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Abstract

Numerous materials and structures are aggregates of slender bodies. We can, for
example, refer to struts in metal foams, yarns in textiles, fibers in muscles or steel
wires in wire ropes. To predict the mechanical performance of these materials and
structures, it is important to understand how the mechanical load is distributed be-
tween the different bodies. If one can predict which slender body is the most likely
to fail, changes in the design could be made to enhance its performance. As the
aggregates of slender bodies are highly complex, simulations are required to numeri-
cally compute their mechanical behaviour. The most widely employed computational
framework is the Finite Element Method in which each slender body is modeled as
a series of beam elements. On top of an accurate mechanical representation of the
individual slender bodies, the contact between the slender bodies must often be ac-
curately modeled. In the past couple of decades, contact between beam elements
has received wide-spread attention. However, the focus was mainly directed towards
beams with circular cross-sections, whereas elliptical cross-sections are also relevant
for numerous applications. Only two works have considered contact between beams
with elliptical cross-sections, but they are limited to point-wise contact, which re-
stricts their applicability. In this Ph.D. thesis, different frameworks for beams with
elliptical cross-sections are proposed in case a point-wise contact treatment is insuf-
ficient. The thesis also reports a framework for contact scenarios where a beam is
embedded inside another beam, which is in contrast to conventional contact frame-
works for beams in which penetrating beams are actively repelled from each other.
Finally, two of the three contact frameworks are enhanced with frictional sliding,
where friction not only occurs due to sliding in the beams’ longitudinal directions
but also in the transversal directions.
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CHAPTER I

Introduction

Numerous materials are aggregates of slender bodies. Examples such as metal
foams, wire ropes, dry-woven fabrics, paper materials, muscles, electronic textiles and
bones all have socio-economical importance, see Fig. 1.1. Their common denominator
is that they function as load-carrying materials and that the mechanical failure of a
single component can endanger the entire structure and the structure’s surrounding.
For instance, steel wire-ropes used in off-shore applications are assemblies of steel
wires that interact with each other due to mechanical contact. These costly high-
performance products carry heavy loads whilst exposed to severe chemical conditions
(salt, oil, and oxidation). Consequently, their lifespan is short. Understanding the
causes of the ropes’ mechanical degradation and failure enables to adjust rope designs
in order to reduce maintenance efforts and increase lifespan. This reduces costs and
time, yielding more competitive products. Physical experiments can be conducted to
assess the mechanical behavior and reliability of such structures, but they are time-
consuming, require experimental facilities and sometimes necessitate the interruption
of the production line (continuous or batch). Furthermore, only a few designs can be
tested, whereas the number of design parameters is enormous. Hence, designs that
are only based on physical experiments are sub-optimal. On top of this, physical
experiments do not necessarily reveal much insight into the mechanical state of a
structure. Virtual experiments based on computational models, however, are fast
and reveal substantially more insight into the occurring mechanics. Consequently,
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Figure 1.1: Different materials and applications as conglomerates of slender bodies.
From left to right: SEM image of a dry-woven fabric; open-foam cell aluminum; a
wire-rope; model of a muscle.

they result in better designs, obtained in substantially less time. In order to replace
physical experiments with virtual ones, the simulations must accurately predict the
important mechanics. The computational model must thus be accurate, but also
robust and preferably fast.

1.1 Computational models for slender body mechanics

The computational models used in virtual experiments often rely on the Finite
Element Method (FEM), in which the model, which is formulated in terms of partial
differential equations (PDE), is transformed into a system of algebraic equations
[96, 87]. In the FEM, each body is spatially subdivided into finite subdomains called
finite elements in which fields of relevant physical quantities are interpolated from
their nodal values. Different types of finite elements exist, and they differ notably
by the type of kinematic variables interpolated, their geometry, type of interpolation
and type of integration. Typically, tetrahedral or hexahedral elements are used to
discretize three-dimensional structures. However, in order to capture the behaviour
of slender bodies, a significant number of finite elements are required through slender
direction (see Fig. 1.2). This renders simulations substantially slow.

Beam theories have been developed to capture the physics of slender bodies,
and dedicated finite elements have been designed to discretise those theories. The
mechanical behavior of each slender body is then represented as a series of beam
finite elements. Beams are characterized by cross-sections whose centers of gravity
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Figure 1.2: Numerous bulk elements used to model slender bodies [10].

form the centroid-line, see Section 2.2. Different beam theories are available in
the literature [77, 78, 79, 31, 16, 56, 29, 71] and in this thesis the Simo-Reissner
beam theory is employed. This theory allows for finite three-dimensional rotations
and provides objective strain measures [77, 78]. Similar to many beam theories,
the Simo-Reissner theory considers the cross-sections to be rigid (i.e. they cannot
deform). This implies that deformation is only possible due to the cross-sections’
relative displacements and rotations.

1.2 Modeling mechanical contact between slender bodies with

beams.

Besides the modeling of the individual slender bodies, the modeling of the me-
chanical contact between the bodies is essential in order to achieve accurate computa-
tional models. Several frameworks to treat contact between beams were developed in
the past. However, most of them are restricted to beams with circular cross-sections
and to contact interactions occurring on a narrow part of the beams’ surfaces. Nar-
row contact zones indeed occur for sparse networks such as presented in Fig. 1.3, but
for dense assemblies (first, third and fourth image in Fig. 1.1) the contact zone can
span the entire length of the slender bodies. Furthermore, numerous slender bodies

3



Figure 1.3: A network of yarns in contact.

do not possess circular cross-sections. We can think for instance about yarns [20]
or steel wires in wire ropes. The cross-sections’ shape in these cases is closer to an
ellipse or hyper-ellipse than to a circle. The cross-sectional shape not only influences
the bending and torsional resistance of each body independently, but it also governs
the mechanical contact between the bodies.

1.3 Aim

Accurate and robust beam-to-beam contact frameworks are clearly crucial to for-
mulate proper computational models. These frameworks exist for beams with circular
cross-sections exposed to narrow contact zones [89, 95, 62], for beams with circular
cross-sections exposed to large contact zones [59, 62] and for beams with elliptical
cross-sections exposed to narrow contact zones [24, 25]. However, no framework is
able to handle contact between beams with elliptical cross-section exposed to large
contact zones. The aim of this thesis is therefore to propose such a contact frame-
work. Since circles are one instance of ellipses, the contact frameworks proposed in
this thesis can be applied to beams with circular as well as elliptical cross-sections.
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1.4 Outline

Chapter II presents a framework to treat non-localized contact between beam
finite elements with elliptical or circular cross-sections. The first novelty is the in-
troduction of a smooth surface approximation of the beams’ surfaces because the
surface of the discretized beams are discontinuous. Indeed, the undeformed centroid
line of a series of the finite element employed is C0-continuous. As cross-sections
are normal to the centroid-line in the undeformed configuration, gaps and overlaps
are present in the discretized beams’ surface. This smooth surface approximation is
used throughout the other Chapters of this thesis.

The contact framework of Chapter II considers numerous material points on the
surface of one of the two beams candidate for contact. The framework computes
for each point how deep it penetrates another beam. If a point is found to be
penetrating, a contact force is applied between the point and its projection on the
other beam’s surface. This contact force repels the two bodies. This scheme is only
applicable to the penalty method and permits to treat large contact zones. This
scheme constitutes, to best of the author’s knowledge, the first attempt to treat
non-localized contact between beams with cross-sections different from circles.

Chapter III, presents a substantially faster beam-to-beam contact framework than
the one presented in Chapter III. The framework of Chapter III does not consider
material points with fixed material coordinates on one of the beams’ surface. Instead,
it considers entire cross-sections at once. This implies that for each selected cross-
section, only one measure of penetration is computed and one contact interaction is
used to repel the cross-section from the other beam’s surface in case of penetration.

Chapter IV, presents the first "beam-inside-beam" contact scheme (to the best
of the author’s knowledge). Instead of repelling two beams from each other, the
contact framework ensures that two beams remain embedded inside each other. This
framework is amongst others applicable to describe the response of a slender medical
instrument inside an artery. Similar to the framework of Chapter III, the framework
considers entire cross-sections at once. The difference is that instead of the amount
of penetration, the amount of ’exclusion’ is computed.

5



As friction must often be incorporated to obtain accurate computational models,
Chapter V extends the frameworks of Chapters III and IV to frictional contact.
Coulomb’s law is employed to this end. In contrast to most existing frictional contact
frameworks for beams, the framework of Chapter V not only incorporates frictional
sliding in the beams’ axial direction but also in the circumferential direction.

Finally, conclusions and the potential of the proposed contact frameworks are
presented in Chapter 5.5. Also, recommendations for future developments of the
presented frameworks are discussed.

6



CHAPTER II

Contact between shear-deformable beams with

elliptical cross-sections1

2.1 Introduction

Paper materials (wood fibres [5, 55, 82, 46, 44]), fabrics (yarns [6, 8, 9, 69, 65]),
and metal foams (struts [34, 33, 81, 68, 3]) are examples of materials with slender
components in their micro-structure. Micro- mechanical models of such materials
often represent each slender constituent as a beam, which yields a string of beam finite
elements when discretized [4] (or springs [7, 66]). In most cases, contact between the
slender constituents is essential to be incorporated. Almost all contact frameworks
have however focused on beams with circular cross-sections. To the best of the
authors’ knowledge, only three frameworks are demonstrated to work for beams
with non-circular cross-sections ([24, 25] and [37]), but they are limited by the fact
that contact can only occur in a point-wise manner.

In many applications however, the slender constituents do not come with circu-
lar cross-sections and contact does not occur at a single point. This contribution
therefore aims to partially fill this gap by proposing an algorithm that treats contact
between shear-deformable beams with elliptical cross-sections. The scheme is tai-

1Reproduced from: Magliulo, M., Zilian, A., and Beex, L.A.A., Contact between shear-
deformable beams with elliptical cross-sections. Acta Mechanica (2019). doi:10.1007/s00707-019-
02520-w.
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lored for contact to occur at an area on the beams’ surfaces, instead of only at a pair
of surface points. Consequently, it is more widely applicable and can for instance
be applied to the cases of Fig. 2.1, which cannot be treated by point-wise contact
schemes.
The proposed contact scheme seeds many quadrature points on the surface of beams
and determines which ones penetrate the surrounding beams. To do so, a measure
of penetration is established for point, which is used in a penalty potential that is in-
corporated in the potential energy of the system in order to repel penetrating beams
in case of penetration.
The scheme is applied to beam elements with two nodes based on the geometrically
exact beam (GEB) theory. As the surfaces of strings of such beam elements are
only C0-continuous, and may even be C−1-continuous, the contact scheme works on
a smooth (approximated) surface. The smooth surface is obtained by smoothing
the strings’ centroid-lines using Bézier curves. The kinematic variables (i.e. the dis-
placements and rotations) are also re-interpolated. The capabilities of the contact
scheme are demonstrated for several numerical test cases. These include the twisting
of wire ropes. We show that cross-sectional shapes may have a critical influence on
the deformations. The introduced contact framework remains to converge even when
the structures in contact undergo large sliding displacements and/or large rotations
and/or large deformations. We also demonstrate that large sliding displacements of
the contacting surfaces can occur without the chattering phenomenon [92] thanks to
the artificially smoothed surface.

In the next section, we briefly discuss the kinematics of the GEB theory. Section
2.3 discusses the contact framework, still in the space-continuous setting. In Section
2.4, we discretise beams with beam finite-elements with two nodes. We amongst
others discuss why the surface of connected beam elements is C0-continuous at best
for this type of beam. The smooth approximations of the discretized beams’ surfaces
is discussed next and the proposed contact framework is adapted to them. Section
2.5 presents initial numerical results. The contribution closes with some conclusions
and an outlook.
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(a) Two parallel beams. (b) Two beams folded around each other.

Figure 2.1: Some examples in which the shortest distance between two surfaces is not
uniquely or poorly defined, thus preventing the application of a point-wise contact
force.

2.2 Kinematics

The Simo-Reissner Geometrically Exact Beam (GEB) theory ([77, 78, 79, 31, 29,
72, 58]) of shear-deformable beams with rigid cross-sections is used in this contribu-
tion. A beam is then characterized by centroid-line xc(h

1) : [0, L0]→ R3 constituted
from the center of gravity of its sections, and by the orientations of the cross-sections
(see Fig. 2.2). h1 is the arc-length parameter of the centroid-line of the beam in the
reference configuration and L0 its reference length. Rigid cross-sections are not nec-
essarily orthogonal to xc in the current (deformed) configuration if shear deformation
is present. A field of rotation tensor Λ(h1) : [0, L0]→ SO(3) is used to orientate the
cross-sections in the current configuration.

Material points on the beam’s centroid-line

The centroid-line in the current configuration, xc(h
1), is related to the centroid-

line in the reference configuration, x0c(h
1), by:

xc(h
1) = x0c(h

1) + u(h1), (2.1)

where u(h1) : [0, L0]→ R3 denotes the displacement field of the centroid-line.

9



Material points in the rest of the beam

To locate material points on the beam’s centroid-line (in the reference and de-
formed configurations), only h1 is needed. To locate the remaining material points
however, we need to consider cross-sections, which are parametrised by two param-
eters denoted k2 and k3.

The location vector pointing towards a material point with local coordinates
h = [h1, k2, k3] that is not located on the centroid-line can be expressed in the
reference configuration as follows:

x0(h) = x0c(h
1) + v0(h), (2.2)

and in the deformed configuration as:

x(h) = xc(h
1) + v(h), (2.3)

where v0 and v point from the centroid-line to the material point and both lie in the
cross-sectional plane associated with h1. v0 works in the reference configuration and
v in the deformed configuration. These two vectors can be written as follows:

v0(h) = k2e02(h1) + k3e03(h1), (2.4)

v(h) = Λ(h1)(k2e02(h1) + k3e03(h1)), (2.5)

where e02(h1) and e03(h1) form an orthonormal basis with e01(h1) (see Fig. 2.2). In
Eq. (2.5), Λ ∈ SO(3) where SO(3) is the rotation group denotes the rotation tensor
rotating the cross-section attached to x0c in the reference configuration.

In the reference configuration the (unit) normal vector to the cross-section at-
tached to x0c, e01, verifies:

e01 =
∂x0c

∂h1
, (2.6)

because no shear deformation is present. As mentioned above however, the normal
to the cross-section in the current configuration is not necessarily aligned with the

10



E1

E2

E3

e01

e02

e03

e1

e3

e2

∂xc
∂h1

xc

x0c

v0

v

x0

x

h1

h
1

Figure 2.2: A surface point x0 in the reference configuration (red circle) obtained
by adding location vector x0c and a vector v0 in the plane (e02, e03) of the cross-
section attached to x0c. The same material point is represented in the deformed
configuration. The global basis {E1,E2,E3} as well as the local basis {e01, e02, e03}
attached to the x0c in the reference configuration and the local basis {e1, e2, e3}
attached to the same point in the deformed configuration are also presented. These
three basis are orthonormal.

tangent direction to the centroid-line, which means that:

Λe01 6=
∂xc
∂h1

. (2.7)

2.3 Contact framework

In the following, we focus on a system with two bodies, BI and BJ. The contact
framework is based on the integration of a surface-specific contact potential over the
surface of one of the beams. To this end, contact points are seeded on the surface of
BI. We check for each of these surface points if it penetrates BJ. If a surface point
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is indeed penetrated, a contribution to a contact potential is added. The suggested
scheme is thus a type of master-slave approach [85] which asymmetrically treats
contact, in contrast to [24, 25, 94, 95]. BI is called the slave and BJ the master.
The surface of both beams is explicitly taken into account. This is different from the
approaches in [37, 21, 84] in which the centroid-lines are used to formulate contact
due to the limitation of circular cross-sections. A penalty approach is adopted here to
regularize unilateral contact conditions. It allows some interpenetration between the
bodies, which can be interpreted as the deformation of the rigid cross-sections in case
of contact. The latter cannot deform due to the constraint of underfomable cross-
sections of the underlying beam theory, therefore, the penalty formulation introduces
the additional (cross-section) compliance on the top of the standard beam model.

2.3.1 Projection

In this subsection, we discuss for a single surface point how we determine if it
penetrates another beam. We start with the definition of a fixed surface point.
We denote its surface coordinates by hI which remain constant. In a deformed
configuration, the location of this point is expressed in the global coordinate system
by xI = xI(hI). Similarly as for the slave body BI, we denote the location of a
material point on the surface of the master beam BJ by hJ in terms of the local
coordinates of the beam and by xJ = xJ(hJ) in the global basis.
It is important to note however that if elliptical cross-sections are used, only two
independent variables are required to locate a material point on a beam’s surface
([24]). We therefore write hI = hI(hI1, hI2(kI2, k

I
3)) and hJ = hJ(hJ1, hJ2(kJ2, k

J
3))

where h denotes the column with these two independent variables. One of them is
h1 ∈ [0, L], while the second one is h2 ∈ [0, 2π] such that k2 and k3 in Eqs. (2.4) and
(2.5) are given by:

k2 = a cos(h2) (2.8)

and
k3 = b sin(h2) (2.9)

12



respectively, where a and b denote the dimensions of the elliptical cross-section in its
two principal directions.

We define the projection based on Fig. 2.3 and state that vector xI − xJ, must
point in the same direction as the vector xJ−xJ

c . This is verified when the following
residual is zero:

f(hJ, g) = xI − g xJ − xJ
c

‖xJ − xJ
c‖
− xJ, (2.10)

where g is an independent variable, which is negative in case of penetration and
positive otherwise. We denote by ḡ the value of g at the solution of Eq. (2.10), that
will be used as a measure of penetration in the following. In Eq. (2.10) we used the
vector xJ−xJ

c

‖xJ−xJ
c‖

as an approximation of the normal to the master body nJ at surface
point xJ. This choice is justified by the fact that nJ changes abruptly in the regions
of high curvatures of the surface. This can cause convergence problems at the global
level because of the direction of the contact forces may change significantly from one
(global) iteration to the next. We thus want to find column q̄ = [h̄

J
, g]T for which

f(q̄) = 0. Here and in the following, a bar over a quantity indicates that this quantity
is evaluated at the solution of Eq. (2.10).

We solve f(q̄) = 0 this by linearising f in Eq. (2.10) and applying Newton’s
method, which we write as follows:

f(qe) +H(qe) ∆q = 0, (2.11)

where qe denotes the previous estimate of q̄ and ∆q denotes its update. Row of
vectors H is given by:

H(qe) =
∂f

∂(q)

∣∣∣∣
q=qe

. (2.12)

13



xJ

xJ
c

xI

Figure 2.3: Penetrated slave surface point xI (in red). The slave cross-section on
which xI lies is presented in translucent blue. The centroid-line of the master beam
(grey) is presented by a thick dashed line. The master surface point at the solution
of the projection problem is presented in blue. In this particular configuration, the
vectors xJ−xJ

c and xJ−xI are colinear and Eq. (2.10) is verfied if gN = −‖xI − xJ‖
at the solution of the local problem.

2.3.2 Contact potential

The measure of penetration between of surface point xI in body BJ is given by:

gN = (x̄J − xI) · n̄I. (2.13)

As mentioned before, we use a penalty potential to limit penetration of surface point
xI in body BJ. We use the following penalty potential to do so:

Πpen(pI, pJ, q̄(pI, pJ)) =


εN
2

(
(gN)2 − TgN + T 2

3

)
if gN < T

εN
6T

(gN)3 if T 6 gN < 0

0 if gN > 0

, (2.14)

where εN denotes the user-selected penalty stiffness and pi denotes the fields of
kinematic variables of the ith beam that are involved in the contact. In Eq. (2.14),
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T denotes a numerical parameter used to switch between a cubic and a quadratic
penalty potential. The cubic potential is effective to regularize contact for surface
points with small contact forces, as their contact status (penetrated or detached)
may easily change from one global iteration to the next [21] and which may cause
convergence issues (at the global level). Note also that the transition between the
quadratic and cubic part of the potential is smooth, and so is the transition of its
derivative.

2.3.3 Integration of the contact potential over the slave surface.

As contact interactions arise over a finite area, the total contact potential is
obtained from the following integral on the slave side:

Πc(p
I, pJ, q̄(pI, pJ)) =

∫
∂SI

Πpen dS
I, (2.15)

where ∂SI denotes the slave surface and q̄ denotes the entire projection of the slave
surface on the master surface according to Eq. (2.10) [45, 40]. dSI denotes an in-
finitesimal part of the surface ∂SI in the current configuration.

To numerically evaluate the integral in Eq. (2.15), numerous slave (quadrature)
points are seeded on the surface of the slave body. For each one of them (that is
detected as being close enough to the master surface), the projection problem in
Section 2.3.1 is solved. If a surface point on the slave surface penetrates the master
body, the associated contribution is added to the total contact potential:

Πc(p
I, pJ, q̄(pI, pJ)) =

n∑
k=1

wkΠpen/k

∥∥nI(hIk)
∥∥ , (2.16)

where wk denotes the weight factor and:

nI(hIk) =
∂xI

∂hI1
× ∂xI

∂hI2
, (2.17)

the non-unit normal vector to the surface (which serves as a deformation-dependent
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weight to the quadrature point). Πpen/k denotes the contact potential of the kth slave
surface point with local coordinates hIk and is given by Eq. (2.14).

2.3.4 Contact potential’s contribution to the weak form

Now that the contact potential between BI and BJ is constructed, its contribution
to the weak form needs to be derived. To do so, we consider the variation of Eq. (2.16)
with respect to the kinematic variables of both bodies in contact:

δΠc(p
I, pJ, q̄(pI, pJ)) =

n∑
k=1

wkδ
(
Πpen/k

∥∥nI(hIk)
∥∥) . (2.18)

The variation of the contact potential for a single quadrature point (from now we
omit subscript k) can be expressed as follows:

δ
(
Πpen

∥∥nI(hI)
∥∥) =

∥∥nI(hI)
∥∥ δΠc + Πpenδ

∥∥nI(hI)
∥∥ . (2.19)

Now we will work out the two parts of this variation. For the ease of the notation,
we collect all kinematic variables in pIJ. Πpen depends explicitly on pIJ, as well as on
q (itself depending implicitly on pIJ i.e. q(pIJ)). Its variation can thus be expressed
as:

δΠpen =
∂Πpen

∂pIJ
· δpIJ +

∂Πpen

∂q
· δq. (2.20)

As the primary variables of the problem are the kinematic variables stored in pIJ

however, the variation must ultimately be expressed in terms of δpIJ. To establish
the relationship between δq and δpIJ, we state that the local residual in Eq. (2.10)
must remain valid for an infinitesimal change of pIJ. We express this as follows:

δf(q̄) =
∂f

∂pIJ

∣∣∣∣
q=q̄

δpIJ +
∂f

∂q

∣∣∣∣
q=q̄

δq̄ = 0. (2.21)

We can recognize matrix H of Eq. (2.11) in this expression as:
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H(q̄) =
∂f

∂q

∣∣∣∣
q=q̄

, (2.22)

with the only difference that H in Eq. (2.11) is evaluated at an estimate of q (i.e. at
qe) and here it is evaluated at q̄. Based on Eq. (2.21), we can now write:

δq̄ =

(
−H(q̄)−1

∂f

∂pIJ

∣∣∣∣
q=q̄

)
δpIJ = AδpIJ, (2.23)

such that Eq. (2.20) can be written as:

δΠc =

(
∂Πpen

∂pIJ

)
· δpIJ +

(
∂Πpen

∂q

)
· AδpIJ (2.24)

= δpIJ ·
(
∂Πpen

∂pIJ
+ A · ∂Πpen

∂q

)
= δpIJ · rc.

The issue with this expression is that ∂Πpen
∂pIJ

is significantly elaborated to derive
and hence, its derivation is prone to mistakes. We therefore do not derive rc analyt-
ically but we employ the automatic differentiation technique. With the formalism
introduced in [47], we equivalently obtain rc as follows:

rc =
∂̂Πpen

∂̂pIJ

∣∣∣∣ ∂̂(q̄)

∂̂pIJ
=A

, (2.25)

where ∂̂

∂̂w
denotes differentiation with respect to variables w performed by the Au-

tomatic Differentiation (AD) algorithm [47, 41].

2.3.4.1 δ
∥∥nI(hI)

∥∥
Now that we have treated variation δΠc in Eq. (2.19), we continue with variation

δ
∥∥nI(hI)

∥∥ in Eq. (2.19). As nI corresponds to the normal vector of a (fixed) slave
surface point, it does not depend on q, so its variation simply reads:
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δ
∥∥nI
∥∥ = δnI nI

‖nI‖

=

(
∂nI

∂pIJ

)T

δpIJ
nI

‖nI‖

= δpIJ · ∂nI

∂pIJ
nI

‖nI‖
= δpIJ · d. (2.26)

In order to compute the consistent tangent matrix of the contact scheme, we
again use the automatic differentiation technique (see [47, 48, 42, 41]) which yields:

K =
∂̂rc

∂̂pIJ

∣∣∣∣ ∂̂(q)

∂̂pIJ
=A

. (2.27)

2.4 Spatial discretization with the Finite Element Method

and smoothing of the surface

2.4.1 Finite Element Discretization

Each beam is now discretized as a string of successive beam finite elements.
Each beam element employed in this contribution uses two nodes. Each node comes
with a reference location vector, a displacement vector and three rotations. The
displacements and rotations form the six kinematic variables of each node. The
elements thus use a linear interpolation of (i) x0c, the original location vector of
the centroid-line, (ii) uc, the displacement vector of the centroid-line, and (iii) θ, the
rotation vector. It is important to mention that, consistent with the beam kinematics
in the space continuous setting introduced in Section 2.2, the cross-section does not
deform (although its orientation relative to the centroid-line can change). It must
also be noted that the linear interpolation of the rotation vectors employed here
renders the finite-element model strain-variant (see [31] for a discussion). This is in
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contrast with the strains employed in the space-continuous geometrically exact beam
theory (see [77, 78]) that are not affected by rigid translations and rotations.

