
1 INTRODUCTION 
Extracting system dynamic features from a set of 
measurements can be realized using Blind Source 
Separation (BSS) techniques such as Principal Com-
ponent Analysis (PCA), Independent Component 
Analysis (ICA) and Second-Order Blind Identifica-
tion (SOBI) etc. (De Boe & Golinval 2003, Nguyen 
2011). The main advantage of this type of methods 
is that they are very simple to use in practice.  

With very little increment of computational effort, 
the extraction of even more sensitive dynamic fea-
tures may be performed by exploiting the definition 
of Hankel matrices. An alternative PCA-based me-
thod named Null Subspace Analysis (NSA) was pro-
posed and applied in (Yan & Golinval 2006) on the 
example of an airplane mock-up. This idea was ex-
ploited later in (Nguyen 2010) to enhance the use of 
other BSS techniques. These enhanced techniques 
were applied successfully to fault diagnosis in indus-
trial systems (Rutten et al. 2009, Nguyen & Golinval 
2011).  

The aim of this paper is to present an example of 
application of a PCA-based damage detection tech-
nique to a civil engineering structure, namely the 
Champangshiehl Bridge which is a two span con-
crete box girder bridge located in Luxembourg.  

2 DESCRIPTION OF THE CHAMPANGSHIEHL 
BRIDGE 
The Champangshiehl Bridge shown in Figure 1 is a 
two span concrete box girder bridge built in 1966 
and located in the centre of Luxembourg. The bridge 
has a total length of 102 m divided into two spans of 
37 m (East side) and 65 m (West side) respectively 
(Fig. 2). It is pre-stressed by 112 steel wires as illus-
trated in Figure 3. The bridge is supported by two 
abutments and one pylon made of reinforced con-
crete. The West abutment consists of an expansion 
bearing built by a steel roll while the East abutment 
is fixed. The support at the pylon is made of an elas-
tomer material. 

Before its complete destruction, the bridge was 
monitored and a series of damages were artificially 
introduced as summarized in Table 1. The four dam-
age cases considered are illustrated in Figure 4a-d. 
More details on the test campaign can be found in 
report (Scherbaum & Mahowald 2011). 
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ABSTRACT: This paper addresses the problem of damage detection in civil engineering structures using 
characteristic subspaces obtained from principal component analysis (PCA) of output-only measurements. 
Damage detection is performed by comparing subspace features between a reference (healthy) state and a cur-
rent (possibly damaged) state. The damage indicator used in this study is the angular coherence between sub-
spaces.  
The considered damage detection procedure is illustrated on the Champangshiehl Bridge which is a two span 
concrete box girder bridge located in Luxembourg. Before its destruction, multiple damage levels were inten-
tionally created by cutting a growing number of prestressed tendons. Vibration data were acquired by the Uni-
versity of Luxembourg for each damaged state at many locations on the bridge. As previous studies demon-
strated the large importance of environmental factors on modal identification, special care was taken to 
evaluate this influence during the test campaign. 
 
 



 
 

Figure 1. Side view of the bridge (Scherbaum & Mahowald 
2011). 
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Figure 2. Longitudinal section of the bridge (Scherbaum & 
Mahowald 2011). 

 

 

Table 1. Description of the damage scenarios accord-
ing to the cutting sections shown in Figure 2.  
Damage 
state 

Damage Percentage cutting (100% 
equals all tendons in the 
defined section cut) 

# 0 Undamaged state 0.45L Over the pylon 

# 1 Cutting straight lined 
tendons in the lower 
part of the bridge at 
0.45L (20 tendons) 

33.7% 0% 

# 2 Cutting 8 straight 
lined tendons in the 
upper part of the 
bridge over the pylon 

33.7% 12.6% 

# 3 Cutting external ten-
dons (56wires) 

46.1% 24.2% 

# 4 Cutting 16 straight 
lined tendons in the 
upper part of the 
bridge and also 8 pa-
rabolic tendons 

46.1% 62.12% 
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Figure 3. Cross section of the box girder with location of the 
tendons (Scherbaum & Mahowald 2011). 
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Figure 4a. Damage case # 1. 
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Figure 4b. Damage case # 2. 
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Figure 4c. Damage case # 3. 
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Figure 4d. Damage case # 4. 

