
Modeling for Three-Subset Division Property
without Unknown Subset

Yonglin Hao1, Gregor Leander2, Willi Meier3, Yosuke Todo4, and Qingju Wang5

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China, haoyonglin@yeah.net
2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany,

gregor.leander@rub.de
3 FHNW, Windisch, Switzerland, willimeier48@gmail.com

4 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan, yosuke.todo.xt@hco.ntt.co.jp
5 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg, qingju.wang@uni.lu

Abstract. A division property is a generic tool to search for integral distinguishers, and auto-
matic tools such as MILP or SAT/SMT allow us to evaluate the propagation efficiently. In the
application to stream ciphers, it enables us to estimate the security of cube attacks theoreti-
cally, and it leads to the best key-recovery attacks against well-known stream ciphers. However,
it was reported that some of the key-recovery attacks based on the division property degen-
erate to distinguishing attacks due to the inaccuracy of the division property. Three-subset
division property (without unknown subset) is a promising method to solve this inaccuracy
problem, and a new algorithm using automatic tools for the three-subset division property was
recently proposed at Asiacrypt2019. In this paper, we first show that this state-of-the-art al-
gorithm is not always efficient and we cannot improve the existing key-recovery attacks. Then,
we focus on the feature of the three-subset division property without unknown subset and
propose another new efficient algorithm using automatic tools. Our algorithm is more efficient
than existing algorithms, and it can improve existing key-recovery attacks. In the application
to Trivium, we show an 842-round key-recovery attack. We also show that an 855-round key-
recovery attack, which was proposed at CRYPTO2018, has a critical flaw and does not work.
As a result, our 842-round attack becomes the best key-recovery attack. In the application
to Grain-128AEAD, we show that the known 184-round key-recovery attack degenerates to
distinguishing attacks. Then, the distinguishing attacks are improved up to 189 rounds, and
we also show the best key-recovery attack against 190 rounds. In the application to ACORN,
we prove that the 772-round key-recovery attack at ISC2019 is in fact a constant-sum distin-
guisher. We then give new key-recovery attacks mounting to 773- and 774-round ACORN.
We also verify the current best key-recovery attack on 892-round Kreyvium and recover the
exact superpoly.

Keywords: stream ciphers, cube attack, division property, three-subset division property,
MILP, Trivium, Grain-128AEAD, ACORN, Kreyvium

1 Introduction

Division Property. Integral cryptanalysis [KW02], a.k.a. Square attacks [DKR97] or higher-order
differential attacks [Lai94], are one of the most powerful cryptanalysis techniques. Let CI be the
set of chosen plaintexts. The integral distinguisher for a cipher Ek is defined as the property⊕

p∈CI
Ek(p) = 0 for any secret key k. Since the probability that such a zero-sum property holds is

low for ideal ciphers, we can distinguish Ek from an ideal one.
The division property, as originated in [Tod15b], is the most accurate and generic tool to search

for integral distinguishers. Ever since its proposal, it has been widely applied to many block ciphers
([Tod15a,ST16,TM16,SIKH16] etc). For a set of texts X ⊆ Fn2 , its division property is defined by di-
viding a set of u’s into two subsets: vectors u ∈ Fn2 of the 1st subset satisfy

⊕
x∈X xu = 0 (referred as

0-subset hereafter), and those of the 2nd subset make
⊕

x∈X xu undetermined (referred as unknown
subset hereafter). The initial division property is defined according to a set of chosen plaintexts, and
those of the intermediate states are deduced round by round according to propagation rules. Finally,

2 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

the division property for the set of corresponding ciphertexts is evaluated, and the integral distin-
guisher can be derived accordingly. The propagation of the division property was evaluated with
the breadth-first search algorithm in [Tod15b,Tod15a,TM16], but it is computationally impractical
for ciphers with large block size. Then, Xiang et al. introduced the useful concept called division
trail and propose an MILP-based algorithm [XZBL16], enabling us to apply the division property
to various ciphers ([SWW17,TIHM17,WHT+18] etc). Nowadays, the division property is often used
not only for third-party crypanalysis but also for the design of new ciphers ([BKL+17,BPP+17] etc).

Although the division property can find more accurate integral distinguishers than other methods,
the accuracy is never perfect. As is pointed out by Todo and Morii [TM16], the practically verified 15-
round integral distinguisher for Simon32 [WLV+14] cannot be proved with the conventional division
property. To find more accurate distinguishers, the three-subset division property was proposed in
[TM16]. A set of u’s is divided into three subsets rather than two ones: the first one is the 0-subset,
another one is the unknown subset, and the third one is the subset satisfying

⊕
x∈X xu = 1 (referred

as 1-subset hereafter). The three-subset division property enables us to prove the 15-round integral
distinguisher of Simon32 [TM16].

Despite of its successful combination of the MILP and the conventional division property, the
MILP modeling technique does not work quite well with the three-subset version. Very recently, two
methods were proposed to tackle this problem. The first method is a variant of the three-subset
division property [HW19]. Although it sacrifices quite some accuracy of the three-subset division
property, this method has MILP-model-friendly propagation rules and improves some integral dis-
tinguishers. The latter, proposed by Wang et al. [WHG+19], models the propagation for the three-
subset division property accurately. Wang et al.’s idea is to combine the MILP with the original
breadth-first search algorithm [TM16]. In their algorithm, each node on the breadth-first search al-
gorithm is regarded as the starting point of division trails, and the MILP evaluates whether there
is a feasible solution from every node. When there is no feasible solution, we can prune these nodes
from the breadth-first search algorithm as redundant ones.

Cube Attack. The cube attack was proposed by Dinur and Shamir in [DS09]. For a cipher with
public variables v ∈ Fm2 and secret variables x ∈ Fn2 , the cipher can be regarded as a poly-
nomial of v,x denoted as f(x,v). A set of indices, referred as the cube indices, is selected as
I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}. Such an I determines a specific structure called cube, denoted

as CI , containing 2|I| values where variables in {vi1 , vi2 , . . . , vi|I|} take all possible combinations of
values and all remaining (key and non-cube IV) variables are static. Then the sum of f over all
values of the cube CI is ⊕

CI

f(x,v) =
⊕
CI

(tI · p(x,v) + q(x,v)) = p(x,v),

where tI denotes a monomial as tI = vi1 · vi2 · · · vi|I| , and each term of q(x,v) misses at least one
variable from {vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the superpoly of the cube CI . The cube attack
consists of two steps. First, attackers recover the superpoly in the offline phase. Then, attackers query
the cube to the encryption oracle, compute the summation, and get the value of the superpoly. The
secret key can be recovered when the polynomial p(x,v) is simple. Therefore, the superpoly recovery
plays the critical role in the cube attack.

Previously, superpolies could only be recovered experimentally. Therefore, the size of cube indices
|I| had to be limited within practical reach. In [TIHM17], the division property was first introduced
to cube attacks, and it enables us to identify the secret variables NOT involved in the superpoly
efficiently. After removing such secret variables, the remaining variables are stored into the set J as
the secret variables that might be involved. It enables the attackers to recover the truth table of the
superpoly with a time complexity 2|I|+|J|. Then, Wang et al. improved it by introducing flag and
term enumeration technique that can lower the complexities for the superpoly recoveries [WHT+18].
It is noticeable that neither [TIHM17] nor [WHT+18] recovers the superpoly directly, and it only
guarantees the time complexity to recover the superpoly p(x,v). They only identify the key variables
(or monomials [WHT+18]) and make the assumption that such variables (monomials) might be

Modeling for Three-Subset Division Property without Unknown Subset 3

Table 1. Summary of flaws or issues in some of the previous best key-recovery attacks

cipher # rounds ref. note where discovered

Trivium 839 [WHT+18] degeneration to distinguisher [YT19,WHG+19]

Trivium 855 [FWDM18] attack does not work because of a flaw
in the degree estimation

this paper

Grain-128a 184 [WHT+18] degeneration to distinguisher this paper

ACORN 772 [YLL19] degeneration to distinguisher this paper

involved in the superpoly. If such an assumption does not hold, the superpoly can be much simpler
than estimated, or even in the extreme case: p ≡ 0 degenerates key-recovery attacks to distinguishing
attacks. Such degeneration issues are reported in [YT19] and [WHG+19], where Wang et al.’s attack
on 839-round Trivium in [WHT+18] cannot recover secret keys because p ≡ 0.

Motivation. Our work is motivated by the latest three-subset division property model with pruning
technique [WHG+19]. In its application to the cube attack, they claim that the three-subset division
property without unknown subset can recover the actual superpoly because it deterministically
divides the set of u ∈ Fn2 into two subsets whose summations are either 0 or 1. We do not need to
assume the accuracy of the division property, and the recovered superpolies are always accurate. In
spite of such a powerful tool, it was used to degenerate the key-recovery attack against 839-round
Trivium in [WHT+18]. Such a degeneration from key-recovery to distinguisher implies unexpectedly
simpler superpolies. Therefore, we can expect that the superpolies for 840-round Trivium are also
simpler than previous estimations, and the key-recovery attacks can be carried out to 840 or more
rounds. Thus, we implemented and executed the algorithm based on the pruning technique, and
we find that the algorithm is not always efficient: we cannot recover the superpoly of 840-round
Trivium in reasonable time. To recover the more complicated superpoly, a more efficient algorithm
for the three-subset division property is required.

Our Contribution. We propose a new modeling method for the three-subset division property
without unknown subset. Here, we first introduce a modified three-subset division property that is
completely equivalent with the three-subset division property without unknown subset. While the
original three-subset division property without unknown subset is defined by using the set L, the
modified one is defined by using the multiset L̃ instead of the set L, and it is suited to modeling
with MILP or SAT/SMT solvers. The previous algorithm focuses on the feasibility of the model,
but our algorithm focuses on all feasible solutions that are enumerated by using the solver.

To demonstrate the efficiency of our new algorithm, we apply it to cube and cube-like attacks
against Trivium and Grain-128AEAD. We have two types of contributions. The first one is to show
flaws or issues in some of the best previous key-recovery attacks, and these results are summarized
in Table 1. The second one is the best key-recovery attacks against Trivium and Grain-128AEAD,
and these results are summarized in Table 2.

We first apply our algorithm to the superpoly recovery for 840-round Trivium, which was im-
possible in the previous algorithm. As a result, we can recover the exact superpoly for not only
840-round Trivium but also for 841-, and 842-round Trivium. Moreover, the recovered superpolies
are simple balanced Boolean functions. In other words, we can recover 1-bit of information on the
secret key against 840-, 841-, and 842-round Trivium, and exhaustive search with the recovered
superpoly allows us to recover the entire secret key with the time complexity 279. Note that the
recovered superpoly is accurate and there is no assumption like in the theoretical superpoly recover-
ies [TIHM17,WHT+18]. We next use our algorithm to verify a new-type of cube attack [FWDM18]
shown by Fu et al. In the new-type of cube attack, the part of secret key bits is first guessed, one
bit of the intermediate state (denoted by P1) is computed, and the sum of (1 +P1) · z over the cube
is evaluated, where z denotes the key stream bit. The authors claimed that the sum of (1 + P1) · z
can be simpler than the sum of z by choosing P1 appropriately. As a result, they claimed that the

4 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Table 2. Summary of our results

Cipher # rounds type of attacks Time complexity

Trivium 840 key recovery 279

Trivium 841 key recovery 279

Trivium 842 key recovery 279

Grain-128AEAD 184,185,186,187,188,189 distinguisher 296

Grain-128AEAD 190 key recovery 2123

ACORN 773 key recovery 2127

ACORN 774 key recovery 2127

Kreyvium 892 key recovery 2127

algebraic degree of (1 +P1) · z is at most 70. Unfortunately, this claim was based on their algorithm
including some man-made work that is not written in the paper, and a cluster of 600-2400 cores is
necessary to run their code. Thus, no one can verify their algorithm. Our algorithm is very simple,
can run on a normal PC, and recovers the exact superpoly. As we recover the superpoly of (1+P1) ·z
over the cube, we find that the algebraic degree of (1 + P1) · z is not bounded by 70, and there is a
monomial whose degree is 75 + 26 = 101. In other words, even if we guess the correct P1, the sum
of (1 + P1) · z over the cube is not 0. It implies that we cannot attack 855-round Trivium by using
their method.

Another application is to Grain-128AEAD, which was previously referred to as Grain-128a.
Grain-128AEAD is one of the 2nd round candidates of the NIST LWC standardization process. and
the specification is slightly revised from Grain-128a according to [HK18,TIM+18]. Assuming that
the first pre-output key stream can be observed, there is no difference between Grain-128AEAD
and Grain-128a in the context of the cube attack. As a result, we show that the key-recovery
attack against 184-round Grain-128AEAD shown in [WHT+18] is a distinguisher rather than a key
recovery. Moreover, we show that the distinguishing attack can be improved up to 189 rounds. From
190 rounds onwards, the superpoly involves some secret key bits, and it can be used in a key-recovery
attack. However, since the recovered superpoly is highly biased toward 0, using one superpoly is not
sufficient to recover any secret key bit. Therefore, we recover 15 different superpolies for 190-round
Grain-128AEAD, and show an attack procedure to recover the secret key by using their superpolies.
As a result, we can recover the secret key of 190-round Grain-128AEAD with 2123 time complexity.

We further apply our method to ACORN: the underlying stream cipher of a winner portfolio of
the CAESAR competition [Wu16]. The previous best key-recovery attack is given by Yang et al. in
[YLL19] mounting to 772 rounds. We are able to prove that the superpoly of their cube does not
contain any key bits so it is degenerated to a constant-sum distinguisher. As a remedy, we propose
new key-recovery attacks on 773- and 774-round ACORN using new cubes of sizes 125 and 126
respectively. The non-zero superpolies of our attacks are explicitly recovered.

Another application is on Kreyvium, which is a stream cipher specifically suitable for homomor-
phic [CCF+16]. We verify and improve the current best key-recovery attack given by Hao et al. in
[HJL+20]. In order to recover the superpoly, the previous method requires 2121.19 time but our new
technique allows us to recover it with practical time.

2 Brief Introduction of Division Property

We first introduce some notations for bitvectors. For any bitvector x ∈ Fm2 , x[i] denotes the ith
bit of x. Given two bitvectors x ∈ Fm2 and u ∈ Fm2 , xu =

∏m
i=1 x[i]u[i]. Moreover, x � u denotes

x[i] ≥ u[i] for all i ∈ {1, 2, . . . ,m}.

2.1 Conventional Division Property

The (conventional) division property was proposed at Eurocrypt 2015, and it is regarded as the
generalization of the integral property.

Modeling for Three-Subset Division Property without Unknown Subset 5

Definition 1 ((Bit-based) division property). Let X be a multiset whose elements take a value
of Fm2 , and k ∈ Fm2 . When the multiset X has the division property D1m

K , it fulfills the following
conditions: ⊕

x∈X
xu =

{
unknown if there are k ∈ K s.t. u � k,

0 otherwise.

For example, when a multiset X ⊂ F4
2 has the division property D14

{1100,1010,0011}, it guarantees that⊕
x∈X xu = 0 for any u ∈ {0000, 1000, 0100, 0010, 0001, 1001, 0110, 0101}.

2.2 Three-Subset Division Property

The set of u is divided into two subsets in the conventional division property, where one is the subset
such that

⊕
x∈X xu is unknown and the other is the subset such that the sum is 0. Three-subset

division property was proposed in [TM16], where the number of divided subsets is extended from
two to three.

Definition 2 (Three-subset division property). Let X be a multiset whose elements take a
value of Fm2 , and k ∈ Fm2 . When the multiset X has the three-subset division property D1m

K,L, it fulfills
the following conditions:

⊕
x∈X

xu =


unknown if there are k ∈ K s.t. u � k,

1 else if there is ` ∈ L s.t. u = `,

0 otherwise.

For example, when a multiset X ⊂ F4
2 has the three-subset division property D14

K,L, where K =
{1100, 1010, 0011} and L = {1000, 0010, 0110}, it guarantees that

⊕
x∈X xu is 0 for any u ∈

{0000, 0100, 0001, 1001, 0101} and 1 for any u ∈ {1000, 0010, 0110}.

2.3 Propagation Rules for Division Property

The propagation rule of the division property is shown for three basic operations: “copy,” “and,”
and “xor” in [TM16].

Rule 1 (copy). Let F be a copy function, where the input x ∈ Fm2 and the output is calculated
as (x[1], x[1], x[2], x[3], . . . , x[m]). Let X and Y be the input and output multisets, respectively.

Assuming that X has D1m

K,L, Y has D1m+1

K′,L′ , where K′ and L′ are computed as

K′ ←
{

(0, 0, k[2], . . . , k[m]), if k[1] = 0

(1, 0, k[2], . . . , k[m]), (0, 1, k[2], . . . , k[m]), if k[1] = 1
,

L′ ←
{

(0, 0, `[2], . . . , `[m]), if `[1] = 0

(1, 0, `[2], . . . , `[m]), (0, 1, `[2], . . . , `[m]), (1, 1, `[2], . . . , `[m]) if `[1] = 1
.

from all k ∈ K and all ` ∈ L, respectively. Here, K′ ← k (resp. L′ ← `) denotes that k (resp. `)
is inserted into K′ (resp. L′).

Rule 2 (and). Let F be a function compressed by an AND, where the input x ∈ Fm2 and the output
is calculated as (x[1] ∧ x[2], x[3], . . . , x[m]). Let X and Y be the input and output multisets,

respectively. Assuming that X has D1m

K,L, Y has D1m−1

K′,L′ , where K′ is computed from all k ∈ K as

K′ ←
(⌈

k[1] + k[2]

2

⌉
, k[3], k[4], . . . , k[m]

)
.

Moreover, L′ is computed from all ` ∈ L s.t. (`1, `2) = (0, 0) or (1, 1) as

L′ ←
(⌈

`[1] + `[2]

2

⌉
, `[3], `[4], . . . , `[m]

)
.

6 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Rule 3 (xor). Let F be a function compressed by an XOR, where the input x ∈ Fm2 , and the
output is calculated as (x[1]⊕x[2], x[3], . . . , x[m]). Let X and Y be the input and output multisets,

respectively. Assuming that X has D1m

K,L, Y has D1m−1

K′,L′ , where K′ is computed from all k ∈ K s.t.
(k[1], k[2]) = (0, 0), (1, 0), or (0, 1) as

K′ ← (k[1] + k[2], k[3], k[4], . . . , k[m]).