In the following, we explain how the kinematics introduced in Section 2.2 are
interpolated for a single beam element of length L0el in the reference configuration.
The reference location of each material point of this beam element is defined by a
vector in the local coordinate system attached to the beam centroid-line by h1e01 +

k2e02 + k3e03 (where h1 ∈ [0, L0el ]), as well as by a vector in the global coordinate

system, x0 =
3∑
i=1

XiEi.

The interpolation of the reference location of the beam element’s centroid-line
can be expressed as follows:

x0c(h
1) = N(h1) · x0, (2.28)

where x0 denotes the column with the reference location vectors of the beam ele-
ment’s nodes and N denotes the column with associated basis functions. The dis-
placement field of the beam element’s centroid-line can be expressed as follows:

uc(h
1) = N(h1) · u, (2.29)

where u denotes the column with the displacement vectors of the beam element’s
nodes. Together, the centroid-line in the deformed configuration follows:

xc(h
1) = N(h1) ·

(
x0 + u

)
. (2.30)

To locate material points that are not placed on the beam element’s centroid-line, the
orientation of the local basis attached to the cross-sections are needed (see Eq. (2.4)
and (2.5)). To this end, interpolation of the field of rotation tensors Λ is required. As
SO(3) is a nonlinear manifold, Λ(h1) cannot be interpolated directly, but is obtained
here by applying Rodrigues’ formula (see [72]) to the interpolated rotation vector:

θ(h1) = N(h1) · θ (2.31)
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as follows:

Λ(h1) = I + sin (‖θ‖) S(θ) + (1− cos (‖θ‖)) S(θ)S(θ), (2.32)

where I denotes the unit tensor, ‖•‖ denotes the L2-norm and θ denotes the column
with the nodal rotation vectors. Λ denotes the (unique) rotation tensor correspond-
ing to a rotation around the axis θ

‖θ‖ by an angle of ‖θ‖. S is skew-symmetric and
its matrix form can be furthermore expressed as:

S(θ(h1)) =

 0 −θ3(h1) θ2(h1)

θ3(h1) 0 −θ1(h1)

−θ2(h1) θ1(h1) 0

 . (2.33)

Eq. (2.3) is used to locate points that are not on the beam element’s centroid-line
employing the interpolations of xc and Λ in Eqs. (2.30) and (2.32), respectively.

2.4.2 Smoothing of the surface

For the type of beam element that we use, local base vector e01 always points in
the direction of the beam axis in the initial configuration:

e01(h1) =

∂N
∂h1 · x0∥∥∥ ∂N∂h1 · x0

∥∥∥ . (2.34)

Thus, if a string of successive beam elements is not straight in the reference config-
uration, its centroid-line is C0-continuous (see Fig. 2.4). The vector fields of local
basis vectors e01, e02, e03 are then C−1-continuous. This causes a discontinuity in the
orientation of the cross-sections at nodes shared by two successive elements, meaning
that the surface of the string of beams is discontinuous. Contact is then obviously
hard to formulate.

To avoid this issue, we introduce a smooth surface, to which contact constraints
are applied. This smooth surface also has the advantage that the C0- or C−1-
continuity of the string’s surface is replaced by a C1-continuous surface, which we
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believe improves the convergence properties of the framework (although we do not
compare this in the results Section).

In this subsection, the construction of this smooth surface is discussed. It is
important to mention that contact is considered for this smooth approximation,
instead of the string’s actual surface, but that the beam formulation itself remains
unchanged. The smoothing approach could thus be applied to other types of beam
formulation with some minor changes.

The smoothing procedure uses Bézier curves to smooth the string’s centroid-line.
One Bézier curve is used to smooth the centroid-line of two successive beam elements.
This entails that if a string consist of n beam elements, n− 1 Bézier curves are used
to smooth the string’s centroid-line, and by this, the surface. A typical result of
this is shown in Fig. 2.4 for a string of three beams. The smoothing procedure is
presented for two adjacent beam elements with indices j and j+ 1. This entails that
three nodes are involved. The indices of these nodes are i, i+ 1 and i+ 2.

Figure 2.4: The surface of a string of three beam elements and two smoothed surface.
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Reference configuration

The smooth centroid-line between two beams in the reference configuration is
created using four Bernstein polynomials as follows:

X̃c(η
1) = B(η1) · X̃c, (2.35)

where B denotes the column that includes the four cubical Bernstein polynomials
and X̃c denotes the column that contains the original location vectors of the four
control points (see fig. 2.5):

X̃c =
[
X̃0
c , X̃

1
c , X̃

2
c , X̃

3
c

]T
(2.36)

with:
X̃0
c =

1

2

(
x̂0

i + x̂0
i+1
)

(2.37)

X̃3
c =

1

2

(
x̂0

i+1 + x̂0
i+2
)

(2.38)

X̃1
c = X̃0

c + (x̂0
i+2 − X̃0

c)α (2.39)

X̃2
c = X̃2

c + (X̃3
c − x̂0

i+2)α (2.40)

where α ∈ [0, 1] denotes a parameter to be selected by the user [88] that dictates the
location of the second and third control points in Eqs. (2.39) and (2.40). η1 ∈ [0, 1]

parametrises the smoothed centroid-line X̃c ∈ R3. x̂0
k indicates the location of node

k.
The neatest would now be to define the first base vector of the local basis normal

to the cross-section in the smoothed reference configuration (i.e. ẽ01) as:

ẽ01(η1) =

∂B
∂η1 · X̃c∥∥∥ ∂B∂η1 · X̃c

∥∥∥ , (2.41)

so that cross-sections of the smoothed reference configuration would be orthogonal
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j

j+1

X i
C

X i+1
C

X i+2
C

X̃0
C

X̃1
C

X̃2
C

X̃3
C

X̃C

η1

Figure 2.5: Schematic of a smooth centroid-line (plain blue) constructed from the
centroid-lines of two beam elements (dashed lines) in the reference configuration.
The nodes of the elements are indicated by circle and the control points by crosses.
A (fictitious) cross-section attached to X̃c is indicated in black.

to the smoothed centroid-line. This would however also entail that ẽ02 and ẽ03 need
to be set by the user, which can be significantly less straightforward for the smooth
Bézier curves than setting e02 and e03 for the beam elements. We therefore determine
them for the Bézier approximation of the centroid-line as follows:

ẽ0i(η
1) = B(η1) · ẽ0i, (2.42)

where ẽ0i, i ⊂ {1, 2, 3} denotes the column that stores ẽk0i at the four control points.
For linearly interpolated beam elements ẽ0i contains four times the same base vector
for an initially straight strings of beams, and two different base vectors otherwise.

The location vectors of the material points of the string in the smoothed reference
configuration are then given by:

x̃0(η) = X̃c(η
1) + ṽ0(η), (2.43)

where
ṽ0(η) = a cos(η2)ẽ02(η1) + b sin(η2)ẽ03(η1), (2.44)
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where ṽ0 denotes a vector connecting X̃c to a point on the perimeter of the (fictitious)
cross-section attached to this centroid point (see fig. 2.6), and η = {η1, η2} ∈ [0, 1]×
[0, 2π] denotes a column of two local variables parametrising the smooth patch’s
surface (see Fig. 2.6). a and b denote the dimension of the elliptical cross-section of
the underlying series of beams in its principal directions.

Deformed configuration

To determine the smoothed centroid-line in the deformed configuration, we also
need the smoothed displacement field of the centroid-line, which is expressed as:

ũc(η
1) = B(η1) · ũc, (2.45)

where ũc denotes the column of displacement vectors at the four control points which
are constructed as control points in X̃c. The smoothed centroid-line in the deformed
configuration can then be written as:

x̃c(η
1) = x̃0c(η

1) + ũc(η
1) = B(η1) · (X̃c + ũc). (2.46)

To locate all material points in the approximated deformed configuration, instead of
just those on the centroid-line, we also need to smooth the rotation vector field, for
which we similarly write:

θ̃c(η
1) = B(η1) · θ̃, (2.47)

where θ̃ denotes the column containing rotation vectors at the four control points.
Corresponding rotation tensor Λ̃(η1) can then again be determined using Rodrigues’
formula (Eq. (2.32)).

The location vectors of the material points of the string in the smoothed deformed
configuration can now be written as (see Fig. 2.6):

x̃(η) = X̃c(η
1) + ṽ(η), (2.48)
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where
ṽ(η) = Λ̃(η1)ṽ0(η). (2.49)

E1

E2

E3

η1

η2 ∂x̃
∂η1

∂x̃
∂η2

x̃
ñ

Figure 2.6: A surface point x̃ and its local surface basis { ∂x̃
∂η1 ,

∂x̃
∂η2 , ñ}. The surface of

the two beams from which the smooth surface is constructed are presented in yellow.

Note that vector ṽ is generally not in the plane normal to X̃c, because, as
stated above, the (pseudo) cross-sections are in general not normal to the smoothed
centroid-line in the reference configuration, but also because of the relative rotation
of the (pseudo) cross-section around the (pseudo) centroid point x̃c.

To adapt the contact framework to the smoothed geometry introduced above, one
needs to replace the local coordinates in h by the local coordinates of the smooth
surface coordinates η. For an integration point, x̃I, on the slave side with local
coordinates η1, the procedure is as follows:

• The projection point of x̃I on the master surface, x̃J(h̄
J
), is found by solving the

local problem in Eq. (2.10) adapted to the smoothed surfaces, i.e. the column
of local parameters q̄ to solve for is now q̄ = [η̄J1, η̄

J
2, g],

• If x̃I is penetrated, the contribution of this integration point to weak form is
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computed using Eq. (2.19). The kinematic variables involved are the nodal
degrees of freedom used to construct the smooth patches that are stored in
columns pM and pN . Three beam nodes are necessary to construct each patch
so that pM and pN have 18 components each. Consequently, contact residual
rc in Eq. (2.25) has a length of 36 and the dimensions of contact tangent matrix
K
c
are 36× 36.

2.5 Numerical Results

In the current Section, we present initial results that can be achieved with the
contact scheme. We first focus on two strings of beam elements that come in contact
with each other under different loading conditions. Second, we focus on the twisting
of several parallel strings of successive beam elements as a simplified manufacturing
process for wire ropes.

Different possibilities exist to place quadrature points. At the beginning of each
time step, integration points could be placed in the region where beams’ surfaces
are close to each other. This would entail several update of the integration points’
surface coordinates.

Another option, that is less accurate but computationally less expensive is to
compute the coordinates and weights of a grid of integration points on the entire beam
surface in the undeformed configuration. This means that the number of quadrature
points is constant and that their surface coordinates and weight do not need to
be recomputed. This approach that has been adopted in the following numerical
examples, in which a grid of quadrature point regularly spaced in the reference
domain has been used.

2.5.1 Two orthogonal strings

In the first example, we consider two beams with elliptical cross-sections denoted
by A and B (see Fig. 2.7) discretised with strings of successive beam elements. These
strings are initially orthogonal in space, and they both have the same geometrical
properties (length and dimensions of the cross-sections), mechanical properties and
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discretisation (see ahead to the top row of Fig. 2.10). The aim of this numerical
example is to show that the presented scheme is able to treat contact problems in
which large sliding displacements occur (i.e. slave points in contact can slide from one
smooth surface approximation to another without compromising convergence at the
global level), whilst the deformation of the contacting surfaces is substantial. The
geometrical and material parameters are, together with the numerical parameters of
the discretisation and the contact scheme, presented in Tables 2.1 and 2.2. Various
Dirichlet boundary conditions (BCs) are applied at the end nodes of string A during
the interval of (fictitious) time t ∈ [0, 6]. The kinematic variables of the end nodes of
string B are retained. We apply the following Dirichlet BCs to string A (see Fig. 2.8):

• t = 0: the strings are slightly detached; gN ≈ 0 in the middle of the strings at
a single surface point.

• 0 < t ≤ 1: the end nodes are moved by 1.5 10−2m in E2-direction.

• 1 < t ≤ 2: the end nodes are moved in [1, 0, 1] direction by 1 cm.

• 2 < t ≤ 3: the centroid point in the middle of string A is used as the center
of rotation of string A around E2 with an amplitude of π

3
. This rotation is

applied to nodes at the end string A.

• 3 < t ≤ 4: the end nodes undergo the reverse rotation around the same axis of
rotation.

• 4 < t ≤ 5: the end nodes undergo the reverse displacement as the one that was
performed for 1 < t ≤ 2.

• 5 < t ≤ 6: the end nodes are moved vertically until the two strings completely
detach.

The number of quadrature points placed on the surface of each slave patch (at
fixed material coordinates) to evaluate Eq. (2.16) is given in Table 2.2. The number
of surface points is important because at the beginning of the interval 0 < t ≤ 1 and
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at the end of the interval 5 < t ≤ 6, contact is localised and hence, contact is poorly
approximated with a coarse grid of surface points.

Table 2.2 also provides the initial penalty stiffness employed. This value should
be related to the mechanical parameters of the contacting bodies as well as the
geometrical features of the surfaces at the contact area and the penetration [70] (note
that a penalty stiffness directly dependent on the kinematic variables would result
in more complex expressions for rc and K). Here, the penalty stiffness is adapted if
the local penetration measured for one or several of the slave points is larger than a
certain user-defined threshold. In the present case, we choose to increase the penalty
stiffness by 10% if the penetration is larger than 5% of the smallest cross-sectional
radius (see also [21] for another example of regularization of the contact constraint
by increasing the penalty stiffness). The update of the penalty stiffness is performed
after an increment of the global solver has converged. Directly after the update, the
nodal equilibrium is again solved for, since the increase of the penalty stiffness results
in a loss of equilibrium. Additional iterations are therefore needed to restore force
equilibrium before moving to the next increment. If, after convergence with this new
penalty stiffness, the violation of contact constraint gN is still too large, the process
is repeated.

The configurations after each second of the fictitious time are presented in Fig. 2.10.
Contact tractions in the contact area are presented in Fig. 2.9 for t = 1, 2 and 3 sec-
onds. The evolution of two components of the reaction forces at the end nodes of
a string are presented in the top diagrams of Fig. 2.11. The number of active con-
tact points is presented in the same figure. During the 1st second, contact does not
change location but increases in magnitude over time. This can be observed by the
substantial increase of the number of active slave points during the first half of the 1st

second (right diagram in Fig. 2.11). Consequently, the reaction force in E2-direction
(middle diagram in Fig. 2.11) increases qualitatively almost the same as the number
of penetrating surface points. During the second half of the first second, the number
of penetrating points oscillates. This is due to the adjustment of the penalty stiffness.

During the 2nd second (1 < t ≤ 2), string A slides with respect to string B.
Consequently, the number of penetrating surface points remains similar, which is to
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expected. The reaction force in E2 direction reduces somewhat, whilst the reaction
force in E1 direction slightly increases. Concluding we can state that the contact
framework is able to accurately treat large sliding displacements (penetrating slave
points can move from one surface approximation to another and new slave points
become active, whilst active ones become inactive).

In the 3rd second (2 < t ≤ 3), the location of the contact area remains largely at
the same location, but the contact area increases due to the prescribed rotation. We
nevertheless see a decrease of the number of active slave points, because the employed
grid of slave points has a wider spacing in the string’s longitudinal direction than in
the tangential direction. The change of contact area has substantial influences on
the reaction forces. The interesting issue here is that the present loading would have
no influence on the reaction forces for a point-wise contact scheme (which would be
inaccurate as contact does not occur at a single point but over a finite area).

In the last 3 seconds, the entire loading is reversed and consequently, we see
that the reaction-force time diagrams are symmetrical around t = 3. Once again,
the reason that the number of active slave points is not symmetrical is because the
penalty stiffness is increased if necessary, but not reduced if possible. These results
are highly satisfactory.
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Beam length (cm) 8
Radius 1 of the ellipti-
cal cross-section(cm)

0.6

Radius 2 of the ellipti-
cal cross-section (cm)

0.2

Young’s modulus
(GPa)

100

Poisson’s ratio 0.3
Beams Finite Ele-
ments per beam

60

Table 2.1: Example 2.5.1: General
properties of each beam.

Surface points in axial
direction

5

Surface points in tan-
gential direction

80

α 2
3

Initial εN (GPa) 10

Table 2.2: Example 2.5.1: Contact pa-
rameters.

E1

E2

E3

Figure 2.7: Example 2.5.1: Initial configuration.
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E3
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E3

E1

E2

E3

E1

E2

E3

E1

E2

E3

E1

0 < t ≤ 1

1 < t ≤ 2

2 < t ≤ 3

3 < t ≤ 4

4 < t ≤ 5

5 < t ≤ 6

Figure 2.8: Example 2.5.1: Boundary conditions applied during the different phases
of the loading. The schematics are not to scale. String A is presented in white and
string B in grey.
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t (s)
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3

Figure 2.9: Example 2.5.1: Contact traction acting in the normal direction to the
slave surface at the quadrature points for different times of the simulation.
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Figure 2.10: Example 2.5.1: Three views of the deformed beams after different pseudo-times (without scaling of
the deformations).
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Figure 2.11: Example 2.5.1: Evolution of the reaction force in E2 direction (left) and
in E1 direction (middle). Evolution of the number of active contact points (right).
Note that the order of magnitude of the forces in the left and central diagram is a
factor of two different.

2.5.2 Twisting

In the next example, we consider two setups of several parallel beams which are
twisted (see Fig. 2.13). For setup A, the central beam has a circular cross-section
and the beams around it have an elliptical cross-section. In setup B however, the
central beam is elliptical and the peripheral beams have a circular cross-section. For
both setups, the central beams have the same cross-sectional area. Similarly, each
peripheral beam in setup A has the same cross-sectional area as the peripheral beams
in setup B.

The cross-sections at the two ends of the beams are rigidly rotated around the
longitudinal beams’ direction in the reference configuration with an angle of π. The
planes containing these cross-sections are kept at a constant distance during the
simulation. This problem is challenging for a contact framework as the contact forces
increase substantially, the contact is non-local and contacting surfaces increasingly
deform and curve during time.

The employed beam properties are presented in Table 2.3. The initial and final
configurations are shown in Fig. 2.13. Fig. 2.14 shows the evolution of the total
reaction force in longitudinal direction and the total torque at one of the end cross-
sections. The evolution of the number of penetrated contact points is also presented.
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The results clearly show that the cross-sectional shape has a major influence on the
simulation results.

Figure 2.12: Example 2.5.2: Illustration of the Dirichlet boundary condition applied
to one end of one discretized beam (red circle). The rotation of Π around the axis
of rotation (dashed line) applied incrementally is illustrated with the black arrow.
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Central Beam Peripheral Beams
Beam length (cm) 15 15

Radius 1 of the elliptical cross-section (cm) 0.5 3
10

Radius 2 of the elliptical cross-section (cm) 0.5 3
20

Young’s modulus (GPa) 100 100
Poisson’s ratio 0.3 0.3

Beam finite elements per beam 60 60

(a) Setup A.

Central Beam Peripheral Beams
Beam length (cm) 15 15

Radius 1 of the elliptical cross-section (cm) 2
3

1
3
√

200

Radius 2 of the elliptical cross-section (cm) 3
8

1
3
√

200

Young’s modulus (MPa) 1000 1000
Poisson’s ratio 0.3 0.3

Beam finite elements per beam 60 60

(b) Setup B.

Surface points in axial direction 4
Surface points in tangential direction 80

α 2
3

Initial εN (MPa) 100

(c) Contact properties of each slave patch.

Table 2.3: Example 2.5.2: Properties of the beams used for the twisting.
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(a) setup A, t = 0. (b) setup B, t = 0.

(c) setup A, t = tfinal. (d) setup B, t = tfinal.

(e) setup A, t = tfinal, side view. (f) setup B, t = tfinal, side view.

Figure 2.13: Example 2.5.2: Setup A and B in their initial and final configuration.

38



0 50 100 150

Twist angle in ◦

−250

−200

−150

−100

−50

0

S
u
m

o
f
th

e
ax

ia
l
re

ac
ti
o
n

fo
rc

es
(N

)

0 50 100 150

Twist angle in ◦

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

T
or

q
u
e

ar
o
u
n
d

ax
is

o
f
ro

ta
ti
o
n

(N
m

)

setup A setup B

0 50 100 150

Twist angle in ◦

0

500

1000

1500

2000

2500

3000

3500

4000

A
ct

iv
e

C
o
n
ta

ct
P
o
in

ts

Figure 2.14: Example 2.5.2; Left: Axial reaction forces; Middle: The reaction torque
around the axis of rotation; Right: evolution of the number of active contact points.

2.6 Conclusion

Slender structural components are typically represented by beams in mechanical
models, in turn discretized with beam finite elements. They are often characterized
by circular cross-sections, but elliptical cross-sections are regularly required instead.
Contact between shear-deformable beams with elliptical cross-sections cannot only
be based on the centroid-lines, as is most often done in contact schemes for beams
with circular cross-sections.

The contact framework proposed in this work therefore relies on the beams’ sur-
face. It allows to deal with scenarios in which the distance between contacting
surfaces has no clear minimum, as is the case for parallel beams, for example. Thus,
this contribution is a first attempt to complete the frameworks of [24, 25], which are
limited by the assumption of a unique and localised contact location.

Our framework places points on one of the two surfaces candidates for contact
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(slave) and then projects them on the other surface (the master). This projection
differs from the conventional closest point projection (CPP), because the CPP is
not unique and may change drastically for small variations (in case of non-circular
cross-sections). Instead, we determine the amount of penetration based on surface
points and a point on the centroid-line.

Since the employed geometrically exact beam elements furthermore use a linear
interpolation of the kinematic variables, the associated surface of a string may be C0-
continuous in the deformed configuration and even C−1-continuous in the reference
and deformed configuration. To overcome this issue, a smoothing procedure of the
strings’ surfaces is formulated that makes the surfaces C1-continuous.

The proposed contact approach is computationally more demanding than the
approaches of [24, 25] due to the seeding of many points for which penetration is
considered. If no unique maximum penetration occurs, as is the case for many prac-
tical applications on the other hand, a less efficient approach than [24, 25] appears
to be unavoidable. Future work will therefore focus on more efficient generations of
surface points and the optimisation of the implementation.
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CHAPTER III

Non-localised contact between beams with circular

and elliptical cross-sections1

3.1 Introduction

Many engineering materials such as paper, fabrics or open-cell high-porosity
foams consist of slender fiber-like constituents at the microscopic scale [67, 28]. Var-
ious approaches to describe their mechanical behavior explicitly incorporate their
discrete micro-structure [5, 55, 82, 46, 33]. In many cases beam models are used to
represent single fibers, yarns or struts [44, 4, 6]. It is often crucial to incorporate
beam-to-beam contact in order to obtain accurate mechanical predictions. However,
due to the specificity of beam kinematics, standard techniques developed to treat
contact between 3D solids cannot be directly adopted. Thus special formulations
dedicated to beams are developed [62, 89, 95, 37, 51, 50, 59, 22, 21].

Beam-to-beam contact schemes are in general built upon assumptions on the
contacting systems, which restrict their use to specific contact scenarios. The formu-
lation of a particular contact scheme is typically determined by three main issues:
(i) whether or not contact remains localized (in other words if contact interactions
are confined to a small part of the beams’ surfaces), (ii) what are the beams’ cross-

1Reproduced from: M. Magliulo, J. Lengiewicz, A. Zilian, Beex L. A. A., Non-localised contact
between beams with circular and elliptical cross-sections, Computational Mechanics, accepted for
publication.
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sectional shapes and (iii) are the cross-sections rigid or deformable. This contribution
is limited to rigid cross-sections.

A point-wise contact force approach is generally used to model localized contact
between beams. For beams with circular sections for example, the contact conditions
are enforced at the closest pair of centroid points [89, 95, 62]. If the beam’s cross-
sections are elliptical, the contact force can be applied at the closest pair of surface
points where the tangent planes of the contacting surfaces are parallel. This was
demonstrated by Gay Neto et al. [24, 25] for the frictionless and frictional case,
respectively.

If no unique minimum distance between the beams’ surfaces exists (e.g. in case
of parallel beams or if one beam is wrapped around the other), the aforementioned
frameworks are difficult to apply. In such cases, and if both beams in contact have
circular sections, Chamekh et al. [11] (for beams undergoing self-contact) and Meier
et al. [59] have demonstrated that contact can be modeled as a continuous force
acting along one of the beams’ centroid-lines. If elliptical sections are employed
however, the contact scheme of [59] is not directly applicable as the centroid-lines
are not sufficient to locate possible contact interactions. This is because the beams’
surface cannot be determined from its centroid-line in this case

An alternative is then to integrate contact forces (contact virtual work) over
the surface [54]. In such an approach, fixed material points on one of the beams’
surface are projected on the other beam’s surface to then determine if they are
penetrated. As each projection requires the solution of a (small) non-linear problem,
and because many projections are required to accurately approximate the contact
area, the associated computational costs are substantial.

In the approach proposed in the current contribution, the contact virtual work is
integrated along the centroid-line of one of the beams (slave). The contact kinematics
are based on an appropriately defined projection procedure between the contacting
surfaces, which assumes that the cross-sections are planar and rigid. In this proce-
dure, for a pair of contacting beams, points are fixed along the centroid-line of one of
the body called the slave. For each point, the projection problem solves for the cir-
cumferential parameter of the cross-section attached to the fixed slave centroid-point
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and both surface parameters of the counter-surface (master).
Two different projection schemes are presented and compared. The first one is

based on the minimisation of a constrained scalar function and the second one is
posed as a set of equations to solve. The latter approach is expected to be more
efficient and stable because surface derivatives of lower degrees are involved, which is
appealing when interpolated surfaces have a reduced continuity. As the integration
is performed along a curve and not over a surface (as in [54]), the computational
costs are substantially reduced. Consequently, larger models can be investigated
with similar computational efforts, thereby easing the framework’s application to
industrially and scientifically relevant problems.

