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Abstract

Deep brain stimulation (DBS) is a surgical therapy to alleviate symptoms of certain brain disorders by electrically
modulating neural tissues. Computational models predicting electric fields and volumes of tissue activated are key
for efficient parameter tuning and network analysis. Currently, we lack efficient and flexible software implementations
supporting complex electrode geometries and stimulation settings. Available tools are either too slow (e.g. finite element
method-FEM), or too simple, with limited applicability to basic use-cases. This paper introduces FastField, an efficient
open-source toolbox for DBS electric field and VTA approximations. It computes scalable e-field approximations based
on the principle of superposition, and VTA activation models from pulse width and axon diameter. In benchmarks and
case studies, FastField is solved in about 0.2s, ~ 1000 times faster than using FEM. Moreover, it is almost as accurate
as using FEM: average Dice overlap of 92%, which is around typical noise levels found in clinical data. Hence, FastField

has the potential to foster efficient optimization studies and to support clinical applications.

Keywords: Deep brain stimulation, Electric field, volume of tissue activated, Toolbox, Neuromodulation, Simulation

1. Introduction 27

Deep brain stimulation (DBS) is a neurosurgical method zz
to electrically stimulate specific brain regions. It is
an established therapy for Parkinson’s Disease, Essential
Tremor and Dystonia (Deuschl et al., 2006; Flora et al., *
2010; Larson, 2014) and is emerging for several other dis- "
eases like Obsessive-Compulsive Disorder (Abelson et al., |
2005) and Anorexia nervosa (Wu et al., 2013). The pro-
cedure is based on implanting electrodes (or “leads”) de-
livering electrical pulses to the neural tissue. There are
several lead designs available, providing a recently increas- 36
ing complexity of possible contact arrangements, including
segmented leads (Buhlmann et al., 2011; Horn et al., 2019). 38
Some of the current widely-used electrode geometries are -
shown in Fig. 2. Augmented complexity allows for bet-
ter targeting of disease-specific brain regions (FDA, 2015; o
Lee et al., 2019), while avoiding areas associated with side o
effects (Mallet et al., 2007). -
Simulating the propagation of induced electric fields (e- "
field) enables prediction of the DBS effects on neural tis- N
sue (Anderson et al., 2018; Astrém et al., 2015; Butson and n
Mclntyre, 2008; Cubo, 2018; Horn et al., 2017, 2019; McIn- -
tyre and Grill, 2002). The portion of tissue affected by a N
propagating e-field is typically quantified by the “volume N
of tissue activated” (VTA). VTA is a conceptual volume
that is thought to elicit additional action potentials due to
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electrical stimulation of axons (McIntyre and Grill, 2002).
It is usually identified by a threshold value T to define
iso-surfaces of effective e-field (Astrom et al., 2015).

1.1. Limitations of current DBS simulations

Reconstructing electric fields in the brain is complex,
primarily due to its heterogeneity. Apart from skull
and skin, the brain is mostly composed by white matter
(WM), grey matter (GM) and cerebrospinal fluid (CSF),
which features different tissue properties like electrical
conductivity (Howell and Mclntyre, 2016). White matter
in particular, having a considerable amount of fibre
tracts, influences the spatial propagation of electric fields
(Gabriel et al., 2009; Suh et al., 2012). To improve
model accuracy, information about patient-specific white
matter anisotropy can be extracted from diffusion tensor
images (DTI) (Butson et al., 2007). Additionally, models
may include dielectric dispersion and other details of the
medium.

Currently, the most flexible and detailed computational
models, that also consider complex electrode designs,
are based on Finite Element Methods (FEM) (Astrém
et al., 2015; Cubo, 2018; Horn et al., 2017; Howell and
McIntyre, 2016). They partition the brain into finite
sets of basic elements (typically tetrahedrons), each
potentially parametrised with tissue-specific conductivity
values. However, despite the vast literature, there is still
no global consensus on conductivity values of certain
brain tissue classes (cf. Table 1 and references therein).
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Fig. 1 FastField workflow. FastField consists of two independent stages: a fast e-field estimation followed by a heuristic prediction of the
VTA. Inputs for the e-field model are the electrode contact configuration, stimulation parameters and assumed tissue properties. Patient’s
electrode location in MNI space may be added for patient-specific studies. The subsequent VTA estimation allows to consider different pulse
widths and axon diameters. The whole process is fully automatic and takes about 0.2 s on a standard computer.
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6

