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Abstract. We consider the problem of estimating the joint distribution
of n independent random variables. Given a loss function and a family of
candidate probabilities, that we shall call a model, we aim at designing
an estimator with values in our model that possesses good estimation
properties not only when the distribution of the data belongs to the
model but also when it lies close enough to it. The losses we have in
mind are the total variation, Hellinger, Wasserstein and Lp-distances to
name a few. We show that the risk of our estimator can be bounded by
the sum of an approximation term that accounts for the loss between the
true distribution and the model and a complexity term that corresponds
to the bound we would get if this distribution did belong to the model.
Our results hold under mild assumptions on the true distribution of
the data and are based on exponential deviation inequalities that are
non-asymptotic and involve explicit constants. Interestingly, when the
model reduces to two distinct probabilities, our procedure results in a
robust test whose errors of first and second kinds only depend on the
losses between the true distribution and the two tested probabilities.

1. Introduction

Observe n independent random variables X1, . . . , Xn with values in a
measured space (E, E , µ) and assume they are i.i.d. with common distri-
bution P ?. Consider now a loss function ` for evaluating the performance
of an estimator “P of P ?. The loss ` is a nonnegative function defined on
P ×M for some suitable set P containing the true distribution P ? and a
model M , i.e. a family of candidate probabilities for P ?, that should either
contain P ? or at least provide a suitable approximation of it. The purpose
of the present paper is to design a generic method for estimating P ? that
takes into account our choice of ` and M in order to build an estimator“P = “P (X1, . . . , Xn) with values in M that enjoys good estimation prop-
erties. Even though ` may not be a genuine distance (it may neither be
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symmetrical nor satisfy the triangle inequality), we shall interpret it as if it
were: small values of `(P ?, “P ) would mean “P is “close” to P ? while large
values of `(P ?, “P ) would in contrast be understood as “P is “far” from it.
Our aim is therefore to define “P in such a way that `(P ?, “P ) be as close as
possible to infP∈M `(P ?, P ) = `(P ?,M ).

This problem was solved for the Hellinger loss in Baraud et al. (2017)
and Baraud and Birgé (2018). In order to give an account of their results,
let us first recall that the squared Hellinger distance h2(P,Q) between two
probabilities P and Q on E is given by the formulas

(1) h2(P,Q) = 1
2

∫
E
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where ν denotes an arbitrary measure on (E, E) that dominates both P and
Q, the result being independent of the choice of ν. The estimator “P (X)
which results from their procedure (named ρ-estimation) typically satisfies
an inequality of the form

(2) E
î
h2
Ä
P ?, “P (X)

äó
6 C

ï
inf
P∈M

h2(P ?, P ) + Dn(M )
n
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,

where C is a positive numerical constant and Dn(M ) a complexity term
that may depend on the number n of observations and the dimension (in
some sense) of the statistical model M . This inequality essentially says that
the loss between P ? and “P is not larger CDn(M )/n when P ? belongs to
the model M and that this bound does not deteriorate too much as long as
infP∈M h2(P ?, P ) remains sufficiently small. An interesting feature of (2)
lies in the following facts: the inequality (2) is true under very weak as-
sumptions on both the statistical model M and the underlying distribution
P ? and, in all cases we know, the quantity Dn(M )/n turns out to be the
best possible bound that can be achieved uniformly over the model M (up
to a possible logarithmic factor).

In the present paper, we wish to extend this result to other losses, typically
the total variation distance, the Wasserstein distance, the Kullback-Leibler
divergence and the Lj-distances with j ∈ (1,+∞], among others. Unfortu-
nately, for most of these losses there is no hope to establish a risk bound
akin to (2) under weak assumptions on both M and P ? as it was the case
for the Hellinger loss. If, for instance, M is the set of all uniform distri-
butions on [θ, θ + 1] with θ ∈ R and ` is the Kullback-Leibler divergence,
supP ?∈M E[`(P ?, “P )] = +∞ whatever the estimator “P ∈ M and there is
consequently no way of controlling the risk of “P as in (2). The situation
does not improve much with the Lj-loss which requires that P ? and the
probabilities in M admit densities in Lj(E, E , µ) with respect some given
reference measure µ, etc. In view of these disappointing observations, we
see that specific assumptions need to be made necessarily. Throughout this
paper our point of view is to make (possibly strong) assumptions on the
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model M , since it is chosen by the statistician, but to assume as little as
possible on P ? since it is unknown.

Despite some differences, our approach shares many similarities with that
developed for the Hellinger loss in Baraud et al. (2017) and Baraud and
Birgé (2018). In particular, it is also based on the existence of suitable tests
between probability “balls” (with a suitable sense when ` is not a genuine
distance). We shall give some general recipe on how to build such tests
for the various loss functions we consider. We shall see that our general
construction enables us to recover some well-known tests for some losses
while for other losses, these tests are to our knowledge new. For the total
variation distance, our testing procedure bears some similarities, though not
exactly the same, with that proposed by Devroye and Lugosi (see Devroye
and Lugosi (2001)[Chapter 6]). Their approach is based on the seminal
paper by Yatracos (1985). For the Kullback-Leibler divergence we obtain
the classical likelihood ratio test while, for the L2-distance, our approach
results in the test based on the comparison of L2-contrast functions between
the candidate densities. For the Wasserstein distance and the Lj-losses with
j 6= 2, the tests we get seem to be new in the literature.

Our estimation procedure results in a new class of estimators that we shall
call `-estimators and which generalize ρ-estimators. A nice feature of our
approach is that the study of these estimators can be made within a unified
framework even though, in order to keep the present paper to a reasonable
size, we shall mainly discuss the cases of the total variation and L2-losses.
We shall see that `-estimators based on the total variation loss are robust
and can even provide more robustness than ρ-estimators do. However, in
some parametric models, they fail to reach the optimal rate of convergence
while ρ-estimators are optimal (or nearly optimal) in all cases we know.

In the present paper, we shall not address the problem of model selec-
tion (or adaptation) nor shall we discuss the computational issues that may
result from the calculation of these estimators, even though for some spe-
cific models and losses we shall occasionally provide an explicit form of the
`-estimator. Model selection will be addressed in a companion paper. The
implementation of `-estimator would in general require to see what could be
done to calculate them in each particular situation.

We shall rather provide several examples for the purpose of illustrating the
performance of `-estimators and contextualizing them within the literature.
For example, we shall show that, for the total variation loss, `-estimators
can achieve a convergence rate which is faster than the usual 1/

√
n rate.

Such results contrast with those obtained previously by Birgé (2006) with T -
estimators (see his Corollary 6) and Devroye and Lugosi (2001) with skeleton
estimators. Closer to our approach (for this particular loss) is that of Gao
et al. (2019). In their paper, these authors proposed a robust estimation
method of the mean of a Gaussian vector based on the observation of an
n-sample. The estimator proposed by Gao et al. in this specific framework



4 YANNICK BARAUD

shares some similarities with ours. It is also obtained as the minimizer of the
supremum of a random functional defined on a suitable class of functions.
However, our construction differs from theirs by the choices of the classes
over which the supremum and infimum are computed.

We also address the problem of estimating a density on Rd with respect
to the Lebesgue measure when the risk is based on the L2-loss and the tar-
get density is not necessarily bounded in sup-norm. We are only aware of
very few results in this direction. Birgé and Massart (1998) studied the
performances of minimum L2-contrast estimators on linear spaces V . Their
results, however, suffer from two limitations: the functions in V are sup-
ported on a known compact set, say [0, 1]d, and V is finite dimensional. Our
theory allows us to relax these two restrictions and generalize their results to
an infinite dimensional linear space V of functions with possibly unbounded
support (Rd typically). For a suitable choice of V we shall derive a uniform
risk bound over the class of all squared integrable densities that lie in a
Besov space Bα

s,∞(Rd) with parameters s > 2 and α > 0. This result is
to our knowledge new and generalizes that obtained by Reynaud-Bouret et
al. (2011) on the real line when s > 2 (we also refer to Reynaud-Bouret and
Rivoirard (2010) for a lower bound on the minimax risk).

Finally, let us mention that the basic ideas that underline the construction
of `-estimators bear similarities with those used in Generative Adversarial
Nets (GAN). As described in Goodfellow et al. (2014), GAN can be viewed
as a minimax two player game. Given an n-sample X1, . . . , Xn with dis-
tribution P ? and a model M for P ?, the first player aims at designing an
estimator ‹P of P ? with values in M for which the second player will hardly
be able to discriminate between a (fake) n-sample with distribution ‹P and a
true one with distribution P ?. In our case, we aim at designing an estimator“P ∈ M such that `(P ?, “P ) is so small that there is no way to test (hence
to discriminate) between P ? and “P from an n-sample with distribution P ?
or “P . When ` is the Hellinger distance, it is well-known that this goal is
achieved as soon as h(P ?, “P ) is small compared to 1/

√
n.

Our paper is organized as follows. We first present the statistical frame-
work as well as our main assumptions in Section 2. We actually consider a
more general framework than the one described in this introduction since
we assume the observations X1, . . . , Xn to be independent but not necessar-
ily i.i.d. We also allow our model M to contain finite and possibly signed
measures, hence not only probabilities. Such models are useful when deal-
ing with Lj-losses. The heuristics underlying our approach is also described
in Section 2 as well as our main assumptions on the loss functions we use.
The estimation procedure and the general results on the performance of `-
estimators are presented in Section 3 and some consequences of these results
for the Wasserstein and the L2-losses in Section 4. A uniform risk bound
of the `-estimators for the L2-loss over Besov balls on Rd can also be found
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there. We then put a special emphasis on the total variation loss in Sec-
tion 5. In particular, we provide an illustration to the problem of estimating
a non-increasing density on a half line for the L1-distance. The Hellinger
and Kullback-Leibler losses are considered in Section 6 while Section 7 will
be devoted to the comparison between ρ- and `-estimators for the total vari-
ation loss. As already mentioned, our procedure is based on the existence of
a family of robust tests between two distinct probabilities. The performance
of such tests being interesting per se, it will be studied in Section 8 with a
special emphasis on the cases of the total variation and Lj-losses. Finally
Section 9 is devoted to the proofs of the main theorems. The other proofs
may be found in Section 10.

2. The statistical framework and our main assumptions

Throughout the paper, we assume that the observations X1, . . . , Xn are
independent but not necessarily i.i.d. and denote by P ?1 , . . . , P ?n their mar-
ginal distributions. However, in many cases, our statistical model is based on
the assumption that the data are i.i.d., although this might not be true, and
we shall analyze the behaviour of our estimator with respect to a possible
departure from this assumption of equidistribution.

We denote by P a set of probabilities on (E, E) that contains the mar-
ginal distributions P ?1 , . . . , P ?n , so that P? =

⊗n
i=1 P

?
i is the distribution of

X = (X1, . . . , Xn) and P = {P =
⊗n

i=1 Pi, Pi ∈P} the set of all product
probabilities with marginals in P. In particular, P? belongs to P . For
convenience, we identify an element P =

⊗n
i=1 Pi of P with the n-tuple

(P1, . . . , Pn). Depending on the context, we either write P as a product of
probabilities or as an n-tuple. We use the notation Y ∼ S to say that the
random variable Y is distributed according to S and when we write E[g(X)],
we assume that X ∼ P? while ES [f(Y )] represents the expectation of f(Y )
when Y ∼ S. We use the same conventions for Var

(
g(X)

)
and VarS

(
f(Y )

)
.

Beside these conventions, we use the following notations. For x ∈ R and
k > 0, xk+ = max{0, x}k and xk− = max{0,−x}k, sign(x) = 1lx>0 − 1lx<0;
for x ∈ Rd, |x| denotes the Euclidean norm of x and B(x, r) the closed
Euclidean ball centered at x with radius r > 0. Given a σ-finite measure
µ on (E, E) and j ∈ [1,+∞], we denote by Lj(E,µ) the set of measurable
functions f on (E, E , µ) such that ‖f‖µ,j < +∞ with

‖f‖µ,j =
Å∫

E
|f |jdµ

ã1/j
when j ∈ [1,+∞)(3)

‖f‖µ,∞ = inf{C > 0, |f | 6 C µ-a.e.} when j = +∞.(4)

We associate to Lj(E,µ), the set Lj(E,µ) of equivalent classes on which
two functions that coincide for µ-almost all x ∈ E are indistinguishable.
For a positive integer d, we write Lj(Rd) and Lj(Rd) for Lj(E,µ) and
Lj(E,µ) respectively when E = Rd, E is the Borel σ-algebra and µ = λ
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is the Lebesgue measure on Rd. Finally, we denote by ‖f‖∞ the quantity
supx∈E |f(x)| ∈ [0,+∞]. In particular, one should not confuse ‖f‖∞ with
‖f‖µ,∞.

2.1. Models and losses. As already mentioned, our strategy for estimat-
ing P? is based on models. This means that we assume to have at disposal
a family M of elements of the form (P1, . . . , Pn) where the Pi are finite
measures on (E, E), possibly signed, which belong to some set M . In most
cases, the Pi are probabilities but it is sometimes convenient to consider
signed measures of the form p · µ where p is not necessarily a probability
density but an element of Lj(E,µ) ∩L1(E,µ) for some j > 1.

In the density setting, i.e. when we believe that the observationsX1 . . . , Xn

are i.i.d., we consider a model M which corresponds to this belief, i.e. of
the form {(P, . . . , P ), P ∈ M } and specify M only. In other statistical
frameworks such as the regression one, the data may no longer be i.i.d.
and our model M for P? = (P ?1 , . . . , P ?n) consists of elements of the form
(P1, . . . , Pn) with possibly different entries in M .

Throughout this paper we assume that M (and therefore M ⊂ M n)
is at most countable (which means finite or countable) in order to avoid
measurability issues. Since the model M is only assumed to provide an
approximation of P? and may not contain it, this condition is not very
restrictive: most of the models that statisticians use are separable and can
therefore be well approximated by countable subsets.

Since M is countable, it is dominated and there exists a σ-finite measure
µ on (E, E) for which we may write any element P ∈ M as P = p · µ for
some integrable function p on (E, E). Throughout the paper, we assume
the measure µ associated to M to be fixed once and for all and that the
statistician has chosen for each P ∈M a convenient version p ∈ L1(E,µ) of
dP/dµ. We systematically use the corresponding lower case letter to denote
this density (P = p · µ, Q = q · µ, etc.). This construction results in a
family of densitiesM associated to M . Sometimes we shall actually rather
start from a countable familyM of densities in L1(E,µ) (which may not be
probability densities) and then define M as the family of (possibly signed)
finite measures with densities inM, i.e. M = {P = p · µ, p ∈M}.

Given the previous framework, the observation X and the modelM , we
build an estimator “P = “P(X) of P? with values inM and, to evaluate its
performance, we introduce a loss function ` defined on P ×M with values
in R+. In order to avoid trivialities, we assume that ` is not constant equal
to 0. For P = (P1, . . . , Pn) ∈ P and Q = (Q1, . . . , Qn) ∈M , we set

(5) `(P,Q) =
n∑
i=1

`(Pi, Qi)

and measure the quality of “P by the quantity `(P?,“P). The smaller this
quantity, the better the estimator. Since, by construction, “P ∈M , `(P?,“P)
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cannot be smaller than infQ∈M `(P?,Q) = `(P?,M ) and the best we can
expect is that `(P?,“P) be close to `(P?,M ). Of special interest is the
situation where `(P?,M ) = 0, which generalizes the case of P? ∈M (P?

belongs to the model) and suggests to introduce the notations

(6) M = {P ∈P | `(P,M ) = 0} and M = {P ∈ P | `(P,M ) = 0}.

2.2. Some heuristics. To simplify the presentation of our heuristics, let
us assume that the Xi are truly i.i.d. with distribution P ? and that the
elements ofM take the form P⊗n with P ∈M so that `(P,Q) = n`(P,Q)
by (5). If P ? were known, the loss function ` would provide an ordering
between the elements of M by saying that P is better than Q if `(P ?, P ) 6
`(P ?, Q) and an ideal point in M for estimating P ? would be P ∈M that
satisfies `(P ?, P ) = infP∈M `(P ?, P ), whenever this point exists. Since P ?
is unknown, one cannot find P .

Assume nevertheless that we are able to approximate `(P ?, P )− `(P ?, Q)
by some statistic T (X, P,Q) with an error bounded by ∆. We can use
T (X, P,Q) for testing between P and Q, deciding P when T (X, P,Q) is
negative and Q otherwise. It results in a robust test since we do not as-
sume that P ? is either P or Q (and not even very close to any of them)
and it decides correctly whenever |`(P ?, P ) − `(P ?, Q)| > ∆. Varying
(P,Q) among all possible pairs of probabilities in M 2, we obtain a fam-
ily {T (X, P,Q), (P,Q) ∈M 2} of robust tests which we can use to build an
estimator of P ?, or rather of P , as defined above.

Deriving an estimator from a family of robust tests is not a new problem
and methods for that have been developed a long time ago by Le Cam (1973)
and then Birgé (1983), more recently by Baraud (2011) and then Baraud
et al. (2017), and it is actually this last recipe that we shall use here. In
Baraud et al. (2017) it was used to handle the loss ` = h2 based on the
Hellinger distance h to build ρ-estimators. It worked because we could (ap-
proximately) express h2(P ?, P )−h2(P ?, Q) as the expectation of T (X, P,Q)
or, more precisely, view T (X, P,Q) as an empirical version of an approxima-
tion of h2(P ?, P )− h2(P ?, Q), then use the properties of the corresponding
empirical process indexed by (P,Q) to build a suitable estimator. To mimic
this construction, we need that similar arguments apply to our choice of `.
We shall explain more precisely in Sections 4.1 and 6.1 what properties of
the loss imply the assumptions that are needed for our proofs. As to the
performance of the robust tests based on the sign of T (X, P,Q) that we
mentioned above, it will be studied in Section 8.

2.3. Loss functions. Let us now provide the definitions of the various loss
functions we consider in this paper.
Total variation loss (TV-loss). The total variation distance ‖P −Q‖
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between two probabilities P,Q on (E, E) is defined as follows:

(7) ‖P −Q‖ = sup
A∈E

[P (A)−Q(A)] = 1
2

∫
E

∣∣∣∣dPdν − dQ

dν

∣∣∣∣ dν,
where ν denotes an arbitrary measure that dominates both P and Q. The
total variation loss is `(P,Q) = ‖P −Q‖. We shall hereafter write TV for
total variation and TV-estimator for the `-estimator associated to this loss.

Hellinger loss. The Hellinger loss is related to the Hellinger distance h,
which is defined by (1), by `(P,Q) = h2(P,Q). We recall that the quantity
ρ(P,Q) = 1− h2(P,Q) is the Hellinger affinity between P and Q.
Kullback-Leibler loss (KL-loss). TheKullback-Leibler divergenceK(P,Q)
between two probabilities P = p · µ and Q = q · µ on (E, E) is defined as

(8) K(P,Q) =
® ∫

E log(p/q) p dµ when P � Q

+∞ otherwise,

with the following conventions:

For x ∈ E, log
Å
p

q

ã
(x) =


0 if p(x) = q(x) = 0
+∞ if p(x) > 0 and q(x) = 0
−∞ if p(x) = 0 and q(x) > 0.

In particular, exp [log(p(x)/q(x))] = p(x)/q(x) for all x ∈ E with the con-
ventions 0/0 = 1 and a/0 = +∞ for all a > 0. The KL-loss is defined as
`(P,Q) = K(P,Q).
Wasserstein loss. The (first) Wasserstein distance between two probabil-
ities P and Q on E = [0, 1] (with E its Borel σ-algebra) associated to the
Euclidean metric is

(9) W (P,Q) = inf
X∼P,Y∼Q

E [|X − Y |] = sup
f

[E (f(X))− E (f(Y ))] ,

where the infimum runs among all pairs (X,Y ) with marginal distributions
P and Q and the supremum among all functions f on [0, 1] which are Lip-
schitz with Lipschitz constant not larger than 1. We refer to Villani (2009)
[pages 77 and 78] for the second equality in (9). The estimator correspond-
ing to the Wasserstein loss `(P,Q) = W (P,Q) is the W-estimator.
Lj-loss. Given the reference measure µ on E and j ∈ [1,+∞], we consider
the set Pj of finite and signed measures P on (E, E) of the form P = p · µ
with p ∈ Lj(E,µ) ∩ L1(E,µ). It is a normed linear space with Lj-norm
‖P‖j = ‖p‖µ,j , whith ‖·‖µ,j defined in (3) and (4). Given two elements
P = p · µ and Q = q · µ in Pj , we define the Lj-loss `j on Pj by

(10) `j(P,Q) = ‖p− q‖µ,j .
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Unlike the losses we have seen so far, the Lj-loss between P andQ depends
on the choice of the reference measure µ. Changing µ would automatically
change the value of `j(P,Q). An `-estimator for the `j-loss is called an
`j-estimator.

