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Abstract

Collective e�ects are ubiquitous in both living and nonliving nature. Prominent examples
that can be observed outside laboratories are given by synchronization processes in �re�y
�ashing and cricket chirping or collective dynamics in swarms of �sh and birds. These
cooperative phenomena are also present at the nanoscale, e.g. many molecular motors
(kinesin) can propagate along the same microtubule which occasionally leads to tra�c jam
but can also trigger synergy e�ects when performing mechanical work. On the other hand,
any functional biological system is intrinsically out-of-equilibrium, i.e. there is energy and
matter exchange with their environment. These processes are characterized by thermody-
namics, the theory of energy conversion, and thus constrained by its fundamental laws:
energy can not be created or destroyed and energy conversion entails dissipative losses that
limit the thermodynamic e�ciency.

In its �rst part, this doctoral thesis addresses the naturally arising question of the
relationship between thermodynamics and collective e�ects. For this purpose, I formulate
a whole class of thermodynamically consistent interacting many-body clock models that
display synchronization. My �rst major achievement is to demonstrate that synchronization,
i.e. cooperative phenomena, can enhance the performance in a macroscopic assembly
of interacting microscopic machines. As another example of how collective e�ects can
positively a�ect the operation of a thermodynamic many-body system, I compare the
energetic costs of information erasure in an array of binary units with and without majority-
logic decoding, a scheme to decode repetition codes.

In order to determine the thermodynamic properties of macroscopic ensembles made
up of interacting microscopic machines, the development of methodologies to study �uc-
tuating thermodynamic quantities across di�erent length scales is required. The second
major achievement of this thesis is to provide a consistent nonequilibrium thermodynamic
description across three di�erent scales - microscopic, mesoscopic and macroscopic - for
systems made up of many identical bodies with all-to-all interactions that can be coupled
to multiple heat reservoirs and are subjected to (non-)autonomous external forces. The
thermodynamic consistency of the di�erent representations of the stochastic dynamics is
shown to be encoded in a detailed �uctuation theorem that exists on each of these levels.
Moreover, as a complement, I will assess the validity of various coarse-graining methods
established for master-equation systems in the context of an underdamped system made up
of interacting Brownian particles.
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Chapter 1
Introduction and Motivation

The starting point of thermodynamics as a modern scienti�c discipline is commonly at-
tributed to Sadi Carnot’s 1824 book Re�ections on the Motive Power of Fire and on Machines
Fitted to Develop that Power [6]. It is not a mere coincidence that thermodynamics was
established during the 19th century, since the Industrial Revolution dating back to the
end of the 18th century and the emergence of heat machines that convert thermal energy
into mechanical work, had prompted the question about the underlying principles that
govern these energy-converting systems [7]. The traditional theory of thermodynamics
succeeded in formalizing the energetic processes inside heat engines. At the core of this
phenomenological theory are the �rst and second law of thermodynamics, which prescribe
energy conservation and that energy exchange comes at the cost of dissipation, respectively.
The entropy production quanti�es the amount of dissipation and is therefore non-negative
during any macroscopic thermodynamic process [8].

The range of applicability of traditional thermodynamics was limited to macroscopic
systems kept at equilibrium. These limitations were gradually overcome in the past and
current century by generalizing the phenomenological theory towards a systematic treat-
ment of nonequilibrium stochastic processes: Notably, in the �rst half of the last century
Lars Onsager established a �rst formulation of irreversible thermodynamics for systems
in the linear-response regime, i.e. systems subjected to small perturbations and thus close
to equilibrium. For this class of systems he derived universal symmetries, the celebrated
reciprocal relations [9, 10], of the coe�cients that linearly couple currents to the thermo-
dynamic forces from which they ensue. The theory of irreversible thermodynamics was
subsequently extended [11], most importantly by the works of Ilya Prigogine in which he
introduced the notion of local equilibrium in order to formulate irreversible processes in
terms of equilibrium quantities [12].

Over the past two decades the �eld of nonequilibrium thermodynamics has witnessed
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spectacular progress due to the development of stochastic thermodynamics [13–18]. This
novel formalism rigorously builds the thermodynamic structure on top of stochastic systems
obeying Markovian dynamics. Stochastic thermodynamics has proven instrumental to
systematically infer the thermodynamics in small �uctuating systems that can be driven
arbitrarily far away from equilibrium. This framework allows to formulate the thermody-
namics at the level of a single trajectory, that is for a single realization of the Markov process.
Remarkably, it was discovered that the trajectory entropy production needs not to be always
non-negative [19]. This is in agreement with the so-called �uctuation theorems, which
are universal symmetries exhibited by various �uctuating thermodynamic observables for
systems arbitrarily far away from equilibrium. A prominent example is the Seifert �uctuation
theorem [20]

P(Σ)
P̃(−Σ)

= eΣ, (1.1)

which in words states that the probability to observe an entropy production Σ along a given
process is exponentially more probable than to observe a corresponding decrease −Σ along
the time-reversed process. Thus, processes with negative entropy production exist, but they
are exponentially rare. The known results from traditional thermodynamics are however
reproduced if an ensemble of trajectories is considered. In particular, the detailed �uctuation
theorem (1.1) implies the non-negativity of the average entropy production.

Stochastic thermodynamics has been successfully applied in several �elds such as in-
formation processing [21], chemical reaction networks [22] and active matter [23, 24]. Its
predictions have been experimentally validated in various �elds ranging from electronics
to single molecules and Brownian particles [25, 26]. It has been particularly successful in
studying the performance of small energy converters operating far-from-equilibrium and
their power-e�ciency trade-o� [13, 27–31]. Until now, most of the focus has been on systems
with �nite phase space or few particle systems. Of particular interest hereby has been the
study of the performance of small energy converters operating far-from-equilibrium [13,
26, 32] (e.g. thermoelectric quantum dots [33, 34], photoelectric nanocells [35], molecular
motors [17, 36–39]) and their power-e�ciency trade-o� [27, 30, 31, 40–44]. The e�ciency
�uctuations in generic stochastic processes were �rst studied in [28, 45]. It was found that
the upper e�ciency bound derived for reversible macroscopic cyclic processes, the Carnot
e�ciency, can also be reached in irreversible stochastic processes, although the associated
probability is the smallest of the entire probability distribution of possible e�ciency values.
While these microscopic systems have thus been shown to make very e�cient energy con-
verters, the main drawback, on absolute terms, remains their low power output rendering
them impractical for daily-life applications.

A natural and trivial way to overcome this limitation is to assemble large numbers of
these e�ciently operating microscopic machines and to collect the cumulated power output.
The nontrivial approach we will pursue is to allow for interactions between the microscopic
machines. Interacting many-body systems can give rise to a very rich variety of emergent
behaviors such as phase transitions corresponding to a dramatic change of the system’s
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qualitative behavior. The thermodynamics of equilibrium phase transitions in interact-
ing many-body systems has a long history and is well understood [46–50]. When driven
out-of-equilibrium, these systems are known to give rise to complex dynamical behaviors
[51–57]. After many works that focused on the ensemble average description, progress was
also made in characterizing the �uctuations of these dynamical systems [58–62]. Yet, the
thermodynamics of nonequilibrium phase transitions has been started to be explored only
recently [63–72]. Part of the reason is that before the development of stochastic thermody-
namics there was no formalism to systematically address the thermodynamics properties
in nonequilibrium systems. Besides the general interest in exploring the thermodynamic
signatures in nonequilibrium phase transitions, it has also been observed that they can play
a crucial role in how an ensemble of microscopic devices performs as a team: For instance,
many (kinesin) molecular motors can operate on the same microtubule, which in turn can
lead to the formation of tra�c jam in some cases [73]. On the other hand, the kinesin motors
can carry the same cargo which results in a strong synergy [74].

Ironically, although it took about two hundred years to change the scale on which the
thermodynamic properties of a system could be consistently accessed from a macroscopic to
a microscopic one, there is now a practical motivation to reverse that direction of progress, i.e.
moving back from microscopic to macroscopic scales, while exploiting the tools of stochastic
thermodynamics. Hence it is the declared goal of this thesis, starting from a system of
interacting microscopic machines, to consistently formulate the stochastic thermodynamics
thereof across di�erent length scales and to study the collective e�ects, e.g. synchronization,
that may emerge at the macroscopic level. Hence there are two main research questions we
will address in the following.

Enhancing the Thermodynamic Performance by Collective E�ects

We are particularly interested in identifying interactions from which phase transitions
ensue that in turn induce synergy e�ects in a macroscopic ensemble of coupled microscopic
machines. As an educated guess, we want to consider synchronization as the paradigmatic
phase transition: That is the phenomenon that coupled units with di�erent eigenfrequencies
exhibit a spontaneous phase-locking to a global frequency [75]. This collective phenomenon
was famously described by Huygens who experimentally observed that two pendulum
clocks attached to a common support display an “odd kind of sympathy” [76], that is they
synchronize in anti-phase. It was later found to be ubiquitous in nature, e.g. the synchronous
�ashing of �re�ies or the cricket chirping [77]. Synchronization is typically modeled by
coupled phase oscillators which exhibit phase-locking when the coupling strength exceeds
a critical value [78]. The commonly used noisy Kuramoto (also Sakaguchi) model [56, 79,
80] is well understood for an in�nite population of oscillators at the mean-�eld level. Some
works also considered few locally coupled oscillators [81–83] and even the relationship
between the dissipation and the synchronization of two coupled oscillators [84]. However,
owing to their complexity, little is known about the thermodynamic features of systems
consisting of a large ensemble of stochastic oscillators.
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To this end, we will consider a minimal stochastic model made of interacting three-state
units which exhibit phase synchronization [85–87]. By doing so, we will be analyzing
how the performance of the network changes across the di�erent scales and from the
desynchronized to the synchronized phase. To further corroborate the �ndings made within
the three-state model, the latter will be generalized to a class of q-state clock models as a
subclass of these models also display a transition from an asynchronous to a synchronous
phase. The �rst main achievement of this thesis is to demonstrate that, within that class
of clock models, the overall performance of the macroscopic system made up of many
interacting microscopic machines is enhanced in the synchronization regime. Another
important aspect of this study will be to analyze in detail how a linear and irreducible
Markovian stochastic dynamics can give rise to a nonlinear mean-�eld dynamics which
exhibits a nonequilibrium phase transition with increasing system size. This question is
particularly intriguing since the Perron-Frobenius theorem ensures that the former dynamics
has a unique stationary solution while the latter can exhibit complex non-unique solutions
[88]. We will see that this question is closely related to the presence of metastability that
can be characterized via a gap in the spectrum of the generator of the Markovian stochastic
dynamics [89–92].

The computation of thermodynamic e�ciencies is not only meaningful for energy con-
version processes but also in the context of information processing [21, 93]. For quasistatic
processes, the so-called Landauer’s principle [94] provides an explicit lower bound for the
dissipative costs incurred when one bit of information is erased. In practice only �nite-time
processes are relevant. With the development of stochastic thermodynamics tools to study
�nite-time erasure processes became available and initiated several works, e.g. [95–98]. Of
particular interest is the thermodynamics of �nite-time information erasure in macroscopic
bits which normally are composed of arrays of microscopic binary units. Decoding schemes
prescribe how the collective physical information stored in an array of microscopic units
is translated into logical information stored by the macroscopic bit. We will determine
the thermodynamic performance of the information erasure in a logical macroscopic bit
with and without employing a speci�c decoding scheme. Hence we will gather additional
insights if collective e�ects, corresponding to the decoding procedure, are overall energeti-
cally bene�cial for a thermodynamic operation on a macroscopic system made up of many
microscopic units. This frames the scope of the �rst part of this thesis.

Thermodynamically Consistent Coarse Graining in Many-Body Systems

In order to compute the stochastic thermodynamic properties of non-equilibrium systems
exhibiting complex emergent behavior, there is a need for methodologies to study the �uctu-
ating quantities from microscopic to macroscopic scales in a thermodynamically consistent
way. While many coarse-graining schemes preserving thermodynamic consistency have
been proposed in the literature [99–111], the aforementioned issue has yet not been ad-
dressed. The second main achievement of this thesis is to identify all-to-all interactions
as a physical limit for which the stochastic thermodynamics of many-body systems can
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be equivalently formulated across microscopic, mesoscopic and macroscopic scales and to
develop the methodology to do so: To this end, we will generalize the setup of the three- and
q-state clock models towards a system of N identical and all-to-all interacting q-state units
that are subjected to both autonomous and non-autonomous forces and that are coupled
with multiple heat reservoirs.

Then, the microscopic stochastic dynamics, where the system is unambiguously character-
ized by many-body states, can be exactly coarse-grained to a mesoscopic stochastic dynamics,
where the system is now fully characterized by the numbers of the units which occupy the
di�erent unit states. In the macroscopic limit (N →∞) the deterministic dynamics is now
governed by a nonlinear mean-�eld rate equation for the most likely values of the occupation
of each unit state. We will furthermore identify the rather generic conditions under which
the stochastic thermodynamics is invariant under the dynamically exact coarse-graining.
Using a path-integral representation of the mesoscopic stochastic dynamics, a macroscopic
�uctuating thermodynamic theory is formulated. Its thermodynamic consistency is encoded
in the detailed �uctuation theorem (1.1) for the �uctuations which scale exponentially with
the number of units.

As a complement to the study of the all-to-all interacting q-state units, we will fur-
thermore consider two interacting underdamped (inertia) Brownian particles and apply
three di�erent coarse-graining schemes that haven proven instrumental for overdamped
(inertialess) systems: Marginalization over one particle [112, 113], bipartite structure with
information �ows [114–117] and the Hamiltonian of mean force formalism [118–120]. In
particular, we will study the validity of these three coarse-graining methods in two distinct
physical limits: First, in the limit of time-scale separation, where the second particle with
a fast relaxation time scale locally equilibrates with respect to the coordinates of the �rst,
slowly relaxing particle. Secondly, in the limit where the second particle becomes heavy
and thus deterministic. These physical limits are shown to be compatible with an exact ther-
modynamics for a reduced stochastic dynamics if the appropriate coarse-graining method
is chosen. In these cases, the coarse-grained degrees of freedom are shown to constitute a
heat reservoir and a work source coupled with the e�ective system in the �rst and second
limit, respectively. This frames the scope of the second part of this thesis.

Plan of this thesis

The thesis is structured as follows. In chapter 2 some theoretical background pertinent to
the subsequent chapters is given. Chapter 3 studies how collective e�ects can a�ect the
thermodynamic performance of a system. First, the results related to the thermodynamic per-
formance of macroscopic assemblies of a large number of interacting microscopic machines
exhibiting synchronization is presented. Secondly, as a complement to energy-conversion
processes, the role of collective e�ects in information-erasure processes is discussed. Fur-
thermore, chapter 4 provides a stochastic thermodynamic description from microscopic
to macroscopic scales for many-body systems with all-to-all interactions in contact with
multiple heat reservoirs and subjected to external forces. Moreover, the validity of several
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coarse-graining methods, which have been established for jump processes in underdamped
systems is assessed using a minimal model. This thesis is concluded by a summary and an
outlook to potential follow-up projects in chapter 5.



Chapter 2
Preliminaries

It is the declared goal of this dissertation to be mostly self-contained. This chapter is therefore
devoted to brie�y introducing the concepts on which the following chapters, which contain
the actual results of the research work done during the doctorate, are based on.

2.1 Traditional Thermodynamics

We start by reviewing the basis elements of traditional thermodynamics that were developed
over the past two centuries by the initial works of for instance Carnot and Clausius as
well as more recent works by Prigogine and others [8, 11, 12]. First, we make the crucial
observation that a closed macroscopic system will reach a so-called equilibrium state that is
characterized by a �nite number of macroscopic state functions. Which state functions are
relevant depends on the model under consideration. In the following, we restrict to the state
functions energy E, volume V and the number of particles N . Secondly, the energy of the
system can be varied via an external perturbation. Here, we distinguish between workW
(corresponding to controllable energy exchanges) and heat contributions Q (corresponding
to uncontrollable energy exchanges). From energy conservation follows the �rst law of
thermodynamics

dE = d̄W + d̄Q, (2.1)

where we indicate via the notation d and d̄ that energy is a state function, while heat and
work depend on how the energy of the system is changed by the external perturbation.

Next, we introduce another state function called entropy S that depends on the other state

7
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functions, e.g. S = S(E,V,N ). This relation can be inverted to obtain the equivalent relation
E(S,V,N ). If the changes in the system are quasi-static, i.e. they are slowly enough for
the system to remain at equilibrium throughout the transformation, the relation E(S,V,N )
holds and one arrives via di�erentiation at the Gibbs relation

dE = 1
β

dS − p dV + µ dN . (2.2)

Hence partial di�erentiation of the energy with respect to the state functions, S , V and N ,
yields the inverse temperature 1/T ≡ β , minus the pressure p and the chemical potential
µ, respectively. Here, and throughout this thesis we set the Boltzmann constant kb ≡ 1. A
comparison with the �rst law (2.1) suggests the following identi�cations: d̄W = −p dV+µ dN
and d̄Q = dS/β . If a constraint on the system is released, traditional thermodynamics can
not characterize the relaxation process of the system as more variables and a microscopic
description are needed therefor. Though, the �nal equilibrium state is characterized solely
by state variables and thus described by traditional thermodynamics.

Since the thermodynamics of nonequilibrium phase transitions represents a central topic
of this dissertation, we brie�y introduce the concepts and terminology of the thermodynam-
ics of equilibrium phase transitions [48, 49]. The equilibrium state of a macroscopic system,
unambiguously characterized by a �nite set of macroscopic state functions, is referred to
as a phase. It can be observed that thermodynamic systems may exist in di�erent phases
whose macroscopic behavior can di�er signi�cantly under variation of external conditions.
The phase that is realized in nature is the one that minimizes the Gibbs free energy

G = E + pV − 1
β

dS = µ N , (2.3)

at constant pressure and temperature. As the intensive variables of the system, e.g. the
temperature β , are changed, they take values for which phase transitions can occur. At such
critical points the chemical potentials of the di�erent coexisting phases must be equal.

Hence at a phase transition the chemical potentials of the phases, and therefore the
Gibbs free energy must change continuously. However, phase transitions are classi�ed into
two classes according to the behavior of the derivatives of the Gibbs free energy with respect
to the temperature at its critical value, as illustrated in Fig. 2.1. First-order equilibrium phase
transitions are accompanied by discontinuous �rst-order derivatives of the Gibbs free energy
with respect to temperature, while second-order (also continuous) phase transitions display
a continuous �rst- but possibly discontinuous second-and/or-higher-order derivatives of
the Gibbs free energy.

Idealized systems, such as for instance heat reservoirs, are of particular interest. An
ideal heat reservoir is de�ned as a thermodynamic system with an intrinsic time scale
that is much faster than the typical time scale of the external perturbation such that it
remains at equilibrium during thermodynamic transformations. We furthermore assume
that these reservoirs have an in�nite capacity, so that their inverse temperature β and
chemical potential µ remain constant during any thermodynamic process. Let us now
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ββc
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ββc
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∂G
∂β

ββc

Figure 2.1: Illustration of the typical functional behavior of the Gibbs free energy G in the
vicinity of the critical temperature βc for �rst- [left-hand plots] and second-order
equilibrium phase transitions [right-hand plots].

consider a system with entropy S weakly coupled to an ideal heat reservoir at inverse
temperature β and chemical potential µ. The second law of thermodynamics reads

d̄Σ = dS − β d̄Q = dS − d̄Se ≥ 0, (2.4)

and states that the di�erence between the entropies of �nal and initial global equilibrium
states is non-negative. The interpretation of Eq. (2.4) due to Prigogine has proven instru-
mental in the modern formulation of thermodynamics. Hereby central are the concepts of
entropy production rate d̄Σ and entropy �ow d̄Se . The former is an entropy increase due
to irreversible processes, while the latter is an entropic contribution from the reversible
exchange with the ideal heat reservoir. Consequently, for a reversible processes the equality
sign holds in Eq. (2.4), dS = d̄Se . There is an alternative formulation of the second law. For
this purpose, we introduce the state function free energy

A = E − 1
β
S, (2.5)

which along with Eq. (2.1) allows to rewrite Eq. (2.4) as follows

d̄Σ = β (d̄W − ∆A) ≥ 0. (2.6)

This alternative representation of the second law states that the amount of work required
for a thermodynamic transformation of the system is at least equal to the change of its
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free energy, where the equality sign holds for reversible processes. If ∆A < 0, work can be
extracted from the system, at most the maximum amount −∆A.

We remark that the second law (2.4) was originally derived using arguments against the
existence of a perpetuum mobile of second kind. There are alternative formulations, e.g.
that work can not be extracted solely from a single heat reservoir (Kelvin) or that heat does
not spontaneously �ow from a cold to a hot reservoir (Clausius). Based on these arguments,
Carnot derived a universal bound for the e�ciency of thermal machines. For this purpose, let
us consider a quasi-static cyclic process of a system (the thermal machine) weakly coupled
to a hot and a cold ideal heat reservoir at two inverse temperatures βh < βc , respectively.
The thermodynamic cycle consists an uptake of heat Qh from the hot reservoir and a heat
release −Qc into the cold reservoir. The rest of the energy is converted into work done
by the engine, −W = Qh − Qc . Since entropy is a state function, one has for the entropy
production along a full cycle Σ = βhQh − βc Qc , which in turn implies that the e�ciency of
the thermal engine is bounded by the Carnot e�ciency

ηc = −W
Qh
≤ 1 − βh

βc
. (2.7)

When operating small engines �uctuations need to be taken into account. This, however, is
not possible within the framework of traditional thermodynamics. To address this limitation
the novel theory called stochastic thermodynamics has been developed over the past two
decades. The central idea of this formalism is to consistently build a thermodynamic
description on top of a Markov process. An introduction to the most fundamental concepts
of stochastic thermodynamics is provided in the remainder of this chapter.

2.2 Stochastic Processes

2.2.1 Probability Theory

Before proceeding with the theory of stochastic thermodynamics, elementary stochastic
methods as discussed in Refs. [88, 121, 122] are reviewed. These naturally rely on probabilistic
concepts which are formulated hereafter. We introduce the probability p(A) of a set A of
events x ∈ A, that acts as a function of A. Moreover, we denote by � and Ω the set of no
and all events, respectively. Then, the probability p(A) satis�es the following axioms:

p(A) ≥ 0 ∀A (2.8)
p(Ω) = 1 (2.9)
p
( ∪
i
Ai

)
=

∑
i

p(Ai), if Ai ∩Aj = � ∀i, j (2.10)
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p(A) = 1 − p(A) (2.11)
p(�) = 0, (2.12)

where A is the complement of A, i.e. the set of all events that are not contained in A. We
note that, in fact, the last two equations follow from the �rst three equations. Hence, there
are only three axioms required to formulate a consistent probabilistic theory.

Furthermore, the joint probability p({A,B}) corresponds to the probability that the event
x is contained in the set A and the set B, thus

p(A ∩ B) = p({(x ∈ A) and (x ∈ B)}). (2.13)

It is often of interest to consider a subset of the events in A given that they these events are
also in the set B. We de�ne the conditional probability as

p(A|B) = p(A ∩ B)
p(B) , (2.14)

and since one can de�ne the conditioning in both directions, the following relation

p({A,B}) = p(A|B)p(B) = p(B |A)p(A) ⇔ p(A|B) = p(B |A)p(A)
p(B) , (2.15)

referred to as Baye’s theorem, holds.
Central to stochastic processes is the concept of a random variable X (x). The mean value

of a random variable X (x) is given by

〈X 〉 =
∑
x

px X (x), (2.16)

where px is the probability of the set A = {x} that only contains the single event x . Higher
order moments, 〈Xn〉, are also of interest. In particular, the variance

σ (X ) ≡ 〈(X − 〈X 〉)2〉 = 〈X 2〉 − 〈X 〉2, (2.17)

measures the degree of which the values of X deviate from their mean value 〈X 〉. For
multivariate stochastic processes, one de�nes the covariance as

〈(Xi ,X j)〉 = 〈XiX j〉 − 〈Xi〉〈X j〉. (2.18)

The moment generating function is de�ned as follows

д(γ ) ≡ 〈
e−γX

〉
, (2.19)

and its derivatives with respect to the so-called counting �eld γ and subsequent evaluation
at γ = 0 yield the moments of the probability distribution

〈Xn〉 = (−1)n ∂
n

∂γn
д(γ )

����
γ=0
, n ∈ N. (2.20)



12 2.2. Stochastic Processes

2.2.2 Markov Processes

Stochastic processes describe systems that evolve probabilistically in time, that is they are
characterized by a time-dependent random variable X (t). Suppose the random variable
takes the values xn, . . . ,x2,x1 at times tn, . . . , t2, t1,. Then, the joint probability density

p (xn(tn); . . . ;x2(t2);x1(t1)) (2.21)

unambiguously describes the time-evolution of the system. According to Eq. (2.14), the
conditional probability distribution can be written in terms of joint probabilities as follows

p(xn(tn), . . . |x2(t2),x1(t1)) =
p(xn(tn), . . . |x2(t2),x1(t1))

p(x2(t2),x1(t1)) , (2.22)

where we use the convention that the time increases from right to left, tn ≥ . . . ≥ t2 ≥ t1.
Throughout this work we will only consider Markov processes. These are processes for
which the conditional probability is determined entirely by the most recent condition, i.e.

p(xn(tn), . . . |x2(t2),x1(t1)) = p(xn(tn), . . . |x2(t2)). (2.23)

The Markov assumption is a strong property as it physically states that the stochastic system
has no memory about its past and as it furthermore mathematically allows us to write any
joint probability simply as a product of two-point conditional probabilities and the initial
condition

p(xn(tn), . . . |x2(t2),x1(t1)) = p(xn(tn)|xn−1(tn−1)) · . . . · p(x2(t2)|x1(t1)) · px1(t1) . (2.24)

The Markov property, in turn, implies the Chapman-Kolmogorov equation,

p(x3(t3),x1(t1)) =
∑
x2

p(x3(t3),x2(t2),x1(t1)) =
∑
x2

p(x3(t3)|x2(t2)) · p(x2(t2)|x1(t1)). (2.25)

While the Chapman-Kolmogorov Eq. (2.25) is intuitive, it is often more practical to consider
its di�erential formulation. Since there is no need of carefully ordering the time instances,
we can ease the notation and write p(i, t + dt |j, t), for the conditional probability to �nd
the system in state i at time t + dt given that it was in state j at time t . For an in�nitesimal
change in time dt , we can linearize the conditional probability,

p(i, t + dt |j, t) = Vij dt + O(dt2), i , j, (2.26)

Here, the quantity

Vij = lim
dt→0

p(i, t + dt |j, t)
dt , i , j, (2.27)
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denotes the probability per unit time to observe a transition from j to i . Thus, Vij dt gives
the probability that a transition from j to i occurs during the time interval dt and since
1 − dt

∑
i,j Vij is the probability that no transition is made at all during dt , we have

p(i, t + dt |j, t) = Vij dt +
[
1 − dt

∑
i,j

Vij
]
δij + O(dt2). (2.28)

Using the Chapman-Kolmogorov Eq. (2.25), we obtain

p(i, t + dt) =
∑
j

p(i, t + dt |j, t)p(j, t) = dt
∑
j

Vij p(j, t) +
[
1 − dt

∑
j,i

Vij
]
p(i, t) + O(dt2),

(2.29)

so that in the limit dt → 0, we arrive at the di�erential Chapman-Kolmogorov equation

∂tpi(t) =
∑
j

[
Vij pj(t) −Vji pi(t)

]
, (2.30)

that is referred to as Markovian master equation in the following. To further ease notation,
we write the state as a subscript of the probability in the master equation. The interpretation
of Eq. (2.30) as a probability-current balance equation is obvious. Conversely, the latter can
be rewritten in a more compact form,

∂tpi(t) =
∑
j

Wij pj(t) , (2.31)

with the transition rate matrix

Wij = Vij − δij
∑
k

Vkj . (2.32)

The transition rate matrixWij is stochastic1, i.e.
∑

iWij = 0. The system is in a stationary
state if

∑
jWij p

s
j = 0, and if there are furthermore no net-currents the detailed balance

condition is satis�ed,

Wij p
eq
j =Wji p

eq
i , (2.33)

which corresponds to the system being at equilibrium characterized by the distribution peq .
So far, it was assumed that the state space is discrete. In case of stochastic processes

that are characterized by random variables with a continuous range, the derivation of
the di�erential Chapman-Kolmogorov Equation (2.30) remains conceptionally the same as
above and is thus omitted. Within the scope of this thesis, we will restrict the statistics

1The author is indeed aware that, strictly speaking, this term actually refers to the sum of all entries along a
row being equal to unity. In the following, we will however use this term synonymously to the property of
each column summing up to identical zero.
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of continuous random variables to the �rst two moments. In this case, the di�erential
continuous-state Chapman-Kolmogorov equation can be truncated in order to obtain the
so-called Fokker-Planck equation

Ûρ(x , t) = −∂x [µ(x)ρ(x , t)) + ∂x {D(x) ∂xρ(x , t)}] = −∂x J (x , t), (2.34)

that governs the time evolution of the probability density ρ(x , t). Here, µ is the drift, D
is the di�usion coe�cient and J denotes the probability current. Note that, for simplicity,
we assumed that there is only one random variable. For multiple random variables, the
Fokker-Planck Eq. (2.34) becomes a multivariate equation. An equivalent description of the
stochastic process is given by the Langevin equation

Ûx(t) = µ(x , t) + ξ (t), (2.35)

where ξ denotes Gaussian white noise2,

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = 2Dδ (t − t ′), (2.36)

If for instance x represents the velocity of a Brownian particle, the stochastic dynamics (2.35)
is called overdamped (intertialess), whereas for x = (x ,v)> being an array that contains
position x and velocity v of the particle, the stochastic dynamics is called underdamped.