longitudinal (bottom) views of the electrodes are shown. Medtronic i
3389, 3387, and 3391 (Medtronic, Dublin, Ireland), St Jude Med-
ical (Abbott Laboratories, Abbott Park, Illinois, USA) active tip
6146-6149 and 6142-6145, and PINS Medical L301, L302, and L303 ™
(Beijing, China) have 4 rings of conductive contacts; Boston Scien- 79
tific (Marlborough, Massachusetts, USA) vercise has 8 rings. Boston gy
scientific vercise directed, St Jude Medical Infinity Directed 6172 and
6173 have 2 full rings and 2 rings segmented into 3 conductive con-
tacts. Note that the size and the distance between the contacts also %
differ between the leads (Okun et al., 2012; Schuepbach et al., 2013; s3
Timmermann et al., 2015) a4
8
86
Overall, complex FEM-based models (Butson and McIn- &
tyre, 2008) are powerful at estimating DBS electric fields ss
and VTA, but they suffer from high computational costs. s
This slows down multiple parameters testing and hinders «
computational optimization (Cubo et al., 2019). It also o
limits clinical application, as physicians require rapid «
responses. Moreover, their precision is often shadowed by o
noise and finite precision of real measurements. o4
To simplify DBS reconstructions, several tools approxi- e

2

mate the brain as a homogeneous medium (Alonso et al.,
2018; Anderson et al., 2018; Astrom et al., 2015; Cubo
and Medvedev, 2018; Howell and Grill, 2014; Vorwerk
et al.,, 2019). Table 1 (right) contains commonly used
conductivity values. Other simplifications include fully
heuristic models that directly estimate VTA shapes from
stimulation parameters, without explicitely simulating
the electric field (Chaturvedi et al., 2013; Dembek et al.,
2017; Kuncel et al., 2008; Méadler and Coenen, 2012).
These models are fast, but they only support ring-shaped
contact designs and mono-polar stimulation.

1.2. FastField

The aim of this work is to introduce a flexible and ef-
ficient algorithm addressing the drawbacks of currently
available software. Indeed, FastField estimates DBS in-
duced electric fields in the order of milliseconds. It sup-
ports complex electrode designs and is easily extendable
for future geometries. It also provides an activation model
for VTA considering different pulse widths and axon di-
ameters, while preserving the quick timing. FastField
predictions are nearly as accurate as FEM-based models
with homogeneous conductivity for the brain and different
conductivity values for conducting and isolating parts of
the electrode. Its main contribution is thus being a com-
prehensive trade-off between accuracy of simulations and
rapid response. It is provided as an open-source toolbox
and the graphical user interface and the source code are
freely available for public use. Hence, FastField is appli-
cable in clinical practice (to test different configurations)
and in optimization studies. Its computational workflow
is presented in Fig. 1.
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Heterogeneous medium

Homogeneous medium

WM GM CSF Reference Values Reference

0.058 0.089 2 (Cubo et al., 2019) 0.1 (Astrom et al., 2015)

0.059 0.0915 - (Horn et al., 2019) 0.1 (Cubo and Medvedev, 2018)
0.06 0.15 1.79  (Cendejas Zaragoza et al., 2013) 0.123 (Alonso et al., 2018)

0.075 0.123 2 (Alonso et al., 2018) 0.2 (Howell and Grill, 2014)
0.075 0.123 2 (Hemm et al., 2016) 0.2 (Vorwerk et al., 2019)

0.14 0.23 1.5 (Howell and McIntyre, 2016) 0.2 (Anderson et al., 2018)

0.14 033 - (Horn et al., 2017)

0.14  0.33 1.79  (Vorwerk et al., 2019)

Table 1 Conductivity values [S/m] for different tissues reported in the literature.

Left: heterogeneous medium, with values for white matter (WM), grey matter (GM) and Cerebrospinal Fluid (CSF). Values refer to the
most recent literature. The spanned interval is considerable: values range from 0.058 S/m to 0.14 S/m for white matter, 0.089 S/m to 0.33
S/m for grey matter, and 1.5 S/m to 2 S/m for CSF. Right: conductivity values [S/m] when the brain is treated as a homogeneous medium.
They range from 0.1 S/m to 0.2 S/m. Values refer to the most recent literature.

2. Methods 115

116
FastField inputs are: electrical conductivity [S/m], the,,
stimulation amplitude ([mA] or [V] depending on the ma-
chine setting) and contact configuration, i.e. the active,
contacts and their relative weight. FastField then calcu-,,
lates the strength of the electric field on a standard grid,,,
around the electrode (Sec. 2.2) from inputs and a group,,,
of pre-computed e-fields (cf. Sec. 2.1). To estimate the e-
field threshold for the VTA, FastField activation function,,,
also considers the stimulation pulse width and the hypoth-,,
esised axon diameter (Sec. 2.3). 6
To personalise the simulation, the patient’s electrode lo-,,,
cation in MNI space in Lead-DBS format can be added,,,
(more in Sec. 2.4). Target structures are extracted from,,,
a brain atlas registered into the MNI space for final visu-,,
alization (Sec. 2.5). The toolbox has a user-friendly GUI
for practical use (Sec. 2.6). -
Finally, we introduce two metrics to gauge the accuracy,,,
resulting from e-filed approximation (Sec. 2.7).