Moreover, L′ is computed from all ` ∈ L s.t. (`[1], `[2]) = (0, 0), (1, 0), or (0, 1) as

L′ x←− (`[1] + `[2], `[3], `[4], . . . , `[m]) .

Here, L′ x←− ` denotes that ` is inserted if it is not included in L′. If it is already included in L′,
` is removed from L′. Hereinafter, we call this property the cancellation property.

Another important rule is that bitvectors in L influence K. Assuming that a state has D1m

K,L, the
secret key is XORed with the first bit in the state. Then, for all ` ∈ L satisfying `[1] = 0, a new
bitvector (1, `[2], . . . , `[m]) is generated and stored into K. Hereinafter, we call this property the
unknown-producing property.

2.4 Various Algorithms to Evaluate Propagation of Division Property and
Three-Subset Division Property

Breadth-First Search Algorithm. Evaluating the propagation of the division property is not
easy. The first few papers [Tod15b,Tod15a,TM16] use the so-called breadth-first search algorithm,
where Ki+1 (resp. Li+1) is computed from Ki (resp. Li) from i = 0 to i = R − 1 step by step to
evaluate R-round ciphers. Each node in the depth level i corresponds to each bitvector in Ki and
Li. When the block length is large, the sizes of Ki and Li increase explosively. Therefore, we cannot
manage all nodes, and the in breadth-first search algorithm becomes impractical.

MILP Modeling for Conventional Division Property. Xiang et al. showed that a mixed
integer linear programming (MILP) can efficiently evaluate the propagation of the conventional
division property [XZBL16]. First, they introduced the division trail as follows.

Definition 3 (Division Trail). Let DKi
be the division property of the input for the ith round

function. Let us consider the propagation of the division property {k} def
= K0 → K1 → K2 →

· · · → Kr. Moreover, for any bitvector k∗i+1 ∈ Ki+1, there must exist a bitvector k∗i ∈ Ki such
that k∗i can propagate to k∗i+1 by the propagation rule of the division property. Furthermore, for
(k0,k1, . . . ,kr) ∈ (K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all i ∈ {0, 1, . . . , r − 1}, we
call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round iterated cipher. If we can prove that there is no division trail k0
Ek−−→ ei,

which is an unit vector whose ith element is 1, the ith bit of r-round ciphertexts is always balanced.
Using MILP we can efficiently solve this problem. Three fundamental operations, i.e., copy, xor,

and and, can be modeled by using MILP. We generate an MILP model that covers all division trails,
and the MILP solver evaluates the feasibility whether there are division trails from the input division
property to the output one or not. If the solver guarantees that there is no division trail, we can
prove that the target bit is balanced.

MILP Modeling for Variant Three-Subset Division Property. Unlike the conventional di-
vision property, evaluating the propagation of the three-subset division property is difficult. The
main difficulty comes from the cancellation property in Rule 3 (xor) and the unknown-producing
property. The cancellation property implies that just focusing on the single trail is not enough, and
the unknown-producing property implies that we need to know Li when the secret key is XORed.

Hu and Wang tackled this problem [HW19], and they built the so-called variant three-subset
division property, where only the cancellation property is neglected from the original one. The
accuracy of the variant three-subset division property is worse than the original three-subset division
property because of this neglect. However, they showed that such a variant is still useful and it is at
least more accurate than the conventional division property.

Modeling for Three-Subset Division Property without Unknown Subset 7

Pruning Technique for Three-Subset Division Property. The technique for the accurate
modeling for three-subset division property was proposed by Wang et al [WHG+19]. The new idea is
the combination between the breadth-first search algorithm and an intelligent MILP-based pruning
technique. The first step of their algorithm is the same as the breadth-first search algorithm. The
pruning technique is applied to Ki and Li for every i. For all ` ∈ Li, we create an MILP model
of the conventional division property for the (R − i)-round cipher, and evaluate the feasibility of
the division trail from ` to the observed bit. Then, the bitvector ` can be removed from Li if it is
infeasible. We also apply the similar pruning technique to Ki. As a result, this pruning technique
allows the sizes of Ki and Li to decrease dramatically, and the evaluation of the three-subset division
property becomes possible.

They applied this new modeling technique to Simon, Simeck, PRESENT, RECTANGLE, LBlock,
and TWINE. Moreover, they also applied this algorithm to the cube attack against Trivium. As a
result, they showed that the 839-round key recovery attack proposed in [WHT+18] degenerates into
a zero-sum distinguisher.

3 Cube Attack and Division Property

3.1 Cube Attack

The cube attack was proposed by Dinur and Shamir in [DS09]. A cipher is regarded as a public
Boolean function whose input is divided into two parts: secret variables x and public ones v. Then,
the algebraic normal form of the Boolean function is represented as

f(x,v) =
⊕

u∈Fn+m
2

afu(x‖v)u.

For a set of indices I = i1, i2, . . . , i|I| ⊂ {1, 2, . . . ,m}, which is referred as cube indices, tI denotes a
monomial as tI = vi1 · vi2 · · · vi|I| . The Boolean function f(x,v) can also be decomposed as

f(x,v) = tI · p(x,v) + q(x,v).

Let CI , which is referred as a cube (defined by I), be a set of 2|I| values where variables in
{vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values, and all remaining variables are
fixed to any value. The sum of f over all values of the cube CI is⊕

CI

f(x,v) =
⊕
CI

tI · p(x,v) +
⊕
CI

q(x,v) = p(x,v)

because tI = 1 for only one case in CI and each term in q(x,v) misses at least one variable from
{vi1 , vi2 , . . . , vi|I|}. Then, p(x,v) is called the superpoly of the cube CI , and the goal of the cube
attack is to recover the superpoly.

3.2 Division Property and Cube Attack

The division property is formally developed as the generalization of the integral property, and it has
been initially used to evaluate the integral distinguisher. When the division property is applied to
the cube attack [TIHM17], the authors showed the relationship between the division property and
the algebraic normal form of public functions.

Lemma 1 ([TIHM17]). Let f(x) be a polynomial from Fn2 to F2 and afu ∈ F2 (u ∈ Fn2) be the ANF
coefficients. Let k be an n-dimensional bitvector. Then, assuming that the initial division property
D1n

{k} cannot propagate to D1
1 after evaluating the function f , afu is always 0 for u � k.

Even if the function f is complicated and practically impossible to describe the algebraic normal
form, the partial information can be recovered by using the division property. The division property
based cube attack first evaluates secret variables that are not involved in the superpoly. Let J̄ be the

8 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

set of such secret variables, and the set J := {1, 2, . . . , n} \ J̄ denotes secret variables that could be
involved in the superpoly. Then, we can recover the superpoly with the time complexity of 2|I|+|J|.

In the ANF of the superpoly recovered by the division property, if certain coefficients are 0,
it is guaranteed that these coefficients are 0. However, if certain coefficients are 1, they cannot be
guaranteed to be 1. Therefore, only using the division property does not allow us to recover the
exact algebraic normal form. This limitation of the division property causes the so-called strong
and weak assumptions in [TIHM17], i.e., they assume afu = 1 when the division property D1n

u can
propagate to D1

1. When these assumptions do not hold, the superpoly can be much simpler than
estimated, and in the extreme case, the superpoly becomes a constant function. Then, the key-
recovery attack degenerates into the distinguishing attack. Such degeneration is reported in [YT19]
and [WHG+19], where the key-recovery attack against 839-round Trivium in [WHT+18] degenerates
into the distinguishing attack.

3.3 Three-Subset Division Property and Cube Attack

The authors in [WHG+19] showed that these assumptions can be removed by using three-subset
division property. Proposition 4 in [WHG+19] addresses this problem, but a more simple formula is
enough for our application.

Lemma 2 (Simple case of [WHG+19]). Let f(x) be a polynomial from Fn2 to F2 and afu ∈
F2 (u ∈ Fn2) be the ANF coefficients. Let ` be an n-dimensional bitvector. Then, assuming that the

initial division property D1n

φ,{`} propagates to D1
φ,1 after evaluating the function f , af` = 1.

Note that we only consider the case that the function f is a public function. Then, since the function
f is not key-dependent, the propagation for K and that for L are perfectly independent. In other
words, we no longer consider the propagation for K because the initial division property is empty φ.

4 Three-Subset Division Property w/o Unknown Subset

4.1 Motivation and Limitation of Pruning Technique

Our initial motivation is to verify the potential of the state-of-the-art modeling technique with the
pruning technique [WHG+19]. They claimed that the exact superpoly can be recovered, but the
application for the largest number of rounds was the degeneration from the key-recovery attack to
a zero-sum distinguisher.6 The natural question is why they did not show improved key-recovery
attacks. Since such a degeneration implies unexpectedly simpler superpoly, we can expect that the
cube described in [WHT+18] leads to a key-recovery attack for 840-round Trivium. If we can recover
the superpoly of such a cube, we can directly improve the key-recovery attack against Trivium.
Therefore, we implemented their algorithm by ourselves and verified whether or not we can recover
the actual superpoly of 840-round Trivium. As a result, in order to make the breadth-first search
algorithm with pruning technique feasible, it requires an assumption that almost all elements in Li
must be pruned.

We first verify that the breadth-first search algorithm with pruning technique is feasible to prove
that the 839-round cube attack shown in [WHT+18] cannot recover any secret key bit. In this attack,
the number of cube bits is 78, where all IV bits except for IV [34] and IV [47] are active and these
constant bits are fixed as (IV [34], IV [47]) = (0, 1). Then, the conventional division property shows
that a secret key bit K[61] could be involved in the superpoly [WHT+18]. We now evaluate the same
cube by using the three-subset division property. According to [WHG+19], the corresponding initial
property L0 consists of sixteen 288-bit bitvectors, where 1 is assigned for cube bits and involved-key

6 They showed that the superpoly of 842-round Trivium can be recovered with the complexity 232, but
the unit of the complexity is the breadth-first search algorithm with pruning technique. Even one unit
requires to solve many MILPs, and the complexity of the algorithm is not bounded. Therefore, unlike
the previous theoretical cube attack [TIHM17,WHT+18], we cannot guarantee that it is faster than the
exhaustive search.

Modeling for Three-Subset Division Property without Unknown Subset 9

0 8 16 24 32 40 46
0
8

16
24
32
40
48

number of rounds

si
ze

o
f
L i

Fig. 1. Size of Li after applying the pruning technique. Check if the superpoly involves K[61] in the cube
shown in [WHT+18].

0 1 2 3 4 5
0

64
128
196
256256
320

number of rounds

si
ze

o
f
L i

Fig. 2. Size of Li after applying the pruning technique. Check if the superpoly for 840-round Trivium has
constant-1 term.

bit, any value is assigned for four constant-1 bits (s93+47, s286, s287, s288), and 0 is assigned for other
bits. We applied the pruning technique to sixteen bitvectors, and only two bitvectors are remaining
and the other fourteen bitvecotrs can be removed. We applied the pruning technique in every round,
and Fig. 1 summarizes the size of Li for the ith round. The size of Li is bounded by a reasonable
range and all bitvectors are removed in 46 rounds. It implies that the actual superpoly does not
involve K[61].

We next try whether or not the breadth-first search algorithm with pruning technique is avail-
able to attack 840-round Trivium. We use a cube similar to the one above, but non-cube bits
(IV [34], IV [47]) are fixed to 0 in order for the superpoly to be more simplified. Before we re-
cover all monomials in the superpoly, as the first step, we aim to identify if the superpoly has the
constant-1 term. In other words, we evaluate whether or not 840-round Trivium has a monomial∏
i∈{1,2,...,80}\{34,47} s93+i. Figure 2 shows the increase of Li. The more the size of Li increases, the

more MILP instances we need to solve. We used Gurobi Optimizer on a server (Intel Xeon CPU
E5-2699 v3, 18 cores, 128GB RAM), and we spent almost two weeks to even draw Fig. 2, where only
five rounds are evaluated. To recover the superpoly for 841-round Trivium, we need to finish this
algorithm and apply the same algorithm to all other monomials that could be involved. Therefore,
we conclude that the breadth-first search algorithm with pruning technique cannot recover the su-
perpoly for 841-round Trivium in reasonable time. It is inefficient unless the size of Li is bounded
by reasonable size, e.g., 100, for all i.

4.2 Three-Subset Division Property without Unknown Subset

The pruning technique is not always efficient to evaluate the cube attack, and we cannot improve the
key-recovery attack against Trivium due to the explosive increase of |Li|. To address this problem,
we need to develop a new modeling technique. Two properties, i.e., the unknown-producing property
and the cancellation property, make it difficult to model the three-subset division property directly.
Thus, we first explain how to overcome these properties.

Unknown-Producing Property. Due to the unknown-producing property, we need to evaluate
the accurate L when the secret key is XORed. Otherwise, we cannot generate accurate bitvectors

10 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

that are newly inserted to K. Unfortunately, no efficient model is known to handle the accurate
intermediate L by using automatic tools.

The simplest solution to address this property is the use of three-subset division property without
unknown subset. Recall the definition of the division property. The unknown subset is defined as the
set of u in which a parity

⊕
x∈X xu is unknown, where “unknown” means that the parity depends

on the secret key. The unknown subset is used to evaluate the key-dependent function such as in
block ciphers. On the other hand, when we evaluate the ANF coefficients of the public function, we
do not need to use the unknown subset. At first glance, it looks like the application is restricted
to public functions, but it does not matter in the application to the cube attack. Besides, if the
key-schedule function is also included into the evaluated function, we can regard the block cipher as
the public function.

Cancellation Property. Another property that we need to address is the cancellation property.
Our idea to overcome this property is to count the number of solutions by using an MILP instead of
evaluating the feasibility7. To understand our modeling, we introduce the following slightly modified
definition. Note that this definition is equivalent to the definition of the three-subset division property
without unknown subset. It is introduced only for ease of understanding of our modeling, and by
itself does not yield new insight.

Definition 4 (Modified three-subset division property). Let X be a multiset whose elements
take a value of Fm2 . Let L̃ be also a multiset whose elements take a value of Fm2 . When the multiset
X has the modified three-subset division property (shortly T 1m

L̃), it fulfils the following conditions:

⊕
x∈X

xu =

{
1 if there are odd-number of u’s in L̃,
0 otherwise.

Note that xu =
∏m
i=1 x[i]u[i].

Instead of considering the cancellation property, we count the number of appearances in each bitvec-
tor in the multiset L̃ and check its parity. Since we do not need to consider the cancellation property,
the modeling for xor is simplified as follows:

Rule 3’ (xor) Let F be a function compressed by an XOR, where the input x ∈ Fm2 , and the
output is calculated as (x[1]⊕x[2], x[3], . . . , x[m]). Let X and Y be the input and output multisets,

respectively. Assuming that X has T 1m

L̃ , Y has T 1m−1

L̃′ , where L̃′ is computed from all ` ∈ L s.t.
(`[1], `[2]) = (0, 0), (1, 0), or (0, 1) as

L̃′ ← (`[1] + `[2], `[3], `[4], . . . , `[m]) .

Here, L̃ and L̃′ are multisets, and L̃′ ← ` allows the same ` is stored into L̃′ several times.

We no longer use insertions with the cancellation property, and the produced bitvector is always
inserted to a multiset. We introduce a three-subset division trail, which is similar to the division
trail.

Definition 5 (Three-Subset Division Trail). Let TL̃i
be the three-subset division property of the

input for the ith round function. Let us consider the propagation of the three-subset division property

{`} def
= L̃0 → L̃1 → L̃2 → · · · → L̃r. Moreover, for any bitvector `∗i+1 ∈ L̃i+1, there must exist a

bitvector `∗i ∈ L̃i such that `∗i can propagate to `∗i+1 by the propagation rule of the modified three-

subset division property. Furthermore, for (`0, `1, . . . , `r) ∈ (L̃0 × L̃1 × · · · × L̃r) if `i can propagate
to `i+1 for all i ∈ {0, 1, . . . , r − 1}, we call (`0 → `1 → · · · → `r) an r-round three-subset division
trail.

7 The same idea was already described in [WHG+19] although the authors did not use the idea in their
model.

Modeling for Three-Subset Division Property without Unknown Subset 11

The modified three-subset division property implies that we do not need to consider the cancellation

property in every round. We just enumerate the number of three-subset division trails `
f−→ ei.

When the number of trails is odd, the algebraic normal form of f contains x`. Otherwise, it does
not contain x`.

In summary, removing the unknown subset allows us to skip recovering the accurate L when the
secret key is XORed. Using multisets instead of sets allows us to handle the cancellation property
by automatic tools such as MILP easily.

4.3 New Modeling Method

Unlike the pruning technique in [WHG+19], our method no longer uses the breadth-first search
algorithm and it just uses an MILP model. The previous algorithm uses the MILP model for the
conventional division property. On the other hand, we use the MILP model for the modified three-
subset division property, and all feasible solutions are enumerated by using an off-the-shelf MILP
solver8.

Proposition 1 (MILP Model for copy). Let a
copy−−−→ (b1, b2) be a three-subset division trail of

copy. The following inequalities are sufficient to describe the propagation of the modified three-subset
division property for copy. 

M.var ← a, b1, b2 as binary.

M.con← b1 + b2 ≥ a

M.con← a ≥ b1

M.con← a ≥ b2

When the or operation is supported in the MILP solver, e.g., Gurobi optimizer supports the or
operation, we can simply writeM.con← a = b1 ∨ b2. Unlike the conventional division property, we

need to allow the following propagation 1
copy−−−→ (1, 1). Otherwise, we miss any feasible solutions.

Proposition 2 (MILP Model for and). Let (a1, a2, . . . , am)
and−−→ b be a three-subset division trail

of and. The following inequalities are sufficient to describe the propagation of the modified three-
subset division property for and.{

M.var ← a1, a2, . . . , am, b as binary.

M.con← b = ai for all i ∈ {1, 2, . . . , m}

Some feasible propagation on the conventional division property becomes infeasible. For example,

(1, 1, 0)
and−−→ 1 is feasible for the conventional division property, but it is not so in the modified

three-subset division property.

Proposition 3 (MILP Model for xor). Let (a1, a2, . . . , am)
xor−−→ b be a three-subset division trail

of xor. The following inequalities are sufficient to describe the propagation of the modified three-
subset division property for xor.{

M.var ← a1, a2, . . . , am, b as binary.