In the present contact framework we adapt and study two approaches to inte-
grate the contact virtual work. As a first choice, we use a conventional single-pass
algorithm, a master-slave approach, in which we arbitrarily choose one of the beams’
surface (slave beam) to integrate contact virtual work. Consequently, the associated
contact framework is biased [73, 74].

To avoid this issue, we adapt the idea presented in [73, 74], the so-called "two-half-
pass" approach, which symmetrically treats both contacting surfaces, and which has
so far only been considered for conventional finite elements and not for beam-to-beam
contact. Consequently, this framework is unbiased. In this approach, similarly to the
well known two-pass approach, contact conditions are evaluated twice by changing
the roles of the contacting surfaces (the slave body during the first half-pass becomes
master during the second half-pass and inversely for the master body). The difference
between two-half-pass and two-pass algorithms is that for the two-half-pass, contact
tractions are only acting on the slave surface for each half-pass.

This paper is organized as follows. In Section 3.2, the kinematics of the proposed
contact framework are presented. This includes a discussion on how to determine
whether a section penetrates another beam and if so, how to quantify the amount
of penetration. Also, a length-specific contact virtual work is introduced, which is
integrated over the slave beam’s centroid-line. We specify this for single-pass and
two-half-pass algorithms. In Section 3.3, the contact kinematics are adapted to the
finite element method after the beams are discretized with BFEs. Implementation
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details are included. The numerical examples of Section 3.4 indicate the capabilities
and efficiency of the contact framework. Finally in Section 3.5, conclusions are
presented and possible extensions are discussed.

3.2 Continuum contact framework

This section explains the proposed framework to treat contact between beams
with elliptical and circular rigid sections. Simo-Reissner Geometrically Exact Beam
theory [77, 78, 79, 29, 31, 59, 72] is utilized here, but the contact framework can
be adapted to other beam formulations with rigid cross-sections. We first explain
how surfaces of such beams can be parametrised. Based on these beams’ surface
parametrizations, we then introduce the contact kinematics for the novel contact
scheme in the space-continuous setting. This framework will be adapted to the finite
element method in Section 3.3.

3.2.1 Surface description of a geometrically exact beam

In this work, a continuous beam (not a beam finite element) is considered as a
(slender) body, of which the cross-sections (i) do not deform, (ii) remain planar, (iii)
their center of gravity form its centroid line and (iv) their normal vector can rotate
with respect to the tangent of its centroid-line (shear deformable).

We consider beam B and the parametrization of its surface x(h) ∈ R3, h =

[h1, h2] ∈ [0, L] × [0, 2π] ∈ R2, where h1 and h2 are longitudinal and circumferen-
tial parameters, respectively. L denotes the length of the centroid-line of B in the
undeformed configuration. The current centroid-line position is obtained by adding
displacement u ∈ R3 to the initial centroid-line location, x0c ∈ R3:

xc = x0c + u. (3.1)

As cross-sections are rigid and remain planar, x(h) can be obtained by adding
the location vector of a centroid-point, xc(h

1) ∈ R3, to a vector, v(h) ∈ R3, that lies
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in the plane of cross-section C that is attached to xc (see Fig. 3.1):

x(h) = xc(h
1) + v(h). (3.2)

For elliptical sections, v can be expressed as follows:

v(h) = a cos(h2) e1(h1) + b sin(h2) e2(h1), (3.3)

where a and b denote the two semi-axes of the elliptical section in the ellipse’s prin-
cipal directions. Note that in case a = b, a circular cross-section is recovered.
Triad {e1, e2, e3} attached to C forms an orthonormal basis. This local triad in
the undeformed configuration denoted by {e01, e02, e03} varies as a function of h1 if
the undeformed centroid-line is not straight. The plane containing C is spanned by
vectors {e1, e2} while e3 denotes its normal (unit) vector. As shear deformation is
possible, C is not necessarily normal to the beam’s centroid line, i.e. ∂xc

∂h1 × e3 6= 0.
As no cross-sectional deformation occurs furthermore, vector ei can be obtained

by a rigid rotation of its associated vector in the undeformed configuration, e0i,
according to:

ei = Λ(h1)e0i. (3.4)

Λ(h1) ∈ SO(3) denotes a rotation tensor, where SO(3) is the group of orthogonal
transformations [72].

For further use, we define two vectors tangent to the surface at x(h) as τ 1 = ∂x
∂h1

and τ 2 = ∂x
∂h2 . In general, τ 1 and τ 2 are not necessarily orthogonal to each other.

The unit vector normal to the surface at the same surface point is defined as follows:

n(h) =
τ 1(h)× τ 2(h)

‖τ 1(h)× τ 2(h)‖ . (3.5)
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Figure 3.1: An elliptical cross-section in its undeformed (grey) and current configu-
ration (cyan). centroid-lines in both configurations are presented as dashed lines.

3.2.2 The contact scheme

For shear undeformable beams with circular sections, simplified contact kine-
matics can be found [89, 95, 59]. Simplifications are also possible if only one of
the two beams in contact has a circular cross-section [37]. However, if both beams
possess non-circular cross-sections and shear deformation is accounted for, a differ-
ent approach is needed as the surfaces of the beams cannot be deduced from their
centroid-line alone.

The contact scheme presented here seeks to treat contact interactions between
beams if the signed distance function between the beams’ surfaces does not possess
a unique minimum (e.g. if the beams are parallel to each other or wrapped around
each other). This is in contrast to the schemes of [24, 25] in which penetration is
prevented by forces between the closest pair of surface points.

3.2.2.1 Projection problem and signed distance function

Let us consider beams BI and BJ, and their respective surfaces ∂BI and ∂BJ
which may be colliding. In our scheme, for a given cross-section along the centroid-

46



line of BI, we determine if it penetrates ∂BJ and if so, by what amount. BI and BJ
thus have a different role and in order to distinguish them, we call BI the slave and
BJ the master.

Let’s consider cross-section C and its perimeter ∂C. C is attached to centroid-
point x1

c(h
C) (see Fig. 3.2). The outward pointing normal (unit vector) at surface

point xI(hI) ∈ ∂C with hI =
[
hC, hI2

]T is expressed as:

nI(hI) =
τ I

1(hI)× τ I
2(hI)∥∥τ I

1(hI)× τ I
2(hI)

∥∥ . (3.6)

We introduce the following gap vector:

g = xJ − xI, (3.7)

pointing from a surface point on ∂C to a surface point on ∂BJ.
In the following, we present two possibilities to quantify the amount of penetration

between ∂C and ∂BJ. The first approach is based on a constraint minimisation of
a scalar function, whereas the second one relies on a set of equations to be solved.
Higher order surface derivatives are expected for the first approach which are not
necessarily well defined on the surface of a body after discretization with beam finite
elements. The first approach also yields complicated expressions that translate into
more (and hence less efficient) code.

Approach I: pair of surface points determined from the minimisation of
an objective function

One approach to determine if ∂C penetrates ∂BJ and if so, by what amount, is to
determine the minimum of scalar function g · nI. In order to prevent that objective
function g · nI has an infinite number minima, we only consider points xI ∈ C and
xJ ∈ ∂BJ that meet constraint c:

[h̄I2, h̄J1, h̄J2] = min
hI2,hJ1,hJ2

g · nI (3.8)
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such that
c = g · ñI = 0, (3.9)

xI(h̄
I
) is in BJ if ḡ · n̄1 < 0, (3.10)

xJ(h̄
J
) is in BI if ḡ · n̄I < 0. (3.11)

Here and in the following, a bar over a quantity indicates that it is evaluated at the
solution of the local problem (i.e.solution of Eq. (3.13) or Eq. (3.21)). Unit vector
ñI in Eq. (3.9) is defined as:

ñI(hC, hI2) =
τ I

2 × nI

‖τ I
2 × nI‖ (3.12)

and denotes the unit vector normal to the plane spanned by surface vectors nI and
τ I

2 (see Fig. 3.2).
At the solution of Eq. (3.8), the gap vector is colinear with nI but not with

nJ, which differs from conventional master-slave approaches like the node-to-surface
algorithm [47]. In this way, the first and second-order derivatives of Eq. (3.8) are
shorter. The reason is that nJ depends on two variables, hJ1 and hJ2, whereas nI

only depends on hI2. Note also that if g is not aligned with nI at the solution of
Eq. (3.8), the measure of penetration (see Eq. (3.15)) is not measured in the direction
of the normal to ∂BI. This yields non-physical components of the contact traction
vector when contact constraints are regularized (see Section 3.2.2.2).

If only the constraint in Eq. (3.9) is present, four solutions are possible. This
is graphically illustrated in Fig. 3.3. To prevent this, the last two constraints are
added, but they can only be verified once the minimisation problem of Eq. (3.8) is
solved.

We solve the minimisation problem using the interior extremum theorem, in which
only the first constraint in Eq. (3.9) is incorporated via a Lagrange multiplier:

f(q̄) =
∂

∂q

(
g · nI − λc

) ∣∣∣
q=q̄

= 0, (3.13)

where q = [hI2, hJ1, hJ2, λ] denotes the variables that we solve for, which consist of
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three surface parameters and Lagrange multiplier λ ∈ R.
To solve Eq. (3.13), we apply Newton’s method for which we linearise residual f

in Eq. (3.13) which requires the following Jacobian:

H(q) =
∂f

∂q
. (3.14)

Once the solution of Eq. (3.13) is found, the amount of penetration, which is also
called the normal gap or signed distance function, is given by:

gN = (x̄J − x̄I) · n̄I = ḡ · n̄I, (3.15)

where x̄I = xI(hC, h̄I2) and x̄J = xJ(h̄J1, h̄J2). Eq. (3.15) entails that gN is only
negative in case of penetration, as long as the constraints in Eqs. (3.10) and (3.11)
are met.

The problem with Jacobian H in Eq. (3.14) is the presence of third-order surface
derivatives, since nI and ñI are based on first-order surface derivatives. This comes
with two disadvantages:

• Third-order surface derivatives are not necessarily smooth across the beams’
surface, in particular in the spatially discretized setting (see Section 3.3). This
may impair the convergence of the aforementioned Newton’s procedure, which
for instance yields solutions for which the constraints of (3.10) and (3.11) do
not hold (see also Fig. 3.3).

• f and H are inefficient to compute due to their complicated expressions.

Quantifying the amount of penetration in terms of a residual form (i.e. a system of
non-linear equations that replaces Eq. (3.13)) in which lower-order surface derivatives
are present, may therefore be computationally advantageous.
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Figure 3.2: Slave section C (in light red). The plane containing xI and spanned by
vectors τ I

2(hC) and nI(hC) is presented in translucent orange. The unit normal vector
to this plane is ñI.

Approach II: Pair of surface points determined from a residual form
As an alternative to Eq. (3.13), one can formulate a problem in which no minimization
is to be performed explicitly, but where we start from some residual form. The vector
equations we solve for are:

f1(q̄) = x̄J − x̄I − ḡn̄I = 0, (3.16)

such that:
x̄I(h̄

I
) is in BJ if ḡ < 0, (3.17)

x̄J(h̄
J
) is in BI if ḡ < 0. (3.18)

50



E1

E2

E3

e3

nI

xI

xJ

E1

E2

E3

e3

nI

xI

xJ

E1

E2

E3

e3

nI

xI

xJ

E1

E2

E3

e3

nI

xI

xJ

(a) (b)

(c) (d)

Figure 3.3: Approach I: planar view of the different solutions of the projection prob-
lem in Eq. (3.13) in the case of parallel straight beams in contact. (a) Desired
solution; (b), (c), (d): Undesired solutions for which the constraints in Eqs. (3.10)
and (3.11) do not hold. The undesired solutions can be obtained if a poor first guess
is provided to the non-linear solver. This problem comes from the cyclic property of
the cylindrical coordinate system of the cross-sections [37].
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where q = [hI2, hJ1, hJ2, g]. At the solution of the local problem, ḡ = gN where gN
has been defined in Eq. (3.15). The obvious problem with Eq. (3.16) is that four
unknowns are present in a system of three non-linear equations. We therefore add
one more equation:

f2(q̄) = a1(nI + nJp) · τ J
2 = 0, (3.19)

with:
nJp =

nJ − (nJ · ñI)ñI

‖nJ − (nJ · ñI)ñI‖ . (3.20)

Eq. (3.19) is motivated by the fact that at the solution sought, both projected
normal vectors nI and nJp must be orthogonal to the vector tangent to the (master)
surface, τ J

2. Also in Eq. (3.19), a1 is used to make equations from f1 and f2 consistent
in terms of units. The new set of equations to solve for thus reads:

f(q̄) = [f1, f2]T = 0. (3.21)

A pair of surface points that abides Eq. (3.21) is shown in Fig. 3.4.
Eq. (3.21) is nonlinear and is solved using Newton’s method for which the follow-

ing Jacobian is required:

H(q) =
∂f

∂q
. (3.22)

The Jacobian however includes only second-order surface derivatives, whereas the
Jacobian of Eq. (3.14) includes third-order surface derivatives.

Thanks to the lower order of surface derivatives of Approach II, it is expected
that Approach II is more robust than Approach I and that f and H are faster to
compute (see Section 3.4.1 for a comparison between the two approaches).
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Figure 3.4: Approach II: solution sought of the projection problem in Eq. (3.21)
illustrated for one slave section C. The plane of (unit) normal vector ñI spanned
by vectors τ I

2 and nI is again shown in translucent orange. The pair of red surface
points corresponding to the solution of Eq. (3.16) lies on this plane. At the solution,
vectors nI and nJp point in opposite directions and are both orthogonal to τ J

2, thus
verifying Eq. (3.19).

3.2.2.2 Frictionless contact conditions and penalty regularization

The unilateral contact conditions are for both approaches given by:

gN ≥ 0, TN ≤ 0, gNTN = 0, (3.23)

where gN is given by Eq. (3.15) and TN denotes the magnitude of the nominal traction
vector, i.e. the traction acting in the current configuration, yet integrated over the
contact area in the reference configuration.

If a penalty formulation is used, contact traction TN , acting at the pair of surface
points used to measure penetration, is given by:

TN = −εN 〈−gN〉 (3.24)
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where εN > 0 denotes a user-defined parameter, usually referred to as the penalty
stiffness, and 〈•〉 denote the Macaulay brackets.
Nominal contact traction vector T acting on the section acts in the normal direction
to the slave surface at surface point x̄I such that:

T = TN n̄I. (3.25)

The corresponding virtual work of the contact force is then given by:

dδΠc = TNδgNdL
BI = −εN 〈−gN〉 δgN

∥∥∥∥∂xI
0c

∂hI1

∥∥∥∥ dhI1, (3.26)

where δgN denotes the variation of the normal gap gN with respect to all involved
kinematic variables: the displacement vector components and rotations of the two

beams in contact gathered in pIJ =
[
pI, pJ

]T
. A detailed derivation of δgN is pre-

sented in Appendix III.A. dLBI denotes an infinitesimal length of xI
0c and dhI1 denotes

the differential of hI1.

3.2.2.3 Contact virtual work

The virtual work equation for the two-body system BI,BJ including contact in-
teractions reads:

δΠBI(p
I, δpI) + δΠBJ(p

J, δpJ) + δΠc(p
IJ, δpIJ) = 0, (3.27)

where δΠBi denotes the internal and external virtual work of Bi (excluding contact
interactions). pIJ and δpIJ are admissible functions of the trial and test spaces,
respectively. δΠc denotes the virtual work of the contact forces between BI and BJ.

As stated above, cases of interest in this contribution are configurations in which
contact interactions arise over a finite length along the beams in contact. TN , in-
troduced in Eq. (3.24), can be seen as a length-specific contact traction because it
only accounts for a single (slave) section. The virtual work of all penetrated sections
follows from the integration of the virtual work dδΠc along the centroid-line of BI as
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follows:

δΠc =

∫ h1I
U

h1I
L

dδΠc, (3.28)

where h1I
L and h1I

U denote the lower and upper bound of the integral along hJ1.
Note that only penetrated sections contribute to δΠc (see Eq. (3.26)). Now that
the contact kinematics and the virtual work of the contact forces are defined for the
space continuous problem, they must be spatially discretized.

3.3 Spatial discretization

The spatial discretization method employed in this contribution is the FEMethod.
Beam B is now discretized with beam FEs (BFEs). When needed, subscript K de-
notes the index of a node. A brief explanation of the interpolation of the surface of a
BFE is given in the following. This will serve as the basis for the discretized contact
formulation.

3.3.1 Interpolation of the surface

For a BFE that is part of the discretization of beam B, the position of a surface
point can still be obtained from Eq. (3.2), where the position of the centroid-line in
the undeformed configuration is given by:

Xc(h1) =

nX∑
K=1

NX
K (h1)x̂0K . (3.29)

x̂0K denotes the reference location of node K and NX
K denotes the associated inter-

polation functions. The centroid-line position in the current configuration is given
by:

xc(h
1) = x0c +

nu∑
K=1

Nu
K(h1)ûK , (3.30)

where ûK ∈ R3 denotes the displacement of node K and Nu
K its displacement inter-

polation function. Rotation vector θ used to compute Λ using Rodrigues’ formula
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(see [43]) is interpolated as follows:

θ(h1) =

nθ∑
K=1

N θ
K(h1)θ̂K , (3.31)

where θ̂K ∈ R3 denotes the nodal rotation vector of node K and N θ
K the associated

interpolation function.
For each BFE, nu nodes are used to interpolate displacements, nX nodes are used

to interpolate positions in the undeformed configuration and nθ nodes are used to
interpolate rotations. Depending on the beam formulation employed nu, nX and nθ
can differ2.

Not every type of BFE yields a C0-continuous surface of the discretized beam
[4, 59]. This obviously makes contact difficult to formulate. For instance, two-node
Geometrically Exact BFEs [29] are employed in Section 3.4. The surface of beams
discretized with such BFEs is only C0-continuous if the beam is initially straight.
This poor continuity of the surface comes with several disadvantages when contact
is considered [93]. This is why for each beam, the smoothing technique of [54]
is employed which provides a surface close to discretized beam’s surface, but C1-
continuous. Such a smoothed surface is constructed as an assembly of consecutive
patches that are based on the original discretized geometry. The resulting surface
continuity reduces the risk of abrupt changes in the direction of the contact force be-
tween subsequent global iterations of the Newton-Raphson scheme. This is however
not elaborated here in order to keep the focus on the contact formulation. How-
ever, the numerical examples of Section 3.4 only employ smoothed surfaces of the
discretized beams.

2The interpolation functions are not specified here in order to keep the formulation valid for
different beam formulations. Also, the physical meaning of the rotation variables can change de-
pending on the beam theory employed.
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3.3.2 Discretized contact weak form and linearization.

Let us now consider two BFEs,M and N which are part of the discretizations of
BI and BJ, respectively. Surfaces of these elements are denoted by ∂SM and ∂SN . We
store the nodal variables of both beams in vectors pM =

[
ûM1 , . . . , ûMnu , θ̂

M
1 , . . . , θ̂

M
nθ

]
and pN =

[
ûN1 , . . . , û

N
nu , θ̂

N
1 , . . . , θ̂

N
nθ

]
.

The surfaces of both elements are assumed to collide. Consequently, force vector
rc and stiffness matrix K

c
associated with this contact must be computed and as-

sembled in the global force residual and global stiffness matrix. Different approaches
to compute these entities exist:

1. In a single-pass approach, M is assumed to be the slave and N the master.
The discretized version of Eq. (3.28) is integrated along hM1. The resulting
contact traction vector acting on ∂SM is t = tM and acts along the normal
to the surface of M, but not necessarily along the normal to the surface of
N . On ∂SN , the traction vector acting at the surface point solution of the
projection problem xN (hN ) is −tM. Traction continuity is preserved locally,
but the approach introduces a bias, i.e. the choice of which body is the slave
and which one is the master influences the results.

2. In a double-pass approach, a single-pass procedure as in 1. is performed twice.
First,M acts as the slave andN as the master, then their roles are inverted, i.e.
N becomes the slave andM the master. This results in a unbiased approach.
Besides doubling the computational costs associated with contact, the problem
might also become over-constrained [74].

3. The "two-half-pass" algorithm was first introduced in [73] and [74] for the fric-
tionless and frictional cases, respectively. During the first half-pass whereM is
the slave and N the master, contact traction vector t = tM only acts on ∂SM
and no traction vector affects ∂SN . During the second half-pass, N acts as the
slave andM as the master. The traction vector for the second half-pass is tN

(and not −tM) and only acts on ∂SN . This leads to additional computational
effort relative to the single-pass algorithm, but entails an unbiased treatment

57



of contact. Over-constraining is less likely to occur than with a double-pass
scheme, and [73] and [74] have shown an increased robustness for the two-half-
pass algorithm relative to the other two options, if applied to standard FE
models.

The procedures necessary to obtain the contact residual and contact stiffness for a
single-pass (1.) and a two-half-pass (3.) approach are described next. The double-
pass algorithm (2.) can be trivially obtained by performing a single-pass procedure
for a second time after inverting the roles of the slave and the master. We therefore
do not detail it in the following.

We now assume for simplicity that all sections attached to integration points along
the centroid-line ofM have their projection according to Eq. (3.13) or Eq. (3.21) on
∂SN , and not on another element’s surface. Similarly, it is assumed that points on
the perimeter of sections of N have their projections on ∂SM and not on another
element’s surface. In practice, different sections of a slave element may have their
projections on different master elements. Kinematic variables associated with contact

betweenM and N are gathered in vector pIJ =
[
pM, pN

]T
.

3.3.2.1 Single pass algorithm

Eq. (3.28) specialized to the contact between two BFEs can be written as:

δΠc = −εN
∫ 1

−1

〈−gN(η)〉 δgN(η) ‖J (η)‖ dη (3.32)

≈ −εN
nM
IP∑
k

wk 〈−gN(ηk)〉 δgN(ηk) ‖J (ηk)‖ , (3.33)

≈ −εN
nM
IP∑
k

wk 〈−gNk〉 δgNk ‖Jk‖ , (3.34)

where η ∈ [−1, 1] denotes the centroid-point coordinate in the parameter space
and J = ∂xI

c

∂η
. Eq. (3.33) is a quadrature where nMIP integration points are used.

The weight and coordinates of the kth integration point is denoted by wk and ηk,
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respectively. The normal gap measured at this integration point is denoted by gNk,
and Jk = J (hM1(ηk)).

To find contact-residual rc, one must recast Eq. (3.33) into:

δΠc = δpIJ T rc, (3.35)

where δpIJ denotes the variation of the nodal kinematic variables. To this end, the
variation of normal gap δgNk related to the kth integration point must be expressed
solely in terms of variations of the kinematic variables such that we can write:

δgNk = bTk δp
IJ. (3.36)

bk is obtained from Eq. (3.61) by evaluating all quantities at the surface points
obtained from the solution of the local problem at this integration point.

If the formalism introduced in [47, 41] is used, the implicit dependency of gNk
on variables in pIJ can be included via an exception in the automatic differentiation
(AD). In this case, bk can be equivalently obtained from:

δgNk =

(
∂̂gNk

∂̂pIJ

∣∣∣ ∂q̄
k

∂pIJ
=A

k

)T

δpIJ = bTk δp
IJ, (3.37)

where A
k
is obtained from Eq. (3.49) and operator ∂̂

∂̂w
denotes differentiation with

respect to variables w performed by the automatic differentiation algorithm [47, 41].
By summing the contribution of the nMIP integration points, rc can be rewritten

as:

rc(p
M, q̄M

1
, ..., q̄

nM
IP

) ≈ −εN
nM
IP∑
k

wk 〈−gNk〉 bk ‖Jk‖ . (3.38)

The associated stiffness matrix can also be obtained using the AD procedure for
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which we write:

K
c

= −εN
nM
IP∑
k

∂̂

∂̂pIJ
(rck)

∣∣∣ ∂q̄
k

∂pIJ
=A

k

= −εN

nM
IP∑
k

wk
∂̂

∂̂pIJ
(〈−gNk〉 ‖Jk‖ bk)

∣∣∣ ∂q̄
k

∂pIJ
=A

k

 .

(3.39)

3.3.2.2 Two-half-pass algorithm

In the two-half-pass approach, the contact traction vector is computed indepen-
dently for element BM and BN . To indicate to which half-pass quantities refer to,
superscripts “M→N ” and “N →M" are employed.