118

123

131

134

135

136

137

g‘; 138
= 139

140

(em=m =
>

141

] ] ] ] ] ] (] [} 142
i i i i i - 4 it
i 8 i€ i€ i€ i€
] ¥ ] ] ] ] 144

145

143

Fig. 3 Standard e-field library for Boston scientific verciseuss
directed for constant-current. On top, the simulated e-fields,,
with Simbio/FieldTrip FEM model are shown; below, the corre-

sponding contact configurations. This electrode has 8 conductive™
contacts, so 8 e-fields are simulated (one for each contact). Default4?
amplitude is Ap = 1 mA. Similarly, standard e-field libraries foriso
other electrode types are generated.
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2.1. Standard e-field library

Standard e-field library (or “pre-computed e-fields”) is
derived from finite element models where only one contact
of the electrode is active at a time, for different geome-
tries (Fig. 3). First, a cylinder domain is defined around
the electrode. The area inside the cylinder is divided into
three regions: brain, conducting and insulating part of the
electrode. Tetrahedron meshes are generated and linked to
regions where different electrical conductivity is assumed
(brain area: x = 0.1 S/m; conducting electrode parts:
x = 10® S/m; insulating electrode parts: £ = 10716 S/m).
The electric field strength [V /mm] is simulated at the cen-
ter of each mesh for constant current Ay = 1 mA. This pro-
cedure is repeated for each contact of all electrode types
(cf. Fig. 2).

The above preliminary computations are performed with
Lead-DBS Simbio/FieldTrip (Horn et al., 2019). Next,
Lead-DBS interpolating function converts the e-field val-
ues from the arbitrary mesh to a 3D grid of constantly
spaced points. The grid G is referred to as “standard
grid” and is used as a common template. By convention,
dim(G) = 100 x 100 x 100 points (average point distance is
0.2 in [mm)]). Pre-computed e-field values on G are finally
stored in the standard e-field library.

Real devices allow voltage [V] as input setting. Hence, the
algorithm allows conversion to amplitude units, consider-
ing the device impedence as additional input.

2.2. FastField computation

FastField algorithm simulates the electric field on the
standard grid. For each contact, the corresponding library
is initially chosen based on the amplitude mode and the
electrode type. Then, FastField scales the pre-computed
e-field by the weighted activation amplitude of the corre-
sponding contact and by the user-defined brain conductiv-
ity. Finally, it computes the total e-field E(g) by exploiting
the additive property of electric fields (in line with Ander-
son et al. (2018); Slopsema et al. (2018)). Formally, E(g)
is computed at each point g of the 3D grid G as:
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Here, N is the number of contacts of the electrode, sub-
script n identifies each contact. EY is the pre-computed
e-field for each contact with weight w,,. A and x are ampli-
tude and conductivity defined by the user, Ag and kg are
amplitude and conductivity used to generate the standard
library and are equal to 1 mA and 0.1 S/m.
To smooth the electric field on the grid, convolution is
performed with a Gaussian kernel. Next, a system of lin-
ear equations is solved for the 4 marker coordinates (head,
tail, X, and Y, cf. 2.4) to get the transformation matrix
M to MNI space. The standard grid is thus transformed
and tilted with respect to the position of the patient’s elec-
trode, that is placed at the center of the transformed grid.
Finally, the target location is extracted from the combined
atlas (Sec. 2.5) for the final visualization.

2.3. A flexible model for the Volume of tissue activated

173
Current open-source models only provide a small set ofiz
parameter combinations to compute the stimulation fieldirss
threshold T for the volume of tissue activated. In Fast-is
Field, we implement a straightforward heuristic model to.,
fit published data on pulse width Py, axon diameter Dz
and resulting e-field threshold T'(Py, D). The latter de-
fines the iso-surface of the VTA. 179
The model is obtained as follows. We first develop a
heuristic simplification of the axon electrical and geomet-
rical properties. Considering a heterogeneous manifold of ,
axons in the region around the DBS lead, our minimal
model refers to the mean properties of such a manifold and ,
not to the particular geometry or conductivity of a single,
axon. Hence, instead of considering complex geometries
as in Astrom et al. (2015), we approximate a “mean field” .
axon with a cylindrical conducting cable. In addition, we
consider the conductance along the cable as closely ruled
by Ohm’s law. In this sense, Vr(Py,D) is the electric
potential along the cable. Then Er = VVr is its gradi-
ent, commonly referred to as the electric field strength. ,
In turn, T'(Py, D) approximates the threshold for axonal
activation under the effect of Er. It is proportional to,
the product of Py (providing energy, cf. Dembek et al.
(2017)) and D, that influences the conductance and thus,
the dampening of electric signal. Because of heterogeneity
in shape and electrical properties, the functional depen-
dence is scaled by power laws to be fitted with available

data. The heuristic model reads: 100

2 200
( )201
To enable a straightforward fit in the MATLAB Curve Fit-?
ting toolbox, we then convert the log-linear fit for the®

model into an exponential form (¢ = log k): 204
205

(3)206

T(Pw,D) = k P%, D°

T(Pw,D) = explalog(Pw)+ blog(D) + (]

4

® Head

Marker | ® Tail
oY

® X

Fig. 4 Head, tail, X, Y marker coordinates on Boston sci-
entific vercise directed lead model. These points are used to
locate the electrode in MNI pace. Conventionally, head is the center
point of the lowermost contact, and tail the center point of the up-
permost contact. To locate X and Y, consider a plane perpendicular
to the electrode shaft, passing by the head point. The point on the
plane that has the least distance to the center of the marker is the
Y point. X is perpendicular to the line passing by head and Y.

