first principal component) of each module and clinical

traits related to liver function (Figure 1D). In CD, the DAG (black),

TAG (brown), and CL (yellow) modules positively correlated with

obesity and other traits associated with liver dysfunction, while

the CD-specific TAG-PL purple module—containing species

with a higher degree of unsaturation (Figure 1C)—negatively

correlated with these traits (Figure 1D). In HFD, several modules

showed positive correlation with obesity-associated traits,

particularly DAG (black), TAG (brown and magenta), and CL

(blue and yellow) modules (Figure 1D). Interestingly, none of

the TAG modules correlated with the total TAG concentration

in liver or plasma despite the significant correlation with liver

weight (Figure 1D). This disparity can be explained by the fact

that we measured only 38 TAG species and 6 DAG species,

which constitutes only a fraction (�15%) of all the TAGs and

DAGs that exist in mouse liver. Therefore, this subset may not

necessarily reflect the total TAG concentration measured by

the enzymatic assay.

To identify molecular mechanisms underlying the lipid clus-

tering, we correlated the module eigenlipids with liver proteome

(2,622 proteins) from the same mouse cohort (Williams et al.,

2016). We selected all proteins that significantly correlated with

each module eigenlipid and performed KEGG enrichment anal-

ysis for all positively and negatively correlated proteins sepa-

rately. Interestingly, modules that earlier correlated with obesity

and liver dysfunction in both diets, including DAG (black),

TAG (brown and turquoise), and CL (blue and yellow) modules

(Figure 1D), positively correlated with pathways associated

with fatty acid and glycolytic metabolism, and peroxisome and

peroxisome proliferator-activated receptor signaling (Figure 1E).

Furthermore, these modules correlated negatively with oxidative

and proliferative pathways such as oxidative phosphorylation,

lysosome, and ribosome pathways (Figure 1E). Meanwhile the

TAG and PL purple module showed the opposite trend, nega-

tively correlating with fatty acid metabolic pathways and posi-

tively with oxidative pathways, following the same trend as in

the module-trait correlations (Figures 1D and 1E). Collectively,

these findings reveal that all lipid species of a lipid class do not

necessarily have the same molecular regulation and phenotypic

impact.

Identification of Cardiolipin Species as Signatures of
Healthy and Fatty Liver
From all lipids measured, we identified two clusters of lipid spe-

cies with strong diet-independent association with liver mass

(Figure 2A). A cluster of 13 species composed of TAGs and

DAGs with a low degree of unsaturation (1–3 double bonds;

dominated by lipids from the black and brown modules) corre-

lated positively with liver mass (Figure 2A, green font), whereas

another cluster of six lipids comprising highly unsaturated

TAGs (6–7 double bonds; dominated by lipids from the purple

module) along with two phosphatidylserine species correlated

negatively with liver mass (Figure 2A, orange font). Since the

diet changed the landscape of most liver lipids, we next

analyzed lipids that strongly associated with liver mass in

each individual diet (Figure 2B). Twenty-seven lipids in CD

and 40 in HFD (including all 19 lipids from Figure 2A) strongly
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Figure 1. Liver Lipid Species Profiles and Their Association with Physiological and Molecular Traits

(A) Heatmap analysis with unsupervised hierarchical clustering of 96 lipid species for each BXD cohort shows mixed dietary and genetic impact.

(B) Spearman correlation network (p < 1e�04) of all lipid species measured in CD and HFD. Lipid species are color coded as seven major lipid classes. The side-

chain fatty acid composition of lipids has been abbreviated (O, oleic acid; P, palmitic acid; Po, palmitoleic acid; S, stearic acid; L, linoleic acid; Dha, docosa-

hexaenoic acid). Refer to Table S1 for abbreviation and composition.

(C) Legend of the module composition, indicating the range of total number of carbons and degree of unsaturation.

(D) Lipid module-clinical trait correlation. Each cell is color coded by the Pearson’s correlation coefficient according to the legend color on the right. The asterisks

in the cells represent the p value of the correlation (*p < 0.05, **p < 0.01, ***p < 0.001).

(E) Module and its corresponding KEGG enriched pathway correlation. Red and blue cells represent the enriched pathways with the positively (scale bar:

log10 p value) and negatively (scale bar: �log10 p value) correlated proteins, respectively. Lipid classes hereafter are abbreviated as follows: TAG/TG, tri-

acylglycerol; DAG, diacylglycerol; FFA, free fatty acid; PL, phospholipid (PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine;

PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine); CL, cardiolipin; MLCL, monolysocardiolipin.

See also Figures S1 and S2; Tables S1 and S2.
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correlated with liver mass. Of note, liver mass was centrally

positioned in the resulting HFD network, showing dense corre-

lations with the 40 lipid species compared with the CD network

where liver mass was at the periphery of the network with 27

lipids (Figure 2B). Interestingly, a subset of nine CL and mono-

lysocardiolipin (MLCL) species showed a predominant associa-

tion with liver mass in HFD but not in CD (Figure 2B, red nodes).

This finding is noteworthy because CL—the signature phos-

pholipid of the mitochondrial inner membrane—is indispens-

able for a range of mitochondrial activities (Claypool and Koeh-
ler, 2012). Alterations in the content and/or structure of CL have

been reported in several tissues in a variety of pathological set-

tings. However, a major unresolved question is whether CL

molecules with different acyl chain compositions differ func-

tionally (Claypool and Koehler, 2012). Of these nine CL species,

only tetralinoleoyl-CL (CL(LLLL)) and its precursor/remodeling

intermediate, trilinoleoyl-MLCL (MLCL(LLL)) (neither belonging

to any module) showed negative correlation with liver mass;

whereas the other seven CLs enriched in monounsaturated

fatty acids (MUFAs), oleic (O) acid, and palmitoleic (Po) acid
Cell Systems 6, 1–12, June 27, 2018 3
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Figure 2. Identification of Cardiolipin Signatures of Healthy and Fatty Liver

(A) Correlation diagram (corrgram) showing diet-independent association of lipid species with liver mass. Lipid species with Spearman’s correlation p value <0.05

with liver mass (both normalized to body weight [%] and unnormalized [weight in grams]) in both CD and HFD were selected.

(B) Spearman correlation network of diet-specific significant correlation of lipid species with liver mass in CD (left) and HFD (right).

(C) Corrgram of CLs that significantly correlate with liver mass in HFD.

(D–F) C57BL/6J mice were fed with CD or high-fat high-sucrose (HFHS) diet for 18 weeks or nicotinamide riboside (NR)-supplemented HFHS diet, 9 weeks after

the start of the HFHS diet (HFHS + NR). Levels of healthy (D) and unhealthy (E) CL species in livers of the three cohorts. Note that the CLs—CL(LOOPo),

CL(LLPoP), and CL(OOOP)—are shown in the figure with an additional CL species because the two are isobaric and were inseparable chromatographically.

(F) Corrgram showing negative correlation of obesity and NAFLD traits with healthy CL species and positive correlation with unhealthy CL species.