2.4. Assumptions. As already mentioned in Section 2.2, the construction
we use here only applies to some specific loss functions ` and countable
models M . They are characterized by the fact that one can find a family

T (`,M ) =
{
t(P,Q), (P,Q) ∈M 2}

of measurable functions on (E, E) with the following properties.

Assumption 1. The elements t(P,Q) of T (`,M ) satisfy:

(i) for all P,Q ∈M , t(P,Q) = −t(Q,P );
(ii) there exist positive numbers a0, a1 such that, for all S ∈ P and
P,Q ∈M ,

(11) ES
[
t(P,Q)(X)

]
6 a0`(S, P )− a1`(S,Q);

(iii) whatever P and Q in M ,

sup
x∈E

t(P,Q)(x)− inf
x∈E

t(P,Q)(x) 6 1.

Note that (i) implies that t(P,P ) = 0, hence by (11) that 0 6 (a0 −
a1)`(S, P ) for all S ∈P and P ∈M . Consequently a1 6 a0 (since ` is not
constant equal to 0). We may therefore assume hereafter with no loss of
generality that a1 6 a0.

We shall see later that some losses actually satisfy a stronger assumption,
namely:

Assumption 2. Additionally to Assumption 1, there exists a2 > 0 such that

(iv) for all S ∈P and P,Q ∈M ,

VarS
[
t(P,Q)(X)

]
6 a2 [`(S, P ) + `(S,Q)] .

It is clear that if a function t(P,Q) satisfies (ii) and (iv) for some posi-
tive numbers a0, a1 and a2, so does Ct(P,Q) for C > 0, with the constants
Ca0, Ca1 and C2a2 in place of a0, a1 and a2 respectively. Condition (iii) may
therefore be interpreted as a normalizing condition which can be applied to
any family T (`,M ) which is bounded in supremum norm.

We shall see in Section 4.1 that all the loss functions we have introduced
previously can be associated to families T (`,M ) that do satisfy Assump-
tion 1 (and sometimes Assumption 2).
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3. The `-estimator and its risk bound on a model

3.1. Our estimation procedure. Given a family T (`,M ) of functions
satisfying Assumption 1, we introduce, for each P = ⊗ni=1Pi ∈ P and
Q = ⊗ni=1Qi ∈M , the test statistic

(12) T(X,P,Q) =
n∑
i=1

t(Pi,Qi)(Xi).

Applying Assumption 1-(ii) to S = P ?i , P = Pi and Q = Qi for all i ∈
{1, . . . , n} successively and then summing the resulting inequalities over i,
we derive that

E [T(X,P,Q)] 6 a0`(P?,P)− a1`(P?,Q).(13)

Exchanging the roles of P and Q we deduce from Assumption 1-(i) that

E [T(X,P,Q)] > a1`(P?,P)− a0`(P?,Q).(14)

The basic idea underlying our estimation procedure is based on the fol-
lowing heuristics. Assume for the sake of simplicity that a0 = a1 > 0 so
that (13) and (14) imply that

E [T(X,P,Q)] = a0 [`(P?,P)− `(P?,Q)] for all P? ∈ P and P,Q ∈M .

This means that a−1
0 T(X,P,Q) is an unbiased estimator of the difference

`(P?,P) − `(P?,Q) for P and Q in M . If we believe that, for each fixed
P ∈ M , this estimator is uniformly good over all Q ∈ M , the quantity
a−1

0 supQ∈M T(X,P,Q) should be close to

sup
Q∈M

[`(P?,P)− `(P?,Q)] = `(P?,P)− inf
Q∈M

`(P?,Q).

Since this latter quantity is minimal when P is the best approximation point
of P? inM (provided that it exists), it is natural to define our estimator as
a minimizer overM of the map

P 7→ T(X,P) = sup
Q∈M

T(X,P,Q).

This minimizer may not exist but only an ε-minimizer is actually necessary.
More precisely, given ε > 0, we define an `-estimator of P? in M as any
element “P of the set

(15) E (X) =
ß

P ∈M , T(X,P) 6 inf
P′∈M

T(X,P′) + ε

™
.

Note that, since M is countable, “P can always be chosen in a measurable
way. As we shall see below, it is wiser to choose ε small (i.e. not much
larger than 1) in order to improve the risk bound of an `-estimator. In
particular, if there exists an element P ∈M (not necessarily unique) such
that T(X,P) = infP′∈M T(X,P′), we should choose it as our estimator “P.
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It follows from Assumption 1-(i) that T(X,P) > T(X,P,P) = 0 for
all P ∈ M so that any element “P that satisfies 0 6 T(X,“P) 6 ε is an
`-estimator.

3.2. Risk bounds of an `-estimator on a model. As suggested by the
previous heuristics, the performance of our estimator depends on how close
T(X,P,Q) is to its expectation, hence on the behaviour of the process Z
defined onM 2 by

(P,Q) 7→ Z(X,P,Q) = T(X,P,Q)− E
[
T(X,P,Q)

]
=

n∑
i=1

î
t(P i,Qi)(Xi)− E

î
t(P i,Qi)(Xi)

óó
.(16)

More precisely, the performance of an `-estimator is controled by a combi-
nation of the approximation function P 7→ `(P?,P) and the function v from
M to R+ given by

(17) v(P) = 1√
n

w(P) with w(P) = E
ñ

sup
Q∈M

∣∣Z(X,P,Q)
∣∣ô

as shown by the following theorem to be proven in Section 9. It appears that
in many applications, w(P) is of order

√
n, which motivates our introduction

of v(P).

Theorem 1. Let Assumption 1 be satisfied, ξ > 0 and P be an arbitrary
element ofM . Any `-estimator “P, i.e. any element of the random set E (X)
defined by (15), satisfies, whatever P? ∈ P ,

`(P?,“P) 6 2a0
a1
`(P?,P)− `(P?,M ) +

√
n

a1

î
2v(P) +

√
2ξ
ó

+ ε

a1
(18)

with probability at least 1− e−ξ. Consequently,

(19) E
ñ
`(P?,“P)

n

ô
6 C inf

P∈M

ñ
`(P?,P)

n
+ v(P) + 1√

n

ô
where C only depends on the constants a0, a1 and ε.

We shall see in our examples that v(P) is related to some global complex-
ity of the model M with respect to the approximation point P, typically
to its “dimension” in a suitable sense (linear, VC or metric). Note that the
minimum in (19) might not be achieved for the best approximation point
of P? in M but rather by some element P ∈ M that provides the best
tradeoff between approximation and complexity at that point. However, in
many situations, the quantity v(P) + 1 can be bounded uniformly overM
by some quantity v(M ) that only depends on the model. In this case (19)
leads to

(20) C−1E
ñ
`(P?,“P)

n

ô
6 inf

P∈M

`(P?,P)
n

+ v(M )√
n

= `(P?,M )
n

+ v(M )√
n
.
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The quantity v(M )/
√
n corresponds to the bound we would get if P? did

belong toM while `(P?,M )/n corresponds to an approximation term due
to a possible misspecification of the model.

In density estimation whereM = {P⊗n, P ∈M }, (20) becomes

(21) E
ñ
`(P?,“P)

n

ô
6 C

ñ
inf
P∈M

ñ
1
n

n∑
i=1

`(P ?i , P )
ô

+ v(M )√
n

ô
.

Note that the approximation term can be small even in the unfavourable
situation where none of the true marginals P ?i belongs to M . When the
data are truly i.i.d. with distribution P ? ∈M , then

sup
P ?∈M

E
î
`(P ?, “P )

ó
6
Cv(M )√

n
,

which implies that the minimax rate over M is at most of order 1/
√
n.

Let us now see how this bound can be improved under the additional
property that the family T (`,M ) satisfies Assumption 2. In order to ob-
tain such an improvement we need to analyze the behaviour of the process
Q 7→ Z(X,P,Q) in some neighbourhood (with respect to `) of P. For this
purpose, we introduce the following sets, to be called balls hereafter, even
though ` is not a distance in general:

(22) B(P?, y) = {Q ∈M , `(P?,Q) 6 y} for y > 0.

We then define the associated quantity w(P, y) which is a local analogue of
w(P):

(23) w(P, y) = E
ñ

sup
Q∈B(P?,y)

∣∣Z(X,P,Q)
∣∣ô .

We set

c1 = a1
2

ï
2(1 + log 4) + 4a1

a2
+ 16a2 log 2

a1

ò−1
(24)

and

(25) D(P) = sup
{
y > 0

∣∣w(P, y) > c1y
}
∨ c−1

1 .

The quantity D(P) is related to the local complexity of the model M in
a neighbourhood of P. It shares some similarities with the notion of com-
plexity introduced by V. Koltchinskii (2006) in statistical learning. It is
clear that w(P, y) 6 w(P) for all values of y > 0 and consequently that
D(P) 6 c−1

1
[
w(P) ∨ 1

]
. However, this bound may be very crude since

w(P) is of order
√
n while D(P) is, in many cases, of order a constant or a

power of logn.
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Theorem 2. Let Assumption 2 be satisfied, ξ > 0 and P be an arbitrary
element of M . Any `-estimator “P satisfies, whatever P? ∈ P

`(P?,“P) 6
ï4a0
a1

+ 1
ò
`(P?,P)− `(P?,M ) + 2D(P) +

ï4a2
a1

+ 1
ò8ξ
a1

+ 2ε
a1

(26)

with probability at least 1− e−ξ.

The proof of this theorem is also postponed to Section 9.
In the common situation where D(P) can be bounded by some quantity

Dn, independently of P, we may derive from Theorem 2 an upper bound
for the risk of the form

E
ñ
`(P?,“P)

n

ô
6 C

ï
`(P?,M )

n
+ Dn

n

ò
for some positive constant C depending on a0, a1, a2 and the choice of ε.
In density estimation, if P? = (P ?)⊗n with P ? ∈ M and Dn 6 D for all
n, we conclude that the minimax rate over M with respect to the loss `
is not larger than 1/n (up to a numerical constant). This is a substancial
improvement over inequality (21) which is solely based on Assumption 1.

4. Examples of `-estimators and their performances

4.1. Building suitable families T (`,M ). In order to apply Theorems 1
or 2, we have to find families T (`,M ) which satisfy Assumptions 1 or 2.
Let us first explain how to build such families for three of our loss functions,
namely Wasserstein, Lj and TV. These losses share the property that they
can be defined via a variational formula. More generally, let us assume that
the loss ` can be defined as follows. There exists a subset P of the space of
finite and possibly signed measures on (E, E) that contains P ∪M and for
which

(27) `(P,Q) = sup
f∈F

ï∫
E
fdP −

∫
E
fdQ

ò
for all P,Q ∈P,

where F is a symmetric class of measurable functions on (E, E) (if f ∈ F
then −f ∈ F). It follows from (27) and the symmetry property of the class
that ` satisfies all the requirements for being a distance except from the fact
that `(P,Q) = 0 does not necessarily imply that P = Q. Adding, if ever
necessary, the null function 0 to F , which does not change the definition
of `, we may assume with no loss of generality that F contains 0. Let us
moreover require that the following assumption be satisfied.

Assumption 3. There exists a subset F0 = {f(P,Q), (P,Q) ∈ M 2} of F
with the following properties:

(i) for all P,Q ∈M , f(P,Q) = −f(Q,P );



14 YANNICK BARAUD

(ii) there exists a number b > 0 such that, for all P,Q ∈M ,
sup
x∈E

f(P,Q)(x)− inf
x∈E

f(P,Q)(x) 6 b

(iii) for all P,Q ∈M ,

(28) `(P,Q) =
∫
E
f(P,Q)dP −

∫
E
f(P,Q)dQ.

Assumption 3 essentially means that, for each pair (P,Q) of elements of
M 2, we know where the supremum in (27) is reached. We then associate to
F0 the family T (`,M ) of functions

(29) t(P,Q) = 1
b

ßï∫
E
f(P,Q)

dP + dQ

2

ò
− f(P,Q)

™
for all (P,Q) ∈M 2.

The following result which is proven in Section 10.1 shows that this family
fulfills Assumption 1.

Proposition 1. If the loss function ` satisfies (27) for some symmetric class
F containing 0, then it is nonnegative, symmetric and satisfies the triangle
inequality on P. Under Assumption 3, for (P,Q) ∈M 2 the function t(P,Q)
defined by (29) satisfies

(30) ES
[
t(P,Q)(X)

]
6

3
2b`(S, P )− 1

2b`(S,Q) for all S ∈P.

In particular, the family T (`,M ) of such functions satisfies Assumption 1
with a0 = 3/(2b) and a1 = 1/(2b).

With this proposition at hand, we are now able to deal successively with
the Wasserstein, Lj and TV-losses which do satisfy (27).

4.2. The Wasserstein loss. In this section, let P = P be the set of all
probabilities on ([0, 1],B([0, 1])). As already seen in (9), the Wasserstein
distance between P and Q in P satisfies the variational formula
(31) W (P,Q) = sup

f∈F
[EP (f)− EQ(f)]

where F is the (symmetric) class of 1-Lipschitz functions on [0, 1]. The
following result, which is proven in Section 10.2, provides a suitable family
of functions f(P,Q).

Proposition 2. For all (P,Q) ∈P2, the supremum in (31) is reached for
the function f(P,Q) defined on [0, 1] by

(32) f(P,Q) : x 7→
∫ x

0

î
1lFQ(t)>FP (t) − 1lFP (t)>FQ(t)

ó
dt,

where FP and FQ denote the cumulative distribution functions of P and Q
respectively. In particular, the family F0 = {f(P,Q), (P,Q) ∈M 2} satisfies
Assumption 3 with b = 1.

As an immediate consequence of Proposition 1 we get:
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Corollary 1. Let M be a countable subset of P and `(·, ·) = W (·, ·). The
family T (`,M ) of functions t(P,Q) given by (29) with f(P,Q) defined by (32),
satisfies Assumption 1 with a0 = 3/2 and a1 = 1/2.

The following proposition gives the expression of the statistic T(X, ·, ·)
associated to the family T (`,M ).

Proposition 3. Let P and Q be two probabilities in M with distribution
functions FP and FQ respectively. For P = P⊗n and Q = Q⊗n,

T(X,P,Q) = n

∫ 1

0

[
1lFQ>FP (t)− 1lFP>FQ(t)

] ï“Fn(t)− FP (t) + FQ(t)
2

ò
dt

where “Fn denotes the empirical distribution function.

In particular, whenever the empirical measure “Pn = n−1∑n
i=1 δXi belongs

to M , for all Q ∈M ,

T(X, “P⊗nn , Q⊗n) = n

∫ 1

0

[
1l
FQ>“Fn(t)− 1l“Fn>FQ(t)

] ñ“Fn(t)− FQ(t)
2

ô
dt

= −n2

∫ 1

0

∣∣∣“Fn(t)− FQ(t)
∣∣∣ dt 6 0,

which implies that T(X, “P⊗nn ) = 0 and that “Pn is a W-estimator.

Proof of Proposition 3. It follows from (32) that for all random variables X
with values in [0, 1],

f(P,Q)(X) =
∫ 1

0

î
1lFQ(t)>FP (t) − 1lFP (t)>FQ(t)

ó
1lt<Xdt

=
∫ 1

0

î
1lFQ(t)>FP (t) − 1lFP (t)>FQ(t)

ó
[1− 1lX6t] dt

and for all probabilities R on [0, 1] with distribution function FR,

ER
[
f(P,Q)(X)

]
=
∫ 1

0

î
1lFQ(t)>FP (t) − 1lFP (t)>FQ(t)

ó
[1− FR(t)] dt.

Hence, for all i ∈ {1, . . . , n}

t(P,Q)(Xi) = 1
2
[
EP
[
f(P,Q)(Xi)

]
+ EQ

[
f(P,Q)(Xi)

]]
− f(P,Q)(Xi)

=
∫ 1

0

î
1lFQ(t)>FP (t) − 1lFP (t)>FQ(t)

ó ï
1lXi6t −

FP (t) + FQ(t)
2

ò
dt

and the result follows by averaging over i ∈ {1, . . . , n}. �

Example 1. The observations X1, . . . , Xn are independent with values in
[0, 1] but presumed to be i.i.d. with a common distribution close to a model
M ⊂P. Our aim is to estimate P? using the Wasserstein loss. The follow-
ing result, which is proven in Section 10.3, is a consequence of Theorem 1.
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Corollary 2. Whatever the model M and ξ > 0, any W-estimator “P ∈M
based on the family T (`,M ) provided by Corollary 1 satisfies, with proba-
bility at least 1− e−ξ,

1
n

n∑
i=1

W (P ?i , “P ) 6 5 inf
P∈M

ñ
1
n

n∑
i=1

W (P ?i , P )
ô

+ 2√
n

ï
1 +

√
2ξ + ε√

n

ò
.(33)

If, in particular, the data are truly i.i.d. with distribution P ? ∈M , it follows
that

P
ï
W (P ?, “P ) 6 2√

n

Å
1 +

√
2ξ + ε√

n

ãò
> 1− e−ξ for all ξ > 0.

Note that the bound does not depend on the choice of the model M ⊂P
which can therefore be as large as desired. In particular a countable and
dense subset of P with respect to the Wasserstein distance would do.

4.3. The Lj-loss for j ∈ (1,+∞). Let us consider the Lj-loss `j defined in
Section 2.3 and take P = Pj . Let F be the (symmetric) class of functions
f ∈ Lj′(E,µ) satisfying ‖f‖µ,j′ 6 1 where j′ denotes the conjugate exponent
j/(j − 1) of j. It is well-known that

(34) `j(P,Q) = sup
f∈F

∫
E

(p− q)fdµ,

which is (27). It follows from Hölder inequality (actually from the case of
equality), that the supremum in (34) is reached for

(35) f(P,Q) =
(p− q)j−1

+ − (p− q)j−1
−

‖p− q‖j−1
µ,j

when P 6= Q and f(P,P ) = 0.

Note that f(P,Q) = (p− q)/ ‖p− q‖µ,2 for j = 2.
Corollary 3. Let j ∈ (1,+∞). Assume that the set of probabilities P and
the countable model M are two subsets of Pj and that there exists a number
R > 0 such that
(36) ‖p− q‖∞ 6 R ‖p− q‖µ,j for all P,Q ∈M .

For (P,Q) ∈M 2, let

(37) t(P,Q) = 1
2Rj−1

ï∫
E
f(P,Q)

dP + dQ

2 − f(P,Q)

ò
with f(P,Q) given by (35). The resulting family T (`,M ) = {t(P,Q), (P,Q) ∈
M 2} satisfies Assumption 1 with a0 = 3/(4Rj−1) and a1 = 1/(4Rj−1) for
the loss `j.

Proof. The family of functions {f(P,Q), (P,Q) ∈ M 2} clearly satisfies As-
sumption 3-(i) and-(iii). Besides, when (36) holds, for all x, x′ ∈ R,

f(P,Q)(x)− f(P,Q)(x′) 6
2 ‖p− q‖j−1

∞
‖p− q‖j−1

µ,j

6 2Rj−1
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so that Assumption 3-(ii) is satisfied with b = 2Rj−1. The conclusion then
follows from Proposition 1. �

4.3.1. The quadratic loss and linear models of densities. Assume that the
marginal distributions P ?i of the data X = (X1, . . . , Xn) admit densities
p?i with respect to some positive dominating measure µ and that p?1, . . . , p?n
belong to L2(E,µ). Our set P is therefore the set of all probabilities P =
p·µ with p ∈ L2(E,µ). We pretend that the observations are i.i.d., although
this might not be true. To estimate the presumed common density of the
data we introduce a model of densities M which may contain functions
p that are not probability densities and which is a subset of some linear
subspace V of L1(E,µ) ∩L2(E,µ) with the following property:

Assumption 4. The pair (V, ‖·‖µ,2) is a Hilbert space of functions for which
there exists a positive number R such that

(38) ‖t‖∞ 6 R ‖t‖µ,2 for all t ∈ V .

When E is a compact space, typically [0, 1]d, this assumption is met for
many finite dimensional spaces with good approximation properties as shown
in Birgé and Massart (1998)[Section 3]. Nevertheless, our approach allows
us to consider more general situations where the set E is not compact and V
possibly infinite dimensional. Illustrations will be given in Section 4.3.2. In
this framework, we use the family T (`,M ) of functions given by (37) with
j = 2 to build our `2-estimator. Its performance is given by the following
result which is proven in Section 10.4.