The FastField algorithm thus allows the user to define the
desired threshold value with extended flexibility, that is,
also considering pulse width and axon diameter. Thanks
to the heuristic model, the quick timing is preserved. Cal-
ibration of the model with published data and subsequent
in silico experiments are reported in Sec. 3.1.

2.4. Patient’s pre-processing

Evaluating patient’s data requires the electrode posi-
tion in MNI space. Thus, we perform the following pre-
processing steps. Patient’s Computed Tomography (CT)
scan and T1- and T2-weighted Magnetic Resonance Imag-
ing (MRI) are linearly registered to each other and non-
linearly to MNI space. We use Advanced Normaliza-
tion Tool (ANTSs, http://stnava.github.io/ANTs/) and
FMRIB’s Linear Image Registration Tool (FLIRT) (Ash-
burner, 2007; Avants et al., 2008; Jenkinson et al., 2002;
Jenkinson and Smith, 2001) for patient’s MRI and CT
scan registration, respectively. Then, the PaCER algo-
rithm (Husch et al., 2018) returns the location of the elec-
trode in the brain, while the DiODe algorithm returns its
rotation (Hellerbach et al., 2018). By this combination, we
estimate the head, tail, X and Y coordinates of the marker
(reference label on the lead). With these, we calculate the
transformation matrix from the standard electrode space
into MNI space considering the patient’s electrode loca-
tion.

2.5. Combined atlas

There are several brain atlases registered into MNI
space. Distal atlas is explicitly generated for Lead-DBS
use (Ewert et al., 2018). However, distal atlas does not
contain all DBS target structures, e.g. nucleus accumbens
that is included in CIT168 atlas (Pauli et al., 2018). There-
fore, the FastField build-in library combines both Distal
and CIT168 atlas.
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Fig. 5 FastField graphical user interface. Left panel includes input values, VTA threshold estimation button and contact configuration
for the chosen lead. Right panel is for output visualization. Additional panels allow navigation of patient’s data and additional settings for
visualization. As an example, input values are set as follows: amplitude A = 1.7 mA, conductivity x = 0.1 S/m, threshold 7" = 0.2 V/mm,
pulse width Py, = 60us and axon diameter D = 3.4um . The electrode type is Boston scientific vercise directed. 30 % of the energy is on
contact 1, 50% on contact 2 and 20% on contact 4. STN, internal globus pallidus(GP1i), external globus pallidus(GPe) and Caudate are the
visualized structures in light green, blue, dark green, and purple. The VTA, here from a general heuristic value T'= 0.2 V/mm (as suggested

by Horn et al. (2017) based on Hemm et al. (2005)) is shown in red.

2.6. The graphical user interface 29

FastField graphical user interface is shown in figure 5.2
It is designed so to provide a comfortable user experience.?1
Input settings are located on the left-hand side of the GUI,
while the output location of the electrode in the brain and®?
the VTA are shown on the right-hand side. Additional
options for visualization are also present.

Main inputs are: stimulation amplitude, brain tissue con-
ductivity, type of electrode, contact configuration and the
percentage of energy on each contact. Stimulation ampli-
tude can be set in [mA] or in [V] according to the machine
settings. Additionally, VTA threshold can be estimated in
a pop-up window by specifying pulse width and axon diam-
eter. These inputs can be directly used in abstract studies
that estimate the general effects of different electrodes and
contact configurations without being patient-specific.

For patient-specific studies, users may provide a dedicated
folder containing the patient’s electrode location in MNI
space. The corresponding file should include the position
of the electrode marker, including 4 points of head, tail, X
and Y (Sec. 2.4). The user can then visualize the electric
field by changing the main inputs as described above. Dif-

ferent brain regions can also be visualized, to evaluate the
structures affected by the e-field. Finally, the electric field
information can be easily exported for further studies.