For (D) and (E), data are represented as means ± SEM. *p < 0.05, **p < 0.001; ***p < 0.0001.
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(all from the yellow module), positively correlated with liver

mass (Figure 2C). This demonstrates a change in CL remodel-

ing under HFD that depletes the CL species predominant in

healthy tissue—CL(LLLL) (Chicco and Sparagna, 2007) and its

precursor, MLCL(LLL)—suggesting that these CL species may

be signatures of healthy/normal liver. Conversely, the other

seven MUFA-enriched CLs that correlated positively with liver

mass in HFD may be considered signatures of unhealthy/

fatty liver.

We next tested whether this change in the profile of nine CL

species is a general phenomenon in other dietary-induced

models of hepatic steatosis and mitochondrial dysfunction and
4 Cell Systems 6, 1–12, June 27, 2018
whether the profile can be reverted by ameliorating hepatic stea-

tosis by enhancing mitochondrial function. We have previously

shown that nicotinamide riboside (NR) treatment ameliorates

high-fat high-sucrose (HFHS) diet-induced fatty liver disease

by boosting nicotinamide adenine dinucleotide (NAD+) levels

and thereby enhancing mitochondrial function (Gariani et al.,

2016). Therefore, we performed lipidomic profiling from the livers

of C57BL/6J mice—the most commonly used laboratory mouse

strain—fed on (1) CD, (2) HFHS diet for 18 weeks, or (3) HFHS +

nicotinamide riboside (NR), added 9 weeks after the start of the

HFHS diet (therapeutic approach) (Gariani et al., 2016). In line

with our findings from the HFD-fed BXD study, HFHS diet
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Figure 3. Genetics of Lipid Species

(A) Circos plot of all lipids measured. Blue bars in

the outermost ring represent the log2 fold change

(HFD versus CD) of the lipids. Lipids increased in

CD or HFD are shown in green and blue font,

respectively. Orange bars represent the correla-

tion of lipids between CD and HFD. Significant

correlations (adjusted p value <0.05) are repre-

sented by asterisks. Red bars represent lipid h2 in

CD (light red) and HFD (dark red). The inner ring of

yellow bars represents the strength of lQTLs in CD

(light yellow) and HFD (dark yellow). Number of

bars per lipid is equivalent to the number of lQTLs.

The lines between the two innermost rings stem

from the peak lQTL bar (with LOD > 3) and termi-

nate on their approximate chromosomal position

of the innermost ring. Lipid pairs marked with ‘‘_1’’

and ‘‘_2’’ (TAGs 54:5, 54:6, 56:7; PI(22:6_18:0) and

CL(LLPoP)) indicate two isobaric peaks.

(B) Schematic representation of the lQTLs. A total

of 136 lQTLs (55 CD and 81 HFD) were mapped

from 37/46 lipids in CD/HFD. The number of QTLs

(red font) per lipid species (blue font) is indicated.

See also Figure S3 and Tables S3–S5.
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decreased the CL signatures of healthy/normal liver—CL(LLLL)

and MLCL(LLL)—whereas it increased the six CL signatures

of unhealthy/fatty liver—MLCL(LOO), MLCL(LLO), CL(LOOPo),

CL(LLPoP), CL(LOOO), CL(OOOP)—enriched in MUFAs (Figures

2D and 2E). CL(OOOO), detected in the BXD study (Figures 2B

and 2C), was too low to be detected in all samples from the

NR study. Interestingly, NR treatment increased the levels of

the healthy CLs, whereas it decreased the levels of the unhealthy

CLs (Figures 2D and 2E). Importantly, the two healthy CLs corre-

lated negatively with obesity and NAFLD traits while the un-

healthy CLs showed positive correlation (Figure 2F). These

data show that all lipid species within a class do not necessarily

behave similarly, as demonstrated here with specific CL species

that have signatures of healthy or fatty liver.

Liver Lipids Are Influenced by Multiple Genomic Loci
We next analyzed globally how genotype and diet influence lipid

species (Figure 3A). Sixty-three percent of the measured lipids

were significantly affected by diet: 28 upregulated in CD (green
font) and 33 upregulated in HFD (blue

font) (Figure 3A and Table S3). Approxi-

mately half of the lipids correlated posi-

tively between the diets, 24 of them being

significant (orange bars, Figure 3A and

Table S3). Next, we assessed the herita-

bility (h2; percentage of trait variation

attributed to additive genetic factors) for

all lipid species within dietary groups

(CD [light red] and HFD [dark red], Fig-

ure 3A) and across both diets combined

(CD + HFD/mixed) (Belknap, 1998) (Table

S4). Within a dietary cohort, 30%–60%

of the observed variance in lipid levels

could be explained by genetic differences

across strains (i.e., h2 R 30%) for the
strong majority of lipid species (66% in CD and 76% in HFD).

Conversely, when dietary cohorts were combined, only 13% of

lipids had h2 above 30% (Table S4).

Next, we mapped QTLs for all lipid species (lQTL) and lipid

modules (modQTL) (Table S5). Most chromosomes contained

at least one lQTL, and some hotspot regions on chromosomes

2, 4, 6, 9, 15, and X were quite distinct (Figure 3A). We detected

136 lQTLs: 55 in CD and 81 in HFD from 37 and 46 lipid species,

respectively (Figure 3B). While over half of these lipids had only

one QTL (26 CD and 21 HFD), the remaining lipids had more

than one lQTL (11 in CD and 25 in HFD), indicating a polygenic

regulation of these lipid species (Figure 3B). lQTLs were typically

unique to either CD or HFD, with only one lipid species,

TAG(58:8), mapping to the same locus on chromosome 11

(118.9–118.5 Mb) in both diets (Figure S3A). Interestingly, this

locus harbors genes involved in lipid (Acox1, Fasn, P4hb,

St6galnac1) and carbohydrate (Afmid, Gaa, Galk1) metabolic

processes. Importantly, these genes (among others in this re-

gion) also have cis-e/pQTLs in liver and coding sequence
Cell Systems 6, 1–12, June 27, 2018 5
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Figure 4. Genetic Assessment of lQTLs

(A) Manhattan plot of lipid species in CD and HFD. Names of the lipid species with genome-wide p value <0.05 are indicated.

(B) All genes under the lQTLs (±5 Mb from the peak) were filtered through four independent pipelines as indicated. Genes fulfilling two or more of the filtering

criteria were analyzed for enrichment of GO biological process (BP).

(C) Enriched GO BP from 566 filtered lQTL genes.

(D) lQTL position of the top 14 QTLs (p < 0.05). The candidate genes fulfilling four (red font), three (orange font), and two (gray font) of the four filtering criteria are

indicated below each lQTL peak. Genes indicated with asterisks are associated with metabolic phenotypes.

(E) KEGG enrichment analysis of genes under the top 14 lQTLs passing two or more of the filtering criteria.

For (A) and (D), blue and black dotted lines represent suggestive and significant QTL threshold, respectively. See also Tables S5 and S6.
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variants in the BXDs (Figure S3A). Furthermore, TAG(58:8) levels

were not significantly different across diets and were among

those having high h2 in both dietary cohorts (h2 > 40%) and

also when dietary cohorts were combined (33.5%) (Figure S3B).

This indicates that TAG(58:8) is predominantly under the same

genetic control in both diets. The lack of cross-diet overlap in

the rest of the lQTLs suggests that GxE factors regulate nearly

all lipid species.