2.3 Stochastic Thermodynamics

2.3.1 Ensemble Thermodynamics

The key idea of stochastic thermodynamics [13–18] is to consistently build the thermody-
namic description on top of a Markov process, turning the thermodynamic observables
known from traditional thermodynamics (cf. Sec. 2.1) into stochastic processes. First, we
focus on the ensemble level before proceeding with �uctuations. To this end, we consider an
open system in contact with several ideal heat reservoirs ν = 1, 2, . . . ,L at inverse tempera-
ture β (ν ). The system has discrete states i = 1, 2, 3 of energy ei(λt ) that are externally driven
according to a known protocol λt . In addition, there are nonconservative forces f (ν )ij that can
induce or oppress transitions from state j to state i . For generality, we assume that the force
can di�er for a transition between to given states depending on which bath ν exchanges
energy with the system during that transition. An example system is depicted in Fig. 2.2.
Next, we make the crucial assumption that the heat bath is weakly coupled to the system.
In this case, the heat reservoir remains always in equilibrium regardless how far the system

2If not truncated, the continuous Master equation would be equivalent to a Langevin equation with Poisson
noise.
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Figure 2.2: Illustrative example of a driven three-state system weakly coupled to two ideal
heat reservoirs at inverse temperature β (1) and β (2). For better visualization, the
distinction of the nonconservative forces f (ν ) in terms of the heat resrevoirs is
omitted, here.

is driven out of equilibrium [123, 124]. As a consequence, the stochastic dynamics of the
system is governed by a Markovian master equation (2.31), where we denote the probability
to be in state i by pi and writeW (ν )ij (λt ) for the transition rate from j to i . Furthermore, the
transition rates satisfy the so-called local detailed balance condition

W (ν )ij (λt )
W (ν )ji (λt )

= e−β
(ν )

[
ei (λt )−ej (λt )−f (ν )i j

]
, (2.37)

ensuring thermodynamic consistency. If the driving is switched o�, λt = λ, the system
will inevitably relax towards a unique stationary state, ps(λ), in the long-time limit. If
furthermore the heat reservoirs are at equal temperature, β (ν ) = β , and all nonconservative
forces vanish, f (ν )ij = 0, stationary distribution coincides with the equilibrium one. The latter
satis�es the detailed balance condition (2.33), and because of Eq. (2.37) in turn assumes
canonical form,

p
eq
i (λ) = e−β [ei (λ)−Aeq (λ)], (2.38)

with the equilibrium free energy

Aeq(λ) = − 1
β

ln
∑
i

e−βei (λ). (2.39)

For completeness, we add that if the system is also open for particle exchange, the equilibrium
distribution assumes a grand canonical form,

p
eq
i (λ) = e−β[ei (λ)−µ Ni−Φeq (λ)], (2.40)
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with the equilibrium landau potential

Φeq(λ) = − 1
β

ln
∑
i

e−β[ei (λ)−µ Ni ]. (2.41)

The average energy of the system is naturally de�ned as the ensemble average over state
energies

〈E〉(t) =
∑
i

ei(λt )pi(t), (2.42)

and its time-derivative stipulates the �rst law of thermodynamics

dt 〈E〉(t) = 〈 ÛQ〉(t) + 〈 ÛW 〉(t), (2.43)

with the average heat current from the reservoir to the system

〈 ÛQ〉(t) =
∑
ν ,i,j

(ei(λt ) − ej(λt ) − f (ν )ij )W (ν )ij (λt )pj(t)

= − 1
β

∑
ν ,i,j

W (ν )ij (λt )pj(t) ln
W (ν )ij (λt )
W (ν )ji (λt )

=
∑
ν

〈 ÛQ (ν )〉(t),
(2.44)

and the average work current

〈 ÛW 〉(t) =
∑
i

[
Ûλt ∂λt ei(λt )pi(t) +

∑
ν ,,j

f (ν )ij W (ν )ij (λt )pj(t)
]
. (2.45)

We identify the Shannon entropy

〈S〉(t) = −
∑
i

pi(t) lnpi(t), (2.46)

as a physically meaningful choice for the average nonequilibrium system entropy. Its rate
of change

dt 〈S〉(t) = −
∑
ν ,i,j

©­«ln
W (ν )ji (λt )pi(t)
W (ν )ij (λt )pj(t)

+ ln
W (ν )ij (λt )
W (ν )ji (λt )

ª®¬ W (ν )ij (λt )pj(t) = 〈 ÛSe〉(t) + 〈 ÛΣ〉(t), (2.47)

can be decomposed into the average entropy �ow from the bath to the system

〈 ÛSe〉(t) = −
∑
ν ,i,j

ln
W (ν )ij (λt )
W (ν )ji (λt )

W (ν )ij (λt )pj(t) =
∑
ν

β (ν )〈 ÛQ (ν )〉(t), (2.48)
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and the average entropy production rate

〈 ÛΣ〉(t) =
∑
ν ,i,j

ln
W (ν )ij (λt )pj(t)
W (ν )ji (λt )pi(t)

W (ν )ij (λt )pj(t) ≥ 0, (2.49)

whose nonnegativity is proved using lnx ≤ 1−x . Hence Eq. (2.47) constitutes the second law
of thermodynamics. If the system in equilibrium, the entropy production rate is identically
zero according to Eq. (2.33) and is therefore a measure of irreversibility.

Combining the �rst two laws of thermodynamics for an isothermal system, β (ν ) = β ,
one obtains for the average non-equilibrium free energy

dt 〈A〉(t) = dt 〈E〉(t) − 1
β

dt 〈S〉(t) = 〈 ÛW 〉(t) − 1
β
〈 ÛΣ〉(t). (2.50)

It follows from the non-negativity of the entropy production rate that the maximum average
output work, −〈W 〉, that can be extracted during a thermodynamic process is bounded by
the average change in free energy, ∆〈A〉 during this transformation. It can be shown that Eq.
(2.50) reproduces at equilibrium the well-known properties of the equilibrium state. Setting
pi = p

eq
i , we indeed obtain that

Aeq(λ) = Eeq(λ) − 1
β
Seq(λ). (2.51)

An interesting property of the average non-equilibrium free energy is that it is always larger
than its equilibrium value,

〈A〉(t) −Aeq(λ) = 1
β

∑
i

pi(t) ln
pi(t)
p
eq
i (λ)

≡ 1
β
〈I 〉(t) ≥ 0. (2.52)

Here, we de�ned the average mutual information 〈I 〉 to be equal to the nonnegative relative
entropy (also Kullback-Leibler divergence) de�ned as

D(x | |y) ≡
∑
i

xi ln xi
yi
≥ 0, (2.53)

measuring the distance between the distributions p(t) and peq(λ). The nonnegativity of the
relative entropy is again proved using lnx ≤ 1 − x .

We conclude this section with a remarkable result found for the e�ciency of energy
conversion processes: Let us assume that there are two thermodynamics forces F1 and F2
present that induce the probability currents J1 and J2 such that the mean stationary entropy
production rate reads

〈 ÛΣs〉(λ) = 〈 ÛΣs
1〉(λ) + 〈 ÛΣs

2〉(λ) = F s1(λ) 〈J s1〉(λ) + F s2(λ) 〈J s2〉(λ). (2.54)

A thermodynamic system that on average operates as a machine uses a fueling process
�owing in the direction of its associated force 〈 ÛΣs

1〉(λ) > 0 (e.g. heat �owing down a
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temperature gradient or a generic driving force) in order to power a second process that
�ows against the direction of its associated force 〈 ÛΣs

2〉(λ) < 0 (e.g. coordinate moving against
the direction of a mechanical force).

Owing to the nonnegativity of the entropy production rate, a meaningful de�nition for
the e�ciency of that stationary energy conversion process reads

ηs = −〈
ÛΣs
1〉(λ)
〈 ÛΣs

2〉(λ)
≤ ηc , (2.55)

where the Carnot e�ciency ηc is achieved in the reversible limit. Since the latter corresponds
to zero power generation and is thus not of any practical use, one considers instead the
e�ciency at maximum power η∗. As an example, the Curzon-Ahlborn e�ciency that holds
for macroscopic semi-ideal heat engines, where the heat transfer is the only irreversible step
during a thermodynamic cycle, has the appealing form [125]

η∗ = 1 −
√

1 − ηc =
ηc
2 +

η2
c

8 + O(η
3
c ). (2.56)

Using the formalism of stochastic thermodynamics, it can be shown that the term ηc/2
is universal for tightly-coupled microscopic systems, i.e. systems that only have one net
current, J1 ∝ J2, and that respond linearly [43]. Strikingly, the second term, η2

c/8 is shown
to be also universal for systems exhibiting a left-right symmetry [27].

2.3.2 Trajectory Thermodynamics

2.3.2.1 Stochastic First Law and Entropy Balance

We will now proceed with developing a framework to describe the thermodynamics for
a single realization of the Markov process. To this end, the thermodynamic laws need to
be formulated for a single trajectory. Generically, a trajectory is denoted by m(τ )(t). This
notation corresponds to the speci�cation of the actual state in the time interval under
consideration,m(τ )(t), t ∈ [t0, t f ]. Here, τ is a parametrization of the trajectory specifying
the initial state m(τ )(t0) = α0, the subsequent jumps from αj−1 to αj as well as the heat
reservoir νj involved at the instances of time, t = τj , j = 1, . . .M , and the �nal state,
m(τ )(t f ) = αM , where M is the total number of jumps. More explicitly, we write

m(τ ) =
{
m0

ν1,τ1−→m1
ν2,τ2−→m2

ν3,τ3−→ . . . νj ,τj−→mj

νj+1,τj+1−→ . . .mM−1
νM ,τM−→ mM

}
, (2.57)

and refer to Fig. 2.3 a) for an illustrative example of such a stochastic trajectory.
In the following, we will use lower scripts to label trajectory-dependent quantities and write
o[m(τ ), t] for the value the observable o takes at time t for the trajectorym(τ ). We de�ne the
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m(τ )

t

α0
ν1

α1

ν2
α2

νj

αj

νj+1 αM−1

νM

αM

t0 t fτ1 τ2 τj τj+1 τM

a)

∆e[m(τ ), t]

t

Ûeα0

w10
q10

Ûeα1
w21
q21

w j, j−1
qj,j−1

Ûeα j
w j+1, j
qj+1, j ÛeαM−1

wM,M−1
qM,M−1

ÛeαM

Ûeα2
ti t fτ1 τ2 τj−1 τj τM

b)

Figure 2.3: Schematic representation of a single trajectorym(τ ) during the time [t0, t f ] in a)
and the corresponding time-integrated �rst law of thermodynamics for the same
trajectory in b).

energy associated with the trajectory at time t to be given by the energy of the particular
statemj the system is in for the trajectory under consideration, i.e.

e[m(τ ), t] =
∑
m

em(λt )δm,m(τ )(t), (2.58)

where the Kronecker delta δm,m(τ )(t) selects the state α in which the trajectory is at time t .
The stochastic energy is a state function,

∆e[m(τ ), t] =
∑
m

[
em(λt )δm,m(τ )(t) − em(λ0)δm,m(τ )(0)

]
, (2.59)
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as indicated by the notation ∆e , and its time-derivative3 can be decomposed as follows,

dte[m(τ ), t] = Ûq[m(τ ), t] + Ûw[m(τ ), t], (2.60)

with the stochastic heat

Ûq[m(τ ), t] =
L∑
ν=1

M∑
j=1

δ (ν − νj)δ (t − τj)
[
emj (λτj ) − emj−1(λτj ) − f

(νj )
mj ,mj−1

]
=

L∑
ν=1
−

M∑
j=1

δ (ν − νj)δ (t − τj) 1
β (νj )

ln
W
(νj )
mj ,mj−1(λτj )

W
(νj )
mj−1,mj (λτj )

=

L∑
ν=1
Ûq(ν )[m(τ ), t],

(2.61)

and the stochastic work currents

Ûw[m(τ ), t] =
∑
m

[ Ûλt ∂λt em(λt )] δm,m(τ )(t)���
m(τ )(t)

+

L∑
ν=1

M∑
j=1

δ (ν − νj)δ (t − τj)f (νj )mj ,mj−1

= Ûwλ[m(τ ), t] +
L∑
ν=1
Ûw (ν )
f
[m(τ ), t].

(2.62)

The notation Ûx |m(τ )(t) corresponds to the instantaneous and smooth changes of x along the
horizontal segments of the trajectory m(τ )(t) in Fig. 2.3a). Since it will be instrumental
further below, we split the �uctuating work current into the contribution Ûwλ[m(τ ), t] from
the nonautonomous driving and the dissipative contribution

∑L
ν=1 Ûw (ν )f [m(τ ), t] due to the

nonconservative forces. Eq. (2.60) is the stochastic �rst law and ensures energy conservation
at the trajectory level [126]. Fig. 2.3 b) illustrates the time-integrated stochastic �rst law for
the trajectory in a).

We now want to formulate the second law of thermodynamics for a single trajectory. To
do so, we need a consistent de�nition of entropy trajectorywise, which appears to be an
oxymoron, since entropy is considered as a property related to an ensemble. To this end,
we will use a common idea in information theory [127], where one assigns an entropy to
each event taking place quantifying the amount of surprise as − lnpm, upon observing the
outcomem when its ensemble probability is pm. There is no surprise when pm = 1 and the
surprise becomes in�nite as pm → 0. After many repetitions of the experiment, the average
surprise is equal to the Shannon entropy de�ned as the system entropy (2.46). The stochastic
system entropy is thus de�ned as follows [20]

s[m(τ ), t] = −
∑
m

lnpm(t) δm,m(τ )(t), (2.63)

3To determine the time-derivative of the Kronecker delta, we realize that Ûδm,m(τ )(t ) goes from 0 to 1, and from
1 to 0, whenm(τ ) jumps into, or out of the microstatem, respectively, at time t . Hence the time-derivative
consists of a sum of delta functions, with weights 1 and -1, respectively, centered at the times, τj , of the jumps.
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and is therefore also a state-function,

∆s[m(τ ), t] = −
∑
m

[
lnpm(t)δm,m(τ )(t) − lnpm(0)δm,m(τ )(0)

]
. (2.64)

Its time-derivative

dt s[m(τ ), t] = Ûse[m(τ ), t] + Ûσ [m(τ ), t], (2.65)

can be split into the stochastic entropy �ow

Ûse[m(τ ), t] =
L∑
ν=1
−

M∑
j=1

δ (ν − νj)δ (t − τj) ln
W
(νj )
mj ,mj−1(λτj )

W
(νj )
mj−1,mj (λτj )

=

L∑
ν=1

β (ν ) Ûq(ν )[m(τ ), t], (2.66)

and the stochastic entropy production rate

Ûσ [m(τ ), t]=−
∑
m

∂tpm(t)
pm(t) δm,m(τ )(t)

��
m(τ )(t)+

L∑
ν=1

M∑
j=1
δ (ν − νj)δ (t − τj) ln

W
(νj )
mj ,mj−1(λτj )pmj−1(t)

W
(νj )
mj−1,mj (λτj )pmj (t)

.

(2.67)

We note that Eq. (2.65) corresponds to the entropy balance at the trajectory level.
It will also prove useful to also consider the time-integrated stochastic �rst law

∆e[m(τ ), t] ≡
L∑
ν=1

δe(ν )[m(τ ), t] = δq[m(τ ), t] + δw[m(τ ), t], (2.68)

with the time-integrated �uctuating energy current

δe(ν )[m(τ ), t] =
t∫

0

dt ′
M∑
j=1

δ (ν − νj)δ (t ′ − τj)[emj − emj−1], (2.69)

as well as the �uctuating heat

δq[m(τ ), t] =
L∑
ν=1
−

t∫
0

dt ′
M∑
j=1

δ (ν − νj)δ (t ′ − τj) 1
β (νj )

ln
W
(νj )
mj ,mj−1(λτj )

m
(νj )
mj−1,mj (λτj )

=

L∑
ν=1

(
δe(ν )[m(τ ), t] − δw (ν )f [m(τ ), t]

)
=

L∑
ν=1

δq(ν )[m(τ ), t],
(2.70)

and the �uctuating work

δw[m(τ ), t]=
t∫

0

dt ′
∑
m

[ Ûλt ′∂λt ′em(λt ′)]δm,m(τ )(t ′)���m(τ )(t ′)︸                                               ︷︷                                               ︸
δwλ[m(τ ),t]

+

L∑
ν=1

t∫
0

dt ′
M∑
j=1

δ (ν − νj)δ (t ′ − τj)f (νj )mj ,mj−1︸                                        ︷︷                                        ︸
δw (ν )f [m(τ ),t]

.

(2.71)
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Using Eqs. (2.67) and (2.70), the entropy production can be expressed as

δσ [m(τ ), t] = ln
pm0
(0)

pmM
(t) +

L∑
ν=1

t∫
0

dt ′
M∑
j=1

δ (ν − νj)δ (t ′ − τj) ln
W
(νj )
mj ,mj−1(λτj )

W
(νj )
mj−1,mj (λτj )

= ln
pm0
(0)

pmM
(t) −

L∑
ν=1

β (ν )δq(ν )[m(τ ), t].
(2.72)

It is easy to verify that the ensemble average of both the di�erential or time-integrated
stochastic observables at the trajectory level coincides the corresponding de�nitions at the
ensemble level, see Sec. 2.3.1 It is important to note that the stochastic entropy production
rate is not always non-negative. Further below it will become clear that it is in fact a
necessity to observe trajectories with a negative entropy production assigned to them.

2.3.2.2 Generating Function Techniques

The generating functions encode the entire statistics of the di�erent stochastic observables
according to Eq. (2.20). The generating function related to the change δo[m(τ ), t] of the
observable o along a trajectorym(τ ) up to time t is de�ned as

д(γo, t) ≡
〈
e−γo δo[m(τ ),t]

〉
=

∫
m(τ )

D[m(τ )] P[m(τ )] e−γo δo[m(τ ),t]. (2.73)

where γo is the counting �eld (also bias) for the observable o, P[m(τ )] denotes the path
probability of the trajectory m(τ ) and D[m(τ )] refers to the associated measure for the
trajectory contributing to the path integral. The probability to observe a change δo[m(τ ), t] =
δo along a trajectorym(τ ) at time t , can be determined from the generating function using
Eq. (2.73) as follows

p(δo, t) = 〈δ (δo − δo[m(τ ), t])〉 =
1

2π

∞∫
−∞

dγo eiγo δo〈eiγo δo[m(τ ),t]〉 = 1
2π

∞∫
−∞

dγo eiγoδo д(iγo, t).

(2.74)

Inversion of the last equation yields

д(iγo, t) =
∞∫

−∞
d (δo) e−iγo δo p(δo, t) (2.75)

The moments of the distribution are obtained as in Eq. (2.20)〈
δol [m(τ ), t]

〉
= (−1)l ∂

lд(o)(γo, t)
∂γ lo

����
γo=0
, l ∈ N. (2.76)
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It will prove useful to rewrite the GF as follows

д(γo, t) =
∑
m

дm(γo, t) (2.77)

with

дm(γo, t) = pm(t)
〈
e−γo δo[m(τ ),t]

〉
m
= pm(t)

∫
m(τ )

D[m(τ )] P[m(τ ) |m, t] e−γo δo[m(τ ),t], (2.78)

where 〈·〉m denotes an ensemble average over all trajectoriesm(τ ) that are in statem at time
t so that P[m(τ ) |m, t] = P[m(τ )]δm(τ ),m(t) is the conditional path probability.

Comparison with Eqs. (2.73) and (2.75) yields

дm(γo, t) =
∫
δo

d (δo) e−γo δo p(δo,m, t) (2.79)

where p(δo,m, t) denotes the joint probability to observe a variation δo up to time t while
the system is in statem at that time. From Eq. (2.78) we easily verify that дm(γo, 0) = pm(0).
Furthermore, we have д(0, t) = 1 and дm(0, t) = pm(t). With Eq. (2.77) we can write the
time-derivative of the generating function as

∂tд(γo, t) =
∑
m

∂tдm(γo, t). (2.80)

In order to derive the equations of motions for ∂tдm(γo, t), we consider the joint probability
pm(δo, t + dt) for observing a change in the observable δo = δo[m(τ ), t] along the trajectory
m(τ ) and to �nd the trajectory in state m at time t + dt . This probability, to its leading order
in dt , is given by

pm(δo, t + dt) = pm
(
δo − ∂om∂t dt , t

)(1 +Wm,m(λt ) dt) +

+

L∑
ν=1

∑
m′,m

pm′
(
δo − o(ν )m,m′, t

)
W (ν )m,m′(λt ) dt + O(dt2), (2.81)

whereWm,m(λt ) = −
∑

m′,mWm′,m(λt ) as prescribed by the de�nition (2.32). The �rst term on
the right hand side of the last equation corresponds to the scenario that the system remains
in statem during the time interval [t , t + dt] while the observable changes by an amount
∂om
∂t dt . In contrast, the second term accounts for all possible transitions from state m′ into

the state m during the time interval [t , t + dt] such that the observable is changed by an
amount o(ν )m,m′ . Using Eq. (2.79), we have

дm(γo, t + dt) =
=

∫
δo

d(δo)
[
e−γoδopm

(
δo − ∂om∂t dt , t

) (
1 +Wm,mdt

)
+
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+

L∑
ν=1

∑
m′,m

e−γoδoδ (ν − νj)pm′
(
δo − o(νj )m,m′, t

)
W
(νj )
m,m′(λt )dt

]
+ O(dt2)

=

∫
δo

d(δo)
[
e−γo

(
δo+
∂om
∂t dt

)
pm

(
δo, t

) (
1 +Wm,mdt

)
+

+

L∑
ν=1

∑
m′,m

e−γo
(
δo+δo

(νj )
m,m′

)
δ (ν − νj)pm′(δo, t)Wm,m′(λt ) dt

]
+ O(dt2)

= e−γo
∂om
∂t dt (

1 +Wm,m dt
)
дm(γo, t)+

+

L∑
ν=1

∑
m′,m

e−γo δo
(νj )
m,m′W

(νj )
m,m′(λt ) dt дm′(γo, t) + O(dt2)

=
(
1 − γo ∂om∂t dt

)
дm(γo, t) +

L∑
ν=1

∑
m′

e−γo δo
(νj )
m,m′W

(νj )
m,m′(λt ) dt дm′(γo, t) + O(dt2). (2.82)

The last equation can be rearranged as follows,

дm(γo, t + dt) − дm(γo, t)
dt = −γo ∂om∂t дm(γo, t) +

L∑
ν=1

∑
m′

e−γo δo
(ν )
m,m′W (ν )m,m′ дm′(γo, t) + O(dt),

(2.83)

so that in the limit dt → 0 we arrive at an equation of motion which takes the form of a
biased microscopic master equation [128],

∂tдm(γo, t) =
∑
m′

Wmm′(γo, λt )д(o)m′ (γ , t), (2.84)

with the generator of the biased stochastic dynamics

Wmm′(γo, λt ) = −γo Ûom(λt )δm,m′ +
L∑
ν=1

e−γo o
(ν )
mm′(λt )W (ν )mm′(λt ). (2.85)

For state functions, δo[m(τ ), t] = ∆o[m(τ ), t] = o[m(τ ), t] − o[m(τ ), 0], the ensemble average
over all trajectories in Eq. (2.73) reduces to an ensemble average with respect to the initial
states of the trajectories only. Consequently, the generating function associated with any
state function has the simple closed form

д(γo, t) =
∑
m,m′

e−γo [om(t)−om′(0)] pm(t)pm′(0). (2.86)

Using Eqs. (2.58) and (2.63), we have for the generating functions associated with the state
functions energy and entropy,

д(γe , t) =
∑
m,m′

e−γe [em(λt )−em′(λ0)] pm(t)pm′(0) (2.87)
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д(γs , t) =
∑
m,m′

eγs ln pm (t )
pm′ (0) pm(t)pm′(0). (2.88)

Moreover, substituting Eqs. (2.61), (2.62), (2.66) and (2.67) into Eq. (2.85), we obtain for the
generating functions associated with the currents

∂tдm(γq, t) =
L∑
ν=1

∑
m′

e−γq
[
em(λt )−em′(λt )−f (ν )mm′

]
W (ν )mm′(γq, λt ) дm′(γq, t) (2.89)

∂tдm(γw , t) = −γw Ûλt
[
∂λt em(λt )

]
дm(γw , t) +

L∑
ν=1

∑
m′

e−γw f (ν )mm′ W (ν )mm′(γw , λt ) дm′(γw , t)

(2.90)

∂tдm(γse , t) =
L∑
ν=1

∑
m′

e
γse ln

W (ν )
mm′ (γse ,λt )

W (ν )
m′m (γse ,λt ) W (ν )mm′(γse , λt ) дm′(γse , t) (2.91)

∂tдm(γσ , t) = γσ
∂tpm(t)
pm(t) дm(γσ , t) +

L∑
ν=1

∑
m′

e
γσ ln

W (ν )
mm′ (γσ ,λt )pm′ (t )

W (ν )
m′m (−γσ ,λt )pm (t ) W (ν )mm′(γσ , λt ) дm′(γσ , t).

(2.92)

2.3.2.3 Fluctuation Theorems

It is easy to verify that ∂tдm(γσ = 1, t) = pm(t) satis�es the evolution equation (2.92), hence
д(γσ = 1, t) = 1. From Eq. (2.73) the Seifert integral �uctuation theorem then ensues [20]〈

e−δσ [m(τ ),t]
〉
= 1, (2.93)

which is valid irrespective of any conditions on initial and �nal state of the stochastic
trajectory under consideration. It further follows from Jensen’s inequality, f (〈x〉) ≤ 〈f (x)〉,
applicable to any convex function f (x), that the macroscopic second law of thermodynamics,
〈σ 〉 ≥ 0, is reproduced.

For a single heat bath ν , in the absence of any nonconservative driving and for initial
and �nal equilibrium distributions the stochastic entropy production (2.72) becomes

δσ [m(τ ), t] = β
{
∆e[m(τ ), t] − δq[m(τ ), t] − ∆Aeq(λ)} = β {δwλ[m(τ ), t] − ∆Aeq(λ)}, (2.94)

where ∆Aeq(λ) ≡ Aeq(λt ) −Aeq(λ0) is the change in total equilibrium free energy along the
trajectory that only depends on the initial and �nal value of the driving protocol and thus
does not �uctuate. In this case the Seifert �uctuation theorem (2.93) becomes the celebrated
Jarzynski integral �uctuation theorem [129, 130]〈

e−β δwλ[m(τ ),t]〉 = e−β ∆Aeq (λ). (2.95)
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It is important to note that this is a �nite-time �uctuation theorem because the �uctuating
work stops evolving as the parameter of the driving remains at its �nal value λt such that
the subsequent relaxation of the system towards the equilibrium distribution characterized
by λt does not contribute to the work statistics.

Next, we want to derive a so-called detailed �uctuation theorem for the entropy pro-
duction (2.72). Detailed �uctuation theorems are relations between a trajectory (forward
process) and the time-reversed one (backward process). First we de�ne the forward process
where the the system is initially (t ′ = 0) in equilibrium with respect to the reference reservoir
ν = 1, that is

p
eq
m0(λ0) = e−β (1)[em(λ0)−Aeq (λ0)] . (2.96)

Such a state can be prepared by disconnecting all other heat reservoirs, switching o� any
driving with the �xed protocol value λ0 and letting the system relax. At time t ′ = 0, all other
heat reservoirs are simultaneously connected to the system and both the nonconservative
driving f and the nonautonomous driving is switched on. As a result, the system evolves
under the driven Markov process according to the forward protocol λt ′, t ′ ∈ [0, t] towards a
nonequilibrium state pm(t). During that evolution heat is exchanged between the system and
the reservoirs and there is mechanical work δwλ[m(τ ), t] performed on the system by the
external driving to change its energy em(λ′t ). At time t , all heat reservoirs but the reference
one ν = 1 are disconnected and the force f is switched o� such that system relaxes into an
equilibrium state

p
eq
mM (λt ) = e−β (1)[em(λt )−Aeq (λt )] . (2.97)

Further, the backward process is indicated by the notation “ ˜ ” and constructed as follows.
The initial state of the backward process is equal to the equilibrium state of the forward
process evaluated at the �nal value of the forward-process protocol p̃eqm0(λ̃0) = peqmM (λt ) and
all reservoirs are reconnected and the force f is turned on again. As a result, the system
evolves under the time-reversed driven Markov process according to the backward protocol
λ̃t ′ = λt−t ′, t ′ ∈ [0, t] towards a nonequilibrium state p̃m(t). At time t all reservoirs except
from the reference one ν = 1 are disconnected and the nonconservative driving is turned
o�, which allows the system to relax towards an equilibrium state that coincides with the
initial Gibbs state of the forward process, p̃eqmM (λ̃t ) = peqm0(λ0). The de�nition of the forward
and backward process is illustrated in Fig. 2.4.