Corollary 4. Assume thatM is a subset of a linear space V ⊂ L1(E,µ)∩
L2(E,µ) that satisfies Assumption 4. Any `2-estimator “P = p̂ · µ based on
M satisfies, for all ξ > 0,

`2(P?, “P⊗n)
n

6 5 inf
P∈M

`2(P?, P⊗n)
n

+ 4R√
n

ï
1 +

√
2ξ + ε√

n

ò
(39)

with probability at least 1− e−ξ.

The bound we get does not depend on the dimension of the linear space V
(which can therefore be infinite) but rather on the constant R that controls
the ratio between the sup-norm and the L2-norm on V .

When p?i = p? ∈ L2(µ) for all i, there exists a large amount of literature on
the problem of estimating the density p? using the L2-norm. A nice feature
of (39) lies in the fact that it does not involve the sup-norm of the density p?
which may therefore be unbounded. Birgé and Massart (1998)[Theorem 2
p. 343] studied the property of the projection estimator on finite dimensional
linear spaces V satisfying (38), typically linear spaces of functions on [0, 1]d.
Since our result holds for possibly non-i.i.d. data and infinite dimensional
linear spaces, it generalizes theirs.
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4.3.2. Risk bounds for the quadratic loss over Besov spaces. In this section
we consider the problem of estimating a density p? with respect to the
Lebesgue measure µ = λ on E = Rd using n i.i.d. oservations with density
p?, under the assumption that p? is close to a given Besov space Bα

s,∞(Rd)
with α > 0 and s ∈ [2,+∞). We refer to Meyer (1992) for a definition of
these classes of functions and to Giné and Nickl (2016) Section 4.3.6 for their
characterization in terms of coefficients in a suitable wavelet basis. Our loss
function is based on the L2-norm.
Proposition 4. Let s > 2, d > 1 and α > 0. There exist two constants
K,K ′ depending on d, α and s with the following properties. For all J > 0,
there exists a linear subspace VJ of L1(Rd) ∩L2(Rd) such that (VJ , ‖·‖λ,2)
is a Hilbert space satisfying Assumption 4 with R = K2Jd/2 and, for all
f ∈ Bα

s,∞(Rd) ∩L1(Rd) ∩L2(Rd),

(40) inf
t∈VJ
‖f − t‖2λ,2 6 K

′ |f |s/(s−1)
α,s,∞ ‖f‖(s−2)/(s−1)

λ,1 2−Jsα/(s−1)

where |f |α,s,∞ is the Besov semi-norm of f in Bα
s,∞(Rd).

The proof of this approximation result can be found in Section 10.5. In
the right-hand side of (40), we use the convention 00 = 0 when s = 2 and
‖f‖λ,1 = 0. Note that this approximation bound neither depends on the
L2-norm nor on the sup-norm of f which may therefore be arbitrarily large.
Corollary 5. Let s > 2, α > 0, r > 0, d > 1 and Fdα,s,∞(r) be the class
of all probability densities p on Rd that belong to Bα

s,∞(Rd) ∩ L2(Rd) and
such that their Besov semi-norms are bounded by r > 0. There exists an
`2-estimator p̂ (depending on s, α and r) that satisfies, whatever the density
p? of the Xi,

E
î
‖p? − p̂‖2λ,2

ó
6 C

ñ
inf

p∈Fdα,s,∞(r)
‖p? − p‖2λ,2 + rds/[d(s−1)+sα]

nαs/[d(s−1)+sα] + 1
n

ô
,

where C is a positive number that depends on s, d, α and ε only.

An interesting feature of this result lies in the fact that the class Fdα,s,∞(r)
contains densities that are neither compactly supported nor bounded in
supremum norm when α < 1/s. We are not aware of many results in this
direction. When d = 1 and for r, r′ > 0, the bound we get is known to be
optimal (up to a constant that depends on r′, α and s) over the smaller set
of densities p? which satisfy ‖p?‖λ,2 ∨ ‖p?‖∞ 6 r′ and belong to Bα

s,∞(R)
with Besov norms bounded by r. We refer the reader to Reynaud-Bouret et
al. (2011)[Theorem 4] and the references therein. The authors obtained there
(see their Theorem 3) an upper bound which is similar to ours despite some
differences. Our result does not require that the densities p? be uniformly
bounded in L2(R) and it includes the case where s = 2 while theirs is only
true for s > 2. Their estimator is adaptive with respect to the parameters of
the Besov space while ours is not. This could explain the extra-logarithmic
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factor that appears in their risk bound. Nevertheless, we believe that this
extra-logarithmic factor is actually unnecessary for adaptation.

Proof of Corollary 5. Throughout this proof, we fix some probability density
p in Fdα,s,∞(r). Let J be the nonnegative integer which satisfies

2J 6 1 ∨
Ä
nrs/(s−1)

ä(s−1)/[d(s−1)+sα]
< 2J+1

and VJ be the Hilbert space provided by Proposition 4 for this value of J .
We consider the model of (signed) densities M = VJ (or more precisely a
countable dense subset of it with respect to the L2-norm). Since by Propo-
sition 4 the space VJ satisfies Assumption 4 with R = K2Jd/2, Corollary 4
applies and, by integrating (39) with respect to ξ > 0, we obtain that an
`2-estimator p̂ of p? based onM satisfies

(41) E
î
‖p? − p̂‖2λ,2

ó
6 C0

ñ
‖p? − p‖2λ,2 + inf

p∈M
‖p− p‖2λ,2 + 2Jd

n

ô
,

where C0 is a positive constant that only depends on d, s, α and ε. Since p
belongs to Bα

s,∞(Rd)∩L2(Rd) and satisfies |p|α,s,∞ 6 r, it follows from (40)
that we may choose p ∈M such that

‖p− p‖2λ,2 6 K
′rs/(s−1)2−Jsα/(s−1)

with a possibly enlarged value of K ′. Our choice of J implies that

‖p− p‖2λ,2 6 K
′
Ä
rdn−α

äs/[d(s−1)+sα]
and 2Jd

n
6
Ä
rdn−α

äs/[d(s−1)+sα]
+ 1
n
.

The final bound on E
î
‖p? − p̂‖2λ,2

ó
follows from (41) and a minimization

with respect to p ∈ Fdα,s,∞(r). �

4.3.3. The Lj-loss for models of piecewise constant functions. In this sec-
tion, we assume that µ is a probability on E and consider the Lj-loss defined
by (10) with j ∈ (1,+∞). Let I be a partition of E into D > 2 pieces satis-
fying µ(I) = 1/D for all I ∈ I. Our density modelM =MD is a countable
and dense subset (with respect to the Lj-norm) of the setMD which gathers
the functions which are piecewise constant on the elements of I. As usual,
M = MD = {P = p · µ, p ∈MD}. We emphasize the fact that an element
p ofMD may not be a density of probability, hence P = p·µ ∈MD may not
be a probability but only a finite signed measure. Besides, if an element of
MD necessarily belongs to L∞(E,µ), its supremum norm may be arbitrary
large. The following result is proven in Section 10.6.

Corollary 6. Let n > 2, D ∈ {2, . . . , n}, j ∈ (1,+∞). Assume that the
data are i.i.d. with distribution P ? = p? · µ with p? ∈ Lj(E,µ) and set

pD =
∑
I∈I

ï
D

∫
I
p?(x) dµ(x)

ò
1lI .
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The `j-estimator “P = p̂·µ of P ? based onM =MD and the family T (`,M )
given in Corollary 3 with R = D1/j satisfies, whatever ξ > 0 with probability
at least 1− e−ξ,

`j(P ?, “P ) 6 5 inf
P∈MD

`j(P ?, P ) + Cj

…
D

n
‖pD‖µ,j/2 + 4D1−1/j

√
n

ï√
2ξ + ε√

n

ò
where

Cj =

8 max
ß

21−1/j
Ä
j
√
e√

e−1

ä1/2
+
Ä

j
e−
√
e

ä1/2
, j

√
e

21/j(
√
e−1)

™
for j > 2

4 for j ∈ (1, 2].

It follows from convexity arguments that, whatever the density p? ∈
Lj(E,µ), 1 6 ‖pD‖µ,j/2 6 D1−2/j for j > 2 while D1−2/j 6 ‖pD‖µ,j/2 6 1
for j ∈ (1, 2]. These inequalities together with Corollary 6 lead to the fol-
lowing uniform risk bound

sup
p?∈MD

E
î
‖p? − p̂‖µ,j

ó
6 C ′(j, ε)D

(1−1/j)∨1/2
√
n

for all j ∈ (1,+∞).

In a private communication to the author, Lucien Birgé proved that this
bound is minimax. This result shows in passing that (18) cannot in general
be improved for the `j-loss for j ∈ (1,+∞). We also mention that the
minimax rate would be different on the submodel {p ∈ MD, ‖p‖∞ 6 R}
with R > 0, that is, under a constraint on the supremum norm of the
elements ofMD.

A well-known estimator of p? onMD is the histogram p̃ defined by

(42) p̃ = D
∑
I∈I

ν̂n(I)1lI

where ν̂n is the empirical measure n−1∑
i=1 δXi . A natural question is how‹P = p̃ · µ compares to an `j-estimator. Actually, when ‹P belongs to MD, it

is an `j-estimator: it follows from (37) and (35) that for all Q = q ·µ ∈MD,
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we may write q =
∑
I∈I DQ(I)1lI so that

2Rj−1T(X, ‹P⊗n, Q⊗n)

= n

ï∫
E
f(‹P ,Q)

p̃+ q

2 dµ−
∫
E
f(‹P ,Q)dν̂n

ò
= n

∑
I∈I

ï∫
I
f(‹P ,Q)

p̃+ q

2 dµ−
∫
I
f(‹P ,Q)dν̂n

ò
=
∑
i∈I

ïî
(ν̂n(I)−Q(I))j−1

+ − (ν̂n(I)−Q(I))j−1
−
ó Q(I)− ν̂n(I)

2

ò
× nDj−1

‖p̃− q‖j−1
µ,j

= − nDj−1

2 ‖p̃− q‖j−1
µ,j

∑
i∈I
|ν̂n(I)−Q(I)|j 6 0

hence T(X, ‹P⊗n) = 0 and ‹P is an `j-estimator.

4.3.4. The L∞-loss for models of piecewise constant functions. In this sec-
tion, we consider the statistical framework and model MD introduced in
Section 4.3.3. Our aim is to estimate the density p? ∈ L∞(E,µ) with re-
spect to the `∞-loss given by (10) with j = ∞. As for the other `j-losses,
the `∞-loss satisfies a variational formula of the form (27) with P = P∞
and F the set of functions f on (E, E , µ) that satisfy ‖f‖µ,1 6 1. However,
unlike the case j ∈ (1,+∞), the supremum is not reached in general. Fortu-
nately, our Assumption 3 only requires that we know where the supremum is
reached when the two measures P,Q in (27) belong to the model M . Using
this property, we can prove the following result.

Proposition 5. For P,Q in MD, let I? = I?(P,Q) be a maximizer on I of
the mapping I 7→ |P (I)−Q(I)| and set f(P,Q) = Dsign (P (I?)−Q(I?)) 1lI?.
The family F0 that gathers the functions f(P,Q) for (P,Q) varying among
M 2

D satisfies Assumption 3 with b = D.

Proof. Clearly, Assumptions 3-(i) and-(ii) are satisfied. It remains to prove (28).
For P,Q in MD,

`∞(P,Q) =
∥∥∥∥∥∑
I∈I

D(P (I)−Q(I))1lI

∥∥∥∥∥
µ,∞

= D |P (I?)−Q(I?)|

and, by definition of I? = I?(P,Q),∫
E
f(P,Q)(dP − dQ) = Dsign (P (I?)−Q(I?))

∫
I?

(p− q) dµ

= D |P (I?)−Q(I?)| = `∞(P,Q). �
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With Proposition 5 at hand, Proposition 1 applies and the family T (`,M )
that satisfies our Assumption 1 for the `∞-loss is given by

(43) t(P,Q) = sign(P (I?)−Q(I?))
ï
P (I?) +Q(I?)

2 − 1lI?
ò

for all P,Q ∈ MD. The following corollary of Theorem 1 is proven in
Section 10.7.

Corollary 7. Assume that the data X1, . . . , Xn are i.i.d. with density p? ∈
L∞(E,µ). Let n > 2, D ∈ {2, . . . ,+∞}. The `∞-estimator “P = p̂ · µ based
onMD and the family T (`,M ) defined above satisfies, for all ξ > 0 with a
probability at least 1− e−ξ,

`∞(P ?, “P ) 6 5 inf
p∈MD

`∞(P ?, P ) + 2D
[ 

2 log(2D)
n

+
…

2ξ
n

+ ε

n

]
.(44)

Inequality (44) shows that the `∞-estimator on MD performs well for
estimating densities of the form p? = pD +g with pD ∈MD and g such that
‖g‖µ,∞ is small compared to D

√
logD/n.

As is the case when j ∈ (1,+∞), the estimator ‹P = p̃ · µ based on the
classical histogram p̃ defined by (42) is an `∞-estimator of P ? (whenever ‹P
belongs to MD). Indeed, for all Q ∈MD,

T(X, ‹P⊗n, Q⊗n) = nsign(ν̂n(I?)−Q(I?))
ï
ν̂n(I?) +Q(I?)

2 − ν̂n(I?)
ò

= −n2 |ν̂n(I?)−Q(I?)| 6 0.

5. The case of the TV-loss

Throughout this section, P is the set of all probability measures on (E, E).

5.1. Building suitable families T (`,M ). It is well-known that the TV-
distance ‖P −Q‖ defined by (7) between two probabilities P,Q ∈ P can
equivalently be written as

(45) ‖P −Q‖ = sup
f∈F

[EP (f)− EQ(f)] ,

where F is the symmetric class of all measurable functions f on E with
values in [−1/2, 1/2]. The supremum in (45) is reached for

(46) f(P,Q) = 1
2 (1lp>q − 1lq>p)

where p and q denote versions of the respective densities of P and Q with
respect to some common dominating measure µ. We deduce from Proposi-
tion 1 the following corollary.
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Corollary 8. Let M = {P = p · µ, p ∈ M} be a countable subset of P
and ` the TV-loss. The family F0 = {f(P,Q), (P,Q) ∈ M 2} with f(P,Q)
defined by (46) satisfies Assumption 3 with b = 1. The set T (`,M ) of all
the functions

t(P,Q) = 1
2 [1lq>p −Q(q > p)]− 1

2 [1lp>q − P (p > q)](47)

with (P,Q) ∈M 2 satisfies Assumption 1 with a0 = 3/2 and a1 = 1/2.

5.2. Risk bounds based on VC-dimensions. In this section, we pretend
(although this may not be true) that our observations X1, . . . , Xn are i.i.d.
with a distribution P ? belonging to a statistical model M ⊂ P associated
to a density model M. Given a density p ∈ M, we consider the following
assumption.

Assumption 5. The classes of subsets of E given by {{p < q}, q ∈M\{p}}
and {{p > q}, q ∈ M \ {p}} are both VC with dimension not larger than
V (p) > 1.

We refer the reader to Dudley (1984) for the definition of the VC-dimension
of a class of sets. The family of sets of the form {p > q} with p, q ∈ M
is known as the Yatracos class associated to M. Assumption 5 is weaker
than the usual assumption that the Yatracos class {{p > q}, p, q ∈ M} is
VC (see Devroye and Lugosi (2001) for example). In particular, we shall see
how to take advantage of this weaker form in our Example 3 for estimating
a density under a shape constraint.

Corollary 9. Let p ∈ M satisfy Assumption 5. For any TV-estimator“P ∈M based on the family T (`,M) given in Corollary 8, all P? ∈ P and
all ξ > 0, with a probability at least 1− e−ξ,

1
n

n∑
i=1

∥∥∥P ?i − “P∥∥∥ 6 6
n

n∑
i=1

∥∥∥P ?i − P∥∥∥+ 40

 
5V (p)
n

+ 2
…

2ξ
n

+ 2ε
n

(48)

− inf
P∈M

1
n

n∑
i=1
‖P ?i − P‖ .

In particular, if Assumption 5 is satisfied for all p ∈M and supp∈M V (p) =
V < +∞,

1
n

n∑
i=1

∥∥∥P ?i − “P∥∥∥ 6 5 inf
P∈M

1
n

n∑
i=1

∥∥∥P ?i − P∥∥∥+ 40
…

5V
n

+ 2
…

2ξ
n

+ 2ε
n
.(49)

The proof of this corollary can be found in Section 10.8.
When the Xi are truly i.i.d. with distribution P ?, (49) becomes

(50)
∥∥∥P ? − “P∥∥∥ 6 5 inf

P∈M
‖P ? − P‖+ 40

…
5V
n

+ 2
…

2ξ
n

+ 2ε
n
.
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Whenever P ? = p? · µ is absolutely continuous with respect to µ, the above
result immediately translates into an upper bound on the L1-loss between
the densities of P ? and “P via the well-known formula

‖P −Q‖ = 1
2

∫
E

∣∣∣∣dPdµ − dQ

dµ

∣∣∣∣ dµ.
Integrating (50) with respect to ξ, we deduce a risk bound for the estimator
p̂ of p? of the form

E
î
‖p? − p̂‖µ,1

ó
6 C

ñ
inf
p∈M
‖p? − p‖µ,1 +

…
V

n

ô
,

for some positive number C > 0 depending on ε only. Up to the numerical
constant C > 0, this bound is similar to that obtained for the minimum
distance estimator in Devroye and Lugosi (2001).

Example 2 (Estimation of the mean of a Gaussian vector).
In order to illustrate the robustness property of TV-estimators, let us fo-
cus on the following problem. The observations are presumed to be i.i.d.,
following a common Gaussian distribution with mean vector m? and iden-
tity covariance matrix: Pm? = N (m?, Id) in Rd. But they are actually
contaminated so that, for 1 6 i 6 n, the true distribution of Xi is P ?i =
(1 − αi)Pm? + αiRi for some arbitrary probabilities Ri and small numbers
αi ∈ [0, 1]. We choose for our model the family M of Gaussian distributions
Pm with mean m ∈ Qd and identity covariance matrix. Denoting by pm the
corresponding density, we see that for all m,m ∈ Qd with m 6= m, the sets
{pm < pm} and {pm > pm} are half-spaces of Rd. The VC-dimension of this
class is not larger than V = d+1 (see Devroye and Lugosi (2001), Corollary
4.2 page 33). Assumption 5 is therefore satisfied with V (p) = V = d + 1
for all p ∈M. Besides, the following lemma which is proven in Section 10.9
allows to relate the TV-distance between Pm and Pm′ to the Euclidean one
between the parameters m and m′.

Lemma 1. For all m,m′ ∈ Rd,

(51) ‖Pm − Pm′‖ = P
[
|Z| 6

∣∣m−m′∣∣ /2]
where Z is a standard real-valued Gaussian random variable. Consequently,

(52) 0.78 min
ß

1, |m−m
′|√

2π

™
6 ‖Pm − Pm′‖ 6 min

ß
1, |m−m

′|√
2π

™
.

This means that when m′ is close enough to m the quantity ‖Pm − Pm′‖
is of order |m−m′| /

√
2π while it is of order 1 when m′ and m are far apart.

We deduce from (49) that, whatever m ∈ Qd and ξ > 0, with probability at
least 1− e−ξ, the TV-estimator “P = P“m satisfies

‖Pm − P“m‖ > 0.78 min
ß

1, |m− “m|√
2π

™
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and

‖Pm − P“m‖ 6 1
n

n∑
i=1

(‖P ?i − Pm‖+ ‖P ?i − P“m‖)
6

6
n

n∑
i=1
‖P ?i − Pm‖+ 40

 
5(d+ 1)

n
+ 2
…

2ξ
n

+ 2ε
n
.(53)

Since the mapping m 7→ ‖P ?i − Pm‖ is continuous with respect to the Eu-
clidean norm on Rd and m can be chosen arbitrarily close to m?, (53)
is actually satisfied with m = m?. Using the inequality ‖P ?i − Pm?‖ =
αi ‖Ri − Pm?‖ 6 αi for all i ∈ {1, . . . , n}, we derive that, for ξ > 0, with
probability at least 1− e−ξ, the TV-estimator “P = P“m satisfies

0.78 min
ß

1, |m
? − “m|√

2π

™
6

6
n

n∑
i=1
‖P ?i − Pm?‖+ 40

 
5(d+ 1)

n
+ 2
…

2ξ
n

+ 2ε
n

(54)

and

(55) 0.78 min
ß

1, |m
? − “m|√

2π

™
6

6
n

n∑
i=1

αi + 40

 
5(d+ 1)

n
+ 2
…

2ξ
n

+ 2ε
n
.