Genetic Assessment of the lQTLs
To assess the efficacy of lQTLs and find candidate genes that

regulate lipid levels, we performed an in-depth analysis of all sig-

nificant and suggestive lQTLs (Figure 4A, lQTLs above the blue

dotted line; 55 in CD and 81 in HFD). All genes under these lQTLs

were filtered along four parallel pipelines (Figure 4B): genes un-
6 Cell Systems 6, 1–12, June 27, 2018
der lQTLs (1) with non-synonymous SNPs in BXDs, (2) with

self-regulating QTLs (cis-e- and/or p-QTL), (3) with significant

correlation (p < 0.05) with the lipid itself, and (4) with variable

transcript expression (SD > 0.25). While the integration of prote-

omics data was advantageous, transcriptomics data were sub-

stantially more consequential to candidate selection as more

genes were assayed (�20,000 with transcriptomic versus

�2,600 with proteomic data), and this also avoids post-transla-

tional and protein regulation variations. Genes passing two of

the four filters in either diet (299 of 2,845 genes in CD and 327

of 3,818 in HFD) were analyzed for gene ontology (GO) pathway

enrichment (Figure 4B). Remarkably, the filtered lQTL candidate

genes were enriched in lipid metabolic pathways (Figure 4C). We

next applied the same filtering criteria for the top 14 lQTLs (Fig-

ure 4A, lQTLs above the black dotted line) comprising 4 CL,



C

E

A B

D

F

Figure 5. FFA Module Identifies a Genetic Hotspot Locus Associated with Fatty Acid Metabolism and Signaling

(A) Red module QTL showing significant peak on chromosome 4 (left) in HFD and the weighted correlation network of the FFAs (right) in the red module.

(B) Hotspot region on chromosome 4 showing the overlapping QTL of the redmodule and the individual FFAs of the module. modQTL genes involved in fatty acid

metabolic processes and signaling are indicated along with their biological function.

(C) Schematic representation of monounsaturated fatty acid (MUFA) synthesis.

(D) Stearoyl-CoA desaturase (SCD) activity index represented as ratios of MUFA to saturated fatty acid (SFA). Data are represented as means ± SEM.

(E) Spearman correlation between hepatic expression of SCD transcript and protein (SWATH) with SCD activity index.

(F) Pearson’s correlation between the basal RER and the red module.

For (A) and (B), blue and black dotted lines represent suggestive and significant QTL threshold, respectively.
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6 TAG, 2 PL, and the FFA 16:0 and 16:1n7 lQTLs (Figure 4D).

These lQTLs had many genes fulfilling 3–4 of our filtering criteria

(Figure 4D, genes indicated in orange and red font) and several

with known association withmetabolic and liver-associated phe-

notypes (Figure 4D, genes indicated with asterisks). In total, 104

candidate genes that fulfilled two or more of the filtering criteria

from these 14 lQTLs were subsequently analyzed for enrichment

of KEGG pathways. In line with the above findings, these genes

were enriched in fatty acid metabolic processes in addition to in-

flammatory response (Figure 4E). We have provided an exhaus-

tive list of candidate genes (based on the filtering pipeline of

Figure 4B) for each lQTL (Table S6; CD and HFD lQTLs provided

in separate excel sheets). Additionally, genes under the lQTLs

that pass at least two filters are tabulated in Table S5. Taken

together, these data show that lipid species of the same class

can be regulated by several loci throughout the genome and
demonstrate the utility of integrating multi-omics datasets with

lQTLs in the identification of putative genetic regulators of lipid

species.

The FFA Module Maps to a Genetic Hotspot Associated
with Fatty Acid Metabolism and Signaling
Next,we analyzed one of the diet-specific hotspot lQTL regions to

demonstrate the validity of our lQTLsat thegenetic andphysiolog-

ical level.Module-level QTL scans showed aQTL for the redmod-

ule (comprising six of the eight FFAs measured) only in HFD and

not CD on chromosome 4 (Figure 5A). TheQTL for the redmodule

overlappedwith that of its constituent FFAs and contained several

genes passing one ormore of our filtering criteria (fromFigure 4B),

including 12 genes involved in fatty acid metabolism, insulin,

interferon, and Toll-like receptor signaling, suggesting a robust

hotspot region of these metabolic processes associated with
Cell Systems 6, 1–12, June 27, 2018 7
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FFAs (Figure 5B) (Jump, 2011; Malhi and Gores, 2008). Among

these 12 genes, it is important to highlight methylthioadenosine

phosphorylase (MTAP), which passes all four filtering criteria.

MTAP deficiency has recently been shown to increase the risk

for progression of chronic liver disease due to compromised liver

proteome methylation (Bigaud and Corrales, 2016).

Having identified the potential genetic regulatory region of

these FFAs under HFD, we next tested whether oleic and palmi-

toleic acids of the module—showing the strongest strength of

association (Figure 5A [right], thickness of edges)—show the

typical biological profile of stearoyl-CoA desaturase (SCD)-

mediated MUFA synthesis under HFD (Figure 5C, adapted

from Jump, 2011). Indeed, SCD activity index, as assessed by

the ratios of MUFA to saturated fatty acid (SFA)—16:1n7/16:0

and 18:1n9/18:0—was significantly increased in HFD cohorts

(Figure 5D). Additionally, the lipid ratios as readouts of the SCD

activity index showed positive correlation with both mRNA and

protein levels of SCD in HFD, but not in CD (Figure 5E).

Since fat is the predominant energy source in HFD (60.3% kcal

from fat; 27.3% kcal from carbohydrate) as opposed to carbohy-

drate in CD (6.2% kcal from fat; 44.2% kcal from carbohydrate),

we testedwhether the FFAs in thismodule reflect this at the phys-

iological level. To do so, we tested whether the redmodule eigen-

lipid correlated negatively with respiratory exchange ratio (RER).

RER is a measurement of the primary energy substrate used by

anorganism: lowerRERvalues indicate fat as thepredominant en-

ergy source, while higher values indicate higher contribution from

carbohydrates. Indeed the red module correlated negatively with

RER inHFDcohorts,whichhave lowerbasalRER (Figure5F;black

dots confined toward left of the x axis), whereas no significant cor-

relationwasobserved inCDcohorts (Figure 5F; greendots spread

toward the right of the x axis). These findings demonstrate the val-

idity of our QTL mapping and highlight the potential utility of

WGCNA clustering of lipids in modules for lipidomics analysis

and the identification of biologically relevant modQTLs.

Identification of lQTL Genes Associated with Abnormal
Lipid Metabolism in Human GWASs and Mapping of
lQTLs in TAG Biosynthetic Pathway
Human genome-wide association studies (GWASs) have

identified many genetic variants associated with plasma lipids

and abnormal lipid metabolism (http://jjwanglab.org/gwasdb,

https://www.ebi.ac.uk/gwas/). Taking advantage of these genes

identified in GWASs (Table S7), we screened the lQTLs for the

presence of any human GWAS genes associated with abnormal

lipid metabolism (Figure 6A). We screened only those genes un-

der the lQTLs which fulfilled at least two of the four filtering

criteria, shown in Figure 4B. Twenty-seven lQTLs (7 CD and 20

HFD) harbored 20 out of 494 genes pre-selected from human

GWASs for abnormal lipid metabolism (Figure 6A; see Table

S7 for extended information on the identified hits). To test the

probability of this overlap by chance, we performed 10,000 per-

mutations, each of which involved comparing the number of

genes that overlap between a random set of 494 human genes

and the 566 BXD lQTL genes (from Table S5). The distribution

of the overlap across all permutations formed the null distribu-

tion. Only 1.49% of random trials had an overlap greater than

or equal to the true overlap of 20 genes (Figure S3C) correspond-

ing to a p value of 0.0149. This indicates that the probability that
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20 or more GWAS genes found to overlap by chance under the

calculated null distribution is only 1.49%.