For these processes, we can compute the path probability P for the trajectorym(τ ) of the
forward process and the path probability P̃ for the trajectory m̃(τ ) of the backward process.
The path probability P, is equal to the probability p

eq
m0(λ0) of its initial Gibbs state times the

probability to stay in this state until the �rst jump, times the probability to make this jump,
and so on for the other jumps along the trajectory, with a �nal factor accounting for the
trajectory to remain in its �nal state. The probability per unit time to make a jump from
mj tomj+1 at time t ′ is simplyWmj+1,mj (λ′t ). Conversely, the probability for not observing a
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p
eq
m0(λ0) = p̃eqmM (λ̃t )
f = 0,ν = 1

λt ′, f
ν = 1, . . . ,L

p
neq
m (t)

p̃
neq
m (t̃)

λ̃t ′ = λt−t ′
f ,ν = 1, . . . ,L

p
eq
mM (λt ) = p̃eqm0(λ̃0)
f = 0,ν = 1

Relaxation

Relaxation

Figure 2.4: Schematic representation of the backward and forward process.

jump from statem during the time interval [t1, t2]

lim
n→∞

n∏
i=1

[
1 −

∑
m′,m

Wm′m(λt ′)dt ′
]
= lim

n→∞

n∏
i=1
[1 +Wmm(λt ′)dt ′] = e

t2∫
t1

dt ′Wmm (λt ′ )

(2.98)

where we used the discretization t ′ = t1 + i dt ′ with dt ′ = (t2 − t1)/n.
The backward path probability P̃ is equal to the probability p̃

eq
m0(λ̃0) of its initial Gibbs

state times the probability to stay in this state until the �rst jump, times the probability to
make this jump, and so on for the other jumps along the time-reversed trajectory, with a
�nal factor accounting for the trajectory to remain in its �nal state. Clearly, the probability
per unit time to make the backward jump frommj+1 tomj at time t ′ is simplyWmj ,mj+1(λ̃′t ).
We make the crucial observation that the probabilities for staying in the given states for
given time-intervals are identical in the forward and backward process. Thus, if we consider
the ration between forward and back path probability, these waiting times cancel and we
arrive, by comparison with Eq. (2.72), at the following fundamental result

ln
P(m(τ ))
P̃(m̃(τ ))

= ln
p
eq
m0(λ0)
p
eq
mt (λt )

+

L∑
ν=1

t∫
0

dt ′
M∑
j=1

δ (ν − νj)δ (t ′ − τj) ln
W
(νj )
mj ,mj−1(λτj )

W
(νj )
mj−1,mj (λτj )

= δσ [m(τ ), t].

(2.99)

This relation is arguably the single most important in stochastic thermodynamics. It is
fundamental as it implies the Seifert integral �uctuation theorem (2.93) by ensemble averag-
ing over all forward trajectories. More strikingly, so-called detailed �uctuation theorems
follow from this relation. Let p(δσ ) be the probability to observe a change in the entropy
production by the amount δσ along the forward process, δσ [m(τ ), t] = δσ , and p̃(−δσ ) the
probability to observe a change in the entropy production by the minus that amount along
the time-reversed backward process, δσ [m̃(τ ), t] = −δσ . Obviously, the former probability
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can be calculated as follows:

p(δσ ) =
∫

m(τ )

dm(τ ) δ
(
δσ − ln

P(m(τ ))
P̃(m̃(τ ))

)
P(m(τ ))

= eδσ
∫

m̃(τ )

dm(τ ) δ
(
− δσ − ln

P̃(m̃(τ ))
P(m(τ ))

)
P(m(τ )) = eδσ p̃(−δσ ),

(2.100)

where in the second equality we used that the Jacobian for the transformation from m(τ )
to m̃(τ ) is equal to unity. This so-called detailed Seifert �uctuation theorem is commonly
written under the following form [20, 131]

p(δσ )
p̃(−δσ ) = eδσ , (2.101)

which in words states that the probability to observe a stochastic entropy increase δσ along
the forward process is exponentially more probable than to observe a corresponding decrease
−δσ along the backward process.

We emphasize that in order for minus the stochastic entropy production −δσ to be the
entropy production in the backward path, a class of special initial and �nal conditions of
the trajectories is required. Indeed, upon a global time-reversal of Eq. (2.99), we have for
the entropy production δσ̃ [m̃(τ ), t] along the backward trajectory m̃(τ )

ln
P̃

(
m̃(τ )

)
˜̃P
(

˜̃m(τ )
) = δσ̃ [m̃(τ ), t]. (2.102)

Obviously, ˜̃m(τ ) =m(τ ), however, ˜̃P = P only if the initial (�nal) distribution of the forward
trajectory matches with the �nal (initial) distribution of the backward trajectory. In general
this will only be the case for stationary states. Since equilibrium states are a special case of
stationary states, we conclude that for the forward and backward process as speci�ed above
we indeed have δσ̃ [m̃(τ ), t] = −δσ .

Using Eqs. (2.69), (2.96) and (2.97), the �uctuating entropy production (2.72) along the
forward process can be rewritten as follows

δσ [m(τ ), t] = β (1)
[
δwλ[m(τ ), t]−∆Aeq

1
]
+

L∑
ν=1

{
β (ν )δw (ν )

f
[m(τ ), t]+

[
β (1)−β (ν )]δe(ν )[m(τ ), t]}.

(2.103)
Consequently, Eq. (2.101) implies the �nite-time detailed �uctuation theorem [132, 133]

p
(
β (1)δwλ+

L∑
ν=1

[
β (ν )δw (ν )

f
+

[
β (1)−β (ν )]δe(ν )] )

p̃
(
−β (1)δwλ−

L∑
ν=1

[
β (ν )δw (ν )

f
+

[
β (1)−β (ν )]δe(ν )] ) =e

β (1)
(
δwλ−∆Aeq

1

)
+

L∑
ν=1

[
β (ν )δw (ν )f +

(
β (1)−β (ν )

)
δe(ν )

]
.

(2.104)
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In fact, the �nite-time detailed �uctuation theorem also holds for the joint probability
distribution,

p
(
β (1) δwλ , {δ jνf } , {δ jνe }

)
p̃
(
− β (1) δwλ , −{δ jνf } , −{δ jνe }

) = e
β (1)

(
δwλ−∆Aeq

1

)
+

L∑
ν=1

[
β (ν )δw (ν )f +

(
β (1)−β (ν )

)
δe(ν )

]
, (2.105)

where for brevity we use the following notation for the time-integrated currents

{δ jνf } ≡
(
β (1)δw (1)

f
, . . . , β (L)δw (L)

f

)
, {δ jνe } ≡

(
[β (1) − β (2)]δe(2), . . . , [β (1) − β (L)]δe(L)

)
.

(2.106)

Here, p(β (1)δwλ, {δ jνwf
}, {δ jνe }) is the probability to observe a nonautonomous driving con-

tribution β (1)δwλ, time-integrated autonomous work currents {δ jνwf
} and time-integrated

energy currents {δ jνe } along the forward process.
Conversely, p̃(−β (1)δwλ, {−δ jνwf

}, {−δ jνe }) is the probability to observe a nonautonomous
driving contribution −β (1)δwλ, time-integrated autonomous work currents {−δ jνwf

} and
time-integrated energy currents {−δ jνe } along the time-reversed backward process.

We stress that the detailed �uctuation theorem in Eqs. (2.104) and (2.105) are �nite-time
relations. Since all heat reservoirs except the reference one are disconnected, the nonconser-
vative force is switched o� and the parameter of the nonautonomous driving has reached its
�nal value at the nonequilibrium state pneqm (t), all the �uctuating quantities appearing in the
argument of the probability distributions in the detailed �uctuation theorems stop evolving
during the relaxation process to the �nal equilibrium distribution of the forward process, i.e.
β (1)δwλ = 0 and β (ν )δw (ν )

f
= 0, [β (1) − β (ν )]δe(ν ) = 0, ∀ν , t ′ > t . The same naturally applies

to the backward process. As a result, all �uctuating quantities appearing in the detailed
�uctuation theorems can be measured along a single �nite-time trajectory and allows to
access the ensemble equilibrium free energy.

The validity of the detailed �uctuation theorem in Eq. (2.105) can be seen in two ways.
First, we de�ne the quantity δX = β (1)δwλ +

∑L
ν=1

[
β (ν )δw (ν )

f
+

[
β (1) − β (ν )]δe(ν )] . Its

corresponding probability is readily determined via marginalization of the joint probability
distribution in Eq. (2.105) and can be manipulated as follows,

p(δX ) =

=

∞∫
−∞

∏
ν

d
(
β (1)δwλ

)
d
(
δ jνf

)
d
(
δ jνe

)
δ
(
δX−β (1)δwλ−

L∑
ν=1

(
δ jνf +δ j

ν
e

) )
p
(
β (1)δwλ, {δ jνf }, {δ jνe }

)
=

∞∫
−∞

∏
ν

d
(
δ jνf

)
d
(
δ jνe

)
p
(
δX − {δ jνf } − {δ jνe } , {δ jνf } , {δ jνe }

)
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= eδX
∞∫

−∞

∏
ν

d
(
δ jνf

)
d
(
δ jνe

)
p̃
(
{δ jνf } + {δ jνe } − δX , −{δ jνf } , −{δ jνe }

)
= p̃(−δX ) eδX ,

(2.107)

and thus indeed satis�es the detailed �uctuation theorem (2.104).
Secondly, the detailed �uctuation theorem (2.105) can also be derived via the following

symmetry of the associated generating function

д
(
1 − γλ ,

{
γ ν
f

}
,
{
γ νe

}
, t

)
= д̃

(
1 − γλ ,

{
1 − γ ν

f

}
,
{
1 − γ νe

}
, t

)
e−β (1) ∆A

eq
1 (λ), (2.108)

as demonstrated in appendix A.1.
There are some notable special cases of the detailed �uctuation relation (2.105). If the

system is autonomous, δwλ = 0, the �uctuation theorem simpli�es to a time-integrated
current one [134],

p
(
{δ jν

f
} , {δ jνe }

)
p
(
{−δ jν

f
} , {−δ jνe }

) = e
L∑

ν=1

[
β (ν )δw (ν )f +

(
β (1)−β (ν )

)
δe(ν )

]
. (2.109)

On the other hand, in the presence of a single reservoir ν and in the absence of any noncon-
servative force, Eq. (2.105) reduces to the celebrated Crooks detailed �uctuation theorem
for the nonautonomous work [135, 136]

p(βδwλ)
p̃(−βδwλ)

= eβ
(
δwλ−∆Aeq

1

)
. (2.110)

Finally, if the system is isothermal and driven by both a nonconservative and nonautonomous
force, we obtain a generalized work �uctuation theorem

p(βδwλ, βδw f )
p̃(−βδwλ,−βδw f )

= eβ
(
δwλ+δwf −∆Aeq

1

)
. (2.111)



Chapter 3
Enhancing The Thermodynamic
Performance via Collective E�ects

3.1 Introduction

This chapter represents the thematically �rst part of this thesis as it addresses the question
of how collective e�ects can a�ect the thermodynamic performance of a system. First, we
consider a minimal stochastic model made of N interacting three-state oscillator units which
was shown in Refs. [85–87] to exhibit stable limit cycles in the occupation space indicative
of phase synchronization. This model can be seen as a toy model for interacting molecular
motors [137], enzymes [138, 139] or switches [140, 141]. In its original formulation, the
three-state model is made of three unidirectional stochastic transitions, thus the crucial local
detailed balance condition (2.37) is not valid and it is thus not thermodynamically consistent.
Our �rst achievement is to demonstrate that the model can indeed be formulated in a
thermodynamically consistent way, while the complex phenomena, such as synchronization,
exhibited by the original model are retained.

We �nd that, at the mean-�eld level (N →∞), the system displays as a function of the
inverse temperature three phases separated by two nonequilibrium phase transitions: a Hopf
bifurcation separating a single stable �xed point phase from a stable limit cycle one, and an
in�nite-period bifurcation separating the limit-cycle phase from a phase with three stable
�xed points. At equilibrium only one phase transition survives which separates a phase
with a single stable �xed point from one with multiple stable �xed points via a saddle-node
bifurcation.

Next, we provide a detailed understanding of how a linear and irreducible Markov dy-
namics for �nite systems can give rise to the aforementioned complex mean-�eld dynamics

31
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solutions with increasing system size. This question is particularly intriguing since the
Perron-Frobenius theorem ensures that the former irreducible dynamics has a unique station-
ary solution for �nite state spaces [88], while the latter exhibits multiple and time-periodic
solutions. We reconcile this apparent contradiction via the spectrum of the Markovian
dynamics generator which is shown to encode the information about the two bifurcations
that are observed in the mean �eld. The mean-�eld dynamics is demonstrated to be char-
acterized by the three eigenvalues with dominant real parts (the null one and a complex
conjugated pair). At the Hopf bifurcation, a real-part gap between these eigenvalues and the
remaining eigenvalues opens up, enabling the emergence of a metastable mean-�eld-like
oscillatory dynamics over long times. As the second bifurcation is approached, this di�er-
ence in real parts further increases while the imaginary parts of the dominant eigenvalues
signi�cantly drop causing the oscillations to vanish into three metastable �xed points. The
fact that the real part of the most dominant complex conjugated eigenvalue pair converges
to zero while the gap with respect to the real parts of all other nonzero eigenvalues becomes
larger with increasing system size explains the emergence of the mean-�eld solutions as the
perpetuation of the metastable states.

After proving the consistency of stochastic thermodynamics across scales - from the
microscopic many-body level over the mesoscopic occupation level to the mean-�eld one -
we analyze the dissipated work across the di�erent dynamical regimes. We �nd that as a
function of increasing inverse temperatures the transition towards synchronization is of
�rst order while the outward transition is of second order. A crucial observation is that
in the thermodynamic limit, interactions can signi�cantly decrease the dissipated work
per oscillator beyond the synchronization threshold and even more so after the second
transition towards multistability. Furthermore, interactions in �nite assemblies of oscillators
enhance this e�ect in the former case but reduce it in the latter, in particular when the
number of oscillators is too low to sustain a long-lasting metastable solution. Finally, we
demonstrate that when operating as an energy converter, synchronization signi�cantly
enhances the power output per oscillator. Despite operating far-from-equilibrium, the
e�ciency at maximum power remains quite close to the linear-response prediction of 1/2.

Furthermore, we generalize the three-state mean-�eld model to q-state mean-�eld clock
models. We demonstrate that the two mean-�eld phases in the three-state model - a single
stable and multiple stable �xed points - are prescribed by the thermodynamic consistency
and thus universal in all q-state clock models in the high- and low-temperature limit, where
the system is entropy- and energy-driven, respectively. In fact, we can even characterize the
clock models beyond the universal low- and high-temperature stationary solution. Most
importantly, we derive the q-dependent critical Hopf bifurcation temperature as a function
of the number of spin states q. Numerically, we show that for even q this phase transition
separates the high-temperature and the low-temperature phase, whereas for odd q there are
stable limit cycles indicative of synchronization and thus implying the existence of a second
phase transition. Since stochastic thermodynamics is built upon Markov dynamics, it follows
that there are also two q-dependent universal classes of thermodynamic phenomenology: If
q is odd, there are two non-equilibrium phase transition (as in the three-state model), while
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for even q there is only one nonequilibrium phase transition. For completeness, we also
investigate the dissipated work and the power-e�ciency trade-o� in the di�erent phases and
�nd that interactions reduce dissipation in all clock models. Conversely, the power-e�ciency
trade-o� for energy transduction processes is only signi�cantly lifted for odd-q models
in the synchronization phase, hence further corroborating that collective dynamics can
indeed enhance the thermodynamic performance of macroscopic system made up of many
interacting microscopic machines.

Finally, we will study the role of collective e�ects in information processing. More
explicitly, we consider a macroscopic bit composed of N noninteracting binary units and
compute the thermodynamic costs of both reversible and irreversible information erasure in
the bit. Hereby, it will be distinguished if the logical information stored in the macroscopic
bit is translated from the underlying microscopic binary units one-to-one (corresponding to a
single unit) or via a decoding scheme. The latter is formally a coarse-graining of microscopic
physical information and practically increases the safety of the information erasure since the
signal-to-noise ratio is proportional to the square-root of the microscopic units contained
in a macroscopic bit [142]. The paradigm for the decoding scheme we will consider is the
so-called majority-logic decoding, which is the simplest and most used coarse-graining
method in information processing [143].

We show that for reversible erasure protocols, information erasure in single units is more
e�cient than symmetric majority-logic decoding. Conversely, we �nd that for �nite-time
erasure protocols the majority-logic decoding can accelerate the process of erasing a �xed
amount of information or compress the minimal erasure error of a �xed-time erasure process.
While these bene�ts in terms of speed and precision for most erasure processes come at the
expense of a lower erasure e�ciency, we show that, remarkably, the majority-logic decoding
will however also be more e�cient than a single-unit process when the erasing is fast or
the erasure error is small. When imposing the optimal erasure protocol that minimizes the
dissipated heat, we �nd that for the two unit models (Fermi- and Arrhenius-rates units),
these advantages are preserved. Hence, we conclude that the majority-logic decoding lifts
the trade-o� between erasure speed, precision and e�ciency when compared to a single
unit.
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3.2 Thermodynamics of Nonequilibrium Phase Transi-
tions in Clock Models

3.2.1 Driven Three-State Model

3.2.1.1 Setup

We consider a system consisting of N three-state units with the energy levels ϵi (i = 1, 2, 3).
Under the constraint of occupying the same state, the units interact globally via an interaction
potential u/N . The system is furthermore subjected to a heat bath at inverse temperature β
and to a constant non-conservative rotational forcing f , as depicted in �gure 3.1.

Q
β u

f

f

ϵ1

ϵ2

ϵ3

Figure 3.1: Schematics of a small network of identical and all-to-all interacting three-state
units in contact with a heat bath at inverse temperature β and in the presence of a
nonconservative force f de�ned to act in clockwise direction for this given order of
the single-unit states (i → (i + 1) mod 3).

We denote a con�guration by a multiindex α = (α1, . . . ,αi , . . . ,αN ) with αi = 1, 2, 3. These,
con�gurations, referred to as microstates in the following, entirely characterize the system.
As an example, labeling the units from left to right and from top to bottom, the microstate
displayed in Fig. 3.1 reads α = (2, 1, 3, 2, 3, 1, 2, 2, 3). Let us consider a transition from
microstate α ′→ α amounting to a transition between the single unit energy states ϵj → ϵi
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and the occupation numbers Ni → Ni + 1 and Nj → Nj − 1. To determine the accompanying
change in internal energy along such a transition, the total interaction energy Uα of the
network for a given microstate α is required. Noting that determining the total interaction
energy boils down to summing over the number of units occupying the state l with l = 1, 2, 3,
one readily �nds

Uα (t) = u

N

3∑
k=1

Nk (α )(t)−1∑
l=1

l =
u

2N

3∑
k=1
[Nk(α)(t) + 1]Nk(α)(t) =

u

2N

3∑
k=1

N 2
k(α)(t) +U0, (3.1)

where U0 = −u/2 is a constant (∆U0 = 0) and the notation Nk(α)(t) refers to the number of
units occupying the state k for that microstate α at time t . Thus, we obtain for the internal
energy

eα (t) =
3∑

k=1

{
ϵk Nk(α)(t) +

u

2N [Nk(α)(t) + 1]Nk(α)(t)
}
. (3.2)

and for the change in internal energy during the transition described above

eα (t) − eα ′(t) = ϵi − ϵj + u

N
(Ni(t) − Nj(t) + 1). (3.3)

3.2.1.2 Master Equation

The stochastic jump process arising from the weak coupling of the system to the heat bath
is governed by a Markovian master equation (2.31) describing the time evolution of the
probability pα to be in the microstate α as follows

∂tpα (t) =
∑
α ′

wαα ′ pα ′(t) , (3.4)

with the microscopic transition rates wαα ′ . Restricting to one transition at a time, it holds
that the transition rate matrix is irreducible and stochastic,

∑
α wαα ′ = 0, thus implying the

existience of a unique steady state with probability psα as stipulated by the Perron-Frobenius
Theorem [88]. We take the microrates to be of Arrhenius form, that is

wαα ′ = Γ e−
β
2 [eα−eα ′−f Θαα ′] , (3.5)

where the kinetic prefactor Γ sets the time-scale of the stochastic jump process. Moreover,
the sign function Θαα ′ is de�ned as Θαα ′ = 1 for

∑
i αi − α ′i = 1mod3, else Θαα ′ = −1. We

note that the microscopic rates satisfy local detailed balance

ln wαα ′

wα ′α
= −β [eα − eα ′ − f Θαα ′] , (3.6)

where the oddness of the sign functionΘαα ′ = −Θα ′α was used.
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In the limit t →∞, the system will tend to the unique steady state, psα , which is in non-
equilibrium due to the non-autonomous driving f . Since there are no other thermodynamic
forces present in this model, switching o� the force at steady state leads to detailed balance

wαα ′ p
eq
α ′ = wα ′α p

eq
α , (3.7)

and along with local detailed balance in Eq. (3.6) implies the Gibbs distribution (2.38) as the
equilibrium probability distribution

p
eq
α = e−β(eα−aeq ) , (3.8)

with the equilibrium free energy

aeq = − 1
β

ln
∑
α

e−βeα . (3.9)

3.2.1.3 Coarse-Graining

Formulating the stochastic process as above gives rise to an exceedingly large state space
| |α | | growing exponentially with the number of units in the network as | |α | | = 3N . Yet, a
closer inspection reveals that the microscopic state space can be exactly marginalized into a
mesoscopic one, where the system is unambiguously characterized by mesoscopic states
de�ned as N ≡ (N1,N2,N −N1 −N2). This is due to the changes in internal energy (3.3) and
thus the microscopic transition rates (3.5) which do not depend on the topological details of
the network but only on the occupation numbers Nk before and after the transition. We
write αN for a microstate α belonging to the mesostate N .

The number of equienergetic microstates inside a mesostate, eα
N
= EN is given by

ΩN =

(
N

N1

) (
N − N1
N2

)
=

N !∏
i
Ni !
, (3.10)

for a network that consists of N units.
We introduce the mesoscopic probability PN to observe the mesostate N and introduce

the conditional probability to �nd the system in a microstate α that belongs to that mesostate,

Pα
N
(t) =

pα
N
(t)

PN (t) . (3.11)

From probability conservation ∑
α
N

Pα
N
(t) = 1, (3.12)
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follows for the mesoscopic probability

PN (t) =
∑
α
N

pα
N
(t). (3.13)

Using the last equation and eα
N
(t) = EN (t), we can marginalize the microscopic master

equation (3.4) towards a mesoscopic one as follows

∂tPN (t)=
∑
α
N

∑
N ′

∑
α ′
N ′

wα
N
,α ′

N ′
pα ′

N ′
(t)=

∑
N ′

w
N ,N ′

∑
α
N

∑
α ′
N ′

pα ′
N ′
(t) χα

N
,α ′

N ′
=
∑
N ′

WNN ′ PN ′(t) ,

(3.14)

with the mesoscopic transition ratesWNN ′ = ΩN ,N ′wN ,N ′ . We note that the coarse-graining
conserves the stochasticity and irreducibility of the mesoscopic transition rate matrix∑

N

WNN ′ = 0, (3.15)

The characteristic function χα
N
,α ′

N ′
emerging in the second equality in Eq. (3.14) is a result

of pulling the sums over the con�gurations, αN and α ′
N ′ , through the transition rate matrix

as the information that wα
N
,α ′

N ′
, 0 only for connected microstates αN and α ′

N ′ would be
lost. Consequently, the function takes the value 1 if αN and α ′

N ′ are connected, and is 0
otherwise. To determine the constrained multiplicity factor ΩN ,N ′, we need to calculate
the number of microstates α(N ) under the constraint that the microstates αN and α ′

N ′ are
connected. Connectivity on the mesostate level means that two of three occupation numbers
(N1,N2,N −N1−N2) of the two mesostates characterizing the transition di�er by exactly one.
Transitions between microstates are allowed if, compared entrywise, exactly one number
in the tuples representing the two microstates specifying the transition is di�erent. For
instance, let us consider a transition N ′ → N with N1 = N ′1 + 1 and N2 = N ′2 − 1. The
underlying logic of this combinatorial problem can be formulated as follows

ΩN ,N ′ =

(
N − (N − N ′1 − N ′2) − N ′1

1

) (
N − (N − N ′1 − N ′2) − N ′1 − 1

N ′2 − 1

)
(3.16)

=
N ′2!

(N ′2 − 1)! ·
(N ′2 − 1)!
(N ′2 − 1)!1! = N ′2 , (3.17)

For the general case, we �nd that constrained multiplicty factor corresponds to the occupa-
tion number that is decremented during the transition, i.e.

ΩN ,N ′ = N ′1 δN ′1,N1+1 + N
′
2 δN ′2,N2+1 + (N − N ′1 − N2)δN−(N ′1+N ′2),N−(N1+N2)+1 . (3.18)

Hence the coarse-graining of the dynamics is exact and leads indeed to a closed mesoscopic
master equation (3.14) governing the time evolution of the mesoscopic probabilities PN .
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Using Boltzmann’s de�nition for entropy, we introduce the internal entropy of the mesostates
due to their internal structure

SintN = lnΩN , (3.19)
and the constrained change in internal entropy for the transition N ′→ N ,

Sint ,cN ,N ′ = lnΩN ,N ′ (3.20)
which accounts for all microstates belonging to the mesostate N ′ that are connected with a
microstate inside the mesostate N ′. We can thus write the mesoscopic transition rates in Eq.
(3.14) as follows

WNN ′ = Γ e−
β
2

[
EN −EN ′− 2

β S
int,c
N ,N ′−f ΘN N ′

]
, (3.21)

where the mesoscopic sign function ΘNN ′ is de�ned analogously to Θα ,α ′ in Eq. (3.5).
Explicitly, for a transition N ′i → Ni = N ′i + 1 and N ′j → Nj = N ′j − 1, it holds thatΘNN ′ = 1
if i − j = 1mod3 andΘNN ′ = −1 otherwise. The local detailed balance relation valid at the
microscopic level (3.6) is preserved by the coarse-graining and reads at the mesoscopic level

lnWNN ′

WN ′N
= −β [∆Aeq − f ΘNN ′] . (3.22)

To arrive at this expression, we �rst note the relation

ln ΩN

ΩN ′
= ln

ΩN ,N ′

ΩN ′,N
, (3.23)

which in turn implies that
SintN − SintN = Sint ,cN ,N ′ − Sint ,cN ′,N . (3.24)

Secondly, we used the oddnessΘNN ′ = −ΘN ′N and introduced the equilibrium free energy
A
eq
N = EN − SintN /β of the mesostate N . The mesoscopic local detailed balance relation (3.22)

stipulates that at t →∞ and for f = 0 the mesoscopic equilibrium probability distribution
assumes again canonical form

P
eq
N = e−β(AN −Aeq ), (3.25)

with the equilibrium free energy

Aeq = − 1
β

ln
∑
N

e−βAN . (3.26)

We emphasize that the complexity of the original microscopic model has been sig-
ni�cantly reduced by the coarse-graining (3.14). To determine the dimensionality of the
mesoscopic state space, we note that for given N1 ∈ 0, . . . ,N , the second variable N2 can
range from 0, . . . ,N − N1 so that

| |N | | =
(

N∑
n=0

n∑
m=0

1
)
=

(
N∑
n=0
(n + 1)

)
=
(N + 1)(N + 2)

2
N�1∼ N 2

2 , (3.27)

the mesoscopic state space is asymptotically growing with the square of the system size.
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3.2.1.4 Mean-Field Dynamics

In order to further reduce the complexity of the state space of the mesoscopic master equation
(3.14) we �rst operate in the mean-�eld limit where N →∞. In this limit, the total change
in internal energy due to a transition in Eq. (3.3) simpli�es and the corresponding scaled
density current J (ni ,nj) ≡ limN→∞WNN ′/N becomes

J (ni(t),nj(t)) = Γ e−
β
2 {ϵi−ϵj+u[ni (t)−nj (t)]−f Θi j} nj(t) , (3.28)

where ni(t) = Ni(t)/N denotes the occupation density of the single-unit state i and the sign
function is de�ned asΘij = 1 if (i − j) = 1 mod 3 , elseΘij = −1. The evolution equation for
the mean occupation density reads

〈 Ûni(t)〉 =
∑
j,i

〈J (ni(t),nj(t))〉 − 〈J (nj(t),ni(t))〉. (3.29)

In the mean-�eld approximation we replace any n-point correlation function with a product
of n averages thus yielding

∂tni(t) ≡ 〈∂tni〉(t) =
∑
j,i

J (〈ni〉(t), 〈nj〉(t)) − J (〈nj〉(t), 〈ni〉(t)), (3.30)

which represents a closed nonlinear equation. Hence the mean-�eld system can be described
by a single three-state unit, where the (average) occupation density of the single-unit states
is assigned to the three states of the mean-�eld unit. We therefore identify the mean-�eld
occupation density, ni(t), as the probability for any unit to occupy the single-unit state
i = 1, 2, 3. Its dynamics is ruled by the nonlinear mean-�eld equation

∂tni(t) =
∑
j

kij(t)nj(t) , (3.31)

with the mean-�eld transition rates

kij(t) = Γe−
β
2 [Ei (t)−Ej (t)−f Θ(i,j)], Ei(t) = ϵi + u ni(t), (3.32)

obeying local detailed balance

ln
kij(t)
kij(t) = −β

[Ei(t) − Ej(t) − f Θ(i, j)] . (3.33)

Unit conservation erases one degree of freedom such that there are only two independent
variables n1(t) and n2(t). We formally de�ne the mean-�eld equilibrium free energy via the
transcendental equation

n
eq
i = e−

β
2 (Eeqi −Aeq), (3.34)
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with the equilibrium mean-�eld free energy

Aeq = − 1
β

ln
∑
i

e−
β
2 E

eq
i , (3.35)

since it satis�es the detailed balance relation

kij n
eq
j = kji n

eq
i . (3.36)

We proceed by choosing a �at energy landscape of the three-state units, i.e. by setting
ϵi = const ∀i . This allows us to immediately read o� the symmetric point nssi = 1/3 as an
analytic solution to the nonlinear mean-�eld Eq. (3.31). Linearizing the Eq. around this �xed
point,

∂tn(t) = J · n(t), Jij =
∂kij(t)
∂nj(t)

����
nj (t)=nssj

, (3.37)

we �nd for the eigenvalues of the linearized Jacobian J ,

λ±=−Γ (βu+3) cosh
(
β f

2

)
±i
√

3 Γ sinh
(
β f

2

)
. (3.38)

For attractive interactions (u < 0) between the units the real part of λ± changes its sign at
βc1 = −3/u. This crossover suggests that the stable symmetric �xed point destabilizes and
degenerates into a limit cycle corresponding to a Hopf bifuraction indicative of synchro-
nization 1. The proof that the Hopf bifurcation occurs supercritical, i.e. gives rise to stable
limit cycles, is deferred to appendix A.2.