2.7. Accuracy measurement

FastField relies on an approximated estimation of the
electric field within the brain. It is then informative to
quantify how it differs from more complete finite element
models. We do so by computing the absolute deviation
between our e-field (E;) and a reference e-field (Es), for
each point g of the same template grid G. The sum of the
absolute deviation values over G is then normalized on the
global strength of the reference field, thus estimating the
relative error:

> |Ei(g) — Ex(g)]

geg
> Eal(g)
geg

Err =

(4)

We then call “accuracy” of the FastField simulation, with
respect to reference FEM-based field, the quantity:

Acc(Ey|Ey) =1— Err (5)
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Fig. 6 Plot of the VTA model surface, predicting the threshold
T given pulse width Py and axon diameter D. Data from Table
3 in (Astrom et al., 2015) used for fitting are visualized as circles.
An additional point reported in Table 2 in (Astrém et al., 2015)
used for validation is denoted by an asterisk. The isocontour of
the common general heuristics of T = 0.2V/mm as suggested by
Horn et al. (2017) based on (Hemm et al., 2005) is denoted in red.
Calibrated parameters and goodness of fit are listed in the textbox.

256

Several experiments with different electrode types and®’
settings are reported in Sec. 3.2. 8

259
To estimate the similarity between FastField and FEM?*®
predictions, we also compute the Dice score metric on two*!

VTAs (A and B), defined as: 202
263
2|A N B| 264
DS(A,B) = ———: 6
(4, B) AT+ 1B (6),4

266
where |A| and |B| are the cardinalities of the two sets.
268

269

3. Results

The VTA model calibration is presented in Sec. 3.1.2r0
Next, the results of FastField are benchmarked against a,
realistic FEM-based model to estimate the accuracy (cf.272
Sec. 3.2). We also present three case studies to illustrate_
the practical application of our algorithm (cf. Sec. 3.3,
3.4,3.5). Details on data acquisition and management are

commented at the end of the paper. e

3.1. Calibrating the VTA model

The volume of tissue activated model (Eq. 3) is fittedzrn
to data published in Table 3 of Astrom et al. (2015) in ass
non-linear least-squares sense using MATLAB Curve Fit-2a
ting Toolbox. These data are reported to be accurate forzs
a stimulation voltage of 3V. 283
Figure 6 visualizes the fitted model surface for pulse widthszss
Py € [1;240] S and axon diameters D € [1;8]um. Cali-zs
brated values for the model coefficients a, b, c are also re-s
ported in the figure. The goodness of fit is estimated byas

278

6

— PW =30, D =3

10 20 30 40 50 60 70 80 90 100

Fig. 7 Overlay of e-field threshold isocontour lines as pre-
dicted by our model for different values of pulse width at a constant
axon diameter. On the background (red area), e-field of a Boston Sci-
entific electrode simulated using SimBio/FieldTrip as implemented
in Lead-DBS.

considering a reduced R-square statistics over the degrees
of freedom. In this case, R? cquced = 0.9948 ~ 1. Both
the general heristics of T' = 0.2V/mm and an additional
experimental point (Astrém et al., 2015) lie within the
surface, thus strengthening its validity for practical use.
Direct use of the developed heuristic model to estimate
the isocontour lines for the volume of tissue activated is
shown in Fig. 7. In there, comparison with a full electric
field computed by FEM model SimBio/FieldTrip is also
reported. The heuristic model increases FastField flexibil-
ity by considering various Py and D, without increasing
its computational load. This aspect also allows for di-
rect comparison of different settings, thus extending the
testable parameters and the application of the algorithm
in abstract studies and clinical practice.

8.2. FastField Accuracy

We compare the electric field estimated with FastField
with the one simulated with Lead-DBS Simbio/FieldTrip
finite element model, on the same template domain. We
consider different electrode types and DBS settings, in-
cluding different contact configurations and amplitude val-
ues. For simulations with Simbio/FieldTrip method, there
are two scenarios for Fs: heterogeneous medium with
Lead-DBS default conductivity values (x = 0.132 S/m for
grey matter and k = 0.08 S/m for white matter) and ho-
mogeneous medium (k = 0.1 S/m globally, which is the
average of white and grey matter conductivity). After the
simulations, the Simbio/FieldTrip field is adjusted on the
standard grid G via interpolating function. As FastField
relies on homogeneous media, conductivity value of 0.1
S/m is used in all simulations for Ej.

Next, the divergence between E; and Es (Eq. 4) and
the accuracy (Eq. 5) are calculated. Table 2 reports the
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Fig. 8 Comparison of FastField with Simbio/FieldTrip ﬁnite328
element model. Some example studies from Table 2 chosen for vi-**°
sualization (here, case 2, 4, 5, and 7). The FastField-based VTA is330
in red and the VTA simulated with Simbio/FieldTrip is in blue. Forss,
each electrode type, a couple of comparisons are shown: on the left,
in a homogeneous domain (k = 0.1 S/m for both FastField and Sim-
bio/FieldTrip simulations); on the right, heterogeneous domain for
Simbio/FieldTrip (x = 0.08 S/m and 0.132 S/m for white and greyss4
matter) and homogeneous x = 0.1 S/m for FastField simulations.,;;
The Dice scores of the two VTA comparison is written under each

figure. In this figure, the iso-surface of 0.2 V/mm (VTA) is shown’”
as the VTA. 337