Of note, the QTL position of three lipid species TAG(54:6)_2,

TAG(56:8), and PI(20:4_16:0) mapped to genes implicated in

NAFLD in human GWASs, including TM6SF2, NCAN, CILP2,

PPP1R3B, and LYPLAL1 (Anstee and Day, 2013; Kahali et al.,

2015; Lusis et al., 2016) (Figures 6A and 6B). TAG(54:6)_2 map-

ped to Tm6sf2 (influences TG secretion and hepatic lipid droplet

content), and Ncan (cell adhesion) on chromosome 8. Notably,

these two genes along with Cilp2 (carbohydrate binding) have

protein-coding variants in the BXDs. Additionally, the region of

Ncan, Tm6sf2, andCilp2 is syntenic with the localization of these

genes on human chromosome 19 (Figure 6B, middle), suggest-

ing a conserved role/regulation of these genes in both mice

and humans. TAG(56:8) mapped to Ppp1r3b (limits glycogen

breakdown) on chromosome 8 and PI(20:4_16:0) mapped to

Lyplal1 (having lysophospholipase activity) on chromosome 1

(Figure 6B), both of which have coding variants and cis-eQTLs

in liver, heart, muscle, and adipose tissue of BXDs. Taken

together, these links from human GWASs to lQTLs provide a ba-

sis for understanding both the function of numerous under-

studied and/or uncharacterized GWAS genes and the role of

the individual lipid species in health and disease.

Next, we tested whether the total TAG content mapped to any

of the eight genes (PNPLA3,GCKR, TRIB1, LYPLAL1,PPP1R3B,

TM6SF2,NCAN, andCILP2) proven to cause or increase the sus-

ceptibility to hepatic steatosis/NAFLD in human GWASs (Anstee

andDay, 2013; Kahali et al., 2015; Lusis et al., 2016). Hepatic TAG

quantification (normalized to protein levels) in BXDs did not show

any significant difference between the CD and HFD cohorts (Fig-

ure S4A). However, the TAG content in CD cohorts correlated

with proteins and transcripts that were enriched in lipidmetabolic

processes (Figure S4B) and the TAG content in HFD cohorts

correlated positively with body weight and fat mass and nega-

tively with the leanmass (Figure S4C). This association of hepatic

TAG content with its expected physiological andmolecular func-

tion affirms the reliability of the TAGmeasurement despite no sig-

nificant dietary difference. QTLmapping of the hepatic TAG con-

tent showed two suggestive QTLs at chromosomes 4 and 17 in

HFD cohorts, whereas no QTL was observed in CD (Figure S4D).

Notably, TAG content did not map to any of the eight human

NAFLD GWAS genes stated above, nor to any of the individual

TAG lQTLs. This indicates a diverse genetic regulation of individ-

ual TAG species, different from the regulation of total TAG con-

tent, and highlights the importance of examining individual TAG

species. Therefore, we examined whether genes known to be

involved in the TAG biosynthesis pathway (Table S7) were found

to fulfill any one of the four filtering criteria shown in Figure 4B in

either diet for individual TAG, FFA, and PL lQTLs. Fourteen genes

(4CD, 7HFD, and 3CD+HFD) involved in TAGbiosynthesiswere

found under 30 lQTLs (Figure 6C). Collectively, our data demon-

strate the complexity of the genetic regulation of different lipid

species and the importance of studying individual lipid species

to find common targets between mice and humans.

DISCUSSION

Data on the genetic regulation and physiological significance of

individual lipid species on a population scale is very limited for

http://jjwanglab.org/gwasdb
https://www.ebi.ac.uk/gwas/
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Figure 6. lQTL Genes Associated with Abnormal Lipid Metabolism in Human GWASs and with TAG Biosynthetic Pathway

(A) lQTL genes fulfilling two or more filtering criteria as shown in Figure 4B were screened for any known association with abnormal lipid metabolism in human

GWASs. The screening identified 20 GWAS genes from 27 lQTLs (top). Each box of the table represents the lQTL(s) for the indicated gene(s) and the GWAS

phenotype associated with the genes.

(B) QTL position of the three lipid species (TAG(54:6)_2, TAG(56:8), and PI(20:4_16:0)) that map to the indicated genes (in red) implicated in hepatic steatosis in

humanGWASs. The loci ofCilp2, Tm6sf2, andNcan is syntenic inmice (left) as well as in humans (middle). The genomic location of the genes is shown in red in the

positive strand for NCAN and CILP2 and in the negative strand for TM6SF2. Blue and black dotted lines represent suggestive and significant QTL threshold,

respectively.

(C) Schematic representation of TAG biosynthetic pathways showing only those candidate genes that are under the lQTLs and fulfill one or more of our filtering

criteria. lQTLs are represented in gray. Genes under CD lQTLs are in blue, those under HFD lQTLs in red, and those under both CD and HFD lQTLs in purple.

See also Figures S3C and S4; Table S7.
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both mouse (Hui et al., 2015) and human populations (Gronert

et al., 2004; Koybasi et al., 2004; Kroesen et al., 2001). Here,

we profiled a subset of liver lipid species from different classes

and integrated them with multi-omics datasets (genetics, tran-

scriptomics, proteomics, and phenomics) to understand their

genetic, environmental, and GxE regulations and physiological

roles. We identified individual lipid species and lipid modules

that affect different clinical traits, revealing a link between their

levels and their physiological and molecular functions. In partic-

ular, specific CL species were identified that associate either

positively or negatively with obesity and NAFLD signatures.

Lastly, we demonstrate the reliability of lQTLs through several

examples that were supported by multi-omics analysis and pro-
vide a resource of candidate genes that can regulate many of the

lipid species wemeasured. Our findings illustrate the importance

of studying individual lipid species and provide a platform for

further mechanistic studies of lipid species.

Similar to the plasma lipids in our companion article (Jha et al.,

2018), hepatic lipid species are also correlated across lipid class.

By clustering lipids into modules, we established functional links

between these modules and their molecular and physiological

signatures. Two observations were particularly distinct between

the plasma and liver lipids. First, in contrast to the plasma

lipid profile, where unsupervised hierarchical clustering distinctly

separated the CD andHFD groups (Jha et al., 2018), the liver lipid

profile did not show a distinct dietary separation. Second, the h2
Cell Systems 6, 1–12, June 27, 2018 9
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of the liver lipids was lower than that of plasma lipids. These dif-

ferences can be attributed to the fact that (1) liver, being the hub

of most metabolic processes, is more dynamic and influenced

by a multitude of factors (diet, hormones, stress) versus the

plasma lipid profile, which represents an equilibrium state as a

result of metabolic processes from all peripheral tissues; and

(2) additional steps such as tissue homogenization and normali-

zation to protein levels are required for liver lipidomics,

increasing the possibility of technical error.