Fig. 3.2 depicts the mean-�eld phase space for di�erent β and f in units of u. The
symmetric �xed point is only stable for β < βc1 . We �nd in agreement with Eq. (3.38) that
for �nite f there is a phase characterized by stable limit cycles if β ≥ βc1 . For any value of
f , we observe an additional phase with three non-symmetric �xed points for β ≥ βc2(f )
that will be investigated further below.
We set u = −1 in the following and brie�y address a subtlety of the mean-�eld system.
In Fig. 3.2 the analytic solution to Eq. (3.31), ni = 1/3, is chosen as initial condition. In
fact, at temperatures equal to the �rst critical temperature βc1 the long-time solution is
initial-condition dependent: Figure 3.3a) shows that for 0 < f = 0.15 < fc ≈ 0.21 there is
a �nite set of initial conditions di�erent from the symmetric �xed point that will not lead
to a limit cycle but to a non-symmetric stable �xed point. Combining these two panels
that exhibit four di�erent phases each, we �nd that for the physical initial conditions

1We stress that, strictly speaking, synchronization refers to the convergence of an ensemble of phase os-
cillators with di�erent eigenfrequencies towards a global frequency. Conversely, here, the units have the
same eigenfrequency. We nonetheless will interpret the collective dynamics encoded by the limit cycles as
synchronization.
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Figure 3.2: Phase space in the mean-�eld varying the parameters β and f in units of u. The
black lines correspond to the set of critical points βc1 and βc1(f ).

corresponding to the yellow and dark green phases the system will eventually arrive at
one of the three non-symmetric �xed points2. These di�er only by permutations of their
components (neq1 ,n

eq
2 , 1 − n

eq
1 − n

eq
2 ). Consequently, the light-colored regimes correspond to

the limit cycle, which in the vicinity of the Hopf bifurcation point βc1 , has a small dimension,
such that ni(t) ≈ 1/3. If f ≥ fc , the dynamics will always exhibit a limit cycle regardless of
the chosen initial condition. This can be seen in panel b) where ni(t) ≈ 1/3 independent of
the chosen initial condition for f = 0.22 > fc .
Before studying the di�erent nonequilibrium phases of this model, we discuss it for f = 0, i.e.
at equilibrium. Figure 3.4a) shows, starting from the initial condition n(0) = (1/3, 1/3)>, the
long-time solution n

eq
1 (t) for di�erent values of β . At the critical temperature βc1 the system

exhibits three non-symmetric stable �xed points that emerge via a saddle-node bifurcation.
Starting from the symmetric �xed point, these attractive �xed points are observed to move
towards the corners of the triangle in the neq1 − n

eq
2 plane. This is physically plausible since

at low temperatures the system tends to occupy its lowest energy state where all units are
occupying the same state.
The dependence of the multiple equilibrium states on the initial condition in the low-
temperature phase is investigated in Fig. 3.4b). In the lower triangle, neq1 is plotted as a
function of all physical initial conditions (n1(0),n2(0)). As a complement, the other mean-�eld
probability n

eq
2 is shown in the upper triangle, where the axis labels are omitted for better

readability. Each triangle exhibits two phases which are separated by a contour line. With
these two panels, we �nd that for every physical initial condition the system will eventually

2Note that a state does not correspond to a folding of the two triangles but a rotation of one of the two planes
about 180◦ and subsequent overlapping of the two layers.
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Figure 3.3: Density plot of the long-time solution of the occupation density n1(n2) for β = βc1
as a function of all physical initial conditions n1(0) and n2(0) in the lower left
triangle (upper right triangle) for f = 0.15 in a) and f = 0.22 in b). The time is
su�ciently long, t = 103, such that the system exhibits its asymptotic solution.

arrive at one of the three non-symmetric �xed points. These di�er only by permutations of
their components (neq1 ,n

eq
2 , 1 − n

eq
1 − n

eq
2 ), where two of them are identical according to the

two phases in each of the panels in b). Moreover, our thermodynamic framework allows us
also to work within the nomenclature of statistical mechanics. Interestingly, the saddle-node
bifurcation corresponds to a �rst-order equilibrium phase transition since the derivative
of the mean-�eld free energy with respect to β at the critical point βc is divergent, as can
be seen in diagram 3.4c). Emerging from the destabilizing symmetric �xed point, these
attractive asymmetric �xed points are observed to move towards the corners of the triangle
in the neq1 −n

eq
2 plane. This is physically plausible since at low temperatures the system tends

to occupy its lowest energy state where all units are occupying the same state, while in the
high-temperature limit any equilibrium system is known to be driven by entropy forcing
the system into the high-entropy symmetric �xed point.

For the Hopf bifurcation to appear the system needs to be driven out-of equilibrium.
Figure 3.5 depicts in a) the mean-�eld probability n1(t) as a function of β at long times for
f = 1.0.
With increasing f , the intermediate synchronization phase (S) is extending over a larger
range of values for β (cf. Fig. 3.2). Since the phenomenology of the mean-�eld dynamics
does not change under variation of β , we set f = 1 in the following. As depicted in a), the
oscillations exhibit an increasing frequency with β up to a point where they slow down.
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Figure 3.4: Density plot of the equilibrium occupation density neq1 for di�erent β and times
t for an initial condition n(0) equal to the symmetric �xed point in a), and as a
function of all physical initial conditions n1(0) and n2(0) at time t = 103 and for
β = 4.0 in b) (lower left triangle). For completeness, the upper right triangle in
panel b) shows the other component neq2 . The times are chosen to be su�ciently
long such that the system has relaxed to equilibrium. The equilibrium free energy
close to the critical point βc is depicted in c).

At the second critical point, βc2 ≈ 6.11, the oscillation period diverges corresponding to an
in�nite-period bifurcation [144]. The initial-condition dependence of the stationary states
in the non-symmetric asynchronous phase (NA) is depicted in b), with β = 7.0. Again,
depending on the chosen initial condition, the system will eventually arrive in one of the
three asymmetric �xed points, which are again related to each other by permutations of
their components. Here, in contrast to the equilibrium case, all components are di�erent.
This re�ects the presence of the force distorting the symmetry of the states. The distortion
occurs since it is more likely to jump from the largely populate state into the lower occupied
state following the bias rather than the opposite way. This asymmetry naturally increases
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Figure 3.5: Illustration of the occupation probability n1 as a function of β and t for f = 1.0 in
a), while b) shows the occupation densities n1 in the lower left triangle and n2 in
the upper right triangle as a function of all initial conditions at n1(0) and n2(0) at
time t = 103 and for β =7.0. The initial condition underlying the density plot in
panels a) is (n1(0) = 1,n2(0) = 0). The times are chosen such that the system has
reached either the unique �xed point in the symmetric asynchronous phase (SA),
the stable limit cycle in the synchronous phase (S), or one of the three asymmetric
�xed points in the non-symmetric asynchronous phase (NA). The triple points
de�ned by the intersecting contour lines in d) correspond to the symmetric unstable
�xed point present in the S and NA phase.

as the system is driven further out-of-equilibrium.

This constitutes the �rst important result. We have developed a minimal model which,
according to Eqs. (3.38) and (A.39), exhibits synchronization and is thermodynamically
consistent due to Eqs. (3.6), (3.22) and (3.33). We also note that synchronization only
occurs in a �nite range of temperatures: Fig. 3.4 illustrates that at low temperatures the
equilibrated system is energy-driven and tends to its energetic ground state, while for very
high temperatures the system is entropy-driven and takes a uniform stationary probability
distribution. By extrapolation from equilibrium to the non-equilibrium scenario where the
synchronization phase emerges, we realize that Fig. 3.5 invites for an analogous physical
interpretation of the low- and high-temperature limit in the non-equilibrium case. Moreover,
the limit β → 0 represents the reversible limit since forward and backward transition for each
pair of states become equally probable for any f and thus detailed balance holds. We remark
furthermore that the term “minimal” refers to the dimensionality of the mean-�eld dynamics
given by Eq. (3.31), which is a natural requirement to observe synchronization since a
single-variable nonlinear di�erential equation can naturally not have complex eigenvalues.
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3.2.1.5 Stochastic Dynamics

Spectral Analysis

Dominant Spectrum A crucial aspect of our model is that it allows us to study its
(thermo-)dynamic features for large but �nite system sizes and in particular to monitor the
convergence of the stochastic dynamics to the mean-�eld dynamics. In order to proceed, we
begin by stating the formal solution to the mesoscopic master equation (3.14) that reads

P(t) = eW t · P(0) =
∑
i,i∗

eλit
(
ΦL
i · P(0)

)
︸       ︷︷       ︸

≡ci

ΦR
i + ci∗ eλi∗t ΦR

i∗, (3.39)

where P(0) is the initial probability distribution, λi are the eigenvalues andΦL
i ,ΦR

i are the
left- and right eigenvectors of the non-symmetric real transition rate matrixW constituting
an orthonormal dual basisΦL

i ·ΦR
j = δij . The index i∗ characterizes, if existent, the modes

with eigenvalues and eigenvectors being the complex-conjugated of those labeled with i .
The proof of the existence of an orthonormal dual basis is as follows. We consider the

eigenvalue equations

W ·ΦR
i = λiΦ

R
i (3.40)

ΦL
j ·W = λjΦ

L
j , (3.41)

and by multiplying Eq. (3.40) withΦL
j from left and using Eq. (3.41), we arrive at

ΦL
j ·W ·ΦR

i − λiΦL
j ·ΦR

i = 0 ⇒ (λj − λi)ΦL
j ·ΦR

i = 0. (3.42)

Since λi , λj , it follows thatΦL
j andΦR

i must be orthogonal,ΦL
i ·ΦR

j = 0, i , j . Normalization
implies that the left and right eigenvectors form an orthonormal dual basis,ΦL

j ·ΦR
i = δij .

The Perron-Frobenius theorem [88] stipulates that for this irreducible, autonomous and
stochastic matrix there is a non-degenerate eigenvalue, the Perron-Frobenius eigenvalue,
λ0 = 0, which is strictly greater than any other eigenvalue in both real part and absolute
value, |λi | < |λ0 | ∀i , 0. Note that the labeling of the eigenvalues is given by the order
of their real parts, 0 > Re(λ1) > . . . > Re(λN−1). Consequently, Eq. (3.39) has a unique,
in�nite-time solution, Ps = c0Φ

R
0 , characterized by the Perron-Frobenius eigenvalue and the

associated right eigenvectorΦR
0 . Hence the stationary state of the mesoscopic system Ps

cannot exhibit stable oscillations (S phase) or multistability (NA phase). On the other hand,
one expects that the transition from the mesoscopic system to the mean �eld is smooth as
the system size N grows. This apparent paradox is caused by the non-commutation of the
in�nite-time limit t →∞ and the mean-�eld limit N →∞, i.e.

lim
t→∞ lim

N→∞
P(t) , lim

N→∞
lim
t→∞ P(t)︸     ︷︷     ︸

Ps

, if β ≥ βc1 . (3.43)
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The right-hand side corresponds to the symmetric stationary state of the SA phase for all
temperatures, while the left-hand side is temperature-dependent: For βc1 ≤ β < βc2 the
system is in a time-periodic state (S phase) and for β ≥ βc2 the dynamics will go to one of
the non-symmetric steady states (NA phase) depending on the chosen initial condition. At
β < βc1 the right-hand side also corresponds to the symmetric stationary state, hence the
two limits commute only at su�ciently high temperatures.

To resolve this apparent contradiction we look for clues in the spectrum of the Markov
generator in the mesoscopic master equation (3.14) and establish a link between �nite-size
systems and mean �eld via the notion of metastability. Even though the stationary state
is inevitably reached in the in�nite-time limit, there could be long-living metastable states
that display the phenomenology of the mean �eld. The time-scales to characterize such a
state are encoded in the spectrum as follows

τr ∼ − 1
Re(λ1) (3.44)

τm ∼ − 1
Re(λ2) (3.45)

τl ≡ τr − τm ∼ 1
| Re(λ1)|

(
1 − Re(λ1)

Re(λ2)

)
, (3.46)

where τr is the relaxation time to reach the unique steady state, i.e. it speci�es the time-scale
at which all �nite-time modes have been removed from the dynamics. τm is the metastable
time at which all modes have decayed except for those forming the metastable state, that
is the one associated with the eigenvalue λ1 and the stationary one characterized by the
Perron-Frobenius eigenvalue λ0. Here, we assume that only one complex-conjugated non-
null mode is contributing to metastability, while there could be an arbitrary number of modes
forming the metastable state. This assumption will be numerically veri�ed in the following.
Physically, τl corresponds to the lifetime of that metastable state. To reconcile the stochastic
dynamics with its asymptotic solution in the macroscopic limit, the mean-�eld dynamics, τl
is required to become increasingly larger with the system size N , while τm remains �nite
since the di�erent mean-�eld phases emerge at �nite time. Using Eqs. (3.44)–(3.46), these
prerequisites translate into conditions on the real parts of the dominant eigenvalues of the
Markov generator: The real-part gap between the two �rst non-null mode eigenvalues,
Re(λ1) − Re(λ2), has to increase by Re(λ1) converging to zero (corresponding to a diverging
relaxation time τr ), while Re(λ2) has to approach a �nite value (assuring the emergence
of the metastable phenomena at �nite times). Moreover to mimic mean-�eld dynamics
the metastable state has to be oscillatory (Im(λ1) , 0) in the S phase and quasistationary
(Im(λ1) = 0) in the NA phase.

Before addressing the question of how the stochastic dynamics converges to the mean
�eld, we study the real parts a) and the imaginary parts b) of the two dominant non-zero
eigenvalues of the spectrum in all three di�erent phases (2 ≤ β ≤ 8) for a system size of
N = 300 in Fig. 3.6. We remark that for all β , these two eigenvalues in fact occur as complex-
conjugated pairs and only those with a positive imaginary part are depicted in panel b).
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Furthermore, to stress that the di�erent phases of the �nite-size system for β > βc1 are only
present for �nite times, we rename them di�erently than in the mean �eld: asynchronous
phase (A), synchronous metastable phase (SM) and asynchronous metastable phase (AM).
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Figure 3.6: The real part a) and the imaginary part b), as well as the ratio, of the two most
dominant eigenvalues with distinct real part, λ1,λ2, with positive imaginary part
are depicted as a function of β . In addition, the limit cycle frequency ωlc that
is numerically extracted from the asymptotic (t → ∞) mean-�eld dynamics is
compared to the imaginary part of the most dominant eigenvalue. All eigenvalues
correspond to a generatorW for a system of size N = 300. Panel c) shows the
lifetime of the metastable state τl as function of β for di�erent system sizes. The
labels of the di�erent phases, that is the asynchronous phase (A), the synchronous
metastable phase (SM) and the asynchronous metastable phase (AM) are in corre-
spondence with the labels of the di�erent phases in the mean-�eld limit introduced
in the preceding Sec. 3.2.1.4.

As can be seen in panel a), the real parts of the two eigenvalues both approach zero up to
β ≈ 4 followed by a monotonous decrease of Re(λ2) while Re(λ1) changes only slightly and
for β > βc2 rapidly goes to zero. According to Eq. (3.46), this observation along with the
fact that Re(λ1)/Re(λ2) drops at both critical points (dashed lines) suggests that the lifetime
τl of the metastable state is increasing from the SM to the AM regime. The small values
of | Re(λ1)| in the SM and AM phase and the sharp changes in the ratio of the real parts at
both critical points provides a �rst hint that the metastable state is constituted by only the
stationary mode and the �rst complex-conjugated non-null modes.

This claim is further strengthened by studying the corresponding imaginary parts of
these eigenvalues as shown in Fig. 3.6b). We �nd an excellent agreement in the SM phase
between the limit cycle frequency ωlc in the mean �eld that is numerically extracted from
the dynamics and Im(λ1). The limit cycle frequency ωlc only coincides with the imaginary
part of the Jacobian from the linear stability analysis in Eq. (3.38) at the bifurcation point
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βc1 , where the linearization of the nonlinear master equation (3.31) is exact. Moreover, the
ratio between the imaginary parts of λ1 and λ2 remains nearly constant at 0.5 within the
A and SM phase implying that the frequency of oscillation of the mode corresponding to
λ2 is half as that of λ1. In the AM phase Im(λ1) quickly goes to zero consistent with our
mean-�eld observations that show no oscillations. Consistent with the discussion of the real
parts, Fig. 3.6c) illustrates that the lifetime of the metastable state is nearly zero in the A
phase and starts to increase signi�cantly at the �rst critical point up to a local maximum in
the SM phase. The lifetime τl is monotonously decreasing for larger β before it sharply rises
in the AM phase. All clues thus indicate that in the two phases where the mean �eld exhibits
non-unique solutions at in�nite times, the �nite system displays metastability. As expected,
for all temperatures in the metastable phases the lifetime is monotonously increasing with
N .

Next, to shed some light on the convergence of the �nite-system dynamics to the mean-
�eld dynamics, we investigate the changes in the spectrum as we approach the mean-�eld
limit. To this end, we look at the �rst few dominant non-zero eigenvalues as a function of
the system size N at β = 4 representing the SM phase. We observe in Fig.3.7a) that the real
parts of these eigenvalues are approaching the Perron-Frobenius eigenvalue. Though the
inset reveals an increasing time-scale separation between the mode associated with λ1 and
the faster decaying modes for larger systems. The monotonously increasing behavior of τl
and τr with N implies an increasing lifetime of the metastable state, while this time window
is shifted to increasingly larger times, hence the �nite-system dynamics are converging
to the mean �eld. To be fully consistent with the mean �eld, the metastable state must be
appearing in the dynamics at a �nite time. Taking into account all the aforementioned hints
(encoded in Fig. 3.6 and to be made in the following) that indeed only the modes associated
with λ1,1∗ are contributing to the metastability and therefore in correspondence with the
mean-�eld solution, it is reasonable to expect that Re(λ2) converges to a �nite value for
larger N . Unfortunately, extracting the dominant eigenvalues of the generator for even
larger N is not feasible.
As another striking evidence for the hypothesis that the metastable state comprises only
the stationary and the �rst non-null complex-conjugated mode, the imaginary part of the
dominant eigenvalue λ1 smoothly converges to the limit cycle frequency ωlc in the mean
�eld while the imaginary parts of other modes display a distinct separation as seen in
Fig.3.7b). This is con�rmed in Figs. 3.7c) – f) depicting the mean occupation densities,
〈ρ(t)〉 = ∑

N N (t)/N PN (t), using the full spectral decomposition of the Markov generator
in Eq. (3.39) and the truncated one

P(t) τm�t�τr≈ c0Φ
R
0 + eλ1tc1Φ

R
1 + eλ∗1tc∗1ΦR∗

1 , (3.47)

for N = 102, 103 at β = 4.
To understand the metastability in the AM phase, Fig. 3.8 depicts the real and imaginary

parts of the eigenvalues associated with the most dominant modes in panels a) and b),
respectively, as a function of N for β = 7.
In contrast to Fig. 3.7a), here, Re(λ2) clearly converges to a �nite value with Re(λ1) quickly
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Figure 3.7: Real a) and corresponding imaginary b) parts of the fourmost dominant eigenvalues
with distinct and �nite real part for di�erent N and for β = 4 as a representative of
the SM phase. The data points corresponding to system sizes larger than N = 350
are not resulting from a full diagonalization of the matrix but were obtained
exploiting the sparseness of the matrices (maximal 6 of the approximately N 2/2
entries of every row/column are nonzero), using the iterative Arnoldi algorithm
[145], to obtain the dominant part of the spectrum. The inset depicts the relaxation
time scale τr and the lifetime of the metastable state τl as a function of N . In b)
the dashed, horizontal lines labeled as ωlc and ωls correspond to the limit cycle
frequency in the mean �eld and to the imaginary part of the linear stability matrix
eigenvalue from Eq. (3.38), respectively. The mean occupation density 〈ni〉 as a
function of time for both the full (3.39) and truncated (3.47) propagation [i = 1
in c), d) and i = 2 in e) and f)] for the di�erent network sizes N = 102, 103.
The dynamics for N = 103 was generated using the direct Gillespie method (cf.
appendix A.3).

going to zero already for small N . This is con�rmed by the inset showing that τl and τr take
very large values already for smaller systems implying that the metastability in the AM phase
is much stronger than in the SM phase. As expected, in compliance with the nonoscillatory
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Figure 3.8: Real a) and corresponding imaginary b) parts of the fourmost dominant eigenvalues
with distinct and �nite real part for di�erent N and for β = 7 as a representative of
the AM phase. The inset in a) depicts the relaxation time scale τr and the lifetime
of the metastable state τl as a function of N . Furthermore, the mean occupation
density 〈ni〉 as a function of time for both the full (3.39) and truncated (3.47)
propagation [i = 1 in c) and i = 2 in d)] for N = 102 is depicted.

mean-�eld solution, the small magnitudes of the imaginary part vanish rapidly with growing
system size as displayed in panel 3.8b). Figs. 3.8c) - d) rea�rm that the metastable state in
the AM phase is reached at short time-scales and is quasistationary. Moreover, we note the
large time-scales (cf. the scale of the axis of the insets) over which the metastable state can
be observed in the dynamics in compliance with the observations made in panel 3.8a). Thus,
we conclude from the observations made in this section, that for su�ciently large systems
in the SM and AM phase at times τm � t � τr , the relaxation dynamics is determined
by the metastable state associated with λ1,1∗ and the Perron-Frobenius eigenvalue. This
time span is increasing with N [cf. Figs 3.7a) and 3.8a)] such that the metastable states can
be observed over increasingly larger times. Owing to the Perron-Frobenius theorem, any
�nite system will eventually leave these metastable states at times t � τr and relax into the
unique stationary state at in�nite time. To sum up, we obtain the important result that the
di�erent phases and bifurcations of the mean-�eld dynamics are encoded in the spectrum of
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the Markov generator.

Large Spectrum Figure 3.9 shows a 3D-plot of all eigenvalues with Re(λ) ≥ −5 for a
system with N = 300 at selected values of the bath parameter β .
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Figure 3.9: 3D-plot of the real all eigenvalues of the Markov generatorW from Eq. (3.14) for
N = 300 with Re (λ) ≥ −5 as a function of β and the corresponding imaginary
parts Im (λ) in a). The labels of the di�erent regimes, that is A (asynchronous), SM
(synchronous metastable) and AM (asynchronous metastable) are in correspondence
with the labels of the di�erent regimes in the mean-�eld limit introduced in the
Sec. 3.2.1.4.

To illustrate the di�erent regimes of the model in the mean-�eld limit, the 3D-plot is divided
in three boxes, where the boundaries are de�ned by the critical values βc1,2 . First of all, we
note that for increasing values of β , the overall shape of the dominant part of the spectrum
changes from a triangle to an arc. With increasing β , the latter takes again a triangular
shape shrinking to a single line corresponding to vanishing imaginary parts at large β .
More strikingly, we observe that at the �rst bifurcation point, βc1 = 3.0, a real-part gap
separating the bulk and the enveloping band eigenvalues emerges in the vicinity of the
Perron-Frobenius eigenvalue λ0 and widens up with increasing β . This increasing real-part
gap suggests that for β ≥ βc1 there is a signi�cant separation between the time scales
associated with the relaxation of the slow and the fast decaying modes associated with
the eigenvalues in the bulk and the band, respectively. We emphasize that this time-scale
separation between the slow (band) and the fast (bulk) decaying modes must not be confused
with the time-scale separation between the �rst non-null mode and the Perron-Frobenius
eigenvalue that are both located on the band. It is furthermore interesting to observe that at
the second bifurcation point, βc2 ≈ 6.1, the bulk is no longer visible on this scale and the
band has transformed into an arc that shrinks as β increases.
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We proceed with studying an even larger part of the spectrum in all three phases for
di�erent system sizes N in Fig. 3.10.
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Figure 3.10: Compilation of 300 eigenvalues of the Markov generatorW with the largest real
parts for di�erent system sizes N = 100, 200, 300 and for β = 2 in a), β = 4 in b)
and β = 7 in c).

First, the spectrum for β in panel a) does not show any qualitative di�erences with respect
to the corresponding one in Fig. 3.9. Next, for the case β = 4 depicted in panel b), we note
clustering of the eigenvalues as they are moving towards larger real parts with growing
N . However, on a smaller scale, the eigenvalues of the surrounding band are approaching
the Perron-Frobenius eigenvalue, while the eigenvalues of the bulk are moving away from
the Perron-Frobenius eigenvalue. This leads to a separation between the bulk eigenvalues
and the enveloping band of eigenvalues. The inset magni�es the vicinity of the gap for
better visibility. Here, the most dominant eigenvalues of the bulk are tending to the left with
growing system size, while, as already discussed, the overall trend of the bulk eigenvalues
seems to be towards the right. This implies a region of large eigenvalue density and strong
clustering in the bulk and that the modes associated with the band eigenvalues decay more
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slowly and are longer present in the relaxation dynamics for larger systems. Fig. 3.10c)
depicts the spectrum for β = 7, which is remarkably reminiscent of a rocket. Again, the
eigenvalues shift towards larger real parts for larger N . Contrary to the observations made in
b), the magni�ed area shown in the inset reveals that, here, all eigenvalues are moving away
from the �rst eigenvalue pair, λ1,2, and the Perron-Frobenius eigenvalue which coincide on
this scale. Moreover the magni�cation of this region illustrates that for rather moderate
changes in N the real part of the eigenvalue pair, λ1,2, shrinks by orders of magnitudes. Hence
the metastability in the AM phase is much stronger than in the SM phase, an observation
that, in less quantitative terms, was already made further above.

Dynamic Monte-Carlo Simulations

Solving the master equation (3.14) for systems on the order ofN ∼ 103 via full diagonalization
of the propagator is computationally not feasible3. Hence for extremely large systems
we resort to a stochastic simulation algorithm for computing the time evolution of the
(Markov) jump processes. This dynamic Monte Carlo method, elaborated in appendix A.3,
is often referred to as Gillespie algorithm [146, 147]. This algorithm generates trajectories
of a stochastic process that are exact solutions to the stochastic process. By generating
su�ciently many trajectories one can infer the statistics of the observables of the stochastic
process, in particular the average values generically denoted by 〈·〉.

Figure 3.11 depicts the 〈n2〉 − 〈n1〉 plots generated with the Gillespie algorithm sampling
over 106 trajectories for selected values of β and for di�erent system sizes N = 102, 104.
Except for β =6.1 shown in e), the larger system, N = 104, agrees well with the mean-�eld
limit at the displayed times. The smaller system, N = 102, signi�cantly deviates in both
the SM phase (β = 4, 5, 6.1) and AM phase (β = 7). In the A phase (β = 2, 3), there are no
visible di�erences between the di�erent �nite system sizes and the mean-�eld limit solution,
as all are relaxing into the unique symmetric �xed point [red closed circle in panel a)]. Of
particular interest is the dynamics for β = 7. While the smaller system directly goes to
the stationary state, the larger system quickly approaches and wiggles around the �xed
point of the mean-�eld limit. This can be seen from the inset that displays a magni�cation
around one of the mean-�eld �xed point [orange closed circle in f)]. Depending on the
initial condition the metastable state will approach one of the three mean-�eld �xed points.
This shows that the stochastic dynamics of su�ciently large systems indeed reproduces the
mean-�eld dynamics and thus con�rms all predictions made above based on the spectral
analysis. As an exception, we observe in e) that close to the in�nite-period bifurcation,
β ≈ βc2 , the large system does not exhibit the characteristics of the solution in the mean-�eld
limit. However, an even larger system, N = 106, shows signatures of the limit cycle albeit

3We mention that the non-symmetric real matrix implies in general a complex eigensystem which shall be
determined with �oat precision. The amount of random-access memory (RAM) required to diagonalize a
matrix of dimension 80601 × 80601 corresponding to a system consisting of 400 units is about 312 GB. We
restrict the diagonalization to that size and employ di�erent numerical methods for larger systems.
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Figure 3.11: Parametric plot of the mean occupation densities 〈ni〉 and comparison between
the latter for di�erent �nite system sizes N = 102, 104 and the mean-�eld limit
at distinct values of β . The red closed circles correspond to the unique stationary
state, 〈ni〉 = 1/3, for �nite N . In all panels we initialize the system in the ground
state with n1 = 1 and sample 106 trajectories using the direct method of the
Gillespie algorithm. The green and blue spikes are due to the steady state noise
inherent to this stochastic algorithm. The simulations were carried out using the
HPC facilities of the University of Luxembourg [148].

still deviating. These deviations are due to the strong �uctuations in the vicinity of the
phase transition calling for larger N such that the �nite system can accurately represent
the deterministic limit. We remark that this feature is also manifested in the increasing
deviations between the limit cycle frequency, ωlc , and the imaginary part of the crucial
eigenvalue, λ1, as the second critical point, βc2 ≈ 6.1 is approached [cf. Fig. 3.6c)].

However, there is a set of initial conditions for which the stochastic dynamics will not
go to one of these metastable states. This set of initial conditions is readily constructed
via all possible linear combinations of right eigenvectors of the mesoscopic generator from
Eq. (3.14), P(0) = ∑

i,1 aiΦ
R
i , excluding the mode associated with the crucial eigenvalue

pair λ1,1∗ . It follows from the orthonormal dual-basis property of the eigensystem that the
weights c1,1∗ = 0 in Eq. (3.39). Hence the metastability would be removed from the dynamics.
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This prompts the question whether the metastability is a generic (up to a negligibly small set
of special initial conditions) property of the stochastic process or just an artifact of choosing
suitable initial conditions.

