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ABSTRACT: This paper addresses the problem of damage detection in civil engineering structures using
characteristic subspaces obtained from principal component analysis (PCA) of output-only measurements.
Damage detection is performed by comparing subspace features between a reference (healthy) state and a cur-
rent (possibly damaged) state. The damage indicator used in this study is the angular coherence between sub-
spaces.

The considered damage detection procedure is illustrated on the Champangshiehl Bridge which is a two span
concrete box girder bridge located in Luxembourg. Before its destruction, multiple damage levels were inten-
tionally created by cutting a growing number of prestressed tendons. Vibration data were acquired by the Uni-
versity of Luxembourg for each damaged state at many locations on the bridge. As previous studies demon-
strated the large importance of environmental factors on modal identification, special care was taken to

evaluate this influence during the test campaign.

1 INTRODUCTION

Extracting system dynamic features from a set of
measurements can be realized using Blind Source
Separation (BSS) techniques such as Principal Com-
ponent Analysis (PCA), Independent Component
Analysis (ICA) and Second-Order Blind Identifica-
tion (SOBI) etc. (De Boe & Golinval 2003, Nguyen
2011). The main advantage of this type of methods
is that they are very simple to use in practice.

With very little increment of computational effort,
the extraction of even more sensitive dynamic fea-
tures may be performed by exploiting the definition
of Hankel matrices. An alternative PCA-based me-
thod named Null Subspace Analysis (NSA) was pro-
posed and applied in (Yan & Golinval 2006) on the
example of an airplane mock-up. This idea was ex-
ploited later in (Nguyen 2010) to enhance the use of
other BSS techniques. These enhanced techniques
were applied successfully to fault diagnosis in indus-
trial systems (Rutten et al. 2009, Nguyen & Golinval
2011).

The aim of this paper is to present an example of
application of a PCA-based damage detection tech-
nique to a civil engineering structure, namely the
Champangshiehl Bridge which is a two span con-
crete box girder bridge located in Luxembourg.

2 DESCRIPTION OF THE CHAMPANGSHIEHL
BRIDGE

The Champangshiehl Bridge shown in Figure 1 is a
two span concrete box girder bridge built in 1966
and located in the centre of Luxembourg. The bridge
has a total length of 102 m divided into two spans of
37 m (East side) and 65 m (West side) respectively
(Fig. 2). It is pre-stressed by 112 steel wires as illus-
trated in Figure 3. The bridge is supported by two
abutments and one pylon made of reinforced con-
crete. The West abutment consists of an expansion
bearing built by a steel roll while the East abutment
is fixed. The support at the pylon is made of an elas-
tomer material.

Before its complete destruction, the bridge was
monitored and a series of damages were artificially
introduced as summarized in Table 1. The four dam-
age cases considered are illustrated in Figure 4a-d.
More details on the test campaign can be found in
report (Scherbaum & Mahowald 2011).



Figure 1. Side view of the bridge (Scherbaum & Mahowald

2011).
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Figure 2. Longitudinal section of the bridge (Scherbaum &

Mahowald 2011).
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Table 1. Description of the damage scenarios accord-
ing to the cutting sections shown in Figure 2.

East

Damage Damage Percentage cutting (100%
state equals all tendons in the
defined section cut)
#0 Undamaged state 0.45L Over the pylon
#1 Cutting straight lined  33.7% 0%
tendons in the lower
part of the bridge at
0.45L (20 tendons)
#2 Cutting 8 straight 33.7% 12.6%
lined tendons in the
upper part of the
bridge over the pylon
#3 Cutting external ten- 46.1% 24.2%
dons (56wires)
#4 Cutting 16 straight 46.1% 62.12%

lined tendons in the
upper part of the
bridge and also 8 pa-
rabolic tendons
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Figure 3. Cross section of the box girder with location of the
tendons (Scherbaum & Mahowald 2011).
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Figure 4c. Damage case # 3.
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Figure 4d. Damage case # 4.