A high-fat dietary challenge had a striking impact on the cardi-

olipin profile, wherein the CL signatures of healthy liver (CL(LLLL)

and MLCL(LLL)) were decreased and the signatures of fatty liver

(MUFA-enriched CLs and MLCLs) were increased. Notably,

CL(LLLL) comprises the majority of CLs in the inner mitochon-

drial membrane, and a loss in CL(LLLL) content typically reflects

the loss of mitochondrial mass (Koekemoer and Oelofsen, 2001).

While a decrease in CL(LLLL) has been categorically associated

with heart failure, senescence, and Barth syndrome (Chicco

and Sparagna, 2007), its role in hepatic steatosis/NAFLD has

not been clearly established (Cole et al., 2016). Therefore, we

validated our findings from the HFD-BXD study in another

model of HFHS-induced hepatic steatosis, which confirmed

that indeed healthy CLs decrease in NAFLD and negatively

correlate with obesity and NAFLD traits and, conversely, un-

healthy CLs increase in NAFLD and positively correlate with

obesity and NAFLD traits. This suggests that this change in the

CL profile, in particular a decrease in CL(LLLL) content, could

be one of the underlying causes of hepatic steatosis and/or

may in itself serve as a disease biomarker. If this is the case, in-

terventions to ameliorate steatosis should be accompanied by

increase in healthy CLs and a decrease in unhealthy CLs, as illus-

trated by treating mice having NAFLD with the NAD+ precursor,

NR. This finding adds to the conceptual understanding of the

pathways via which NR may act to boost mitochondrial function

(Gariani et al., 2016), i.e., by increasing CL(LLLL) and MLCL(LLL)

content in liver.

QTL analysis showed that about half of the lipids (having QTLs)

mapped to multiple QTLs, suggesting a polygenic regulation of

lipid species. This is in line with the diverse functional roles of

lipids in signaling, in protein binding, in membrane function,

and as energy substrates (Han, 2016). These results furthermore

show that lipid species are complex traits affected not only by

the environment but also by multiple genetic pathways, i.e.,

not regulated primarily by single rate-limiting enzymatic path-

ways. The complexity of lipidomics can be better appreciated

when compared and contrasted with metabolomics/metabolites

where often there is one key regulatory enzyme for a reaction or a

pathway to which metabolite QTLs will frequently map (Wu et al.,

2014). In contrast, for most lipid species it is uncommon that one

enzyme regulates the level of a particular lipid species. The num-

ber of genes and proteins in a particular lipid biosynthetic

pathway is far fewer than the species in each class of lipid (Que-

henberger and Dennis, 2011), indicating that (1) one gene regu-

lates a number of lipid species and (2) many genes can regulate

one lipid species.

To prove the reliability of the lQTLs, we performed a multi-

omics analysis of candidate genes under the lQTLs, which pro-

vided compelling candidate genes and enriched pathways asso-

ciated with lipid metabolic processes. If the mouse is to serve as
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a model of metabolic and lipid traits in humans, it is important

that the relevant pathways are conserved in the two species.

One measure of such conservation is the degree of overlap be-

tween mouse QTLs and human GWAS data. Our data show

several lQTLs harboring humanGWAScandidate genes for lipids

and associated metabolic traits. Although with this overlap we

cannot infer whether the lipid-modulating allele associated with

the gene is acting in the same direction in both mouse and hu-

man, for genes that have been mechanistically examined in the

literature this directionality can be checked. These findings build

a strong foundation for future mechanistic studies to find com-

mon links between the genetic control of lipid metabolism be-

tween mouse and human, as has been successfully achieved

by the hybrid mice diversity panel (HMDP) for other traits, such

as osteoporosis, obesity, blood cell levels, and heart failure (Lu-

sis et al., 2016). Hence, we provide here candidate genes for all

lQTLs as a cornerstone for future research on the regulation of

individual lipids across species with human translational value.

Interestingly, total hepatic TAG content did not have any sig-

nificant QTL overlap with individual TAG lQTLs. This highlights

a key point: the regulation of individual lipid species is diverse

and distinct from the total concentration of the class to which

they belong. Therefore, it is necessary to have more focused

studies on individual lipid species, which can uncover their func-

tions as well. In agreement with this, we have illustrated in our

companion article (Jha et al., 2018) that specific TAG species

can have positive or negative signatures of NAFLD. Future

work on other important lipid classes including extensive

coverage of ceramides, DAGs, and eicosanoids will be helpful

in dissecting other equally relevant NAFLD and metabolic syn-

drome signatures.

In summary, this liver-centric lipidomics study provides a

framework to uncover the genetic regulation and physiological

impact of individual lipid species, with an ultimate goal to

improve our understanding of diseases linked to abnormal lipid

metabolism. This insight may help to identify new drug targets

involved in lipid disorders and guide the development of clinically

relevant disease signatures.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Q6 internal standard Avanti Polar Lipids Cat# 900150

PC(15:0/15:0) internal standard Avanti Polar Lipids Cat# 850350P

PS(17:0/17:0) internal standard Avanti Polar Lipids Cat# 840028P

PE(15:0/15:0) internal standard Avanti Polar Lipids Cat# 850704P

PA(17:0/17:0) internal standard Avanti Polar Lipids Cat# 830856P

PG(15:0/15:0) internal standard Avanti Polar Lipids Cat# 840446P

CL(56:0) internal standard Avanti Polar Lipids Cat# 750332P

FA(15:0/15:0) internal standard,

Pentadecanoic Acid

Sigma-Aldrich Cat# 91446

SPLASH Lipidomix Mass Spec Standard Avanti Polar Lipids Cat# 330707

Critical Commercial Assays

AST: AST Flex reagent cartridge Siemens Healthcare Cat# DF41A

ALT: ALTI Flex� reagent cartridge Siemens Healthcare Cat# DF143

LDL: ALDL Flex reagent cartridge Siemens Healthcare Cat# DF131

HDL: AHDL Flex reagent cartridge Siemens Healthcare Cat# DF48B

Cholesterol: CHOL Flex reagent cartridge Siemens Healthcare Cat# DF27

Plasma TG: TGL Flex reagent cartridge Siemens Healthcare Cat# DF69A

LDH: LDI Flex reagent cartridge Siemens Healthcare Cat# DF54

HR Series NEFA-HR(2) FUJIFILM Wako Dignostics http://www.wakodiagnostics.com/

r_nefa.html

Glucose: GLUC Flex reagent cartridge Siemens Healthcare Cat# DF40

Mercodia Mouse Insulin ELISA kit Mercodia Cat# 10-1247-01

Liver TG: Serum Triglyceride Determination Kit Sigma-Aldrich Cat#TR0100

Deposited Data

BXD liver lipidomics data [raw] This paper https://chorusproject.org/anonymous/

download/experiment/

26fdcc1032254f5fa7095c1aa1e829d8

https://chorusproject.org/anonymous/

download/experiment/

73040a708ca24efeb84c92bd5e0d9b8c

BXD liver lipidomics data [normalized] This paper http://www.genenetwork.org/

GN Accession: GN602. RecordIDs

19803-19994

BXD mouse genotype data http://www.genenetwork.org/ GN Accession: GN600

BXD mouse metabolic phenotype data http://www.genenetwork.org/ GN Accession: GN602