This question is addressed in Fig. 3.12, where the initial conditions are sampled and the
joint probability distribution P{n1(t = 20),n2(t = 20)} for di�erent system sizes N = 102, 104

and di�erent β = 4, 7 is shown in a density plot. In panel 3.12a) the distribution exhibits its
maxima indicated by the red spots close to the corners of the limit cycle in the mean-�eld
limit. Overall, the distribution clearly exhibits signatures of the limit cycle but the probability
mass is still dispersed aorund the limit cycle contour. Moreover, over the entire state space
there are regions with �nite probability. If the system size is notably increased to N = 104,
as depicted in Fig. 3.12b), the probability mass is sharply concentrated on the limit cycle
contour. Turning to panels c) and d) corresponding to the AM regime with β = 7, we observe
that the joint probability distribution for the smaller system already reproduces to a good
approximation the three asymmetric �xed points in the mean-�eld limit. The distribution for
the larger system further concentrates the probability mass on the three �xed points as can
be seen by comparing the insets on the left and on the right magnifying the vicinity of the
�xed points. The convergence of the probability distribution at smaller N to the mean-�eld
limit for larger β is consistent with the observations already made in the spectral analysis in
Fig. 3.6. We thus con�rm, once again, that the metastability and therefore the convergence
to the mean-�eld limit increases with N and β . Next, and more importantly, the emergence
of the metastable state(s) is, up to a negligible set of special initial conditions, indeed a
generic property of the stochastic process. It is insightful to monitor the time evolution of
P {n1(t),n2(t)} starting from a uniform grid at t = 0 up to a time as the distribution becomes
stationary or time-periodic. To this end, Ref. [149] includes movies displaying the dynamics
of the distributions shown in Fig. 3.12.

We have so far established a connection between linear stochastic dynamics and the
deterministic nonlinear mean-�eld dynamics via the study of the spectrum of the Markov
generator. Indeed, the di�erent dynamical phases and bifurcations in the mean �eld are
encoded in the spectrum and appear as metastable states for long times in the stochastic
dynamics. These predictions are con�rmed by our simulations. We now proceed by analyzing
the bifurcations as nonequilibrium phase transitions in the thermodynamic observables. In
doing so, we link deterministic bifurcation theory to stochastic thermodynamics.

3.2.1.6 Stochastic Thermodynamics

Thermodynamic Laws

We �rst introduce the basic thermodynamic state functions in this model: the microscopic
internal energy and the system entropy

〈e〉 (t) =
∑
α

eα pα (t) (3.48)
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Figure 3.12: Joint probability distribution P{n1(t),n2(t)} at β = 4 in a), b) and at β = 7
in c), d) for system sizes N = 102, 103 at time t = 20. The plots were created
using a grid of dimension 101 × 101 that speci�es the set of initial conditions. For
comparison, in all plots the long-time mean-�eld solution is overlaid.

〈s〉 (t) = −
∑
α

pα (t) lnpα (t) . (3.49)

For our setup with an autonomous driving, f , these functions can only change due to the
time-dependence of the probability distribution. The rate of change of internal energy

dt 〈e〉(t) =
∑
α ,α ′

eα wαα ′ pα ′(t) = 〈 Ûq〉(t) + 〈 Ûw〉(t), (3.50)

naturally de�nes the microscopic �rst law of thermodynamics with the heat and work
current

〈 Ûq〉(t) =
∑
α ,α ′
[eα − eα ′ − f Θ(α ,α ′)]︸                      ︷︷                      ︸

qα,α ′

wαα ′ pα ′(t) (3.51)
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〈 Ûw〉(t) = f
∑
α ,α ′

Θ(α ,α ′) wαα ′ pα ′(t) . (3.52)

The microscopic local detailed balance relation (3.6) can be expressed in terms of the heat
exchange between the thermal reservoir and the system along the forward transition as
follows

qα ,α ′ = − 1
β

ln wαα ′

wα ′α
. (3.53)

For the microscopic entropy balance we get

dt 〈s〉(t) = 〈Ûse〉(t) + 〈 Ûσ 〉(t) (3.54)

with the microscopic entropy �ow

〈Ûse〉(t) = −
∑
α ,α ′

wαα ′ pα ′(t) ln wαα ′

wα ′α
= β 〈 Ûq〉(t), (3.55)

and the microscopic entropy production rate

〈 Ûσ 〉(t) =
∑
α ,α ′

wαα ′ pα ′(t) ln wαα ′ pα ′(t)
wα ′α pα (t) ≥ 0, (3.56)

whose non-negativity constitutes the microscopic second law of thermodynamics.
The exact marginalization of the microscopic dynamics (3.14) does not a priori guarantee

that the microscopic thermodynamic observables de�ned above are invariant under this
coarse-graining [112]. Recalling that we have eα

N
= EN , the internal energy (3.48) can be

corse-grained as follows

dt 〈e〉(t) =
∑
N ,N ′

EN
∑
α
N

∑
α ′
N ′

wα
N
α ′
N ′

pα ′
N ′
(t) =

∑
N ,N ′

EN WNN ′ PN ′(t) ≡ dt 〈E〉. (3.57)

Thus, the average internal energy is invariant under the coarse-graining and can be equiv-
alently represented in the mesospace. Furthermore, the microscopic heat (3.51) and work
current (3.52) can also be exactly coarse-grained to obtain

〈 ÛQ〉 =
∑
N ,N ′

(
EN − EN ′ − f Θ(N ,N ′))︸                           ︷︷                           ︸

Q(N ,N ′)

WNN ′PN ′(t) (3.58)

〈 ÛW 〉 = f
∑
N ,N ′

Θ(N ,N ′)WNN ′ PN ′(t). (3.59)

Consequently, the �rst law of thermodynamics has a closed mesoscopic representation

dt 〈E〉(t) = 〈 ÛQ〉(t) + 〈 ÛW 〉(t), (3.60)
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which is identical to the microscopic �rst law (3.50). We note that after the coarse-graining
the heat increment

Q(N ,N ′) = − 1
β

lnWNN ′

WN ′N
+ Sint (N ) − Sint (N ′) = − 1

β
ln wNN ′

wN ′N
, (3.61)

is no longer directly given by the local detailed balance relation like in the microspace, cf.
Eq. (3.53), but is supplemented by the change in internal entropy (3.19), see also Ref. [112].

We de�ne the average system entropy in the mesospace as follows

〈S〉 (t) =
∑
N

PN (t) [Ω(N ) − ln PN (t)] , (3.62)

consisting of the non-equilibrium entropy de�ned by Eq. (3.49) and the ensemble average of
the internal entropy accounting for the multiplicity of distinct microscopic con�gurations
for a given mesostate. Analogously to Eq. (3.54), the mesoscopic entropy balance reads

dt 〈S〉(t) = 〈 ÛSe〉(t) + 〈 ÛΣ〉(t), (3.63)

with the mesoscopic entropy �ow

〈 ÛSe〉(t) = −
∑
N ,N ′

WNN ′ PN ′(t) ln wNN ′

wN ′N
= β 〈 ÛQ〉(t), (3.64)

and the mesoscopic entropy production rate

〈 ÛΣ〉(t) =
∑
N ,N ′

WNN ′ PN ′(t) lnWNN ′PN ′(t)
WN ′NPN (t) ≥ 0. (3.65)

A closer inspection yet reveals, that the de�nitions in Eqs. (3.62),(3.65) are in general
not coinciding with those made at the microscopic level, i.e. 〈S〉 , 〈s〉, 〈Σ〉 , 〈σ 〉. The
nonlinearity of the system entropy and the entropy production [Eqs. (3.49), (3.56)] in
the microstate probability pα is incompatible with the coarse-graining (3.14). Instead, a
marginalization of the microscopic second law (3.56) gives, in general, rise to additional
entropic contributions which are dependent on microscopic information. As a result, the
mesocsopic second law can, in general, not be closed.

However, there are two cases for which the entropies and thus the second law can
be equivalently represented in the mesoscopic space. First, for the natural choice of a
microscopic initial condition,

pα ′(0) = PN ′(0)/ΩN , (3.66)

where all microstates inside the respective mesostates are stationary and thus uniformly
distributed. This also holds at later times since the energetics (3.2) and therefore the micro-
scopic transition rates (3.5) do not discriminate between them. In this case, Eqs. (3.62) and
(3.65) hold so that

〈S〉(t) =
∑
N

[
SintN − ln PN (t)

]
PN (t) = −

∑
α

pα (t) lnpα (t) = 〈s〉(t), (3.67)
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and

〈 ÛΣ〉(t) =
∑
N ,N ′

lnWNN ′ PN ′(t)
WN ′N PN (t) WNN ′ PN ′(t) =

∑
α ,α ′

ln wαα ′ pα ′(t)
wα ′α pα (t) wαα ′ pα ′(t) = 〈 Ûσ 〉(t) ≥ 0.

(3.68)

Secondly, in the stationary state the microscopic master equation (3.4) reduces to 0 =
∑

j wijpj .
Since the microscopic transition rates (3.5) do not depend on the individual microstate αN

belonging to a given mesostate N , it follows that the microscopic probability does not either
in the stationary state so that

Psα
N
=

1
ΩN
, psα

N
=

PsN
ΩN
. (3.69)

For this particular case, it is true that

〈Ss〉 =
∑
N

[
SintN − ln PsN

]
PsN = −

∑
α

psα lnpsα = 〈ss〉, (3.70)

and the mesoscopic second law reduces to the statement that the stationary entropy produc-
tion rate 〈 ÛΣs〉 is equal to minus the stationary entropy �ow 〈 ÛSse〉,

〈 ÛΣs〉 =
∑
N ,N ′

WNN ′ P
s
N ′ ln wNN ′

wN ′N
= −〈 ÛSse〉 =

∑
α ,α ′

wαα ′ p
s
α ′ ln

wαα ′ p
s
α ′

wα ′α p
s
α
= 〈 Ûσ s〉 ≥ 0. (3.71)

We now turn to the mean-�eld case and consistently de�ne the �rst law in this limit

dt E =
∑
i,j

Ei kij nj = ÛQ + ÛW, (3.72)

with the heat and work currents

ÛQ =
∑
i,j

(Ei − Ej − f Θ(i, j)) kij nj (3.73)

ÛW = f
∑
i,j

Θ(i, j)kij nj , (3.74)

where i, j = 1, 2, 3 speci�es the state of the single mean-�eld unit. In analogy to Eq. (3.49),
we write the system entropy in the mean-�eld limit as

S = −
∑
i

ni lnni , (3.75)

which we split into the mean-�eld entropy �ow

ÛSe = −
∑
i,j

kij nj ln
kij

kji
= β ÛQ, (3.76)
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and the non-negative mean-�eld entropy production rate

ÛSi =
∑
i,j

kij nj ln
kijnj

kjini
≥ 0. (3.77)

As the mean-�eld represents the asymptotic limit of the mesospace, it holds that all the
mesoscopic averages of the intensive observables 〈O〉/N , that are compatible with the
coarse-graining (3.14), converge to the corresponding observables X in the mean-�eld limit,
limN→∞〈 ÛO〉/N = ÛO, with O = E,Q,W , Se .

Moreover, for the mean-�eld de�nitions in Eqs. (3.75) and (3.77) to represent the physical
entropies, that is limN→∞〈 ÛO〉/N = ÛO, with O = S,Σ, we have to restrict to the two afore-
mentioned cases [Eqs. (3.67), (3.68) and Eqs. (3.70), (3.71)] for which the mesoscopic second
law coincides with the microscopic one. In the stationary case, the second law in the mean-
�eld limit again boils down to the equivalence of the stationary entropy production and
minus the stationary entropy �ow,

ÛSsi =
∑
i,j

kij n
s
j ln

kij

kji
= − ÛSse ≥ 0. (3.78)

We have thus developed three di�erent levels (microspace, mesospace and mean �eld) to
consistently characterize the energetics of our model. For the �rst law, the lower levels of
description are equivalent, while for the second law they only coincide for a class of initial
conditions (3.66) and in the stationary limit (3.69). The same applies asymptotically in the
macroscopic limit to the thermodynamic observables de�ned at the mean-�eld level.

Dissipated Work

With the thermodynamic framework developed in the preceding section at hand, we can
now proceed by addressing one of the crucial research questions of this dissertation, that
is the thermodynamics of non-equilibrium phase transitions. We are naturally interested
in the (metastable) synchronization regime bounded by the two phase transitions. Since
the nonstationary entropy production represented in the microscopace is, in general, not
identical to the one in the mesospace, we characterize the nonequilibrium phase transitions
via the dissipated work given by Eqs. (3.59) and (3.74). At metastable or in�nite time, the
work is observed to be always dissipative on average, that is the system takes up the energy
from the nonconservative force, 〈W 〉 > 0, and dissipates it into the bath in the form of heat,
〈Q〉 < 0, for all temperatures and system sizes.

In the following, we compare the dissipated work of an unit embedded in an interacting
network and of an independent one. For the latter, an analytic expression can be derived.
We consider a single unit with states i = 1, 2, 3 whose evolution is governed by the master
equation

∂tPi(t) =
∑
i,j

Wij Pj(t) , (3.79)
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where Pi is the probability to �nd the unit in the unit state i with the transition rates

Wij = e−
β
2 [ϵi−ϵj−f Θ(i,j)] , (3.80)

with the sign functionΘ(i, j) which is de�ned as in Eq. (3.33). The steady-state work current
for a single unit reads

〈 ÛW s
1 〉 = f

∑
i,j

Θ(i, j)Wij P
s
j . (3.81)

Using the spanning tree formula [150], one obtains for the stationary probabilities

Ps1 =
a1

a1 + a2 + a3
, Ps2 =

a2
a1 + a2 + a3

, (3.82)

where

a1 =W13W12 +W12W23 +W13W32

a2 =W23W31 +W21W13 +W23W21 (3.83)
a3 =W31W12 +W32W21 +W32W31,

For a �at energy landscape, ϵi = ϵ , we indeed �nd that the symmetric stationary solution
Pi = 1/3 is independent of β and f like the symmetric high-temperature solution of the
mean-�eld equation (3.31). Next, the stationary work current is given by

〈 ÛW s
1 〉 = 3f W13W21W32 −W31W12W23

W12(W13 +W23 +W31) +W13(W21 +W32) + (W21 +W31)(W13 +W23 +W31) ,
(3.84)

that can be simpli�ed to

〈 ÛW s
1 〉 = 2 Γ f sinh (f β/2) . (3.85)

Figure 3.13a) depicts the di�erence between the stationary work current of a single unit 〈 ÛW s
1 〉

and the work current per unit in a N -unit network at times at the order of the metastable
timescale (3.45), W N ≡ 〈W 〉/(Nt)|t∼τm , as a function of β and for di�erent N . The work
currentW N is numerically determined by solving Eqs. (3.14) and (3.31), respectively. As
seen in Fig. 3.13a), the large (N = 104) system agrees excellently with the mean-�eld limit for
all temperatures, while the smaller systems, albeit showing a qualitatively similar behavior,
unlike the dynamics, deviate signi�cantly.
Since the stationary single-unit work current 〈 ÛW s

1 〉 is governed by a smooth and convex
function, we observe that the dissipated mean-�eld work exhibits striking changes at the
critical points βc1,2 . The vicinities of these critical points are magni�ed in the two insets.
The phase transitions in the dissipated mean-�eld work at βc1 and βc2 exhibit a kink and a
saddle, respectively, and are therefore reminiscent of a �rst- and second-order equilibrium
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Figure 3.13: Panel a): Di�erence of the dissipated work for a single-unit, 〈 ÛW s
1 〉, and for a unit

in a network of N interacting units,W N , for inverse temperatures β = 0 . . . 10.
The time t is chosen to be at the order of τm to ensure thatW N corresponds to its
metastable value. Panel b): Di�erence of the dissipated work per unit for networks
of di�erent size with N < 104, for β ranging from 0 to 10 and thus covering all
three phases. As in panel a), the time is at the order of τm. The purple closed
circles in panels a) and b) represent the analytic expression given by Eqs. (3.87)
and (3.88), respectively. In each plot all �nite systems were simulated sampling
106 trajectories.

phase transition, cf. Fig. 2.1 and the corresponding introduction in Sec. 2.1. Remarkably,
owing to the metastability in the stochastic dynamics, su�ciently large but �nite systems
also exhibit signatures of these nonequilibrium phase transitions at the bifurcation points
for times t ∼ τm which blur out with decreasing system size.

In the high-temperature limit β → 0 and for large N , the di�erence 〈 ÛW s
1 〉 −W N goes

to zero since the interaction energy (3.3) vanishes, more explicitly Ni = Nj as β → 0 and
u/N → 0 as N → ∞. While for the mean �eld this holds true in the entire SA phase
(β < βc1), for �nite systems the range of β values in the A phase for which the interaction
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energy is negligible decreases with N . Crucially, for temperatures below the critical Hopf
one (β > βc1), we �nd that interactions always reduce the costs to maintain the system in its
nonequilibrium state, that is 〈 ÛW s

1 〉 −W N > 0. We furthermore observe in Fig. 3.13a) that
this di�erence in work dissipation is a monotonously increasing function of β and becomes
in�nitely large in the low-temperature limit. This asymptotic limit can be seen as follows.
First, we have for the dissipated work per unit in a �nite network

lim
β→∞

W N = lim
β→∞

Γ f
(
eβ f − 1

)
e−

β (f N−Nu+u)
2N , (3.86)

which is subdominant to 〈 ÛW s
1 〉 that has been analytically determined in Eq. (3.84),

lim
β→∞

∆W

〈 ÛW s
1 〉
= lim

β→∞
[
1 − e

βu(N−1)
2N

]
= 1. (3.87)

Hence we have shown that at low and intermediate temperatures an interacting network
of any size is energetically favorable with respect to a noninteracting one. Interestingly,
in the the two phases of higher temperature, the operational costs per unit can be further
decreased by employing smaller networks. As one approaches the second critical point the
di�erent curves intersect and in the NA/AM phase the operation of larger networks gives
rise to less work dissipation per unit.

This is also illustrated in Fig. 3.13b) that depicts the di�erence in the dissipated work
between a system of size N = 104 exhibiting metastability and a smaller system N = 102, 103

which does not display the latter. In agreement with panel a), the smaller system requires
less input per unit to be maintained in the two higher temperature phases (A and SM phase),
that is W N −W 104 < 0 while the opposite holds true in the AM phase, W N −W 104 > 0.
Again, we observe signi�cant changes at the critical points: At the �rst critical point the
di�erenceW N −W 104 < 0 takes a local minimum and at the second critical point it changes
sharply around an in�ection point. It is plausible that these changes are more pronounced for
decreasing N since in this case the “distance” to metastable behavior and thus signatures of
nonequilibrium phase transition exhibited by the reference system (N ′ = 104) is increasing.

For the same reasons as stated in the context of Fig. 3.13a),W N −W 104 goes to zero in
the high-temperature regime, while in the low-temperature limit one obtains

lim
β→∞

W N −W 104

WN

= lim
β→∞

1 − e−
βu
2

(
1

104 − 1
N

)
= 1, (3.88)

if N < 104. This limit is illustrated by the purple closed circle in plot b). For the larger
system the work di�erence is decreasing in the range of available data. Generating data for
larger β to monitor the convergence to the low-temperature limit is not possible since the
simulation becomes numerically unstable owing to the large values the exponentials take in
the mesoscopic transition rates (3.21).

To illustrate the data underlying the plots in Fig. 3.13b), we show in Figs. 3.14a)–c) the
time-scaled work asymptotics per unit for di�erent system sizes as chosen for the blue curve
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in panel b) as well as the mean-�eld limit for selected values of β = 2, 4, 7. We note the
excellent agreement between the mean-�eld limit and the large system in compliance with
the observations made in panel 3.14a). On the other hand, the small system clearly deviates
from the large systems in all three di�erent regimes, even though we observed that in the
SA/A phase the dynamics of large and small systems can not be distinguished, see Fig. 3.11.
Due to the approximate time-periodicity of the dynamics in the S/SM phase, the dissipated
work is also oscillating.

20 40 60 80

0.22

0.23
a)

t

W
N

β =2

20 40 60 80

0.49

0.5

0.51 b)

t

β =4

N = 102 N = 104 N = ∞

20 40 60 80
0.38

0.4

0.42 c)

t

β =7

Figure 3.14: Panels a)–c): Plot of W N for selected values at β = 2, 4, 7 and system sizes
N = 102 and N = 104. This is the same data as the one underlying the blue
solid curve in Fig. 3.13b) but, for better visualization, the time t is restricted. For
comparison, the mean-�eld limit is overlaid in the panels a)–c). In each plot all
�nite systems were simulated sampling 106 trajectories.

Finally, Fig. 3.15 depicts the di�erence between the stationary single-unit and the asymptotic
mean-�eld work current, ∆W 1∞, as a function of β for di�erent f . Again, ∆W 1∞ = 0 in the
SA phase since the single and the mean-�eld unit are indistinguishable above the critical
Hopf temperature βc1 as already observed in Fig. 3.13a). For β ≥ βc1 the second critical point
is gradually shifting to smaller β [cf. Fig. 3.2] while the di�erence ∆W 1∞ is monotonously
increasing with decreasing f . Therefore, if compared to the mean �eld, the additional
costs to maintain the nonequilibrium stationary state of the noninteracting system at a
given temperature are the smaller the further it is driven out-of-equilibrium. This implies in
particular that the dissipation of the synchronized system at �xed temperature is approaching
the one of the non-synchronized system as they are further driven out-of-equilibrium.
To summarize, we have obtained two major results in this section. First, though the nonequi-
librium phase transitions are naturally only present in the mean-�eld limit where the
nonlinear dynamics exhibits the supercritical Hopf and the in�nite-period bifurcation, we
�nd that the metastability observed in the �nite-system dynamics translates into signatures
of genuine nonequilibrium phase transition in �nite systems. This consistently connects
linear stochastic dynamics, nonlinear deterministic dynamics, and thermodynamics and
furthermore demonstrates that thermodynamics of nonequilibrium phase transitions and
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Figure 3.15: Comparison between stationary single-unit work current 〈 ÛW s
1 〉 and asymptotic

mean-�eld work currentW∞ for di�erent values of f .

bifurcation theory are closely related. Secondly, any �nite and attractive interaction in a
network reduces the dissipated work per unit. Interestingly, if operating in the synchronous
phase, it is even more economic to employ interacting but smaller networks. What is still
open to investigate is how the nonequilibrium phase transitions a�ect the power-e�ciency
trade-o�, if the system operates as an energy-converting machine.

3.2.1.7 E�ciency at Maximum Power

In order to construct such an energy converter with our system both a positive force f1 > 0
and a negative force f2 < 0 are applied on the same unit. Examples for this type of work-
to-work conversion are could be double quantum dot channel capacitively coupled to a
quantum point contact [34] or the biological motors kinesin and myosin. In the latter case,
the motor is driven forward with f1 by extracting energy via ATP hydrolysis while the
load carried by the motor is modeled as f2 [66, 151]. In general, these two forces obey two
di�erent distributions accounting for the crucial �uctuations these motors exhibit. Since
the following discussion is restricted to the mean-�eld limit, we consider the homogeneous
case where the same positive and negative force are applied on all units. We remark that
homogenous motors modeled as di�using particles on a lattice subjected to an exclusion
rule were studied in [65] while a noisy Kuramoto model resembling molecular motors with
nontrivial force distributions was investigated in [66].

We thus decompose the net force f = f1 + f2 into the driving force f1 > 0 and the load
force f2 < 0. The asymptotic work contributions are given by integrating Eq. (3.74) over
times t � τr and are denoted byW1 andW2, respectively. Substituting Eq. (3.33) into
Eq. (3.78), yields the following decomposition of the asymptotic entropy production in the
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mean-�eld limit

Si = βW1 + βW2. (3.89)

Using the de�nition (2.55) for the asymptotic e�ciency of this work-to-work conversion,

η = −W2

W1
= − f2

f1
= 1 − f

f1
. (3.90)

At equilibrium (f = 0), the reversible limit, ηc = 1, is attained while out of equilibrium
(f , 0) the e�ciency is bounded, 0 < η < ηc . Of particular interest is the e�ciency at
maximum power, η∗, which results from the optimization of the asymptotic output power

P ≡ ∂W2
∂t
, (3.91)

with respect to the output force,

η∗ = − f2
f1

����
f2=f ∗2

. (3.92)

The maximization parameter f ∗ is determined by the condition ∂P/∂ f2 |f2=f ∗2 = 0, while
�xing f1 = 1 and thus varying the total dissipation characterized by f .

In the SA phase, β < βc1 , the asymptotic power output coincides with the stationary
work current of a single unit (3.84). For the other two phases (S and NA), we have to resort
to simulations to obtain the asymptotic power output. Moreover, owing to the time-periodic
state in the S phase, the power is periodically changing in time. Hence we consider the
time-average of the power over one limit cycle period. Figure 3.16a) shows the asymptotic
output power P as a function of β and f2 in a density plot.
The white dashed lines indicate the critical points βc1,2 as a function of the output force.
Thus the area enclosed by those lines corresponds to the S phase. Remarkably, we �nd that
the maximum output power is generated in this phase. In particular, the global maximum of
the output power indicated by the purple closed circle lies inside the S phase. At large β that
represents the NA phase, the generated power rapidly drops. In panel b) the output power
maximized with respect to the output force for di�erent values of the inverse temperature
is depicted. The numerical data from panel a) is overlaid with the (semi-)analytic results
in the SA phase (green solid line) and the low-temperature limit and shows an excellent
agreement. These limiting cases can be obtained as follows. In the SA phase, the condition
for maximization of the power

∂P
∂ f2
=

[
2 + β f2 + eβ(1−f2)(β f2 − 2)

]
= 0, (3.93)

results in a transcendental equation that must be treated numerically. In the low-temperature
limit, the extremum condition

∂P
∂ f2
=e

β
2 (f2−1)

[
eβ(1−f2)(β f2−2)+(β f2+2)

]
= 0, (3.94)
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Figure 3.16: Depiction of the asymtpotic output power P in a) as a function of the output
force f2 and the inverse temperature β . The white dashed lines correspond to the
numerically determined critical points as a function of the output force. Hence the
enclosed area de�nes the synchronization phase S. The global maximum of the
output power is indicated by the purple closed circle. In panel b) the maximum
output power P∗ is optimized with respect to f2 and in panel c) the associated
e�ciency at maximum power η∗(f ∗2 ) is displayed. In panel c) the dashed lines
specify the critical points and the synchronization phase S. The e�ciency at the
global maximum power is indicated by the closed purple circle. The analytic
solution for β < βc is overlaid with the numerical data in the lower panels.

can not be satis�ed for any f2 compatible with the constraint β = ∞.
The e�ciencies associated with the processes corresponding to the data points in panel

3.16b) are depicted in panel c). Again, the semianalytic solution for the temperatures
corresponding to the SA phase (green solid line) is compared with the numerical results and
shows an excellent agreement at these tmeperatures. As β approaches zero, the e�ciency at
maximum power becomes η∗ = ηc/2 = 1/2 corresponding to the universal linear-response
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value for tightly-coupled (only one net-current) systems, see also the �rst-order expansion of
the Curzon-Ahlborn e�ciency (2.56). This can be seen by expanding the analytic solution for
the the stationary power output in the SA phase (3.84) up to �rst order in β and maximizing
the truncated expansion with respect to f2. This, in turn, yields the linear-response relation
J s = L f with the Onsager coe�cient L = 2Γβ . Therefore, small products β f correspond to
linear response in our model and lead to e�ciency at maximum power values very close to
1/2. With increasing β , the system starts to respond nonlinearly and the e�ciency decreases
monotonously and nonlinearly.

It is worth emphasizing that the e�ciency for the global maximum power output achieved
in the far-from-equilibrium S phase and indicated by the purple closed circle is still close to
the universal linear-response e�ciency at maximum power value. This �nding points out
the importance of non-equilibrium phase transitions for the performance of an assembly of
nano-machines and suggests synchronization as an operating mode facilitating very e�cient
energy-conversion processes with appreciable power output.

3.2.2 Class of Driven Potts Models

3.2.2.1 Setup

The three-state model as proposed in Fig. 3.1 is a special realization (q = 3) of a class of Potts
models [152] that generalize the Ising model (q = 2) [153, 154] by considering interacting
spins on a lattice that can take q di�erent values distributed uniformly about a circle. It
is intriguing to study how and if the (thermo)dynamical phenomenology changes with q.
Analogously to the procedure detailed in Secs. 3.2.1.3 and 3.2.1.4, we can formulate the
problem at the microscopic and mesoscopic level and arrive at a mean-�eld description that
is exact in the macroscopic limit N → ∞. Obviously, the convergence of the irreducible
linear Markov �ow in �nite-systems to possibly complex mean-�eld solutions can again
be understood via notions of metastability that is encoded in the spectrum of the Markov
generator, as demonstrated in Sec. 3.2.1.5. To avoid redundancy, we restrict the discussion
to the mean-�eld description and focus on studying the (thermo)dynamical phenomenology
for di�erent q.

For this purpose, we consider in�nitely many q-state units on a ring with energies ϵi
(i = 1, 2, . . .q). The units correspond to clocks since transitions are only allowed between
adjacent unit states. Units that occupy the same state interact globally via an attractive
interaction potentialu. The system is autonomously driven by a global and non-conservative
force f . In addition, the system is connected with a heat bath at inverse temperature β . The
schematics of the setup for a �nite-size eight-state model (q = 8) is depicted in Fig. 3.17.
The mean-�eld system is fully characterized by the occupation densities of the states i =
1, . . . ,q which we again identify as the probability ni(t) for any unit in the continuum to
occupy the state i at time t . Following the path from a microscopic over a mesoscopic to
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Figure 3.17: Schematics of identical and globally interacting q-state units that are connected
with a heat bath at inverse temperature β and are furthermore subjected to a
nonconservative rotational force f .

a macroscopic representation of the system as in three-state case [cf. Eqs. (3.4), (3.14) and
(3.31)], we arrive at the following mean-�eld equation

∂tni(t) =
∑
j

kij nj(t) , (3.95)

with the mean-�eld transition rates from Eq. (3.32) that satisfy the local detailed balance
property,

ln
kij

kij
= −β [Ei(t) − Ej(t) − f Θ(i, j)] , Ei(t) = ϵi + uni(t), (3.96)

ensuring that the system is thermodynamically consistent. We note that probability con-
servation,

∑
ni = 1, erases one degree of freedom such that the nonlinear system has q − 1

dimensions.