When the average n−1∑n
i=1 αi is small compared to

√
(d+ 1)/n the bound

we get is almost as good as that we would get if there were no contamination,
which therefore warrants the robustness property of the TV-estimator “m
with respect to contamination. When αi = α for all i, (55) is similar to
the bound obtained in Gao et al. (2019)[Theorem 3.1] for TV-Gan in this
setting.

An interesting feature of Corollary 9 and more precisely (48) lies in the
fact that the upper bound involves the quantity V (p) which may depend on
the choice of p. This means that the best choice of p in view of minimizing the
right-hand side of (48) might not be the density of the best approximation
point of P ? in M . From this point of view, (48) contrasts with (49) which
requires that for all p ∈ M this quantity be bounded independently of p.
This subtle difference allows us to deal with statistical models for which the
quantity V (p) may vary from one density p to another and be even infinite
for some p. Such a situation typically arises when one estimates a density
under a shape constraint, as shown by the following example.

Example 3 (Estimating a density under a monotonicity constraint).
Let us consider the problem of estimating a density which is presumably
belonging to the set M of all non-increasing densities on some unknown
half-line, i.e. densities p (with respect to the Lebesgue measure µ = λ on R)
which are non-increasing on an interval (that may depend on p) of the form
(a,+∞) with a = a(p) ∈ R and vanish elsewhere. For d > 1, letMd be the
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subset ofM of those densities of the form p =
∑
I∈I aI1lI where I is a set of

at most d disjoint intervals with positive lengths and aI > 0 for all I ∈ I. In
other words,Md is the set of all non-increasing piecewise constant densities
the supports of which are the unions of at most d (non-trivial) intervals. We
shall denote by M d = {p ·λ, p ∈Md} the corresponding set of probabilities
and by Md and M respectively some countable and dense subsets of Md

and M for the L1(λ)-distance. We shall assume with no loss of generality
thatMd ⊂M for all d > 1.

Given q ∈M and p ∈Md, the sets {p < q} and {p > q} are unions of at
most d intervals so that it follows from Lemma 1 in Baraud and Birgé (2016)
that Assumption 5 is satisfied with V (p) 6 2d. We may then apply Corol-
lary 9 with an arbitrary choice of d > 1 and p ∈Md (with P = p · λ). Since
Md is dense inMd for all d > 1, we get the following result.

Proposition 6. Let ε 6 1. For all ξ > 0, with a probability at least 1− e−ξ,
the TV-estimator “P = p̂ ·λ provided by Corollary 9 and based onM satisfies

1
n

n∑
i=1

∥∥∥P ?i − “P∥∥∥ 6 inf
d>1

ñ
inf

P∈M d

5
n

n∑
i=1

∥∥∥P ?i − P∥∥∥+ 41
…

10d
n

ô
+ 2
…

2ξ
n
.(56)

In particular, if the data are i.i.d. with density p?,

‖p? − p̂‖λ,1 6 5 inf
d>1

ñ
inf
p∈Md

‖p? − p‖λ,1 + 16.4
…

10d
n

ô
+ 4
…

2ξ
n

(57)

with probability at least 1− e−ξ, for all ξ > 0.

A famous estimator of a truly monotone density p? is the Grenander one,
see Grenander (1981) and Groeneboom (1985). The Grenander estimator
relies on the assumption that the left endpoint a = a(p?) of the support of
the target density p? is exactly known. Since this estimator is defined as
the Maximum Likelihood Estimator (MLE for short) over the set of all non-
increasing densities on [a,+∞), it would not exist on the larger setM. Our
TV-estimator does not need to know the value of a. More references on the
performance of the MLE for estimating a density under a shape constraint
can be found in a 2018 special issue of Statistical Science.

Results of the same flavour as that presented in our Proposition 6 can be
established for many other families of densities on the real line that satisfy
a shape constraint (convexity, concavity or log-concavity,...). We refer to
Baraud and Birgé (2016) for more details.

Let M(H,L) be the subset of M that consists of those densities p such
that I = {x ∈ R, p(x) > 0} is an interval of length not larger than L > 0
and the variation of p on I, i.e. the quantity supx∈I p(x) − infx∈I p(x), is
not larger than H > 0. The following approximation result, which is due
to Birgé (1987)[see Section 2 pages 1014-1015], enables us to derive uniform
risk bounds overM(H,L).
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Proposition 7. Let p ∈ M(H,L) with H > 0 and L > 0. For each d > 1,
there is a density pd ∈Md such that

(58) ‖p− pd‖λ,1 6 exp
ï log(HL+ 1)

d

ò
− 1.

A remarkable feature of this result lies in the fact that, for large enough
values of d, the approximation bound is of order log(1+HL)/d and therefore
only depends logarithmically onHL. From this point of view, it significantly
improves the usual approximation boundHL/d which can easily be obtained
by approximating p with a piecewise constant function built on a regular
partition of the support of p into d pieces.

Using Proposition 7 together with (57) and optimizing with respect to d
leads to the following risk bound.

Proposition 8. Let ε 6 1 and p̂ be the TV-estimator of Proposition 6.
There exists a universal constant C > 0 such that, whatever H > 0, L > 0,
p? ∈M(H,L) and ξ > 0,

(59) ‖p? − p̂‖λ,1 6 C
ñï log(1 +HL)

n

ò1/3
+
ï log(1 +HL) + 1 + ξ

n

ò1/2ô
with probability at least 1− e−ξ.

5.3. Robust regression with unimodal errors. In this section E = R.
Given a density q on R (with respect to the Lebesgue measure µ = λ), we
denote by Pθ the distribution with density qθ = q(· − θ) for θ ∈ R and
for θ = (θ1, . . . , θn) ∈ Rn, Pθ is the product probability Pθ1 ⊗ . . . ⊗ Pθn ,
i.e. the distribution of a random vector of the form X ′ = θ + ε where the
components ε1, . . . , εn of ε are i.i.d. with density q. The vector θ will be
called the location parameter of the distribution Pθ. We presume that the
true distribution P? = P ?1 ⊗ . . . ⊗ P ?n of our observation X is close to a
probability of the form Pθ? . In view of estimating the location parameter
θ?, we assume that it belongs to some (countable) subset Θ of Rn. Our
model for the distribution P? is therefore M = {Pθ, θ ∈ Θ} ⊂ M

n with
M = {Pθ, θ ∈ R}.

Assumption 6. The density q is unimodal on R and Θ is a subset of a
linear subspace of Rn with dimension d > 1.

Under this assumption, we prove in Section 10.10 the following deviation
bound.

Corollary 10. Let ε 6 1/2. If Assumption 6 is satisfied, any TV-estimator
P
θ̂

=
⊗n

i=1 P
θ̂i
based on the modelM and the family T (`,M ) given by (47)

satisfies, for all ξ > 0, with a probability at least 1− e−ξ,
1
n

n∑
i=1

∥∥∥P ?i − Pθ̂i∥∥∥ 6 5 inf
θ∈Θ

1
n

n∑
i=1
‖P ?i − Pθi‖+ 277

…
d+ 1
n

+ 2
…

2ξ
n
.(60)
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It is interesting to analyze further the approximation term that appears
in the right-hand side of (60). Let us assume hereafter that the data are of
the form X = θ? + ε with θ? ∈ Rn and ε1, . . . , εn are i.i.d. with a density
p that may not be q. Then, for each i ∈ {1, . . . , n}, the TV-loss between
the true i-th marginal distribution P ?i = pθ?i · λ with pθ?i (x) = p(x− θ?i ) and
Pθi = qθi · λ ∈M with θ ∈ Θ can be decomposed as follows:

‖P ?i − Pθi‖ = 1
2

∫
R

∣∣∣pθ?i − qθi∣∣∣ dλ 6 1
2

∫
R

∣∣∣pθ?i − qθ?i ∣∣∣ dλ+ 1
2

∫
R

∣∣∣qθ?i − qθi∣∣∣ dλ
= 1

2

ï
‖p− q‖λ,1 +

∫
R

∣∣∣qθ?i − qθi∣∣∣ dλò .
Since the translation t 7→ qt is uniformly continuous from R to L1(R, λ),
it admits a modulus of continuity wq which is a nondecreasing, continuous
and concave function on [0,+∞) such that wq(0) = 0, from which we deduce
that

‖P ?i − Pθi‖ 6
1
2
î
‖p− q‖λ,1 + wq (|θ?i − θi|)

ó
for all i ∈ {1, . . . , n} and θ ∈ Θ. Averaging these inequalities with respect
to i leads to

inf
θ∈Θ

1
n

n∑
i=1
‖P ?i − Pθi‖ 6

1
2

ñ
‖p− q‖λ,1 + inf

θ∈Θ

1
n

n∑
i=1

wq (|θ?i − θi|)
ô
.(61)

It follows from the properties of wq that

∆q(θ,θ′) = 1
n

n∑
i=1

wq
(
|θi − θ′i|

)
for θ,θ′ ∈ Rn

defines a distance on Rn. We deduce from (61) that the approximation
term is small when both ‖p− q‖λ,1 and infθ∈Θ ∆q(θ?,θ) are small. The
first quantity accounts for a misspecification of the error distribution when
p 6= q while the second quantity depends on how well the parameter set Θ
approximates θ? with respect to the distance ∆q. In order to illustrate this
result further, let us consider the following example.

Example 4. Let X1, . . . , Xn be independent random variables satisfying

(62) Xi = θ?i + εi for i=1, . . . , n,

where θ? = (θ?1, . . . , θ?n) belongs to [−B/2, B/2]n for some B > 0 and
ε1, . . . , εn are i.i.d. with Cauchy density p = q : x 7→ [π(1 + x2)]−1. Our
purpose is to estimate θ? on the basis of a model Θ ⊂ [−B/2, B/2]n ∩ V
where V is a linear space of dimension d > 1. This framework can be viewed
as a regression where the errors are Cauchy distributed and the θi corre-
spond to the values of a regression function at fixed design points. The
reader can check that

(63) ‖Pθ − Pθ′‖ = 2
π

arctan |θ − θ
′|

2 for all θ, θ′ ∈ R.
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In particular, using the facts that (B−1 arctanB)u 6 arctan u 6 u for all
u ∈ [0, B] and setting |u|1,n = n−1∑n

i=1 |ui| with u = (u1, . . . , un) ∈ Rn, we
deduce that

arctanB
Bπ

|θ? − θ|1,n 6
1
n

n∑
i=1

∥∥∥Pθ?i − Pθi∥∥∥ 6 1
π
|θ? − θ|1,n

for all θ ∈ Θ. Since Assumption 6 is satisfied, we may apply Corollary 10
and obtain that for all ξ > 0, with a probability at least 1− e−ξ,

arctanB
Bπ

∣∣∣θ? − θ̂∣∣∣
1,n
6

5
π

inf
θ∈Θ
|θ? − θ|1,n + 277

…
d+ 1
n

+ 2
…

2ξ
n
.

5.4. Faster rates under Assumption 2. Unlike the results established by
Devroye and Lugosi (2001)[Chapter 7] and Gao et al. (2019) for estimating
a density with respect to the TV-loss, we shall prove that TV-estimators
may converge at a rate which can be faster than 1/

√
n provided that the

model M satisfies Assumption 2. To check whether it is fulfilled onM, one
may use the following result which is proven in Section 10.11.

Proposition 9. If there exists a constant a′2 > 0 such that

(64) P (p 6 q) ∧Q(p > q) 6 a′2‖P −Q‖

for all probabilities P,Q in M then, for all probabilities S ∈P,

(65) S(p > q) ∧ S(p 6 q) 6 a2 [‖S − P‖+ ‖S −Q‖]

with a2 = 1+a′2. Besides the family T (`,M ) defined in Corollary 8 satisfies
Assumption 2.

Let us now comment on Condition (64). The testing affinity between two
probabilities P and Q (see Le Cam (1973; 1986)) is defined as

π(P,Q) = 1− ‖P −Q‖ =
∫
E

(p ∧ q) dµ = P (p 6 q) +Q(p > q)

= P (p 6 q) ∨Q(p > q) + P (p 6 q) ∧Q(p > q).(66)

It corresponds to the sum of the errors of first and second kinds of the
(optimal) test function 1lp6q when testing P versus Q on the basis of a single
observation. In many situations, when P and Q are close with respect to
the TV-distance, both errors are close to 1/2. This is not the case when
(64) holds: we deduce from (66) that

1− (1 + a′2) ‖P −Q‖ 6 P (p 6 q) ∨Q(p > q).

This inequality together with (66) show that when P and Q are close, one
of the testing errors is close to 0 while the other is close to 1. To illustrate
this phenomenon, let us present two examples in the translation model, i.e.
when M = {pθ = p(· − θ), θ ∈ Q} for some density p with respect to the
Lebesgue measure µ = λ on R. As usual, we denote by Pθ the probability
associated to the density pθ.
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Example 5. The density p = 1l[−1/2,1/2] is that of the uniform distribution
on [−1/2, 1/2]. It is easy to see that for all θ, θ′ ∈ R, Pθ′(pθ > pθ′) = 0.
Hence

Pθ(pθ 6 pθ′) ∧ Pθ′(pθ > pθ′) = Pθ′(pθ > pθ′) = 0 6 a′2 ‖Pθ − Pθ′‖

and Condition (64) is therefore satisfied with a′2 = 0.

Example 6. We take for p the unbounded density x 7→ αxα−11l(0,1] for some
α ∈ (0, 1). Note that for θ > θ′, Pθ(pθ 6 pθ′) = Pθ(pθ < pθ′) = 0, hence

Pθ(pθ 6 pθ′) ∧ Pθ′(pθ > pθ′) 6 Pθ(pθ 6 pθ′) = 0

and for θ < θ′,

Pθ(pθ 6 pθ′) ∧ Pθ′(pθ > pθ′) 6 Pθ′(pθ > pθ′) = 0.

Condition (64) is therefore satisfied with a′2 = 0.

Let us now go back to the framework of Section 5.2 assuming moreover
that the observations X1, . . . , Xn are (truly) i.i.d. with distribution P ? and
that the familyM of densities associated to our statistical model M satisfies
Assumption 5.

Corollary 11. Let ε 6 35. Assume that X1, . . . Xn are i.i.d. with distribu-
tion P ? and that Condition (64) and Assumption 5 are both satisfied with
V (p) 6 V for all p ∈M. Then any TV-estimator “P ∈M based on the fam-
ily T (`,M ) provided by Corollary 8 satisfies, for all ξ > 0, with a probability
at least 1− e−ξ,∥∥∥P ? − “P∥∥∥ 6 14 inf

P∈M
‖P ? − P‖+ 144a2

n

ï
ca2

2V log
Å 2en
V ∧ n

ã
+ 1 + ξ

ò
,(67)

where c is a positive numerical constant (c = 4.5× 105 suits).

The proof of this Corollary can be found in Section 10.12.
To illustrate this result, let us go back to our Example 6. We have seen

that (64) holds with a′2 = 0 so that we may take a2 = 1. For all θ, θ′ ∈ R,
the sets {x ∈ R, pθ(x) > pθ′(x)} are intervals and such a class of subsets
of R cannot shatter more than 2 points. Consequently, Assumption 5 is
satisfied with V = 2 and it follows from Corollary 11 that, whatever the
true distribution P ? of our observations, with a probability at least 1− e−ξ,

(68)
∥∥∥P ? − “P∥∥∥ 6 C ï inf

P∈M
‖P ? − P‖+ logn+ 1 + ξ

n

ò
,

for some numerical constant C > 0. For this particular translation model,
the TV-distance between two probabilities Pθ and Pθ′ in M can be related
to the Euclidean distance between their parameters by arguing as follows.
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First of all, it is not difficult to check that the testing affinity between Pθ
and Pθ′ (with θ < θ′) writes as

π(Pθ, Pθ′) =
∫
R

(pθ ∧ pθ′) dλ =
∫ θ′

θ
0dλ+

∫ 1+θ

θ′
pθdλ+

∫ 1+θ′

1+θ
0dλ

= [(x− θ)α]1+θ
θ′ = 1−

∣∣θ′ − θ∣∣α when θ′ 6 θ + 1

and π(Pθ, Pθ′) = 0 for θ′ > θ + 1. Consequently, for all θ, θ′ ∈ R

‖Pθ − Pθ′‖ = 1− π(Pθ, Pθ′) =
∣∣θ − θ′∣∣α ∧ 1,

which means, using the triangle inequality, that if P ? is close to some dis-
tribution Pθ ∈ M , by (68), the estimator “P = P

θ̂
of P ? satisfies, with a

probability at least 1− e−ξ,[∣∣∣θ − θ̂∣∣∣α ∧ 1
]

=
∥∥∥Pθ − Pθ̂∥∥∥ 6 C

ï
2
∥∥P ? − Pθ∥∥+ logn+ 1 + ξ

n

ò
.

In particular, if P ? belongs to M , i.e. P ? = Pθ for some θ ∈ R, and if
n is large enough, the estimator θ̂ estimates θ with an accuracy of order
(logn/n)1/α. This rate is much faster than 1/

√
n whatever α ∈ (0, 1) and is

optimal up to the logarithmic factor.
It is not difficult to check that the above calculations extend to the case

α = 1, i.e. when the statistical model is the translation of the uniform density
p = 1l[−1/2,1/2] as in Example 5. The TV-estimator then converges at rate
(at least) logn/n. In particular, it does not coincide with the empirical
median which converges at rate 1/

√
n in this case. Note that this result is

not contradictory to Proposition 13 (to be presented in Section 7.1 below)
since the density p is not a decreasing function of |x|. This proves, in passing,
that the assumption that f is decreasing in Assumption 7 is necessary.

6. Hellinger and KL-losses

6.1. Building suitable families T (`,M ). The Hellinger and KL-losses
cannot be defined by variational formulas like (27) and (28) but, as we shall
see, satisfy the following alternative expressions for P and Q in P:

(69) `(P,Q) = sup
f∈F

ï∫
E
fdP − Λ(Q, f)

ò
=
∫
E
f(P,Q)dP − Λ(Q, f(P,Q)),

for some suitable class of functions F and a fixed function Λ on P × F .
Observe that (27) and (28) are actually a special case of (69) when Λ(Q, f) =∫
E fdQ.
A common feature of losses of the forms (69) and (27) lies in the fact

that, for the P,Q that belong to some subset Q of P, we know where
the supremum is reached, i.e. we have identified a function f(P,Q) such that
`(P,Q) =

∫
E f(P,Q)dP − Λ(Q, f(P,Q)) if (P,Q) ∈ Q2. Let us assume that
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Q contains M as well as all probabilities R = (P + Q)/2 with P,Q ∈ M .
Then a candidate function t(P,Q) to satisfy Assumption 1 is

(70) t(P,Q) = C
[(
f(R,P ) − Λ(P, f(R,P ))

)
−
(
f(R,Q) − Λ(Q, f(R,Q))

)]
,

where C denotes a positive normalizing constant that is chosen for t(P,Q)
to fulfill Assumption 1-(iii). This definition of t(P,Q) is motivated by the
equalities

t(P,Q) = −t(Q,P ) and ER
[
t(P,Q)(X)

]
= C [`(R,P )− `(R,Q)] ,

the second one meaning that the sign of ER
[
t(P,Q)(X)

]
is the same as that

of `(R,P )− `(R,Q). When Λ(Q, f) =
∫
E fdQ and F is symmetric

`(R,P ) = sup
f∈F

ï∫
E
fdR−

∫
E
fdP

ò
= 1

2 sup
f∈F

ï∫
E
fdQ−

∫
E
fdP

ò
= 1

2`(P,Q)

and we may therefore choose f(R,P ) = f(Q,P ) = −f(P,Q) = −f(R,Q) which,
together with (70), gives

t(P,Q) = C

ïÅ
f(R,P ) −

∫
E
f(R,P )dP

ã
−
Å
f(R,Q) −

∫
E
f(R,Q)dQ

ãò
= 2C

ï∫
E
f(P,Q)

dP + dQ

2 − f(P,Q)

ò
.

Up to the normalizing constant, we recover the definition (29) of t(P,Q).

6.2. The Hellinger distance. An alternative way of defining the Hellinger
distance given by (1) is provided by the following proposition (with the
conventions 0/0 = 1 and a/0 = +∞ for all a > 0) which is proven in
Section 10.13.

Proposition 10. Let G be the class of all measurable functions g on (E, E)
with values in [0,+∞]. For all probabilities P,Q on (E, E),

(71) h2(P,Q) = 1
2 sup
g∈G

[EP (1− g) + EQ (1− 1/g)] .