BXD mouse liver transcriptome data http://www.genenetwork.org/ GN Accession: GN432 (CD),

GN431 (HFD)

BXD mouse liver SWATH proteomics data http://www.genenetwork.org/ GN Accession: GN540 (CD),

GN541 (HFD)

GWASdb2 (Li et al., 2016) http://jjwanglab.org/gwasdb

GWAS Catalog (MacArthur et al., 2017) https://www.ebi.ac.uk/gwas/

Software and Algorithms

R The R Foundation https://www.r-project.org/

MATLAB Mathworks https://www.mathworks.com
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MATLAB Bioinformatics Toolbox Mathworks https://www.mathworks.com/products/

bioinfo.html

corrgram The R Foundation https://cran.r-project.org/web/packages/

corrgram/index.html

R/qtl (v 1.39-5) package (Broman et al., 2003) http://www.rqtl.org/

Unweighted correlation network custom package imsbInfer Github (https://github.com/

wolski/imsbInfer)

WGCNA (Langfelder and Horvath, 2008) https://labs.genetics.ucla.edu/

horvath/CoexpressionNetwork/

Rpackages/WGCNA/

biomaRt Bioconductor http://bioconductor.org/packages/

biomaRt/

clusterProfiler (Yu et al., 2012) https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

Circos (Krzywinski et al., 2009) http://circos.ca/

Tracefinder Thermo Scientific Cat# OPTON-30626

GraphPad Prism 7 GraphPad https://www.graphpad.com/

Other

Q Exactive mass spectrometer, Build 2.3 SP2 Thermo Scientific https://www.thermofisher.com/order/

catalog/product/IQLAAEGAAPFALGMAZR
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Johan

Auwerx (admin.auwerx@epfl.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
BXD strains were obtained from University of Tennessee Health Science Center (Memphis, TN, USA) and JAX (The Jackson Lab-

oratory) and bred at the École Polytechnique Fédérale de Lausanne (EPFL) animal facility for more than two generations before

incorporation into the study. Cohorts of 47 BXD strains with �5 males each on CD and HFD were used in this study. Mice

from 43 strains were fed a chow diet [CD; 2018 Teklad Global 18% Protein Rodent Diet (6.2% kcal from fat; 44.2% kcal from car-

bohydrate; 18.6% kcal from protein)] and from 41 strains a high fat diet [HFD; Harlan Teklad, TD.06414 (60.3% kcal from fat;

27.3% kcal from carbohydrate; 18.4% kcal from protein)] for 21 weeks, starting 8 weeks of age. During the course of 21 weeks,

mice underwent extensive metabolic phenotyping as described (Williams et al., 2016). At week 29, animals were fasted overnight

before sacrifice at 9:00 am. Blood was collected from isoflurane-anesthetized mice via the vena cavae, and immediately after-

wards animals were perfused with 4�C PBS, through the left ventricle, then organs were harvested. Blood was collected in

lithium-heparin (LiHep)–coated tubes (Microvette CB 300 Hep-Lithium, Sarstedt) shaken and kept in ice. The blood samples

were centrifuged at 4500 revolutions per minute (rpm) for 10 min at 4�C before being flash-frozen in liquid nitrogen for subsequent

measurement of plasma lipid species (see companion article [Jha et al., 2018]) and plasma clinical traits. Due to breeding limita-

tions and unforeseen deaths of some mice during the course of phenotyping, all strains do not have 5 mice each, average being

3-5 mice/strain.

For in vivo validation of CL species, liver samples were used from our previous study (Gariani et al., 2016). In brief, male C57BL/6J

micewere separated into three groups of 6-9mice per group, at the age of 7weeks. Animal cohorts were fed a CD, aWestern high-fat

and high-sucrose (HFHS) diet [HFHS; Harlan Teklad, TD.08811, (44.6% kcal from fat; 40.7% kcal from carbohydrate; 14.7% kcal

from protein)] or a HFHS diet that was supplemented with NR (400mg/kg/day) at week 16 till week 25 (9 weeks). Mice were sacrificed

after a 4 hour fast at 9:00 am. All experiments were approved by the Swiss cantonal veterinary authorities of Vaud under licenses

2257, 2257.1 and 2465.
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Fatty Acid Composition (%) in the Diet of BXD Cohorts
Fatty acids Symbol CD HFD

Palmitic C16:0 0.7 8.02

Stearic C18:0 0.2 3.93

Oleic C18:1n9 1.2 14.68

Linoleic C18:2n6 3.1 4.7

Linolenic C18:3n3 0.3 0.55

Saturated fat 0.9 12.48

Monounsaturated fat 1.3 16.05

Polyunsaturated fat 3.4 5.4

Total fat 6.2 34.3
METHOD DETAILS

Plasma Clinical Traits of BXD Cohorts
Plasma parameters weremeasured on 2 times diluted samples (1:1 ratio of plasma to diluent) using Dimension�Xpand Plus (Siemens

Healthcare Diagnostics AG, Dudingen, Switzerland). The biochemical tests were performed according to the manufacturer instruc-

tions for each parameter: AST (Siemens Healthcare, DF41A), ALT (Siemens Healthcare, DF143), Glucose (Siemens Healthcare,

DF40), HDL (Siemens Healthcare, DF48B), LDL (Siemens Healthcare, DF131), Cholesterol (Siemens Healthcare, DF27), LDH

(Siemens Healthcare, DF54), TG (Siemens Healthcare, DF69A) and FFA (FUJIFILM Wako Dignostics, NEFA-HR (2)). Insulin concen-

tration was measured with an ELISA assay kit (Mouse Insulin ELISA Kit; Mercodia).

Clinical traits used for correlation of lipid signatures with metabolic phenotypes in C57BL/6J mice (Figure 2F) was obtained from

our previous study (Gariani et al., 2016). BXD metabolic and clinical data can be obtained from (Williams et al., 2016) and also avail-

able on GeneNetwork (http://www.genenetwork.org).

Body Composition (EchoMRI)
In addition to the body weight measurements taken each week and before each phenotyping experiment, body composition was

recorded at 16, 23, and 25 weeks of age. To do so, each mouse was placed briefly in an EchoMRI (magnetic resonance imaging)

machine (the 3-in-1, EchoMedical Systems), where lean and fat mass are recorded, along with total body weight, taking �1 min

per individual. Data was normalized to total body weight.

TAG Measurement of BXD Livers
For BXDs, 15 ml of the liver lipid extract (same extract as used for liver lipid MSmeasurement, see companion article [Jha et al., 2018])

was used for TAG quantification using the Serum Triglyceride determination kit (Sigma-Aldrich), as per manufacturer’s instructions.

The organic solvent mix used for dissolving lipids for the MS (mixture of acetonitrile (ACN)/isopropyl alcohol (IPA)/water (H2O),

(65:30:5, v/v/v, 100 mL)) was used as a blank and for standard curves.

NAD+ Measurement of C57BL/6J Livers
�20 mg of frozen liver samples were used for NAD+ extraction in 10% perchloric acid and neutralized in 3 M K2CO3 on ice.