For the first half-pass in which BM is the slave, we write for the contact residual:

rM→Nc (pM, q̄
1
, ..., q̄

nM
IP

) ≈ −εN
nM
IP∑
k

wk
〈
−gM→NNk

〉
bM→Nk ‖Jk‖ . (3.40)

The difference between bM→Nk in Eq. (3.40) and b in Eq. (3.36) is that only the kine-
matic variables of BM are used to construct bM→Nk . The reason is that the contact
traction is considered to only act on ∂SM. However, every gM→NNk (and consequently
rM→Nc ) in Eq. (3.40) depends on pN because of the (implicit) dependency of the
local problem with respect to pN . The linearization of rM→Nc then yields the two
following sub-matrices:

KMM = −εN
nM
IP∑
k

wk
∂̂

∂̂pM

(〈
−gM→NNk

〉
bM→Nk ‖Jk‖

) ∣∣∣ ∂q̄
k

∂pIJ
=AM→N

k

, (3.41)

KMN = −εN
nM
IP∑
k

wk
∂̂

∂̂pN

(〈
−gM→NNk

〉
bM→Nk ‖Jk‖

) ∣∣∣ ∂q̄
k

∂pIJ
=AM→N

k

. (3.42)

For the second half-pass, the roles of the two bodies are inverted. This entails that for
this half-pass the measure of penetration, gN→MNk , is measured from the perimeter of
cross-sections of N to ∂SM. The contact residual that corresponds to this half-pass
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can be expressed as:

rN→Mc (pN , q̄
1
, ..., q̄

nN
IP

) ≈ −εN
nN
IP∑
k

wk
〈
−gN→MNk

〉
bN→Mk ‖Jk‖ . (3.43)

Only the kinematic variables in pN are used to construct bN→Mk . Thus, rN→Mc only
affects the entries corresponding to the kinematic variables of N . The linearization
of rN→Mc yields two new sub-matrices:

KNN = −εN
nN
IP∑
k

wk
∂̂

∂̂pN

(〈
−gN→MNk

〉
bN→Mk ‖Jk‖

) ∣∣∣ ∂q̄
k

∂pIJ
=AN→M

k

, (3.44)

KNM = −εN
nN
IP∑
k

wk
∂̂

∂̂pM

(〈
−gN→MNk

〉
bN→Mk ‖Jk‖

) ∣∣∣ ∂q̄
k

∂pIJ
=AN→M

k

. (3.45)

We can also note that Ktwo-half-pass
c

, defined as:

Ktwo-half-pass
c

=

[
KMM KMN
KNM KNN

]
(3.46)

is not symmetric, unlike K
c
in Eq. (3.39).

3.4 Numerical examples

In the previous sections, we have introduced a scheme to treat non-localized
contact between beams discretized with BFEs, possibly shear-deformable and with
circular or elliptical sections. In the current section, we investigate its capabilities
based on three numerical examples. First, a semi-circular arch is brought in contact
with an initially straight beam. In the second example, aligned beams are twisted.
Finally, we consider the bending of a wire rope.

For all examples, the contact force is a linear function of gN (see Eq. (3.25)). The
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penalty stiffness employed is given by:

εN =
πE

8(1− ν2)
, (3.47)

where E denotes the Young’s modulus of the beams and ν their Poisson’s ratio. The
penalty stiffness in Eq. (3.47) corresponds to the (length-specific) apparent stiffness
relating penetration and contact force for parallel, isotropic, linear elastic cylinders in
Hertz’s theory (see [70]). Note also that the radius of curvature of contacting surfaces
is not present in Eq. (3.47), which is convenient. Note that finite penalty stiffness εN
can be interpreted as the elastic compliance of, the otherwise rigid, cross-sections.

In the three presented numerical examples, only one integration point per slave
patch (see [54]) is used to evaluate rc and Kc

. The total number of integration points
employed is thus low. This reduces the computational cost and also alleviates the
risk of over-constraining.

3.4.1 Example 1: contact between a semi-circular arch and a straight
beam

In the first example, a semi-circular arch is brought in contact with a straight
beam. Young’s moduli of the beams are set to 100GPa and their Poisson’s ratios to
0.3. The semi-circular arch has a radius of 0.9m and the straight beam a length of
2.7m. Both beams have elliptical sections with principal axis’ lengths of 0.1m and
0.06m. For both beams, local basis vector E01 points in the [−1, 0, 0]Ei direction in
the undeformed configuration (see Fig. 3.5).

The nodes at the base of the arch are moved vertically towards the bottom beam
with a final vertical displacement of 0.3m for 0 < t < 1 in 300 increments, and are
then moved horizontally for 1 < t < 2 with a displacement of 0.1m in 300 increments.
The rotations of these nodes are also blocked. All kinematics variables at the ends
of the straight beam are restrained during the entire simulation.
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0 < t < 1 1 < t < 2 t = 2

Figure 3.5: Example 3.4.1: Schematic presentation of the structure with BCs and
deformed configuration at different times of the loading. The configuration at t = 0
and t = 1 is presented in translucent in the central and right picture, respectively.

Several numerical aspects are investigated, i.e.:

• The number of BFEs: three (uniform) refinements for both beams with a
constant ratio of the number of BFEs of both bodies. The mesh of the straight
beam is coarser than the one of the arch in order to show a possible influence
of the choice of the roles of master and slave. For mesh A, 90 and 60 BFEs are
used; have been used for the curved beam and the straight beam, respectively;
for mesh B, 120 and 80 BFEs; and for mesh C, 150 and 100 BFEs.

• The integration scheme:

– Two different settings for the single-pass approach are studied. In the first
one, the top arch is used as slave, while the initially straight beam serves
as the slave in the second one (denoted as "inverted single-pass" in the
following).

– The two-half-pass scheme is also studied.

Fig. 3.6 reports the sum of the reaction forces at the fixed nodes of the straight
beam. The curves of the single-pass schemes match well. This is however not the case
for the curves of the two-half-pass schemes, as oscillations are present. For the two-
half-pass scheme, furthermore, the sum of the reaction forces at the supports of the
two beams does not vanish (see Fig. 3.7), which suggests violation of action-reaction
principle at the contact interface. This difference can be explained by the fact that
for two colliding patches, a section of the first patch penetrates the other patch during
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the first half-pass, whereas this is not necessarily the case for the second half-pass
(when the roles of master and slave are inverted). This is illustrated in Fig. 3.9.
Thus, this effect violates Newton’s third law. In an ideal situation in the continuum
formulation in which there is no penetration, the two-half pass does not suffer from
this lack of balance of forces. This is because in this case, the tangent planes at
the contacting points are parallel. In this case and if no quadrature is employed,
when a section is found as penetrated during the first half-pass, a penetration will
necessarily be found during the second half-pass.

This phenomenon is exacerbated because the highest contact tractions are located
at the ends of the contact zone while in the center of the arch, the contact tractions
are considerably smaller.

Similar effects occur for the simple truss structure of Fig. 3.11 for which a node-to-
segment contact scheme is employed. Fig. 3.11a presents the single-pass algorithm.
Both bodies are deformed due to the effect of the contact applied to the penetrated
node and at its projection on the master truss. Fig. 3.11b presents the results of the
two-half-pass algorithm. Only the bottom structure is deformed because the contact
traction is only applied to the slave body at the penetrated node. As no nodes
of the top structure are penetrated, no contact traction is applied to it. Hence, it
does not deform. This explains the non-vanishing sum of the reaction forces at the
supports for the two-half-pass scheme in Fig. 3.11c. In Appendix III.C, the evolution
of the global residual is reported for the finest mesh (mesh C) for the three studied
integration schemes.
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Figure 3.6: Example 3.4.1: Sum of the reaction forces of the fixed nodes of the
initially straight beam along the E2 and E1 directions.
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Figure 3.7: Example 3.4.1: Difference between the sum of the reaction forces of the
fixed nodes of the straight beam and those of the curved beam.
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(a) Global view. (b) Zoom.

Figure 3.8: Example 3.4.1: Contact traction at t = 1 for the two-half-pass approach.
Vectors are located at slave surface points with local coordinates solution of the local
problem.

Figure 3.9: Example 3.4.1: Contact tractions applied on the perimeter of sections
attached to integration points at t ≈ 1.3 for the two-half-pass approach for the
coarsest mesh (mesh A). On the far left, penetration is only detected for one of the
two-half-passes.

Comparison of computational costs for the local problems

In section 3.2.2.1, we have introduced two possible sets of equations to quantify
penetration. As discussed, if Eq. (3.13) (Approach I) is employed, higher order
derivatives are involved yielding a longer code and potentially a longer execution
time than if Eq. (3.21) (Approach II) is used. The lengths of the generated codes to
compute rc and Kc

is reported in Table 3.1 for the single-pass approach.
In order to compare execution times, the numerical example in Fig. 3.5 is em-

ployed (with mesh A). The loading is applied in 1000 increments such that several
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(c) Difference between the sum of the re-
action forces acting on the bottom and
top structure.

Figure 3.11: Effect of a single and two-half-pass variants of a contact scheme for
truss networks with a node-to-segment contact scheme. The boundary conditions
applied to the truss networks are such that the nodes in red are shifted upwards,
while the grey node are fixed. The undeformed configurations are presented with
solid lines while the deformed configurations are presented with dashed lines. For
the single-pass scheme, the bottom structure serves as slave. The trusses have a unit
Young’s modulus and a unit cross-sectional area. (c) shows the vertical component
of the sum of the reaction forces for the two contact schemes.
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thousands of projection problems and evaluations of rc and K are performed. For
both approaches, the number of penetrated sections and the number of global iter-
ations to converge is similar (see Fig. 3.12). This is also the case for the reaction
forces (see Fig. 3.13).

However, the average number of local iterations necessary to converge (such that∥∥f∥∥ < 10−10 with f given by Eqs. (3.13) or (3.21)) as well as the average CPU time
to determine rc and Kc

are different. The scheme of Eq. (3.21) clearly outperforms
the scheme of Eq. (3.13). Note the effect of the simplifications of δgN (see Appendix
III.A).
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Figure 3.12: Evolution of the number of penetrated sections and number of global
iterations necessary to converge for both local schemes. The convergence criterion
for the global problem is set as

∥∥rfreeg

∥∥ < 10−8 where
∥∥rfreeg

∥∥ denotes the components
of the global residual force vectors that are not subjected to BCs.
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Figure 3.13: Reaction forces for both local schemes introduced.

Equations to solve Eq. (3.13) Eq. (3.21)
δgN simplified No Yes No Yes

Length of the C code (kbytes) 330 296 311 272
Average number of iterations to converge (local

problem)
2.658 2.307

Average CPU time (µs) 137 126 118 105

Table 3.1: Performance comparison for the codes generated by AceGen. The CPU
time includes the solution of the local problem, and the computation of rc and Kc

.
The convergence criterion for the local problem is set as

∥∥f∥∥ < 10−10.

3.4.2 Example 2: twisting of parallel beams

In the second example, we consider three parallel beams (see Figs. 3.14 and 3.15).
The orientation of the cross-sections of each beam and their cross-sectional dimen-
sions differ (see Table 3.2 and Fig. 3.14). The end sections on both sides of the
three beams are rotated by 180◦ around the [0, 0, 1]Ei axis such that the beams wrap
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A B C
a (m) 0.01 0.011 1.2
b (m) 0.008 0.006 0.8
E02 [1, 0, 0]Ei [0.525, 0.850, 0.]Ei [−0.448, 0.893, 0.]Ei
E03 [0,−1, 0]Ei [0.850,−0.525, 0.]Ei [0.893, 0.448, 0.]Ei
L (m) 0.1
nel 29

E(Pa) 109

ν 0.3

Table 3.2: Example 3.4.2: Properties of the three string of BFEs.

around each other. This loading is applied in 540 increments.
The evolution of the number of active (i.e. penetrated) slave sections as well as

the number of (global) iterations to converge is shown in Fig. 3.16. The amount of
penetration, gN , along the center line of the slave body is shown in Fig. 3.17. gN
is measured twice for each pair of beams in the two-half-pass algorithm. One can
observe the good agreement between the penetration measured for the two-half-pass,
albeit the single pass performs just as well at roughly half the computational costs.

Finally, the reaction force and torque computed at the end nodes on one side
of the beams are reported in Fig. 3.18. One can note the good match between the
curves corresponding to the single and two-half-pass algorithms. This is in contrast
with Example 3.4.1 and can be explained by the fact that the penetration measured
for the two-half-passes is similar for a given pair of patches in contact (see Fig. 3.17).
Thus the erroneous effect in results of Example 3.4.1 does not occur in this test case.
The deformed structure in the final configuration in Fig. 3.15b is practically the same
for the single or two-half-pass algorithms.
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Figure 3.14: Example 2: View in plane (E1,E2) of the aligned beams in the unde-
formed configuration. Beam A is at the bottom right, beam B the bottom left, and
beam C on top.

(a) Initial. (b) Final.

Figure 3.15: Example 3.4.2: Initial and final configuration.
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Figure 3.16: Example 3.4.2: evolution of the number of penetrated sections and
number of global iterations necessary to converge. For small twist angles, the beams
are not in contact due to the small initial separations between them (see Fig. 3.15).
The convergence criterion for the global problem is set as

∥∥rfreeg

∥∥ < 10−8.
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Figure 3.17: Example 3.4.2: evolution of gN along the slave centroid-line measured for
the different couples of beams in contact for two-half-pass and single-pass approaches,
for half of the loading and at the end of the loading.
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Figure 3.18: Example 3.4.2: reaction force and torque obtained by summing the
contributions of nodes of the different beams subject to BCs for a single-pass and
two-half-pass algorithms. For this example, no oscillations are present for the two-
half-pass.



3.4.3 Example 3: bending of a rope

The last example considers a rope-like structure (see Figs 3.19 and 3.20a). It
consists of seven wires (beams) in total; six are wrapped around a central beam that
is initially straight. The centroid-lines of the outer beams are parametrised helices
[80] in the undeformed configuration. In the undeformed configuration, the beams
are slightly detached. The applied BCs are as follows:

1. The sections at the end of the rope undergo a rotation of ±π
4
around the

[0, 1, 0]TEi axis. This rotation is applied in 1000 equally spaced increments,

2. the nodes in the center of the rope do not displace but are free to rotate.

All beams are given a Young’s modulus of 100 GPa, a Poisson’s ratio of 0.3,
they are discretized using 89 BFEs and their cross-sections are elliptical with semi-
axes of 0.3m and 0.23m. The rope has a length of 3m. A single-pass algorithm
is employed. Despite the large number of contact interactions and the substantial
deformations, only a few (global) iterations are necessary to converge (see Fig. 3.21).
This is thanks to the proper linearization of the contact residual obtained using the
Automatic Differentiation technique. Three-dimensional views of the initial and final
configurations of the structure are shown in Fig. 3.20. The reaction torque and forces
are reported in Fig. 3.22.
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Figure 3.19: Example 3.4.3: Setup. Sections at both ends of the rope are rotated
around the E2 axis. The displacements of the nodes in the center of the rope are
restrained but not their rotations.

(a) Initial configuration,
sectional view.

(b) Initial configuration. (c) Final configuration.

Figure 3.20: Example 3.4.3: Reference and final configurations of the structure. The
discontinuous surface of the strings of BFEs, that is improper for contact treatment,
is shown. On the right, one can observe the effect of the rotations applied to the
sections at the ends of the rope.
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Figure 3.21: Example 3.4.3: Evolution of the number of penetrated sections and
number of global iterations necessary to converge. The convergence criterion for the
global problem is set as

∥∥rfreeg

∥∥ < 10−8.
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Figure 3.22: Example 3.4.3: Reaction torque and force at one end of the rope.

77



3.5 Conclusion

In this contribution, we have introduced an efficient methodology to treat non-
localized contact between shear deformable beams with circular and elliptical sec-
tions. It treats contact between parallel or almost-parallel beams for which contact
interactions cannot be applied at a single pair of surface points. As the presented
framework only quantifies penetration once per slave cross-section, it is considerably
more efficient than our previous scheme [54] in which the slave surface needs to be
seeded with points.

To numerically approximate the contact area, pairs of surface points are de-
termined along the axial direction of the beams in contact. To this end, several
cross-sections are considered along one of the contacting beams. For each section, a
measure of penetration is computed. The surface of the beams is explicitly used to
formulate the contact kinematics. This makes the framework not only applicable to
(shear-deformable and shear-undeformable) beams with circular cross sections, but
also to beams with elliptical cross-sections. The proposed framework may there-
fore be considered as an attempt to generalize the "line-to-line" contact scheme of
Meier et al. [59] that also treats non-localized contact, but is limited to shear-rigid
(Kirchhoff) beams with circular sections.

We have also introduced two approaches to quantify the normal gap. In the first
approach it is computed using the minimisation of an objective function. In the
second approach it is obtained by solving a set of equations. The first approach
requires third order surface derivatives and a lengthier code and is consequently
10-20% slower than the second approach.

The introduced contact framework is a master-slave approach. To overcome the
bias introduced in the treatment of contact, we have investigated the "two-half-pass"
algorithm and compared it to the classical "single-pass approach". We have observed
that the measure of penetration for the two-half-passes can be significantly different,
which yields oscillations of the reaction forces. The sum of the reaction forces do not
vanish anymore in these cases.

The introduced scheme is well suited to detect non-localised contact (for beams
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whose centroid-line is parallel or almost parallel), but it is not appropriate to detect
localised contact. A scheme that combines our approach for non-localized contact
and the scheme of Gay Neto et al. [24, 25] for localized contact may thus be able
to treat more general scenarios. The formulation of such a combined scheme in a
variationally consistent manner, as the ABC formulation of Meier et al. [62] for beams
with circular cross-sections, is however out of the scope of this work and remains for
future work.
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Appendix

III.A Variations

In the following, variations of different quantities are derived. These are needed
to obtain contact residual rc and its linearisation yielding contact stiffness matrix
K
c
. All quantities used in this section are computed at the solution of the projection

problem.

III.A.1 Variations of the local parameters

Variations of local parameters δq̄ with respect to variations of the kinematic
variables in δpIJ will be needed in the following. To determine δq̄, we start from the
stationarity of the local residual (from Eq. (3.13) or Eq. (3.21)) with respect to pIJ

as follows:
df

dpIJ
=

(
∂f

∂pIJ

)
δpIJ +

(
∂f

∂q

∣∣∣
q=q̄

)
δq̄ = 0. (3.48)

After rearrangement, we obtain:

δq̄ = −
(
H−1

∂f

∂pIJ

)
δpIJ = AδpIJ. (3.49)

III.A.2 Variation of the length-specific contact potential

If a penalty approach is employed, the virtual work of the contact force is given
by Eq. (3.24). Whether approach I or II is employed, the variation of the measure of
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penetration, δgN , is needed. At the solution of the local problem, we have gN = ḡ·n̄I,
such that we can write:

δgN = δḡ · n̄I + ḡ · δn̄I. (3.50)

The variations δḡ and δn̄I are detailed next.

III.A.2.1 δḡ and δn̄I

Vector ḡ depends on the kinematics variables of both beams in contact, but also
on q, which in turn depends again on the kinematic variables of both beams. Its
variation can be written as:

δḡ =
∂ḡ

∂pIJ
δpIJ +

∂ḡ

∂q
δq̄ =

(
∂ḡ

∂pIJ
+
∂ḡ

∂q
A

)
δpIJ =

∂̂ḡ

∂̂pIJ

∣∣∣ ∂q

∂pIJ
=A
. (3.51)

In a similar fashion, δn̄I reads:

δn̄I =

(
∂n̄I

∂pIJ

)
δpIJ +

(
∂n̄I

∂q

)
δq̄ =

(
∂n̄I

∂pIJ
+
∂n̄I

∂q
A

)
δpIJ =

∂̂n̄I

∂̂pIJ

∣∣∣ ∂q

∂pIJ
=A
. (3.52)

III.A.2.2 δgN

Whether Eq. (3.13) or Eq. (3.21) is employed, at the solution of the local problem,
the gap vector is in the direction of the normal to the slave surface such that ḡ =

gN n̄I. Inserting this in the first term of Eq. (3.50) yields:

ḡ · δn̄I = gN n̄I · δn̄I = 0, (3.53)

because δn̄I · n̄I = 0 (as n̄I · n̄I = 1 , δ(n̄I · n̄I) = 2δn̄I · n̄I = 0). δgN then simplifies
to:

δgN = δḡ · n̄I. (3.54)
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Using Eqs. (3.51) and (3.54),we can now write:

δḡ · n̄I = δpIJ · ∂ḡ

∂pIJ
· n̄I + δpIJ · AT ∂ḡ

∂q
· n̄I, (3.55)

with:
∂ḡ

∂q
= [−τ I

2, τ
J
1, τ

J
2,0]T , (3.56)

where τ ij denotes the jth tangent vector to the surface of Bi. We can Eq. (3.55)
furthermore expand as follows:

∂ḡ

∂q
· n̄I = [−τ I

2, τ
J
1, τ

J
2,0] · n̄I = [0, τ J

1 · n̄I, τ J
2 · n̄I,0]T =

∂x̄J

∂q
· n̄I, (3.57)

which shows that at the solution of the local problem, ∂x̄I

∂q
· n̄I = 0. In other words,

term δx̄I · n̄I, appearing in δgN = δḡ · n̄I = δx̄J · n̄I − δx̄I · n̄I in Eq. (3.54), is
independent of the local parameters in q. Thus, Eq. (3.54) can be further simplified
as follows:

δgN = δḡ · n̄I (3.58)

= δx̄J · n̄I − δx̄I · n̄I (3.59)

=

(
∂̂x̄J

∂̂pIJ

∣∣∣ ∂q

∂pIJ
=A
− ∂̂x̄I

∂̂pIJ

∣∣∣ ∂q

∂pIJ
=0

)
· n̄I (3.60)

= δpIJ · b. (3.61)

III.B Newton-Raphson scheme for projection problem

As mentioned in Section 3.2, a projection problem must be solved for each section
to determine if it penetrates the master surface or not. The equations to solve
are Eqs. (3.13) or (3.21), and they must be solved iteratively. A Newton-Raphson
scheme is usually employed to this end, which we detail here. In the following, a left
superscript indicates the iteration of the (local) nonlinear problem to be solved.

82



The Newton-Raphson scheme relies on the linearization of the local residual in
f . At (local) iteration j, this linearization reads:

(j)f +(j) H (j)4q̄ = 0, (3.62)

with:
(j)f ← ∂((j)f)

∂((j)q)
, (3.63)

if Eq. (3.13) is used, or:
(j)f ←

[
(j)f1,

(j)f2

]
, (3.64)

if Eq. (3.21) is employed. The Jacobian is also needed:

(j)H ←
∂((j)f)

∂((j)q)
. (3.65)

(j)4q̄ is the correction to the estimate solution. It is used to compute the new
estimate as follows:

(j+1)q ← (j)q + (j)4q̄. (3.66)

This updating procedure is repeated until convergence is achieved. The pseudo-
algorithm is given in Algorithm 1.

III.C Convergence table for mesh C, Example 1

From a theoretical point of view, because of the consistent linearization of the con-
tact virtual work performed with Automatic Differentiation, we expect a quadratic
convergence rate for rg. The following show such an evolution for the three integra-
tion strategies tested in the first numerical example (see Sec. 3.4.1) with the finest
mesh (mesh C).
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Algorithm 1 Pseudo-algorithm to iteratively solve the projection problem
(Eq. (3.13) or Eq. (3.21))

ε← 10−10

j ← 0
(j)q ← first guess
res← ε+ 1
while res > ε do
compute (j)f

compute (j)H
(j)4q̄ ←

(
−(j)H

)−1 (j)f
(j+1)q ← (j)q + (j)4q̄
res←

∥∥(j)f
∥∥

j ← j + 1
end while

increment number iteration number
∥∥rfreeg

∥∥
150

1 5.926580071707624950e-04
2 2.481540346553358163e-07
3 6.736398127960610256e-13

300
1 7.863796093621699956e-03
2 1.453563530307313077e-06
3 5.764187410345059703e-11

Table III.C.1: Example 1: convergence table for mesh C, simple pass.

increment number iteration number
∥∥rfreeg

∥∥
150

1 7.854604647348625499e-03
2 4.606085537361694276e-06
3 5.913512181466532264e-10

300
1 7.854604647348625499e-03
2 4.606085537361694276e-06
3 5.913512181466532264e-10

Table III.C.2: Example 1: convergence table for mesh C, simple pass with roles of
slave and master inverted.
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increment number iteration number
∥∥rfreeg

∥∥
150

1 3.019595298099190736e-02
2 4.598944684147788462e-05
3 3.071265914180119654e-09

300
1 8.046983975060467004e-03
2 7.931955555476486125e-05
3 1.964167114903565962e-09

Table III.C.3: Example 1: convergence table for mesh C, two half-pass.
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CHAPTER IV

Beam-inside-beam contact: Mechanical simulations

of slender medical instruments inside the human

body1

4.1 Introduction

Mechanical simulations of surgical interventions can be used to train surgeons,
reveal patient-specific complications that may occur during surgery and plan in-
terventions patient-specifically. In the future, mechanical simulations of surgical
interventions may even be used to optimize medical instruments for each patient
(e.g. shape and stiffness) and be exploited to autonomously perform interventions.

Numerous frameworks to numerically simulate surgical interventions can be found
in the literature. For instance, one set of frameworks simulates cutting through soft
tissues in real-time [13, 64, 90, 15, 14] to provide haptic feedback to the trainee per-
forming the "intervention". Another set of approaches aims to simulate the insertion
of needles [17, 2, 12, 19, 76]. These frameworks may also be used to provide haptic
feedback and/or to help to accurately steer the needle to the target of interest during
surgery.

1Reproduced from: M. Magliulo, J. Lengiewicz, A. Zilian, Beex L. A. A., Beam-inside-beam
contact: Mechanical simulations of slender medical instruments inside the human body, Computer
Methods and Programs in Biomedicine. Submitted for publication.
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However, the framework presented in this contribution focuses on mechanical
simulations that involve the insertion (or removal) of a slender medical instrument
inside a tubular structure such as an artery, the cochlea or another slender instrument
such as a catheter. In other words, our simulations do not involve the damaging of
tissues due to cutting or needle insertion. The aim of this contribution is not to
target one type of intervention in particular, but to present the first mechanically
consistent formulation that can handle contact between one slender deformable body
inside another slender deformable body, if both bodies are represented by beams.

Thus, the proposed framework is similar to the frameworks presented in [1, 49,
18, 27, 83] in which the insertion of guide-wires and catheters in arteries and the
insertion of slender implants in the human cochlea are simulated. The difference
between the proposed framework and the frameworks of [1, 49, 18, 27, 83] is that our
framework represents both the slender medical instrument and the tubular structure
as beams, whereas the frameworks of [1, 49, 18, 27, 83] only represent the slender
medical instrument with beams whilst conventional 3D finite elements are used to
represent the tubular structure.