The measurement setup considered in the present
work is given in Figure 5. Twenty sensors were lo-
cated on both sides A and B of the deck (the distance
between each sensor is about 10 m).
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Figure 5. Location of the sensors on the bridge deck.
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Figure 6. Example of response signal due to impact excitation
(healthy state).
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Figure 7. Frequency spectrum at coordinate B10 (healthy state).

Vibration monitoring was performed on the
healthy structure and at each damage states for dif-
ferent loading conditions and different types of
forced excitation (Scherbaum & Mahowald 2011).
However, only measurements obtained using impact
excitation in the unloaded configuration of the
bridge were exploited in the present study. As an ex-
ample, Figure 6 shows the time response signal re-
corded at coordinate B10 for a series of nine impacts
realised on the deck, between coordinates B5 and
B6. Figure 7 gives the corresponding frequency
spectrum.

3 IDENTIFICATION OF NATURAL
FREQUENCIES USING THE STOCHASTIC
SUBSPACE IDENTIFICATION (SSI) METHOD

In many works related to health monitoring of civil
engineering structures, a key issue is the extraction
of representative features (e.g. modal parameters). A
well established modal identification method pro-
posed by Peeters & De Roeck (2001) relies on the
use of stochastic subspace identification (SSI). The
advantage of SSI is that it can be applied using out-
put-only measurements. In the present work, SSI was
applied on the free responses recorded after each im-
pact excitation.

In Table 2, the two first natural frequencies ob-
tained for the four damage cases (D1-D4) are com-
pared to the natural frequencies of the healthy struc-
ture.

Table 2. Change in the natural frequencies.

fl 2
Value (Hz) Af; (%) Value (Hz)  Af, (%)
Healthy 1.92 5.54
D1 1.87 2.6 5.45 -1.62
D2 1.95 1.6 5.24 5.42
D3 1.82 5.21 5.39 2.71
D4 1.75 -8.85 5.3 -4.33

Table 2 shows that the decrease of the natural fre-
quencies is proportional to the damage level for
damage cases D1, D3 and D4. Only damage case D2
exhibits a different behaviour as the first natural fre-
guency increases by an amount of 1.6 % with respect
to the healthy structure. However, the second natural
frequency is affected by the larger decrease (5.42 %)
of all the damage states.

4 DYNAMIC FEATURE EXTRACTION USING
PRINCIPAL COMPONENT ANALYSIS (PCA)

Let us consider a dynamical system characterized by
a set of vibration measurements collected in the ob-
servation matrix X:

X=X XX Xy], X €R" 1)

where x, is the output vector at time step k, m is the

number of output sensors and N is the number of
time samples. As defined in (De Boe 2003), Princi-
pal component analysis (PCA) provides a linear
mapping of the data from the original dimension m
to a lower dimension p. The dimension p corre-
sponding to the number of principal components de-
fines the order of the system. In practice, PCA is of-
ten performed by singular value decomposition
(SVD) of matrix X, i.e.

X=Uzv' 2)

where U and V are orthonormal matrices, the col-
umns of U defining the principal components (PCs).
The order p of the system is determined by selecting
the first p non-zero singular values in £ which have
a significant magnitude (“energy”) as described in
(De Boe 2003). A threshold in terms of cumulated
energies is often fixed to select the effective number
of PCs that is necessary for a good representation of
matrix X. In practice, a cumulated energy of 70% to
95% is generally adequate for the selection of the ac-
tive PCs (De Boe 2003).

The null subspace (NSA) and enhanced-PCA
method (EPCA) proposed in (Yan & Golinval 2006,
Nguyen 2010) respectively are variant methods of
the PCA method obtained by exploiting Hankel ma-
trices of the dynamical system (Overschee & De
Moor 1997). The data-driven block Hankel matrix is
defined in Equation 3, where 2i is a user-defined



number of row blocks, each block contains m rows
(number of measurement sensors), j is the number of
columns (practically j = N-2i+1). The Hankel matrix
H,,; consists of 2im rows and is split into two equal

parts of i block rows which represent past and future
data respectively. Compared to the observation ma-
trix X, the Hankel matrix is built using time-lagged
vibration signals and not instantaneous representa-
tions of responses. This enables to take into account
time correlations between measurements when cur-
rent data depend on past data. Therefore, the objec-
tive pursued here in using block Hankel matrices
rather than observation matrices is to improve the
sensitivity of the detection method.