After centrifugation, the supernatant was filtered and the internal standard (NAD-C13) was added and loaded onto a column

(150 Å � 2.1 mm; Kinetex EVO C18, 100 Å). HPLC was run for 1 min at a flow rate of 300 mL/min with 100% buffer A (Methanol/

H2O, 80/20, v/v). Then, a linear gradient to 100% buffer B [H2O + 5 mM ammonium acetate] was performed (at 1 to 6 min). Buffer

B (100%) was maintained for 3 min (at 6 to 9 min), and then a linear gradient back to 100% buffer A (at 9 to 13 min) began. Buffer

A was then maintained at 100% until the end (at 13 to 18 min). NAD+ eluted as a sharp peak at 3.3 min and was quantified on the

basis of the peak area ratio between NAD+ and the internal standard and normalized to tissue weight.

Lipidomics Sample Preparation and Analysis
Internal Standards (IS) Used

For BXD liver samples we used Q6, PC(15:0/15:0), PS(17:0/17:0), PE(15:0/15:0), PA(17:0/17:0), PG(15:0/15:0), CL(56:0) and FA(15:0/

15:0) as internal standards. For NAFLD signature validation experiments in mice (Figure 2), we used the standard mix SPLASH�
Lipidomix� Mass Spec Standard j 330707, supplemented with Q6 and CL(56:0).
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Extractions

Liver samples were weighed and homogenized using a Potter-Elvehjem tissue grinder in 1.5 mL homogenization buffer (8 M urea,

50 mM TEAB, 100 mM NaCl, 1 mM CaCl, protease and phosphatase inhibitors (Roche)). Protein concentration was determined

by BCA and all samples were diluted to 8 mg/mL with homogenization buffer. Samples were aliquoted with each tube containing

1 mg of protein (125 mL) and flash frozen in liquid N2 and stored at -80�C. Frozen aliquots of liver extracts were thawed on ice and

processed for lipid extraction as previously described (Stefely et al., 2016). In brief, liver extracts were thawed on ice then internal

standards were added (20 mL) and samples were vortexed (30 s). Chloroform/methanol (1:1, v/v, 1000 mL) was added and samples

were vortexed (60 s). Subsequently, HCl (1 M, 200 mL) was added to induce phase separation, followed by vortexing (60 s) and centri-

fugation (3,000 g, 3 min, 4�C) to complete phase separation. 550 mL of the organic phase was dried under Ar2(g). The organic residue

was reconstituted in ACN/IPA/H2O (65:30:5, v/v/v, 100 mL) by vortexing (60 s) and transferred to a glass vial for LC-MS analysis.

Samples were stored at -80�C until further use. LC–MS analysis was performed on an Ascentis Express C18 column held at 50�C
(150 mm3 2.1 mm3 2.7 mm particle size; Supelco) using an Accela LC Pump (500 mL/min flow rate; Thermo). Mobile phase A con-

sisted of 10 mM ammonium acetate in ACN/H2O (70:30, v/v) containing 250 mL/L acetic acid. Mobile phase B consisted of 10 mM

ammonium acetate in IPA/ACN (90:10, v/v) with the same additives. 10 mL of sample were injected by an HTC PAL autosampler

(Thermo). Initially, mobile phase B was held at 40% for 30 s and then increased to 50% over an additional 30 s. It was then increased

to 55%over 4min after which, it was increased to 99% over 6min and held there for 3min. Prior to the next injection, the column was

reequilibrated for 2 min. The LC system was coupled to a Q Exactive mass spectrometer (Build 2.3 SP2) by a HESI II heated ESI

source kept at 325�C (Thermo). The inlet capillary was kept at 320�C, sheath gas was set to 35 units, auxiliary gas to 15 units,

and the spray voltage was set to 3,000 V in negative mode and 4,000 V in positive mode.

Several scan functions, including targeted and untargeted, were used to ensure optimal data acquisition for each lipid class. For

fatty acids, selected ionmonitoring (SIM) scanswere taken from 0-3min. MS1 data was acquired in negativemode for 220-600m/z at

a resolving power of 17,500 and an AGC target of 13 105. For phospholipids, diacylglycerols, and CoQ, parallel reaction monitoring

(PRM) was used. The instrument was run in negative mode with a resolving power of 17,500, an AGC target of 23 105, a maximum

injection time of 75 ms, and isolation window of 1.2 Th. Scans targeting each species were scheduled between 0-10.3 min based on

previously determined retention times. For triglycerides, a separate set of runs was done where in addition to the targeted method

described above, the MSwas operated in positive mode from 10.1-13 min with resolving power set at 17,500 and the AGC target set

to 5 3 105. Ions from 750-1,100 m/z were isolated (Top 2) and fragmented.

Measurement, Normalization and Quality Control

The selection of lipid species for measurement was based on their abundance, stability, polarity and ease of ionization. For the BXDs,

peaks were automatically integrated using TraceFinder software (Thermo) and integrations were checked manually. NR mice were

processed as described in our companion article [Jha et al., 2018]. Lipids were normalized in three different ways - to internal stan-

dards (of each class), to total lipids in each sample and to all lipids in each class. Basic quality check andQTL analysis was performed

from all the datasets, however the dataset normalized to total lipids was used for all the analyses and figures shown in themanuscript

due to the overall low relative standard deviation in this dataset (data not shown). Additionally, normalization to total lipids has two

major advantages over the other normalization methods; 1) All lipids measured did not have a true internal standard, 2) for lipid clas-

ses that have few lipid species measured, normalizing to class will be largely driven by one or two highly abundant lipids. Quality

assessment of the MS measurements was performed by comparing the reproducibility of the technical and extraction replicates

(see Figures S1A–S1C). Note: lipid pairs marked with ‘‘_1’’ and ‘‘_2’’ (TAGs 54:5, 54:6, 56:7; PI(Dha_S) and CL(LLOPo) indicate

two isobaric peaks. The TAGs are isobaric peaks with different fatty acid compositions while the PI and CL are isobaric because

they have the same fatty acid composition but are likely ordered differently to cause chromatographic separation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatic and Genetic Analyses
Data normality for each lipid species was checked by the Shapiro-Wilk test in R, with a W R 0.90 considered normal distribution.

Correlations are Pearson’s r or Spearman’s rho, as indicated. Student’s t-test was used for two group comparisons in normal

data of equal variances, and Welch’s t-test otherwise. Heatmaps were generated using the ‘‘heatmap.2’’ function in R. Unweighted

correlation network graphswere performed using Spearman correlation, keeping all edgeswith P values less than 1e-4, 1e-03 or 0.05

(indicated in the figure) in R using the custom package imsbInfer, currently on Github (https://github.com/wolski/imsbInfer). GO and

KEGG pathway enrichment analysis for was performed using the R package ‘‘clusterProfiler’’ (Yu et al., 2012) (https://bioconductor.

org/packages/release/bioc/html/clusterProfiler.html). Enriched pathways after Benjamini-Hochberg correction (p < 0.05) are shown

in the figures. For Circos plot (Figure 3) data were pre-processed in R followed by plot construction using web based http://circos.ca/

(Krzywinski et al., 2009) and then modified in Adobe Illustrator.