333

338

339
accuracy values Acc(FE1|Es2). When considering FEM ho-s0
mogeneous condition, Acc(E1|E;) € [0.9220;0.9847] withsa
an average value of 0.96. For FEM heterogeneous domain,s
Acc(E1|E;) € [0.8038;0.8582] with an average value ofss
0.83. 344
Finally, the Dice scores DS(VT;, VT5) are computed fromsss
Eq. 6 and are presented in Table 3. For the homoge-s
neous condition, DS € [0.9286;0.9820] with an averages
value of 0.96. For non-homogeneous condition, DS Ezs
[0.8667;0.9335] with an average value of 0.92. Figure 80
shows several examples of VTA comparison, for differ-so
ent electrodes and contact configurations. FastField-basedss:
VTA isocontour is plotted in red, the Simbio/Field Trip-ss
based one is in blue. 353
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3.8. Case study 1

We consider a Parkinson patient with the STN target
area. The electrode used is Boston scientific vercise di-
rected; it is not placed inside, rather right next to the
target. FastField is used to tune the parameters to direct
the VTA towards the STN area. Rapid response from the
algorithm allows to test different parameter configurations
efficiently (in ~ 0.2 s). As a result, the tuned stimulation
amplitude is 1.8 mA and the weighted configuration to de-
liver the energy is: 20% on Contact 1 and 80% on Contact
2 of the electrode. Fig. 9a reports the VTA obtained from
the tuned e-field and the target region. An electric field
with the tuned settings is simulated with Lead-DBS Sim-
bio/FieldTrip (on non homogeneous medium) and com-
pared to the result from FastField. Their relative accuracy
(Eq. 5) equals Acc(Eq|E2) = 0.8301. Fig. 9b shows a di-
rect comparison of VTA isocontours (blue and red color,
respectively). The Dice score for the VTA comparison (Eq.
6) is DS(VTy,VTy) = 0.9277.

8.4. Case study 2

Here, we consider a Post-Traumatic Tremor patient with
internal globus pallidus (GPi) as target area. Medtronic
3389 electrode is used. The electrode was localized close to
GPi. As in Case study 1, different setting configurations
are tested efficiently using FastField to find an optimum.
Eventually, Contact 4 (w = 100%, A = 2.5 mA) is identi-
fied as the appropriate setting for effective stimulation of
GPi, while avoiding GPe to minimize possible side effects
(Baizabal-Carvallo and Jankovic, 2016). Comparing Fast-
field with Simbio/FieldTrip (non homogeneous domain)
results in a relative accuracy of Acc(E1|E2) = 0.8686. Fig-
ure 10a represents the estimated output, i.e. the tuned e-
field next to the target region. Figure 10b compares VTA
results from FastField (red) and Simbio/FielTrip (blue)
on the same tuned settings. In this case, DS(VTy, VTy) =
0.9200.

8.5. Case study 3

To show the use of DBS for psychiatric diseases, we also
consider an Anorexia nervosa patient. In this case, nu-
cleus accumbens (NAc) is identified as the target of in-
terest. The electrode is Boston scientific vercise. As in
previous case studies, different setting configurations are
tested efficiently using FastField to find an optimal cov-
erage of the NAc. Eventually, Contacts 2 (w = 15%),
3 (w = 75%), and 4 (w = 10%) are chosen with input
current A = 2.2 mA. Comparison of Fastfield with Sim-
bio/FieldTrip (non homogeneous) results in a relative ac-
curacy of Acc(E1|E2) = 0.8603. Figure 11a shows the
estimated tuned e-field nearby the target region. Figure
11b compares VTA results from FastField (red) and Sim-
bio/FielTrip (blue) on the same tuned settings. In this
case, DS(VTy, VTy) = 0.9302.



Case Accuracy 1 Accuracy 2 Electrode type Amp Configuration

1 0.9220 0.8371 Boston scientific vercise directed 2.4 50,50,0,0,0,0,0,0

2 0.9278 0.8455 Boston scientific vercise directed 3.1 0,25,0,25,25,0,25,0
3 0.9819 0.8582 Medtronic 3389 14 100,0,0,0

4 0.9623 0.8561 Medtronic 3389 2.7 60,40,0,0

5 0.9605 0.8038 Medtronic 3387 2.2 0,55,45,0

6 0.9847 0.8225 Medtronic 3387 0.7 0,0,0,100

7 0.9636 0.8153 Abbott/St Jude Medical Infinity Directed 6172 2.6 0,32,0,0,68,0,0,0

8 0.9523 0.8266 Abbott/St Jude Medical Infinity Directed 6172 3.4 0,0,0,0,0,25,25,50

Table 2 Comparison of FastField with Simbio/FieldTrip e-fields. “Accuracy 1”7 refers to the homogeneous condition with x = 0.1
S/m for all tissue types; “Accuracy 2” refers to the non-homogeneous condition, where conductivity values of 0.132 S/m and 0.08 S/m are
used for grey and white matter respectively. In both cases a conductivity value of 0.1 S/m is applied in FastField. Amplitude values are in
mA. Configuration values represent the percentage assigned to each contact of the electrode (contact sequences are numbered as in Fig. 5).