M.con← a1 + a2 + · · ·+ am = b

Note that this is the same as the one for the conventional division property.
While the goal of the previous method is to find one feasible solution or to prove its infeasibility,

the goal of our method is to enumerate all feasible solutions. Three Propositions are enough to
represent any cipher, but such a straightforward model sometimes increases the number of feasible
solutions explosively. A more clever model is sometimes required to avoid the explosive increase of
feasible (but redundant) solutions, and we discuss this in Sect. 6 in detail.

8 Our model is very similar to the model for variant three-subset division property proposed in [HW19],
but there are two differences. First, we do not treat the unknown subset. Second, the goal of our model
is to enumerate all feasible solutions, but the goal in [HW19] is to evaluate the feasibility of the model.

12 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 1 Algorithm to recover an ANF coefficient afu
1: procedure attackFramework(M, u)
2: Let xi be an MILP variable of M corresponding to the ith input of f .
3: M.con← xi = 1 for all i s.t. u[i] = 1.
4: M.con← xi = 0 for all i s.t. u[i] = 0.
5: solve MILP model M and enumerate all feasible solutions
6: if the number of solutions is odd then
7: afu = 1
8: else
9: afu = 0

10: end if
11: end procedure

4.4 Algorithm to Recover ANF Coefficients of Public Function

Let f be a public Boolean function whose input denotes an n-bit string x = (x[1], x[2], . . . , x[n]),
and let it consist of the iteration of simple public functions. Then, the algebraic normal form of f is
represented as

f(x) =
⊕
u∈Fn

2

afux
u.

Our goal is to recover the value of afu for some u. We first prepare an MILP modelM that represents
the modified three-subset division property of the function f . Algorithm 1 shows the algorithm to
recover an ANF coefficient afu. The initial modified three-subset division property is defined by u,
and the number of feasible solutions is enumerated by using the MILP solver. Note that the efficiency
of Algorithm 1 depends on the number of feasible solutions. When there are too many solutions, it
is practically impossible to enumerate all feasible solutions. In other words, the necessary condition
that Algorithm 1 stops by reasonable time is that the number of feasible solutions is bounded by
reasonable size, e.g., at most 216.

While Algorithm 1 is very simple, it is less efficient for the application to the cube attack because
we need to recover all monomials in the superpoly. The number of monomials that Algorithm 1
can evaluate is only one. Therefore, we need to repeat Algorithm 1 many times while changing the
input u until all monomials are recovered exactly. One of the advantages of our modeling method
is that we can simply extend the algorithm to recover the superpoly, and the extended algorithm
uses only one MILP model. Algorithm 2 shows the dedicated algorithm to recover the superpoly.
Unlike Algorithm 1, the initial division property is not determined and only the part corresponding
to the cube bits is fixed to 1. When we enumerate all feasible solutions under such constraints, all
monomials that could be involved in the superpoly can be found as the feasible solutions. The third
input C0 is an option to declare that some public variables are fixed to 0. Specific attention should
be paid to the situation that C0 = φ. In this case, Algorithm 2 gives the ANF of p(x,v) consisting of
all secret and non-cube public variables. In other words, we do not need to specify the assignment of
non-cube public variables in advance. This is an obvious advantage of our method over the existing
breadth-first search algorithm with pruning technique. On the other hand, when the assignment
of non-cube public variables is determined in advance, C0 should be set because it decreases the
number of three-subset division trails and increases the efficiency of the algorithm.

As far as we applied these algorithms to the cube attack against Trivium or Grain-128AEAD,
Algorithm 2 is not only simpler but also more efficient than the iteration of Algorithm 1. Unfortu-
nately, we cannot say the explicit reason because it depends on the inside of MILP solvers. As one
observation, many three-subset division trails with different initial division property share the same
trail in the last several rounds. Therefore, we expect that their trails are efficiently enumerated in
Algorithm 2. On the other hand, the iteration of Algorithm 1 needs to find the shared part of trails
every time.

Modeling for Three-Subset Division Property without Unknown Subset 13

Algorithm 2 Algorithm to recover the superpoly

1: procedure attackFramework(M, I, (C0))
2: Let xi be an MILP variable of M corresponding to the ith secret variable.
3: Let vi be an MILP variable of M corresponding to the ith public variable.
4: M.con← vi = 1 for all i ∈ I
5: M.con← vi = 0 for all i ∈ C0

6: prepare a hash table J whose key is (n+m)-bit string and value is counter.
7: solve MILP model M and enumerate all feasible solutions
8: for all feasible solutions do
9: get u = (x1, x2, . . . , xn, v1, v2, . . . , vm) in every found solution

10: increase J [u] by 1
11: end for
12: prepare a polynomial p = 0
13: for all u whose J [u] is an odd number do
14: p = p+ (x‖v)u.
15: end for
16: return p/tI
17: end procedure

5 Improved Cube Attacks against Trivium

5.1 Specification of Trivium and Its MILP Model

zi

Fig. 3. Structure of Trivium

Trivium [CP06] is an NFSR-based stream cipher, and the internal state is represented by a 288-
bit state (s1, s2, . . . , s288). Figure 3 shows the state update function of Trivium. The 80-bit secret
key K is loaded to the first register, and the 80-bit initialization vector IV is loaded to the second
register. The other state bits are set to 0 except the last three bits in the third register. Namely, the
initial state bits are represented as

(s1, s2, . . . , s93) = (K[1],K[2], . . . ,K[80], 0, . . . , 0),

(s94, s95, . . . , s177) = (IV [1], IV [2], . . . , IV [80], 0, . . . , 0),

(s178, s279, . . . , s288) = (0, 0, . . . , 0, 1, 1, 1).

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93, t2 ← s162 ⊕ s177, t3 ← s243 ⊕ s288,
z ← t1 ⊕ t2 ⊕ t3,
t1 ← t1 ⊕ s91s92 ⊕ s171, t2 ← t2 ⊕ s175s176 ⊕ s264, t3 ← t3 ⊕ s286s287 ⊕ s69,

14 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 3 Model for modified three-subset division property for Trivium

1: procedure TriviumCore(M, x1, . . . , x288, i1, i2, i3, i4, i5)
2: M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3: M.con← xij = yij ∨ zj for all j ∈ {1, 2, 3, 4}
4: M.con← a = z3
5: M.con← a = z4
6: M.con← yi5 = xi5 + a + z1 + z2
7: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
8: yi = xi
9: end for

10: return (M, y1, . . . , y288)
11: end procedure

1: procedure TriviumEval(round R)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, 2, . . . , 288}
4: for i = 81 to 93 and i = 93 + 80 to 285 do
5: M.con← s0i = 0

6: end for
7: for r = 1 to R do
8: (M, x1, . . . , x288) = TriviumCore(M, sr−11 , . . . , sr−1288 , 66, 171, 91, 92, 93)
9: (M, y1, . . . , y288) = TriviumCore(M, x1, . . . , x288, 162, 264, 175, 176, 177)

10: (M, z1, . . . , z288) = TriviumCore(M, y1, . . . , y288, 243, 69, 286, 287, 288)
11: (sr1, . . . , s

r
288) = (z288, z1, . . . , z287)

12: end for
13: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
14: M.con← sRi = 0

15: end for
16: M.con← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = 1

17: returnM
18: end procedure

where z denotes the key stream. The state of the next round is computed as

(s1, s2, . . . , s93)← (t3, s1, . . . , s92),

(s94, s95, . . . , s177)← (t1, s94, . . . , s176),

(s178, s279, . . . , s288)← (t2, s178, . . . , s287).

In the initialization, the state is updated 1152 times without producing an output. After the initial-
ization, one bit key stream is produced by every update function.

MILP Model. TriviumEval in Algorithm 3 generates a modelM as the input of Algorithm 1 or 2,
and all three-subset division trails are included as feasible solutions of this model M. TriviumCore
in Algorithm 3 generates MILP variables and constraints of the update function for each register.

5.2 Practical Verification

To verify our new algorithm, we select the same parameters as the one in the previous works [TIHM17,WHT+18].
Example 1 takes parameters from [TIHM17] and set the empty set φ for C0. Then, Algorithm 2 re-
covers the algebraic normal form of p(x,v) involving all key and non-cube IV bits.

Example 1. (Parameters from [TIHM17]) We let I = {1, 11, 21, 31, 41, 51, 61, 71} and evaluate
z590. We first run Algorithm 3 as M ← TriviumEval(590) and get the MILP model based three-
subset division property. Then, we set C0 = φ and acquire p(x,v) by running Algorithm 2 as
p(x,v)← attackFramework(I,M, φ). The monomial (x‖v)u/tI ’s along with their J [u]’s are listed

Modeling for Three-Subset Division Property without Unknown Subset 15

Table 3. The monomial (x‖v)u/tI ’s and their J [u]’s corresponding to Example 1

parity J [u] (x‖v)u/tI parity J [u] (x‖v)u/tI
0 2 x60v22 1 1 v9v20
1 1 x60v19v20 1 1 v6v7v8v20
1 1 x60v20 0 2 v22v72
1 1 x60v6v20 1 1 v7v8
1 1 x60v7 1 1 v6v9v20
1 1 v7v8v19v20 1 1 v19v20v72
0 2 v7v8v22 1 1 v7v9
1 1 v9v19v20 1 1 v20v72
0 2 v9v22 1 1 v6v20v72
1 1 v7v8v20 1 1 v7v72

in Table 3. The ANF of p(x,v) can therefore be determined as

p(x) = x60(v19v20 + v20 + v6v20 + v7)

+ (v7v8v19v20 + v9v19v20 + v7v8v20 + v9v20 + v6v7v8v20 + v7v8

+ v6v9v20 + v19v20v72 + v7v9v20v72 + v6v20v72 + v7v72)

Example 2 selects a specific non-cube IV assignment to compare our method with Wang et al.’s
method by using the conventional division property and flag technique. The inaccuracy problem
reported by Wang et al. in [WHT+18] is completely eliminated due to the tightness of our algorithm.

Example 2. (Parameters from [WHT+18]) We let I = {1, 11, 21, 31, 41, 51, 61, 71}, where IV [80, . . . , 1] =
0xe7b658e15b6cefe379b5 is used as non-cube IV, and evaluate z591. According to the specified non-
cube IV, C0 is defined such that C0 = {i ∈ {1, . . . , 80} | i 6∈ I, IV [i] = 0}. Algorithm 3 is then called
as M ← TriviumEval(591) to get the MILP model. Algorithm 2 is called afterwards to acquire
the superpoly p(x)← attackFramework(I,M, C0). As can be seen in Table 4, with all J [u]’s being
EVEN, the superpoly p(x) is constant 0. On the contrary, if we use Wang et al.’s term enumeration
technique in [WHT+18], all 8 key-monomial terms in Table 4 are to be detected.

Table 4. The monomials and their J [u]’s with Example 2 parameters

parity
∑
J[u] term J[u] (x‖v)u/tI parity

∑
J[u] term J[u] (x‖v)u/tI

4 x23x24x66v22v32v70 4 x25v22v32v70v78
0 8 x23x24x66 2 x23x24x66v22v30v70 0 8 x25 2 x25v22v30v70v78

2 x23x24x66v17v22v70 2 x25v17v22v70v78
4 x23x24v22v32v70v78 4 x67v22v32v70v78

0 8 x23x24 2 x23x24v22v30v70v78 0 8 x67 2 x67v22v30v70v78
2 x23x24v17v22v70v78 2 x67v17v22v70v78
4 x66x67v22v32v70 4 x66v22v32v70

0 8 x66x67 2 x66x67v22v30v70 0 8 x66 2 x66v22v30v70
2 x66x67v17v22v70 2 x66v17v22v70
4 x25x66v22v32v70 4 v22v32v70v78

0 8 x25x66 2 x25x66v22v30v70 0 8 1 2 v22v30v70v78
2 x25x66v17v22v70 2 v17v22v70v78

5.3 Cube Attacks against 840-round, 841-round and 842-round Trivium

To demonstrate that our modeling method is more efficient than the previous method, we applied
it to Trivium. For R-round Trivium, the model M is generated as M ← TriviumEval(R) by
calling Algorithm 3. Then, we set all non-cube IV bits to constant 0, i.e., for arbitrary cube I, the
corresponding parameter C0 is defined as the complement of I: C0 ← {0, . . . , 80}\I. With suchM, I

16 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

and C0, the superpoly is defined as p(x)← attackFramework(M, I, C0) by calling Algorithm 2. As
a result, we can successfully recover the superpoly of 840-round, 841-round and 842-round Trivium.
In other words, we show key-recover attacks against 840-, 841 and 842-round Trivium without any
assumption. The detailed parameters of the two attacks are as follows:

Superpoly of 840-Round Trivium. We used the same cube as the one shown in Sect. 4.1, i.e.,
the cube indices are

I = {1, 2, . . . , 33, 35, 36, . . . , 46, 48, 49, . . . , 80},

and IV [34] = IV [47] = 0. Note that the previous algorithm cannot recover the corresponding
superpoly as we already showed in Sect. 4.1. As a result, 12, 909 feasible three-subset division trails
are enumerated, and J [u] in Algorithm 2 is non zero for 228 different u’s. All u’s whose J [u] is non
zero are summarized in Table 9 in Supplementary Material C. Out of 228 u’s, there are 67 u’s whose
J [u] is an odd number. In other words, the superpoly is represented as the sum of 67 monomials,
and the following

p(x) = 1 + x80 + x79 + x79x80 + x78x79 + x76x77 + x75x76x78 + x75x76x77+

x70 + x68 + x68x80 + x68x79x80 + x68x78x79 + x68x69 + x66x67+

x66x67x80 + x66x67x79x80 + x66x67x78x79 + x65 + x64x66 + x64x65+

x63x64 + x59x63 + x54x68 + x54x66x67 + x53x68 + x53x66x67 + x52+

x52x53 + x51x77 + x51x75x76 + x51x52 + x50x78 + x50x76x77 + x50x51+

x43 + x41 + x41x80 + x41x79x80 + x41x78x79 + x41x54 + x41x53 + x39+

x39x64 + x38 + x37x38 + x35x55 + x33x34x55 + x27 + x26 + x22x66+

x22x64x65 + x22x39 + x20x21x66 + x20x21x64x65 + x20x21x39 + x12+

x8x78 + x8x77 + x8x76x77 + x8x75x76 + x8x55 + x8x51 + x8x50 + x1x35 + x1x33x34 + x1x8

is the recovered superpoly, where x = (x1, x2, . . . , x80) denotes the secret key, i.e., xi = K[i]. This
superpoly is a balanced Boolean function because there is a monomial x12 that is independent
of other monomials. Therefore, we can recover 1 bit of information by using 278 data and time
complexities. The dominant part of the whole key recovery attack is the exhaustive search after
1-bit key recovery, which is 279 time complexity.

Superpoly of 841-Round Trivium. We next aim to recover the superpoly of 841-round Trivium,
but it has too many trails to enumerate all of them. Therefore, we heuristically change cube indices
such that the number of trails is not large. As a result, the following cube is considered:

I = {1, 2, . . . , 8, 10, 11, . . . , 78, 80},

and IV [9] = IV [79] = 0. As a result, 30, 177 feasible three-subset division trails are enumerated, and
J [u] in Algorithm 2 is non zero for 216 different u’s. All u’s whose J [u] is non zero are summarized
in Table 10 in Appendix C. Out of 216 u’s, there are 53 u’s whose J [u] is an odd number. In other
words, the superpoly p(x) is represented as the sum of 53 monomials, and the following

p(x) = x78 + x76 + x75x76 + x74 + x74x75 + x74x75x77 + x74x75x76 + x72x73+

x68 + x67 + x63 + x61x62 + x59 + x59x72 + x59x70x71 + x59x61 + x58+

x58x80 + x58x78x79 + x58x66 + x58x59 + x53x58 + x51x74 + x51x73+

x51x72x73 + x51x71x72 + x50x76 + x50x74x75 + x49 + x49x77+

x49x75x76 + x49x50x74 + x49x50x73 + x49x50x72x73 + x49x50x71x72+

x47 + x47x51 + x47x49x50 + x46x51 + x46x49x50 + x45x59 + x36 + x32+

x30x31 + x24 + x24x74 + x24x73 + x24x72x73 + x24x71x72 + x24x47 + x24x46 + x9 + x5

Modeling for Three-Subset Division Property without Unknown Subset 17

is the recovered superpoly. This superpoly is also a balanced Boolean function because there is a
monomial x5 that is independent of other monomials. Therefore, we can recover 1 bit of information
by using 278 data and time complexities. The dominant part of the whole key recovery attack is the
exhaustive search after 1-bit key recovery, which is 279 time complexity.

Superpoly of 842-Round Trivium. Similarly, for 842-round of Trivium, we heuristically try
cubes so that the total number of trails are reasonably large. Therefore, the following cube is con-
sidered:

I = {1, 2, . . . , 18, 20, . . . , 34, 36, . . . , 80}
and IV [19] = IV [35] = 0. As a result, 3,188,835 feasible three-subset division trails are enumerated,
and J [u] in Algorithm 2 is non zero for 5075 different u’s. All u’s having non-zero J [u] are sum-
marized at https://github.com/ysktodo/milp-three-subset-wo-unknown. There are 975 out of
the 5075 u’s having odd J [u]. In other words, the superpoly p(x) is represented as the sum of 975
monomials, and is given in Appendix C. Note this superpoly is also a balanced Boolean function
because there is a monomial x8 that is independent of other monomials. Therefore, we can recover 1
bit of information with 278 data and time complexities. The dominant part of the whole key recovery
attack is the exhaustive search after 1-bit key recovery, which is 279 time complexity.

5.4 Verification of 855-Round Attack from CRYPTO2018 [FWDM18]

In CRYPTO2018, a new type of cube attacks was proposed, where a key recovery attack against
855-round Trivium was shown. The authors claimed the following statement.

Statement 1 ([FWDM18]) When IV [31] = IV [49] = IV [61] = IV [75] = IV [76] = 0, the degree
of (1 + s21094)z855 is bounded by 70.

Attackers first guess the part of a secret key involved in s21094 and compute the sum of (1 + s21094)z855
over cubes whose dimension is larger than 70. When the correct key is guessed, the sum must be 0.
In other words, if the sum is 1, we can discard the guessed key.

To prove Statement 1, the authors developed a new algorithm to evaluate the upper bound of the
degree. However, their algorithm includes some man-made work that is not written in their paper,
and a cluster of 600-2400 cores is necessary to run their code. As a result, no one can verify their
algorithm and the correctness of Statement 1. The only supportive material is the practical example
by using 721-round Trivium9. Later, Hao et al. reviewed Statement 1 by using the conventional bit-
based division property [HJL+18]. They showed that the sum of (1 + s21094)z855 over 75-dimensional
cube could involve all 80 key bits with degree bound 27. According to this result, Hao et al. pointed
out that Statement 1 unlikely holds. However, as we already pointed out, the conventional bit-based
division property is not always accurate. Therefore, the correctness of Statement 1 becomes an open
question.