 
The measurement setup considered in the present 

work is given in Figure 5. Twenty sensors were lo-
cated on both sides A and B of the deck (the distance 
between each sensor is about 10 m). 

 
 

 
 
Figure 5. Location of the sensors on the bridge deck. 
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Figure 6. Example of response signal due to impact excitation 
(healthy state). 

 
 

 
 

Figure 7. Frequency spectrum at coordinate B10 (healthy state). 

 
Vibration monitoring was performed on the 

healthy structure and at each damage states for dif-
ferent loading conditions and different types of 
forced excitation (Scherbaum & Mahowald 2011). 
However, only measurements obtained using impact 
excitation in the unloaded configuration of the 
bridge were exploited in the present study. As an ex-
ample, Figure 6 shows the time response signal re-
corded at coordinate B10 for a series of nine impacts 
realised on the deck, between coordinates B5 and 
B6. Figure 7 gives the corresponding frequency 
spectrum. 

3 IDENTIFICATION OF NATURAL 
FREQUENCIES USING THE STOCHASTIC 
SUBSPACE IDENTIFICATION (SSI) METHOD 
In many works related to health monitoring of civil 
engineering structures, a key issue is the extraction 
of representative features (e.g. modal parameters). A 
well established modal identification method pro-
posed by Peeters & De Roeck (2001) relies on the 
use of stochastic subspace identification (SSI). The 
advantage of SSI is that it can be applied using out-
put-only measurements. In the present work, SSI was 
applied on the free responses recorded after each im-
pact excitation. 

 
In Table 2, the two first natural frequencies ob-

tained for the four damage cases (D1-D4) are com-
pared to the natural frequencies of the healthy struc-
ture.  
 

 
 

Table 2.  Change in the natural frequencies.  

 f1    f2 

 Value (Hz) f1 (%)  Value (Hz) f2 (%) 

Healthy 1.92   5.54  
D1 1.87 -2.6  5.45 -1.62 
D2 1.95 1.6  5.24 -5.42 
D3 1.82 -5.21  5.39 -2.71 
D4 1.75 -8.85  5.3 -4.33 

 
Table 2 shows that the decrease of the natural fre-

quencies is proportional to the damage level for 
damage cases D1, D3 and D4. Only damage case D2 
exhibits a different behaviour as the first natural fre-
quency increases by an amount of 1.6 % with respect 
to the healthy structure. However, the second natural 
frequency is affected by the larger decrease (5.42 %) 
of all the damage states. 

4 DYNAMIC FEATURE EXTRACTION USING 
PRINCIPAL COMPONENT ANALYSIS (PCA) 

Let us consider a dynamical system characterized by 

a set of vibration measurements collected in the ob-

servation matrix X: 

 1 2 ... ...k NX x x x x , m
k x         (1) 

where kx  is the output vector at time step k, m is the 

number of output sensors and N is the number of 

time samples. As defined in (De Boe 2003), Princi-

pal component analysis (PCA) provides a linear 

mapping of the data from the original dimension m 

to a lower dimension p. The dimension p corre-

sponding to the number of principal components de-

fines the order of the system. In practice, PCA is of-

ten performed by singular value decomposition 

(SVD) of matrix X, i.e. 

T
X UΣV      (2) 

where U and V  are orthonormal matrices, the col-
umns of U defining the principal components (PCs). 
The order p of the system is determined by selecting 
the first p non-zero singular values in Σ  which have 
a significant magnitude (“energy”) as described in 
(De Boe 2003). A threshold in terms of cumulated 
energies is often fixed to select the effective number 
of PCs that is necessary for a good representation of 
matrix X. In practice, a cumulated energy of 70% to 
95% is generally adequate for the selection of the ac-
tive PCs (De Boe 2003). 