Case Dice score 1 Dice score 2 Electrode type Amp Configuration

1 0.9622 0.9393 Boston scientific vercise directed 2.4 50,50,0,0,0,0,0,0

2 0.9559 0.9349 Boston scientific vercise directed 3.1 0,25,0,25,25,0,25,0
3 0.9797 0.9529 Medtronic 3389 14 100,0,0,0

4 0.9684 0.9190 Medtronic 3389 2.7 60,40,0,0

5 0.9335 0.9468 Medtronic 3387 2.2 0,55,45,0

6 0.9820 0.8667 Medtronic 3387 0.7 0,0,0,100

7 0.9634 0.8735 Abbott/St Jude Medical Infinity Directed 6172 2.6 0,32,0,0,68,0,0,0

8 0.9667 0.9165 Abbott/St Jude Medical Infinity Directed 6172 3.4 0,0,0,0,0,25,25,50

Table 3 Dice score similarity of the FastField VTA with Simbio/FieldTrip VTA. “Dice score 1” refers to the homogeneous condition
with k = 0.1 S/m for all tissue types; “Dice score 2” refers to the non-homogeneous condition, where conductivity values of 0.132 S/m and
0.08 S/m for grey and white matter are used. In both cases, the conductivity values of 0.1 S/m is used in FastField. Amplitude values are in
mA. Configuration values represent the percentage assigned to each contact of the electrode (electrodes are numbered as in Fig. 5).

Fig. 9 Clinical case study 1. A Parkinson patient with target structure STN. a) The approximated field with FastField. 20% of the energy
comes from contact 1 and 80% from contact 2. Input amplitude is 1.8 mA. The e-field is in red and the STN is in green. b) Comparison
of FastField with Simbio/FieldTrip for the same setting as in part (a). The e-field approximated with FastField is in red and the e-field
simulated by Simbio/FieldTrip is in blue. The accuracy between the two fields is 0.8301. The Dice score for the two VTA is 0.9277.

s 4. Discussion

355 We have introduced a toolbox to simulate the DBS elec-
%8 tric field for a variety of electrode types. The toolbox was



Fig. 10 Clinical case study 2. A post-Traumatic Tremor patient with target structure GPi. a) The approximated field with FastField.
100% of the energy on contact 4 with the amplitude of 2.5 mA. The e-field is red and the GPi is blue, and GPe in green b) The comparison
of FastField with Simbio/Field trip for the same setting as part a. The e-field approximated with FastField is in red andthe e-field simulated
by Simbio/FieldTrip is in blue. The similarity between the two field is 0.8686. The Dice score for the VTA comparison is 0.9200.

Fig. 11 Clinical case study 3. An Anorexia nervosa patient with target structure nucleus accumbens. a) The approximated field with
FastField. 10% of the energy on contact 2, 75% on contact 3, and 15% on contact 4, with the amplitude of 2.2 mA. The e-field is red and the
nucleus accumbens is green, putamen in green, and caudate in purple. b) The comparison of FastField with Simbio/Field trip for the same
setting as part a. The e-field approximated with FastField is in red and the e-field simulated by Simbio/FieldTrip is in blue. The similarity
between the two field is 0.8603. The Dice score for the VTA comparison is 0.9302.
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validated by comparing the results with a FEM model inso
a template space and clinical case studies. 408

409
4.1. Accuracy 410

411

To interpret the error index appropriately (Eq. 4), we,,
contrast it with the measures uncertainty. This is due to,,,
real device resolution on input parameters. For instance,,,,
resolution of most of DBS devices is 04 =0.1 mA for the,,
input amplitude value A (e.g. from Medtronic manuall). a6
This is necessarily propagated by the algorithms. The cor-,,
responding uncertainty og on estimated e-field £ is calcu-,,,
lated for each case study by considering (Ao 4) for FEM-, |
based models. Likewise, we evaluate Dice score (DS,) for,,,
the two volumes computed from (E + og) and (E —o0g) .,
For Case study 1, A = (1.8 £0.1) mA. The uncertainty,,
associated to the output e-field is o = £0.1103 V/mm.,,,
This is a realistic benchmark to contrast Err(E,|E>) with.,,,
In this case, we recall that Err(E,;|E>) = 0.1699. Further-,,
more, we evaluate the Dice score on uncertainty VTAs,,
that equals DS, = 0.9114. This is even lower than,,
DS(VT;,VT3) = 0.9277 as in Sec. 3.3.