If µ is a measure that dominates P and Q and P = p · µ, Q = q · µ, the
supremum is reached for g = g(P,Q) =

√
q/p. In particular, the Hellinger

affinity between P and Q satisfies

(72) ρ(P,Q) = 1
2 inf
g∈G

[EP (g) + EQ (1/g)] .

Setting f = 1 − g in (71), we see that (69) is satisfied for the class F of
functions with values in [−∞, 1], Λ(Q, f) =

∫
E [f/(1 − f)]dQ and f(P,Q) =

1−
√
q/p with Q the set of all probabilities on E. Then (70) leads to
t(P,Q) = C

[(
f(R,P ) − Λ(P, f(R,P ))

)
−
(
f(R,Q) − Λ(Q, f(R,Q))

)]
= C

ï√
q −√p
√
r

+
∫
E

√
r(√q −√p)dµ

ò
with r = p+ q

2 .
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The resulting test corresponds to the one proposed in Baraud (2011). In
particular, we obtain the following result which is proven in Section 10.14.

Proposition 11. Let P be the set of all probabilities on (E, E) dominated
by µ, M a countable subset of P and ` be the loss function defined by
`(P,Q) = h2(P,Q) for all P,Q ∈ P. The family T (`,M ) of functions
t(P,Q) defined for P,Q ∈M by

(73) t(P,Q) = 1
2
√

2

ï
ρ(R,Q)− ρ(R,P ) +

√
q −√p
√
r

ò
with R = P +Q

2 ,

satisfies Assumption 2 with a0 = (
√

2 + 1)/2, a1 = (
√

2− 1)/2, a2 = 3/2.

Any `-estimator based on this family T (`,M ) is a ρ-estimator. It is
possible to design other families T (`,M ) that satisfy Assumption 2 on the
larger set of all probabilities on (E, E), which are not necessarily dominated
by µ, but this requires more technicalities. We prefer to avoid them here
and rather refer the interested reader to Baraud and Birgé (2018).

6.3. The Kullback-Leibler divergence. Wemention the Kullback-Leibler
divergence as an example of loss function that fits our assumptions. Never-
theless, we would probably not recommend it in general as a loss function.
As seen in the introduction, an estimator θ̂ of a parameter θ may perform
well in the sense that the associated probabilities P

θ̂
and Pθ would be diffi-

cult to distinguish (say from a sample of size 106) while K(P
θ̂
, Pθ) = +∞.

The KL-divergence given by (8) can alternatively be defined via the fol-
lowing variational formula:

(74) K(P,Q) = sup
f∈F

î
EP [f ]− logEQ

Ä
ef
äó
,

which corresponds to (69) with Λ(Q, f) = logEQ(ef ) and F the class
of all measurable functions f such that |f | is bounded on E. Let µ be
some reference positive measure on E and Q the set of all probabilities
P on E which are absolutely continuous with respect to µ and such that
| log(dP/dµ)| ∈ L∞(E,µ). For P = p · µ and Q = q · µ in Q, equal-
ity holds in (74) for f = f(P,Q) = log(p/q). Since, for R = (P + Q)/2,
Λ(P, f(R,P )) = Λ(Q, f(R,Q)) = 0, we deduce from (70) that t(P,Q) is propor-
tional to[
f(R,P ) − Λ(P, f(R,P ))

]
−
[
f(R,Q) − Λ(Q, f(R,Q))

]
= log r

p
− log r

q
= log q

p

and therefore corresponds to the well-known likelihood ratio test. The fol-
lowing result is proven in Section 10.15.

Proposition 12. Let P be the set of all probabilities S on (E, E) which
are dominated by µ and whose densities s satisfy ES [|log s|] < +∞. Assume
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that M = {p ·µ, p ∈M} is a countable subset of Q and that for all p, q ∈M
and some constant a > 0,

(75) e−a 6
p

q
(x) 6 ea for all x ∈ E.

The family T (`,M ) of functions t(P,Q) given by

(76) t(P,Q) = 1
2a log

Å
q

p

ã
for all P,Q ∈M

satisfies Assumption 2 with a0 = a1 = 1/(2a) and a2 = 2a/[tanh(a/2)] for
the KL-loss `(P,Q) = K(P,Q), P,Q ∈P.

Under (75), the squared Hellinger distance and the Kullback-Leibler di-
vergence turn out to be equivalent on M . It is well-known that, whatever
P and Q, 2h2(P,Q) 6 K(P,Q). If, moreover P and Q belong to M and
(75) holds, it follows from Lemma 7.23 in Massart (2007) that

2h2(P,Q) 6 K(P,Q) 6 2(2 + a)h2(P,Q) for all P,Q ∈M .

If the data are i.i.d. with distribution P ?, the left-hand side inequality
2h2(P ?, P ) 6 K(P ?, P ) still holds for all P ∈ M but (75) does not imply
anything about K(P ?, P ) which cannot therefore be compared to h2(P ?, P ).
This means that the result of Theorem 2 for the Kullback-Leibler divergence
cannot be deduced from the one established for the squared Hellinger dis-
tance.

7. TV-estimators versus ρ-estimators

As explained in Section 5.2, a nice feature of TV-estimators lies in their
robustness properties. As described in details in Baraud et al. (2017) and
Baraud and Birgé (2018), ρ-estimators also possess robustness properties
except from the fact that these properties are expressed in terms of the
Hellinger distance and not the TV one. Since these two distances are not
equivalent in general, it is worth analyzing further the main differences be-
tween these two types of estimators.

7.1. Robustness and optimality. Let us go back to our Example 2 in the
simple situation where the data are i.i.d. with distribution P ? and d = 1.
Provided that ‖P ? − Pm?‖ and 1/n are both small enough, the right-hand
side of (54) is smaller than 0.78 and we deduce that, with probability at
least 1− e−ξ, the TV-estimator “m of m? satisfies

(77) |m? − “m| 6 C ñ‖P ? − Pm?‖+
…

1 + ξ

n

ô
for some universal constant C > 0.

Alternatively, in this statistical setting, we may use a ρ-estimator ‹m for
estimating m?. By combining Corollary 3 of Baraud and Birgé (2018) with
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Proposition 42 of Baraud et al. (2017), we obtain that the ρ-estimator P‹m
of P ? satisfies

(78) h2(Pm? , P‹m) 6 C ′
ï
h2(P ?, Pm?) + logn+ ξ

n

ò
where C ′ denotes some positive universal constant. Since

(1− e−1)
ï(m−m′)2

8 ∧ 1
ò
6 h2(Pm, Pm′) = 1− e−

(m−m′)2
8 ,

we derive, as we did for (77), that when h2(P ?, Pm?) and 1/n are small
enough, with a probability at least 1− e−ξ,

(79) |m? − ‹m| 6 C ′′ ñh(P ?, Pm?) +
…

logn+ ξ

n

ô
for some universal C ′′ > 0.

If we forget about the logarithmic factor and the universal constants
C,C ′′, the main difference between inequalities (77) and (79) lies in the
expression of the approximation terms ‖P ? − Pm?‖ and h(P ?, Pm?). Since,
for all probabilities P,Q, ‖P −Q‖ 6

√
2h(P,Q), the accuracy of “m cannot

be much worse than that of ‹m but it can indeed be much better: when
P ? = (1− α)Pm? + αR for some small value of α ∈ (0, 1) and a probability
R on R which is singular with respect to Pm? , we obtain that

‖P ? − Pm?‖ = α ‖Pm? −R‖ = α

while

h(P ?, Pm?) =
»

1−
√

1− α ∼
»
α/2 when α is small.

For small values of α, h(P ?, Pm?) is therefore much larger than ‖P ? − Pm?‖.
While (77) warrants that the performance of the TV-estimator “m remains
stable as long as α is small compared to 1/

√
n, the bound we get on the

accuracy on the ρ-estimator ‹m deteriorates as soon as α becomes large
compared to (logn)/n. From this point of view, the estimator ‹m appears
less robust than “m. This disappointing result (for ρ-estimators) is actually
not restricted to this Gaussian model and can actually be generalized to
many other situations for which the TV-distance and the Hellinger one are
equivalent on the model M .

This apparent superiority of TV-estimators over ρ-estimators must nev-
ertheless be put into perspective in the light of the following example. As-
sume that the data X1, . . . , Xn are truly i.i.d. from a translation model
M = {pθ = p(· − θ), θ ∈ Q} where the density p satisfies the following
condition.

Assumption 7. There exists a positive decreasing function f on (0,+∞)
such that p(x) = f(|x|) for all x ∈ R \ {0}.
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In this case, it is not difficult to compute a TV-estimator for the lo-
cation parameter θ. Putting aside the fact that our statistical model is
parametrized by Q and not R in order to make it countable, the empirical
median turns out to be a TV-estimator. More precisely, let X(1) < X(2) <
. . . < X(n) be the order statistics associated to the n-sample X1, . . . , Xn

with n > 2 and define the empirical median as X(dn/2e) where

dxe = min{k ∈ N, k > x} for all x > 0,

that is

(80)
n∑
i=1

1lXi<X(dn/2e) <
n

2 6
n∑
i=1

1lXi6X(dn/2e) .

The proof of the following result is provided in Section 10.16.

Proposition 13. Let Assumption 7 be satisfied. Any element θ̂ ∈ Q that
satisfies X(dn/2e) < θ̂ < X(dn/2e+1) is a TV-estimator of θ for the choice
ε = 1/2.

It is nevertheless easy to find an example of a translation model satisfying
Assumption 7 for which the empirical median is sub-optimal. The choice

p : x 7→ α

2(1 + α)

ï 1
|x|1−α

∧ 1
x2

ò
1l|x|>0 with α ∈ (0, 1)

actually suits. For this density, one can check that the empirical median
converges at rate n−1/(2α) (with respect to the Euclidean loss) while the
minimax rate is actually of order n−1/α. In contrast to the empirical median,
the ρ-estimator converges to the location parameter at the optimal rate
n−1/α up to a possible logarithmic factor.

As a matter of conlusion, TV-estimators are robust but not necessarily
optimal.

7.2. Logarithmic factors. The above discussion did put aside the loga-
rithmic factor that appears in the right-hand side of (78) compared to (77).
In fact, the results obtained for the Hellinger loss in Baraud and Birgé (2018;
2016) often involve such logarithmic factors. These factors turn out to be
sometimes necessary when one uses the Hellinger loss. For example, letM
be a countable and dense subset (with respect to the Hellinger distance) of
the setM of all probability densities with respect to the Lebesgue measure
on R which are piecewise constant with respect to some partition of R into
at most d > 1 intervals. This means that the elements ofM are of the form

d∑
i=1

ai1l(bi,bi+1] with −∞ < b0 < . . . < bd+1 < +∞

and a1, . . . , ad ∈ R+ satisfying
∑d+1
i=1 ai(bi+1 − bi) = 1. It is proven in

Baraud and Birgé (2016) that, if the data X1, . . . , Xn are i.i.d. with a density
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p? ∈M, the ρ-estimator p̃ onM satisfies, for some universal constant C > 0,

(81) sup
p?∈Md

E
[
h2(p?, p̃)

]
6 C

d

n
max

{
log3/2

(n
d

)
, 1
}
.

It has also been shown in Birgé and Massart (1998)[Proposition 2] that
the minimax rate is at least (d/n) max{log(n/d), 1} (up to some universal
constant) when d > 9 . The logarithmic factor appearing in the right-hand
side of (81) is therefore necessary (with a possibly smaller power though).
A look at the proof of Proposition 2 in Birgé and Massart shows that this
logarithmic factor is due to some combinatoric arguments based on the fact
thatM contains histograms built on possibly irregular partitions of [0, 1].

Surprisingly, this logarithmic factor disappears for the TV-loss. It is easy
to see that for p, q ∈ M, the sets {p > q} are the union of at most d + 1
intervals and Assumption 5 is therefore satisfied with V (p) = 2(d + 1) for
all p ∈ M. Proposition 6 and more precisely (57), implies that the TV-
estimator of p̂ satisfies, for some numerical constant C ′ > 0,

(82) sup
p?∈Md

E
î
‖p? − p̂‖2λ,1

ó
6 C ′

d

n
.

One can prove that this bound is optimal in the sense that the minimax rate
with respect to the squared TV loss over M is not smaller than cd/n for
some numerical constant c > 0 when d > 2. This means that the minimax
rates with respect to the Hellinger and TV-losses may differ from at least a
logarithmic factor.

8. Application to robust testing

8.1. The two-points model and robust tests. As already mentioned,
our estimation procedure is based on a suitable test between two distinct
elements of our statistical model. The aim of this section is to analyse
the properties of these tests, that is to evaluate their errors of first and
second kinds, not only when the true probability is equal to one of the two
distributions to be tested but more generally when it is close enough to one
of them with respect to the loss `. We shall therefore analyze the robustness
properties of these tests.

Given two distinct elements P,Q inM , we define the test Φ(P,Q) between
P and Q as

(83) Φ(P,Q)(X) =
®

1 if T(X,P,Q) > 0
0 if T(X,P,Q) < 0.

This means that we decide that P is closer to P? when Φ(P,Q)(X) = 0 and
that Q is closer to P? when Φ(P,Q)(X) = 1, the choice between P and Q
being unimportant, as well as the value of Φ(P,Q), when T(X,P,Q) = 0.
The following result is proven in Section 10.17.
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Proposition 14. Let Assumption 1 hold and P? ∈ P be such that γ =
a0`(P?,P)/[a1`(P?,Q)] < 1. Then

(84) P
[
Φ(P,Q)(X) = 1

]
6 exp

ñ
−2`2(P?,Q)

n
[a1(1− γ)]2

ô
.

If, moreover, Assumption 2-(iv) is satisfied

P
[
Φ(P,Q)(X) = 1

]
6 exp

ï
−`(P

?,Q)
2

a1(1− γ)2

[(1− γ)/3] + [(1 + γ(a1/a0))(a2/a1)]

ò
.(85)

Inequalities (84) and (85) both say that if P? is close enough to P and
far enough from Q with respect to the loss `, the test Φ(P,Q) decides
P with probability close to 1. In view of the symmetry of the assump-
tions with respect to P and Q, it suffices to exchange their roles to bound
P
[
Φ(P,Q)(X) = 0

]
now assuming that γ = a0`(P?,Q)/[a1`(P?,P)] < 1.

Recalling from Section 2.4 that a1 6 a0, note that one cannot say anything
about the performance of the test if

a1/a0 6 `(P?,P)/`(P?,Q) 6 a0/a1.

However, this is a situation where `(P?,P) and `(P?,Q) are of the same
order (in most cases that we considered a0 = 3a1) which means that choosing
P or Q is actually unimportant.

In order to comment on these results further, let us consider the density
framework with P = P? = (P ?)⊗n and Q = Q⊗n for some probability Q on
(E, E). Looking at (84), we see that the test accepts the hypothesis P ? = P
with probability close to one as soon as `(P ?, Q) = `(P?,Q)/n is large
enough compared to (1/

√
n) ∨ `(P ?, P ). The situation is even better when

Assumption 2-(iv) holds since (85) shows that it is enough that `(P ?, Q)
be large compared to (1/n) ∨ `(P ?, P ). It is well-known, mainly from the
work of Le Cam (1973), that it is impossible to distinguish between two
probabilities P and Q from an n-sample when the Hellinger distance h(P,Q)
is small enough compared to 1/

√
n. As a consequence, the test Φ(P,Q) is

optimal under Assumption 1 when the loss ` is of the order of the Hellinger
distance and optimal under Assumption 2 when it is of the order of the
squared Hellinger distance.

As we have seen earlier, most loss functions of interest are actually powers
of some distance on P. For illustration, let us focus on the case of ` = h2

for which Assumption 2 holds, in which case (85) becomes, according to
Proposition 11,

(86) P
[
Φ(P,Q)(X) = 1

]
6 exp

ñ
−

3
(√

2− 1
)

(1− γ)2nh2(P ?, Q)
4
[
9
√

2 + 10 + γ(9
√

2− 10)
] ô ,
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provided that

(87) γ =
Ä
3 + 2

√
2
ä h2(P ?, P )
h2(P ?, Q) < 1.

An interesting feature of this result lies in the fact that the test Φ(P,Q)
is powerful even in the situation where both h(P ?, P ) and h(P ?, Q) are
larger than h(P,Q)/2 provided that (87) is satisfied. In contrast, a test
between the two disjointed Hellinger balls {R ∈P, h(P,R) 6 r} and {R ∈
P, h(Q,R) 6 r}, as proposed in Birgé (1984)[Section 5] and Birgé (2013),
would require the condition r < h(P,Q)/2 and could not cope with the situ-
ation described above. In order to provide a concrete example of such a situ-
ation, let R and P ? be two singular probabilities, α = 0.1, P = cos2(2α)P ?+
sin2(2α)R and Q = cos2(6α)P ? + sin2(6α)R. Then h(P,Q) =

√
2 sin(2α) ≈

0.281, h(P ?, P ) =
√

2 sinα ≈ 0.141, h(P ?, Q) =
√

2 sin(3α) ≈ 0.418, con-
sequently both h(P ?, P ) and h(P ?, Q) are larger than h(P,Q)/2. Since
γ < 0.666, our test between P and Q is powerful as soon as n is sufficiently
large. This example confirms that our procedure differs from the tests be-
tween balls that were proposed by Birgé (1984; 2013) and Huber (1965) for
the Hellinger and total variation distances respectively.

More generally, if ` = dj for some distance d and j > 1, the test will
perform nicely if d(P ?, Q)/d(P ?, P ) is large enough, even if d(P ?, Q) is much
larger than d(P,Q)/2.

8.2. The case of a loss satisfying a variational formula. In this sec-
tion, we shall more specifically consider the case of a loss ` of the form (27)
and assume that we have at disposal an n-sample X1, . . . , Xn with common
distribution P ?. Since ` behaves like a distance, it is interesting to study
the properties of our test for the problem of testing two disjointed `-balls,
i.e. between {S ∈P, `(S, P ) 6 r} and {S ∈P, `(S,Q) 6 r} for P,Q ∈P
and r < `(P,Q)/2. The following result is proven in Section 10.18.

Proposition 15. Assume that the loss ` satisfies (27) and Assumption 3
with M = {P,Q} for P,Q ∈ P. Let Φ(P,Q) be defined by (83) with
T(X,P,Q) =

∑n
i=1 t(P,Q)(Xi) and t(P,Q) given by (29). For all P ? ∈ P

such that `(P ?, P ) 6 κ`(P,Q) with κ ∈ [0, 1/2),

(88) P
[
Φ(P,Q) = 1

]
6 exp

ï
−(1− 2κ)2

2b2 n`2(P,Q)
ò
.

As a matter of illustration, let us consider the case where P = P is
the set of all probabilities on (E, E) and ` is the TV-loss. Then b = 1 and
given two distinct probabilities P,Q in P, we derive from (47) that the test
statistic T(X,P,Q) writes as

n

2

ñ
1
n

n∑
i=1

1lq>p(Xi)−Q(q > p)
ô
− n

2

ñ
1
n

n∑
i=1

1lp>q(Xi)− P (p > q)
ô
.
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One may compare the test Φ(P,Q) with that proposed by Devroye and Lu-
gosi (2001) [Chapter 6] which is based on the test statistic

T ′(X,P,Q) =
∣∣∣∣∣ 1n n∑

i=1
1lq>p(Xi)−Q(q > p)

∣∣∣∣∣−
∣∣∣∣∣ 1n n∑

i=1
1lq>p(Xi)− P (q > p)

∣∣∣∣∣
and rejects P if and only if T ′(X,P,Q) > 0. Unlike ours, the test proposed
by Devroye and Lugosi is not symmetric with respect to P and Q. For
example, when p(Xi) = q(Xi) for all i, the test always chooses Q, since
T ′(X,P,Q) = Q(q > p)− P (q > p) > 0, while ours decides P or Q on the
basis of the sign of Q(q > p)− P (p > q) = Q(q > p)− P (p > q).

8.3. Case of the Lj-loss. We assume here that P = P⊗n and Q = Q⊗n

where P,Q are not necessarily probabilities but possibly signed measures
with densities p and q with respect to some dominating measure µ. We
consider the Lj-loss for j ∈ (1,+∞) and assume that p and q belong to
Lj(E,µ)∩L1(E,µ). Clearly, (36) is satisfied for the model M = {P,Q} as
soon as R = ‖p− q‖∞ / ‖p− q‖µ,j < +∞ (assuming P 6= Q) and it follows
from Corollary 3 that

T(X,P,Q)
n

= 1
2

ñ
1
n

n∑
i=1

Ç
σ|p− q|j−1

‖p− q‖j−1
∞

å
(Xi)−

∫
E

σ|p− q|j−1

‖p− q‖j−1
∞

p+ q

2 dµ

ô
where σ(x) = 1lq>p(x)− 1lp>q(x) for all x ∈ E. Note that for j = 2,

4 ‖p− q‖∞
T(X,P,Q)

n
=
ñ

2
n

n∑
i=1

q(Xi)− ‖q‖2µ,2

ô
−
ñ

2
n

n∑
i=1

p(Xi)− ‖p‖2µ,2

ô
and the test Φ(P,Q) between P and Q is the one associated to the classical
L2-contrast function.