QTL calculations were performed using the R/qtl (v 1.39-5) package (Arends et al., 2010) on the log2 transformed data. The BXD

genotype used for QTL calculations is provided in the Table S8. Parametric QTL calculation was performed for normally distributed

lipids and non-parametric for those that were not normally distributed. QTLs with logarithm of the odds ratio (LOD) score >2.5 and

p-value <0.40 were used for all the analysis, which includes both significant (p-value < 0.05) and suggestive QTLs (p-value between

0.05 and 0.40) at genome-wide significant threshold, computed by permutation analysis. [Genome-wide p-values of 0.63 correspond
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approximately to a local p-value of 0.05, i.e. which is significant in case of prior knowledge used to search for a QTL at that specific

location]. All significant and suggestive threshold lines in the paper represent genome-wide p-value of 0.05 and 0.63 respectively.

All graphs and analyses were performed either in R or GraphPad. For R, standard R plotting packages included in gplots or

ggplot2—e.g., stripchart, plotCI, and barplot2 were used. Final figures were prepared with Adobe Illustrator.

QTL Candidate Gene Retrieval
To perform QTL candidate gene retrieval biomaRt was used in R to obtain lists of genes located within each QTL region (± 5 Mb

around the mapped SNP). Gene lists were imported into MATLAB for subsequent parallel filtering of candidate genes as follows:

(i) genes with non-synonymous SNPs, insertion/deletion/splice site mutations, or high impact non-coding SNPs in the BXDs

(Wang et al., 2016); (ii) genes under the lQTLs with cis e- and/or p-QTLs; (iii) genes/ proteins with significant correlation (p<0.05)

with the lipid itself; and (iv) genes with variable transcript expression (standard deviation >0.25) across BXD strains. Pearson’s cor-

relation was used to correlate transcript and protein abundances with log2-transformed lipid levels. GeneNetwork was used to obtain

liver gene transcript and peptide values for each BXD strain for mRNA standard deviation andmRNA/protein correlation calculations.

Genes passing two or more of the above filtering criteria are provided in Table S5 and a detailed list of each lQTL candidate gene with

the information on each filtering criteria is provided in Table S6.

BXD lQTL and Human GWAS Genes Overlap
Human GWAS genes (having p-value <1e-07) were retrieved from the database GWASdb2 (http://jjwanglab.org/gwasdb) (Li et al.,

2016) and complemented with the data from the GWAS Catalog (https://www.ebi.ac.uk/gwas/) (MacArthur et al., 2017). The cate-

gories of GWAS genesets retrieved from these databases included ‘‘Abnormality of lipid metabolism’’ and ‘‘fatty liver disease’’. Addi-

tionally, published papers reporting the relevant GWAS studies, not included in the above-mentioned databases (in particular, the

references indicated by their PMID in Table S7) were manually mined to retrieve the candidate genes having p-value <1e-07. Taken

together, the compiled list comprised of 494 genes (Table S7). Only those lQTL genes (± 5 Mb on either side of the peak QTL), which

passed at least 2 filtering criteria (as shown in Figure 4B) werematched for any evidence of them being associated with abnormal lipid

metabolism in human GWAS (i.e. matched for their presence in 494 human GWAS gene list).

Weighted Gene Correlation Network Analysis
Weighted gene correlation network analysis (WGCNA) (Figures 1 and S2) was performed as described (Langfelder and Horvath,

2008) by using the WGCNA R software package (v1.51). To construct the weighted lipid coexpression network, we calculated a cor-

relation matrix containing all pairwise Pearson’s correlations between all pairs of lipids across all BXD strains for both CD and HFD.

We defined a ‘‘signed hybrid’’ network in which the adjacency takes values between 0 and 1 when the correlation is positive and 0 if

the correlation is negative. A power of 27 was chosen for both CD and HFD datasets. We selected the minimum power in which both

datasets followed the Scale-Free Topology Criterion (model fitting index R2 > 0.8) and showed a similar connectivity. The selection of

a high power (threshold) has the effect of suppressing low correlations that may be due to noise, penalize weaker connections and

strengthen stronger connections. The result is a network adjacency that is zero for negatively correlated lipids and is positive for posi-

tively correlated lipids. Adjacency of weakly correlated lipids is nearly zero due to the power transformation. Next, the lipids were

hierarchically clustered using the distance measure and modules were determined by choosing a height cutoff for the resulting

dendrogram by using a dynamic tree-cutting algorithm, selecting a minimum module size of 5. Modules with a correlation higher

than 0.75 were merged. The resulting lipid modules were assigned color names and identified using the eigenvector of each module,

named as module eigenlipid. Module eigenlipid (ME) is defined as the first principal component of the standardized expression pro-

files and can be considered the best summary of the standardized module expression data. Each module is represented by different

colors; lipids not grouped in any module (34% in CD and 42% in HFD) were represented in grey color. By and large, modules were

dominated by lipids from the same class (Figure S2A). Modules containing lipids from the same class exhibited high adjacency be-

tween them in both diets (eg. CL modules). Correspondence analysis between CD and HFD was performed by calculating the over-

laps of each pair of CD-HFD modules and analyzed using the Fisher’s exact test (Figure S2B). From the 8 modules identified in both

diets, 3 of them showed total correspondence betweenCD andHFD: DAG (black), FFA (red) and TAG (brown)modules; while the 3CL

modules (green, blue and yellow) showed a very high correspondence between CD and HFD (Figure S2B). Module-trait relationships

(Figure 1D) were calculated by Pearson’s correlation between MEs and selected metabolic phenotypes in order to identify modules

related to metabolic functions. For module pathway association (Figure 1E), KEGG enrichment analysis was performed for all posi-

tively and negatively correlated proteins (p < 0.05) separately, with the modules. Module QTL (modQTL) was calculated from the

values of the MEs as phenotype traits using the R package R/qtl (v 1.39-5) (Broman et al., 2003) using the samemethods and criteria

as for lQTLs.

Enrichment Analysis of Proteins and Transcripts with Liver TAG Concentration
KEGG enrichment analysis was performed for all proteins and transcripts that correlated with total liver TAG levels (Figure 6B). For

liver proteomics correlation: 333 proteins in CD and 74 in HFD out of 2,622 measured proteins (by SWATH) significantly correlated

with liver total TAG concentration. For liver transcriptomics correlation: 1,752 transcripts in CD and 879 transcripts in HFD out of

35,556 transcripts measured (using Affy Mouse Gene 1.0ST) significantly correlated with total liver TAG concentration. Benjamini-

Hochberg corrected (p < 0.05) enriched pathways are shown in the figure. No significant enrichment was observed in HFD cohorts.
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DATA AND SOFTWARE AVAILABILITY

Raw MS data files are available through the CHORUS project data repository (Project ID 1432, Experiment ID 3217 and 3218). Addi-

tionally, normalizedMS data is deposited in GeneNetwork (http://www.genenetwork.org) as a resource for public use. To access and

analyze the data in GeneNetwork, choose ‘‘Mouse (mm10)’’ for ‘‘Species’’, ‘‘BXD’’ for ‘‘Group’’, ‘‘Phenotypes’’ for ‘‘Type’’, ‘‘BXD

Published Phenotype’’ for ‘‘Data Set’’ and enter ‘‘LiverLipidomics’’ for ‘‘Get Any’’. Normalized MS data (normalized to total lipids)

is provided in Table S1. Lipid QTLs are provided in Table S5. lQTL genes passing two of the four filtering criteria (as shown in

Figure 4B) are provided in Table S5 and the exhaustive list for the same is provided in Table S6. BXD genotype data used for QTL

calculation is provided in Table S8.
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