3.2.2.2 Mean-Field Dynamics

Universal High- and Low-Temperature Phases

The highly nonlinear character of Eq. (3.95) can give rise to complex dynamics and does, in
general, not admit an analytic solution. Yet, for a �at energy landscape of the units, ϵi = ϵ ,
the uniform probability distribution

nsi =
1
q
, i = 1, 2, . . . ,q − 1, (3.97)
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is a solution to Eq. (3.95). However, to infer the stability of that �xed point the computation
of the spectrum of the linearized Jacobian (3.37) is required. Though, for q > 4 there is
no systematic way to determine the eigenvalues of the Jacobian, since there is no general
formula to solve polynomial equations of order higher than four.

However, the local detailed balance condition (3.96) ensures that the system is ther-
modynamically consistent. As a consequence, the possible dynamical phenomenology is
constrained by the thermodynamic principles that even allow specify the long-time solution
in the low- and high-temperature regime as already demonstrated in the three-state model in
Sec. 3.2.1.4. First, we note that the high-temperature limit β → 0 represents a reversible limit
for �nite f since detailed balance kij neqj = kji n

eq
i , ∀i, j is attained. Equilibrium statistical me-

chanics predicts that in the high-temperature limit the system behaves entropically and the
probability distribution is uniform. Physically, at high temperatures the autonomous driving
becomes negligible and the forward-backward transition are indistinguishable. This means
that the solution (3.97) represents a stable and unique �xed point in the high-temperature
limit.

On the other hand, the low-temperature limit, β →∞ represents a totally irreversible
limit for �nite driving, where only those transitions occur that are aligned with the bias f .
Eq. (3.95) now reduces to

∂tni(t) = ki,i−1 ni−1(t) − ki+1,i ni(t), (3.98)

where i ± 1 = (i ± 1) mod q. A closer inspection reveals that since the transition rates are
irreversible and the force has no spatial resolution, the latter is acting like a renormalization
of the kinetic prefactor Γ → Γ · exp[β f /2] corresponding to an increasing number of
transitions per unit time aligned with f along the ring. Then, the rewritten transition rates
kij = Γ exp[−βu/2(ni−nj)] suggest that occupation is the only relevant factor that determines
where the dynamics goes to in the long-time limit, i.e. the system with irreversible rates
behaves energetically like an equilibrium one would. Here, one has to distinguish between
repulsive (u > 0) and attractive (u < 0) interactions. For the former the system has a unique
energy ground state that coincides with the entropic state from Eq. (3.97). Conversely, for
attractive interactions there are q energy ground states where all units occupy the same
state

nsi = 1, nsj,i = 0, i = 1, 2, . . . ,q. (3.99)

To which one the dynamics is striving depends on which single-unit state i is the most
populated one at initial times and hence depends on the initial condition. The physical
interpretation of the energy ground state is obvious: For repulsive interactions the system
tries to avoid accumulation of units occupying the same state, while for attractive interactions
the system favors clustering. To sum up, our thermodynamic framework allows us to exclude
complex solutions (e.g. limit cycles) in the limits of low and high temperature and to even
specify the stationary solutions in these regimes without explicitly solving the highly
nonlinear equations of motion (3.95) that become exceedingly complicated for larger q. We
emphasize that these results hold for any �nite number of states q and �nite autonomous
driving f .
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q-Dependent Intermediate-Temperature Phase

With the results for high and low temperatures at hand, we proceed by studying the qualita-
tive behavior of the system at intermediate temperatures. For repulsive interactions there is
the possibility that the system exhibits no signi�cant qualitative changes in the dynamics
as the temperature varies. If attractive interactions are considered the di�erent dynamical
behavior in the low- and high-temperature limit encoded in Eqs. (3.97) and (3.99) implies at
least one bifurcation (phase transition) at intermediate temperatures. The stability of the
symmetric �xed point, nss , is encoded in the spectrum of the linearized Jacobian (3.37).

In the high-temperature limit, β → 0, the linear stability matrix for q > 2 reads

Jij = −2Γδij + Γ (δi+1,j + δi−1,j)
��
i,j,0,q + Γ (δi,0δq,j + δi,qδ0,j)

J =

©­­­­­­«

−2Γ Γ 0 . . . 0 0 Γ
Γ −2Γ Γ . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . Γ −2Γ Γ
Γ 0 0 . . . 0 Γ −2Γ

ª®®®®®®¬q×q
. (3.100)

This is a circulant matrix - a special kind of Toeplitz matrix [155] - where all remaining
columns are given by cyclical permutations of the �rst column vector. This particular case
of a symmetric circulant matrix admits the eigenvalues [156]

λk = −2Γ + Γ e
2π ik
q + Γ e

2π i(q−1)k
q = −2Γ + 2Γ cosk 2π

q
, k = 0, 1, . . . ,q − 1. (3.101)

For q = 2 the linear stability matrix Jij = −2Γδij + 2Γ (δ12 + δ21) admits the eigenvalues
λ1,2 = 0,−4Γ .

We now consider �nite inverse temperatures, β = 0 + δβ , and expand the linear stability
matrix in Eq. (3.100) up to linear order in δβ and arrive at

J (0 + δβ) = J (β)
��
0 + δβ Ĵ + O (

δβ2), (3.102)

with the �rst-order correction matrix

Ĵij = aδij + b(δi+1,j + δi,qδ0,j) + c(δi−1,j + δi,0 δq,j),

Ĵ =

©­­­­­­«

a b 0 . . . 0 0 c
c a b . . . 0 0 0
...
...
... . . .

...
...
...

0 0 0 . . . c a b
b 0 0 . . . 0 c a

ª®®®®®®¬q×q
, a = −2Γu

2 , b = Γ
2u−f q

2q , c = Γ
2u+f q

2q , (3.103)

that is again a circulant matrix and consequently has the eigenvalues [156]

λ̂k = a + b e
2π ik
q + c e

2π i(q−1)k
q = −4Γu

q sin2
(
k πq

)
− i Γ f sin

(
k 2π

q

)
, k = 0, 1, . . . ,q − 1.

(3.104)
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Since the real part of the eigenvalues in Eq. (3.103) is always nonpositive, Re[λ̂k] ≤ 0 ∀k ,
the real part of all perturbed eigenvalues

Re[λk(0 + δβ)] = Re[λk(β)|0] + δβ Re[λ̂k] + O
(
δβ2), (3.105)

remain negative for �nite inverse temperature, hence recon�rming that in the high-temperature
regime the symmetric �xed point is stable.

For q ≤ 4 the linear stability analysis is analytically tractable for all temperatures since
the characteristic equation can always be solved for up to four dimensions. We make
the crucial observation that the critical point βc that characterizes the bifurcation of the
symmetric �xed point nss obeys the relation

q + βcu = 0, q ≤ 4. (3.106)

For repulsive interactions this relation is never satis�ed and the system remains in the
symmetric �xed point at all temperatures. However, for attractive interactions there is a
much richer phenomenology as demonstrated in the following. Evaluated at this temperature,
the linear stability matrix for q > 2 generically takes the form

Jij = c
[(δi+1,j − δi−1,j)

��
i,j,0,q + δi,q δ0,j − δi,0 δq,j

]
(3.107)

J =

©­­­­­­«

0 c 0 . . . 0 0 −c
−c 0 c . . . 0 0 0
...
...
... . . .

...
...
...

0 0 0 . . . −c 0 c
c 0 0 . . . 0 −c 0

ª®®®®®®¬q×q
, c = Γ sinh

(
q

f

2u

)
.

Here, the circulant matrix is skew-symmetric and its eigenvalues read

λk = c e
2π ik
q − c e

2π i(q−1)k
q = 2i c sin

(
k

2π
q

)
, k = 0, 1, . . . ,q − 1, (3.108)

and are thus either identical zero or purely imaginary. For q = 2 the linear stability matrix,
Jij = 0, has only zero eigenvalues. We now consider temperatures in the vicinity of the
critical temperature, βc +δβ , and expand the linear stability matrix in Eq. (3.107) up to linear
order in δβ and arrive at

J (βc + δβ) = J (β)
��
βc
+ δβ Ĵ + O (

δβ2), (3.109)

with the �rst-order matrix

Ĵij = aδij + b(δi+1,j + δi,qδ0,j) + c(δi−1,j + δi,0 δq,j) (3.110)

Ĵ =

©­­­­­­«

a b 0 . . . 0 0 c
c a b . . . 0 0 0
...
...
... . . .

...
...
...

0 0 0 . . . c a b
b 0 0 . . . 0 c a

ª®®®®®®¬q×q
, a =−2Γu

q d, b = Γ
2u−qf

2q d, c = Γ
qf+2u

2q d, d=cosh
(
q

f
2u

)
,
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that is again a circulant matrix and consequently has the eigenvalues

λ̂k = a + b e
2π ik
q + c e

2π i(q−1)k
q = −

2Γ cosh
(
q
f

2u
)

sin2
(kπ
q

)
q

[
2u + if q cot

(kπ
q

) ]
, k = 0, 1, . . . ,q − 1.

(3.111)

We note that the real part of the eigenvalues in Eq. (3.110) is always nonnegative, Re[λ̂k] ≥
0 ∀k , such that the real part of all perturbed eigenvalues

Re[λk(βc + δβ)] = Re[λk(β)
��
βc
] + δβ Re[λ̂k] + O

(
δβ2), (3.112)

changes its sign at the critical point from negative (δβ < 0) to positive values (δβ > 0) or
remains zero for all q.

Hence Eq. (3.106) indeed characterizes the critical point that destabilizes the symmetric
�xed point. If the system is in equilibrium, f = 0, the real parts of the eigenvalues of the
linear stability matrix evaluated at the critical point change their sign while the imaginary
part is identically zero corresponding to a saddle-node bifurcation that degenerates the single
symmetric �xed point into q �xed points. In the out-of-equilibrium scenario, f , 0, the
real parts of the eigenvalues of the linearized Jacobian evaluated at the critical temperature
change their sign while the imaginary parts remain �nite implying a Hopf-bifurcation that
degenerates the symmetric �xed point into a limit cycle.

Moreover, Eq. (3.106) states that the uniform probability distribution can be observed
over a larger range of temperatures as q increases. The uniform distribution, however,
removes the interactions from the dynamics according to Eq. (3.96). Hence for repulsive
interactions the mean-�eld system is noninteracting as well as for attractive interactions at
temperatures above the �rst critical temperature de�ned by Eq. (3.106) that approaches zero
as q becomes large. Due to the richer phenomenology for attractive interactions we focus
on this type of interaction and we set u = −1 if not explicitly stated otherwise. Physically,
Eq. (3.106) can be understood by noting that the energy required to move between adjacent
states is shrinking to zero as the density of states increases. Thus, spontaneous �uctuations
can induce these transitions such that there is no instantaneous accumulation of any state
(e.g. limit cycles) and the symmetric �xed point [Eq. (3.97)] is stable.

To infer the stability of the oscillations, an analysis of the normal form of the Hopf
bifurcation and the determination of the �rst Lyapunov coe�cient would be required as done
for the three-state model in Sec. A.2. The normal form analysis relies on Eq. (3.95), hence
for q > 3 the dimensionality of the system renders analytic progress di�cult. A numerical
analysis in Fig. 3.18 that depicts in a parametric n1 − n2 plot the dynamics of the q-state
model (q = 3, 4, 5, 6) motivates the following conjecture: If q is even like in panels b) and d),
the Hopf bifurcation occurs subcritical and any perturbation will lead to the destruction of
the limit cycle and to the emergence of q stable �xed points, hence there is only one phase
transition at βc . Conversely, if q is odd, like in panels a) and c), the Hopf-bifurcation occurs
supercritical and the symmetric �xed point degenerates at βc1 into a stable limit cycle that at
a second critical point βc2 degenerates via an in�nite-period bifurcation into q asymmetric



74 3.2. Thermodynamics of Nonequilibrium Phase Transitions in Clock Models

stable �xed points. They are related to each other by permutations of their coordinates in
the q-dimensional probability space. For low temperatures these �xed points move towards
the respective energy ground states in Eq. (3.99).

Figure 3.18: Parametric plot of the probabilities n1,2 in the q-state model with q = 3 [panel a)],
q = 4 [panel b)], q = 5 [panel c)] and q = 6 [panel d)] for di�erent temperatures
β . The orange-shade spheres indicate the position of the q �xed points in the
low-temperature regime and the symmetric �xed point is indicated by the red
closed circle. In all plots the intial condition n1 = 1 is used and we set Γ = 0.1
and f = 1.

3.2.2.3 Mean-Field Thermodynamics

Dissipated Work

As already pointed out above, stochastic thermodynamics is a superstructure built upon the
Markov process. As a consequence, the di�erent dynamical phenomenology for even and
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odd q is to be expected to translate into di�erent thermodynamic features depending on q.
Analogously to the coarse-graining of the thermodynamic observables demonstrated in Sec.
3.2.1.6, we can establish a thermodynamic framework of the Potts model across di�erent
scales, i.e. microscopic, mesoscopic and mean-�eld. Consequently, we �nd that only the
statistics of the �rst-law quantities are invariant under the coarse-graining at �nite times,
while the mesoscopic (or mean �eld) system entropy and entropy production only represent
the real entropies for a special class of initial conditions (3.66) and stationary states (3.69).
Hence, as in the three-state model, we will restrict to the dissipated work as a proxy for the
total dissipation (entropy production).

At the mean-�eld level, the �rst law of thermodynamics reads

dt E =
∑
i,j

Ei kij nj = ÛQ + ÛW, (3.113)

with the heat and work currents

ÛQ =
∑
i,j

(Ei − Ej − f Θ(i, j)) kij nj (3.114)

ÛW = f
∑
i,j

Θ(i, j)kij nj . (3.115)

The bifurcations observed in the stochastic dynamics naturally translate into nonequilibrium
phase transitions that can be characterized via the work. Here, the work is dissipative since
the mean-�eld system takes rotational energy, ÛW > 0, and dissipates it into the bath in
form of heat, ÛQ < 0. First, we recall that except for attractive interactions below the critical
temperature in Eq. (3.106) the system behaves like a noninteracting one. The stationary
dissipated work current for a single unit was already determined in Eq. (3.84) and reads,

〈 ÛW s
1 〉 = 2Γ f sinh

(
β f

2

)
≥ 0, (3.116)

and is thus independent of the number of statesq. Next, in the multistability phase, β � βc(c2),
the stationary mean-�eld work current can be approximated as

ÛWs ≈ 2Γ f e
βu
2 sinh

(
β f

2

)
= e

βu
2 〈 ÛW s

1 〉. (3.117)

Hence operating an interacting system in the low-temperatures regime is exponentially in
the interaction strength less costly than maintaining a noninteracting system. This can be
seen in Fig. 3.19 that depicts the di�erence between the stationary work current of a single
unit 〈 ÛW s

1 〉 and the asymptotic mean-�eld work currentW ≡W/t with t � τr for di�erent β
and q. In agreement with Eqs. (3.116) and (3.117), we �nd that for all q the mean-�eld system
is noninteracting at inverse temperatures below the inverse Hopf-bifurcation temperature
βc(c1) [Eq. (3.106)], while the dissipated work is signi�cantly reduced above that inverse
critical temperature. In fact, we conclude from the monotonotic behavior of the curves
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that it is always energetically bene�cial to consider attractive interactions. Since the (�rst)
critical point is shifting to larger values of β as q increases, it is overall favorable to employ
small-q units. At the (�rst) critical point βc(c1) the mean-�eld dissipated work exhibits for all
q a kink that is reminiscent of a �rst-order equilibrium phase transition, cf. Fig. 2.1 and the
corresponding introduction in Sec. 2.1. As a consequence of the two bifurcations for odd q
there is a second non-equilibrium phase transition at βc2(f ) which displays characteristics
of both a saddle and a jump that is more pronounced for larger q.
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〈Ẇ
s 1
〉

q = 7
q = 6
q = 5
q = 4
q = 3
q = 2

0 2 4 6 8 10

0

0.5

1 ∞
βc2

βc2 βc2

βc βc1 βc βc1 βc βc1

b)

β

〈Ẇ
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Figure 3.19: Di�erence of the dissipated work for a stationary single-unit, 〈 ÛW s
1 〉, and the

asymptotic, time-averaged mean-�eld work W as a function of the inverse
temperature β = 0, . . . , 10 for di�erent number of states q = 2, . . . , 7 and for
di�erent forces f = 1 in a) and f = 0.5 in b). The time t = 500 is chosen to be
su�ciently long in order to ensure thatW has converged to its asymptotic value.
The purple closed circle represents the q-independent analytic result for the work
currents in the low-temperature limit (3.117).

It is interesting to observe that for smaller driving f = 0.5 in panel b) the second critical
phase transition characterized by βc2 is shifting to smaller values of β . Furthermore, the
sensitivity of the second critical point on the driving is diminishing as q becomes large.
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This means that the range of intermediate temperatures for which stable limit cycles can be
observed is only dependent on how far the system is driven out-of-equilibrium for small
q-Potts models. Hence, for smaller q there is an additional reduction in the dissipated work
for attractive interactions when the system is driven less far out-of-equilibrium.

3.2.2.4 E�ciency at Maximum Power

Finally, we want to investigate how the number of spin states q a�ects the power-e�ciency
trade-o� in energy transduction processes. To this end, we again consider a work-to-
work conversion by decomposing the nonconservative force f into a force aligned with
(f1 > 0) and a force acting against (f2 < 0) the bias, i.e. f = f1 + f2 and de�ne via Eq.
(3.115) the corresponding asymptotic work contributionsW1 andW2, respectively. Next,
we maximize the asymptotic power output P (3.91) with respect to f ∗2 and compute the
e�ciency at maximum power η∗ (3.92).

Fig. 3.20 shows the asymptotic power output P as a function of β and f2 for q = 3 in
a) and q = 5 in b). We observe that in both odd-q systems the maximum power output is
achieved in the synchronization regime indicated by the area enclosed by the dashed white
lines. The same applies to the global maximum indicated by the closed purple circle.

Figure 3.20: The asymptotic, time-averaged output power P as a function of the output force
f2 and the inverse temperature β for q = 3 in a) and q = 5 in b). In both plots
the white dashed lines indicate the set of critical points. Hence the enclosed area
de�nes the synchronization phase S. In addition, the global maximum of the
output power is indicated by the purple closed circle.

Next, we recall that according to Eq. (3.106) in both cases in the high-temperature limit the
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systems are noninteracting and their stationary power output is thus determined by Eq.
(3.116),

Ps
1 = 2Γ f2 sinh

(
β f

2

)
. (3.118)

Further, in both cases the power rapidly drops in the low-temperature regime (β � βc2) as
prescribed by Eq. (3.117) that implies for the asymptotic power output,

P ≈ 2Γ f2 e
βu
2 sinh

(
β f
2

)
= e

βu
2 Ps

1 . (3.119)

Hence operating an interacting system in the low-temperatures regime provides a power
output that is exponentially higher in the interaction strength compared to a noninteracting
system. The range of validity of these approximations can also be seen in Figs. 3.21a) and b)
that show the maximum power for di�erent β .
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Figure 3.21: The maximum output power P∗ optimized with respect to f2 for q = 3 in a)
and q = 5 in b). Moreover, panels c) and d) depict the associated e�ciency at
maximum power η∗(f ∗2 ) for q = 3 and q = 5, respectively. Here, the dashed lines
specify the critical points and the synchronization phase S and the e�ciency at
the global maximum power is indicated by a purple closed circles. The analytic
solution from Eq. (3.118) for β < βc1 is overlaid with the numerical data in all
panels.

Here, the analytic low-β solution from Eq. (3.118) is overlaid and shows a good agreement
up to the proximity of the global maximum power indicated by the closed purple circle. This
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re�ects that the global maximum power is attained far-out-of equilibrium where the system
responds nonlinearly. Expanding Eq. (3.118) up to �rst order in β , yields the linear-response
relation J s = Lf with the Onsager coe�cient L = 2Γβ . Hence small products β f represent
the linear-response regime. Thus, the result obtained in Sec. 3.2.1.7 that maximum power is
achieved in the far out-of-equilibrium synchronization regime is not a mere coincidence for
q = 3 but seems to be a universal one.

We conclude from comparing Figs. 3.21 a) and b) that, on absolute terms, the maximum
power is increasing with q. Yet, turning to the associated e�ciency at maximum power
shown in panels c) and d), we see that as q increases, the associated e�ciencies of these
far out-of-equilibrium processes are deviating more and more from the maximum value
ηc/2 = 1/2 that is universal for a system with a single current responding linearly (2.56), i.e.
for β f → 0. This shows that while the power-e�ciency trade-o� is optimal for synchronous
processes, it can not be further lifted by simply changing the topology of the synchronized
units.

Conversely, Fig. 3.22 depicts the power output in a density plot as function of β and f2 for
di�erent even values of q. First we note again that for the even number of spin states there
is no synchronization phase. Instead, the systems exhibit a subcritical Hopf bifurcation at βc
that separates the single �xed-point phase, i.e. a noninteracting system as in Eq. (3.118), and
the multistability phase where all units coalesce into one of the q states. As a consequence,
the power output immediately drops for β > βc according to Eq. (3.119) and there is no
operating mode where - compared to a noninteracting system - signi�cant additional power
can be generated. It is thus detrimental for the energy transduction to employ a Potts model
with an even number of states due to its absence of collective dynamics.

Figure 3.22: The asymptotic output power P as a function of the output force f2 and the
inverse temperature β for q = 2 in a), q = 4 in b) and q = 6 in c).

To gain deeper insight of the dependence of the power-e�ciency trade-o� on the number
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of states q, Fig. 3.23 depicts both the global maximum power - indicated by purple closed
circles in Figs. 3.20 and 3.22 - and the associated e�ciency at maximum power as a function
of q.
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Figure 3.23: The global maximum power output and the associated e�ciency at maximum
power for di�erent q. The black dotted lines indicate the q-values that exhibit a
synchronization (S) phase.

Overall the maximum power output is increasing with q, though there are striking jumps
from even to odd q-systems, i.e. from asynchronous to synchronized systems. These jumps
are followed by plateaus where the maxima remain roughly the same. Conversely, the
associated e�ciency at maximum powers are decreasing monotonically with q. In particular,
for q ≤ 3, the e�ciency at maximum power is close to the optimal linear-response value
η∗ = 1/2. Therefore, we con�rm the conclusion made in Sec. 3.2.1.7 that the optimal
power-e�ciency trade-o� is achieved for synchronization, i.e. for odd-q systems. It is
furthermore energetically bene�cial to employ small-q units as they minimize the dissipation
and therefore enhance the e�ciency of the energy conversion processes.
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3.3 Thermodynamics of Majority-Logic Decoding in In-
formation Erasure

3.3.1 Majority-Logic Decoding

As an elementary storage unit, we consider a microscopic binary unit with states 0 and 1
and denote by p the probability to observe it in state 1. Based on these microscopic binary
units we can construct mesoscopic (logical) bits in two di�erent ways as illustrated in Fig.
3.24.
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Figure 3.24: Schematics of a single-unit bit (SUB) in a) and a N -majority-logic decoding bit
(MLB) in b).

First, we consider a single-unit bit (SUB) in Fig. 3.24a) that consists of only one microscopic
unit and is in contact with a heat bath at inverse temperature β . The probability of �nding the
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SUB in state 1 is represented by P , and is, of course, equal to probability p for the microscopic
unit to be in state 1. Alternatively, a majority-logic decoding bit (MLB) can be thought of as
an array of N identical and non-interacting microscopic units that are subjected to the same
experimental protocol and connected to a heat bath at inverse temperature β as sketched in
Fig. 3.24b). The probability of the MLB to be in state 1 is denoted by P and is determined via
majority-logic decoding. This decoding scheme prescribes that the information encoded
in the MLB corresponds to the state that is occupied most at the level of the microscopic
units and is therefore a coarse-graining procedure that is mathematically formulated in the
following.

The relation between the microscopic probability p associated with each microscopic
unit and the macroscopic probability P specifying the occupation probability of the MLB
can be expressed as

P(p,N , ζ ) =
N∑
k=ζ

(
N

k

)
pk (1 − p)N−k , (3.120)

where ζ represents the threshold number of the detector of the same microscopic state
during the measurement process.

There is an useful identity that relates the regularized incomplete beta function

Ix (a,b) =
∫ x

0 ta−1(1 − t)b−1dt∫ 1
0 ta−1(1 − t)b−1dt

, (3.121)

to the macroscopic probability

P(p,N , ζ ) = Ip(ζ ,N + 1 − ζ ). (3.122)

This equality can be seen as follows. We start from the de�nition of the regularized incom-
plete beta function in (3.121) and solve the integral in the denominator via partial integration
yielding ∫ 1

0
ta−1(1 − t)b−1dt = (a − 1)!(b − 1)!

(a + b − 1)! . (3.123)

The integral in the numerator is determined via consecutive application of partial integration∫ x

0
ta−1(1 − t)b−1dt = 1

a
xa(1−x)b−1+

b − 1
a(a+1)x

a+1(1−x)b−2 + . . .+
(b−1)(b−2) · . . . · 2 · 1
a(a+1) · . . . · (a+b−1)x

a+b−1.

(3.124)

Collecting results, one �nds that

Ix (a,b) =
a+b−1∑
k=a

(
a + b − 1

a

)
xa(1 − x)b−1 . (3.125)
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If we set a = ζ ,b = N − ζ + 1,x = p, we immediately arrive at Eq. (3.122).
The bijectivity of the regularized incomplete beta function I allows furthermore to

determine the microscopic probability p given the macroscopic probability P of a MLB as
follows

p(P ,N , ζ ) = I−1
P (ζ ,N + 1 − ζ ). (3.126)

The qualitative features of the majority-logic decoding are illustrated in Fig. 3.25 that
compares the macroscopic probability P(p,N , ζ ) of a SUB and MLB for di�erent array sizes
N and threshold values ζ .
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Figure 3.25: The curves of P with respect top at di�erent values ofN and ζ . The blue line refers
to the SUB. While the green (N = 11, ζ = 6) and red curves (N = 101, ζ = 51)
refer to symmetric MLBs, the orange (N = 11, ζ = 8) and the brown dotted curves
(N = 100, ζ = 51) refer to asymmetric MLBs with even N .

First, we observe that the macroscopic probability P is monotonically increasing withp. Next,
for any value of N and ζ it holds for x = 0, 1 that P(x ,N , ζ ) = x since the incomplete beta
function becomes a unity operator, I = I . Physically, this means that perfect information
erasure in a MLB (P = 0, 1) is realized by perfect erasure in each microscopic unit the
MLB consists of. For odd values of N the symmetric case, ζ = (N + 1)/2, corresponds to
majority-logic decoding in the strict sense, that is

P
(
p,N , N+1

2
)
= Ip

(N+1
2 ,

N+1
2

)
. (3.127)

We note that for symmetric majority-logic decoding, ζ = (N + 1)/2, the curve is symmetric
with respect to (1/2, 1/2) ∀N . This is readily derived by noting that according to the binomial
theorem, one has

P
( 1

2 ,N , 0
)
=

1
2N

N∑
k=0

(
N

k

)
=

1
2N
(1 + 1)N = 1. (3.128)
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Thus, it immediately follows from the symmetry of the binomial probability distribution
[Eq. (3.120)], that one has P

(
1/2,N , ζ = (N + 1)/2) = 1/2. It can furthermore be seen in Fig.

3.25 that for large N the curves converge to a step function centered at p = 1/2. For large N ,
Taylor-expanding Eq. (3.120) for the symmetric case around p = 1/2 up to linear order in
|p − 1/2| yields ����12 − P ���� =

√
2N
π

����12 − p���� + O ( ����12 − p����3 )
, (3.129)

where we denote by O(x2) all terms that are at the order x2 or higher. According to Eq.
(3.129), the slope at the symmetric point p is increasing with

√
N in the symmetric decoding

case. We therefore arrive at the �rst important result that large macroscopic erasure in the
MLB can be achieved at the cost of small microscopic erasure in each microscopic unit. The
good agreement of the curves corresponding to N = 100 and N = 101 suggests that for
ζ ≈ (N + 1)/2 the symmetry decoding case is approached if N becomes large.

3.3.2 Information Thermodynamics

3.3.2.1 De�nitions

The equivalent probabilistic descriptions on the microscopic and macroscopic level prompt
the question of how to de�ne the underlying physical processes at these levels. In information
erasure processes, important quantities are the heat that is generated during the operation,
the change in Shannon entropy that measures the amount of information erased by that
process as well as the erasure e�ciency [96, 157].

On the level of a single microscopic unit, the heat dissipated during an erasure process
from pi to p f is denoted by q and de�ned as a negative quantity q < 0. With this convention,
the �rst law of thermodynamics in di�erential form reads

dt e = Ûq + Ûw, (3.130)

where Ûw denotes the work current and Ûe the rate of energy change. The microscopic Shannon
entropy

s(p) = −p lnp − (1 − p) ln (1 − p), (3.131)

allows to quantify ∆s(pi ,p f ) ≡ s(p f ) − s(pi) as the amount of information that is erased
during an erasure process from pi to p f . The second law of thermodynamics reads

dts = β Ûq + Ûσ , (3.132)

where Ûσ ≥ 0 refers to the irreversible entropy production rate in the microscopic unit.
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Throughout this thesis, we consider the case in which the initial state is the maximum
information state given by pi = 1/2 and s(1/2) = ln 2. For this case the change in entropy is
always negative ∆s(pi ,p f ) < 0 if p f , 1/2. Therefore, a suitable de�nition of the microscopic
erasure e�ciency for this process reads

ηs(pi ,p f ) =
∆s(pi ,p f )

β q
. (3.133)

The heat q generated by the microscopic unit is naturally dependent on speci�c models
and operating protocols. The optimal protocols that minimize the dissipated heat and thus
maximize the erasure e�ciency are investigated in Sec. 3.3.2.3.