A wide variety of schemes to handle contact between beams can be distinguished
in the literature. All existing "beam-to-beam" contact frameworks are formulated
to repel penetrating beams. Several of these beam-to-beam contact frameworks
are only applicable if the beams’ cross-sections are circular, shear deformations are
ignored and the contact area remains small, since unilateral contact conditions are
enforced at the closest pair of centroid points [89, 95, 62]. Thus, if two beams collide,
a contact force is applied at the closest pair of centroid points to repel the two
beams. If the beams’ cross-sections are elliptical, the consideration of the centroid-
lines alone is insufficient to determine the contact locations. Instead, contact forces
must be applied at the closest pair of surface points where the tangent planes of the
contacting surfaces are parallel. This was demonstrated by Gay Neto et al. [24, 25]
for frictionless and frictional cases, respectively.

Furthermore, in case of non-localized contact (e.g. for parallel beams in contact),
the assumption of point-wise contact does not hold. Meier et al. [59] have therefore
proposed a contact framework to handle non-localized beam-to-beam contact, but
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the cross-sectional shape is restricted to (rigidly) circular and shear deformation is
not accounted for. These restrictions enable quantifying the penetration solely using
the centroid-lines of the beams, which yields rapid simulations.

Magliulo et al. [53, 54] presented other master-slave frameworks for beam-to-
beam contact applicable to both shear-deformable and shear-undeformable beams,
with both circular as well as elliptical cross-sections. Both schemes consider the
beam’s surfaces explicitly, which has resulted in wider applicability than the scheme
of Meier et al. [59], albeit at the expense of the simulation speed. A two-half pass
algorithm was furthermore formulated in [54] to remove the bias of master-slave
approaches for beam-to-beam contact, but with limited benefits for the results.

The beam conglomerates of interest to this contribution differ from the aforemen-
tioned works [53, 54], since the focus is on "beam-inside-beam" contact instead of
"beam-to-beam" contact. In other words, the beams must remain embedded for the
beam conglomerates of interest in our contribution, whereas existing beam-to-beam
contact frameworks repel penetrating beams. The measure of penetration in our
beam-inside-beam framework, on the other hand, shows similarities with the mea-
sure of penetration for the "beam-to-beam" contact framework of [53]. Penetration is
measured between sections distributed along the inner beam and the interior surface
of the outer beam. In case of contact, unilateral constraints are regularized with the
penalty method, which brings compliance to the otherwise rigid cross-sections.

The outline of the remainder of this contribution is as follows. In Section 4.2,
the contact framework is presented in the space-continuous setting along with the
associated contact virtual work. Also in this section, spatial discretization applied to
the finite element method is discussed. Contact kinematics and the contact virtual
work are subsequently discretized. Implementation details are also included. The
numerical examples of Section 4.3 indicate the promising capabilities of the contact
framework. Section 4.4 discusses possible extensions and concludes this contribution.
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4.2 Methods

4.2.1 Space-continuous contact formulation

The contact kinematics employed in this contribution are presented in this section
[24, 25, 53, 54]. First, the beam’s surface parametrization is explained. Then, the
procedure to quantify penetration is detailed. The formulation of the contact virtual
work is presented for a penalty approach.

4.2.1.1 Parametrization of the surface

The geometrically exact beam (GEB) Simo-Reissner theory [16, 79, 72, 78, 61,
29, 30] is used in this contribution. This entails that the beams are shear-deformable
and that rigid cross-sections are considered, which cannot warp.

The surface of beam B is parameterized with two convective parameters h =

[h1, h2]
T . h1 ∈ [0, L], denotes the arc-length parameter of the beam’s centroid line

x0c : (0, L) → R3 while h2 ∈ [0, 2π] is a circumferential parameter of the perimeter
of cross-section C attached to x0c(h

1) (see [24] and Fig. 4.1). L denotes the initial
length of the beam. The location of a surface point in the undeformed configuration
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in the global coordinate system, x0, can be obtained from:

x0(h) = x0c(h
1) + v0(h), (4.1)

where v0 denotes a vector contained in C. Here, we assume that v0 always connects
x0c to a surface point. In case C is elliptical, v0 can be expressed as:

v0(h) = a cos(h2)e01(h1) + b sin(h2)e02(h1), (4.2)

where a and b denote the dimensions of the elliptical cross-sections in its principal
directions. e01 and e02 are orthonormal basis vectors of the plane containing C. e03

denotes the normal vector to C. The triad {e01, e02, e03} forms an orthonormal basis.
Due to the hypothesis of rigid sections, the location of the same material point

in the deformed configuration can similarly be obtained from:

x(h) = ϕ(x0(h)) = xc(h
1) + v(h), (4.3)

where:
xc = x0c + u, (4.4)

denotes the location of the centroid point in the deformed configuration. u : (0, L)→
R3 denotes the centroid-line’s displacement. ϕ denotes the deformation mapping
relating the current location of a point to its location in the undeformed configuration
such that x(h) = ϕ(X(h)). v is obtained from:

v(h) = Λ(h1) · v0(h) = a cos(h2)e1 + b sin(h2)e2, (4.5)

where Λ : (0, L)→ SO(3), with SO(3) the rotation group, is a rotation tensor that
rotates e0i to ei for i ∈ {1, 2, 3}. Because shear deformation can be present, e3 is
not necessarily aligned with the tangent to the centroid-line (see Fig. 4.1). In such
cases, i.e.:

e3 ×
∂xc
∂h1
6= 0, (4.6)
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where × denotes the cross product.
For further use, we define two (covariant) tangent vectors to the surface of B at

x(h), denoted by τ 1 = ∂x
∂h1 and τ 2 = ∂x

∂h2 (see Fig. 4.1). In general, τ 1 and τ 2 are
not orthogonal to each other.

4.2.1.2 Contact Kinematics

We focus here on a system consisting of two bodies: BI denotes the thin inner
beam and BJ denotes the hollow outer beam. We assume here that both BI and BJ
are modeled as a GEB with plain and hollow cross-sections, respectively. We denote
by ∂BJ the interior surface of BJ.

To quantify the penetration of BI with ∂BJ, and to quantify the contact area
over which this penetration occurs, we:

1. Seed sections along the centroid-line of BI (see Fig. 4.3),

2. For each seeded section, we solve a projection (local) problem to determine if
it penetrates ∂BJ and if so, by how much. This projection problem yields two
surface points: one on the perimeter of the seeded section and one on ∂BJ.
These points are used to establish a measure of penetration, which in turn
determines the amplitude of the contact forces (if penetration is present).

As BI and BJ have a different role, the proposed framework is a master-slave ap-
proach. We call BI the slave and BJ the master [86]. Next, we discuss how to
compute if a given section of BI, denoted by C with perimeter ∂C, penetrates ∂BJ
and if so, how the amount of penetration is computed.

It must be noted that the proposed contact algorithm can only be used if one
contact area occurs for each cross-sections (left in Fig. 4.2). The contact framework
can thus not handle scenarios as presented on the right in Fig. 4.2. If the cross-
sections of BI is perfectly aligned with the cross-sections of BJ, only one contact area
occurs if:

(ainner)
2

binner
<

(bouter)
2

aouter
ainner ≥ binner aouter ≥ bouter, (4.7)
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where subscript inner refers to the inner beam and subscript outer refers to the inner
cross-sections of the outer beam.

∂BJ∂C

(a) (b)

Figure 4.2: Problem of multiple contact areas: (a) single contact area and (b) two
contact areas.

(a) Example of beam-inside-beam con-
tact. The surface of the outer beam is
shown in translucent and the one of the
inner beam in cyan.

(b) Zoom around the region of contact.
The penetrated sections are indicated in
red.

Figure 4.3: (a) Two beams in contact. (b) Sections for which penetration has been
detected

We now introduce nI, an outward pointing unit vector normal to ∂BI. It is
defined as follows:

nI
(
hI
)

=
τ I

1(hI)× τ I
2(hI)∥∥τ I

1(hI)× τ I
2(hI)

∥∥ . (4.8)
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nJ on the other hand is the inward pointing unit vector normal to ∂BJ. It is defined
as follows:

nJ
(
hJ
)

=
τ J

1(hJ)× τ J
2(hJ)∥∥τ J

1(hJ)× τ J
2(hJ)

∥∥ . (4.9)

Local problem and measure of penetration between ∂C and ∂BJ
We will now investigate if C, the cross-section uniquely defined by convective coordi-
nate hC, penetrates ∂BJ and if so, by how much. The so-called gap vector g connects
a point on the perimeter of C, xI ∈ ∂C, to a surface point on ∂BJ, xJ:

g(hC, hI2, hJ1, hJ2) = xJ(hJ1, hJ2)− xI(hC, hI2). (4.10)

A local (or projection) problem must now be solved, which yields points x̄I and
x̄J, such that an appropriate measure of penetration is established. Four convective
coordinates are involved in the local problem: hC, which is fixed, as well as hI2, hJ1

and hJ2 that are to be determined.
A possibility to determine the unknown convective coordinates would be to solve

an optimization problem by minimizing an objective function. Another possibility
[62, 24, 25, 26, 40, 37] is to solve for a set of equations that does not stem from an
objective function, generally unilateral or bilateral orthogonality conditions. Previ-
ously, we have shown that the latter makes resolution of the local problem 20-30%
faster to solve for beam-to-beam contact [53]. We therefore consider a similar ap-
proach for the beam-inside-beam contact of this contribution. Three of the equations
we solve for are expressed as:

f1(q̄) = x̄J − x̄I − ḡn̄I = 0, (4.11)

where:
q =

[
hI2, hI1, hJ2, g

]T
, (4.12)

denotes the array of unknowns. Here and in the following, an overhead bar over a
quantity indicates that it is evaluated at the solution of the projection problem. Thus,
q̄ denotes the array solution of Eq. (4.11). The independent variable ḡ quantifies
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penetration measured in the normal direction, usually denoted as gN and defined as:

gN = ḡ = (x̄J − x̄I) · n̄I. (4.13)

As four variables are present for only three equations, the system of Eq. (4.11)
is under-determined An additional equation is required. To this end, we introduce
plane P spanned by nI and τ I

2 with the following normal vector:

ñI = τ I
2 × nI. (4.14)

Also, we define nJp as the normalized projection of nJ on P :

nJp =
nJ − (nJ · ñI)ñI

‖nJ − (nJ · ñI)ñI‖ . (4.15)

At the solution of the local problem, we want nI and nJp to be orthogonal to τ J
2 (see

Fig. 4.4). This is true if the following equation holds:

f2(q̄) = aC(n̄I + n̄Jp) · τ̄ J
2 = 0, (4.16)

where aC denotes the dimension of C along its largest semi-axis which is used to scale
f1 such that f1 and f2 have the same units. The set of equations to solve for is now
abbreviated as follows:

f(q̄) =
[
f1(q̄), f2(q̄)

]T
= 0. (4.17)

The set of equations to solve for in Eq. (4.17) is nonlinear. To solve it, we ap-
ply Newton’s method for which we linearise residual f which requires the following
Jacobian:

H(q) =
∂f

∂q
=

 ∂f1
∂q(
∂f2

∂q

)T
 . (4.18)

To compute the components of H, we need to introduce the following quantities:
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1. Contravariant components MKij of MK, the metric tensor of the surface of
body K, read:[

MK11 MK12

MK21 MK22

]
=

[
MK

11 MK
12

MK
21 MK

22

]−1

=

[
τK1 · τK1 τK1 · τK2
τK2 · τK1 τK2 · τK2

]−1

. (4.19)

2. The second order surface derivatives:

τKij =
∂τKi
∂hKj

. (4.20)

3. The covariant components of curvature tensor CK :

CKij = τKij · nK (4.21)

4. Weingarten’s formula:
∂nK

∂hj
= −MKjkCKkiτ

K
j . (4.22)

Making use of Eq. (4.22), the partial derivatives of f1 with respect to q in Eq. (4.18)
yield:

∂f1

∂q
=

[
∂f1

∂hI2
,
∂f1

∂hJ1
,
∂f1

∂hJ2
,
∂f1

∂g

]
=
[
−τ I

2 + g (MIjkCI
k2τ

I
j), τ

J
1, τ

J
2,−nI

]
. (4.23)

The differentiation of f2 with respect to q gives:

∂f2

∂q
=
[
∂f2

∂hI2
, ∂f2

∂hJ1
, ∂f2

∂hJ2
, ∂f2

∂g

]T
. (4.24)

Corresponding expressions are more complicated, in particular because nJp depends
on hI2, hJ1 and hJ2.

We now rewrite nJp as:

nJp =
NnJp

lnJp , (4.25)
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where:
NnJp

= nJ · (I − ñI ⊗ ñI) = nJ ·D, (4.26)

and:
ln

Jp

=
∥∥∥NnJp

∥∥∥ . (4.27)

The partial derivative of nJp with respect to the kth-surface parameter of body l

reads:
∂nJp

∂hlk
=

1

lnJp

(
I−nJp ⊗ nJp

)
· ∂NnJp

∂hlk
= E · ∂NnJp

∂hlk
, (4.28)

where:

∂NnJp

∂hlk
=

∂nJ

∂hlk
·D − nJ · ∂D

∂hlk

=
∂nJ

∂hlk
·D − nJ ·

(
∂ñI

∂hlk
⊗ ñI + ñI ⊗ ∂ñI

∂hlk

)
(4.29)

= δlJ
(
−MJlmCmkτK

)
·D − nJ ·

(
∂ñI

∂hlk
⊗ ñI + ñI ⊗ ∂ñI

∂hlk

)
, (4.30)

where δ denotes the Kronecker symbol (not to be confused with the variation symbol).
The term ∂ñI

∂hlk
, where:

ñI =
NñJ

lNñJ
, (4.31)

with:
NñJ

= τ I
2 × nI, (4.32)

and:
lN

ñJ

=
∥∥τ I

2 × nI
∥∥ , (4.33)

reads:
∂ñI

∂hlk
=

1

lNñJ

(
I−ñI ⊗ ñI

)
· ∂NñJ

∂hlk
= F · ∂NñJ

∂hlk
. (4.34)

We can write:

∂NñJ

∂hlk
= δlI

(
τ I

2k × nI + τ I
2 ×

(
−MIijCI

jkτ
I
i

))
= c, (4.35)
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such that:
∂ñI

∂hlk
= F · c. (4.36)

Finally, this yields:

∂nJp

∂hlk
=

1

lnJp

(
I−nJp ⊗ nJp

)
· ∂NnJp

∂hI2

=E ·
(
δlJ
(
−MJlmCmkτK

)
·D − nJ ·

(
(F · c)⊗ ñI + ñI ⊗ (F · c)

))
=dlk. (4.37)

Using Eq. (4.37), compact expressions for the components of ∂f2

∂q
in Eq. (4.24) can

be obtained:

∂f2

∂hI2
= aC

(
∂nI

∂hI2
+
∂nJp

∂hI2

)
· τ J

2

= aC
(
−MIjkCI

k2τ
I
j + dI2

)
· τ J

2, (4.38)

∂f2

∂hJ1
=aC

(
∂nJp

∂hJ1
· τ J

2 + nJp · ∂τ
J
2

∂hJ1

)
=aC

(
dJ1 · τ J

2 + nJp · τ J
21

)
, (4.39)

∂f2

∂hJ2
= aC

(
∂nJp

∂hJ2
· τ J

2 + nJp · ∂τ
J
2

∂hI2

)
= aC

(
dJ2 · τ J

2 + nJp · τ J
22

)
. (4.40)

Combining Eqs. (4.23), (4.38), (4.39), (4.40), H reads:

H =

[
τ I

2 + g (MIjkCI
k2τ

I
j) τ J

1 τ J
2 −nI

aC
(
−MIjkCI

k2τ
I
j + dI2

)
· τ J

2 aC (dJ1 · τ J
2 + nJp · τ J

21) aC (dJ2 · τ J
2 + nJp · τ J

22) 0

]
.

(4.41)
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∂BJ

∂C

x̄J

x̄I

nJp

τ J
2

n̄I

(a)

xI
c

Figure 4.4: Perpendicular view to the plane P of ∂C. Surface points x̄I and x̄J,
obtained after solving Eq. (4.17), are presented as red dots. Vectors n̄I and n̄Jp are
both orthogonal to τ̄ J

2.

First-guess procedure
As stated above, Eq. (4.17) is solved iteratively. An initial guess of the local param-
eters q must be provided to the solver employed to solve it. We employ a simple
two-step procedure to establish an appropriate first guess:

1. We (approximately) find the centroid point of the master body that is the
closest to the centroid point of the slave cross-section, xI

c(h
C). A simple way

of achieving this is by sampling cross-section points along the master beam’s
centroid-line and pick the closest centroid-point from xI

c(h
C). The associated

convective parameter of the closest sampled centroid point is denoted by hJ1,fg.

2. To determine the initial values of circumferential parameters hI2,fg and hJ2,fg

, we locate a pair of perimeter points on the cross-sections attached to xI
c(h
C)

and xJ
c(h

J1,fg). This procedure is depicted in Fig. 4.5. We start by sampling
four points on the perimeter of both cross-sections. The pair of closest points is
then chosen. Next, for each cross-section, we seed a point on the middle of each

98



sub-curve attached to the point previously selected ((c) in Fig. 4.5). Again,
the closest pair of points is selected. This procedure is repeated several times.
In our simulations, it was repeated until the relative change of the distance
between the pair of closest points falls below 10%.

Note that in practice, the approach to establish the initial guess is only performed
for a given slave cross-section if it is not active but close to the master surface. If a
slave cross-section is active (meaning that it already penetrated the master surface
in a previous contact detection), the solution of the local problem of the previous
contact detection (q̄) are used as the first guess.

(a) (b) (c)

xIc xJc

Figure 4.5: Illustration of the procedure to determine a good initial guess for the
local problem. (a) Determination of centroid point xJ

c(h
J1,fg) that must be as close

as possible to xI
c(h
C); (b) Determination of the closest pair of points amongst sam-

pled points on ∂C and the perimeters of the cross-section attached to xJ
c(h

J1,fg); (c)
Determination of the closest pair of points amongst the closest pair of points from
(b) (in orange) and points in the middle of the curve connected to theses points (in
red).

4.2.1.3 Contact constraints and virtual work equation including contact

The impenetrability of ∂C and ∂BJ is enforced via unilateral contact conditions:

gN ≥ 0 TN < 0 gNTN = 0, (4.42)
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where TN denotes the nominal contact traction, meaning that it refers to the reference
surface area.

In case of contact, a contact virtual work, δΠc, is added to the virtual work
equation for the two-body system and the space of admissible variations V is modified
[86]. In the quasi-static setting, the virtual work reads:

δΠ(pIJ, δpIJ) = δΠBI(p
I, δpI)+δΠBJ(p

J, δpJ)+δΠc(p
IJ, δpIJ) = 0, ∀δpIJ ∈ V , (4.43)

where δΠBi denotes the internal and external virtual work of beam Bi (excluding
contact interactions). Kinematic variables associated with Bi are denoted by pi =[
ui,θi

]T
: (0, L) → R3 × R3 and the associated test functions by δpi. ui denotes

the displacement field of the Bi’s centroid-line and θi its field of rotation vectors
parametrizing SO(3) [29]. pi is only admissible if pi(XBi) = pi

D
(XB

i
), ∀XB

i ∈ ∂BiD.
∂BiD denotes the part of the boundary of ∂Bi where Dirichlet boundary conditions
are imposed [86].

pIJ =
[
pI, pJ

]T
gathers the kinematic variables of both beams. Similarly, test

functions are gathered in δpIJ =
[
δpI, δpJ

]T
.

In Eq. (4.43), the virtual work due to contact, δΠc, accounts for all the sections
penetrated. The infinitesimal virtual work produced at a single section, denoted by
dδΠc, can be written as [53]:

dδΠc = TNδgN

∥∥∥∥∂xI
0c

∂hI1

∥∥∥∥ dhI1, (4.44)

where δgN denotes the variation of gN that depends on all kinematic variables in pIJ,
and dhI1 denotes the differential of the slave’s centroid line parameter associated to
C. dhI1 is related to the differential length of the undeformed centroid-line according
to:

dLB
I

=

∥∥∥∥∂xI
0c

∂hI1

∥∥∥∥ dhI1, (4.45)

Next, we discuss how to calculate TN for the penalty approach used in this contribu-
tion and also how to compute δgN . The nominal traction vector has been preferred
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over the current traction vector as the former must be integrated in the length of the
slave beam in the reference configuration, while the latter has to be integrated over
the current configuration. As the reference configuration does not depend on pIJ,
the linearization of δΠ yields shorter expressions than if the current traction vector
was employed [47].

Penalty method
If a penalty formulation is used, contact traction TN , acting at the pair of surface
points x̄J and x̄I, is given by:

TN = −εN 〈−gN〉 , (4.46)

where εN > 0 denotes the penalty stiffness and 〈•〉 denote the Macaulay brackets,
representing the positive part of its operand [45]. The fact that εN must be selected
can be seen as a weakness of the penalty method. Indeed, other constraint enforce-
ment methods like the Lagrange multipliers method do not need such user-defined
parameters. On the other hand, in the context of contact frameworks for beams that
are characterized by rigid cross sections, the penalty parameter can be interpreted
as some compliance of the beams in the transversal directions [53, 62]. Inserting
Eq. (4.46) into Eq. (4.44), the virtual work of the contact force reads:

dδΠc = −εN 〈−gN〉 δgN
∥∥∥∥∂xI

0c

∂hI1

∥∥∥∥ dhI1. (4.47)

The virtual work of all penetrated sections follows from the integration of the in-
finitesimal virtual work of a single penetrated section, dδΠc, along the centroid-line
of BI as follows:

δΠc =

∫ h1I
U

h1I
L

dδΠc, (4.48)

where h1I
L and h1I

U are the lower and upper bounds of the integral, respectively.
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Variation of the normal gap, δgN
gN = ḡ ·n̄I, measured for a fixed hI1, depends on pIJ but also on the local variables in
q, which in turn implicitly depend on pIJ. Eventually, δgN must be solely expressed in
terms of the variations of the primary variables, here δpIJ. The variational operator
applied to gN gives:

δgN = δḡ · n̄I + ḡ · δn̄I. (4.49)

Also, we have:
ḡ · δn̄I = gN n̄I · δn̄I = 0, (4.50)

as δn̄I · n̄I = 0. Noting that ḡ depends on pIJ and q̄(pIJ), we get:

δḡ =

(
∂g

∂pIJ

∣∣∣
q=q̄

)T

δpIJ +

(
∂g

∂q

∣∣∣
q=q̄

)T
δq (4.51)

=

(
∂g

∂pIJ

∣∣∣
q=q̄

)T

δpIJ +

(
∂g

∂q

∣∣∣
q=q̄

)T ( dq

dpIJ

∣∣∣
q=q̄

)
δpIJ. (4.52)

The relationships between q and pIJ can be found on the basis of the stationarity of
f(pIJ, q̄(pIJ)) with respect to pIJ:

df

dpIJ
= (

∂f

∂pIJ

∣∣∣
q=q̄

)δpIJ + (
∂f

∂q︸︷︷︸
H

∣∣∣
q=q̄

)δq̄ = 0, (4.53)

which leads after some rearrangement to:

δq̄ = −
(
H−1

∣∣∣
q=q̄

∂f

∂pIJ

∣∣∣
q=q̄

)
δpIJ. (4.54)

For further use, we define A as follows:

A = −H−1
∣∣∣
q=q̄

∂f

∂pIJ

∣∣∣
q=q̄
. (4.55)
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such that:
δq̄ = AδpIJ. (4.56)

Inserting this in Eq. (4.52) yields:

δḡ =

( ∂g

∂pIJ

∣∣∣
q=q̄

)T

+

(
∂g

∂q

∣∣∣
q=q̄

)T
A

 δpIJ. (4.57)

Inserting this into Eq. (4.49) yields:

δgN = δḡ · n̄I =

(
∂ḡ

∂pIJ

)T

δpIJ · n̄I +

(
∂ḡ

∂q

)T
AδpIJ · n̄I (4.58)

= (δpIJ)T

(
∂ḡ

∂pIJ
· n̄I + AT

∂ḡ

∂q
· n̄I

)
(4.59)

= (δpIJ)T z. (4.60)

Note for further use that ∂ḡ
∂pIJ

n̄I reads:

∂g

∂pIJ

∣∣∣
q=q̄
· n̄I =

∂x̄J

∂q

T

· n̄I − ∂x̄I

∂q

T

· n̄I (4.61)

=

 0

τ J
1 · n̄I

τ J
2 · n̄I

−
 τ

I
1 · n̄I

0

0

 (4.62)

=

 0

τ J
1 · n̄I

τ J
2 · n̄I

−
 0

0

0

 , (4.63)

where is it obvious from Eq. (4.63) that ∂x̄I

∂q

T · n̄I is independent of q.
All in all, we can write:

δΠc =

∫ h1I
U

h1I
L

−εN 〈−gN〉 zT δpIJ
∥∥∥∥∂xI

0c

∂hI1

∥∥∥∥ dhI1. (4.64)
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4.2.2 Spatial discretization

4.2.2.1 Interpolation of the beams’ surface

The Finite Element Method (FEM) is the discretisation method used in this work.
Each beam is now discretized with a set of beam finite elements (BFEs) [78, 79, 29].
The rotation vectors are the primary rotational kinematic variables [29] that are
interpolated. For a BFE E , we denote by Xh

c (h
1) :

(
0, LE

)
→ R3 the interpolated

position of its centroid-line, where LE denotes the length of the centroid-line in the
undeformed configuration. uhc (h1) :

(
0, LE

)
→ R3 and θh(h1) :

(
0, LE

)
→ R3 denote

the interpolated displacement field of the centroid-line and the interpolated field of
rotation vectors, respectively. Rodrigues’ formula is used to obtain rotation tensor
Λ from the interpolated rotation vector2, denoted θh. The displacement of node K
is denoted by ûEK and its rotation vector by θ̂

E
K . The kinematic variables of element

E are gathered in:

pE =
[
ûE1 , . . . , û

E
nu , θ̂

E
1 , . . . , θ̂

E
nθ

]T
, (4.65)

where nu and nθ denote the number of nodes used to interpolate the displacement
and the rotation vector, respectively. Since the nodal variables of all BFEs of BI and
BJ are denoted by p̂, the associated variations are denoted by δp̂.