Results for Case study 2 and 3 are consistent. For Case 2,
Err(E;|Es) = 0.1314 while o = 0.0833; DS(VT;, VTy) =
0.9200 while DS, = 0.9322. For Case 3, Err(F,|Fy) =
0.1397 and o = 0.0952; DS(VT;,VTs) = 0.9302 and*®
DS, = 0.9048. 31
Hence, by recalling that other physical uncertainties (e.g.**
over pulse width and frequency) may further propagate®®
the device uncertainty, we confidently conclude that, de-**
spite its approximation, FastField may serve as a reliable*®

model for practical use. 436
437

428

4.2. Time efficiency :Z
In terms of the computational time, Fastfield is more
efficient than any finite element model. In fact, theu,
algorithmic complexity of FastField is O(N), while that
of a FEM is O(N“) where a usually varies between 2 and”
3 (Liu and Quek, 2013). Consequently, as N dim3,”
FastField would scale as O(N3) and FEM as O(NS) (at"
best) when doubling the grid precision on every direction.j::
As a proof of concept, we estimate the CPU-time neces—:i
sary to complete a simulation with FastField and with
Simbio/FieldTrip. We use the same laptop for both (Mac—:z
book Pro, 2.3GHz Intel Core i5, 16 GB memory). For
Simbio/FieldTrip, the whole computation (from stating
the inputs to getting the VTA output) takes on average
400 seconds. Setting the meshed domain and aussigning%3
conductivity values is particularly demanding, as it
accounts for about 65% of the whole procedure. Without
considering this first step, the average computation time:zz

is about 140 s.

0

1

457

458

Thttp://www.neuromodulation.ch/sites/default/files/ 459
pictures/activa_PC_DBS_implant_manuel.pdf 460
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On the other hand, FastField avoids the expensive pre-
liminary steps as it relies on the standard library to set
the domain. Overall, simulating electric field and VTA
takes about 0.2 seconds, 3 orders of magnitude less than
with a FEM.

Augmented time performance in estimating the electric
field is beneficial for many applications. For instance,
in an optimization problem to tune the initial settings
according to the target region. In such problem, the
e-field is evaluated multiple times to test different settings
towards the optimum. Without even considering the
generation of the meshed domain, FastField saves around
140 seconds in each iteration, resulting in almost 4 hours
after 100 iterations.

Another example where FastField is possibly beneficial
is during clinical practice, for each time the physician
changes the DBS parameter and evaluates the effect of
new settings on neural tissue. In this case, enhanced
computational speed could improve the user’s experience.

4.8. VTA model

The VTA activation model can be potentially used as a
standalone function for direct use in any VTA simulation.
However, caution is recommended when changing input
voltage, as the original data for the fitting was taken at
3V (Astrém et al., 2015). We conjecture the model to
be extendable to other values, given that its functional
dependence does not include input voltage explicitly.
Further studies are suggested on this aspect.

For convenient use and to fosters reproducible research,
open source MATLAB functions of the model are provided.

4.4. Limitations

Given the main advantages of FastField, we acknowledge
its main limitation, that the simulated domain is treated
as a homogeneous medium. Despite such approximation
being essential to diminish the computational burden and
thus boosting the speed, considering different conductivity
values for different brain tissues would eventually increase
the precision of the method. Moreover, we notice that
there exists a big difference among the conductivity values
used in recent DBS field simulation studies (cf. Table 1),
which is also discussed in (McCann et al., 2019). This is
supposedly due to relevant difference between the conduc-
tivity values of different patients (Koessler et al., 2017).
Therefore, the conductivity value is a free parameter in
FastField, to be tuned by the user. We hope that further
studies will improve the estimation of the patient’s spe-
cific conductivity values and that future work will enable
better models and turn the homogeneous approximation
superfluous soon.

We finally remark that not all the existing electrode types
are currently supported in the current FastField release:
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twelve electrode types from four different vendors are nowsos

considered. Others can be easily added in future, as Fast-

Field allows easy embedding of different geometries. 505
506

507
5. Conclusion 508

509
FastField is a user-friendly toolbox to approximate thes,
DBS electric field in a fast and accurate way. The precisions;
of the method is comparable to that of a FEM model withs,,
the assumption of a homogeneous medium in the vicinitys;;
of the electrode, which is often sufficient for practical use.sy
Its time performance is ~ 1000 times faster than a FEMs;
model, which makes it useful for many applications in ab-s;
stract studies and clinical practice. FastField considers
the most relevant parameters for the stimulation, enrich-
ing their set with pulse width and axon diameter for VTA’
approximation (usually neglected in other studies). Hence,518
we hope it will foster insightful and reproducible studies,,,
on the effect of DBS stimulation on brain networks. 520
521
522
Code availability Zi
525
FastField MATLAB code and graphical user interfaceszs
are available under GNU licence on https://github. com/%
luxneuroimage/FastField. ZZ
VTA heuristic model as standalone function is available onss,
https://github.com/luxneuroimage/ApproX0ON. An in-su
tegration of FastField to the LeadDBS deep brain stiumla-**
tion toolbox is going to be provided at (https://github. :i
com/netstim/leaddbs). 535
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