Xp Xy e e X
Xp Xz o o Xjg
Hy, = Xi Xiggo Xijq | _[Hp | _ "past” (3)
A\ - T n n
Xisg Xigg oo oo Xiyj H; future
Xitz Xigg o oo Xi+j+1
| Xoi Xpigg e e Xojjq |

where the subscripts of H, ,; denote the subscript of

the first and last element of the first column in the
block Hankel matrix.
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Figure 8. Energy diagram for the healthy structure.

Figure 8 gives the singular value (or energy) dia-
gram constructed with a number of 50 blocks in the
Hankel matrix of the healthy structure. It can be ob-
served that the first principal component concen-
trates the largest part (more than 60%) of the total
energy of the system compared to the other principal
components which correspond to much lower singu-
lar values. A slight decrease of the energy can also

be observed between the 4th and the 5th singular
value.

5 DAMAGE DETECTION BASED ON THE
CONCEPT OF SUBSPACE ANGLE

The principal components contained in matrix U
span a subspace which characterizes the dynamic
state of the system. Without any damage or variation
of environmental conditions, the characteristic sub-
space U remains unchanged. Any change in the dy-
namic behaviour caused by a modification of the
system state modifies consequently its characteristic
subspace. This change may be estimated using the
definition of subspace angles (Golub & Van Loan
1996).

As illustrated by a two-dimensional case in Figure 9,
the concept of subspace angle can be seen as a tool
to quantify existing spatial coherence between two
data sets resulting from observations of a vibration
system. It was used in (De Boe & Golinval 2003,
Yan & Golinval 2006, Nguyen 2010) to detect
changes in the dynamic behaviour of a structure (e.g.
damage, onset of nonlinearity).

current
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Figure 9. Illustration of the concept of subspace angle in a 2D-
case. The reference and the current subspaces are defined by
the active components @;, @, of the corresponding Hankel

matrices.

The application of the concept of subspace angle
on the Champangshiehl Bridge data allows to detect
all the damage cases (D1-D4) using the single first
principal component (PC) of the Hankel matrix. The
detection remains good and even more evident when
2, 3 and 4 PCs are used.

On the other hand, the use of more PCs (higher
than 4) deteriorates the quality of the distinction be-
tween the damaged and the healthy states. Indeed,
the highest PCs (associated to small singular values
i.e. low energy) come from noise present in the data
and are not dynamic features of the system. As an
example, the detection results obtained on the basis
of 3 PCs is shown in Figure 10. In this figure, a total
of 20 tests were considered: eight tests on the



healthy structure (H) and twelve tests corresponding
to the four levels of damages D1-D4. It can be ob-
served that all the damage cases are well detected
and that damage cases D2 present the largest damage
indexes.
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Figure 10. Damage detection results using EPCA.

6 CONCLUSION
The philosophy pursued throughout this paper is to
exploit experimental vibration measurements to ex-
tract dynamic features of a system without resorting
on modal identification results (i.e. natural frequen-
cies and/or mode-shapes). To this purpose, tech-
niques of the Blind Source Separation (BSS) family
are considered and especially here, a variant of Prin-
cipal Component Analysis based on the definition of
Hankel matrices is used. In this method, the order
(number of active principal components) is deter-
mined by looking at the cumulated variance in the
singular value diagram. Thus the problem of damage
detection is tackled using the subspaces spanned by
the active principal components. It consists in de-
termining the angular coherence between subspaces
obtained in current states with respect to a reference
(healthy) state. The advantage of PCA over classical
modal identification methods relies on its easiness of
use. First results obtained on the Champangshiehl
bridge are encouraging.

In further studies, the influence of environmental
conditions on the damage detection results will be
considered.
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