We deduce from Proposition 14 and Corollary 3 the following result.

Proposition 16. Let j ∈ (1,+∞), P = p · µ, Q = q · µ be two distinct
and possibly signed measures on (E, E) with p, q ∈ Lj(E,µ)∩L1(E,µ). As-
sume that X1, . . . , Xn are independent with respective densities p?1, . . . , p?n ∈
Lj(E,µ). If

γ =
3
∑n
i=1 ‖p?i − p‖µ,j∑n
i=1 ‖p?i − q‖µ,j

< 1 and R = ‖p− q‖∞
‖p− q‖µ,j

< +∞,

the test Φ(P,Q) defined by (83) satisfies

P
[
Φ(P,Q)(X) = 1

]
6 exp

[
−(1− γ)2n

8R2(j−1)

Ç
1
n

n∑
i=1
‖p?i − q‖µ,j

å2]
.

In particular, if X1, . . . , Xn are i.i.d. with density p? ∈ Lj(E,µ),

P
[
Φ(P,Q)(X) = 1

]
6 exp

ï
−(1− γ)2n

8R2(j−1) ‖p
? − q‖2µ,j

ò
provided that γ = 3 ‖p? − p‖µ,j / ‖p? − q‖µ,j < 1.
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9. Proofs of Theorems 1 and 2

Let P be an arbitrary point inM , κ ∈ [0, 1) and ζ > 0 to be chosen later
on. For P ∈M and x = (x1, . . . , xn) ∈ E, let us set

Z(x,P) = sup
Q∈M

[
T(x,P,Q)− (1− κ)E [T(X,P,Q)]

]
− ζ

= sup
Q∈M

[
(1− κ)E [T(X,Q,P)]−T(x,Q,P)

]
− ζ.

It follows from (13) that

sup
Q∈M

E [T(X,P,Q)] 6 a0`(P?,P)− a1`(P?,M )(89)

and for all Q ∈M ,

(1− κ)a1`(P?,Q) 6 (1− κ)a0`(P?,P) + (1− κ)E
[
T(X,Q,P)

]
= (1− κ)a0`(P?,P) + (1− κ)E

[
T(X,Q,P)

]
−T(X,Q,P) + T(X,Q,P)

6 (1− κ)a0`(P?,P) + Z(X,P) + T(X,Q,P) + ζ

6 (1− κ)a0`(P?,P) + Z(X,P) + T(X,Q) + ζ.

This last inequality applies in particular to Q = “P ∈ E (X) and, since

T(X,“P) 6 inf
P′∈M

T(X,P′) + ε 6 T(X,P) + ε

we deduce that

(90) (1− κ)a1`(P?,“P) 6 (1− κ)a0`(P?,P) + Z(X,P) + T(X,P) + ζ + ε.

We derive from (89) that

T(X,P) = sup
Q∈M

T(X,P,Q)

6 sup
Q∈M

[
T(X,P,Q)− (1− κ)E

[
T(X,P,Q

]]
− ζ

+ (1− κ) sup
Q∈M

E
[
T(X,P,Q

]
+ ζ

6 Z(X,P) + (1− κ)
[
a0`(P?,P)− a1`(P?,M )

]
+ ζ,

which, together with (90), leads to

(1− κ)a1`(P?,“P) 6 (1− κ)
[
2a0`(P?,P)− a1`(P?,M )

]
(91)

+ 2ζ + ε+ 2Z(X,P).

The following lemma, to be proven in Section 9.1, provides a control of
Z(X,P) involving w(P) as defined in (17).

Lemma 2. Under the assumptions of Theorem 1, for the choices κ = 0 and
ζ = w(P) +

√
nξ/2, Z(X,P) 6 0 with a probability at least 1− e−ξ.
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To complete the proof of Theorem 1 we argue as follows. Choosing ζ
and κ as in Lemma 2 implies that Z(X,P) 6 0 with a probability at least
1− e−ξ, which, together with (91), leads to

a1`(P?,“P) 6 2a0`(P?,P)− a1`(P?,M ) + 2ζ + ε

6 2a0`(P?,P)− a1`(P?,M ) + 2w(P) +
√

2nξ + ε

and (18) follows from a division by a1 > 0. To derive (19), we use the
equality E[Y ] =

∫+∞
0 P[Y > t] dt which holds for any nonnegative random

variable Y , then an integration with respect to ξ and conclude since P is
arbitrary inM .

To prove Theorem 2 we fix κ = 1/2 in the definition of Z(x,P), in which
case (91) becomes

(92) a1`(P?,“P) 6 2a0`(P?,P)− a1`(P?,M ) + 4ζ + 2ε+ 4Z(X,P),

and, given a positive number y0 to be chosen later on, we set, for all j ∈ N,

(93) rj = jy0, Mj = {Q ∈M , rj 6 `(P?,Q) < rj+1}

and, for x = (x1, . . . , xn) ∈ E,

(94) Zj(x,P) = sup
Q∈Mj

∣∣T(x,P,Q)− E
[
T(X,P,Q)

]∣∣ .
We then deduce from (13) that, for Q ∈Mj ,

E
[
T(X,P,Q)

]
6 a0`(P?,P)− a1`(P?,Q) 6 a0`(P?,P)− a1y0j,

from which we derive, sinceM =
⋃
j>0Mj , that

Z(X,P) = sup
j∈N

sup
Q∈Mj

[
T(X,P,Q)− (1/2)E

[
T(X,P,Q)

]]
− ζ

6 sup
j∈N

ñ
Zj(X,P) + (1/2) sup

Q∈Mj

E
[
T(X,P,Q)

]ô
− ζ

6 (a0/2)`(P?,P) + sup
j∈N

Ξj ,(95)

with

(96) Ξj = Zj(X,P)− (a1/2)y0j − ζ.

In order to control the random variables Ξj for j ∈ N, we use following
lemma to be proven in Section 9.2.

Lemma 3. Under the assumptions of Theorem 2, let

(97) y0 = D(P) and ζ = a1
4 `(P

?,P) + a1y0
2 + 2

Å
1 + 4a2

a1

ã
ξ.

Then,
P [Ξj > 0] 6 2−(j+1)e−ξ for all j > 0.
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Under the assumptions of Lemma 3, we derive that, with a probability
at least 1− e−ξ, supj∈N Ξj 6 0, in which case it follows from (92), (95) and
(97) that

a1`(P?,“P) 6 2a0`(P?,P)− a1`(P?,M ) + 4ζ + 2ε+ 2a0`(P?,P)
6 [4a0 + a1] `(P?,P)− a1`(P?,M ) + 2a1D(P)

+ 8 [1 + (4a2/a1)] ξ + 2ε.

and (26) follows, which concludes the proof of Theorem 2.

9.1. Proof of Lemma 2. If κ = 0, for all x = (x1, . . . , xn) ∈ E,

(98) Z(x,P) = sup
Q∈M

∣∣∣∣∣ n∑
i=1

Ä
t(P i,Qi)(xi)− E

î
t(P i,Qi)(Xi)

óä∣∣∣∣∣− ζ
and it follows from (17) that

(99) E
[
Z(X,P)

]
= E
ñ

sup
Q∈M

∣∣Z(X,P,Q)
∣∣ô− ζ 6 w(P)− ζ= −

»
nξ/2.

Under Assumption 1-(iii), for all i ∈ {1, . . . , n}, Q ∈M and x, x′ ∈ E the
quantity

∣∣∣t(P i,Qi)(x)− t(P i,Qi)(x
′)
∣∣∣ is bounded by 1 so that, for all x ∈ E

and x′i ∈ E∣∣Z((x1, . . . , xi, . . . , xn),P)− Z((x1, . . . , x
′
i, . . . , xn),P)

∣∣ 6 1.

The random variables X1, . . . , Xn being independent, Theorem 5.1 of Mas-
sart (2007) applies to the function x→ Z(x,P), showing that, with a prob-
ability at least 1− e−ξ,

(100) Z(X,P) 6 E
[
Z(X,P)

]
+
»
nξ/2 6 0

by (99), which concludes our proof.

9.2. Proof of Lemma 3. Let us recall that w(P, y) 6 c1y for y > D(P) =
y0 by (25) with c1 given by (24). Since the mapping y 7→ w(P, y) defined
by (23) is nondecreasing,

w(P, y0) 6 w(P, y) 6 c1y for all y > y0,

so that the above inequality still holds for y = y0. Since, for all j ∈ N,
Mj ⊂B(P?, rj+1) with rj+1 = (j+1)y0, we derive from (23) that, whatever
j ∈ N,

E
[
Zj(X,P)

]
= E
ñ

sup
Q∈Mj

∣∣Z(X,P,Q)
∣∣ô 6 w(P, rj+1) 6 c1rj+1.(101)

Let us now recall the following version of Talagrand’s inequality that can be
found in Baraud, Birgé and Sart (2017).



44 YANNICK BARAUD

Proposition 17. Let T be some finite set, U1, . . . , Un be independent cen-
tered random vectors with values in R|T | and Z = supt∈T |

∑n
i=1 Ui,t|. If, for

some positive numbers b and v,

max
i=1,...,n

|Ui,t| 6 b and
n∑
i=1

E
[
U2
i,t

]
6 v2 for all t ∈ T,

then, for all positive numbers c and z,

(102) P
[
Z 6 (1 + c)E(Z) + (8b)−1cv2 + 2

(
1 + 8c−1) bz] > 1− e−z.

The above result extends to countable sets T (by monotone convergence)
and we may therefore take T =Mj , Ui,Q = t(P i,Qi)(Xi)−E

î
t(P i,Qi)(Xi)

ó
for

all i ∈ {1, . . . , n}, so that Z = Zj(X,P), and b = 1 by Assumption 1-(iii).
Furthermore, Assumption 2-(iv) and the definition ofMj imply that

sup
Q∈Mj

n∑
i=1

Var
î
t(P i,Qi)(Xi)

ó
6 a2 sup

Q∈Mj

[
`(P?,P) + `(P?,Q)

]
6 a2

[
`(P?,P) + rj+1

]
.

We may therefore apply Proposition 17 with v2 = a2
[
`(P?,P) + rj+1

]
and

z = zj = (j + 1)l + ξ, l > 0. Then using (101) together with the fact that
y0 > c

−1
1 by (25), we derive that, with a probability at least 1− 2−(j+1)e−ξ,

Zj(X,P) 6 (1 + c)E
[
Zj(X,P)

]
+ (cv2/8) + 2(1 + 8c−1) [(j + 1)l + ξ]

6 (1 + c)c1rj+1 + ca2
8
[
`(P?,P) + rj+1

]
+ 2(1 + 8c−1) lrj+1

y0
+ 2(1 + 8c−1)ξ

6 rj+1

[
(1 + c)c1 + ca2

8 + 2(1 + 8c−1)c1l
]

+ ca2
8 `(P?,P) + 2(1 + 8c−1)ξ

= Arj+1 + ca2
8 `(P?,P) + 2(1 + 8c−1)ξ

with

A = (1 + c)c1 + ca2
8 + 2(1 + 8c−1)c1l = c1

(
1 + 2l + c+ 16lc−1)+ a2c

8 .

Setting c = 2a1/a2 and l = log 2, we deduce from the definition (24) of c1
that

4c1
a1

=
Å

1 + 2l + 2a1
a2

+ 8la2
a1

ã−1
=
(
1 + 2l + c+ 16lc−1)−1

,

hence A 6 a1/2 and, by (97),

ζ = (a2c/8)`(P?,P) + (a1y0/2) + 2
(
1 + 8c−1) ξ.
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It finally follows from (96) that, with a probability at least 1− 2−(j+1)e−ξ,

Ξj 6 Arj+1 + (a2c/8)`(P?,P) + 2(1 + 8c−1)ξ − (a1/2)y0j − ζ
6 Arj+1 − (a1rj+1/2) + (a2c/8)`(P?,P) + (a1y0/2) + 2(1 + 8c−1)ξ − ζ
6 (a2c/8)`(P?,P) + (a1y0/2) + 2

(
1 + 8c−1) ξ − ζ 6 0.

10. Other proofs

We shall repeatedly use the following result which is consequence of
Proposition 3.1 in Baraud (2016).

Proposition 18. Let X1, . . . , Xn be independent random variables with val-
ues in (E, E) and C a VC-class of subsets of E with VC-dimension not larger
than V > 1 which satisfies

∑n
i=1 P(Xi ∈ C) 6 nσ2 for some σ ∈ (0, 1] and

all C ∈ C. Then,

E
ñ

sup
C∈C

∣∣∣∣∣ n∑
i=1

(1lC(Xi)− P(Xi ∈ C))
∣∣∣∣∣
ô
6 10 (σ ∨ a)

 
nV

ï
5 + log

Å 1
σ ∨ a

ãò
where

a =
ñ
32
 
V ∧ n
n

log
Å 2en
V ∧ n

ãô∧
1.

10.1. Proof of Proposition 1. The properties of ` are straightforward
and Assumptions 1-(i) and (iii) are direct consequences of Assumptions 3-(i)
and (ii) respectively. Let us now establish (30) for some pair (P,Q) ∈M 2.
Using (27) and the triangle inequality, we obtain that for all S ∈P

bES
[
t(P,Q)(X)

]
=
∫
E
f(P,Q)

dP + dQ

2 −
∫
E
f(P,Q)dS

=
∫
E
f(P,Q)

dQ− dP
2 +

∫
E
f(P,Q)dP −

∫
E
f(P,Q)dS

6 `(S, P )− 1
2`(P,Q),(103)

and the conclusion follows from the triangle inequality.

10.2. Proof of Proposition 2. Let (P,Q) ∈P2 and sgn = sgn(P,Q, ·) =
1lFQ(·)>FP (·) − 1lFP (·)>FQ(·) be the function corresponding to the sign of FQ−
FP on the set {FQ 6= FP } and which vanishes elsewhere. We write f =
f(P,Q) for short. For all real numbers 0 6 x < x′ 6 1, |f(x) − f(x′)| =
|
∫ x′
x sgn(t)dt| 6 x′ − x 6 1. Hence, f belongs to F and satisfies Assump-

tion 3-(ii) with b = 1. Assumption 3-(i) is clearly true and Assumption 3-(iii)
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derives from the following consequence of Fubini’s theorem:
EP [f(X)]− EQ [f(X)]

=
∫ 1

0

ï∫ 1

0
sgn(t)1l06t<xdt

ò
dP (x)−

∫ 1

0

ï∫ 1

0
sgn(t)1l06t<xdt

ò
dQ(x)

=
∫ 1

0
sgn(t)(1− FP (t))dt−

∫ 1

0
sgn(t)(1− FQ(t))dt

=
∫ 1

0
sgn(t) [FQ(t)− FP (t)] dt =

∫ 1

0
|FP (t)− FQ(t)| dt = W (P,Q).

For the last equality, we refer to Shorack and Wellner (1986)[Page 64].

10.3. Proof of Corollary 2. Let f be a function on [0, 1] that satisfy the
following property: there exists a function f ′ on [0, 1] such that ‖f ′‖∞ 6 1
and

f(x) =
∫ x

0
f ′(u) du =

∫ 1

0
f ′(u)1lx>u du for all x ∈ [0, 1].

Using Fubini’s theorem, we obtain that∣∣∣∣∣ n∑
i=1

f(Xi)− E [f(Xi)]
∣∣∣∣∣ =

∣∣∣∣∣ n∑
i=1

ï∫ 1

0
f ′(u) (1lXi>u − P [Xi > u]) du

ò∣∣∣∣∣
=
∣∣∣∣∣
∫ 1

0
f ′(u)

n∑
i=1

(1lXi>u − P [Xi > u]) du
∣∣∣∣∣

6
∫ 1

0

∣∣∣∣∣ n∑
i=1

(1lXi>u − P [Xi > u])
∣∣∣∣∣ du.(104)

It follows from Proposition 2 that the functions f(P,Q) defined by (32) satisfy
this property for all probabilities P,Q ∈ P. Hence, by definition (17) for
all P ∈M and P = P

⊗n

w(P) 6 E
ñ

sup
Q∈M

∣∣∣∣∣ n∑
i=1

f(P ,Q)(Xi)− E
î
f(P ,Q)(Xi)

ó∣∣∣∣∣ô
6
∫ 1

0
E
ñ∣∣∣∣∣ n∑
i=1

(1lXi>u − P [Xi > u])
∣∣∣∣∣
ô
du 6

∫ 1

0

√
n∑
i=1

Var(1lXi>u)du.

Hence, w(P) 6
√
n/2 and by applying Theorem 1 with the values of a0 =

3/2 and a1 = 1/2 provided by Corollary 1 and by using the fact that P is
arbitrary in M , we obtain (33).

10.4. Proof of Corollary 4. As a subset of L2(E,µ), V is also separable
and admits an (at most countable) Hilbert basis (ϕI)I∈I . It follows from
(38) that

(105) R2 > sup
t∈V, ‖t‖2=1

‖t‖2∞ = sup
x∈E

sup∑
I
c2
I=1

∣∣∣∣∣∑
I∈I

cIϕI(x)
∣∣∣∣∣
2

=
∥∥∥∥∥∑
I∈I

ϕ2
I

∥∥∥∥∥
∞
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and also that the equality t =
∑
I∈I 〈t, ϕI〉ϕI holds both pointwise and in

L2(E,µ) for all t ∈ V . Given P = p·µ andQ = q·µ in M with p, q ∈M ⊂ V ,
p 6= q, we may therefore write for all x ∈ E, p(x) − q(x) =

∑
I∈I cIϕI(x)

with
∑
I∈I c

2
I = ‖p − q‖2µ,2 > 0. Since f(P ,Q) = (p − q)/ ‖p− q‖µ,2 when

P 6= Q, it follows from Cauchy-Schwarz inequality that

sup
q∈M\{p}

∣∣∣∣∣ n∑
i=1

Ç
(p− q)(Xi)
‖p− q‖µ,2

− E
ñ

(p− q)(Xi)
‖p− q‖µ,2

ôå∣∣∣∣∣
6 sup

(cI)I∈I ,
∑

I∈I c
2
I=1

∑
I∈I
|cI |

∣∣∣∣∣ n∑
i=1

(ϕI(Xi)− E [ϕI(Xi)])
∣∣∣∣∣

6

Ã∑
I∈I

∣∣∣∣∣ n∑
i=1

(ϕI(Xi)− E [ϕI(Xi)])
∣∣∣∣∣
2

.

We deduce from the definition (17) of w(P) with P = P
⊗n and t(P ,Q) given

by (29) together with Jensen’s inequality and (105) that

w(P) 6 1
2RE

ñ
sup

q∈M\{p}

∣∣∣∣∣ n∑
i=1

Ç
(p− q)(Xi)
‖p− q‖µ,2

− E
ñ

(p− q)(Xi)
‖p− q‖µ,2

ôå∣∣∣∣∣ô
6

1
2R

Ã∑
I∈I

n∑
i=1

Var[ϕI(Xi)] 6
1

2R

Ã∑
I∈I

n∑
i=1

∫
E
ϕ2
Ip
?
i dµ

6
1

2R

Ã
n∑
i=1

∥∥∥∥∥∑
I∈I

ϕ2
I

∥∥∥∥∥
∞

6

√
n

2 .

Then, we conclude in the same way as for the proof of Corollary 2.