The null subspace (NSA) and enhanced-PCA 

method (EPCA) proposed in (Yan & Golinval 2006, 

Nguyen 2010) respectively are variant methods of 

the PCA method obtained by exploiting Hankel ma-

trices of the dynamical system (Overschee & De 

Moor 1997). The data-driven block Hankel matrix is 

defined in Equation 3, where 2i is a user-defined 



number of row blocks, each block contains m rows 

(number of measurement sensors), j is the number of 

columns (practically j = N-2i+1). The Hankel matrix 

1,2iH  consists of 2im rows and is split into two equal 

parts of i block rows which represent past and future 

data respectively. Compared to the observation ma-

trix X, the Hankel matrix is built using time-lagged 

vibration signals and not instantaneous representa-

tions of responses. This enables to take into account 

time correlations between measurements when cur-

rent data depend on past data. Therefore, the objec-

tive pursued here in using block Hankel matrices 

rather than observation matrices is to improve the 

sensitivity of the detection method.  
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where the subscripts of 1,2iH  denote the subscript of 

the first and last element of the first column in the 

block Hankel matrix.  
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Figure 8. Energy diagram for the healthy structure. 

 
Figure 8 gives the singular value (or energy) dia-

gram constructed with a number of 50 blocks in the 
Hankel matrix of the healthy structure. It can be ob-
served that the first principal component concen-
trates the largest part (more than 60%) of the total 
energy of the system compared to the other principal 
components which correspond to much lower singu-
lar values. A slight decrease of the energy can also 

be observed between the 4th and the 5th singular 
value. 

5 DAMAGE DETECTION BASED ON THE 
CONCEPT OF SUBSPACE ANGLE 

The principal components contained in matrix U 
span a subspace which characterizes the dynamic 
state of the system. Without any damage or variation 
of environmental conditions, the characteristic sub-
space U remains unchanged. Any change in the dy-
namic behaviour caused by a modification of the 
system state modifies consequently its characteristic 
subspace. This change may be estimated using the 
definition of subspace angles (Golub & Van Loan 
1996).  

 

As illustrated by a two-dimensional case in Figure 9, 
the concept of subspace angle can be seen as a tool 
to quantify existing spatial coherence between two 
data sets resulting from observations of a vibration 
system. It was used in (De Boe & Golinval 2003, 
Yan & Golinval 2006, Nguyen 2010) to detect 
changes in the dynamic behaviour of a structure (e.g. 
damage, onset of nonlinearity). 

 

 

 
Figure 9. Illustration of the concept of subspace angle in a 2D-

case. The reference and the current subspaces are defined by 

the active components  1Φ ,  2Φ  of the corresponding Hankel 

matrices. 

 
The application of the concept of subspace angle 

on the Champangshiehl Bridge data allows to detect 
all the damage cases (D1-D4) using the single first 
principal component (PC) of the Hankel matrix. The 
detection remains good and even more evident when 
2, 3 and 4 PCs are used. 

 On the other hand, the use of more PCs (higher 
than 4) deteriorates the quality of the distinction be-
tween the damaged and the healthy states. Indeed, 
the highest PCs (associated to small singular values 
i.e. low energy) come from noise present in the data 
and are not dynamic features of the system. As an 
example, the detection results obtained on the basis 
of 3 PCs is shown in Figure 10. In this figure, a total 
of 20 tests were considered: eight tests on the 



healthy structure (H) and twelve tests corresponding 
to the four levels of damages D1-D4. It can be ob-
served that all the damage cases are well detected 
and that damage cases D2 present the largest damage 
indexes. 
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Figure 10. Damage detection results using EPCA. 

6 CONCLUSION 
The philosophy pursued throughout this paper is to 
exploit experimental vibration measurements to ex-
tract dynamic features of a system without resorting 
on modal identification results (i.e. natural frequen-
cies and/or mode-shapes). To this purpose, tech-
niques of the Blind Source Separation (BSS) family 
are considered and especially here, a variant of Prin-
cipal Component Analysis based on the definition of 
Hankel matrices is used.  In this method, the order 
(number of active principal components) is deter-
mined by looking at the cumulated variance in the 
singular value diagram. Thus the problem of damage 
detection is tackled using the subspaces spanned by 
the active principal components. It consists in de-
termining the angular coherence between subspaces 
obtained in current states with respect to a reference 
(healthy) state. The advantage of PCA over classical 
modal identification methods relies on its easiness of 
use. First results obtained on the Champangshiehl 
bridge are encouraging.  

In further studies, the influence of environmental 
conditions on the damage detection results will be 
considered. 
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