In comparison with Fu et al.’s algorithm, our algorithm using three-subset division property has
three advantages:

– Cheap implementation cost. Our task is to generate an MILP model, and the complicated part is
solved by using off-the-shelf MILP solvers. Our verification code using Gurobi C++ API contains
about 300 lines.

– Run on the normal PC. We do not need to prepare many clusters.
– Tight bound is proven. Our algorithm can recover the ANF coefficient afu for some u accurately.

With such a method, we inspect Statement 1.

9 In [FWDM18], the authors showed that the degree of (1+s29094)z721 is bounded by 32 when the correct s29094

is guessed. However, Hao et al. pointed out that the degree is bounded by 32 even if we guess s29094 with
incorrect secret key, as a consequence we cannot distinguish the correct key from the wrong keys [HJL+18].
Response to this error, Fu et al. reproduced the practical example for 721-round Trivium [FWD+18].

https://github.com/ysktodo/milp-three-subset-wo-unknown

18 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

s01 s093 s094 s0177 s0178 s0288

s2101 s21093 s21094 s210177 s210178 s210288

210 rounds

645 rounds

s85566 s85593 s855162 s855177 s855243 s855288

1

(1 + s21094)z855

o
p

q

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Fig. 4. Overview of new type of cube attack for 855-round Trivium

MILP Model to Verify 855-Round Attack. To verify Statement 1, we consider a circuit
shown in Fig. 4 and generate the corresponding MILP model by calling Algorithm 4 as M ←
TriviumSecEval(855, 210). Corresponding to the setting of [FWDM18], we set I as the largest pos-
sible cube, i.e., I = {1, . . . , 80} \ {31, 49, 61, 75, 76}, and all non-cube IVs are set to 0, i.e., C0 =
{31, 49, 61, 75, 76}. Then, with suchM, I, C0, we run Algorithm 2 as p(x)← attackFramework(M, I, C0)
to check whether p(x) is constant 0. According to the result by Hao et al. by using the conventional
bit-based division property, we first evaluated whether or not p(x) has monomials whose degree is
27. Then, the number of appearance J [u] is non-zero for the following two 27-degree monomials∏

i∈{29,30,41,42,44,45,46,47,49,54,55,56,57,59,60,63,66,67,68,69,70,71,72,73,74,75,76}

xi,

∏
i∈{29,30,41,42,43,44,45,46,47,49,54,55,56,57,59,60,63,66,67,69,70,71,72,73,74,75,76}

xi,

but J [u] = 2 for the two monomials above. Therefore, these monomials do not appear in p(x). We
next evaluated whether or not p(x) has monomials whose degree is 26. Since there are quite many
candidates of u whose J [u] is non zero, we randomly picked one from these candidates and evaluated
the number of trails. As a result, J [u] = 1 in the following monomial∏

i∈{40,41,42,53,54,55,56,57,58,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,78,79}

xi.

Note that finding one u such that J [u] is an odd number is enough to disprove Statement 1. We also
apply our algorithm to Fu et al.’s practical refinements in [FWD+18]. As a result, there are several
issues in this small example, and we discuss the issues in Appendix B.

6 Improved Cube Attacks against Grain-128AEAD

6.1 Specification of Grain-128AEAD and Its MILP Model

Grain-128AEAD [HJM+19] is a member of Grain family and also one of the 2nd-round candi-
dates of the NIST LWC standardization process. Grain-128AEAD inherits many specifications
from Grain-128a, which was proposed in 2011 [ÅHJM11]. There are four differences between Grain-
128AEAD and Grain-128a: 1) larger MACs, 2) no encryption-only mode, 3) initialization hard-
ening, and 4) keystream limitation. These differences do not come only from the requirement for

Modeling for Three-Subset Division Property without Unknown Subset 19

Algorithm 4 Model for modified three-subset division property of Trivium corresponding to the
Fu et al.’s method in [FWDM18]

1: procedure TriviumSecEval(round R, sector round R′)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, 2, . . . , 288} and M.var ← o

4: for i = 81 to 93 and i = 93 + 80 to 285 do
5: M.con← s0i = 0

6: end for
7: M.var ← o
8: for i = 81 to 93 and i = 93 + 80 to 285 do
9: M.con← s0i = 0

10: end for
11: for r = 1 to R do
12: (M, x1, . . . , x288) = TriviumCore(M, sr−11 , . . . , sr−1288 , 66, 171, 91, 92, 93)
13: (M, y1, . . . , y288) = TriviumCore(M, x1, . . . , x288, 162, 264, 175, 176, 177)
14: (M, z1, . . . , z288) = TriviumCore(M, y1, . . . , y288, 243, 69, 286, 287, 288)
15: (sr1, . . . , s

r
288) = (z288, z1, . . . , z287)

16: if r = R′ then
17: M.var ← ~sR

′
94, p, q

18: M.con← sR
′

94 = ~sR
′

94

∨
p

19: M.con← q = o + p

20: sR
′

94 = ~sR
′

94

21: end if
22: end for
23: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
24: M.con← sRi = 0

25: end for
26: M.con← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = q

27: M.con← q = 1

28: returnM
29: end procedure

the NIST LWC standardization process but also from recent cryptanalysis result against Grain-
128a [HK18,TIM+18].

The internal state is represented by two 128-bit states, (b0, b1, . . . , b127) and (s0, s1, . . . , s127).
The 128-bit key is loaded to the first register b, and the 96-bit initialization vector is loaded to the
second register s. The other state bits are set to 1 except the least one bit in the second register.
Namely, the initial state bits are represented as

(b0, b1, . . . , b127) = (K1,K2, . . . ,K128),

(s0, s1, . . . , s127) = (IV1, IV2, . . . , IV96, 1, . . . , 1, 0).

The pseudo code of the update function in the initialization is given as follows.

g ← b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13 + b17b18 + b27b59

+ b40b48 + b61b65 + b68b84 + b88b92b93b95 + b22b24b25 + b70b78b82, (1)

f ← s0 + s7 + s38 + s70 + s81 + s96, (2)

h← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94, (3)

z ← h+ s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89, (4)

(b0, b1, . . . , b127)← (b1, . . . , b127, g + s0 + z),

(s0, s1, . . . , s127)← (s1, . . . , s127, f + z).

In the initialization, the state is updated 256 times without producing an output. After the ini-
tialization, the update function is tweaked such that z is not fed to the state, and z is used as a

20 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

zi

s0 s127b0 b127

24 5

27 7 1

6

h

g f

Fig. 5. Structure of Grain-128AEAD

Table 5. Detailed results for superpoly against 184-round Grain-128AEAD.

Parity # trails monomial

0 4096 x34x39x53x62x64x81x83x84x95x125
0 4096 x34x39x49x53x62x64x81x83x84x95x123x127x128
0 8192 x23x39x48x49x53x58x59x62x64x83x84x98x118x120

pre-output key stream. Figure 5 shows the state update function of Grain-128AEAD. Hereinafter,
we assume that the first bit of the pre-output key stream can be observed. Note that there is no
difference between Grain-128a and Grain-128AEAD under this assumption.

MILP Model. Grain128aEval in Algorithm 5 generates MILP model M as the input of Algo-
rithm 1 and 2, and the model M can evaluate all three-subset division trails for Grain-128AEAD
whose initialization rounds are reduced to R. funcZ generates MILP variables and constraints for
Eq. (3) and Eq. (4), funcG generates MILP variables and constraints for Eq. (1), and funcF generates
MILP variables and constraints for Eq. (2). MILP models for these three functions are represented
in Algorithm 9 in Appendix D.

6.2 Verification of 184-Round Attack from [WHT+18]

In [WHT+18], the cube attack against 184-round Grain-128AEAD (Grain-128a) was shown. Here,
the following cube indices

I = {1, 2, . . . , 46, 48, 49, . . . , 96},

where IV [47] = 0 are used.10 The conventional bit-based division property with flag technique
reveals that the algebraic degree of the corresponding superpoly is at most 14 and the number of
monomials is at most 214.61. It implies that the corresponding superpoly can be recovered with
295+14.61 time complexity.

We run Algorithm 2 with the model generated by Algorithm 5. Surprisingly, the superpoly does
not involve the secret key. There are 16, 384 three-subset division trails, but only three initial prop-
erties can be feasible (see Table 5, where x = (x1, x2, . . . , x128) denotes the secret key). Moreover, all
of them have even-number of trails, i.e., the superpoly shown in [WHT+18] is constant-0. Therefore,
the cube attack against 184-round Grain-128AEAD is a zero-sum distinguisher.

10 The first bit of IV is included in the cube index. When the target is Grain-128a, this attack requires
queries to both authentication and encryption-only modes. Note that the first bit of IV can also be active
in Grain-128AEAD.

Modeling for Three-Subset Division Property without Unknown Subset 21

Algorithm 5 Model for Grain-128AEAD

1: procedure Grain128aEval(round R)
2: Prepare empty MILP Model M
3: M.var ← b0i for i ∈ {0, 1, . . . , 127} as binary
4: M.var ← s0i for i ∈ {0, 1, . . . , 127} as binary
5: M.con← s0127 = 0

6: for r = 1 to R do
7: (M, b′0, . . . , b

′
127, s

′
0, . . . , s

′
127, z

r) = funcZ(M, br−10 , . . . , br−1127 , s
r−1
0 , . . . , sr−1127)

8: M.var ← zg, zf as binary
9: M.con← zr = zg ∨ zf

10: (M, b′′0 , . . . , b
′′
127, g) = funcG(M, b′0, . . . , b

′
127)

11: (M, s′′0 , . . . , s
′′
127, f) = funcF(M, s′0, . . . , s

′
127)

12: for i = 0 to 126 do
13: bri = b′′i+1

14: sri = s′′i+1

15: end for
16: M.var ← br127, s

r
127 as binary

17: M.con← b′′0 = 0

18: M.con← br127 = g + s′′0 + zg

19: M.con← sr127 = f + zf

20: end for
21: (M, b′0, . . . , b

′
127, s

′
0, . . . , s

′
127, z) = funcZ(M, bR0, . . . , b

R
127, s

R
0, . . . , s

R
127)

22: for all i ∈ {0, 1, . . . , 127} do
23: M.con← b′i = 0

24: M.con← s′i = 0

25: end for
26: M.con← z = 1

27: returnM
28: end procedure

6.3 Additional Constraints and Superpoly for 190 Rounds

Algorithm 5 evaluates funcZ, funcG, and funcF independently, and combines them. While this algo-
rithm can enumerate all three-subset division trails, it includes many redundant trails. For example,
let us consider that there are two propagations for one round from the fixed bitvector to fixed
one. Then, considering such propagations is redundant because the number of three-subset division
trails including such propagations in its inside is always even number. Therefore, we should remove
such propagations from the model in advance to reduce the number of feasible three-subset divi-
sion trails. We carefully checked three-subset division trails found in the attack against 184-round
Grain-128AEAD. As a result, we find a frequently used (but redundant) propagation.

Property 1. In any round r, either sr0 or zr must be 0.

Proof. In round r, we assume that sr0 = 1 and zr = 1. The keystream bit (zr = 1) can propagate
to the rightmost bit of NFSR (br+1

127) and the rightmost bit of LFSR (sr+1
127). The leftmost bit of

the LFSR (sr0) can also propagate to the same two bits. Therefore, unless either of sr+1
127 , br+1

127 , or
sr+1
127 · br+1

127 has monomial sr0 · zr, such a propagation is infeasible. Clearly, sr+1
127 and br+1

127 do not have
such a monomial. Moreover, the monomial sr0 · zr is always canceled out in

sr+1
127 · br+1

127 = (fr + zr) · (gr + zr + sr0)

= fr · gr + fr · sr0 + (fr + gr + 1 + sr0) · zr
= fr · gr + fr · sr0 + (sr7 + sr38 + sr70 + sr81 + sr96 + gr + 1) · zr.

ut
Property 1 is very simple and powerful. We just add the following constraint

M.con← sr0 + zr ≤ 1

22 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

between the line 6 and 7 in Algorithm 5. We re-run Algorithm 2 by using the model generated by
Algorithm 5 with the modification above. Then, 16, 384 trails become impossible, and there is no
feasible solution.

Superpoly from 185 to 189 rounds. We showed that the 184-round attack is a zero-sum distin-
guisher and cannot recover any secret key bit. Similarly to the case of Trivium, we expect that the
number of rounds that we can attack can be improved. To attack more rounds, we use cube indices
I = {1, 2, . . . , 96}, where all IV bits are active. As a result, there is no feasible solution up to 189
rounds. In other words, we find zero-sum distinguishers from 185 to 189 rounds.

Superpoly for 190 rounds. From 190 rounds onwards, secret key bits can be involved. As a
result, 7, 621 feasible three-subset division trails are enumerated, and J [u] in Algorithm 2 is non
zero for 3, 006 different u’s. Out of 3, 006 u’s, there are 1, 097 u’s whose J [u] is an odd number.
In other words, the superpoly is represented as the sum of 1, 097 monomials. We provide the exact
superpoly in fullbits.txt in https://github.com/ysktodo/milp-three-subset-wo-unknown in
detail. Interestingly, the recovered superpoly has completely different features of the one of Trivium.
While the superpoly of Trivium is a very low-degree and simple Boolean function, the recovered
superpoly for Grain128-AEAD has algebraic degree 21 and is a complicated Boolean function with
no monomials of degree lower than 6. Since the Boolean function is too complicated to evaluate
its weight theoretically, we experimentally evaluated the balancedness. We picked 215 secret keys
randomly and compute the output of the Boolean function. As a result, it is highly biased, and
the fraction of keys that output 1 is about 0.032. Therefore, the information recovered from this
superpoly is very small. Indeed, if the superpoly in the online phase evaluates to one, we gain almost
5 bit (i.e. − log2(0.032)) in an attack when filtering wrong keys. However, in the case where the
superpoly evaluates to zero, we gain less than 0.04 bits (i.e. − log2(1 − 0.032)) in an attack. The
average gain, given by the entropy, is only

−0.032 log2(0.032)− (1− 0.032) log2(1− 0.032) ≈ 0.2

which limits the interest in this approach.

6.4 Towards Efficient Key-Recovery Attacks

To recover more bits of information, we use multiple cubes whose size decreases from 96 to 95.
However, if the cube index misses one IV bit, the number of three-subset division trails increases.
We need to pick appropriate non-cube indices, where the number of three-subset division trails does
not expand to much. We were able to compute the representation of 15 superpolys pj where the
cube index set was {1..96} \ j with

j ∈ J = {27, 30, 31, 32, 34, 41, 44, 45, 46, 48, 58, 59, 64, 70, 72}.

Those polynomials vary significantly in size (between 176 and 19, 925 monomials) but also share
interesting properties. We provide 15 superpolies in consXX.txt in https://github.com/ysktodo/

milp-three-subset-wo-unknown, where XX represents each constant bit.
Again, due to their size, some of the properties can only be estimated experimentally.
Interestingly, all polynomials are highly biased toward zero and none of the polynomials involves

all key bits. In particular none of the polynomials depends on the key bits

K1,K2,K3,K6 and K9.

Moreover, all polynomials can be evaluated rather efficiently on average. The details are given in
Table 6. Note that the average total cost of evaluating the polynomials is an upper bound on the
number of XORs and ANDs needed. This bound was derived using a time-memory tradeoff for the
evaluation process, by fixing 14 key bits that appear frequently in all 15 polynomials. Fixing to all

https://github.com/ysktodo/milp-three-subset-wo-unknown
https://github.com/ysktodo/milp-three-subset-wo-unknown
https://github.com/ysktodo/milp-three-subset-wo-unknown

Modeling for Three-Subset Division Property without Unknown Subset 23

Table 6. Properties of the superpolys for Grain128-AEAD.

Poly p27 p30 p31 p32 p34 p41 p44 p45 p46 p48 p58 p59 p64 p70 p72
Nb. of ind. Ki 7 6 12 8 6 13 14 47 6 16 6 10 12 11 8

Pr(pj = 0) 0.077 0.116 0.055 0.089 0.090 0.099 0.019 0.012 0.081 0.055 0.123 0.196 0.097 0.156 0.083

Av. cost 544 408 107 196 452 148 19 10 199 213 406 497 432 336 205

214 possible values resulted in 15 · 214 polynomials. Those polynomials are significantly simpler and
simply counting the number of required AND and XOR operations in a trivial evaluation process
resulted in the numbers in Table 6 that are sufficient for our attack. In particular, the average cost of
evaluating all 15 polynomials together is smaller than 212, which is smaller than producing a single
key stream bit with Grain128-AEAD reduced to 190 rounds.

Besides being highly unbalanced, the polynomials are also not independent when evaluated on
random keys. In order to estimate how many wrong keys are filtered on average, we estimated the
entropy of (p27, . . . , p72) when evaluated at uniformly random chosen keys. That is, for vj ∈ {0, 1}
we estimated

Pr((P27, . . . , P72) = (v27, . . . , v72))

for all 215 possible outcomes. The distribution is still highly biased, in particular Pr(0, . . . , 0) ≈ 0.57.
However, the entropy, which was estimated using 225 samples, increased to 5.03 which now makes
the following attack possible.

1. The attacker evaluates in the online phase the values of the 15 superpolys for the given secret
key.

2. The attacker guesses all key-bits except the bits K1,K2,K3,K6,K9 and for each guess filters
with the correct values of the superpolys given from the online phase.

3. For each guess that passes the filtering, the attacker runs through all possible values ofK1,K2,K3,K6,K9

and verifies the key against given key-stream.

The cost of the online phase is 15 × 295 time and 296 data, i.e. using all possible IV values for the
given secret key.

In the second step, the number of guesses is 2128−5 and, due to the entropy, the average amount
of not filtered guesses is 2128−5−5.03. As evaulating the polynomials is cheaper than evaluating
Grain128-AEAD, the cost for this step is less than 2123 evaluations of Grain128-AEAD.

In the third step, the average cost is 25 · 2128−5−5.03, i.e. less than 2123 evaluations of Grain128-
AEAD as well. To conclude, the attack has an average time complexity of less than 2123 evaluations
of Grain128-AEAD and a data complexity of 296. Note that this complexity is averaged over the
given secret key. In particular, after the first step of the attack, the attacker already knows how
efficient filtering will be in her particular case. For some keys filtering is significantly stronger. This
observation might be further elaborated into a stronger attack for a smaller fraction of keys, i.e. a
weak-key attack.