4.2.2.2 Contact residual and stiffness

The discretized form of the virtual work in Eq. (4.43) leads to a set of nonlinear
equations. Newton’s method is generally used to iteratively determine the solution
p̂sol of the virtual work statement. This requires the linearization of Eq. (4.43) around
an estimate of p̂sol, p̂, which yields:

δΠ(p̂+4p̂, δp̂) ' δΠ(p̂, δp̂) +4δΠ(p̂, δp̂)4p̂ = δp̂T (rg +K
g
4p̂) ' 0, (4.66)

where rg and K
g
denote the global residual force and the global stiffness matrix,

respectively. 4p̂ denotes an increment of the nodal variables. The global forces
2It is well known that the corresponding finite element formulation does not share the strain-

invariance property of the underlying geometrically exact theory [31].
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read:
rg(p̂) = f

int
(p̂) + rc(p̂)− f ext(p̂), (4.67)

where f
int

denotes the internal force vector stemming from the contribution of all
BFEs, and f

ext
the external force vector. rc contains all the contact contributions

from all contact elements, where a contact element refers to a seeded section attached
at an integration point (see below) along BI and its projection on discretized surface
∂BJ.

Assuming here that f
ext

does not depend on pIJ, the global stiffness obtained
after the linearization of rg, can be decomposed as follows:

K
g

= K
int

+K
c
, (4.68)

where K
int

denotes the stiffness matrix of the BFEs, and K
c
denotes the stiffness

matrix of all contact elements.
The contact virtual work is the sum of all contact contributions:

δΠc(p̂, δp̂) =
∑
e∈S

δΠc,e(p̂e, δp̂e), (4.69)

where S denotes the set of active contact elements (i.e. those for which gN < 0),
and δΠc,e denotes the contact virtual work associated with contact element e. If no
smoothing procedure of the surface is required [47], each contact elements involves
two BFEs, one which is part of the discretization BI, and the other which is part of
the discretization of BJ. However, if a smoothing of the beam’s surface is performed,
each contact element directly depends on several BFEs of BI and of BJ. The set of
elements of BI and BJ used to construct contact element e are denoted by M and
N , respectively. The involved nodal variables are gathered in array p̂

e
=
[
p̂M, p̂N

]T .
Similarly, the involved nodal variations are denoted by δp̂

e
.
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The linearization of δΠc reads:

δΠc(p̂+4p̂, δp̂) =
∑
e∈S

δΠc,e(p̂e +4p̂
e
, δp̂

e
)

≈
∑
e∈S

δΠc(p̂e, δp̂e) +4δΠc(p̂e, δp̂e)4p̂e (4.70)

≈
∑
e∈S

δp̂T
e

(rce +K
ce
4p̂

e
). (4.71)

Next, we discuss how to construct element contributions rce and K
ce

to the global
residual (force) vector and the global stiffness matrix, respectively.

Force vector and stiffness of contact element e
We numerically integrate Eq. (39) with a quadrature (Gauss or Lobato-type). To this
end, we place nMIP integration points of a single subdomain along the centroid-line of
M [37, 62]. This yields:

δΠc = −εN
∫ 1

−1

〈−gN(η)〉 δgN(η) ‖J (η)‖ dη (4.72)

≈ −εN
nM
IP∑
k

wk 〈−gN(ηk)〉 δgN(ηk) ‖J (ηk)‖ , (4.73)

≈
nM
IP∑
k

wk 〈−gNk〉 δgNk ‖Jk‖ , (4.74)

where η ∈ [−1, 1] denotes the centroid point coordinate in the parameter space and
J =

∂xI
0c

∂η
. The weight and coordinates of the kth integration point are denoted by

wk and ηk, respectively. Given the section alongM attached to xc(η) for which we
solve the local problem of Eq. (4.17), two surface points, x̄M and x̄N , are computed.
In Eq. (4.73), rcek is expressed as:

rcek = −εN 〈−gN〉
dgN
dp̂

e

. (4.75)
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If the Automatic Differentiation (AD) formalism is employed [41, 43], the depen-
dency of the local variables with respect to p̂

e
as well as relations of Eq. (4.63) can

be directly incorporated as follows:

δgN = δḡ · n̄I (4.76)

= δx̄J · n̄I − δx̄I · n̄I (4.77)

=

(
∂̂xJ

∂̂p̂
e

∣∣∣ ∂q
∂p̂
e

=A
− ∂̂xI

∂̂p̂
e

∣∣∣ ∂q
∂p̂
e

=0

)
· n̄I, (4.78)

where operator ∂̂�
∂̂w

denotes the Automatic Differentiation (AD) of function � with
respect to the variables in w ([47, 41]) and the mechanism of AD exceptions is used
to overwrite some partial derivatives.

K
cek

, stemming for the contribution of the kth integration point placed along hM1 ,
can be obtained using AD as follows:

K
cek

=
∂̂rcek

∂̂p̂
e

∣∣∣ ∂q̄
∂p̂
e

=A
. (4.79)

rc and K
c
, which contain the contributions of all contact elements in set S, are

obtained from:

rc =A
e∈S

nM
IP∑
k

wkrcek =A
e∈S

rce, (4.80)

K
c

=A
e∈S

nM
IP∑
k

wkKcek
=A

e∈S

K
ce
. (4.81)

where A denotes the finite-element assembly operator. Note that the exception in
differentiation in Eq. (4.81) allows to properly linearise rcek such that the exception
∂q

∂p̂
e

= 0 in Eq. (4.78) is replaced by ∂q

∂p̂
e

= A during linearization.
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4.3 Results

In this section, the beam-inside-beam contact scheme is applied to two numerical
examples. First, a thin beam is pulled out from another beam in which it is initially
inserted. Second, a thin beam is inserted in a curved beam. For these two examples,
a single integration point is used to evaluate rce and Kce

in Eqs. (4.80) and (4.81),
respectively.

In both examples, large relative displacements of the contacting surfaces take
place. This implies that for a contact element, if projection point x̄J lies on the
surface of BFE M, this projection might go off the bound of the surface ∂M. If
this happens, projection point x̄J should lie on an adjacent element’s surface, namely
the surface of element BM+1 or BM−1. However, as two-node geometrically exact
beam elements are employed, gaps and overlaps of the different BFE’s surfaces are
present if the beam is not initially straight. For this reason, it might be difficult or
impossible to define the new location of x̄J.

To palliate this problem, a dedicated surface smoothing technique was introduced
in [54]. The resulting auxiliary surface has C1-continuity which is convenient for
contact treatment. This procedure is used in the following examples.

Due to the discretization of the contact kinematics, a sudden loss of contact near
the inlet and outlet of the outer beam may result in loss of convergence. The method-
ology presented in Appendix IV.A is therefore adopted in the following examples to
avoid this complications.

4.3.1 Example 1: Pull out

In the first example, two elastic beams with the same initial centroid-line form a
part of a helix (Fig. 4.6a). They have the same centroid-line as a parameterized helix.
The outer beam is hollow with an elliptical cross-section defined by a = 22.3 mm and
b = 17.8 mm. Its wall thickness is 0.2 mm. Its Young’s modulus is E = 0.15 MPa
[36] and 75 BFEs are employed to discretize it. The thin beam has an elliptical
section with semi-axes a = 3.9 mm and b = 3 mm. It is stiffer than the hollow beam
as its Young’s modulus is E = 1.5 MPa. Its Poisson’s ratio is ν = 0.3 and it is
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discretized with 100 BFEs. A penalty stiffness of 1 N/m is used. The displacements
and rotations of both end nodes of the outer beam are restrained. One end of the
thin beam is pulled away from the outer beam by 1200 mm in 300 equally spaced
increments.

Contact interactions substantially deform the thin beam, (Fig. 4.6b). As the
(prescribed) end node of the thin beam continues to move away from the outer
beam, sliding of the contacting surfaces occurs until the final configuration is reached
(Fig 4.6c). As the prescribed beam deforms and moves along the outer beam, the
number of penetrated sections changes (Fig. 4.7). The components of the reaction
force and torque at the prescribed end of the thin beam are reported in Fig. 4.8a
and Fig. 4.8b, respectively.

(a) (b) (c)

Figure 4.6: Example 1: (a) Initial configuration; (b) configuration halfway through
the loading, and (c) final configuration.
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Figure 4.7: Example 1: top: number of global iterations to reach the convergence
criteria

∥∥∥f
int

+ rc − f ext
∥∥∥ < 10−8; bottom: number of penetrated sections as a func-

tion of the displacement of the end node of the thin beam. The peak in the number
of iterations corresponds to the sliding of a cross-section of the slave beam in contact
out of the hollow beam. The peak in the number of iterations corresponds to the
sliding of a cross-section of the slave beam in contact out of the hollow beam.
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Figure 4.8: Example 1: (a) components of the reaction force and (b) reaction torque
at the prescribed end of the thin beam.
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4.3.2 Example 2: Insertion

The second example involves an initially straight thin beam that is pushed in a
hollow, largely circular beam (see Fig. 4.9). Initially, only a small part of the thin
beam is inserted in the hollow one. The kinematic variables of the outer beam’s end
node near the thin beam are restrained. The z-displacement of the inner beam’s
end node furthest away from the outer beam is prescribed to reach 270 mm in 300

increments, whilst the other kinematic variables at this end node are restrained.

Figure 4.9: Example 2: Initial configuration.

This inner beam has a length of 54 cm, and a Young’s modulus of 1.5 MPa. The
cross sectional shapes are given by a = 5.4mm and b = 4.3mm. The outer hollow
beam is more compliant with E = 0.15 MPa. Its wall thickness is 1 mm and its
cross-sectional semi-axes are a = 20mm and b = 16mm. 100 and 180 BFEs are
employed to discretize the inner and outer beam, respectively. The Poisson’s ratio
of both beams is 0.33.

Both structures deform due to contact, see Fig. 4.10. Fig. 4.11 shows that numer-
ous sections of the inner beam penetrate the wall of the outer beam, which indicates
that the contact is non-localized. This confirms that in the present case, as well as for
the first example, contact cannot be described by a single force acting at the closest
pair of surface points. Master-master contact frameworks [26, 25, 24, 89, 95] where
bi-orthogonality equations must be solved to determine the contact location are dif-
ficult to apply in these situations. The reason is that they rely on the determination
of a minimum of a distance function that is almost constant if surfaces are close to
each other on a finite region. The top diagram of Fig. 4.11, furthermore, shows that
only a few iterations are required to reach convergence. This was the same as for
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(a) (b) (c)

Figure 4.10: Example 2: (a) Initial configuration; (b) configuration halfway through
the loading, and (c) final configuration.

the first example, as revealed in the top diagram of Fig. 4.7. The force-displacement
and torque-displacement diagrams of Fig. 4.12 clearly show that different regimes
are present, where each regime is governed by a different number of contact areas.

In the current example, the Young’s modulus of the inner beam is ten times larger
than that of the outer beam. To demonstrate that the framework is also robust for
an entirely different ratio of Young’s moduli, the example is repeated with exactly
the same geometrical, material and numerical parameters, except for the Young’s
modulus of the inner beam. Instead of 1.5 MPa, we set the modulus to 150 MPa
such that it is thousand times larger than that of the outer beam.

The figures for this additional test case are reported in Appendix IV.B. They
show that, although the predicted deformations as well as the force- and torque-
curves are completely different (cf. Figs. 4.10, 4.11 and 4.12), the maximum number
of iterations is again not more than two.
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Figure 4.11: Example 2: Top: number of global iterations to reach convergence
criteria:

∥∥∥f
int

+ rc − f ext
∥∥∥ < 10−8; Bottom: evolution of the number of contact

interactions between sections of the thin beam and the surface of the outer beam.
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Figure 4.12: Example 2: components of the reaction force (a) and torque (b) at the
prescribed end of the thin beam.

Mesh convergence study
The second example is repeated with different meshes in order to show that the
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results converge to the same solution. For the different meshes, the displacement
field of the inner beam is compared to a reference solution, which is obtained with
180 elements for the inner beam. Figs. 4.13a and 4.13b show that the displacement
fields converge to the reference displacement fields.
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Figure 4.13: Effect of the mesh refinement on the final displacement of the nodes
of the thin beam. The displacements in the final configuration are compared to the
ones with the finest mesh (180 nodes) (a) Difference of the Y−displacements ; (b)
Difference of the Z−displacements.

4.4 Discussion

The beam-inside-beam contact framework presented in this contribution is the
first approach to ensure that an inner beam remains embedded inside an outer, hollow
beam because all existing contact frameworks for beams aim to achieve the opposite:
they repel beams from each other.

The advantage of using beams over conventional 3D finite elements is the po-
tential to achieve faster simulations (although our particular implementation can
surely not compete with frameworks such as SOFA [23]). The disadvantage of using
beams over conventional finite elements is a reduction of the simulation accuracy.
Hence, the framework proposed in this contribution may be perceived to be bene-
ficial if simulation speed is preferred over simulation accuracy. On the other hand,
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our framework can handle slender medical instruments with both circular and el-
liptical cross-sections, whereas the frameworks of [1, 49, 18, 27, 83] have only been
demonstrated to handle circular ones. The reason that beams, formulated to rapidly
simulate the mechanical behavior of slender bodies, are faster for mechanical simula-
tions involving contact is twofold. First, beams come with fewer degrees of freedom
(i.e. kinematic variables) than if the tubes’ surfaces are represented by conventional
finite elements, because in most beam theories the beams’ cross-sections are rigid
(i.e. the cross-sections cannot deform). Hence, the entire beam’s geometry can be
constructed from its centroid line description and the cross-sections’ orientation. This
drastically reduces the number of degrees of freedom necessary to discretise a slender
body. Second, and seemingly even more important is the fact that the penetration
can be quantified for an entire (rigid) cross-section at once, which drastically reduces
the number of local problems that need to be solved.

One possible extension of the beam-inside-beam contact framework is the incor-
poration of fluid flows inside the hollow beam to represent blood flow. Frictional
sliding between the inner and outer beam also seems like a necessary extension for
the future. Surrounding tissues were furthermore neglected in the presented simula-
tions, which did not focus on a particular type of intervention in order to highlight
the generality of the framework.

The accuracy of the framework is not as high as that of the frameworks pre-
sented in [18, 49, 83, 35]. However, simulation speed and simulation accuracy are
two competing interests and if speed is preferred over accuracy, our new framework
is a promising alternative to existing frameworks.
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Appendix

IV.A Treatment of contact at the ends of the outer beam.

In the numerical examples of Section 4.3, the section at the tip of the inner beam
slides along the wall of the outer beam until it exits the outer beam (first two images
in Fig. IV.A.1). The occurrence of this is monitored, because when it occurs, the
contact constraint between the section attached to the last integration point of the
inner beam and the outer beam must be deactivated and the increment repeated.
Then, no contact interactions to embed the inner beam inside the outer beam may
be left. If this is the case, a sudden release of the inner beam may occur which makes
the simulation diverge (bottom left in Fig. IV.A.1).

To avoid this, an additional constraint is added to the outlet of the hollow beam.
It enforces the section at the edge of the outer beam to be in contact with the surface
of the inner beam (bottom right in Fig. IV.A.1). The local problem to that must be
solved to quantify penetration is again given by Eq. (4.17), except that this time BI
denotes the outer beam and BJ the inner one. The method of Lagrange multipliers is
used to enforce this constraint. The reason is that if the penalty method is employed
and the section at the end of the outer beam is detached from the surface of the
inner beam, even with the constraint just added, no penetration is detected and the
sudden release of the inner tube would not be avoided.

Ideally, a contact at the closest pair of surface points [24, 25] should be applied
at the tip of the inner beam in Fig. IV.A.1. In this case, the treatment discussed in
this session would not be required. However, this necessitates a framework able to
automatically decide which type of contact element to use, as in the ABC formulation
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of Meier et al. [56]. The development of such a framework for shear-deformable beams
with elliptical cross-sections remains for future work.

increment n

increment n+ 1

Attempt 1

increment n+ 1
Attempt 2

Without treatment after loss of contact

increment n+ 1
Attempt 2

With treatment after loss of contact

Figure IV.A.1: Sliding of
the inner beam outside
the limits of the outer
beam. Penetrated sec-
tions are shown in red.
At increment n, the last
section placed along the
inner beam is still inside
the cavity. At increment
n + 1, it has slid outside
the cavity. Bottom left:
If no treatment is ap-
plied, the contact point
at the tip of the inner
beam is deactivated and
it results in a sudden loss
of contact; bottom right:
the additional constraint
is enforced between the
section at the end of the
outer beam (in red) and
the surface of the inner
beam.
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(a) (b)

(c)

Figure IV.B.1: Example 2 with a stiffer inner beam: (a) Initial configuration; (b)
configuration halfway through the loading, and (c) final configuration.
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IV.B Figures for Example 2 with E = 150 MPa for the inner

beam.
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Figure IV.B.2: Example 2 with a stiffer inner beam: Top: number of global iterations
to reach convergence criteria:

∥∥∥f
int

+ rc − f ext
∥∥∥ < 10−8; Bottom: evolution of the

number of contact interactions between sections of the thin beam and the surface of
the outer beam.
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Figure IV.B.3: Example 2 with a stiffer inner beam: components of the reaction
force (a) and torque (b) at the prescribed end of the thin beam.
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CHAPTER V

Frictional interactions for non-localised

beam-to-beam and beam-inside-beam contact

5.1 Introduction

Beams are widely used to describe the mechanical behaviour of slender structures
[77, 78, 29, 57, 58, 56, 61]. The contact description between the beams (with or
without friction [25, 38]) is often an essential part of these mechanical models.

Large-deformation frameworks to treat contact between beams with rigid cross-
sections can be classified in different ways. Most of the schemes are formulated
for shear-undeformable beams [62, 89, 95, 50], whereas others can also treat shear-
deformable beams [53]. Most schemes can only be used for beams with circular
cross-sections [62, 89, 95], whereas a few can also be used for beams with elliptical
cross-sections [50, 24, 25, 53, 54, 52]. Most schemes can only be used for small
contact areas [24, 25] (assuming point-wise contact interactions), whereas others are
able to treat finite contact areas [62, 38, 53, 54, 52]. Of all the frameworks able to
treat frictional contact between beams, only a few are capable to not only account
for frictional sliding in the beams’ axial directions, but also in the circumferential
directions [25, 39].

Finally, all frameworks are beam-to-beam contact schemes, i.e. they repel beams
if they touch each other. Only recently, we have proposed a beam-inside-beam con-
tact approach that enforce one beam to remain inside another beam [52]. Its goal
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is the exact opposite of beam-to-beam contact schemes: to keep beams embedded
inside each other.

To date, no frictional beam-to-beam contact scheme exists for the general case
of shear-deformable beams, with both circular and elliptical cross-sections, that ex-
perience finite contact areas (non-localized contacts). A frictional beam-inside-beam
contact scheme is also missing.

The aim of this contribution is to fill this gap by extending our previously de-
veloped contact frameworks [54, 52] towards frictional interactions. Because the
frameworks use the true beam surfaces to quantify penetration - instead of surfaces
implicitly deduced from the beams’ centroid lines - frictional sliding is not only quan-
tified in beams’ axial direction, but also in the circumferential direction. To this end,
the local problem to quantify penetration (or exclusion) does not only involve the un-
known surface parameters of the master beam. It also involves one unknown surface
parameter of the slave beam. This (circumferential) surface parameter describes the
location of the (slave) contact point around the cross-section’s perimeter for which
penetration is quantified.

Although the aims of the beam-to-beam and beam-inside-beam contact frame-
works are the exact opposite, their methodology is similar. Both schemes follow a
master-slave approach, and select cross-sections along one of the two beams in con-
tact (the slave). For each selected cross-section, the penetration between two beams
is quantified (although arguably for the beam-inside-beam scheme it may be a called
a measure of exclusion, instead of a measure of penetration). This measure is then
used to establish a contact virtual work in order to repel beams from each other (for
the beam-to-beam scheme) or to keep them embedded (for the beam-inside-beam
scheme). The similarities between the beam-to-beam and the beam-inside-beam
schemes also manifest when quantifying the amount of frictional sliding.

The structure of the paper is the following. The penalty formulation for large
deformation frictional contact in the continuum setting is provided in Section 5.2.
Section 5.3 details the spatial discretisation of the finite element framework and
provides implementation details. Section 5.4 presents a set of multi-body numerical
examples for beam-to-beam contact and beam-inside-beam contact and compares
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the results of the frictional frameworks with those of the frictionless frameworks.
Conclusions are provided in Section 5.5.

5.2 Space-continuous formulation

5.2.1 Parametrization of the beams’ surface

We consider beams consisting of rigid cross-sections which are attached to the
beam’s centroid lines at the cross-sectional centers of gravity. The beams of interest
can deform in two ways. First, their centroid lines can elongate, bend and revolve.
Second, due to shear deformation, the normal vector to the cross-section’s plane is
not necessarily aligned with the tangent to the centroid line, see Fig. 5.1.

In the following, we consider beam B and its surface denoted by ∂B. We also
consider a two-parameter vector function, x = x(h), that maps any surface point on
∂B, with surface coordinates h = [h1, h2]

T , to its location in the global coordinate
system. h1 ∈ [0, L] denotes the arc-length parameter of the beam’s undeformed
centroid line x0c : (0, L)→ R3 and L denotes the length of the undeformed centroid
line. h2 ∈ [0, 2π] denotes a circumferential parameter of the perimeter of the cross-
section attached to x0c(h

1) (see [24, 25, 53, 54, 52]).
The location of a surface point in the undeformed configuration can be obtained

from:
x0 = x0c(h

1) + v0(h), (5.1)

where v0 denotes a vector in the plane of the cross-section attached to x0c(h
1).

In the deformed configuration, the centroid line deforms according to:

xc = x0c(h
1) + u(h1), (5.2)

where u : (0, L)→ R3 denotes the centroid-line’s displacement. The location of any
surface point in the deformed configuration with surface coordinates h is given by:

x = ϕ(x0) = xc(h
1) + v(h), (5.3)
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where ϕ denotes the deformation mapping relating the location of a surface point
in the deformed configuration to its location in its undeformed configuration. As
the beams’ cross-sections are assumed to be rigid, there exists a rotation tensor
Λ(θ, h1) ∈ SO(3), where SO(3) is the rotation group, such that:

v = Λ(θ, h1) · v0(h), (5.4)

where θ denotes the field of variables used to parametrize SO(3), e.g. quaternions
[77, 78] or the smallest rotation with respect to a reference triad [57] or rotation
vectors [29] as used in this work.

For further use, we define the local basis vectors at surface point x. For β ∈ {1, 2},
the covariant tangent surface vectors are given by:

τ β =
∂x

∂hβ
. (5.5)

Assuming proper orientation of τ 1 and τ 2, the outward-pointing normal unit vector
to the surface is computed from:

n (h) = ξ
τ 1 × τ 2

‖τ 1 × τ 2‖
, (5.6)

where ξ = −1 for the inner surface of the master body for the beam-inside-beam
contact scheme (such that n points towards the center of the hollow beam), and 1

otherwise. Note that local basis {τ 1, τ 2,n} is not necessarily orthonormal in the
deformed configuration, meaning that in general τ 1 · τ 2 6= 0 and ‖τ β‖ 6= 1.

Remark: If a Geometrically Exact Beam formulation is used, Λ in Eq. (5.4) is
an element of the solution. Different FE formulations exist to suitably treat the
parametrization of Λ (see [60, 72]), but are not discussed here in order to not distract
from the contact formulation. In our approach, we use the vector-like parametrization
of three-dimensional finite rotations provided in [29].
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Figure 5.1: A typical cross-section (in grey) in the undeformed (left) and deformed
(right) configurations for (a) a plain cross-section, (b) a hollow cross-section. The
centroid-line is presented with a dotted line in both configurations. A surface point
is represented with a red dot. Surface basis vectors are presented with orange arrows.
The normal vector to the cross-sections’ plane is presented with a blue arrow.
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5.2.2 Contact kinematics

In the present contribution, we focus on non-localized contact between beams,
meaning that the contact area is finite. This stands in contrast to localized contact,
which occurs on a narrow area of the surface. In general, localized contact is modeled
with a point-wise contact interaction, see [24, 25, 89, 95], which is not suitable for
non-localized contact cases.

Although the present framework is applicable for multi-beam systems, for the
sake of clarity we only discuss systems of two beams, denoted by BI and BJ. To
repel these two beams in case of penetration (in the beam-to-beam scheme) or to
keep them embedded (in the beam-inside-beam scheme), we integrate the contact
virtual work along the centroid line of BI. BI is therefore called the slave and BJ the
master [86].

5.2.2.1 Local problem and normal gap

In the following, we focus on a cross-section of BI denoted by C, that is attached
to centroid point xI

c(h
C), where hC denotes the (fixed) arc-length parameter locating

C along the centroid line. The perimeter of C is denoted ∂C. We first quantify
penetration of ∂C into ∂BJ, where ∂BJ denotes the surface of BJ. For that purpose, we
determine two surface points, one on ∂C and one on ∂BJ. These points are denoted by
x̄I = xI(h̄

I
) and x̄J = xJ(h̄

J
), respectively, and will be used to quantify penetration

and relative sliding of contacting surfaces. xI and xI map surface parameters to the
location of the corresponding surface point in the global coordinate system.