On the level of macroscopic bits, the heat dissipation refers to the cumulated heat
generated by all the microscopic units the bit consists of. Thus, the microscopic de�nitions
from above are, of course, also physically signi�cant for the erasure process at the level of
the SUB, that is s(P) = s(p) and ηs(1/2,p f ) = ηs(1/2, P f ). Conversely, in order to perform a
macroscopic erasure in the MLB from Pi = 1/2 to P f , an amount of information speci�ed by
the majority-logic decoding needs to be erased in each microscopic unit contained in the
MLB. Here, P f is the probability that the �nal state of the MLB after the erasure is logically
decoded as state 1. According to Eq. (3.126), this amounts to change in each microscopic
unit from the initial state pi = I−1

1/2(ζ ,N + 1 − ζ ) to the �nal state p f = I−1
Pf
(ζ ,N + 1 − ζ ).

The heat dissipated by the MLB, Q , is thus determined as follows

Q(1/2→ P f ) = N q
(
I−1

1/2(ζ ,N + 1 − ζ ) → I−1
Pf
(ζ ,N + 1 − ζ )

)
. (3.134)

The �rst law of thermodynamics at the level of the MLB reads
dtE = ÛQ + ÛW , (3.135)

where the thermodynamic quantities of the MLB are naturally given by the sum of the
microscopic ones, i.e. one has E = Ne,Q = Nq,W = Nw . It furthermore holds that Σ = Nσ
since the irreversible entropy production of the MLB has to be equal to the sum of the
irreversible entropy production of the microscopic units contained in the MLB. Next, we
de�ne the entropy quantifying the information stored in the MLB as for the microscopic
unit, i.e.

S(P) = −P ln P − (1 − P) ln (1 − P). (3.136)
From the de�nition for the entropy associated with a MLB made in Eq. (3.136) follows that
S , Ns . This however implies that the entropy balance at the level of the MLB is broken

dtS , β ÛQ + ÛΣ. (3.137)
Hence the macroscopic Shannon entropy in Eq. (3.136) should be thought of as logical but
not strictly physical information. Finally, the macroscopic e�ciency associated with the
erasure in the MLB is de�ned as

ηm(1/2, P f ) =
∆S(1/2, P f )

β Q
, (3.138)

with the change in macroscopic Shannon entropy∆S(1/2, P f ) ≡ S(P f )−S(1/2) = S(P f )− ln 2.
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3.3.2.2 Reversible Erasure Protocols

In the limit of reversible erasure, the irreversible entropy production vanishes and one has
for the heat in a SUB βq = s(p f ) − ln 2. Thus, from Eq. (3.133) follows that ηrevs = 1 for any
erasure process in this limit. Turning to the MLB, the dissipated heat during the erasure
process reads

βQ = N
[
s
(
I−1
Pf
(ζ ,N + 1 − ζ )

)
− s

(
I−1

1/2(ζ ,N + 1 − ζ )
)]
. (3.139)

Fig. 3.26 depicts in the reversible limit the heat dissipated during an erasure process from
Pi = 1/2 to P f by a SUB and MLB [panel a)] and the associated e�ciencies for symmetric
decoding processes [panel b)].
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Figure 3.26: a) Heat dissipated by the macroscopic bits in the reversible limit. The initial
macroscopic state is Pi = 1/2. b) E�ciencies associated with reversible erasure
processes for the SUB and symmetric MLBs. The dotted lines from top to bottom
represent the values η = 2/π , η = 1/3, η = 1/11 and η = 1/101, respectively.

We observe in panel a) that the SUB always dissipates less heat than the symmetric MLBs
which generate more heat as N increases. For asymmetric majority-logic decoding, ζ ,
(N + 1)/2, the heat generated by a MLB is reduced with respect to the one of a SUB and even
takes positive values for probabilities in the range

[
1/2,I1−I−1

Pf
(ζ ,N+1−ζ )(ζ ,N + 1 − ζ )] or[I1−I−1

Pf
(ζ ,N+1−ζ )(ζ ,N + 1 − ζ ), 1/2] , if the decoding is left-asymmetric or right-asymmetric,

respectively. The positivity of the heat means that one could even extract work during
certain erasure processes by employing asymmetric majority-logic decoding. This property
is similar to the division of logical entropy of the system entropy and the physical entropy of
each subspaces as discussed in Refs. [127, 158, 159]. However, here, the analogue of physical
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entropy in each subspaces varies according to Eqs. (3.120) and (3.131) as the macroscopic
probability P changes.

The erasure e�ciency of MLBs under symmetric majority-logic decoding, ζ = (N + 1)/2,
for di�erent array lengths N is shown in Fig. 3.26b). Consistently to the observations made
in panel b), the SUB is always more e�cient than the MLB whose erasure e�ciency decreases
as N increases. The same applies to the other erasure branch given by P f > 1/2 that can be
seen as follows: According to Eqs. (3.127) and (3.131), the macroscopic Shannon entropy of
a symmetric MLB is symmetric with respect to P = 1/2. Therefore, the energetics of the
erasure process from the initial state Pi = 1/2 to the �nal state P f is the same as that of
the erasure process from Pi = 1/2 to the �nal state 1 − P f . Hence, we will restrict to the
symmetric majority-logic decoding characterized by Eq. (3.127) and to the erasure branch,
P ≤ 1/2, in the following. To ease notation, we omit the explicit notation ζ = (N + 1)/2 and
Pi = pi = 1/2.

As already pointed out earlier, the macroscopic entropy associated with a MLB can be
thought of as a coarse-graining of the sum of the physical entropy of each microscopic unit
contained in the MLB. We write the di�erence between the physical entropy of all micro-
scopic units contained in the bit and the logical (Shannon-like) entropy of the macroscopic
bit as

S(P ,N ) = Ns
(
I−1
P

(
N+1

2 ,
N+1

2

))
− S(P). (3.140)

In Appendix A.4, a proof for the monotonic behavior of S(P ,N ) with respect to P in the
case of symmetric majority-logic decoding is provided. In the range of 0 ≤ P ≤ 1/2, the
entropy function S(P ,N ) is monotonically increasing, else it is decreasing monotonically.
Evidently, S(P ,N ) takes its maximum value, (N − 1) ln 2 if p = P = 1/2 and its minimum
value, S(P ,N ) = 0, if p = P = 0, 1. Hence, for symmetric majority-logic decoding the logical
information underestimates or is equal to the physical one S(P ,N ) ≥ 0 ∀N . As can be seen
in Fig. 3.26a), such an inequality does not hold for the more general asymmetric case where
ζ , (N + 1)/2. In fact, the inequality S(P ,N ) ≥ 0 is physically equivalent to the well-known
universal relationship between fully microscopic and coarse-grained Shannon entropies
[112]. It is furthermore important to note that no general statement can be made about
the changes of entropy for a given erasure process, since, according to Eq. (3.127) the �nal
distribution for the microscopic unit is, in general, di�erent from the one of the MLB.

From Eq. (3.138) and the monotonicity of S(P ,N ) follows that the reversible erasure
e�ciency of the symmetric MLB is bounded as follows

0 < ηrevm (1/2, P f ) ≤ 1, (3.141)

where the equality only holds when no information is erased, ∆S(1/2, P f = 1/2) = 0.
Hence we �nd that a SUB is always more e�cient in reversible information erasure than a
symmetric MLB. This can be attributed to the majority-logic decoding that neglects some
microscopic degrees of freedom and thus associates less logical entropy to the MLB than
the cumulated physical entropy of the microscopic units that constitute the MLB.
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We now state two limiting results for the reversible erasure e�ciency of a MLB. First,
in case of perfect erasure, P f = 0, we derive from Eqs. (3.127) and (3.138) that the erasure
e�ciency simpli�es to

ηrevm (1/2, 0) =
1
N
. (3.142)

Secondly, if the amount of erased information is small, P f ≈ Pi = 1/2, and N is large, the
erasure e�ciency

ηrevm (1/2, P f ) = 2
π
+ O

( ����12 − P f

����2 )
, (3.143)

becomes independent of the �nal macroscopic probability P f ≈ 1/2 as can be seen in Fig.
3.26b).

3.3.2.3 Finite-Time Erasure Protocol under Majority-Logic Decoding

Since we have captured the phenomenology of the reversible majority-logic decoding in the
previous section, we now proceed by studying more realistic, �nite-time information erasure
processes. In dynamical processes the heat generation depends on the erasure protocol and
the speci�c model for the microscopic units. In this section we formulate �nite-time erasure
processes for two commonly employed microscopic models: We consider a two-state system
with either Arrhenius rates or Fermi rates and denote in both cases by p(t) the probability
of the unit to be in state 1 at time t .

Preliminaries

Master Equation The transition rate from state 0 to state 1 and vice versa is referred
to as w10(t) and w01(t), respectively, which depends, in general, on time via the erasure
protocol. We assume that the process is Markovian, such that the dynamics of p(t) is ruled
by a master equation:

∂tp(t) = [1 − p(t)]w10(t) − p(t)w01(t), (3.144)

with the transition rates satisfying the local detailed balance relation

w10(t)
w01(t) = e−β ∆ϵ(t), (3.145)

where ∆ϵ(t) is the energy gap from state 0 to 1 that is modulated in time according to the
speci�c erasure protocol. With Eq. (3.145) the master equation (3.144) can be cast into the
form

∂tp(t) =
[
e−β ∆ϵ(t) − (1 + e−β ∆ϵ(t))p(t)

]
w01(t). (3.146)
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Finite-Time Erasing No protocol can achieve a perfect erasure corresponding to s(p f ) =
s(P f ) = 0, since this requires an in�nite amount of time [96]. This can be seen as follows: For
a given microscopic model, there are several ways to decrease the microscopic probability
p(t) at di�erent speeds, which corresponds to a protocol that ensues di�erent amounts of
heat and thus a di�erent erasure e�ciency. This, in turn, implies that the time required to
transform the initial probability pi(0) = 1/2 into the �nal one p f (τ ) ≡ p f can not be smaller
than a minimal time τc

τ ≥ τc = − log 2p f , p f <
1
2 , (3.147)

As p f → 0, the minimal time diverges, τc →∞, such that perfect erasure of a �nite initial
amount of information can only be realized by in�nite-time protocols.

Eq. (3.147) can be rearranged to obtain a lower bound for the �nal probability obtained
after an erasure with �xed duration τ as follows

p f ≥ pc =
1
2e−τc , p f <

1
2 , (3.148)

Consequently, in �nite-time information erasure processes, the Shannon entropy of the
�nal state s(p f ) can be seen as the erasure error. According to Eq. (3.148), the minimal
erasure error of the process is s(pc) and the erasable information within τc is ∆s(p f , 1/2) =
log 2 − s(pc). According to Eqs. (3.147) and (3.148), the bounds τc and pc are rate- and thus
model-independent.

These results hold at the level of a microscopic unit. We now proceed by discussing
the bounds on the level of macroscopic bits. First, since each SUB consists of only one
microscopic unit, Eqs. (3.147) and (3.148) are also applicable to the macroscopic quantities,
that is

τ ≥ τ sc = τc = − log 2P f , P f ≥ Psc = pc =
1
2e−τ , P f <

1
2 . (3.149)

In order to calculate the lower bound on the macroscopic erasure time τmc (1/2, P f ,N ) for a
symmetric MLB, we recall that a macroscopic erasure from Pi = 1/2 to P f is achieved by the
corresponding erasure from pi = 1/2 to p f in each microscopic unit contained in the MLB.
Therefore, one has for the minimal erasure time in a MLB

τmc (1/2, P f ,N ) = τc(1/2,p f ), (3.150)

where p f and P f are related to each other via the symmetric majority-logic decoding in
Eq. (3.127). Hence, in order to compute τmc , the �nal microscopic probability p f needs to
be determined via inversion of Eq. (3.127) and plugged into Eq. (3.147). Next, using Eqs
(3.148) and (3.127), one straightforwardly obtains the minimal �nal probability Pmc (τ ,N )
after erasure time τ . From Eq. (3.127) follows the inequalities

τmc (P f ,N ) ≤ τ sc (P f ), Pmc (τ ,N ) ≤ Psc (τ ), (3.151)
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which suggest that majority-logic decoding can both accelerate the erasing process and
additionally reduce the minimal erasure error. Finally, for �nite-time erasure processes we
de�ne the erasure power for a SUB and MLB as follows

Ps =
∆s(1/2,p f )

τ
, Pm =

∆S(1/2, P f )
τ

, (3.152)

respectively.

Arrhenius-Rates UnitModel The Arrhenius model consists of two potential well, which
are regarded as states 0 and 1, respectively, that are separated by a barrier. The energy gap
between state 0 and 1 is de�ned as ∆ϵ . In order to be consistent with the assumption of
Arrhenius transition rates, the energy barrier height of the potential well associated with
state 1 is assumed constant, ϵ , throughout the erasure process. This setup is di�erent from
the the one used in Ref. [160], where the two states are merged together and then separated
during the erasure. Here, the transition rates read

wA
01(t) = r0 e−βϵ , and wA

10(t) = r0 e−β[ϵ+∆ϵ(t)], (3.153)

where r0 is a constant setting the time scale of the process. Then, the master equation (3.146)
can be written as follows

∂tp(t) = e−β∆ϵ(t) − [
1 + e−β∆ϵ(t)

]
p(t), (3.154)

where the constant r0 e−βϵ is absorbed into the time scale.

Fermi-Rates Unit Model The Fermi-rates unit model can be experimentally realized via
a single quantum dot with a single energy level E that is in contact with a moving metallic
lead corresponding to a time-dependent chemical potential µ(t) and a heat bath at inverse
temperature β [157]. If the dot is �lled by an electron we consider the unit to be in state 1,
else 0. The transition rate for an electron leaving or entering the dot reads

wF
01(t) =

r0

e−β ∆ϵ(t) + 1
, wF

10(t) =
r0

eβ ∆ϵ(t) + 1
, (3.155)

respectively, where ∆ϵ(t) ≡ E − µ(t) represents the energy barrier to enter the dot and r0 is
a constant that sets the time scale of the process. Then, the master equation (3.146) can be
written as follows

∂tp(t) = −p(t) + 1
eβ ∆ϵ(t) + 1

, (3.156)

where the constant r0 is absorbed into the time scale. Since the second term in Eq. (3.156)
is bounded between 0 and 1, the fastest way to decrease the microscopic probability p(t)
is realized by ∂tp(t) = −p(t), which corresponds to a protocol that ensues a divergent heat
generation and thus a vanishing erasure e�ciency.
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Variable Erasure Duration

With the tools to address �nite-time information processing at hand, we want to start with
the simplest erasure protocol given by an instantaneous switching of the energy gap to the
same value ∆ϵ at time t = 0. For generic transition rates with constant energy gaps,w01(∆ϵ),
the master equation of a microscopic unit from Eq. (3.146) is solved by

p(t) = 1
2 tanh

(
β∆ϵ

2

)
e−(1+e−β∆ϵ )w01(∆ϵ) t +

1
1 + eβ∆ϵ

, (3.157)

where we used the initial condition p(0) = 1/2. In the in�nite-time limit the probability
converges to the lower bound

p(∞) = 1
1 + eβ∆ϵ

. (3.158)

We emphasize that for �xed ∆ϵ the de�nitions (3.147) and (3.148) no longer apply. However,
Eq. (3.158) represents also a bound on the minimal erasure error and thus plays a similar
role as pc . From Eq. (3.157) we obtain the following expression for the erasure duration

τ = − 1
(1 + e−β∆ϵ )w01(∆ϵ)

ln
(
2
(1 + eβ∆ϵ )p f − 1

eβ∆ϵ − 1

)
. (3.159)

The heat dissipated by the microscopic unit reads

q =

∫ τ

0
∆ϵ ∂tp(t) dt = ∆ϵ

∫ pf

pi

dp =
(
p f − 1

2

)
∆ϵ, (3.160)

which, with Eq. (3.134), results in the total heat generated by the SUB and MLB

q =

(
p f − 1

2

)
∆ϵ, Q = N

[
I−1
Pf

(
N + 1

2 ,
N + 1

2

)
− 1

2

]
∆ϵ, (3.161)

respectively. With the de�nitions in Eqs. (3.133), (3.138) and (3.152) one has for the macro-
scopic erasure power

Ps
s

(
1
2 ,p f

)
=
∆s(1/2,p f )

τ
, Pm

m

(
1
2 , P f

)
=
∆S(1/2, P f )

τ
, (3.162)

and the macroscopic e�ciencies

ηs

(
1
2 ,p f

)
=
∆s(1/2,p f )

β q
, ηm

(
1
2 , P f

)
=
∆S(1/2, P f )

β Q
. (3.163)

The results of the �nite-time erasure process for a �xed energy gap are depicted in Fig. 3.27.
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Figure 3.27: a) Comparison of both the modulus of heat dissipation, −βQ , and the associated
erasure e�ciency between a SUB and a symmetric MLB for di�erent N . b)
Comparison of both the erasure time and the modulus of the power, |P |, between
a SUB and a symmetric MLB for di�erent N . The data was generated by using
the generic solution of the master equation (3.157) and settingw01, β ϵ ≡ 1. The
dotted vertical lines correspond to the minimal erasure error Psc and P

m
c (N ) for

the systems under consideration.

As can be seen in panel a), in order to perform an erasure with the same erasure error the
SUB dissipates less heat and thus has a higher e�ciency than the symmetric MLBs, for which
the heat production increases and the e�ciency decreases with growing N . Hence the SUB
is more e�cient than the symmetric majority-logic decoding, as already observed in the
reversible case, cf. Fig. 3.26. However, Fig. 3.27b) shows that the erasure duration is reduced
and the erasure power thus enhanced by employing the majority-logic decoding for large
ensembles of microscopic units. The minimal erasure error characterized by Eq. (3.158) is
indicated by the dotted vertical lines that correspond to the minimal �nal probability Pmc (N ).
Therefore, as already derived in Eq. (3.151), majority-logic decoding reduces the minimal
erasure error that goes to zero as N becomes large corresponding to perfect erasure.
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3.3.2.4 Fixed Erasure Duration

We now assume that the explicit form of the transition rates of the microscopic unit model
is known and compare the performance of the two types of macroscopic bits under the
protocol with �xed erasing time and instantaneous switching of the energy gap. For a
speci�c erasure process, the erasure time and thus the erasure power are equal for the two
macroscopic bits, hence we restrict the discussion to the macroscopic erasure e�ciencies.
The microscopic dynamics of a Fermi-rates unit reads

p(t) = 1
2 tanh

(
β∆ϵ

2

)
e−t + 1

1 + eβ∆ϵ
. (3.164)

Plugging the erasure time τ into Eq. (3.164), yields the �nal microscopic probability and
the erasure error. The calculation of the generated heat, erasure power and e�ciency both
on the microscopic and macroscopic level is analogous to the one in the last section. As
the speci�c dynamics of the unit is known and τ is �xed, the de�nition of minimal �nal
probability in Eq. (3.148) is valid under this protocol.

Fig. 3.28 shows that the symmetric majority-logic decoding has additional advantages for
�nite-time erasing: As already observed earlier, the minimal erasure error of the symmetric
MLB is smaller than that of the SUB and approaches 0 with increasing N as illustrated by the
vertical dotted lines corresponding to the minimal �nal probability Pmc (N ) after the erasure
time τ . More importantly, the symmetric MLBs are more e�cient in the region of small
erasure error region, P f ≈ Psc , as opposed to the region of large erasure error where the SUB
is more e�cient. We �nd that for Arrhenius rates the results are qualitatively similar and
thus omitted.

To sum up, Figs. 3.27 and 3.28 illustrate the important result that the precision-speed-
e�ciency trade-o� in �nite-time information erasure processes is lifted by symmetric
majority-logic decoding.

3.3.2.5 Optimal Erasure Protocol under Majority-Logic Decoding

In view of applications, the least work-intense erasure processes are of particular interest.
The general method to determine the optimal erasure protocol that minimizes the generated
heat in a Fermi-rates unit model has been established in Ref. [95]. The detailed derivation of
the heat-minimizing protocol for Arrhenius rates is deferred to Appendix A.5. Given the
optimal protocol, both the microscopic and macroscopic heat dissipation, erasure power
and e�ciency follow readily from Eqs. (3.160), (3.162) and (3.163).

The erasure e�ciency of a SUB and a symmetric MLBs for di�erent N are compared in
Fig. 3.29. It is important to note that the advantages in terms of information erasure inherent
to symmetric majority-logic decoding discussed in the previous section are preserved and
enhanced by the optimal erasure protocol: First, the minimal erasure error is strongly reduced
for a symmetric MLB at the expense of an erasure e�ciency that decreases with increasing
N in the regime of small erasure, P f � Psc . Conversely, for small erasure error, P f ≈ Psc , this
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Figure 3.28: Comparison between the erasure e�ciency of a SUB and symmetric MLBs for
di�erentN and instantaneously switched∆ϵ using the Fermi-rates unit model and
�xed erasure time τ = 2. The vertical dotted lines correspond to the minimal �nal
macroscopic probabilities Psc and P

m
c (N ), where for N = 11, 101 the probabilities

are too close to zero to be distinguished.

relation between the macroscopic e�ciencies is inverted. The inset in panel a) that depicts
the relative erasure e�ciency between a SUB and a symmetric MLB, (ηs − ηm)/ηs , reveals
that the range of small erasure-error probabilities over which this holds true is increased for
the optimal protocol compared to the �xed-energy protocol. Comparing furthermore panels
a) and b) also shows that this range of small erasure-error probabilities is increasing with
decreasing erasure time τ and increasing N .

In the limit of low- and high dissipation, analytical results can be obtained for the optimal
protocol, where we will focus on the Arrhenius-rates unit model. The high-dissipation limit
corresponds to an erasure duration τ that approaches the minimal erasure time τc . Thus,
the parameter K in Eq. (A.71), which represents the degree of irreversibility, is diverging in
this limit. Using Eqs. (A.73) and (A.74), the parameter K can be expressed as

Khiдh(p f ,τ ) = 1
2

1 − 2p f
τ + ln (2p f )

. (3.165)

Plugging Eq. (3.165) into Eq. (A.75), one has for the heat dissipation

β qhiдh(p f ,τ ) =
(
1
2 − p f

)
ln

[
1
2

1 − 2p f
τ + ln (2p f )

]
. (3.166)

We verify that K ,q → ∞ as τ → τc = − ln(2p f ) and that Eq. (3.166) also represents the
solution for a Fermi-rates unit. In the low-dissipation limit, the erasure duration τ is large
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Figure 3.29: Comparison between the erasure e�ciency of a SUB and of a symmetricMLB based
on the Arrhenius model for di�erent N under the optimal erasure protocol with
the erasure time τ = 2 [panel a)] and τ = 1 [panel b)]. The vertical dotted lines
correspond to the minimal �nal macroscopic Psc and probabilities P

m
c (N ), where

for N = 11, 101 the probabilities are too close to zero to be distinguished. The inset
in panel a) shows the erasure e�ciency of a SUB compared to a symmetric MLB
one, (ηs − ηm)/ηs for N = 101 using the optimal and the �xed-energy protocol.

compared to τc , hence the parameter K is small. Using Eqs. (A.73) (A.74), the parameter K
can be expressed as

Klow (p f ,τ ) = 8
[

1 − √
2p f

2τ + ln(2p f )

]2

. (3.167)

Plugging Eq. (3.167) into Eq. (A.75), one has for the heat dissipation

β qlow (p f ,τ ) =
2
(
1 − √

2p f
)2

τ
− ∆s(1/2,p f ). (3.168)

Signi�cantly, the �rst term in Eq. (3.168), which could be interpreted as the irreversible
dissipation, is consistent with the low dissipation assumption made in Refs. [44, 161, 162].
Here, the expression for the heat in Eq. (3.168) di�ers from that of a Fermi-rates unit at low
dissipation. The heat dissipated by a SUB in the high (qhiдh) and low-dissipation limit (qlow )
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are the same as those of the microscopic unit and therefore given by Eqs. (3.166) and (3.168),
respectively. The heat dissipated by a symmetric MLB in the high (Qhiдh) and low-dissipation
limit (Qlow ) are readily derived using Eq. (3.127) with results from Eqs. (3.166) and (3.168).
For small erasure (p f → 1/2), the expression for the heat in the low-dissipation limit in Eq.
(3.168) simpli�es to

qlow ≈ 2
(
1 + 1

τ

) (
1
2 − p f

)2
. (3.169)

Using the approximation for the majority-logic decoding in the limit of small erasure and
large N in Eq. (3.129), the ratio κ between the erasure e�ciency of a symmetric MLB and a
SUB

κ ≡ ηm(P f ,N ,τ )
ηs(p f ,τ )

≈ 2
π
, (3.170)

is independent of the erasure duration τ and �nal erasure error.
Fig. 3.30a) compares the dissipated heat of a SUB and a symmetric MLB for di�erent

erasure durations logτ using the optimal protocol applied to a given erasure process from
Pi = 1/2 to P f .

Additionally, the approximate solutions for the low- and high-dissipation limit in Eqs.
(3.166) and (3.168) are overlaid. As can be seen, the symmetric MLB under the optimal
protocol is still more e�cient in the fast erasure region, where the erasing duration τ
approaches the minimal erasure time τ sc (p f ) of a SUB. Except for extremely fast erasure
processes, the full numerical solution of the heat dissipated by the symmetric MLB is in
excellent agreement with the low-dissipation approximation in Eq. (3.169). This suggests
that the calculation of the dissipated heat of a symmetric MLB built upon microscopic
Arrhenius-rate units under the optimal erasure protocol can be simpli�ed by using the more
convenient Eq. (3.169) instead of the numerically more involving procedure elaborated in
Appendix A.5.

In panel 3.30b) the ratio between the e�ciency of a symmetric MLB and a SUB are
compared for the same erasure process. In agreement with the observation made in panel a)
that the heat dissipation in the fast erasure region is signi�cantly reduced for a symmetric
MLB, we note in panel b) that the erasure e�ciency of a symmetric MLB is considerably
higher than that of a SUB (κ > 1) in this region. It is interesting to notice that even though
the approximate expression for the e�ciency ratio in Eq. (3.170) is theoretically only valid
in asymptotic limit P f → 1/2, the full numerical solutions are in good agreement with the
approximate solution (2/π ) for a large range of values for P f .

We therefore conclude that with the aid of symmetric majority-logic decoding, the
energetically optimized erasure processes can be accelerated, be performed more precise at
a lower cost. Hence, for large-N symmetric MLBs the speed-precision-e�ciency trade-o�
is signi�cantly lifted. We remark that the optimization procedure of the Fermi-rates unit
model is demonstrated in Appendix A.5 and was already studied in Ref. [95]. The results on
the performance of a symmetric MLB built upon Fermi-rates units are qualitatively similar
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Figure 3.30: a) Comparison between the dissipated heat of a SUB and a symmetric MLB
(N = 101) based on Arrhenius-rates units as a function of erasure duration logτ
for the optimal erasure protocol with P f = 0.1. In addition to the full numerical
solution of Eq. (A.75), the analytic low- and high-dissipation solutions in Eqs.
(3.168) and (3.166) are displayed. The vertical dotted line corresponds to the
logarithm of the critical time logτ sc (0.1) of a single microscopic unit for this
speci�c erasure process. b) Ratio between the erasure e�ciencies of a symmetric
MLB (N = 101) and a SUB as a function of the �nal macroscopic probability
P f for the optimal protocol with the erasure times τ = 3, 5. The red dotted line
corresponds to the small-erasure and large-N approximation given by Eq. (3.170)
and the vertical black dotted lines represent the minimal erasure error Psc (τ ).

to those for the Arrhenius-rates unit model discussed above and thus omitted. It should
however be emphasized that the advantages of employing the symmetric majority-logic
decoding for information processing are preserved under a change between these two
di�erent microscopic models.





Chapter 4
Coarse-Graining in Stochastic

Thermodynamics

4.1 Introduction

In Sec. 3.2.1 we established a thermodynamic description for average values across scales
- microscopic, mesoscopic and mean �eld - in the three-state model. In fact, the di�erent
thermodynamic descriptions can be extended towards �uctuations and for more general
many-body systems, if the assumption of all-to-all interactions is retained. This is achieved
by considering a system made up of N identical and all-to-all interacting units with q discrete
states which is coupled to multiple heat reservoirs and subjected to generic autonomous
and non-autonomous external forces:

At the microscopic level, the system is characterized by microstates which correspond
to the many-body states that de�ne the state of each of the units. Owing to the all-to-all
interactions, the microscopic stochastic dynamics ruled by a microscopic Markov master
equation can be exactly coarse grained to a mesoscopic stochastic dynamics governed by
a mesoscopic Markov master equation, where the system is speci�ed by the global occu-
pation numbers of each of the unit states. At both levels, the transition rates satisfy the
local detailed balance condition and are thus thermodynamically consistent, whereby the
mesoscopic transition rates di�er from the microscopic ones by an entropic factor. The
latter accounts for the internal structure of the mesostates re�ecting that the microstates
insisde the mesostates are energetically indistinguishable. It will be demonstrated that the
stochastic thermodynamics is invariant under this dynamically exact coarse-graining, if the
microstates inside each mesostate are equiprobable.