7 Improved Cube Attacks against ACORN

7.1 Specification of ACORN and Its MILP Model

ACORN is an authenticated encryption algorithm and is one of the finalists in CAESAR competition
[cae14]. The structure is based on NLFSR, and the internal state is represented by a 293-bit state s =
(s0, . . . , s292). There are two component functions, ks = KSG128(s, ca, cb) and f = FBK128(s), in
the update function, and each is defined as

ks = s12 ⊕ s154 ⊕maj(s235, s61, s193)⊕ ch(s230, s111, s66),

f = s0 ⊕ (s107 ⊕ 1)⊕maj(s244, s23, s160)⊕ (ca ∧ s196)⊕ (cb ∧ ks),

24 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

where ks is used as the key stream, and maj and ch are defined as

maj(x, y, z) = xy + xz + yz,

ch(x, y, z) = xy + xz + z.

Initialized as s0 = 0, the following updating function is called for round number r = 1, . . . , R:

sr−1289 ← sr−1289 ⊕ sr−1235 ⊕ sr−1230 (5)

sr−1230 ← sr−1230 ⊕ sr−1196 ⊕ sr−1193 (6)

sr−1193 ← sr−1193 ⊕ sr−1160 ⊕ sr−1154 (7)

sr−1154 ← sr−1154 ⊕ sr−1111 ⊕ sr−1107 (8)

sr−1107 ← sr−1107 ⊕ sr−166 ⊕ sr−161 (9)

sr−161 ← sr−161 ⊕ sr−123 ⊕ sr−10 (10)

ksr−1 = KSG128(sr−1) (11)

fr−1 = FBK128(sr−1, 1, 1) (12)

sr = (sr0, s
r
1, . . . , s

r
292)← (sr−11 , sr−12 , . . . , Sr−1292 , f

r−1 ⊕m[r − 1]) (13)

The full ACORN requires R = 1792. The vector m is of length R:

– The first 256 entries are assigned as m[j] = xj and m[128 + j] = vj for j = 0, . . . , 127.
– For r ≥ 256: if 128|r, m[r] = xr mod 128 + 1; otherwise, m[r] = xr mod 128.

After R initialization rounds, the 1st output keystream bit is simply ksr generated by the process
from (5) to (11). The associated data is always loaded before the output of the key stream. In our
attack, the initialization round number R is smaller than 1792. Therefore, we do not consider the
associate data, and this is the same setting with [TIHM17,WHT+18]. Figure 6 shows the structure
of ACORN and more detailed specification of ACORN can be found in [Wu16].

0 23 60 61 66 106 107 111 153 154 160 192 193 196 229 230 235 288 289 292

f

m

Fig. 6. Structure of ACORN

MILP Model. The MILP model describing the division property propagation of ACORN updating
function can be constructed as Algorithm 6. The subroutines are described in detail: as Algorithm
12, 13 and 14. xorFB is called for the LFSR updating (5) (Algorithm 13); ksg128 and fbk128

corresponds to KSG128 and FBK128 respectively (Algorithm 14); maj and ch are also handled
(Algorithm 12). It is noticeable that the FBK128 function requires in (12) requires 3 parameters but
the 2nd and 3rd are constantly 1 during our targeted initialization phase. So our model in Algorithm
14 only considers the situation of FBK128(ks, 1, 1).

7.2 Verification of 772-Round Attack from [YLL19]

In [YLL19], Yang et al. use a 123 dimensional cube I for attacking 772-round ACORN. Using the
method in [WHT+18], they find that the superpoly is of degree-1-polynomial that may involve a set
of key indices denoted as J , where I and J can be represented as

I = {0, . . . , 127}\{1, 2, 11, 26, 27}
J = {0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 19, 24, 31, 33, 35, 39, 41, 44, 45, 78} (14)

Modeling for Three-Subset Division Property without Unknown Subset 25

Algorithm 6 Model for ACORN.

1: procedure AcornEval(round R)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {0, 1, . . . , 292} as binary
4: M.con← s0i = 0 for i ∈ {0, 1, . . . , 292} as binary
5: M.var ← xi, vi for i ∈ {0, 1, . . . , 127} as binary
6: Initialize the key and IV vectors as x0 = (x0, . . . , x127) and v0 = (v0, . . . , v127)
7: Initialize s0 = (s00, . . . , s

0
292)

8: for r = 1 to R do
9: (M,xr,vr,mr−1)← getM(M,xr−1,vr−1, r − 1)

10: (M, sr)← update(M, sr−1,mr−1)
11: end for
12: (M, s, z)← ksg128(M, sR)
13: M.con← xR = 0,vR = 0, s = 0, z = 1
14: returnM
15: end procedure

Table 7. Detailed results for Yang et al.’s superpoly against 772-round ACORN.

Parity # trails monomial

0 288 x0
0 144 x1
0 288 x2
0 144 x4
0 144 x5
0 288 x6
0 288 x7

Parity # trails monomial

0 144 x8
0 144 x10
0 144 x11
0 144 x12
0 144 x19
0 144 x24
0 144 x31

Parity # trails monomial

0 144 x35
0 144 x39
0 144 x41
0 144 x44
0 144 x45
0 144 x78

Since |J | = 21, Yang et al. conclude that the superpoly can be a linear polynomial involving at most
21 key bits.

With I in (14), C0 = φ and M generated by Algorithm 6, we run Algorithm 2 only to find that
all key bits in J are cancelled due to the EVEN number of J [u]’s. The J [u]’s corresponding to each
of the 21 monomials are listed in Table 7 by calling Algorithm 1, indicating none of them can appear
in the superpoly. So Yang et al.’s attack in [YLL19] is degenerated from a key-recovery attack to a
constant-sum distinguisher.

7.3 Cube Attacks on 773- and 774-Round ACORN

The cubes we use for attacking 773- and 774-round ACORN are of dimensions 125 and 126 respec-
tively. The non-cube IVs are all set to constant 0.

Superpoly of 773-round ACORN . For 773-round attack, we use I = {0, . . . , 127}\{7, 12, 79}.
As a result, 10, 473 feasible three-subset division trails are enumerated, and all u’s whose J [u] is non
zero are summarized in Table 11. There are 65 different u’s having non-zero J [u] and 43 of which
are odd. So the superpoly can be represented as a sum of 43 monomials as follows:

p(x) = x7x49 + x19 + x14 + x74 + x16 + x3 + x33 + x11 + x34 + x107 + x8 + x2 + x36 + x70 + x48

+ x35 + x37 + x41 + x1 + x4 + x20 + x25 + x27x69 + x15x27 + x10x27 + x27 + x88 + x12

+ x127 + x26 + x94 + x24 + x60 + x49 + x61 + x54 + x30 + x28 + x90 + x59 + x93 + x57 + x51

Superpoly of 774-round ACORN . For 774-round attack, we use I = {0, . . . , 127}\{19, 36}.
We enumerate 2732 three-subset division trails. We find 95 u’s having non-zero J [u] and 72 of the
J [u]’s are odd, and all u’s whose J [u] is non zero are summarized in Table 12. So the superpoly is

26 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

a summation of 72 monomials as follows.

p(x) = x8x50 + x10x52 + x108 + x14x56 + x74 + x11 + x2x14 + x13x55 + x1x13 + x14x35 + x14x89+

x10x89 + x14x30 + x13x35 + x14x98 + x13x89 + x10x30 + x10x35 + x47x89 + x14x39+

x14x44 + x1x14 + x35x47 + x13 + x8x89 + x88 + x13x30 + x30x47 + x93 + x8x35 + x34+

x110 + x8x30 + x21 + x7 + x8 + x1 + x35 + x32 + x15 + x9 + x69 + x44 + x48 + x47 + x46+

x81 + x27 + x55 + x45 + x18 + x23 + x60 + x80 + x49 + x71 + x77 + x6 + x26 + x25 + x79+

x30 + x114 + x19 + x50 + x59 + x113 + x22 + x73 + x51 + x56 + x29

8 Improved Cube Attacks against Kreyvium

8.1 Specification of Kreyvium and Its MILP Model

Kreyvium is designed for the use of fully Homomorphic encryption [CCF+16]. It claims 128-bit
security and accepts 128-bit IV. Kreyvium consists of 5 registers. Two of them are LFSRs denoted
as K and V respectively. The remaining is three concatenated NFSRs making up a 288-bit state s
identical to that of Trivium. The registers are initialized as

(s1, s2, . . . , s93) = (K[1],K[2], . . . ,K[93]),

(s94, s95, . . . , s177) = (IV [1], IV [2], . . . , IV [84]),

(s178, s279, . . . , s288) = (IV [85], . . . , IV [128], 1, . . . , 1, 0),

V 0 = (V 0
1 , . . . , V

0
128)← (IV [128], . . . , IV [1]),

K0 = (K0
1 , . . . ,K

0
128)← (K[128], . . . ,K[1]),

For initialization round R, the updating function is called as (sr,V r,Kr)← Upd(sr−1,V r−1,Kr−1)
for r = 1, . . . R. The procedure of Upd can be depicted as Fig. 7 defined as follows:

tr−1
1 ← sr−1

66 ⊕ s
r−1
93

tr−1
2 ← sr−1

162 ⊕ s
r−1
177

tr−1
3 ← sr−1

243 ⊕ s
r−1
288 ⊕K

r−1
0

zr−1 ← tr−1
1 ⊕ tr−1

2 ⊕ tr−1
3

tr−1
1 ← tr−1

1 ⊕ sr−1
91 · s

r−1
92 ⊕ s

r−1
171 ⊕ IV

r−1
0

tr−1
2 ← tr−1

2 ⊕ sr−1
175 · s

r−1
176 ⊕ s

r−1
264

tr−1
3 ← tr−1

3 ⊕ sr−1
286 · s

r−1
287 ⊕ s

r−1
69

sr[1, . . . , 93] = (sr1, . . . , s
r
93)← (tr−1

3 , sr−1
2 , . . . , sr−1

92)

sr[94, . . . , 177] = (sr94, . . . , s
r
177)← (tr−1

1 , sr−1
94 , . . . , sr−1

176)

sr[178, . . . , 288] = (sr177, . . . , s
r
287)← (tr−1

2 , sr−1
178 , . . . , s

r−1
287)

Kr = (Kr
1 , . . . ,K

r
128)← (Kr−1

1 ,Kr−1
128 ,K

r−1
127 , . . . ,K

r−1
2)

V r = (V r
1 , . . . , V

r
128)← (V r−1

1 , V r−1
128 , V r−1

127 , . . . , V r−1
2)

AfterR initialization rounds, the output keystream is output as zR, zR+1, According to [CCF+16],
full Kreyvium requires R = 1152 initialization rounds.

MILP Model. The MILP model describing the division property propagation of Kreyvium updat-
ing function can be constructed as Algorithm 7. The subroutine TrivimCore is identical to that in
Algorithm 3. As can be seen in Algorithm 7 KR

0 is ignored in the output bit because it is constant
during cube summations and cannot affect the evaluation.

Modeling for Three-Subset Division Property without Unknown Subset 27

zi

Fig. 7. Structure of Kreyvium

8.2 Verified and Improved Key-Recovery Attack on 892-Round Kreyvium

We use a 115-dimensional cube I as (15).

I = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64,

65, 66, 68, 69, 70, 71, 72, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,

97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128} (15)

This is the cube used in [HJL+20] where the superpoly is claimed to be a 2-degree polynomial
involving at most 33 key bits and a complexity of 2121.19 is required to recover the superpoly. Our
method can recover this superpoly with practical time. When the non-cube IVs are all set to 0
(IV = 0), there are only 6 different u’s having non-zero J [u]’s and all of them are odd. So the
superpoly can be represented as a sum of 6 monomials as follows:

p(x) = x27 + x41 + x51 + x86 + x110 + 1

To be more specific, J [u] = 31 for the monomial 1 and J [u] = 3 for the others.

9 Conclusion

In this paper, we proposed a new modeling technique for the three-subset division property without
unknown subset. Our technique is significant for the application to the cube attack. Unlike the
previous experimental or theoretical cube attacks, our method does not need any assumption and
can recover the actual superpoly in practical time. Our method leads to the best key-recovery attack
on some of the most important stream ciphers.

Acknowledgement. The authors thank the anonymous Eurocrypt 2020 reviewers for careful read-
ing and many helpful comments. Yonglin Hao is supported by National Key Research and Devel-
opment Program of China (No. 2018YFA0306404). Gregor Leander is supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972. Qingju Wang is funded by the University of Luxembourg Internal
Research Project (IRP) FDISC.

28 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 7 Model for Kreyvium.

1: procedure LFSR(M,x)
2: M.var ← a, b as binary
3: M.con← x1 = a ∨ b
4: Initialize a new vector y as y = (x2, . . . , x127, a)
5: return (M,y, b)
6: end procedure

1: procedure KreyviumEval(round R)
2: Prepare empty MILP Model M
3: M.var ← s0i for i ∈ {1, . . . , 288} as binary
4: M.var ← xi, vi for i ∈ {1, . . . , 128} as binary
5: M.var ← K0

i , V
0
i for i ∈ {1, . . . , 128} as binary

6: Initialize the two LFSRs as K0 = (K0
1 , . . . ,K

0
128) and V 0 = (V 0

1 , . . . , V
0
128)

7: M.con← xi = K0
129−i ∨ s0i for i = 1, . . . , 93

8: M.con← xi = K0
129−i for i = 94, . . . , 128

9: M.con← vi = V 0
129−i ∨ s093+i for i = 1, . . . , 128

10: for r = 1 to R do
11: (M,Kr, ar)← LFSR(M,Kr−1)
12: (M,V r, br)← LFSR(M,V r−1)
13: (M, x1, . . . , x288) = TriviumCore(M, sr−1

1 , . . . , sr−1
288 , 66, 171, 91, 92, 93)

14: (M, y1, . . . , y288) = TriviumCore(M, x1, . . . , x288, 162, 264, 175, 176, 177)
15: (M, z1, . . . , z288) = TriviumCore(M, y1, . . . , y288, 243, 69, 286, 287, 288)
16: M.var ← tr1, t

r
3 as binary

17: M.con← tr1 = z93 + br

18: M.con← tr3 = z288 + ar

19: sr = (sr1, . . . , s
r
288) = (tr3, z1, . . . , z92, t

r
1, z94z287)

20: end for
21: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
22: M.con← sRi = 0

23: end for
24: M.con← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = 1

25: returnM
26: end procedure

References

ÅHJM11. Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new version of
Grain-128 with optional authentication. IJWMC, 5(1):48–59, 2011.

BKL+17. Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Florian Mendel,
Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier Standaert, Yosuke Todo, and
Benôıt Viguier. Gimli : A cross-platform permutation. In Wieland Fischer and Naofumi Homma,
editors, CHES 2017, volume 10529 of LNCS, pages 299–320. Springer, Heidelberg, September
2017.

BPP+17. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and
Yosuke Todo. GIFT: A small present - towards reaching the limit of lightweight encryption.
In Wieland Fischer and Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS, pages
321–345. Springer, Heidelberg, September 2017.

cae14. CAESAR: Competition for authenticated encryption: Security, applicability, and robustness,
2014.

CCF+16. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Maŕıa Naya-Plasencia,
Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical solution for efficient
homomorphic-ciphertext compression. In Thomas Peyrin, editor, FSE 2016, volume 9783 of
LNCS, pages 313–333. Springer, Heidelberg, March 2016.

CP06. Christophe De Cannière and Bart Preneel. Trivium specifications, 2006. eSTREAM portfolio,
Profile 2 (HW).

DKR97. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In Eli Biham,
editor, FSE’97, volume 1267 of LNCS, pages 149–165. Springer, Heidelberg, January 1997.

Modeling for Three-Subset Division Property without Unknown Subset 29

DS09. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In Antoine Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 278–299. Springer, Heidelberg, April
2009.

FWD+18. Ximing Fu, Xiaoyun Wang, Xiaoyang Dong, Willi Meier, Yonglin Hao, and Boxin Zhao. A
refinement of “a key-recovery attack on 855-round Trivium” from crypto 2018. Cryptology
ePrint Archive, Report 2018/999, 2018. https://eprint.iacr.org/2018/999.

FWDM18. Ximing Fu, Xiaoyun Wang, Xiaoyang Dong, and Willi Meier. A key-recovery attack on 855-
round Trivium. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 160–184. Springer, Heidelberg, August 2018.

HJL+18. Yonglin Hao, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju Wang. Observations
on the dynamic cube attack of 855-round TRIVIUM from Crypto’18. Cryptology ePrint Archive,
Report 2018/972, 2018. https://eprint.iacr.org/2018/972.

HJL+20. Yonglin Hao, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju Wang. Links between
division property and other cube attack variants. IACR Trans. Symm. Cryptol., 2020(1):(ac-
cepted to appear), 2020.

HJM+19. Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hirotaka Yoshida. Grain-
128AEAD: A lightweight AEAD stream cipher, 2019. Lightweight Cryptography (LWC) Stan-
dardization.

HK18. Matthias Hamann and Matthias Krause. On stream ciphers with provable beyond-the-birthday-
bound security against time-memory-data tradeoff attacks. Cryptography and Communications,
10(5):959–1012, 2018.

HW19. Kai Hu and Meiqin Wang. Automatic search for a variant of division property using three
subsets. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 412–432.
Springer, Heidelberg, March 2019.

KW02. Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen and Vincent
Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127. Springer, Heidelberg, February
2002.

Lai94. Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Communications and
Cryptography, volume 276 of The Springer International Series in Engineering and Computer
Science, pages 227–233. Springer, 1994.

SIKH16. Nobuyuki Sugio, Yasutaka Igarashi, Toshinobu Kaneko, and Kenichi Higuchi. New integral
characteristics of KASUMI derived by division property. In Dooho Choi and Sylvain Guilley,
editors, WISA 16, volume 10144 of LNCS, pages 267–279. Springer, Heidelberg, August 2016.

ST16. Yu Sasaki and Yosuke Todo. New differential bounds and division property of Lilliput: Block
cipher with extended generalized Feistel network. In Roberto Avanzi and Howard M. Heys,
editors, SAC 2016, volume 10532 of LNCS, pages 264–283. Springer, Heidelberg, August 2016.