To determine the surface coordinates of these two points, denoted by h̄
I and

h̄
J, we solve a set of equations. This is usually referred to as the local problem or

the projection problem [86]. The local problem presented here involves three surface
parameters: the circumferential parameter of C, hI2, and the two surface parameters
of ∂BJ, hJ1 and hJ2. hI1 does not need to be determined as C is fixed at xI

c(h
I1 = hC).

Three of the equations we solve for are expressed as:

f1(q̄) = x̄J − x̄I − gn̄I = 0, (5.7)
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where:
q =

[
hI2, hJ1, hJ2, g

]T
, (5.8)

denotes the array of unknowns. q̄ denotes the array solution of Eq. (5.7). In the
following, a bar over a quantity indicates that this quantity is evaluated at the
solution of the local problem.

Variable g denotes an unknown scalar, for which we can write at the solution of
Eq. (5.7):

gN = ḡ = (x̄J − x̄I) · n̄I = ḡ · n̄I, (5.9)

where ḡ denotes the so-called "gap vector". Hence, ḡ = gN denotes the amount of
penetration.

As the system of equations of Eq. (5.7) is under-determined, an additional equa-
tion is needed. Here, we impose that at the solution of the local problem, nI and nJp

must be orthogonal to τ J
2 (see Fig. 5.2). nJp denotes the (normalized) projection of

nJ on the plane spanned by vectors τ I
2 and nI. This plane has the following normal

unit vector:
ñI =

τ I
2 × nI

‖τ I
2 × nI‖ . (5.10)

nJp is then obtained from:

nJp =
nJ − (nJ · ñI)ñI

‖nJ − (nJ · ñI)ñI‖ . (5.11)

The additional equation to be added to the system reads:

f2(q̄) = κ(nI · τ J
2 + nJp · τ J

2) = 0, (5.12)

where κ has the dimension of length and is used to ensure that components of f1 and
f2 have the same units (if C is elliptical, we can for example set κ = aC where aC

denotes the dimension of C along its largest semi-axis). The final set of equations of
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the local problem is abbreviated as follows:

f(q̄) =
[
f1(q̄), f2(q̄)

]T
= 0. (5.13)

Eq. (5.13) is nonlinear and can be solved using Newton’s method for which the
following Jacobian is required:

H(q) =
∂f

∂q
. (5.14)

5.2.2.2 Sliding increment

The true novelty of this contribution lies in the treatment of frictional contact
interactions. We introduce the formulation directly in the time-discretized setting
i.e. we assume that the simulation time is divided in numerous time increments.
From here onward, subscript n refers to the previous time increment. If no subscript
is present, the quantity refers to the current time increment.

The particularity of the contact kinematics employed in this contribution pre-
vents the use of conventional frictional frameworks, as for instance developed for the
Node-to-surface (NTS) approach [47, 45]. In the NTS approach, it is sufficient to
measure the relative sliding of the slave node (that has fixed surface coordinates)
over the master surface. In the present contribution however, also the circumfer-
ential coordinate of the slave contact point (h̄I2) generally varies between two time
increments.

In more detail, as hI2 is not fixed, x̄I can be located at a different surface point
on ∂C in the previous and current configuration. Thus, both slidings of x̄I and x̄J

must be incorporated. The change in the location of x̄I between two increments can
be approximated as (see Fig. 5.3):

∆x̄I = xI
n(h̄

I
)− xI

n(h̄
I

n), (5.15)

where:

• xI
n maps any surface coordinates to the location of the associated surface point
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∂BJ

x̄J x̄I

nJp

τ̄ J
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n̄I

∂C

(a)

τ̄ I
2

xI
c(h
C)

n̄J

ñI

∂C

∂BJ

τ̄ I
2

ñI
n̄I

nJp
n̄J

(b)

xI
c(h
C)

x̄I

x̄J
τ̄ J

2

τ̄ J
1

Figure 5.2: Solution of the local problem for (a) beam-inside-beam contact; (b)
beam-to-beam contact. The slave cross-section attached to xI

c(h
C) is shown in red.

The master surface is shown in grey.
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in the previous configuration in the global coordinate system,

• h̄In denotes surface coordinates (part of the solution q̄
n
of the local problem) of

the previously converged simulation increment.

Similarly, we introduce ∆x̄J as:

∆x̄J = xJ
n(h̄

J
)− xJ

n(h̄
J

n). (5.16)

The fact that the position of the contact points are mapped to the previous configu-
ration ensures that the sliding distance is not affected by rigid body motions. Note
that xI

n(h̄
I

n) and xJ
n(h̄

J

n) are history variables stored at the end of each simulation
increment, while xI

n(h̄
I
) and xJ

n(h̄
J
) are to be computed for every new configura-

tion. Further on, in the spatially-discretized setting, the proposed measure is able
to handle cases where xJ

n(h̄
J
) and xJ

n(h̄
J

n) are located on different finite elements.
We express ∆gT , the increment of tangential sliding between two increments, as

the following frame-indifferent measure (see also Fig. 5.3):

∆gT = ∆gαTτ
I
α(h̄

I
), (5.17)

where the summation on repeated indices holds. Components ∆gαT are approximated
by the following projection:

∆gαT = (∆x̄I −∆x̄J) · τ Iα
n (h̄

I

n), (5.18)

where τ Iα
n denotes the contravariant basis vector in the configuration from the pre-

vious time increment:
τ Iα
n = MIαβ

n τ I
nβ. (5.19)

MIαβ
n are contravariant components of the metric tensor of the surface of BI in the

previous configuration, ∂BIn:[
MI11

n MI12
n

MI21
n MI22

n

]
=

[
MI

n11 MI
n12

MI
n21 MI

n22

]−1

, (5.20)
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where covariant components of the metric tensor of ∂BIn are given by:

MI
nαβ = τ I

nα · τ I
nβ, (5.21)

and in Eq. (5.21), τ I
nβ denotes a covariant surface tangent vector in the previous

configuration at surface coordinates hIn defined as:

τ nβ(hIn) =
∂xI

n(hIn)

∂hIβn
. (5.22)

The measure of relative sliding proposed in Eq. (5.17) is validated in a series of nu-
merical examples presented in the Appendix.

Remark: In Eq. (5.18), we use tangent surface vectors at xI
n(h̄

I

n) to project vector
∆x̄I−∆x̄J. Another possibility would have been to use vectors of the tangent plane
at xI

n(h̄
I
). However, the tangent surface vector at xI

n(h̄
I
) are deformation-dependent

via the coupling between q̄ and pIJ, see Section 5.2.3.4. Thus, the first solution is
adopted in this work.

Remark: If one assumes exact normal contact in the previous time increment such
that:

xI
n(h̄

I

n) = xJ
n(h̄

J

n), (5.23)

then the right-hand-side of Eq. (5.18) reduces to:

∆gαT =
(
xJ
n(h̄

J
)− xI

n(h̄
I
)
)
· τ Iα

n (h̄
I

n). (5.24)

In this case, no internal variables would need to be stored from the previous incre-
ment, while xI

n(h̄
I

n) and xJ
n(h̄

J

n) are needed in Eq. (5.18). In the present contribution,
however, we use Eq. (5.18) because the penalty method is used (see below). Thus,
condition (5.23) is not exactly fulfilled.
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I
)

xJ
n(h̄
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Figure 5.3: Cross-sectional view of the previous (left) and current (right) configu-
ration of (a) two cross-sections perfectly rolling at two successive time increments;
(b) Two cross-sections rotating in opposite direction causing relative displacement
of contact points. The plane T shown as a red line is spanned by vectors τ I1

n (h̄
I
)

and τ I2
n (h̄

I
) used in the projection of Eq. (5.18). Contact points in the current con-

figuration are shown as red dots and contact points in the previous configuration as
orange dots.
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5.2.3 Contact constraints, their regularization and contact virtual work.

5.2.3.1 Normal contact

For a given cross-section C, the impenetrability of ∂C and ∂BJ is enforced via
unilateral contact conditions:

gN ≥ 0 TN < 0 gNTN = 0. (5.25)

where:
TN = T · n̄I, (5.26)

where T denotes the nominal traction vector i.e. the traction acting in the current
configuration, yet integrated over the contact area in the reference configuration.

Penalty regularization of the constraint The penalty method is employed to
enforce the constraints of Eq. (5.25). Typical for the method is that after enforcing
the constraint, some residual penetration remains. This can be interpreted as some
compliance of the otherwise rigid cross-sections (see [54, 52]). Contact traction TN ,
acting between surface points x̄J and x̄I, is given by:

TN = −εN 〈−gN〉 , (5.27)

where εN > 0 denotes the penalty stiffness and 〈〉 denote the Macaulay brackets.

Coulomb’s friction law The Coulomb friction law [40, 45, 86] is used in this work
to describe the magnitude of the tangential forces. For two bodies in contact, the
corresponding constraints are specified by the limit friction condition, the slip rule
and the complementarity condition, respectively [47]:

Φ(TT ) = ‖TT‖+ µTN ≤ 0, ‖∆gT‖TT = ∆gT ‖TT‖ , Φ ‖∆gT‖ = 0, (5.28)

where TT denotes the nominal frictional contact traction vector, µ the static friction
coefficient, and Φ the yield function. Simply stated, Eq. (5.28) implies that if ‖TT‖ <
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−µTN , surfaces do not slide with respect to each other. If they slide, the tangential
traction, ‖TT‖, is equal to −µTN .

5.2.3.2 Penalty regularization of Coulomb friction

The penalty regularization is applied to regularize tangential contact constraints.
In practice, it means that we allow for a small elastic relative displacement of the
surfaces. The tangential gap vector reads:

gT = gTel n updated + ∆gT , (5.29)

where gTel n updated denotes the previous elastic tangent gap transferred to the current
configuration (see Equations (5.30) to (5.36)). The tangential gap vector can also be
split as follows:

gT = gTel + ∆gTsl, (5.30)

where gTel denotes the elastic part of gT and ∆gTsl the increment in irreversible
tangential sliding. Both quantities can be obtained from a return-mapping procedure,
see Eq. (5.41) and thereof.

Transfer of gTel n and update of the tangential gap The (stored) elastic gap of
the previous configuration, gTel n must be transferred to the current configuration to
properly treat rigid body motions [47]. In the current configuration, the contravariant
components of the (projected) elastic tangential gap of the previous increment read:

gβTel n proj = gTel n · τ Iβ
n . (5.31)

These components are associated to covariant basis vectors (see Eq. (5.5)) in the
current configuration such that:

gTel n proj = gβTel n projτ
I
β. (5.32)
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To preserve the elastic gap’s norm, the following scaling of the components is per-
formed:

gβTel n updated = ζgβTel n proj, (5.33)

with:

ζ =


‖gTel n‖
‖gTel n proj‖ if ‖gTel n proj‖ > 10−8

1 otherwise
. (5.34)

Contravariant components of gT are computed according to:

gβT = gβTel n updated + ∆gβT , (5.35)

such that:
gT = gαTτ

I
α = gTατ

Iα. (5.36)

Once gT is computed, a return mapping procedure is employed to compute the
split into gTel and ∆gTsl, see Eq. (5.30).

Return mapping procedure First, the trial state is computed, assuming gT is
entirely elastic:

TT tr = εTgT , (5.37)

where εT denotes the (user-defined) tangential penalty stiffness. Inserting TT tr into
Φ in Eq. (5.28).1 gives:

Φ(TT tr) = ‖TT tr‖+ µTN . (5.38)

Depending on the sign of Φ(TT tr), frictional sliding occurs or not, which is referred
to the sliding and sticking case, respectively. The two cases are treated as shown
below.

Sticking: Φ(TT tr) ≤ 0 In this case, ‖TT tr‖ does not exceed the threshold value
−µTN in Eq. (5.28). The trial state fulfills the Coulomb friction conditions Eq. (5.28)
and:

TT = TT tr. (5.39)
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We can note here that the constraint in Eq. (5.28).3 is not respected in general as
the penalty regularization allows small elastic sliding displacements, but is respected
for ∆gTsl as Φ ‖∆gTsl‖ = 0. The higher εT , the lower the magnitude of gTel for a
given TN . However, large values of εT increase the condition number of the global
stiffness matrix [91].

Sliding: Φ(TT tr) > 0 In this case ‖TT tr‖ exceeds µTN and Eq. (5.28).1 is violated.
The trial frictional traction is corrected to take the limit frictional traction given by
the Coulomb’s law:

TT = −µTN
TT tr

‖TT tr‖
. (5.40)

In both cases (Φ(TT tr) ≤ 0 and Φ(TT tr) > 0), the elastic tangential vector gTel

is given by:

gTel =
1

εT
‖TT‖

gT
‖gT‖

, (5.41)

where the tangential traction, TT , is defined by Eq. (5.39) or Eq. (5.40) for the
sticking and sliding case, respectively. Note that frictional sliding increment, ∆gTsl,
can be explicitly retrieved from Eq. (5.30).

5.2.3.3 Contact virtual work

In case of contact, a contact virtual work, δΠc, is added to the virtual work
equation of the system and the space of admissible variations V is modified [86]. In
the quasi-static settings as considered in this contribution, the virtual work including
contact reads:

δΠ(pIJ, δpIJ) = δΠBI(p
I, δpI)+δΠBJ(p

J, δpJ)+δΠc(p
IJ, δpIJ) = 0, ∀δpIJ ∈ V , (5.42)

where δΠBi denotes the internal and external virtual work of beam Bi (excluding
contact interactions). Kinematic variables associated with Bi are stored in pi and
the associated test functions in δpi. pi gathers the field of displacement of the centroid
line, uB

i , as well as the field of variables used to parametrize SO3, θB
i

. pi is only
admissible if pi(XBi) = pi

D
(XB

i
), ∀XB

i ∈ ∂BiD, where ∂BiD denotes the part of
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∂BiD where Dirichlet boundary conditions are imposed [86]. pIJ =
[
pI, pJ

]T
gathers

the kinematic variables of both beams. Similarly, test functions are gathered in

δpIJ =
[
δpI, δpJ

]T
.

Following [45], by using the action-reaction principle, the contact virtual work,
δΠc, can be suitably expressed with respect to the slave part only. The infinitesimal
virtual work produced by dLBI , an infinitesimal part of BI’s centroid line, denoted
by dδΠc, can be written as in [53]:

dδΠc =

((
TNnI + TT

)
· ∂ḡ

∂pIJ

∣∣∣ ∂q̄

∂pIJ
=0

)
dLB

I

, (5.43)

where:
∂ḡ

∂pIJ

∣∣∣ ∂q̄

∂pIJ
=0

=

(
∂x̄J

∂pIJ
− ∂x̄I

∂pIJ

)∣∣∣ ∂q̄

∂pIJ
=0
· δpIJ. (5.44)

dLB
I is related to the differential of hI1, dhI1, by:

dLB
I

=

∥∥∥∥∂xI
0c

∂hI1

∥∥∥∥ dhI1. (5.45)

Integration over all penetrated slave sections gives:

δΠc =

∫ h1I
U

h1I
L

((
TNnI + TT

)
· ∂ḡ

∂pIJ

∣∣∣ ∂q̄

∂pIJ
=0

)
dLB

I

=

∫ h1I
U

h1I
L

((
TNnI

)
· ∂ḡ

∂pIJ

∣∣∣ ∂q̄

∂pIJ
=0

)
dLB

I

︸ ︷︷ ︸
δΠc,N

+

∫ h1I
U

h1I
L

(
(TT ) · ∂ḡ

∂pIJ

∣∣∣ ∂q̄

∂pIJ
=0

)
dLB

I

︸ ︷︷ ︸
δΠc,T

.

(5.46)

h1I
L and h1I

U denote the lower and upper bounds of the integral, respectively, corre-
sponding to the first and last penetrated slave sections if we assume a unique contact
area.
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5.2.3.4 Variation of the local parameters, δq

For the purpose of linearization procedure introduced below, variations of local
parameters δq with respect to variations of the kinematic variables δpIJ are needed.
Again, the corresponding equations were previously provided in [54, 52], but are
repeated here to make the contribution self-contained. To express δq̄, in terms of
δpIJ, we start from the stationarity of local residual f in (5.13) with respect to pIJ

as follows:
df

dpIJ
=

(
∂f

∂pIJ

)
δpIJ +

(
∂f

∂q

∣∣∣
q=q̄

)
δq̄ = 0, (5.47)

where we recognize the Jacobian of the local problem, H, defined in Eq. (5.14). After
rearrangement, we obtain:

δq̄ = [δh̄I2, δh̄J1, δh̄J2, δgN ]T = AδpIJ, (5.48)

where:

A = −
(
H
∣∣∣
q=q̄

)−1 ∂f

∂pIJ

∣∣∣
q=q̄

(5.49)

5.3 Spatial discretization, discretization and linearization

5.3.1 Interpolation of the beams’ surfaces

Beams BI and BJ are now discretized with a series of consecutive beam finite
elements (BFEs). The nodal variables of all BFEs are gathered in array p̂, and the
associated variations in array δp̂. The finite dimensional trial and test functions, ph

and δph, obtained by combining p̂ and δp̂ to properly chosen interpolation functions,
replace their infinite dimensional counterparts pIJ and δpIJ, respectively.

A variety of beam finite elements exists [56]. They usually differ by whether or
not shear deformations can occur, by the type of rotational variables used, the inter-
polation schemes employed for the different types of variables and the treatment of
locking. In order to remain as general as possible, we do not restrict ourselves to one
specific type of beam finite element in this section. We assume that the discretized

138



surface is sufficiently smooth. In the numerical examples in Section 5.4, however,
we have used two-nodes beam elements with rotation vectors as rotational variables.
The associated discretized surface is discontinuous with gaps and overlappings at
the nodes. To overcome this problem, we work with an alternative surface which
possesses the desired continuity, which was previously introduced in [53]. Thus, each
contact element constructed for every integration point involves two beam finite-
elements on the slave side and two on the master side. The contact element’s nodal
variables are denoted as p̂

e
(see below).

In the following, we detail the procedure to obtain the contact contributions
to the global force vector and the global stiffness matrix, denoted by rg and K

g
,

respectively.

5.3.2 Contact residual and stiffness

The discretized form of the virtual work in Eq. (5.42) leads to a set of nonlinear
equations. Newton’s method is generally used to iteratively determine global solution
p̂sol of the virtual work statement. This requires the linearization of Eq. (5.42) around
an estimate of p̂sol, denoted p̂, which yields:

δΠ(p̂+4p̂, δp̂) ' δΠ(p̂, δp̂) +4δΠ(p̂, δp̂)4p̂ = δp̂T (rg +K
g
4p̂) ' 0, (5.50)

where 4p̂ denotes an increment of the nodal variables. The global residual force
column, rg, reads:

rg(p̂) = f
int

(p̂) + rc(p̂)− f ext(p̂), (5.51)

where f
int

denotes the internal force column stemming from the contributions of all
BFEs, and f

ext
the external force column. rc contains all the (assembled) contact

contributions from all contact elements, where a contact element refers here to all
cross-sections attached to an integration point (see below) along BI’s centroid line
and their projection on discretized surface ∂BJ.

Since f
ext

generally does not depend on p̂, the global stiffness obtained after the
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linearization of rg, can be decomposed as follows:

K
g

= K
int

+K
c
, (5.52)

where K
int

denotes the stiffness matrix associated with the BFEs, and K
c
denotes

the stiffness matrix associated with all contact elements.
The contact virtual work consists of the contributions of all contact elements:

δΠc(p̂, δp̂) =
∑
e∈S

δΠc,e(p̂e, δp̂e), (5.53)

where S denotes the set of active contact elements (i.e. those for which gN < 0), and
δΠc,e denotes the contact virtual work associated with contact element e. p̂

e
denotes

the column of nodal variables involved in this contact element.
If no smoothing procedure of the surface is required, each contact element involves

two BFEs: the first one is part of the discretization of BI, and the second one is part
of the discretization of BJ. As mentioned above however, if a smoothing of the
beam’s surface is necessary to improve its surface continuity, each contact element
depends on several BFEs of BI and of BJ [47, 53, 54, 52]. The elements of BI and
BJ required to construct contact element e are denoted byM and N , respectively.
The associated nodal variables are denoted by p̂M and p̂N such that p̂

e
=
[
p̂M, p̂N

]T .
Associated nodal variations are denoted by δp̂

e
.

The linearization of δΠc then reads:

δΠc(p̂+4p̂, δp̂) =
∑
e∈S

δΠc,e(p̂e +4p̂
e
, δp̂

e
) (5.54)

≈
∑
e∈S

δΠc(p̂e, δp̂e) +4δΠc(p̂e, δp̂e)4p̂e (5.55)

≈
∑
e∈S

δp̂T
e

(rce +K
ce
4p̂

e
). (5.56)

Next, we discuss how to construct the contributions of a single contact element
to the total force column and stiffness matrix. The force column and stiffness matrix
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associated with element e are denoted by rce and K
ce
. We distinguish the contri-

butions stemming from normal and tangential contact. Hence, rce is decomposed
as:

rce = rcNe + rcTe, (5.57)

where rcNe and rcTe denote the normal and tangential contact element contact con-
tribution. Similarly, the contact element stiffness is decomposed as follows:

K
ce

= K
cNe

+K
cTe

(5.58)

5.3.2.1 Force vector and stiffness of a single contact element

To numerically integrate δΠc,N in Eq. (5.46), nMIP integration points (to which a
cross-section is attached where penetration is to be quantified) are placed alongM’s
centroid-line. Whether we integrate along the centroid line of a beam element or
an artificial smoothed centroid line constructed from several BFEs, the variable over
which we integrate is denoted by η (and hence, a mapping is constructed between
hM1 and η if necessary). The contact virtual work of the normal contact interactions
reads:

δΠcN = −εN
∫ 1

−1

〈−gN(η)〉
(
δḡ(η) · n̄I(η)

)
‖J (η)‖ dη

≈ −εN
nM
IP∑
k

wk 〈−gN(ηk)〉
(
δḡ(ηk) · n̄I(ηk)

)
‖J (ηk)‖

≈
nM
IP∑
k

(wkrcNek)
T δp̂

e
. (5.59)

Jacobian J =
∂hM1
∂η

maps differential length dhM1 to differential increment dη. The
weight of the kth integration point is denoted by wk and its coordinate in the param-
eter space is denoted by ηk.

For a given cross-section ofM attached to xc(ηk), rcek in Eq. (5.59) is expressed
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as:

rcNek = −εN 〈−gN(ηk)〉 n̄I(ηk)
∂̂ḡ(ηk)

∂̂p̂
e

∣∣∣ ∂q̄
∂p̂
e

=0
‖J (ηk)‖ , (5.60)

where ∂̂

∂̂p
denotes the total derivative with respect to variables p performed by the

Automatic Differentiation (AD) algorithm [47, 41]. Here, the exception in automatic
differentiation indicates that the variation of the gap vector, g(ηk), is not influenced
by the local variables as discussed in our previous work [53]. K

cNek
, stemming from

the contribution of the kth integration point, can be obtained using AD. It allows
to include the implicit dependency of local variables q̄ on global variables pIJ (see
Eq. (5.48)):

K
cNek

=
∂̂rcNek

∂̂p̂
e

∣∣∣ ∂q̄
∂p̂
e

=A
. (5.61)

Similarly to Eq. (5.59), the numerical integration of the frictional term δΠcT in
Eq. (5.46) governing friction reads:

δΠcT =

∫ 1

−1

TT(η) · ∂̂ḡ(ηk)

∂̂p̂
e

∣∣∣ ∂q̄
∂p̂
e

=0
‖J (η)‖ dη

≈
nM
IP∑
k

wkTT (ηk) ·
∂̂ḡ(ηk)

∂̂p̂
e

∣∣∣ ∂q̄
∂p̂
e

=0
‖J (ηk)‖

≈
nM
IP∑
k

(wkrcTek)
T δp̂

e
, (5.62)

where:

rcTek = ‖J (ηk)‖TT (ηk) ·
∂̂ḡ(ηk)

∂̂p̂
e

∣∣∣ ∂q̄
∂p̂
e

=0
. (5.63)

The corresponding contribution to the tangent stiffness can once again be obtained
with AD:

K
cTek

=
∂̂rcTek

∂̂p̂
e

∣∣∣ ∂q̄
∂p̂
e

=A
. (5.64)
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5.3.2.2 Contribution of all contact elements

rc and Kc
, which contain the contributions of all contact elements in set S, are

assembled as follows:

rc =A
e∈S

nM
IP∑
k

wk(rcNek + rcTek) =A
e∈S

rce, (5.65)

K
c

=A
e∈S

nM
IP∑
k

wk(KcTek
+K

cNek
) =A

e∈S

K
ce
. (5.66)

where A denotes the finite-element assembly operator.

5.4 Numerical examples

In this Section, the proposed frictional framework is applied to three beam-to-
beam examples and one beam-inside-beam example. So far, we have presented our
contact framework without specifically referring to a certain type of beam finite-
elements. In all presented simulations however, Simo-Reissner geometrically exact
beam elements are used. The associated BFEs have a linearly interpolated centroid
line [77, 78, 29]. This entails that the surface of a series of consecutive BFEs is C0-
continuous only if the undeformed configuration is straight. If the string of BFEs is
not straight in the reference configuration, the surface associated with such strings of
BFEs is not C0-continuous and hence, contact constraints are hard (if not impossible)
to apply.