10.5. Proof of Proposition 4. Let I = {0, 1}d \ {(0, . . . , 0)} and consider
a multivariate tensor product wavelet basis

{Φk,Ψi
j,k, k ∈ Zd, j > 0, i ∈ I}

of L2(Rd) based on the father and mother wavelets φ and ψ defined on R,
with compact support, regularity r > α and L2-norms equal to 1. This
means that, for all x = (x1, . . . , xd) ∈ Rd, k = (k1, . . . , kd) ∈ Zd, j > 0 and
i = (i1, . . . , id) ∈ I,

Φk(x) =
d∏
l=1

φ(xl − kl) and Ψi
j,k(x) = 2jd/2

d∏
l=1

ψ(il)
(
2jxl − kl

)
,

with ϕ(1) = ψ and ϕ(0) = φ. If a function f ∈ L2(Rd) can be written as

(106) f =
∑

k∈Zd

[
〈f,Φk〉Φk +

∑
j>0

∑
i∈I
〈f,Ψi

j,k〉Ψi
j,k

]
a.e.
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and if it belongs to the Besov space Bα
s,∞(Rd), then the quantitiy

(107) |f |′α,s,∞ = sup
j>0

2j(α+d/2−d/s)

Ñ ∑
k∈Zd,i∈I

∣∣∣〈f,Ψi
j,k〉
∣∣∣s
é1/s

is finite and equivalent to the Besov semi-norm |f |α,s,∞ associated toBα
s,∞(Rd)

(up to constants that depend on α, s, d, φ, ψ). Therefore, replacing |f |′α,s,∞
by |f |α,s,∞ will only change the values of the constants in what follows. We
refer the reader to Section 4.3 of the book by Nickl and Giné (2016) for
more details on Besov spaces on Rd and their connections with multivariate
tensor product wavelet bases with regularity r. Since the father and mother
wavelets ϕ,ψ have compact support on R, the functions Φk and Ψi

j,k also
have compact support on Rd for all k ∈ Zd, j > 0 and i ∈ I. In fact, there
exists a number K0 > 0, depending on d, ϕ and ψ only, such that for all
x = (x1, . . . , xd) ∈ Rd, j > 0 the sets

Λ(x) =
¶
k ∈ Zd, |Φk(x)| > 0

©
and Λj(x) =

{
k ∈ Zd,

∑
i∈I

∣∣∣Ψi
j,k(x)

∣∣∣ > 0
}

have cardinalities not larger than K0. In particular, for J > 0, the functions
t of the form

(108) t(x) =
∑

k∈Zd

[
βk,0Φk(x) +

J∑
j=0

∑
i∈I

βj,k,iΨi
j,k(x)

]
for all x ∈ Rd

with

(109)
∑

k∈Zd

[
β2

k,0 +
J∑
j=0

∑
i∈I

β2
j,k,i

]
< +∞

are well-defined since the series in (108) only involves a finite number of
non-zero terms and (108) implies that they belong to L2(Rd). We define VJ
as the linear space of these functions t given by (108) and (109) and, for
all j > 0, the linear space Uj as the space of functions u of the form u =∑

k∈Zd
∑

i∈I βj,k,iΨi
j,k with

∑
k∈Zd

∑
i∈I β

2
j,k,i < +∞. Since the functions

Φk and Ψi
j,k form an orthonormal system in L2(Rd) for k ∈ Zd, j > 0 and

i ∈ I, the linear spaces (VJ , ‖·‖λ,2) and (Uj , ‖·‖λ,2) with j > 0 are Hilbert
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spaces. Moreover, for all x ∈ Rd,
∑

k∈Zd

[
Φ2

k(x) +
J∑
j=0

∑
i∈I

Ä
Ψi
j,k
ä2

(x)
]

=
∑

k∈Λ(x)
Φ2

k(x) +
J∑
j=0

 ∑
k∈Λj(x)

∑
i∈I

Ä
Ψi
j,k
ä2

(x)


6 K0

[
‖φ‖2d∞ + 2d max

i∈I

∥∥∥Ψi
0,0

∥∥∥2

∞

J∑
j=0

2jd
]
6 K2

12Jd,

where K1 only depends on d, φ and ψ. It follows from (108) and Cauchy-
Schwarz inequality that, for all x ∈ Rd and t ∈ VJ ,

|t(x)|2 =
∣∣∣∣∣∑
k∈Zd

[
βk,0Φk(x) +

J∑
j=0

∑
i∈I

βj,k,iΨi
j,k(x)

]∣∣∣∣∣
2

6

[∑
k∈Zd

(
β2

k,0 +
J∑
j=0

∑
i∈I

β2
j,k,i

)][∑
k∈Zd

(
Φ2

k(x) +
J∑
j=0

∑
i∈I

Ä
Ψi
j,k
ä2

(x)
)]

6 ‖t‖2λ,2 ×K
2
12Jd

which implies that VJ satisfies Assumption 4 with R = K12Jd/2.
For all x ∈ Rd and t ∈ Uj with j > 0

|t(x)|s =
∣∣∣∣∣∑
k∈Zd

∑
i∈I
〈t,Ψi

j,k〉Ψi
j,k(x)

∣∣∣∣∣
s

=

∣∣∣∣∣∣ ∑
k∈Λj(x)

∑
i∈I
〈t,Ψi

j,k〉Ψi
j,k(x)

∣∣∣∣∣∣
s

6 (|Λj(x)| |I|)s−1 ∑
k∈Λj(x)

∑
i∈I

∣∣∣〈t,Ψi
j,k〉
∣∣∣s ∣∣∣Ψi

j,k(x)
∣∣∣s

6 (K02d)s−1 ∑
k∈Zd

∑
i∈I

∣∣∣〈t,Ψi
j,k〉
∣∣∣s ∣∣∣Ψi

j,k(x)
∣∣∣s .(110)

Since, for all i ∈ I and k ∈ Zd, ‖Ψi
j,k‖λ,s = 2jd(1/2−1/s)‖Ψi

0,0‖λ,s, integrating
(110) with respect to x ∈ Rd leads to the bound,

(111) ‖t‖λ,s 6 K22jd(1/2−1/s)

[∑
k∈Zd

∑
i∈I

∣∣∣〈t,Ψi
j,k〉
∣∣∣s]1/s

for all t ∈ Uj ,

where K2 depends on d, φ, ψ and s.
Let us now consider a function f in Bα

s,∞ ∩L1(Rd) ∩L2(Rd). It follows
from (106) that f can be expanded in the wavelet basis as fJ +

∑
j>J fj a.e.

with fJ ∈ VJ and

fj =
∑

k∈Zd

∑
i∈I
〈f,Ψi

j,k〉Ψi
j,k ∈ Uj for all j > J.
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Since f belongs to L1(Rd), for all j > 0

∑
k∈Zd

∑
i∈I

∣∣∣〈f,Ψi
j,k〉
∣∣∣ 6 ∫

Rd
|f(x)|

[∑
k∈Zd

∑
i∈I

∣∣∣Ψi
j,k(x)

∣∣∣] dx
6 K02jd/2 max

i∈I

∥∥∥Ψi
0,0

∥∥∥
∞
‖f‖λ,1

and similarly, ∑
k∈Zd

|〈f,Φk〉| 6 K0 ‖φ‖d∞ ‖f‖λ,1 .

As a consequence, fJ and fj for j > J belong to L1(Rd) and

‖fj‖λ,1 =
∫
Rd
|fj(x)| dx 6

∑
k∈Zd

∑
i∈I

∣∣∣〈f,Ψi
j,k〉
∣∣∣ ∫

Rd

∣∣∣Ψi
j,k(x)

∣∣∣ dx
= 2−jd/2 max

i∈I

∥∥∥Ψi
0,0

∥∥∥
λ,1

∑
k∈Zd

∑
i∈I

∣∣∣〈f,Ψi
j,k〉
∣∣∣ 6 K3 ‖f‖λ,1(112)

where K3 depends on d, φ and ψ only. Besides, since f belongs to Bα
s,∞ we

deduce from (107) and (111) that

(113) ‖fj‖λ,s 6 K4 |f |α,s,∞ 2−jα for all j > J ,

where K4 depends on d, φ, ψ, s and α. Combining (112) and (113) and using
the fact that s > 2, we derive that for all j > J and zj > 0

‖fj‖2λ,2 =
∫
Rd
f2
j (x)1l|fj |6zjdx +

∫
Rd
f2
j (x)1l|fj |>zjdx

6 zj ‖fj‖λ,1 +
‖fj‖sλ,s
zs−2
j

6 zjK3 ‖f‖λ,1 + z
−(s−2)
j Ks

4 |f |
s
α,s,∞ 2−jsα.

Setting

zj =
ñ
Ks

4 |f |
s
α,s,∞

K3 ‖f‖λ,1

ô1/(s−1)

2−jsα/(s−1) when ‖f‖λ,1 6= 0

and letting zj tend to +∞ otherwise, we derive that for all j > J

‖fj‖2λ,2 6 K5 |f |s/(s−1)
α,s,∞ ‖f‖(s−2)/(s−1)

λ,1 2−jsα/(s−1),(114)

where K5 only depends on d, φ, ψ, α and s (with the convention 00 = 0).
Since the spaces Uj are mutually orthogonal, it follows from (114) that∥∥∥f − fJ∥∥∥2

λ,2
=
∑
j>J

‖fj‖2λ,2 6 K5 |f |s/(s−1)
α,s,∞ ‖f‖(s−2)/(s−1)

λ,1
∑
j>J

2−jsα/(s−1)

6 K6 |f |s/(s−1)
α,s,∞ ‖f‖(s−2)/(s−1)

λ,1 2−Jsα/(s−1)

where K6 depends on d, φ, ψ, s and α, which concludes the proof.
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10.6. Proof of Corollary 6. Let V be the linear space spanned by the D
indicator functions 1lI for I ∈ I. Since for all t =

∑
I∈I tI1lI ∈ V ,

‖t‖jµ,j =
∑
I∈I
|tI |jD−1 > D−1 max

I∈I
|tI |j = D−1 ‖t‖j∞ ,

inequality (36) is satisfied with R = D1/j . Moreover, given p, q ∈ M with
p 6= q, (p− q)/ ‖p− q‖µ,j writes as

∑
I∈I bI1lI with

(115) 1 =
∥∥∥∥∥∑
I∈I

bI1lI

∥∥∥∥∥
µ,j

= |b|j D
−1/j with |b|j =

(∑
I∈I
|bI |j

)1/j

= R.

Hence,Ç
p− q

‖p− q‖µ,j

åj−1

+
=
∑
I∈I

(bI)j−1
+ 1lI and

Ç
p− q

‖p− q‖µ,j

åj−1

−
=
∑
I∈I

(bI)j−1
− 1lI ,

so that, by the definition (35) of f(P ,Q)

f(P ,Q) − E
î
f(P ,Q)

ó
=
∑
I∈I

î
(bI)j−1

+ − (bI)j−1
−
ó

(1lI − P ?(I))

and
1

2Rj−1

∣∣∣∣∣ n∑
i=1

Ä
f(P ,Q)(Xi)− E

î
f(P ,Q)

óä∣∣∣∣∣
= 1

2Rj−1

∣∣∣∣∣∑
I∈I

Ä
(bI)j−1

+ − (bI)j−1
−
ä n∑
i=1

[1lI(Xi)− P ?(I)]
∣∣∣∣∣

6
1

2Rj−1

∑
I∈I
|bI |j−1

∣∣∣∣∣ n∑
i=1

[1lI(Xi)− P ?(I)]
∣∣∣∣∣ .

Using (115) and Hölder inequality with the conjugate exponents j/(j − 1)
and j we derive that

1
2Rj−1

∣∣∣∣∣ n∑
i=1

Ä
f(P ,Q)(Xi)− E

î
f(P ,Q)

óä∣∣∣∣∣
6

1
2

Ç
|b|j
R

åj−1 [∑
I∈I

∣∣∣∣∣ n∑
i=1

[1lI(Xi)− P ?(I)]
∣∣∣∣∣
j]1/j

= 1
2

[∑
I∈I

∣∣∣∣∣ n∑
i=1

[1lI(Xi)− P ?(I)]
∣∣∣∣∣
j]1/j

.

Using Jensen’s inequality and (17), we get

w(P) 6 1
2

[∑
I∈I

E

∣∣∣∣∣ n∑
i=1

[1lI(Xi)− P ?(I)]
∣∣∣∣∣
j]1/j

.(116)
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When j > 2, we may use Theorem 15.10 [Page 442] in Boucheron et al (2013)
with Z =

∑n
i=1 1lI(Xi) and the fact that 1lI(X1), . . . , 1lI(Xn) are independent

nonnegative random variables bounded by 1. We obtain that

c−1
j E

∣∣∣∣∣ n∑
i=1

[1lI(Xi)− P ?(I)]
∣∣∣∣∣
j

6 1 + [nP ?(I)]j/2(117)

with

(118) cj =
î
2j−1(2κj)j/2 + (Kj)j/2

ó
∨
[
2j−1(κj)j

]
, κ =

√
e

2(
√
e− 1)

and K = (e−
√
e)−1. Using the inequality below that holds for all j′ > 1

‖pD‖
j′/2
µ,j′/2 = 1

D

∑
i∈I

Å
D

∫
I
p?dµ

ãj′/2
= Dj′/2−1∑

i∈I
[P ?(I)]j′/2

and the fact that u 7→ u1/j is sub-additive, by summing (117) over I ∈ I,
we deduce from (116) that

w(P) 6
c

1/j
j

2

[
D + nj/2

∑
I∈I

[P ?(I)]j/2
]1/j

=
c

1/j
j

2
î
D + nj/2D1−j/2 ‖pD‖

j/2
µ,j/2

ó1/j
6
c

1/j
j

2
î
D1/j +D1/j−1/2

»
n ‖pD‖µ,j/2

ó
.

Since pD is a density, µ a probability and j > 2, 1 = ‖pD‖µ,1 6 ‖pD‖µ,j/2
and consequently for D 6 n

w(P) 6 c1/j
j D1/j−1/2

»
n ‖pD‖µ,j/2.

When j ∈ (1, 2], we use Jensen’s inequality and get

E

∣∣∣∣∣ n∑
i=1

[1lI(Xi)− P ?(I)]
∣∣∣∣∣
2(j/2)

6 [nP ?(I)(1− P ?(I))]j/2 6 [nP ?(I)]j/2

and, arguing as before, we obtain that

w(P) 6
√
n

2

[∑
I∈I

[P ?(I)]j/2
]1/j

= D1/j−1/2

2
»
n ‖pD‖µ,j/2.

Putting these bounds together we conclude that for all j > 1,

w(P) 6
c′jD

1/j−1/2

2
»
n ‖pD‖µ,j/2 with c′j =

®
2c1/j
j when j > 2

1 for j ∈ (1, 2].



53

Applying Theorem 1 with the constants provided by Corollary 3, R = D1/j

and using that p is arbitrary in MD, we obtain that for all ξ > 0 and
p ∈MD, with a probability at least 1− e−ξ,

‖p? − p̂‖µ,j

6 5 inf
p∈MD

‖p? − p‖µ,j + 4c′j

…
D

n
‖pD‖µ,j/2 + 4D1−1/j

√
n

ï√
2ξ + ε√

n

ò
.

Finally, it follows from (118) that, for j > 2,

4c′j = 8c1/j
j 6 8

¶î
21−1/j(2κj)1/2 + (Kj)1/2

ó
∨
î
21−1/jκj

ó©
= Cj .

10.7. Proof of Corollary 7. It follows from (43) that, for P,Q ∈MD,∣∣∣∣∣ n∑
i=1

(
t(P,Q)(Xi)− E

[
t(P,Q)

])∣∣∣∣∣ =
∣∣∣∣∣ n∑
i=1

[1lI?(Xi)− P ?(I?)]
∣∣∣∣∣

6 max
I∈I

∣∣∣∣∣ n∑
i=1

[1lI?(Xi)− P ?(I?)]
∣∣∣∣∣ .

Hence, (17) implies that

w(P) 6 E
ñ
max
I∈I

∣∣∣∣∣ n∑
i=1

[1lI(Xi)− P ?(I)]
∣∣∣∣∣
ô

for all P ∈MD.

Since the random variables Uε,I = ε
∑n
i=1 (1lI(Xi)− P ?(I)) with ε ∈ {−1, 1}

and I ∈ I satisfy

E
î
eλUε,I

ó
6 eλ

2n/8 for all λ > 0,

we derive from Section 6.1.1 in Massart (2007) that

w(P) = E
ñ

sup
ε∈{−1,1}, I∈I

Uε,I

ô
6

…
n

2 log(2D).

We conclude by applying Theorem 1 with a0 = 3/(2D) and a1 = 1/(2D).

10.8. Proof of Corollary 9. For all P = P⊗n,Q = Q⊗n ∈M ,∣∣Z (X,P,Q)
∣∣

6
1
2

ñ∣∣∣∣∣ n∑
i=1

[1lq>p(Xi)− P ?i (q > p)]
∣∣∣∣∣+
∣∣∣∣∣ n∑
i=1

[1lp>q(Xi)− P ?i (p > q)]
∣∣∣∣∣
ô
.

Since the classes {{q < p}, q ∈M \ {p}} and {{q > p}, q ∈M \ {p}} are
both VC with dimension not larger than V = V (p), it follows from Propo-
sition 18 (with σ = 1) that

E
ñ

sup
q∈M\{p}

∣∣∣∣∣ n∑
i=1

(1lp>q(Xi)− P ?i (p > q))
∣∣∣∣∣
ô
6 10

√
5nV ,(119)
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and

E
ñ

sup
q∈M\{p}

∣∣∣∣∣ n∑
i=1

(1lp<q(Xi)− P ?i (p < q))
∣∣∣∣∣
ô
6 10

√
5nV .(120)

Consequently, w(P) 6 10
√

5nV and the result follows from Theorem 1 with
the constants a0 and a1 given in Corollary 8.

10.9. Proof of Lemma 1. Let us recall that Pm = N (m, Id) and pm is
the corresponding density with respect to the Lebesgue measure so that
pm(x) = p0(x − m). Since the Lebesgue measure is translation invariant,
‖Pm − Pm′‖ = ‖Pm−m′ − P0‖ for all m,m′ ∈ Rd and it suffices to prove the
lemma for m′ = 0. Let m ∈ Rd. Since the results clearly hold for m = 0, let
us now consider the case of m 6= 0. It follows from (45) and (46) that

‖Pm − P0‖ = 1
2

∫
[1pm>p0 − 1pm<p0 ] [pm − p0] dµ

= 1
2

∫
[1pm>p0 − 1pm6p0 ] [pm − p0] dµ

=
∫ ï

1pm>p0 −
1
2

ò
[pm − p0] dµ =

∫
1pm>p0 [pm − p0] dµ

=
∫

1p0(x−m)>p0(x)[p0(x−m)− p0(x)] dx.

Since p0(x −m) > p0(x) is equivalent to |x −m|2 < |x|2, we get, denoting
by Z a standard normal vector in Rd,

‖Pm − P0‖ =
∫
|x−m|2<|x|2

p0(x−m) dx−
∫
|x−m|2<|x|2

p0(x) dx

=
∫
|x|2<|x+m|2

p0(x) dx−
∫
|x−m|2<|x|2

p0(x) dx

= P
î
|Z|2 < |Z +m|2

ó
− P
î
|Z −m|2 < |Z|2

ó
= P [− |m| /2 < 〈Z,m/ |m|〉 < |m| /2] .

Since Z = 〈Z,m/ |m|〉 is a standard normal variable on R, (51) follows. To
derive (52), we argue as follows. Clearly, ‖Pm − P0‖ 6 1 and p0 is bounded
by 1/

√
2π. Consequently

‖Pm − P0‖ = 2P
ï
0 6 Z 6 |m|2

ò
= 2

∫ |m|/2
0

p0(x)dx 6 |m|√
2π
∧

1,

which leads to the right-hand side of (52). As to the left-hand side, we ob-
serve that the mapping z 7→ z−1 ∫ z

0 p0(x)dx being decreasing on (0,+∞),
the minimum of m → P [|Z| 6 |m| /2] /min{1, |m| /

√
2π} is reached for

|m| =
√

2π and is not smaller than 0.78.
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10.10. Proof of Corollary 10. Throughout this section we shall identify a
vector θ ∈ Rn with the function on X = {1, . . . , n}×E defined by (k, x) 7→ θk
(which is therefore constant with respect to the second argument) and for
convenience we shall denote by the same symbol θ the vector of Rn and
the corresponding function on X . We consider the class F of functions on
X which are of the form qθ : (k, x) 7→ q(x − θ(k, x)) = q(x − θk). The
linear space Θ (viewed as a space of functions on X ) is VC-subgraph with
dimension not larger than d + 1, so is the class of functions of the form
(k, x) 7→ x − θ(x, k) by applying Proposition 42-(i) of Baraud et al. (2017)
with g : (k, x) 7→ x. Since q is unimodal it follows from Proposition 42-(vi)
of Baraud et al. (2017) that F is VC-subgraph with dimension not larger
than 9.41(d+1). Let us fix θ ∈ Θ. Using Proposition 42-(i) again, we obtain
that the class

{
qθ − qθ, θ ∈ Θ

}
is VC-subgraph with dimension not larger

than 9.41(d+ 1) and the VC-dimensions of the classes (of subsets of X )

C1 =
{
{qθ − qθ > 0}, θ ∈ Θ

}
and C2 =

{
{qθ − qθ < 0}, θ ∈ Θ

}
as well. Applying Proposition 18 (with σ = 1 and V in place of d) we obtain
that whatever the independent random variables Y1, . . . , Yn with values in
X and distributions ‹P1, . . . , ‹Pn respectively,

E
ñ

sup
C∈Cj

∣∣∣∣∣ n∑
i=1

Ä
1lC(Yi)− ‹Pi(C)

ä∣∣∣∣∣ô 6 10
√

5nV < 69
»
n(d+ 1)(121)

for all j ∈ {1, 2}. Let us consider the random variables Yi = (i,Xi) with
distributions ‹P ?i = δi ⊗ P ?i for all i ∈ {1, . . . , n}, where δi denotes the Dirac
probability at i. For all θ,θ ∈ Θ∣∣∣∣∣ n∑
i=1

[
1lqθi>qθi (Xi)− E

[
1lqθi>qθi (Xi)

]]∣∣∣∣∣
=
∣∣∣∣∣ n∑
i=1

î
1lqθ>qθ

(i,Xi)− E
î
1lqθ>qθ

(i,Xi)
óó∣∣∣∣∣ 6 sup

C∈C1

∣∣∣∣∣ n∑
i=1

Ä
1lC(Yi)− ‹P ?i (C)

ä∣∣∣∣∣
and similarly,∣∣∣∣∣ n∑

i=1

[
1lqθi<qθi (Xi)− E

[
1lqθi<qθi (Xi)

]]∣∣∣∣∣ 6 sup
C∈C2

∣∣∣∣∣ n∑
i=1

Ä
1lC(Yi)− ‹P ?i (C)

ä∣∣∣∣∣ .
It follows from (47), (16), (121) and (17) that for all θ ∈ Θ,

v(Pθ) =
w(Pθ)√

n
6 69

√
d+ 1.