SWW17. Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based division property for
ARX ciphers and word-based division property. In Tsuyoshi Takagi and Thomas Peyrin, edi-
tors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 128–157. Springer, Heidelberg,
December 2017.

TIHM17. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on non-blackbox
polynomials based on division property. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 250–279. Springer, Heidelberg, August
2017.

TIM+18. Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang. Fast correlation
attack revisited - cryptanalysis on full Grain-128a, Grain-128, and Grain-v1. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 129–
159. Springer, Heidelberg, August 2018.

TM16. Yosuke Todo and Masakatu Morii. Bit-based division property and application to simon family.
In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 357–377. Springer, Heidelberg,
March 2016.

Tod15a. Yosuke Todo. Integral cryptanalysis on full MISTY1. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 413–432. Springer, Hei-
delberg, August 2015.

Tod15b. Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 287–314.
Springer, Heidelberg, April 2015.

WHG+19. SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. MILP-aided method of search-
ing division property using three subsets and applications. In Steven D. Galbraith and Shiho

https://eprint.iacr.org/2018/999
https://eprint.iacr.org/2018/972

30 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 398–427. Springer,
Heidelberg, December 2019.

WHT+18. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi Meier. Im-
proved division property based cube attacks exploiting algebraic properties of superpoly. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 275–305. Springer, Heidelberg, August 2018.

WLV+14. Qingju Wang, Zhiqiang Liu, Kerem Varici, Yu Sasaki, Vincent Rijmen, and Yosuke Todo. Crypt-
analysis of reduced-round SIMON32 and SIMON48. In Willi Meier and Debdeep Mukhopadhyay,
editors, INDOCRYPT 2014, volume 8885 of LNCS, pages 143–160. Springer, Heidelberg, De-
cember 2014.

Wu16. Hongjun Wu. Acorn v3, 2016. Submission to CAESAR competition.
XZBL16. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP method to

searching integral distinguishers based on division property for 6 lightweight block ciphers. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 648–678. Springer, Heidelberg, December 2016.

YLL19. Jingchun Yang, Meicheng Liu, and Dongdai Lin. Cube cryptanalysis of round-reduced ACORN.
In ISC 2019, LNCS, pages 44–64. Springer, Heidelberg, 2019.

YT19. Chen-Dong Ye and Tian Tian. Revisit division property based cube attacks: Key-recovery or
distinguishing attacks? IACR Transactions on Symmetric Cryptology, 2019(3):81–102, Sep. 2019.

Modeling for Three-Subset Division Property without Unknown Subset 31

A On Attached Source Code

We provide two source codes to well understand our algorithm in https://github.com/ysktodo/

milp-three-subset-wo-unknown.

A.1 Code for Superpoly Recovery on Trivium and Grain-128AEAD

Under code/recovery, there is a source code to recover the superpoly for Trivium and Grain-
128AEAD. This code is written by C++ with Gurobi API. Therefore, to compile and run this code,
you need to install Gurobi Optimizer in advance. If you already install the Gurobi Optimizer version
8.1, you just run

make

If your Gurobi Optimizer is not version 8.1, please change LIB option in makefile.
If you want to try the superpoly recovery for 840- or 841-round Trivium, you just run

./a.out -r [840 or 841] -trivium -t [option : thread number]

Note that this code does not return the answer quickly. It depends on the performance of your
computer, and if you execute this code in a cheap computer, you need to wait a few days. We highly
recommend that this code is executed on the computer with good performance.

If you want to try the superpoly recovery for 190-round Grain-128AEAD, you just run

./a.out -r 190 -grain -t [option : thread number]

Moreover, you want to try 15 superpolies that are used in the key-recovery attack against Grain-
128AEAD, you just run

./a.out -r 190 -grain -subcube -t [option : thread number]

Similarly to the case of Trivium, this code does not return the answer quickly. Therefore, we highly
recommend that this code is executed on the computer with good performance.

This source code also provides the practical verification, where the superpoly is recovered under
the randomly chosen cube whose size is at most several bits and the correctness of the recovered
superpoly is experimentally verified by using 100 randomly generated secret key bits and non-cube
IV bits. If you want to try this verification, you just run

./a.out -trivium -practical

for Trivium and

./a.out -grain -practical

for Grain-128AEAD.

A.2 Code for Verification of Statement 1

Under code/855disproof, there is a source code to verify Statement 1. Similarly to the source code
for the superpoly recovery, this code is written by C++ with Gurobi API. Therefore, to compile and
run this code, you need to install Gurobi Optimizer in advance. If you already install the Gurobi
Optimizer version 8.1, you just run

make

If your Gurobi Optimizer is not version 8.1, please change LIB option in makefile.
For easy verification, we wrote this source code as simple as possible, and the code length is

about 300 lines. Therefore, this verification code is more suited to understand our algorithm than
another source code described in A.1. You just run

./a.out -r 855 -t [option : thread number]

Then, you can find only one three-subset division trail.

https://github.com/ysktodo/milp-three-subset-wo-unknown
https://github.com/ysktodo/milp-three-subset-wo-unknown

32 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

B The Practical Verification using Parameters from Fu et al.’s
Refinements in [FWD+18]

Example 3. (Parameters from [FWD+18]) In [FWD+18], Fu et al. provide 17 29-dimensional
cubes as Table 8. For the correct key guess, the p(x) of (1 + s22194)z721 over Ij (j = 0, . . . , 16) is
constantly 0. [FWD+18] also shows the p(x) 6= 0 for pure z721 with sufficiently many random keys.
Both situations are perfectly evaluated with our method. We have I = Ij (j = 0, . . . , 16) and
C0 = {1, . . . , 80}\I. The only difference appears in model construction:

1. For (1 + s22194)z721, we call Algorithm 4 as M← TriviumSecEval(721, 221)
2. For z721, we call Algorithm 3 as M← TriviumEval(721)

Then, we simply call Algorithm 2 to acquire p(x) for both situations. All 17 p(x)’s are 0 for (1 +
s22194)z721 and those for z721 are listed in Table 8. Since all the p(x)’s for z721 are quite simple, the key-
recovery can already be carried out without using Fu et al.’s method in [FWDM18]. Furthermore,
as can be seen, all p(x) in Table 8 have a common divisor x62. Therefore, when the key bit x62 is
constant 0, the 17 cube summations for z721 will be 0. For all the 17 cubes, the ANF of s22194 can be
represented as

s22194 = g1 + g2v67 + g3(v21 + v51) + v21v67 + v25v39 + v41 + v53 (16)

where g1, g2, g3 are the 3 secret-key related bits need to be guessed. Such to-be-guessed bits are in
fact polynomials of key bits represented as:

g1 =x2 + x9x10 + x11 + x18x19 + x20 + x27x28 + x29

+ x47 + x53 + x60x61 + x72x73 + x74

g2 =x9

g3 =x10

(17)

Since there is a wrong key guess (g1 is wrongly guessed as g1 + 1 while g2, g3 are guessed correctly)
that can make the assignment of s22194 become 1 + s22194 so the corresponding transformation and
summation become:

g1 + 1, g2, g3 ⇒ ẑ721 = (1 + 1 + s22194)z721 = (1 + s22194)z721 + z721

⇒
∑
CI

ẑ721 =
∑
CI

[
(1 + s22194)z721

]
+
∑
CI

z721 = 0 +
∑
CI

z721
(18)

As can be seen, such a wrong key guess summation equals to that of plain z721 and all 17 cube
summations are 0 as long as x62 = 0. This phenomenon can also be verified experimentally. In other
words, Fu et al.’s attacks in [FWD+18] on 721-round Trivium can only work under the weak-key
setting (x62 = 1) while the ordinary cube attack on plain z721 recovers key bits directly for arbitrary
key settings. Therefore, Fu et al.’s method is no better than the ordinary cube attack. Such analysis
has not only proved the accuracy of our method but the ineffectiveness of Fu et al.’s refinements in
[FWD+18] as well.

Modeling for Three-Subset Division Property without Unknown Subset 33

Table 8. The 17 29-dimensional cubes in [FWD+18] and their superpoly p(x)’s for z721 (as well as ẑ721 in
(18)).

j Ij p(x)
0 1, 5, 11, 17, 21, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53,

55, 57, 61, 63, 67, 69, 71, 75, 77,
x55x62 + x62

1 1, 3, 5, 9, 15, 17, 21, 25, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 53, 55,
57, 61, 63, 67, 69, 71, 75, 77,

x62

2 1, 5, 7, 11, 15, 17, 21, 25, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

3 1, 5, 9, 11, 15, 17, 21, 25, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

4 1, 5, 11, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

5 1, 3, 5, 9, 17, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 55,
57, 61, 63, 67, 69, 71, 75, 77,

x62

6 1, 5, 9, 15, 17, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

7 1, 5, 9, 11, 15, 21, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

8 1, 5, 11, 15, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

9 1, 3, 5, 9, 15, 17, 21, 23, 25, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 55,
57, 61, 63, 67, 69, 71, 75, 77,

x62

10 1, 5, 11, 15, 17, 21, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

11 11, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51,
53, 55, 57, 61, 63, 67, 69, 71, 75, 77,

x59x60x62

12 5, 11, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 39, 41, 43, 45, 47, 49, 51, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x59x60x62

13 1, 3, 5, 9, 15, 17, 21, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 55,
57, 61, 63, 67, 69, 71, 75, 77,

x62

14 1, 5, 11, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

15 1, 3, 5, 17, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53,
55, 57, 61, 63, 67, 69, 71, 75, 77,

x62

16 1, 3, 5, 9, 17, 21, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55,
57, 61, 63, 67, 69, 71, 75, 77,

x62

34 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

C Detailed Result for Cube Attacks against Trivium

The superpoly recovered for 842-Round Trivium is given as the following

p(x) = x80 + x79 + x78 + x78x80 + x78x79 + x77 + x77x80 + x77x78x80 + x76 + x76x80 + x76x79+

x76x78x80 + x76x78x79 + x76x77x80 + x76x77x78 + x76x77x78x80 + x75 + x75x79 + x75x77x78+

x75x76x78 + x75x76x77 + x74 + x74x75x80 + x74x75x79 + x74x75x78x80 + x74x75x78x79+

x74x75x77x80 + x74x75x77x78 + x74x75x77x78x80 + x74x75x76x80 + x74x75x76x78x79+

x74x75x76x77x80 + x74x75x76x77x78x79 + x73x80 + x73x78x79 + x73x75 + x73x74x79 + x73x74x77x78+

x73x74x76 + x73x74x75 + x72x73 + x71x76 + x71x75 + x71x74x75 + x71x73x74 + x71x72x80+

x71x72x78x79 + x71x72x75 + x71x72x73x74 + x70 + x70x75 + x70x73x74 + x69 + x69x70x76+

x69x70x75 + x69x70x74x75 + x69x70x73x74 + x68 + x68x69 + x68x69x75 + x68x69x73x74 + x67x78+

x67x76x77 + x67x68 + x66x80 + x66x78x79 + x66x77 + x66x76 + x66x75 + x66x75x76 + x66x74x75+

x66x73 + x66x73x74 + x66x71x72 + x66x67 + x65x80 + x65x78x79 + x65x76 + x65x76x80+

x65x76x78x79 + x65x75 + x65x74x75 + x65x74x75x80 + x65x74x75x78x79 + x65x73x74 + x65x66x78+

x65x66x76x77 + x64x76x80 + x64x76x78x79 + x64x74x75x80 + x64x74x75x78x79 + x64x65x80+

x64x65x78x79 + x63 + x63x78x80 + x63x78x79 + x63x77x80 + x63x77x78x79 + x63x76 + x63x76x77x80+

x63x76x77x78x79 + x63x75x76x80 + x63x75x76x78x79 + x63x74x75 + x63x70 + x63x68x69 + x63x65x80+

x63x65x78x79 + x62x79 + x62x77x78 + x62x76 + x62x74x75 + x62x65 + x62x63 + x62x63x76x80+

x62x63x76x78x79 + x62x63x74x75x80 + x62x63x74x75x78x79 + x61 + x61x80 + x61x79 + x61x78x79+

x61x77 + x61x77x78 + x61x76x79 + x61x76x77x78 + x61x75x76 + x61x74x75x79 + x61x74x75x77x78+

x61x73 + x61x72 + x61x71 + x61x71x72 + x61x70x71 + x61x69 + x61x69x70 + x61x67x78+

x61x67x76x77 + x61x67x68 + x61x66 + x61x65 + x61x65x76 + x61x65x74x75 + x61x65x66x78+

x61x65x66x76x77 + x61x62x78x80 + x61x62x78x79 + x61x62x77x80 + x61x62x77x78x79+

x61x62x76x77x80 + x61x62x76x77x78x79 + x61x62x75x76x80 + x61x62x75x76x78x79 + x61x62x65x80+

x61x62x65x78x79 + x60 + x60x80 + x60x78x79 + x60x74 + x60x73 + x60x72 + x60x72x73 + x60x71x72+

x60x70x71 + x60x66 + x60x62 + x60x61x79 + x60x61x77x78 + x60x61x74 + x60x61x72x73 + x60x61x65+

x59x80 + x59x78x79 + x59x76 + x59x75 + x59x74 + x59x74x75 + x59x73x74 + x59x72x73 + x59x66+

x59x62 + x59x61 + x59x61x70 + x59x61x68x69 + x59x60x80 + x59x60x79 + x59x60x78x79 + x59x60x77+

x59x60x77x78 + x59x60x76x79 + x59x60x76x77x78 + x59x60x75x76 + x59x60x74 + x59x60x74x75x79+

x59x60x74x75x77x78 + x59x60x73 + x59x60x72 + x59x60x72x73 + x59x60x71x72 + x59x60x70x71+

x59x60x66 + x59x60x65 + x59x60x65x76 + x59x60x65x74x75 + x59x60x62 + x58x80 + x58x78x79+

x58x77 + x58x75 + x58x74 + x58x74x75 + x58x73x74 + x58x73x74x76 + x58x73x74x75 + x58x72x73+

x58x70 + x58x68 + x58x68x69 + x58x66 + x58x62x74 + x58x62x72x73 + x58x61x74 + x58x61x72x73+

x58x60 + x58x60x61 + x58x60x61x74 + x58x60x61x72x73 + x58x59 + x58x59x74 + x58x59x72+

x58x59x72x73 + x58x59x70x71 + x58x59x61 + x58x59x61x74 + x58x59x61x72x73 + x57x75x77 + x57x74+

x57x74x75 + x57x73x74x77 + x57x73x74x76 + x57x73x74x75 + x57x73x74x75x76 + x57x72x73 + x57x66+

x57x62 + x57x62x75 + x57x62x73x74 + x57x62x63 + x57x61x75 + x57x61x73x74 + x57x61x65+

x57x60x61 + x57x60x61x75 + x57x60x61x73x74 + x57x59 + x57x59x61 + x57x59x60 + x57x59x60x75+

x57x59x60x73x74 + x57x59x60x65 + x57x58x76 + x57x58x75 + x57x58x74 + x57x58x74x75+

x57x58x73x74 + x57x58x72x73 + x57x58x60 + x57x58x59x61 + x57x58x59x60 + x56x60 + x56x57x61+

x55 + x55x61 + x55x56x61 + x55x56x57x61 + x54 + x54x76 + x54x74x75 + x54x55x61 + x53 + x53x79+

x53x78 + x53x77 + x53x77x78 + x53x76 + x53x76x79 + x53x76x78 + x53x76x77 + x53x76x77x78+

x53x74x75 + x53x74x75x79 + x53x74x75x78 + x53x74x75x77 + x53x74x75x77x78 + x53x74x75x76+

x53x74x75x76x77 + x53x73 + x53x71x72 + x53x66 + x53x65 + x53x65x76 + x53x65x74x75 + x53x64x76+

x53x64x74x75 + x53x64x65 + x53x63x78 + x53x63x77 + x53x63x76x77 + x53x63x75x76 + x53x63x65+

x53x62x63x76 + x53x62x63x74x75 + x53x61 + x53x61x62x78 + x53x61x62x77 + x53x61x62x76x77+

x53x61x62x75x76 + x53x61x62x65 + x53x60 + x53x59 + x53x59x60 + x53x58+

Modeling for Three-Subset Division Property without Unknown Subset 35

x52 + x52x80 + x52x78x79 + x52x76 + x52x76x80 + x52x76x78x79 + x52x75 + x52x74x75 + x52x74x75x80+

x52x74x75x78x79 + x52x73x74 + x52x62 + x52x61 + x52x61x76 + x52x61x74x75 + x52x60x61+

x52x59x60 + x52x59x60x76 + x52x59x60x74x75 + x52x53 + x52x53x76 + x52x53x74x75 + x51 + x51x80+

x51x78x79 + x51x77 + x51x76 + x51x76x80 + x51x76x78x79 + x51x75x76 + x51x74 + x51x74x75+

x51x74x75x80 + x51x74x75x78x79 + x51x72x73 + x51x67 + x51x65x66 + x51x63 + x51x63x80+

x51x63x78x79 + x51x62 + x51x61 + x51x61x67 + x51x61x65x66 + x51x61x62x80 + x51x61x62x78x79+

x51x59x60 + x51x59x60x62 + x51x59x60x61 + x51x58 + x51x53 + x51x53x76 + x51x53x74x75+

x51x53x63 + x51x53x61x62 + x50 + x50x80 + x50x78 + x50x78x79 + x50x76 + x50x76x80+

x50x76x78x79 + x50x76x77 + x50x75 + x50x74x75 + x50x74x75x80 + x50x74x75x78x79 + x50x73x74+

x50x63x80 + x50x63x78x79 + x50x61 + x50x61x62x80 + x50x61x62x78x79 + x50x60 + x50x59x60+

x50x58x59 + x50x57x75 + x50x57x73x74 + x50x53 + x50x53x76 + x50x53x74x75 + x50x53x63+

x50x53x61x62 + x50x51 + x49 + x49x80 + x49x79 + x49x78x80 + x49x78x79 + x49x77x80 + x49x77x78+

x49x77x78x80 + x49x76x77x80 + x49x76x77x78x79 + x49x75 + x49x75x76x80 + x49x75x76x78x79+

x49x73x74 + x49x71 + x49x69x70 + x49x66 + x49x65 + x49x65x80 + x49x65x78x79 + x49x64x80+

x49x64x78x79 + x49x63 + x49x62 + x49x62x63x80 + x49x62x63x78x79 + x49x61x79 + x49x61x77x78+

x49x61x65 + x49x59 + x49x59x60x79 + x49x59x60x77x78 + x49x59x60x65 + x49x58 + x49x58x75+