An approximated but C1-continuous surface description was proposed in [54] to
alleviate this issue, see also Fig. 5.4. This surface is used in all the numerical examples
below and is only used for the contact treatment; it has no influence on the employed
beam theory, nor on the BFEs.
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j

j+1

Figure 5.4: Two connected beams j and j + 1 whose centroid lines is shown with
a green and orange dashed line, respectively. Their nodes are shown with grey
circles. The smoothed centroid line constructed for these two beams is shown with
a plain blue curve. The associated control points are shown with red circles. As an
example, the quadrature points of the three-point Gauss-Lobatto rule are indicated
by black lines and the single quadrature point of the one-point Gauss-Legendre rule
is indicated by a green cross.

5.4.1 Beam-to-beam contact: a 1+6 strand in tension

Strands are assemblies of wires used in tire reinforcement or as components of
wire ropes. In this example, we focus on a 1+6 (a central wire surrounded by six
helical wires) strand subjected to tension. The geometry of the strand is reported
in Table 5.1. A gap of 0.05 mm is inserted between the central wire and its six
surrounding wires in order to prevent numerical issues at the strand’s ends. The
Young modulus is set to E = 188 GPa and its Poisson ratio to 0.3.
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Central wire diameter 3.94 mm
Helical wire diameter 3.73 mm

Pitch length 115 mm

Table 5.1: Geometrical parameter for the 1 + 6 strand (a straight wire surrounded
by 6 helical wires). [32]

Only one pitch of the strand is modeled. 20 BFEs are used to discretize each
wire. One strand’s end is clamped while the nodes at the other end are moved in
the z−direction by a final displacement uend such that the strand’s axial engineering
strain reaches εstrand = 0.015, see Fig. 5.5. Only one Gauss integration point is used
per smoothed patch for the integration of the contact virtual work.

The initial penalty stiffness is estimated using the Hertz theory for parallel cylin-
ders [70], resulting in εN = πE2

8(1−ν)2 = 82 × 109 N/m. As the tensile force gradually
increases with the loading, the contact forces between the wires increase. Thus, the
residual penetration due to the use of the penalty method increases. As soon as
the penetration measured at an integration point according to Eq. (5.9) falls below
-5% of the smaller slave beam cross-section dimension at the end of a time step,
the penalty stiffness of all quadrature points of the slave BFE/smoothed curve is
increased by 10% and the corresponding time step is repeated.

The tangential penalty stiffness is set to εT = 8.2 × 109 N/m and allows for
reasonably small elastic relative displacements of the contacting surfaces without
causing convergence issues. The friction coefficient is set to µ = 0.115.
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Figure 5.5: Beam-to-beam contact 5.4.1: 1+6 strand subjected to an axial displace-
ment uend at one of this end while the other end is clamped.

The loading is applied in 150 equally spaced time steps. Reaction forces in the
axial direction are shown in Fig. 5.6. It can be observed that for small strains, the
response predicted by our model has the same slope as the one predicted by Costello’s
theory. Fig. 5.6 also shows the reaction force predicted for two equivalent strand
models in commercial FE software Abaqus c©. One uses C3D8R elements (hexahedra
with reduced integration and hourglass control) and the other B31 elements (linearly
interpolated beam elements). Both simulations give a similar response and capture
the first experimental points well. As the material behavior is elastic, the reduction
of the reaction force’s slope due to the wires’ plastification is not captured.

Fig. 5.7 shows the evolution of the number of active contact points. Initially, the
wires are not in contact due to the (small) initial gap between the core wire and the
helical ones. Then, as the strand elongates, wires come in contact in the center of
the strand. The contact propagates towards the strand’s ends. Despite a relatively
large number of contact interactions, only a few global Newton-Raphson iterations
are necessary to converge, see Fig. 5.7.
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Figure 5.6: Beam-to-beam contact 5.4.1: component of the reaction forces in the
z−direction.
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Figure 5.7: Beam-to-beam contact, example 5.4.1: top: number of global iterations to
reach convergence criterion

∥∥∥f
int

+ rc − f ext
∥∥∥ < 10−8; bottom: number of penetrated

sections.

5.4.1.1 The choice of the quadrature rule and penalty stiffness

The influence of the choice of the quadrature rule and the penalty parameter is
studied. The goal is to investigate if contact locking appears when more quadrature
points are used and/or for high values of the penalty stiffness. The numerical example
of Figure 5.5 is repeated with:

• Different number of quadrature points, nQP , going from 1 to 4 with the Gauss-
Legendre quadrature rule, and from 2 to 4 with the Gauss-Lobatto quadrature
rule, see [75],

• different values of εN with εN = k πE2

8(1−ν)2 [70] with k ∈ {0.5, 1, 2, 10}. The
tangential penalty stiffness is always set toεT = εN

10
.
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To study the influence of the quadrature rule on contact traction TN , the contact
traction of the different contact elements between the central wire and a chosen
peripheral wires have been reported for:

• k = 1 but a varying number of Gauss-Legendre quadrature points, see Fig. 5.8,

• 1 and 2 Gauss-Legendre quadrature points but k ∈ {0.5, 1, 2, 10}, see Fig. 5.9,

• k = 1 but a varying number of Gauss-Lobatto quadrature points, see Fig. 5.10,

• 3 Gauss-Lobatto quadrature points but k ∈ {0.5, 1, 2}, see Fig. 5.11.
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Figure 5.8: Beam-to-beam contact, example 5.4.1: influence of the number of quadra-
ture points on contact traction TN for a Gauss-Legendre quadrature with k = 1.
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(a) nQP = 1
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Figure 5.9: Beam-to-beam contact, example 5.4.1: influence of k on contact traction
TN for a Gauss-Legendre quadrature with (a) nQP = 1, and (b) nQP = 2.
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Figure 5.10: Beam-to-beam contact, example 5.4.1: influence of the number of
quadrature points on contact traction TN for a Gauss-Lobatto quadrature with k = 1.
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Figure 5.11: Beam-to-beam contact, example 5.4.1: influence of k on contact traction
TN for a Gauss-Lobatto quadrature with nQP = 3.

Fig. 5.8 shows that when the number of Gauss-Legendre quadrature points nQP
is more than two, TN oscillates along the contact line. Fig. 5.9(a) shows that for
a 1-point Gauss-Legendre quadrature rule, TN does not oscillate, even for k = 10.
Fig. 5.9(b) shows that for a 2-point Gauss-Legendre quadrature rule, TN does not
oscillate for k ≤ 1, but higher values of k (and thus εN) induce oscillations. For a
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Gauss-Lobatto integration rule, Fig. 5.10 shows that even with a number of quadra-
ture points as low as 2, oscillations of TN are present.

Fig. 5.11 shows that increasing k increases the amplitude of these oscillations.
None of the simulations using k = 10 converges with a Gauss-Lobatto quadrature.
For all converging simulations, the evolution of the reaction force and the reaction
torque is very similar for all the quadrature rules tested here and is not shown. As
TN does not oscillate for a 1-point Gauss-Legendre quadrature rule, even with a high
penalty stiffness, this quadrature rule is used in all remaining numerical examples in
this paper.

5.4.2 Beam-to-beam contact: twisting

20 beams of length L = 70× 10−3 m are aligned in the z direction, see Fig. 5.12.
Each beam is clamped at one end, while the cross-sections at the other end are
rotated around the z axis with an angle of 180◦ in 720 increments. 40 BFEs are
used to discretize each beam. The nodes at the rotated ends are free to move in the
z direction while the other degrees of freedom are prescribed. The beams’ Young’s
modulus is 100GPa and their Poisson’s ratio is 0.33. To show the influence of friction,
the simulation is performed with three different friction coefficients µ: 0, 0.25 and
1. The initial penalty stiffness is again estimated using Hertz contact theory for two
parallel cylinders, resulting in εN = πE2

8(1−ν)2 ≈ 4.3 × 1010 N/m [70]. The tangential
penalty stiffness is set to εT = εN/10 = 4.3× 109 N/m.

As the rotation increases, beams wrap around each other, which causes the con-
tact area and the number of penetrated sections to increase (bottom diagram in
Fig. 5.13). The deformed configuration is similar for all simulations and is shown
on the right in Fig. 5.12. Despite the substantial number of penetrated sections, the
number of global iterations required to converge according to

∥∥∥f
int

+ rc − f ext
∥∥∥ <

10−8, remains low (top diagram on Fig. 5.13). This is thanks to the proper lineariza-
tion of rc, see Eqs. (5.61) and (5.64), with the Automatic Differentiation tool.

Fig. 5.14 reports the evolution of the reaction forces and the total torques around
z axis at the support. The influence of friction is relatively small for this example,
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although friction does have a substantial influence on the reaction force in the axial
direction of the beams (top-right diagram in Fig. 5.14).

(a)
(b)

Figure 5.12: Beam-to-beam contact, Example 5.4.2: (a) Initial configuration; (b)
final configuration for µ = 0.25.
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Figure 5.13: Beam-to-beam contact, example 5.4.2: top: number of global itera-
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5.4.3 Beam-to-beam contact: twisting and pulling of a fiber

In this example, four beams of length L = 120 × 10−3m are aligned along the z
direction (Fig. 5.15). The beams’ cross-sections are circular with a radius of 3.6 ×
10−3m. During the first part of the simulation, the displacements and rotations
of all beam nodes at one end are fully restrained. The sections at the other end
are rotated around the z axis with an angle of 180◦. This loading is applied in
1800 increments. Each beam is discretized with 40 BFEs. The nodes at the rotated
end of the beams are only free to move along z while the other kinematic variables
are prescribed. During the second part of the loading, one of the beam is extracted
from the deformed structure by pulling it (at the end node) in the z direction.

The initial penalty stiffness is once again estimated using Hertz theory for the
case of perfectly parallel cylinders in contact, resulting in εN = 4.4 × 1010 N/m.
The tangential penalty stiffness is set to εT = εN/10 = 4.4× 109 N/m. A one-point
Gauss-Legendre quadrature rule is used to integrate the contact virtual work.

The simulation is performed without friction and with a friction coefficient of
0.25. It is also performed for circular (with a radius of 3.6 × 10−3m) and elliptical
cross-sections (with the same cross-sectional area as the circular cross sections, with
a =2.16× 10−3m).

The undeformed configuration as well as the deformed configuration at the end of
the two part of the simulation is shown in Fig. 5.15 for circular and elliptical cross-
sections. The number of global iterations required to attain the desired accuracy,∥∥∥f

int
+ rc − f ext

∥∥∥ < 10−8 is shown in Fig. 5.16. Fig. 5.17 shows the reaction force,
revealing that both friction as well as cross-sectional shape have a substantial influ-
ence. The force-displacement curves of the cases with friction are less smooth than
their frictionless counterparts. This is because of the change in the sticking/slipping
status of contact points.
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(a) (b)

(c) (d) (e)

Figure 5.15: Beam-to-beam contact, example 5.4.3: Initial configuration (left col-
umn); configuration halfway through the loading (central column), and final config-
uration (right column) for circular cross-sections (a, b and c) and elliptical cross-
sections (d, e and f).
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Figure 5.16: Beam-to-beam contact, example 5.4.3: top: number of global iterations
to reach the convergence criterion
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∥∥∥ < 10−8; bottom: number of

penetrated sections.
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Figure 5.17: Beam-to-beam contact, example 5.4.3: Reaction force at the end nodes
of the pulled beam during the second part of the simulation.

5.4.4 Beam-inside-beam contact: insertion

This example involves an initially straight thin beam that is pushed in a hollow
beam (see Fig. 5.18a). Both beams have elliptical cross-sections. Initially, only a
small part of the inner beam is present in the hollow one. The curved part of the
hollow beam’s centroid-line is a half-circle of radius 150 × 10−3m. The kinematic
variables of the outer beam’s end node near the thin beam’s insertion location are
restrained. Its wall thickness is 10−3m and the lengths of its cross-sectional semi-axes
are a = 20× 10−3m and b = 16× 10−3m.

The inner beam has a length of 54× 10−2m, and a Young’s modulus of 100 GPa.
The cross-sectional shape is given by a = 5.4 × 10−3m and b = 4.3 × 10−3m. The
outer hollow beam is more compliant with E = 10 GPa. The z-displacement of the
inner beam’s end node furthest away from the outer beam is prescribed to reach
54× 10−2m in 300 increments, whilst the other kinematic variables at this end node
are restrained. The thin beam is discretized with 20 BFEs and the hollow beam
with 45 BFEs. A one-point Gauss-Legendre quadrature rule is used to integrate the
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contact virtual work.
Once again the simulation is performed with different static friction coefficients:

0, 0.5, and 1. Both beams have a Poisson’s ratio of 0.33. The initial penalty stiffness
is set to εN = 1 × 103 N/m which is several order of magnitude less than for the
examples in Sections 5.4.2 and 5.4.3. A higher penalty stiffness causes convergence
issues with oscillations of the contact status, meaning that some contact elements
penetrate the thick beam wall and then detach (gN > 0) from one iteration to the
next. The tangential penalty stiffness is set to εT = 1×102 N/m and allows acceptably
small elastic tangential gaps, while allowing the (global) Newton-Raphson scheme to
converge.

Both structures deform due to contact, see Fig. 5.18. Fig. 5.19 shows that numer-
ous sections of the inner beam penetrate the wall of the outer beam, which indicates
that the contact is non-localized. Only a few iterations are necessary to reach conver-
gence for the "beam-inside-beam" framework as Fig. 5.19 shows. Fig. 5.20 shows the
component of the reaction force in the z direction. The presence of friction clearly
has a substantial influence on the force-displacement response, indicating that fric-
tion not only influences the results of beam-to-beam contact schemes, but also those
of beam-inside-beam contact schemes.

The contact of the tip of the inner beam plays a crucial role during the entire
simulation. It is enforced with a contact at the closest pair of surface points between
the surface of the last section of the inner beam and the inner surface of the tube.
A similar contact element was used in [25]. This contact interaction needs a specific
treatment in order to avoid a complete loss of contact between the tip and the inner
surface when the tip slides out. More details can be found in [52].
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(a) (b) (c)

Figure 5.18: Beam-inside-beam contact, example 5.4.4: (a) Initial configuration; (b)
configuration halfway through the loading, and (c) final configuration.
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Figure 5.19: Beam-
inside-beam contact,
example 5.4.4: top:
number of global it-
erations to reach con-
vergence criterion:∥∥∥f
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∥∥∥ <

10−8; Bottom: evolution
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5.5 Conclusion

This contribution presents the extension of beam-to-beam and beam-inside-beam
contact frameworks towards friction. It is applicable to to shear-deformable and
shear-undeformable beams with circular and elliptical cross sections. The framework
is not only able to account for frictional sliding in the beams’ axial direction, but also
in the circumferential direction. It is suitable for non-localized contact interactions,
occurring for instance when beams are parallel to each other or wrapped around
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Figure 5.20: Beam-
inside-beam contact,
example 5.4.4: Reaction
force at the inner beam’s
prescribed node in the
beam’s axial direction.

each other. The contact kinematics are formulated in terms of surface parameters of
the master and slave beams. Thus, the introduced framework can be exploited for
a variety of beam finite element formulations, provided that their cross-sections are
rigid and their discretized surface is C1-continuous.

An important specificity of the introduced framework is that both slave and mas-
ter contact points change their location at the beams’ surfaces during the relative
tangential motion of beams. This is unlike common node-to-segment approaches,
in which the location of the slave contact points are fixed. We propose a measure
of relative tangential displacement that is frame indifferent and does not involve
higher-order dependencies on global kinematic variables. Thanks to that, the mea-
sure is suitable for finite-deformation and finite-sliding problems, and also leads to
computationally efficient linearization.

The presented formulation is shown to efficiently regularize contact constraints
in a series of numerical examples for beam-to-beam and beam-inside-beam contact
interactions, with and without friction for beams with circular and elliptical cross-
sections. Even if numerous contact interactions are present and the beams’ defor-
mations, rotations and curvatures are substantial, only a few global iterations are
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necessary to converge. This is thanks to the consistent linearizations achieved us-
ing Automatic Differentiation, which automatically incorporates the dependencies
between global and local variables.

While the present formulation is suitable for non-localized beam-to-beam contact,
it is not truly adapted to enforce localized contact. In such cases, frameworks as
presented by Gay Neto et al. [24, 25], which enforce contact at a single pair of points,
seem more accurate. A scheme that automatically decides to use between a point-
wise contact scheme and the presented scheme remains for future work. Although
[62] provides a geometrically-based choice of the contact formulation which depends
on the spatial arrangement of the two beams’ centroid-lines, it cannot be used here
because it is limited to beams with circular cross-sections. Another geometrical
criterion would be necessary to decide which formulation to employ for beams with
elliptical cross-sections (point-wise surface-to-surface contact [24, 25, 26] or surface-
to-surface non-localized contact).
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Appendix

Eq. (5.18) approximates the increment in the tangential gap between two time-steps.
Five test cases in which the displacements and rotations of two beams in contact are
completely prescribed are performed to reveal how the error of the tangential gap
decreases with the number of increments. In every test, both beams have circular
cross-sections with a radius r = 1 m. The beams are initially in contact such that
gN ≈ 0. The examples are presented in Fig. V..21. The error of the total relative
sliding of the surfaces are reported in Fig. V..22. For every example, a tangential
penalty parameter εT = 105 has been used.

Test 0, 1 and 2 correspond to perfect rolling scenarios. We thus expect the mea-
sure of relative displacement to decrease as the number of increments, ninc, increases.
On the contrary, some relative sliding of the surface is expected in tests 3 and 4.

Below, each test is briefly described along with the measure of error employed.
gTel,final denotes the elastic gap measured at the end of the simulation.

• Test 0: the slave beam is rotated around the master beam with an angle β = π.
The slave is rotated around its centroid-axis with an angle α = 2β. The master
beam does not move.

• Test 1: it is identical to Test 0 except that the roles of slave and master are
inverted.

• Test 2: both beams are rotated around their centroid lines by angle of π
2
in

opposite direction.
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• Test 3: both beams are rotated around their centroid lines by angle of α = π
2

in the same direction. We thus expect a total relative sliding of 2rα.

• Test 4: the slave beam is rotated around the master beam with an angle of
α = 2π and longitudinally displaced with vdisp = 0.1 m. Therefore, the master
contact point follows an hellicoidal trajectory. As the slave beam is rotated
with an angle of α around its centroid line, the surface parameters of the slave
contact point, h̄I, do not change. Hence, the slave contact point does not
contribute to the total sliding of contacting surfaces.

For each test, the measure of error on (
∑ninc ‖∆giT sl‖) at the end of the fictitious

loading is plotted in Fig. V..22. The measure of error employed is:

• For tests 0, 1 and 2: error = (
∑ninc

i=1 ‖∆giT sl‖) + ‖gTel,final‖

• For test 3: error = 2rα− (
∑ninc

i=1 ‖∆giT sl‖) + ‖gTel,final‖,

• For test 4: error =

(
α
√
r2 +

(vdisp
α

)2 −∑ninc
i=1 ‖∆giT sl‖

)
+ ‖gTel,final‖
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Figure V..21: Schematics of the different tests performed.
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Figure V..22: Error on the total tangential gap measured at the end of the fictitious
loading.
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Conclusion

This thesis presents three unique frameworks to treat mechanical contact between
beams. All frameworks are dedicated to cases with finite contact areas, instead of
local (point-wise) contact. The approaches are applicable to both shear-deformable
and shear-undeformable beams, with both circular as well as elliptical rigid cross
sections. For two of the three presented frameworks an extension is furthermore
presented that accounts for friction. This extension is also unique, as it not only
describes frictional sliding in the beams’ axial directions, but also in their circumfer-
ential directions.

The first contribution of this thesis is the formulation of a smooth surface ap-
proximation, which guarantees that a consecutive series of beams possesses a C1-
continuous surface to which contact can be applied. Chapter II reports this surface
approximation, but it is used throughout the entire thesis.

Chapter II introduces a first framework in which a grid of surface (integration)
points is distributed on the slave beam’s surface. For each point, a measure of
penetration is established, and a contact force is applied if this point penetrates
another beam. This technique allows treating non-localized contact; for instance
in case of parallel/almost parallel beams and when a beam is bent over another
beam. The local problem to determine the amount of penetration is similar to that
of Node-to-surface approaches [47] since the slave point is fixed and the only question
is to find its projection on the master surface. The penalty approach is employed
to regularize unilateral contact constraints. In order for each point to represent the
surface area that surrounds it, a deformation-dependent weight is associated to it.

As the numerical examples rely on the smoothed surface introduced in Section
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2.4.2, partial derivatives of contact variables with respect to nodal variables are
intricate and error-prone. Automatic differentiation (AD) [41, 42, 43] has been used
to obtain contact residuals and stiffnesses. The framework has been shown to work
in the range of large displacements and curvatures of the contacting surfaces as well
as for large relative displacements of the surfaces. The drawback of this framework
is that for the contact area to be captured accurately, a fine grid of surface points
must be used around the contact area, which cannot be easily determined a priori.
A fine grid is then used on an extensive part of the slave beam’s surface. This makes
the simulations relatively slow.

The framework in Chapter III has been designed with the primary goal of reducing
the number of local problems to solve of Chapter II. This approach differs from the
one introduced in Chapter II as no (integration) points need to be distributed on the
(slave) surface, but only along the (slave) centroid line. In other words, the amount of
penetration is not measured from a slave surface point to the master beam’s surface,
but between the perimeter of a slave cross-section and the master beam’s surface.

Although the number of local problems is indeed significantly smaller and hence,
the computational time is greatly reduced, the local problem to solve is slightly more
complex than the one of Chapter II. It involves four unknowns (one surface parameter
of the slave surface, two surface parameter of master surface and the normal gap)
while the one in Chapter II only involves two unknowns (i.e. the surface parameters
of the master surface).

Since the framework is a master-slave framework (similar to the one of Chapter
II), the choice of the master and the slave surfaces influences the results. To remove
this "bias", the framework was reformulated with the double half-pass method [73,
74], although the asymmetry in the measure of penetration between the two half-
passes leads to a violation of the action-reaction principle. The results reported in
Chapter III have indicated that the double half-pass method has no advantage for
contact between beams and in some cases even negatively influences the results.

Furthermore, the efficiency of generated code with AD for different local problems
is assessed. It is apparent that the local problem based on a residual form (in other
words a set of equations) leads to more efficient code than the local problem based on
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an objective function to minimize. All in all, the computational cost associated with
the regularization of contact constraint is greatly reduced compared to the framework
of Chapter II.

A similar strategy to enforce non-local contact between beams both shear-deformable
and shear-undeformable beams with both circular and elliptical rigid cross-sections is
also employed in Chapter IV. However, whereas all previous contact frameworks for
beams (as those of Chapter II and III) intend to repel penetrating beams from each
other, the framework of Chapter IV achieves the exact opposite; it ensures that two
beams remain embedded inside each other. Although the technical enhancements
of the ’beam-inside-beam’ contact framework of Chapter IV are somewhat limited
compared to the ’beam-to-beam’ contact framework of Chapter III - the measure of
penetration is changed to a ’measure of exclusion’ and the inlet and outlet of the
outer beam has required a special treatment, the beam-inside-beam contact frame-
work greatly widens the applicability of contact frameworks for beams. The new
framework can for instance be used to simulate medical interventions in which a
slender medical instrument is inserted in a tubular structures of the human body.
The speed of the beam-inside-beam contact framework is furthermore high thanks
to the fact that penetration is measured at once for entire cross sections (similar as
in Chapter III).

The frameworks introduced in Chapters II, III and IV focus on the regularization
of unilateral contact constraints, considering only the normal part of the contact
traction and omitting frictional efforts. In Chapter V, the frameworks of Chapters III
and IV are enhanced to incorporate frictional effects. Difficulties arise from the fact
that the material locations of the contact point are not constant on the slave surface,
neither on the master surface. Relative frictional sliding is furthermore captured in
both the beams’ axial directions as well as in their circumferential directions.

Future work

One possible extension of the work presented in this thesis regards the integration
of the virtual work due to contact over the slave’s centroid line (Chapters III, IV and
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V). This integration is performed without the consideration of weak discontinuities
of the integrand. This occurs when the projections of a slave patch are not on a
single master patch. As reported by Meier et al. [62] and Konyukhov et al. [37],
integration over sub-segments is more accurate. This implies deformation-dependent
integral bounds.

In engineering applications, contact may be localized in certain regions (and
hence, it can be treated with a point-wise contact force), whereas in other regions
contact occurs at finite areas. Contact may also start locally and gradually becomes
non-localised, or vice versa. Consequently, it is not always possible to determine
in advance which type of contact element to employ. In the so-called "All-beam-
angle contact" (ABC) formulation, Meier et al. [62] proposed an algorithm to auto-
matically determine which type of contact to use for contact enforcement between
shear-undeformable beams with circular sections at any time during a simulation.
The choice of the type of contact is based on the angle between the tangent vector
to the centroid line of the contacting beams. Establishing the geometrical criterion
according to the contacting surfaces’ properties [40] to decide which formulation to
use to treat contact between shear-deformable beams remains for future work.

Also, by changing the parametrization of the master surface, contact frameworks
presented in Chapters III, IV and V) could be modified to model "beam-to-shell"
contact.

Finally, this thesis has only elaborated on the "narrow-phase"; the computation of
the penetration between a pair of beam elements/patches. Before the narrow-phase
is employed however, a ’broad-phase’ generally to determines which pairs of beam
elements/patches are possibly in contact. The quality of the broad-phase is crucial
to reach high simulation speeds. In this thesis, the broad-phase embeds each patch
in one or two bounding boxes [63]. The bounding boxes fit the patch geometries
well compared to axis-aligned-bounding boxes or bounding spheres, but an efficient
detection of their intersections is an important bottleneck of the simulations. Hence,
the speed of future simulations can be substantially improved by developing enhanced
detection algorithms.
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