Finally, since by Corollary 8 the family T (`,M ) satisfies Assumption 1 with
a0 = 3/2 and a1 = 1/2, Theorem 1 applies and leads to (60).
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10.11. Proof of Proposition 9. Let S ∈ P. Let us first prove (65).
Using the definition (45) of the TV-distance, we derive that S(p > q) 6
‖S − Q‖ + Q(p > q) and S(p 6 q) 6 ‖S − P‖ + P (p 6 q). Therefore (64)
and the triangle inequality lead to

S(p > q) ∧ S(p 6 q) 6 ‖S − P‖ ∨ ‖S −Q‖+ P (p 6 q) ∧Q(p > q)
6 ‖S − P‖+ ‖S −Q‖+ a′2 ‖P −Q‖
6 (1 + a′2) [‖S − P‖+ ‖S −Q‖]

and to (65). To prove that Assumption 2 is satisfied, it suffices to show that

(122) VarS
[
t(P,Q)

]
6

1
2 [S(p > q)S(p 6 q) + S(q > p)S(q 6 p)]

and to use (65) with the pairs (P,Q) and (Q,P ) successively. It follows from
the definition (47) of t(P,Q) that

4 VarS
[
t(P,Q)

]
= 4 VarS

[
f(P,Q)

]
= VarS [1lq>p − 1lp>q]

6 2 [VarS (1lq>p) + VarS (1lp>q)]
= 2 [S(q > p)S(q 6 p) + S(p > q)S(p 6 q)]

which leads to (122).

10.12. Proof of Corollary 11. Let us fix y > 0 and P = p · µ ∈ M .
We denote by M (y) the subset of M gathering those probabilities Q that
satisfy ‖P ? −Q‖ 6 y/n, or equivalently for which Q = Q⊗n belongs to the
set B(P?, y) defined by (22) (here `(P?,Q) = n ‖P ? −Q‖ since the data
are assumed to be i.i.d. with distribution P ?). We shall argue as in the proof
of Corollary 9 and set

C1 = {{q > p}, q ∈M} and C1 = {{q 6 p}, q ∈M} .

Since C1 gathers the complementary sets of C1, both classes share the same
VC-dimension, which is not larger than V under the assumption of Corol-
lary 11. Note that for all Q ∈M (y)∣∣∣∣∣ n∑

i=1
[1lq>p(Xi)− P ?(q > p)]

∣∣∣∣∣ =
∣∣∣∣∣ n∑
i=1

[1lq6p(Xi)− P ?(q 6 p)]
∣∣∣∣∣ .

and if P ?(q > p) 6 1/2, we deduce from (65) that

P ?(q > p) = P ?(q > p) ∧ P ?(q 6 p) 6
[
a2

(∥∥∥P ? − P∥∥∥+ y

n

)]∧
1 = σ2.

Otherwise, P ?(q 6 p) 6 1/2 and we obtain similarly that

P ?(q 6 p) = P ?(q 6 p) ∧ P ?(q > p) 6
[
a2

(∥∥∥P ? − P∥∥∥+ y

n

)]∧
1 = σ2.

Arguing similarly with the classes

C2 = {{q < p}, q ∈M} and C2 = {{q > p}, q ∈M} ,
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and applying Proposition 18, we deduce that

E
ñ

sup
Q∈M (y)

∣∣Z(X,P,Q)
∣∣ô

6
1
2
∑

j∈{1,2}
E
ñ

sup
C∈Cj , P ?(C)6σ2

∣∣∣∣∣ n∑
i=1

(1lC(Xi)− P ?(C))
∣∣∣∣∣
ô

+ 1
2
∑

j∈{1,2}
E

[
sup

C∈Cj , P ?(C)6σ2

∣∣∣∣∣ n∑
i=1

(1lC(Xi)− P ?(C))
∣∣∣∣∣
]

6 20 (σ ∨ a)
 
nV

ï
5 + log

Å 1
σ ∨ a

ãò
.

Let us assume in the remaining part of this proof that for some λ > 1 to be
chosen later on,

(123) y

n
>
∥∥∥P ? − P∥∥∥+ λ

a2
a2 with a = 32

 
V

n
log
Å 2en
V ∧ n

ã
.

a =
ñ
32
 
V ∧ n
n

log
Å 2en
V ∧ n

ãô∧
1.

Then, σ >
√
a2y/n

∧
1 >
Ä√

λa
ä
∧ 1 > a and consequently

E
ñ

sup
Q∈M (y)

∣∣Z(X,P,Q)
∣∣ô 6 Bn(y) = 20σ

 
nV

ï
5 + log

Å 1
σ

ãò
.

Besides, using the inequalities

σ =
[
a2

(∥∥∥P ? − P∥∥∥+ y

n

)]1/2∧
1 6
…

2a2
y

n
since

∥∥∥P ? − P∥∥∥ 6 y

n
,

σ >
Ä√

λa
ä
∧ 1 >

[
32

 
λ(V ∧ n) log(2e)

n

]∧
1 >
…
V ∧ n
n

and a 6
√
a2y/(λn) together with (123), we obtain that

Bn(y) 6 20
 

2a2V

ï
5 + 1

2 log
( n

V ∧ n

)ò√
y

= 20
 
a2V

ï 10
log(2e) log(2e) + log

( n

V ∧ n

)ò√
y

6
20
32

 
10a2

log(2e) × a×
√
ny 6

5
8

 
10a2

2
λ log(2e) × y < ya2

…
2.31
λ
.

Setting λ = 2.31(a2/c1)2 with c1 given by (24), we derive that

(124) E
ñ

sup
Q∈M (y)

∣∣Z(X,P,Q)
∣∣ô 6 c1y.
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Inequality (124) implies that that mapping y 7→ w(P, y) defined by (23) is
not larger than c1y provided that y satisfies (123), hence by definition (25),

D(P)
n
6
Å∥∥∥P ? − P∥∥∥+ λa2

a2

ã∨ 1
nc1

.

Under the assumptions of Corollary 11, the assumptions of our Theorem 2
are satisfied with a0 = 3/2 and a1 = 1/2 and we may therefore apply it. We
obtain that for all ξ > 0, with a probability at least 1− e−ξ,

∥∥∥P ? − “P∥∥∥ 6 13
∥∥∥P ? − P∥∥∥− inf

P∈M
‖P ? − P‖+ 2D(P)

n
+ 16(1 + 8a2)

n
ξ + 4ε

n

(125)

6 15
∥∥∥P ? − P∥∥∥− inf

P∈M
‖P ? − P‖+ 2

ï
λa2

a2

∨ 1
nc1

ò
+ 16(1 + 8a2)

n
ξ + 4ε

n
.

Let us now observe that
λa2

a2
= 2.31a2

c2
1
× 210V

n
log
Å 2en
V ∧ n

ã
> 2.31× 210 log(2e) 1

nc1
>

1
nc1

,

since a2 ∧ c−1
1 ∧ V > 1 by Proposition 9 and (24), which also imply that

16 (1 + 8a2) 6 144a2 and

c−1
1 = 4

ï
2(1 + log 4) + 2

a2
+ 32a2 log 2

ò
< 116a2.

Hence,

2
ï
λa2

a2

∨ 1
nc1

ò
= 2.31× 211a2

c2
1

V

n
log
Å 2en
V ∧ n

ã
< 144ca3

2
V

n
log
Å 2en
V ∧ n

ã
with c = 4.5× 105. We finally deduce (67) from (125) and the facts that P
is arbitrary in M and ε 6 35.

10.13. Proof of Proposition 10. For all x ∈ E and g ∈ G»
p(x)q(x) 6 1

2 [g(x)p(x) + (1/g(x))q(x)]

with the conventions (+∞)×0 = 0 and (+∞)×a = (+∞) for all a > 0. Note
that equality holds for g = g(P,Q) =

√
q/p with our conventions. Integrating

with respect to µ gives∫
E

√
pqdµ = 1− h2(P,Q) 6 1

2 [EP (g) + EQ(1/g)] ∈ [0,+∞].

Consequently for all g ∈ G

h2(P,Q) > 1
2 [EP (1− g) + EQ(1− 1/g)] ∈ [−∞, 1]

with equality for g = g(P,Q), which leads to the result.
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10.14. Proof of Proposition 11. Let us set φ(P,Q) = t(P,Q)
√

2 and denote
by r = (p+ q)/2 the density of R with respect to µ. Since (p∨ q)/r 6 2, for
all x, x′ ∈ E

φ(P,Q)(x)− φ(P,Q)(x′) 6
1
2

ï…
q

r
(x) +

…
p

r
(x′)
ò
6
√

2,

hence t(P,Q) = φ(P,Q)/
√

2 takes its values in [−1, 1]. For T = t · µ ∈ {P,Q},
we set

ρr(S, t) = 1
2

ñ
ρ(R, T ) + ES

Ç…
t

r
(X)
åô

,

so that

ES
î
φ(P,Q)(X)

ó
= ρr(S, q)− ρr(S, p)
= ρr(S, q)− ρ(S,Q) + ρ(S,Q)− ρ(S, P ) + ρ(S, P )− ρr(S, p).

By Proposition 1 of Baraud (2011) (which requires that S � µ)

0 6 ρr(S, t)− ρ(S, T ) 6 [h2(S, P ) + h2(S,Q)]/
√

2 for all T ∈ {P,Q}

and, since ρ(S,Q)− ρ(S, P ) = h2(S, P )− h2(S,Q), we deduce that

ES
î
φ(P,Q)(X)

ó
6

1√
2
[
h2(S, P ) + h2(S,Q)

]
+ h2(S, P )− h2(S,Q)

6
Å

1 + 1√
2

ã
h2(S, P )−

Å
1− 1√

2

ã
h2(S,Q).

Hence (ii) is satisfied with a0 = (
√

2 + 1)/2 and a1 = (
√

2− 1)/2. Since

4 VarS
î
φ(P,Q)(X)

ó
= VarS

ï√
p−√q
√
r

(X)
ò
6 ES

Ä√p(X)−
√
q(X)

ä2

r(X)

 ,
condition (iv) with a2 = 3/2 follows from the proof of Proposition 3 of
Baraud (2011).

10.15. Proof of Proposition 12. It is clear from the definition (76) that
t(P,Q) = −t(Q,P ) and that under (75) t(P,Q)(x) − t(P,Q)(x′) 6 1 for all
x, x′ ∈ E. Using the definition of the Kullback-Liebler divergence and
the assumptions that

∫
E s |log s| dµ < +∞, | log(dP/dµ)| ∈ L∞(E,µ) and

| log(dQ/dµ)| ∈ L∞(E,µ), we obtain that

ES
[
t(P,Q)

]
= 1

2aES
ï
log
Å
q

p

ãò
= 1

2aES
ï
log
Å
s

p

ã
− log

Å
s

q

ãò
= 1

2a [K(S, P )−K(S,Q)] .

Assumption 1 is therefore satisfied with a0 = a1 = 1/(2a). The proof of
Assumption 2 relies on the following lemma.
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Lemma 4. Let a > 0. For all u, v ∈ R such that |u− v| 6 a

(u− v)2 6
2a

tanh(a/2) [eu − 1− u+ ev − 1− v] .

For a point x ∈ E such that s(x) > 0, let u = log(p(x)/s(x)) and v =
log(q(x)/s(x)). Since

|u− v| =
∣∣∣∣log
Å
p(x)
q(x)

ã∣∣∣∣ 6 a
we may apply Lemma 4 and get

log2
Å
p(x)
q(x)

ã
6

2a
tanh(a/2)

ï
p(x)
s(x) − 1− log

Å
p(x)
s(x)

ã
+ q(x)
s(x) − 1− log

Å
q(x)
s(x)

ãò
.

Integrating this inequality with respect S gives

VarS
[
t(P,Q)(X)

]
6 ES

î
t2(P,Q)(X)

ó
6

2a
tanh(a/2) [K(S, P ) +K(S,Q)]

which proves that Assumption 2-(iv) is satisfied with a2 = (2a)/ tanh(a/2).
Let us now turn to the proof of Lemma 4. The mapping

z 7→ d

dz
[2 log cosh(z/2)] = tanh(z/2) = ez − 1

ez + 1
is concave on [0, a], hence above its chord, which leads to the inequalities

d

dz
[2 log cosh(z/2)] > tanh(a/2)

a
z for all z ∈ [0, a]

and, by integration,

(126) 2 log cosh(t/2) =
∫ t

0
tanh(z/2) dz > tanh(a/2)

2a t2 for all t ∈ [0, a].

The above inequality is actually also true for all t ∈ [−a, a] since the mapping
t 7→ 2 log cosh(t/2) is even.

For u, v ∈ R such that |u− v| 6 a, let us set t = v − u ∈ [−a, a] so that
eu − 1− u+ ev − 1− v = eu(1 + et)− 2(1 + u)− t = ft(u).

For a fixed value of t, the mapping ft is differentiable on R, tends to +∞
when u goes to ±∞ and satisfies f ′t(u) = eu(1 + et) − 2 for all u ∈ R. The
derivative only vanishes at the point

u?t = − log
Å
et + 1

2

ã
which is therefore the location of the unique minimum of ft on R. We deduce
from (126) that for all u ∈ R

ft(u) > ft(u?t ) = 2 log
Å
et + 1

2

ã
− t = 2 log

Å
cosh

Å
t

2

ãã
>

tanh(a/2)
2a t2

which proves the lemma.
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10.16. Proof of Proposition 13. Let θ, θ′ ∈ Q, θ 6= θ′. Since f is decreas-
ing on (0,+∞), for all x ∈ R \ {θ, θ′},

pθ′(x) > pθ(x) ⇐⇒ f(|x− θ′|) > f(|x− θ|) ⇐⇒ |x− θ′| < |x− θ|

⇐⇒
®
x > (θ + θ′)/2 if θ′ > θ,

x < (θ + θ′)/2 if θ′ < θ
(127)

and
pθ′(x) = pθ(x) ⇐⇒ f(|x− θ′|) = f(|x− θ|) ⇐⇒ |x− θ′| = |x− θ|

⇐⇒ x = θ + θ′

2 ∈ Q.(128)

By the symmetry of p and the change of variables u = θ + θ′ − x, i.e.
x = θ + θ′ − u, we derive that

Pθ [pθ > pθ′ ] =
∫
R

1lp(x−θ)>p(x−θ′)p(x− θ)dx =
∫
R

1lp(θ′−u)>p(θ−u)p(θ′ − u)du

=
∫
R

1lp(u−θ′)>p(u−θ)p(u− θ′)du = Pθ′ [pθ′ > pθ] .

Using the expression (47) of t(P,Q) and the fact that with probability 1 none
of the Xi belongs to Q, we deduce that for all i ∈ {1, . . . , n}

t(Pθ,Pθ′ )(Xi) = 1
2
[
1lpθ′>pθ(Xi)− 1lpθ>pθ′ (Xi)

]
= 1

2 − 1lpθ>pθ′ (Xi) a.s.

It then follows from (127) that, a.s.

T(X,Pθ,Pθ′) = n

2 −
n∑
i=1

1lpθ>pθ′ (Xi) = n

2 −
®∑n

i=1 1lXi>(θ+θ′)/2 if θ > θ′,∑n
i=1 1lXi<(θ+θ′)/2 if θ < θ′.

Let us now take θ = θ̂ ∈ (X(dn/2e), X(dn/2e+1)). It follows from (80) that, if
θ′ > θ̂,

n∑
i=1

1l
Xi<(θ̂+θ′)/2 >

n∑
i=1

1l
Xi6θ̂

>
n∑
i=1

1lXi6X(dn/2e) >
n

2

and consequently, T(X,P
θ̂
,Pθ′) 6 0. If now θ′ < θ̂ we may distinguish

between two cases. Since (θ′ + θ̂)/2 ∈ Q,

either θ′ + θ̂

2 < X(dn/2e) < θ̂ or X(dn/2e) <
θ′ + θ̂

2 < θ̂ < X(dn/2e+1).

In the first case, we derive from (80) again that
n∑
i=1

1l
Xi>(θ′+θ̂)/2 = n−

n∑
i=1

1l
Xi6(θ′+θ̂)/2 > n−

n∑
i=1

1lXi<X(dn/2e) >
n

2

hence, T(X,P
θ̂
,Pθ′) < 0. In the second case,

n∑
i=1

1l
Xi>(θ′+θ̂)/2 = n−

n∑
i=1

1l
Xi6(θ′+θ̂)/2 = n−

⌈n
2

⌉
>
n− 1

2
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which implies that T(X,P
θ̂
,Pθ′) 6 1/2.

Putting all these bounds together, we finally obtain that

T(X,P
θ̂
) = sup

θ′∈Q
T(X,P

θ̂
,Pθ′) 6

1
2 6 inf

θ∈Q
sup
θ′∈Q

T(X,Pθ,Pθ′) + 1
2 .

Hence θ̂ is a TV-estimator for the choice ε = 1/2.

10.17. Proof of Proposition 14. Let
z = a1`(P?,Q)− a0`(P?,P) = a1`(P?,Q)(1− γ) > 0.

By (14) and Assumption 1-(i), z 6 −E [T(X,P,Q)] and we derive from
(83) that

P
[
Φ(P,Q)(X) = 1

]
6 P [T(X,P,Q) > 0]
6 P [T(X,P,Q)− E [T(X,P,Q)] > z] .

The variable

T(X,P,Q)− E [T(X,P,Q)] =
n∑
i=1

(
t(Pi,Qi)(Xi)− E

[
t(Pi,Qi)(Xi)

])
is a sum of n independent centred random variables and it follows from
Assumption 1-(iii) that t(Pi,Qi)(Xi) takes its values in an interval of length
not larger than 1 for all i ∈ {1, . . . , n}. We may apply Hoeffding’s inequality,
which gives P

[
Φ(P,Q)(X) = 1

]
6 exp

[
−2z2/n

]
and proves (84).

When Assumption 2-(iv) is satisfied we proceed in the same way, re-
placing Hoeffding’s inequality by Bernstein’s (see inequality (2.16) in Mas-
sart (2007)). If we apply this inequality to the independent random variables

t(Pi,Qi)(Xi)− E
[
t(Pi,Qi)(Xi)

]
6 1 = b for all i ∈ {1, . . . , n}

and take into account that the sum of their second moments is not larger
than

v = a2 [`(P?,Q) + `(P?,P)] = a2`(P?,Q)
Å

1 + a1γ

a0

ã
,

we derive that

P
[
Φ(P,Q)(X) = 1

]
6 exp

ï
−1

2
z2

v + (bz/3)

ò
6 exp

ï
−`(P

?,Q)
2

a1(1− γ)2

[(1− γ)/3] + [(1 + γ)a2/a1]

ò
,

which is (85).

10.18. Proof of Proposition 15. Let us set

z = 1
b

ï1
2`(P,Q)− `(P ?, P )

ò
>

1/2− κ
b

`(P,Q) > 0.

It follows from (103) that −E
[
t(P,Q)(X)

]
> z and the rest of the proof is

similar to that of (84) in Proposition 14.
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