x49x58x73x74 + x49x57 + x49x57x75 + x49x57x73x74 + x49x57x58 + x49x54 + x49x53 + x49x53x79+

x49x53x78 + x49x53x77 + x49x53x77x78 + x49x53x76x77 + x49x53x75x76 + x49x53x65 + x49x53x64+

x49x53x62x63 + x49x52 + x49x52x80 + x49x52x78x79 + x49x52x61 + x49x52x59x60 + x49x52x53+

x49x51x80 + x49x51x78x79 + x49x51x53 + x49x50 + x49x50x80 + x49x50x78x79 + x49x50x76+

x49x50x74 + x49x50x74x75 + x49x50x72x73 + x49x50x63 + x49x50x62 + x49x50x61 + x49x50x59x60+

x49x50x59x60x62 + x49x50x59x60x61 + x49x50x58 + x49x50x53 + x48 + x48x79 + x48x77x78 + x48x73+

x48x71 + x48x71x72 + x48x70 + x48x69x70 + x48x68x69 + x48x65 + x48x62 + x48x61 + x48x60x61+

x48x59 + x48x59x60 + x48x58x76 + x48x58x74x75 + x48x57x77 + x48x57x76 + x48x57x75x76+

x48x57x74x75 + x48x57x62 + x48x57x61 + x48x57x60x61 + x48x57x59x60 + x48x57x58 + x48x52+

x48x51 + x48x50 + x48x50x57 + x48x49 + x48x49x76 + x48x49x75 + x48x49x74x75 + x48x49x73x74+

x48x49x66 + x48x49x60 + x48x49x58x59 + x48x49x57 + x48x49x50 + x47 + x47x61 + x47x60+

x47x60x61 + x47x59 + x47x58 + x47x58x62 + x47x58x61 + x47x58x60x61 + x47x58x59 + x47x58x59x61+

x47x57x58 + x47x51 + x47x49x50 + x47x48x58 + x47x48x51 + x47x48x49x50 + x46x80 + x46x78x79+

x46x75 + x46x73x74 + x46x66 + x46x61 + x46x60 + x46x59x60 + x46x53 + x46x48 + x46x47x76+

x46x47x74x75 + x46x47x66 + x46x47x62 + x46x47x61 + x46x47x60x61 + x46x47x59x60 + x46x47x58+

x46x47x51 + x46x47x49x50 + x46x47x48 + x45x70 + x45x68x69 + x45x61 + x45x60 + x45x59x60+

x45x58x59 + x45x46x61 + x45x46x59x60 + x45x46x57 + x44x76 + x44x75 + x44x74x75 + x44x73x74+

x44x61 + x44x57x61 + x44x49 + x44x48 + x43 + x43x75 + x43x73x74 + x43x63 + x43x59x61 + x43x58+

x43x48 + x43x45 + x43x44x70 + x43x44x68x69 + x42 + x42x61 + x42x43x57x61 + x41 + x41x66x80+

x41x66x78x79 + x41x64x65x80 + x41x64x65x78x79 + x41x53x66 + x41x53x64x65 + x40x78 + x40x76x77+

x40x61x78 + x40x61x76x77 + x40x57 + x40x51 + x40x51x61 + x39x80 + x39x78x79 + x39x61 + x39x53+

x39x41x80 + x39x41x78x79 + x39x41x53 + x39x40 + x39x40x80 + x39x40x78x79 + x39x40x66x80+

x39x40x66x78x79 + x39x40x64x65x80 + x39x40x64x65x78x79 + x39x40x53 + x39x40x53x66+

x39x40x53x64x65 + x37x76x80 + x37x76x78x79 + x37x74x75x80 + x37x74x75x78x79 + x37x53x76+

x37x53x74x75 + x37x49x80 + x37x49x78x79 + x37x49x53 + x37x38x61 + x36x78x80 + x36x78x79+

x36x77x80 + x36x77x78x79 + x36x76 + x36x76x77x80 + x36x76x77x78x79 + x36x75x76x80+

x36x75x76x78x79 + x36x74 + x36x74x75 + x36x72x73 + x36x65x80 + x36x65x78x79 + x36x63 + x36x62+

x36x61 + x36x59x60 + x36x59x60x62 + x36x59x60x61 + x36x58 + x36x53x78 + x36x53x77+

x36x53x76x77 + x36x53x75x76 + x36x53x65 + x36x51 + x36x51x80 + x36x51x78x79 + x36x51x53+

x36x50x80 + x36x50x78x79 + x36x50x53 + x36x49x50 + x36x48 + x36x47 + x36x47x48 + x36x46x47+

36 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

x35x79 + x35x77x78 + x35x65 + x35x61 + x35x59 + x35x59x60 + x35x58 + x35x58x74 + x35x58x72x73+

x35x57x75 + x35x57x73x74 + x35x52 + x35x51 + x35x51x61 + x35x51x59x60 + x35x49x50+

x35x49x50x61 + x35x49x50x59x60 + x35x48 + x35x48x57 + x35x47x58 + x35x46x47 + x35x36+

x35x36x61 + x35x36x59x60 + x34 + x34x79 + x34x77 + x34x77x78 + x34x76x79 + x34x76x77x78+

x34x75x76 + x34x74x75x79 + x34x74x75x77x78 + x34x73 + x34x72 + x34x71x72 + x34x70x71+

x34x65 + x34x65x76 + x34x65x74x75 + x34x62 + x34x60 + x34x60x74 + x34x60x72x73 + x34x60x61+

x34x58 + x34x58x74 + x34x58x72x73 + x34x58x59 + x34x58x59x74 + x34x58x59x72x73 + x34x57x75+

x34x57x73x74 + x34x57x65 + x34x57x60 + x34x57x58x59 + x34x52 + x34x52x76 + x34x52x74x75+

x34x51 + x34x51x62 + x34x51x60x61 + x34x50 + x34x49x79 + x34x49x77x78 + x34x49x65+

x34x49x52 + x34x49x50 + x34x49x50x62 + x34x49x50x60x61 + x34x48 + x34x48x57 + x34x47+

x34x47x60 + x34x47x58 + x34x47x58x59 + x34x46 + x34x46x47 + x34x45 + x34x45x46 + x34x36+

x34x36x62 + x34x36x60x61 + x34x35x76 + x34x35x74 + x34x35x74x75 + x34x35x72x73 + x34x35x63+

x34x35x60x61 + x34x35x59x60x62 + x34x35x59x60x61 + x34x35x58 + x34x35x51 + x34x35x49x50+

x34x35x48 + x34x35x47 + x34x35x47x48 + x34x35x46x47 + x33 + x33x74 + x33x72 + x33x72x73+

x33x70x71 + x33x61 + x33x61x74 + x33x61x72x73 + x33x59 + x33x59x60 + x33x59x60x74+

x33x59x60x72x73 + x33x58 + x33x57x61 + x33x57x59x60 + x33x50 + x33x48x49 + x33x47+

x33x47x61 + x33x47x59x60 + x33x45 + x33x34x74 + x33x34x72x73 + x33x34x57 + x33x34x47 + x32+

x32x74 + x32x72x73 + x32x60 + x32x57 + x32x57x61 + x32x47 + x31 + x31x73 + x31x71x72+

x31x67 + x31x65x66 + x31x57x61 + x31x46 + x31x40 + x31x32 + x30 + x30x61 + x30x57+

x30x57x61 + x30x31 + x29x61 + x29x30x73 + x29x30x71x72 + x29x30x67 + x29x30x65x66+

x29x30x57 + x29x30x46 + x29x30x40 + x28x29x57 + x28x29x31x57 + x28x29x30x57 + x27x61+

x26x75 + x26x73x74 + x26x63 + x26x62 + x26x59 + x26x48 + x24 + x24x76 + x24x75 + x24x74+

x24x74x75 + x24x73x74 + x24x72x73 + x24x61 + x24x59 + x24x59x60 + x24x59x60x62+

x24x59x60x61 + x24x58 + x24x57x61 + x24x47 + x24x47x48 + x24x46x47 + x24x36 + x24x35+

x24x35x61 + x24x35x59x60 + x24x34 + x24x34x62 + x24x34x60x61 + x24x34x35 + x23x76 + x23x75+

x23x74x75 + x23x73x74 + x23x66 + x23x61 + x23x60 + x23x58 + x23x58x59 + x23x49 + x23x48+

x23x33 + x22 + x22x58 + x22x51 + x22x49x50 + x22x48 + x22x46x47 + x22x36 + x22x34x35+

x22x24 + x21x76 + x21x74x75 + x21x66 + x21x62 + x21x61 + x21x60x61 + x21x59x60 + x21x58+

x21x51 + x21x49x50 + x21x47x48 + x21x36 + x21x35 + x21x34 + x21x34x35 + x21x24 + x21x22+

x20x61 + x20x59x60 + x20x57 + x20x34 + x18 + x18x70 + x18x68x69 + x18x43 + x17x57+

x17x57x61 + x16x57 + x15x16x57 + x14 + x14x66x80 + x14x66x78x79 + x14x64x65x80+

x14x64x65x78x79 + x14x53x66 + x14x53x64x65 + x14x39x80 + x14x39x78x79 + x14x39x53+

x14x15x57 + x11x61 + x11x58x61 + x11x57x61 + x11x24x61 + x10 + x10x61 + x9 + x9x77 + x9x76+

x9x75 + x9x75x76 + x9x74 + x9x74x75 + x9x73x74 + x9x72x73 + x9x68 + x9x66 + x9x66x67+

x9x61 + x9x59x60 + x9x59x60x62 + x9x59x60x61 + x9x58 + x9x57 + x9x50 + x9x47 + x9x47x48+

x9x46x47 + x9x41 + x9x36 + x9x35 + x9x35x61 + x9x35x59x60 + x9x34 + x9x34x62 + x9x34x60x61+

x9x34x35 + x9x32 + x9x22 + x9x21 + x8 + x7 + x7x57 + x6x57 + x5x6 + x5x6x57 + x4x73+

x4x71x72 + x4x67 + x4x65x66 + x4x46 + x4x40 + x4x30x57 + x4x28x29x57 + x3x57 + x3x31x57+

x3x29x30x57 + x3x4x57

Modeling for Three-Subset Division Property without Unknown Subset 37

Table 9. Detailed results for superpoly against 840-round Trivium.

parity J [u] (x‖v)u/tI

1 7117
1 7 x80
1 21 x79
1 7 x79x80
0 16 x78
1 7 x78x79
0 62 x77
0 24 x77x78
0 22 x76
1 19 x76x77
0 62 x75x76
1 3 x75x76x78
1 3 x75x76x77
0 26 x74
0 22 x74x75
0 26 x72x73
0 252 x71
1 3 x70
0 8 x69
0 2 x69x79
0 2 x69x77x78
0 252 x69x70
1 11 x68
1 1 x68x80
1 1 x68x79x80
1 1 x68x78x79
1 3 x68x69
0 8 x67
0 8 x67x68
0 2 x67x68x79
0 2 x67x68x77x78
0 2 x66
1 11 x66x67
1 1 x66x67x80
1 1 x66x67x79x80
1 1 x66x67x78x79
1 171 x65
0 8 x65x66
0 64 x64
0 2 x64x79
0 2 x64x77x78
1 1 x64x66
1 3 x64x65
0 98 x63
0 4 x63x71
0 4 x63x69x70

parity J [u] (x‖v)u/tI

1 9 x63x64
0 30 x62
0 42 x62x63
0 38 x61
0 14 x61x62
0 704 x60
0 2 x60x77
0 2 x60x75x76
0 4 x60x74
0 4 x60x72x73
0 14 x60x71
0 14 x60x69x70
0 8 x60x63
0 4 x60x62
0 1514 x59
0 4 x59x74
0 4 x59x72x73
0 206 x59x71
0 206 x59x69x70
1 25 x59x63
0 4 x59x63x71
0 4 x59x63x69x70
0 8 x57
0 56 x57x58
0 8 x55
0 16 x54
0 2 x54x76
0 2 x54x74x75
1 1 x54x68
1 1 x54x66x67
0 4 x54x65
0 4 x54x63x64
0 12 x53
0 2 x53x76
0 2 x53x74x75
1 1 x53x68
1 1 x53x66x67
1 27 x52
0 2 x52x76
0 2 x52x74x75
0 2 x52x69
0 2 x52x67x68
0 2 x52x64
1 9 x52x53
0 2 x52x53x76
0 2 x52x53x74x75

parity J [u] (x‖v)u/tI

0 4 x52x53x65
0 4 x52x53x63x64
0 16 x51
1 3 x51x77
1 3 x51x75x76
1 5 x51x52
0 2 x51x52x76
0 2 x51x52x74x75
0 62 x50
1 3 x50x78
1 3 x50x76x77
0 2 x50x60
1 9 x50x51
0 2 x50x51x76
0 2 x50x51x74x75
0 22 x49
0 2 x49x54
0 2 x49x53
0 2 x49x52
0 2 x49x52x53
0 2 x49x51x52
0 2 x49x50x51
0 26 x47
0 4 x47x60
0 4 x47x59
0 252 x44
0 4 x44x63
0 14 x44x60
0 206 x44x59
0 4 x44x59x63
1 5 x43
0 8 x42
0 2 x42x79
0 2 x42x77x78
0 2 x42x52
1 11 x41
1 1 x41x80
1 1 x41x79x80
1 1 x41x78x79
1 1 x41x54
1 1 x41x53
0 2 x41x42
0 8 x40
1 7 x39
0 2 x39x76
0 2 x39x74x75

parity J [u] (x‖v)u/tI

1 1 x39x64
0 2 x39x49
1 9 x38
0 4 x38x54
0 4 x38x52x53
0 42 x37
1 5 x37x38
0 2 x37x38x76
0 2 x37x38x74x75
0 2 x37x38x49
0 14 x36
0 2 x35
1 1 x35x55
0 24 x33
0 8 x33x77
0 8 x33x75x76
0 8 x33x50
0 2 x33x34
1 1 x33x34x55
0 56 x32
0 24 x31x32
0 8 x31x32x77
0 8 x31x32x75x76
0 8 x31x32x50
0 16 x28
0 8 x28x60
0 8 x28x59
1 57 x27
0 2 x27x76
0 2 x27x74x75
0 4 x27x65
0 4 x27x63x64
0 2 x27x49
0 4 x27x38
1 17 x26
0 2 x26x76
0 2 x26x74x75
0 2 x26x49
0 14 x25
0 2 x25x76
0 2 x25x74x75
0 4 x25x59
0 4 x25x57x58
0 2 x25x49
0 4 x25x32
0 36 x24

parity J [u] (x‖v)u/tI

0 8 x22
0 2 x22x79
0 2 x22x77x78
1 1 x22x66
1 1 x22x64x65
0 2 x22x52
1 1 x22x39
0 8 x20x21
0 2 x20x21x79
0 2 x20x21x77x78
1 1 x20x21x66
1 1 x20x21x64x65
0 2 x20x21x52
1 1 x20x21x39
0 2 x16
0 28 x15
1 85 x12
0 2 x12x76
0 2 x12x74x75
0 8 x12x71
0 8 x12x69x70
0 16 x12x60
0 48 x12x59
0 8 x12x59x71
0 8 x12x59x69x70
0 2 x12x49
0 8 x12x44
0 8 x12x44x59
0 8 x8
1 1 x8x78
1 1 x8x77
1 1 x8x76x77
1 1 x8x75x76
1 1 x8x55
1 1 x8x51
1 1 x8x50
0 24 x6
0 8 x6x77
0 8 x6x75x76
0 8 x6x50
0 8 x1
1 1 x1x35
1 1 x1x33x34
1 1 x1x8

38 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Table 10. Detailed results for superpoly against 841-round Trivium.

parity J [u] (x‖v)u/tI

0 17820
0 6 x80
0 14 x79
0 24 x79x80
1 23 x78
0 6 x78x79
0 134 x77
0 16 x77x78
1 505 x76
0 32 x76x77
0 118 x75
1 253 x75x76
0 2 x75x76x78
0 2 x75x76x77
1 1 x74
1 617 x74x75
1 7 x74x75x77
1 7 x74x75x76
0 4 x73
0 118 x73x74
0 112 x73x74x76
0 112 x73x74x75
0 120 x72
1 1 x72x73
0 332 x71
0 4 x71x72
0 28 x70
0 120 x70x71
0 116 x69
0 332 x69x70
1 115 x68
0 2 x68x80
0 2 x68x79
0 4 x68x78
0 2 x68x78x79
0 2 x68x77x78
0 4 x68x76x77
0 36 x68x69
1 21 x67
0 8 x67x68
0 510 x66
0 52 x66x67
0 2 x66x67x80
0 2 x66x67x79
0 4 x66x67x78
0 2 x66x67x78x79
0 2 x66x67x77x78
0 4 x66x67x76x77
0 4 x65
0 2 x65x68
0 2 x65x66x67
0 2 x64
1 43 x63
0 2 x63x68

parity J [u] (x‖v)u/tI

0 2 x63x66x67
0 4 x63x64
0 2 x63x64x68
0 2 x63x64x66x67
0 216 x62
0 2 x62x63
0 200 x61
0 8 x61x70
0 8 x61x69
0 8 x61x68x69
0 8 x61x67x68
1 19 x61x62
0 2 x61x62x68
0 2 x61x62x66x67
0 542 x60
0 12 x60x66
0 8 x60x63
0 114 x60x61
1 859 x59
0 2 x59x77
0 2 x59x75x76
1 1 x59x72
1 1 x59x70x71
0 36 x59x62
1 1 x59x61
0 32 x59x60
1 735 x58
1 1 x58x80
1 1 x58x78x79
0 2 x58x75
0 2 x58x73x74
1 1 x58x66
1 505 x58x59
0 8 x58x59x63
0 200 x57
0 54 x57x58
0 382 x56
0 24 x56x69
0 72 x56x58
0 536 x56x57
0 12 x56x57x59
0 4 x55
0 2 x55x58
0 24 x54
0 6 x53
0 2 x53x68
0 2 x53x66x67
1 1 x53x58
0 14 x52
0 2 x52x68
0 2 x52x66x67
0 28 x51
0 2 x51x77
0 2 x51x75x76

parity J [u] (x‖v)u/tI

1 1 x51x74
1 1 x51x73
1 1 x51x72x73
1 1 x51x71x72
0 4 x51x68
0 4 x51x66x67
0 134 x50
0 2 x50x78
1 7 x50x76
0 2 x50x76x77
1 7 x50x74x75
0 2 x50x59
0 2 x50x51
1 523 x49
1 7 x49x77
0 112 x49x75
1 7 x49x75x76
0 112 x49x73x74
0 12 x49x50
1 1 x49x50x74
1 1 x49x50x73
1 1 x49x50x72x73
1 1 x49x50x71x72
0 118 x48
0 112 x48x76
0 112 x48x74x75
0 2 x48x58
0 112 x48x49
1 1 x47
1 1 x47x51
1 1 x47x49x50
0 6 x47x48
0 4 x46
1 1 x46x51
1 1 x46x49x50
0 136 x45
1 1 x45x59
0 332 x44
0 50 x43
0 8 x43x61
0 6 x43x44
0 8 x42
0 8 x42x61
0 52 x41
0 2 x41x80
0 2 x41x79
0 4 x41x78
0 2 x41x78x79
0 2 x41x77x78
0 4 x41x76x77
0 2 x41x65
0 2 x41x63
0 2 x41x63x64
0 2 x41x61x62

parity J [u] (x‖v)u/tI

0 2 x41x53
0 2 x41x52
0 4 x41x51
0 12 x41x42
0 16 x40
0 4 x38
0 2 x38x68
0 2 x38x66x67
0 2 x38x41
0 16 x38x39
0 2 x37
1 19 x36
0 2 x36x68
0 2 x36x66x67
0 2 x36x41
0 118 x35
0 32 x34
0 462 x33
0 8 x33x63
0 20 x33x59
0 4 x33x34
1 1 x32
0 12 x32x33
0 426 x31
0 12 x31x59
0 42 x31x57
0 48 x31x56
1 1 x30x31
0 74 x26
0 24 x26x66
0 18 x25
1 15 x24
1 1 x24x74
1 1 x24x73
1 1 x24x72x73
1 1 x24x71x72
1 1 x24x47
1 1 x24x46
0 4 x24x25
0 6 x22
0 10 x19
0 6 x18
0 10 x17x18
0 12 x16
0 18 x13
0 12 x12
0 48 x11
0 16 x11x66
0 8 x10
1 1 x9
0 4 x8
0 26 x7
1 1 x5
0 8 x1

Modeling for Three-Subset Division Property without Unknown Subset 39

D Model for Modified Three-Subset Division Property for Components
of Grain-128AEAD

Algorithm 8 MILP model for XOR and AND in Grain-128AEAD

1: procedure AND(M, b0, . . . , b127, s0, . . . , s127, I, J)
2: M.var ← b′i, xi for all i ∈ I as binary
3: M.var ← s′j, yj for all j ∈ J as binary
4: M.var ← z as binary
5: M.con← bi = b′i ∨ xi for all i ∈ I
6: M.con← sj = s′j ∨ yj for all j ∈ J
7: M.con← z = xi for all i ∈ I
8: M.con← z = yj for all j ∈ J
9: for all i ∈ {0, 1, . . . , 127} \ I do

10: b′i = bi
11: end for
12: for all j ∈ {0, 1, . . . , 127} \ J do
13: s′i = si
14: end for
15: return (M, b′0, . . . , b

′
127, s

′
0, . . . , s

′
127, z)

16: end procedure

1: procedure XOR(M, b0, . . . , b127, s0, . . . , s127, I, J)
2: M.var ← b′i, xi for all i ∈ I as binary
3: M.var ← s′j, yj for all j ∈ J as binary
4: M.var ← z as binary
5: M.con← bi = b′i ∨ xi for all i ∈ I
6: M.con← sj = s′j ∨ yj for all j ∈ J
7: M.con← z =

∑
i∈I xi +

∑
j∈J yj

8: for all i ∈ {0, 1, . . . , 127} \ I do
9: b′i = bi

10: end for
11: for all j ∈ {0, 1, . . . , 127} \ J do
12: s′i = si
13: end for
14: return (M, b′0, . . . , b

′
127, s

′
0, . . . , s

′
127, z)

15: end procedure

40 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 9 MILP model for NFSR and LFSR in Grain-128AEAD

1: procedure funcZ(M, b0, . . . , b127, s0, . . . , s127)
2: (M, b0, . . . , b127, s0, . . . , s127, a1) = AND(M, b0, . . . , b127, s0, . . . , s127, {12}, {8})
3: (M, b0, . . . , b127, s0, . . . , s127, a2) = AND(M, b0, . . . , b127, s0, . . . , s127, φ, {13, 20})
4: (M, b0, . . . , b127, s0, . . . , s127, a3) = AND(M, b0, . . . , b127, s0, . . . , s127, {95}, {42})
5: (M, b0, . . . , b127, s0, . . . , s127, a4) = AND(M, b0, . . . , b127, s0, . . . , s127, φ, {60, 79})
6: (M, b0, . . . , b127, s0, . . . , s127, a5) = AND(M, b0, . . . , b127, s0, . . . , s127, {12, 95}, {94})
7: (M, b0, . . . , b127, φ, x1) = XOR(M, b0, . . . , b127, φ, {2, 15, 36, 45, 64, 73, 89}, φ)
8: (M, φ, s0, . . . , s127, x2) = XOR(M, φ, s0, . . . , s127, φ, {93})
9: M.var ← z as binary

10: M.con← z = x1 + x2 +
∑5

i=1 ai
11: return (M, b0, . . . , b127, s0, . . . , s127, z)
12: end procedure

1: procedure funcF(M, s)
2: (M, φ, s0, . . . , s127, f) = XOR(M, φ, s0, . . . , s127, φ, {0, 7, 38, 70, 81, 96})
3: return (M, s0, . . . , s127, f)
4: end procedure

1: procedure funcG(M, b)
2: (M, b0, . . . , b127, φ, a1) = AND(M, b0, . . . , b127, φ, {3, 67}, φ)
3: (M, b0, . . . , b127, φ, a2) = AND(M, b0, . . . , b127, φ, {11, 13}, φ)
4: (M, b0, . . . , b127, φ, a3) = AND(M, b0, . . . , b127, φ, {17, 18}, φ)
5: (M, b0, . . . , b127, φ, a4) = AND(M, b0, . . . , b127, φ, {27, 59}, φ)
6: (M, b0, . . . , b127, φ, a5) = AND(M, b0, . . . , b127, φ, {40, 48}, φ)
7: (M, b0, . . . , b127, φ, a6) = AND(M, b0, . . . , b127, φ, {61, 65}, φ)
8: (M, b0, . . . , b127, φ, a7) = AND(M, b0, . . . , b127, φ, {68, 84}, φ)
9: (M, b0, . . . , b127, φ, a8) = AND(M, b0, . . . , b127, φ, {88, 92, 93, 95}, φ)

10: (M, b0, . . . , b127, φ, a9) = AND(M, b0, . . . , b127, φ, {22, 24, 25}, φ)
11: (M, b0, . . . , b127, φ, a10) = AND(M, b0, . . . , b127, φ, {70, 78, 82}, φ)
12: (M, b0, . . . , b127, φ, x) = XOR(M, b0, . . . , b127, φ, {0, 26, 56, 91, 96}, φ)
13: M.var ← g as binary
14: M.con← g = x +

∑10

i=1 ai
15: return (M, b0, . . . , b127, g)
16: end procedure

Modeling for Three-Subset Division Property without Unknown Subset 41

E Model for Modified Three-Subset Division Property for Components
of ACORN

Algorithm 10 MILP model for ACORN updating function

1: procedure update(M, s,m)
2: (M,U) ← xorFB(M,T , 230, 196, 193)
3: (M,V) ← xorFB(M,U , 193, 160, 154)
4: (M,W) ← xorFB(M,V , 154, 111, 107)
5: (M,X) ← xorFB(M,W , 107, 66, 61)
6: (M,Y) ← xorFB(M,X, 61, 23, 0)
7: (M,Z, ks) ← ksg128(M,Y)
8: (M,A, f) ← fbk128(M,Z, ks)
9: M.var ← o292 as binary

10: M.con← o292 = ks+ f +m
11: Construct the rest of the vector o as oi ← Ai+1 for i ∈ {0, . . . , 291}
12: return (M,o).
13: end procedure

1: procedure genM(M, x,v, r)
2: M.var ← a, b as binary
3: if r < 128 then
4: M.con← xr = a ∨ b
5: Update x by replacing the r-th entry: x[r]← a
6: return (M,x,v, b).
7: else if 128 ≤ r < 256 then
8: M.con← vr = a ∨ b
9: Update v by replacing the (r − 128)-th entry: v[r − 128]← a

10: return (M,x,v, b).
11: else
12: M.con← xr mod 128 = a ∨ b
13: Update x by replacing the (r mod 128)-th entry: x[r mod 128]← a
14: if 128|r then
15: M.var ← m, c as binary . c corresponds to constant 1
16: M.var ← m = b+ c
17: return (M,x,v,m).
18: else
19: return (M,x,v, b).
20: end if
21: end if
22: end procedure

42 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 11 Modeling the COPY+AND ((a, b)→ (a, b, ab)) and COPY+XOR ((a, b)→ (a, b, a+
b)) operations

1: procedure copy and(M, a, b)
2: M.var ← a0, a1, b0, b1, c as binary.
3: M.con← a = a0 ∨ a1
4: M.con← b = b0 ∨ b1
5: M.con← c = a0
6: M.con← c = b0
7: return (M, a1, b1, c)
8: end procedure

1: procedure copy xor(M, a, b)
2: M.var ← a0, a1, b0, b1, c as binary.
3: M.con← a = a0 ∨ a1
4: M.con← b = b0 ∨ b1
5: M.con← c = a0 + b0
6: return (M, a1, b1, o)
7: end procedure

Algorithm 12 MILP model for maj and ch in ACORN

1: procedure maj(M,X, i, j, k)
2: (M, Ai, Aj , o0)← copy and(M, Xi, Xj)
3: (M, Yi, Ak, o1)← copy and(M, Ai, Xk)
4: (M, Yj , Yk, o2)← copy and(M, Aj , Ak)
5: M.var ← o as binary
6: M.con← o = o0 + o1 + o2
7: Construct the rest part of Y as Ys = Xs for s ∈ {0, . . . , 292}\{i, j, k}
8: return (M,Y , o)
9: end procedure

1: procedure ch(M,X, i, j, k)
2: (M, Ai, Yj , o0)← copy and(M, Xi, Xj)
3: (M, Yi, Ak, o1)← copy and(M, Ai, Xk)
4: M.var ← Yk, Bk, o as binary
5: M.con← Ak = Yk ∨Bk

6: M.con← o = o0 + o1 +Bk

7: Construct the rest part of Y as Ys = Xs for s ∈ {0, . . . , 292}\{i, j, k}
8: return (M,Y , o)
9: end procedure

Algorithm 13 MILP model for LFSR in ACORN

1: procedure xorFB(M,X, i, j, k)
2: (M, Yj , Yk, o0)← copy xor(M, Xj , Xk)
3: M.var ← Yi as binary
4: M.con← Yi = o0 +Xi

5: Construct the rest of Y as Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}
6: return (M,Y)
7: end procedure

Modeling for Three-Subset Division Property without Unknown Subset 43

Algorithm 14 MILP model for ksg128 and fbk128 in ACORN

1: procedure ksg128(M,X)
2: (M,A, x0)← maj(M,X, 235, 61, 193)
3: (M,B, x1)← ch(M,A, 230, 111, 66)
4: M.var ← Y12, x2, Y154, x3, z are binary
5: M.con← B12 = Y12 ∨ x2
6: M.con← B154 = Y154 ∨ x3
7: M.con← z = x0 + x1 + x2 + x3
8: Construct the rest of Y as Ys = Bs for all s ∈ {0, . . . , 292}\{12, 154}
9: return (M,Y , z)

10: end procedure

1: procedure fbk128(M,X, ks)
2: (M,A, x0)← maj(M,X, 244, 23, 160)
3: M.var ← x1, x2, x3, Y0, Y107, Y196, z as binary
4: M.con← A0 = x1 ∨ Y0

5: M.con← A107 = x2 ∨ Y107

6: M.con← A196 = x3 ∨ Y196

7: Construct the rest of Y as Ys = As for s ∈ {0, . . . , 292}\{0, 107, 196}
8: M.var ← o as binary . Represent a constant 1 bit
9: M.con← z = o+ ks+ x0 + x1 + x2 + x3

10: return (M,Y , z)
11: end procedure

44 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

F Detailed Result for Cube Attacks against ACORN

Table 11. Detailed result for superpoly for 773-round ACORN.

parity J [u] (x‖v)u/tI

0 1154
1 185 x7x49
0 194 x10
1 221 x19
0 194 x53
1 397 x14
1 185 x74
1 221 x16
1 379 x3
0 194 x68
0 194 x9
1 185 x33
1 185 x11
0 194 x5
1 227 x34
0 412 x0
1 185 x107
0 194 x39
1 185 x8
0 194 x31
0 218 x29
1 1137 x2

parity J [u] (x‖v)u/tI

1 379 x36
1 185 x70
1 185 x48
1 379 x35
0 194 x40
1 185 x37
1 185 x41
0 194 x73
0 194 x15
0 194 x7
1 421 x1
0 194 x6
1 185 x4
1 203 x20
1 11 x25
1 9 x27x69
1 9 x15x27
1 9 x10x27
1 9 x27
1 9 x88
0 18 x21
1 9 x12

parity J [u] (x‖v)u/tI

0 18 x23
1 9 x127
0 18 x18
0 18 x56
0 54 x22
1 9 x26
1 9 x94
1 9 x24
1 9 x60
1 9 x49
1 9 x61
1 9 x54
0 18 x17
1 9 x30
0 18 x55
1 9 x28
1 9 x90
1 9 x59
1 9 x93
1 9 x57
1 9 x51

Modeling for Three-Subset Division Property without Unknown Subset 45

Table 12. Detailed result for superpoly for 774-round ACORN.

parity J [u] (x‖v)u/tI

0 1004
1 9 x8x50
1 9 x10x52
1 9 x108
1 9 x14x56
1 9 x74
0 18 x20
1 27 x11
0 18 x54
1 9 x2x14
1 9 x13x55
1 9 x1x13
1 9 x14x35
1 9 x14x89
1 9 x10x89
1 9 x14x30
1 9 x13x35
1 9 x14x98
1 9 x13x89
1 9 x10x30
1 9 x10x35
0 36 x10
0 18 x75
1 9 x47x89
0 36 x36
1 9 x14x39
1 9 x14x44
1 9 x1x14
1 9 x35x47
1 27 x13
1 9 x8x89
1 9 x88

parity J [u] (x‖v)u/tI

1 9 x13x30
1 9 x30x47
1 9 x93
0 36 x16
1 9 x8x35
0 36 x39
1 27 x34
1 9 x110
1 9 x8x30
1 27 x21
0 18 x41
1 27 x7
0 36 x4
0 90 x5
1 63 x8
0 18 x38
1 45 x1
1 9 x35
1 9 x32
1 27 x15
1 63 x9
0 90 x3
0 54 x42
0 54 x0
1 9 x69
1 9 x44
1 9 x48
1 9 x47
1 9 x46
1 9 x81
1 9 x27
1 9 x55

parity J [u] (x‖v)u/tI

1 9 x45
0 18 x43
1 9 x18
1 9 x23
1 9 x60
1 9 x80
0 18 x12
0 18 x37
0 18 x40
1 9 x49
1 9 x71
1 9 x77
1 45 x6
1 9 x26
1 9 x25
1 9 x79
1 9 x30
0 72 x2
1 9 x114
1 9 x19
0 36 x17
1 9 x50
1 9 x59
1 9 x113
1 27 x22
0 18 x76
0 18 x14
1 9 x73
1 9 x51
1 9 x56
1 9 x29

	Modeling for Three-Subset Division Propertywithout Unknown Subset
	Introduction
	Division Property.
	Cube Attack.
	Motivation.
	Our Contribution.

	Brief Introduction of Division Property
	Conventional Division Property
	Three-Subset Division Property
	Propagation Rules for Division Property
	Various Algorithms to Evaluate Propagation of Division Property and Three-Subset Division Property
	Breadth-First Search Algorithm.
	MILP Modeling for Conventional Division Property.
	MILP Modeling for Variant Three-Subset Division Property.
	Pruning Technique for Three-Subset Division Property.

	Cube Attack and Division Property
	Cube Attack
	Division Property and Cube Attack
	Three-Subset Division Property and Cube Attack

	Three-Subset Division Property w/o Unknown Subset
	Motivation and Limitation of Pruning Technique
	Three-Subset Division Property without Unknown Subset
	Unknown-Producing Property.
	Cancellation Property.

	New Modeling Method
	Algorithm to Recover ANF Coefficients of Public Function

	Improved Cube Attacks against Trivium
	Specification of Trivium and Its MILP Model
	MILP Model.

	Practical Verification
	Cube Attacks against 840-round, 841-round and 842-round Trivium
	Superpoly of 840-Round Trivium.
	Superpoly of 841-Round Trivium.
	Superpoly of 842-Round Trivium.

	Verification of 855-Round Attack from CRYPTO2018C:FWDM18
	MILP Model to Verify 855-Round Attack.

	Improved Cube Attacks against Grain-128AEAD
	Specification of Grain-128AEAD and Its MILP Model
	MILP Model.

	Verification of 184-Round Attack from C:WHTLIM18
	Additional Constraints and Superpoly for 190 Rounds
	Superpoly from 185 to 189 rounds.
	Superpoly for 190 rounds.

	Towards Efficient Key-Recovery Attacks

	Improved Cube Attacks against ACORN
	Specification of ACORN and Its MILP Model
	MILP Model.

	Verification of 772-Round Attack from ISC:YanLiuLin19
	Cube Attacks on 773- and 774-Round ACORN
	Superpoly of 773-round ACORN
	Superpoly of 774-round ACORN

	Improved Cube Attacks against Kreyvium
	Specification of Kreyvium and Its MILP Model
	MILP Model.

	Verified and Improved Key-Recovery Attack on 892-Round Kreyvium

	Conclusion
	On Attached Source Code
	Code for Superpoly Recovery on Trivium and Grain-128AEAD
	Code for Verification of Statement1

	The Practical Verification using Parameters from Fu et al.'s Refinements incryptoeprint:2018:999
	Detailed Result for Cube Attacks against Trivium
	Model for Modified Three-Subset Division Property for Components of Grain-128AEAD
	Model for Modified Three-Subset Division Property for Components of ACORN
	Detailed Result for Cube Attacks against ACORN