In order to compute �uctuations at macroscopic scales, N →∞, (i.e. �uctuations that

99
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are extensive in and thus scale exponentially with the system size [163]), we employ a path
integral representation of the stochastic dynamics known as Martin-Siggia-Rose formalism
[164, 165]. Employing this formalism, we �nd that, as in the q-state clock models, the
mesoscopic stochastic dynamics exactly reduces to a nonlinear mean-�eld rate equation for
the deterministic mesoscopic state variables which correspond to the most likely values of
the occupation of each unit state. Again, the nonlinear rates satisfy local detailed balance and
the deterministic mean-�eld thermodynamics is thus thermodynamically consistent. In the
deterministic macroscopic limit the �uctuating Shannon entropy (2.63) vanishes identically
and only the aforementioned internal entropy due to the equienergetic microstates inside the
mesostates remains. Remarkably, in spite of being deterministic, the internal entropy takes
the form of a Shannon entropy for the deterministic occupation in the macroscopic limit.
The macroscopic �uctuations will be shown to satisfy the detailed �uctuation theorem in
Eq. (2.105), which will also be derived at the microscopic and mesoscopic level, and are thus
also thermodynamically consistent. The methodology to calculate macroscopic �uctuations
is employed in a semi-analytically solvable Ising model.

Furthermore, as a complement to the study of underdamped many-body systems with
all-to-all interactions, we also want to investigate coarse-graining in underdamped systems.
For this purpose, we will consider two coupled underdamped particles as a mininmal
underdamped model that contains the necessary key ingredients. Among the many coarse-
graining schemes preserving thermodynamic consistency that have been proposed in the
literature [99–111], we want to apply three di�erent methods that have proven instrumental
for underdamped stochastic dynamics governed by master equations:

First, the most straightforward approach where a subset of states is explicitly coarse-
grained and the e�ective thermodynamics is de�ned for that reduced dynamics as one
formally would for the full dynamics [112, 113]. Next, an approach based on splitting the
full system in two parts resulting in e�ective second laws for each parts which are modi�ed
by a term describing the transfer of mutual information between each parts. This approach
provides a convenient framework to describe how a Maxwell demon [166] mechanism can
produce an information �ow that is consumed by the system to drive processes against their
spontaneous direction [114–117]. Finally, the so-called Hamiltonian of mean force approach
which introduces a notion of energy for a system strongly coupled to its environment
[118–120].

In particular, we will compare the e�ective thermodynamic descriptions resulting from
these coarse-graining schemes for two distinct physical limits: The e�ective thermodynamics
based on marginalization and the Hamiltonian of mean force become equivalent and capture
the correct global thermodynamics in the limit of time-scale separation. In this limit, the
second particle has a much faster relaxation dynamics compared to the �rst one so that it
instantaneously relaxes to a local equilibrium with respect to the coordinates of the �rst
particle. Conversely, the thermodynamics based on the slow part of the bipartite structure
does not agree with the full thermodynamics. The mismatch corresponds to the entropic
contribution due to the coupling of the second particle. Physically, in the limit of time-scale
separation the coarse-grained particle becomes part of the heat reservoir. Moreover, in the
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limit where one particle has an exceedingly large mass compared to the other one, we will
�nd that the former becomes a work source acting on the latter. In that case, the e�ective
thermodynamics emerging from the �rst two coarse-graining schemes, marginalization
and bipartite structure, again captures the correct global thermodynamics (at least up to
a trivial macroscopic friction term in the work source). In contrast, we will show that the
Hamiltonian is incompatible with that limit. These theoretical predictions will be con�rmed
using an analytically tractable model made up of two linearly coupled harmonic oscillators.

4.2 Many-Body Systems with All-To-All Interactions

We start by revisiting the coarse-graining applied on the all-to-all interacting many-body
systems in Sec. 3.2. In the following, the thermodynamics under this coarse-graining will be
extended to the �uctuating level for a more general setup of all-to-all interacting systems.

4.2.1 Stochastic Dynamics

4.2.1.1 Microscopic Description

Let us consider a system that consists of N all-to-all interacting identical and classical units
that consist of q states i with energies ϵi(λt ) that are varying in time according to a known
protocol λt of an external driving. The system is coupled with multiple heat reservoirs
ν = 1, 2, . . . ,L at inverse temperatures β (ν ). Each unit is assumed to be fully connected, i.e.
any state of a given unit can be reached within a �nite number of steps from all other states
of that unit, so that the global system is irreducible. Moreover, we suppose that all units
are subjected to generic nonconservative forces f (ν )ij . Depending on whether a transition is
aligned with or acting against the nonconservative force, the latter fosters or represses the
transition from state j to i . For generality, the force is assumed to be di�erent depending on
which heat reservoir ν the system is exchanging energy with during the transition from j to
i . Until explicitly states otherwise, we will take N to be �nite in the following.

The many-body system is unambiguously characterized by a microstate

α = (α1, . . . ,αi , . . . ,αN ), αi = 1, 2, . . . ,q. (4.1)

The system energy consists of the state occupation of the units and the interactions between
them. For all-to-all interactions, we readily determine the energy of the system in a microstate
α as follows,

eα (λt ) =
q∑
i=1

{
Ni(α) ϵi(λt ) +

ui(λ′t )
2N Ni(α)

[
Ni(α) − 1

]
+

∑
j<i

uij(λ′t )
N

Ni(α)Nj(α)
}
, (4.2)
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where ui(λ′t )/N and uij(λ′t )/N denote the pair potential of units occupying the same or
di�erent single-unit states, respectively. These interactions can be tuned by an external
driving according to a known protocol λ′t , hence λt =

(
λt , λ

′
t

)>. Moreover, Ni(α) refers to
the number of units Ni occupying the single-unit state i for a given microstate α .

The stochastic jump process is governed by an irreducible Markovian master equation
which describes the time evolution of the microscopic probability pα for the system to be in
the microstate α as follows,

Ûpα (t) =
∑
α ′

wαα ′(λt )pα ′(t) , (4.3)

with the microscopic rateswαα ′(λt ) for transitions from α ′ to α that in general depend on the
current value of the driving parameter λt . We note that probability conservation is ensured
by the stochastic property of the transition rate matrix,

∑
α wαα ′(λt ) = 0. The transition

from α ′ to α is induced by one of the L heat reservoirs, thus

wαα ′(λt ) =
L∑
ν=1

w (ν )αα ′(λt ). (4.4)

Here, for simplicity we assume the additivity property of the microscopic rates, on which
the validity of the following does not rely on. For a more general case than in Eq. (4.4) we
refer to Ref. [133]. The microscopic transition rates that specify the heat reservoir satisfy
the microscopic local detailed balance condition separately,

w (ν )αα ′(λt )
w (ν )α ′α (λt )

= e−β
(ν )

[
eα (λt )−eα ′(λt )−f (ν )αα ′

]
, (4.5)

which in turn ensures the thermodynamic consistency of the system. Here, f (ν )αα ′ is the
element of the nonconservative force vector f (ν ) that is equal to f (ν )ij , if the microscopic
transition from α ′→ α corresponds to a single-unit transition from j → i . The microscopic
local detailed balance condition (4.5) that constrains the asymmetric part of the microscopic
transition rates. We also need to make the crucial assumption that the symmetric part of
the microscopic transition rates (e.g. kinetic prefactor in Arrhenius rates) does not depend
on the kinetics and is thus not a function of the microstates.

If the transition rates are kept constant, λt = λ, the dynamics will relax into a unique
stationary state, ∂tpsα (λ) = 0. If furthermore all heat reservoirs have the same inverse
temperature, β (ν ) = β ∀ν , and the nonconservative forces vanish, f (ν ) = 0 ∀ν , the stationary
distribution coincides with the equilibrium one which satis�es the microscopic detailed
balance condition,

wαα ′(λ)peqα ′(λ) = wα ′α (λ)peqα (λ). (4.6)

The local detailed balance (4.5) implies that the microscopic equilibrium distribution assumes
the canonical form,

p
eq
α (λ) = e−β[eα (λ)−aeq (λ)] , (4.7)
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with the microscopic equilibrium free energy

aeq(λ) = − 1
β

ln
∑
α

e−βeα (λ) . (4.8)

4.2.1.2 Mesoscopic Description

The microscopic state space grows exponentially with the number of units, | |α | | = qN . Yet,
owing to the all-to-all interactions, there are equi-energetic microstates that are characterized
by the same values for the occupation numbers Ni . This means that the energetics (4.2) and
thus the microscopic transition rates (4.4) do not depend on which particular unit is in a
given state but only on the global occupation numbers, i.e. the number of units occupying
each state of the unit. As a consequence, the microscopic dynamics can be marginalized
into a mesoscopic one, where the mesostate N ≡ (N1,N2, . . . ,Nq) now identi�es the state
of the system. We denote by αN the equienergetic microstates α inside a mesostate N , that
is microstates for which the relation

eα
N
(λt ) = EN (λt ), (4.9)

holds. The number ΩN of microstates which belong to a mesostate is given by

ΩN =

(
N

N1

) (
N − N1
N2

)
· · ·

(
N − N1 − . . . − Nq

Nq

)
=

N !
q∏
i=1

Ni !
. (4.10)

We introduce the mesoscopic probability to observe the mesostate N

PN (t) ≡
∑
α
N

pα
N
(t) , (4.11)

and we have for the conditional probability to �nd the system in a microstate αN that
belongs to that mesostate,

Pα
N
(t) =

pα
N
(t)

PN (t) , (4.12)

for which because of probability conservation holds that∑
α
N

Pα
N
(t) = 1. (4.13)

With Eqs. (4.9), (4.11) and (4.13) the microscopic master equation (4.3) can be exactly coarse-
grained as follows,

∂tPN (t) =
∑
N ′

∑
α
N

∑
α ′
N ′

wα
N
,α ′

N ′
(λt ) Pα ′

N ′
(t) PN ′(t) =

∑
N ′

WNN ′(λt ) PN ′(t) , (4.14)
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with the mesoscopic transition ratesWNN ′(λt ) = ΩN ,N ′ wN N ′ (λt ). The quantityΩN ,N ′ takes
into account that only those microstates αN and α ′

N ′ contribute to the sum in Eq. (4.14)
which are connected to each other. This amounts to determine how many microstates α
belong to the mesostate N under the constraint that they are connected to microstates α ′
belonging to the mesostate N ′. The combinatorial problem is readily solved by noting that
the occupation number that is decremented during the transition corresponds to the wanted
quantity, i.e.

ΩN ,N ′ =

q∑
i=1

N ′i δN ′i ,Ni+1 , (4.15)

where Ni + 1 is understood as (Ni + 1) mod q. It is easy to verify that the stochastic property
of the transition rate matrix is preserved by the coarse-graining,

∑
N WNN ′(λt ) = 0. The

mesoscopic transition rates are still consisting of multiple contributions due to the di�erent
heat reservoirs,

WNN ′(λt ) =
L∑
ν=1

W (ν )NN ′(λt ), (4.16)

that separately preserve the microscopic local detailed balance relation (4.5) at the mesoscopic
level,

W (ν )NN ′(λt )
W (ν )N ′N (λt )

= e−β
(ν )

[
A(ν )
N
(λt )−A(ν )N ′(λt )−f

(ν )
N ,N ′

]
, (4.17)

with the notation f (ν )N ,N ′ that is de�ned as f (ν )α ,α ′ in Eq. (4.5). Here, we introduced the free
energy of a mesostate

A(ν )N (λt ) = EN (λt ) − 1
β (ν )

SintN , (4.18)

and used the Boltzmann entropy

SintN = lnΩN , (4.19)

along with the relation

ΩN

ΩN ′
=
ΩN ,N ′

ΩN ′,N
, (4.20)

which can be seen by using Eqs. (4.10) and (4.15).
If the transition rates are kept constant, λt = λ, the dynamics will reach a unique

stationary state, ∂tPsN (λ) = 0. If furthermore all heat reservoirs have the same inverse
temperature, β (ν ) = β ∀ν , and the nonconservative forces vanish, f (ν ) = 0 ∀ν , the stationary
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distribution coincides with the equilibrium one which satis�es the mesoscopic detailed
balance condition,

WNN ′(λ) PeqN ′(λ) =WN ′N (λ) PeqN (λ). (4.21)

and because of Eq. (4.17) assumes the canonical form,

P
eq
N (λ) = e−β[AN (λ)−Aeq (λ)], (4.22)

with the mesoscopic equilibrium free energy

Aeq(λ) = − 1
β

ln
∑
N

e−βAN (λ) . (4.23)

The marginalization of the equienergetic microstates signi�cantly reduces the complexity
of the system since the mesoscopic state space asymptotically grows like a power law,

| |N | | =
N∑

N1=0

N1∑
N2=0
· · ·

Nq−2∑
Nq−1=0

1 N→∞∼ Nq−1

(q − 1)! , (4.24)

as opposed to the exponential growth of the microscopic state space.
Since it will be useful further below, we now prove that for a stationary mesoscopic

distribution, all microstates that belong to the respective mesostates are uniformly dis-
tributed. For �nite systems, the stationary microscopic probabilities can be determined via
the spanning-tree formula [150]. A spanning tree, T(G) of a graph G consists only of edges
that are also edges of G and contains all vertices (microstates α ) of G. Further, a spanning
tree T ′(G) is connected and contains no circuits. We write T (µ)α (G) for the µth spanning
tree rooted in α , that is a tree with branches that are directed towards the vertex α . The
spanning-tree formula reads

psα (λ) =

∑
µ
T (µ)α (G)∑

α

∑
µ
T (µ)α (G)

=

∑
Tα (G)

∏
α ′,α ′′ such that

current is directed to α

wα ′α ′′(λ)∑
α

∑
Tα (G)

∏
α ′,α ′′ such that

current is directed to α

wα ′α ′′(λ) . (4.25)

First we note that the transition rates do not depend on the microstates α and α ′ belonging
to the same pair of mesostates (N ,N ′), i.e. wα

N
α ′
N ′
(λ) = const ∀αN ,α

′
N ′ . Secondly, the

number of possible transitions for any microstate belonging to a given mesostate is a constant
such that the number of spanning trees rooted in αN is constant for all αN . It therefore
holds that all microstates belonging to the same mesostate are equally probable,

psα
N
(λ) =

∑
TαN (G)

∏
α ′
N ′ ,α

′′
N ′′ such that

current is directed to α
N

wα ′
N ′ ,α

′′
N ′′
(λ)

∑
N

∑
α
N

∑
TαN (G)

∏
α ′
N ′ ,α

′′
N ′′ such that

current is directed to α
N

wα ′
N ′ ,α

′′
N ′′
(λ) = const ∀αN , (4.26)
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and we therefore �nd with Eq. (4.12) that

Psα
N
=

1
ΩN
, psα

N
(λ) = PsN (λ)

ΩN
. (4.27)

We stress that the global state at the mesoscopic level need not to be at equilibrium for the
last two equations to hold.

We demonstrated that for thermodynamically consistent and discrete many-body systems
with all-to-all interactions with no nontrivial kinetic dependencies there is an exact coarse-
graining of the microscopic stochastic dynamics characterized by many-body states towards
a mesoscopic stochastic dynamics that is fully characterized by the global occupation of the
di�erent unit states. It is however a priori not ensured that the thermodynamic structures
built on top of these Markov process using stochastic thermodynamics are equivalent. This
issue is investigated in the following section.

4.2.2 Stochastic Thermodynamics

4.2.2.1 Trajectory De�nitions Revisited

After having established the stochastic dynamics at microscopic and mesoscopic scales,
the following is devoted to formulating the stochastic thermodynamic quantities across
these scales. To this end, we �rst introduce the �uctuating quantities at the level of a
single trajectory de�ned in Eq. (2.57) and depicted in Fig. 2.3. The elementary trajectory
observables have already been generically de�ned in Sec. 2.3.2.1. For better readability, we
brie�y state them again for the model introduced in the preceding section.

The stochastic energy is de�ned as

e[m(τ ), t] =
∑
α

eα (λt )δα ,m(τ )(t), (4.28)

and its time-derivative can be decomposed as follows,

dt e[m(τ ), t] = Ûq[m(τ ), t] + Ûw[m(τ ), t], (4.29)

with the stochastic heat and work currents

Ûq[m(τ ), t] =
L∑
ν=1

M∑
j=1

δ (ν − νj)δ (t − τj)
[
eα j (λτj ) − eα j−1(λτj ) − f

(νj )
α j ,α j−1

]
(4.30)

=

L∑
ν=1
−

M∑
j=1

δ (t − τj)δ (t − τj) 1
β (νj )

ln
w
(νj )
α j ,α j−1(λτj )

w
(νj )
α j−1,α j (λτj )

=

L∑
ν=1
Ûq(ν )[m(τ ), t]

Ûw[m(τ ), t] =
∑
α

[ Ûλt · ∇λt eα (λt )] δα ,m(τ )(t)���
m(τ )(t)

+

L∑
ν=1

M∑
j=1

δ (ν − νj)δ (t − τj) f (νj )α j ,α j−1
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= Ûwλ[m(τ ), t] +
L∑
ν=1
Ûw (ν )
f
[m(τ ), t], (4.31)

where we introduced the notation ∇λt =
(
∂λt , ∂λ′t

)>. It will be proven instrumental to split
the �uctuating work current into the contribution Ûwλ[m(τ ), t] from the nonautonomous
driving and the dissipative contribution

∑L
ν=1 Ûw (ν )f [m(τ ), t] due to the nonconservative forces.

Next, the stochastic system entropy is de�ned as follows

s[m(τ ), t] = −
∑
α

lnpα (t) δα ,m(τ )(t), (4.32)

and its time-derivative can be split as

dt s[m(τ ), t] = Ûse[m(τ ), t] + Ûσ [m(τ ), t], (4.33)

with the stochastic entropy �ow

Ûse[m(τ ), t] =
L∑
ν=1
−

M∑
j=1

δ (ν − νj)δ (t − τj) ln
w
(νj )
α j ,α j−1(λτj )

w
(νj )
α j−1,α j (λτj )

=

L∑
ν=1

β (ν ) Ûq(ν )[m(τ ), t], (4.34)

and the stochastic entropy production rate

Ûσ [m(τ ), t] = −
∂tpα (t)
pα (t)

����
m(τ )
+

L∑
ν=1

M∑
j=1

δ (ν − νj)δ (t − τj) ln
w
(νj )
α j ,α j−1(λτj )pα j−1(t)
w
(νj )
α j−1,α j (λτj )pα j (t)

. (4.35)

It will prove useful to also consider the time-integrated stochastic �rst law

∆e[m(τ ), t] ≡
L∑
ν=1

δe(ν )[m(τ ), t] = δq[m(τ ), t] + δw[m(τ ), t], (4.36)

with the time-integrated �uctuating energy current

δe(ν )[m(τ ), t] =
t∫

0

dt ′
M∑
j=1

δ (ν − νj)δ (t − τj)[eα j − eα j−1]. (4.37)

and the �uctuating heat and work

δq[m(τ ), t] =
L∑
ν=1
−

t∫
0

dt ′
M∑
j=1

δ (ν − νj)δ (t − τj) 1
β (νj )

ln
w
(νj )
α j ,α j−1(λτj )

w
(νj )
α j−1,α j (λτj )

= (4.38)

=

L∑
ν=1

(
δe(ν )[m(τ ), t] − δw (ν )f [m(τ ), t]︸                               ︷︷                               ︸

δq(ν )
f
[m(τ ),t]

)
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δw[m(τ ), t] =
t∫

0

dt ′
∑
α

[ Ûλt ′ · ∇λt ′ eα (λt ′)] δα ,m(τ )(t ′)︸                                           ︷︷                                           ︸
δwλ [m(τ ),t]

+

L∑
ν=1

t∫
0

dt ′
M∑
j=1

δ (ν − νj)δ (t − τj)f (ν )α j ,α j−1︸                                      ︷︷                                      ︸
δw (ν )

f
[m(τ ),t]

.

(4.39)

Using Eqs. (4.35) and (4.38), the entropy production can be written as follows

δσ [m(τ ), t] = − ln
pαM (t)
pα0
(0) +

L∑
ν=1

t∫
0

dt ′
M∑
j=1

δ (ν − νj)δ (t ′ − τj) ln
w
(νj )
α j ,α j−1(λτj )

w
(νj )
α j−1,α j (λτj )

= − ln
pαM (t)
pα0
(0) −

L∑
ν=1

β (ν )δq(ν )[m(τ ), t].
(4.40)

4.2.2.2 Generating Function Techniques Revisited

Microscopic Description

In the preceding section we introduced all relevant �uctuating thermodynamic quantities
and now use the generating function techniques presented in Sec. 2.3.2.2 to determine if
their statistics is invariant under the dynamically exact coarse-graining in Eq. (4.14). To this
end, we �rst recall the equations of motion (2.85) for the generating functions associated
with the change δo[m(τ ), t] of the �uctuating microscopic observable o along a trajectory
m(τ ) conditioned to be in a microstate α at time t ,

Ûдα (γo, t) =
∑
α ′

wαα ′(γo,λt )дα ′(γo, t), (4.41)

with the biased microscopic transition rates

wαα ′(γo,λt ) = −γo Ûoα δα ,α ′ +
L∑
ν=1

e−γo o
(ν )
αα ′(λt )w (ν )αα ′(λt ). (4.42)

For state functions, δo[m(τ ), t] = ∆o[m(τ ), t] = o[m(τ ), t]−o[m(τ ), 0], the last equation reduces
to [cf. Eq. (2.86)]

д(γo, t) =
∑
α ,α ′

e−γo [oα (t)−oα ′(0)] pα (t)pα ′(0). (4.43)

Using Eqs. (4.28) and (4.32), we have for the microscopic generating functions associated
with the stochastic state-like observables energy and entropy,

д(γe , t) =
∑
α ,α ′

e−γe [eα (λt )−eα ′(λ0)] pα (t)pα ′(0) (4.44)
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д(γs , t) =
∑
α ,α ′

eγs ln pα (t )
lnpα ′ (0) pα (t)pα ′(0). (4.45)

Moreover, substituting Eqs. (4.30), (4.31), (4.34) and (4.35) into Eq. (4.41), we obtain for the
microscopic generating functions associated with the currents

Ûдα (γq, t) =
L∑
ν=1

∑
α ′

e−γq
[
eα (λt )−eα ′(λt )−f (ν )αα ′

]
w (ν )αα ′(λt ) дα ′(γq, t) (4.46)

Ûдα (γw , t) = −γw Ûλt ·
[∇λt eα (λt )] дα (γw , t) + L∑

ν=1

∑
α ′

e−γw f (ν )αα ′ w (ν )αα ′(λt ) дα ′(γw , t) (4.47)

Ûдα (γse , t) =
L∑
ν=1

∑
α ′

e
γse ln

w (ν )
αα ′ (λt )

lnw (ν )
α ′α (λt ) w (ν )αα ′(λt ) дα ′(γse , t) (4.48)

Ûдα (γσ , t) = γσ
∂tpα (t)
pα (t) дα (γσ , t) +

L∑
ν=1

∑
α ′

e
−γσ ln

w (ν )
αα ′ (λt )pα ′ (t )

w (ν )
α ′α (λt )pα (t ) w (ν )αα ′(λt ) дα ′(γσ , t). (4.49)

Mesoscopic Description

We rewrite the microscopic generating function (2.73) as follows

дα
N
(γo, t) = PN (t) Pα

N
(t) 〈e−γo δo[m(τ ),t]〉α

N
, (4.50)

and de�ne the mesososcopic generating function

GN (γO , t) ≡
∑
αN

дα
N
(γo , t) = PN (t)

∑
αN

Pα
N
(t) 〈e−γo δo[m(τ ),t]〉α

N
, (4.51)

where 〈·〉α
N

and 〈·〉N denote ensemble averages over all trajectories that are in the microstate
α belonging to a given mesostate N and over all those that are in mesostate N at time
t , respectively. Moreover, O denotes a mesoscopic observable de�ned along a trajectory
in propagating in the mesoscopic state space, M(τ ), which we write as O[M(τ ), t] in the
following. Since the trajectory observables o = e,q,w, se do not depend on microscopic
information [cf. Eqs. (4.28)–(4.31)], we have for those observables that o[m(τ ), t] = O[M(τ ), t]
and Eq. (4.51) closes as follows

GN (γO , t) = PN (t)
∑
αN

Pα
N
(t) 〈e−γO δO[M(τ ),t]〉N

= PN (t) 〈e−γO δO[M(τ ),t]〉N , O = E,Q,W , Se .

(4.52)

Thus, the microscopic generating function for the energy (4.44) in mesoscopic representation
reads

G(γE , t) =
∑
N ,N ′

e−γE [EN (λt )−EN ′ (λ0)] PN (t) PN ′(0) = д(γe , t), (4.53)
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and from the microscopic equation of motion for the generating function (4.41) we get

ÛGN (γO , t) =
∑
N ′

WNN ′(γO ,λt ) GN ′(γO , t), (4.54)

with the mesoscopic biased generator

WNN ′(γO ,λt ) = −γO ÛON (λt )δN ,N ′ +
L∑
ν=1

e−γO O (ν )
N ,N ′(λt )W (ν )NN ′(λt ), (4.55)

for O = E,Q,W , Se . More explicitly, Eqs. (4.46), (4.47) and (4.48) can be rewritten in
mesoscopic representation as follows

ÛGN (γQ , t) =
L∑
ν=1

∑
N ′

e−γQ
[
EN (λt )−EN ′(λt )−f (ν )N N ′

]
W (ν )NN ′(λt ) GN ′(γQ , t) (4.56)

ÛGN (γW , t) = −γW Ûλt ·
[∇λt EN (λt )] GN (γW , t) +

L∑
ν=1

∑
N ′

e−γW f (ν )
N N ′ W (ν )NN ′(λt ) GN ′(γW , t)

(4.57)

ÛGN (γSe , t) =
L∑
ν=1

∑
N ′

e
γSe

[
ln

W (ν )
N N ′ (λt )

W (ν )
N ′N (λt )

−
(
Sint
N
−Sint

N ′
) ]

W (ν )NN ′(λt ) GN ′(γSe , t). (4.58)

It is easy to verify that
∑

N
ÛGN (γO , t) =

∑
α Ûдα (γo, t) for O = E,Q,W , Se and o = e,q,w, se .

Thus, we �nd that the statistics of the stochastic �rst law in microscopic representation
(4.29) is invariant under coarse-graining.

Conversely, the stochastic system entropy (4.32) and stochastic entropy production rate
(4.35) are functions of the microscopic ensemble probability. The corresponding equation for
the mesoscopic generating function (4.51) would, in general, not be closed and the stochastic
entropy balance in microscopic representation (4.33) is, in general, not invariant under the
coarse-graining. Though, there are two generic cases for which an exact coarse-graining is
possible.

First, for the choice of a microscopic initial condition, p∗α ′(0) = P∗N ′(0)/ΩN , where all
microstates are uniformly distributed inside the respective mesostates according to Eq.
(4.27). The local equilibrium is preserved at all times since the Hamiltonian (4.2) and thus the
microscopic transition rates (4.4) do not discriminate between the equienergetic microstates
inside the mesostate. For such an initial condition, the mesoscopic generating functions
associated with the system entropy and entropy production rate read, respectively

G(γS , t) =
∑
N ,N ′

e
γS

[
ln PN (t )

P∗
N ′ (0)

−
(
Sint
N
−Sint

N ′
) ]

PN (t)P∗N ′(0) = д(γs , t) (4.59)

ÛGN (γΣ , t) = γΣ
∂tPN (t)
PN (t) GN (γΣ , t) +

L∑
ν=1

∑
N ′

e
−γΣ ln

W (ν )
N N ′ (λt ) PN ′ (t )

W (ν )
N ′N (λt ) PN (t ) W (ν )NN ′(λt ) GN ′(γΣ , t), (4.60)
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with
∑

N
ÛGN (γΣ , t) =

∑
α Ûдα (γσ , t).

Secondly, according to Eq. (4.27), if the mesoscopic system is in a stationary state
the microscopic probabilities inside a mesostate are also stationary and thus uniformly
distributed regardless of any possible nonuniform distribution at intial times. Consequently,
the stationary mesoscopic generating functions associated with the system entropy and
entropy production rate become, respectively

Gs(γS ,λ) =
∑
N ,N ′

e
γS

[
ln

Ps
N
(λ)

Ps
N ′ (λ)

−
(
Sint
N
−Sint

N ′
) ]

PsN (λ)PsN ′(λ) = дs(γs ,λ) (4.61)

ÛGs
N (γΣ ,λ) =

L∑
ν=1

∑
N ′

e
−γΣ ln

W (ν )
N N ′ (λ) P

s
N ′ (λ)

lnW (ν )
N ′N (λ) P

s
N
(λ) W (ν )NN ′(λ) Gs

N ′(γΣ ,λ), (4.62)

with
∑

N
ÛGs
N (γΣ ,λ) =

∑
α Ûдsα (γσ ,λ). Hence we conclude that the statistics of the stochastic

entropy balance (4.33) is invariant under the coarse-graining, if one considers initial condi-
tions which are uniform within each mesostate, or for systems in stationary states. In fact,
Eqs. (4.27), (4.59) and (4.60) represent a potential strategy to infer the entropy �uctuations
in the mesoscopic state space at �nite-time: Before starting the actual measurement, the
non-autonomous driving is switched o� and the system is reaching a unique stationary
state. The system can now be non-autonomously driven out of its steady state during the
measurement while the �nite-time expressions for the mesoscopic generating functions in
Eqs. (4.59) and (4.60) are still valid.

Comparing Eqs. (4.44), (4.46) and (4.47) with Eqs. (4.53), (4.56) and (4.57), we note that
the evolution of the generating functions associated with the �rst-law observables, that is
energy, heat and work, have the same form in microscopic and mesoscopic representation.
In contrast, the mesoscopic generating functions associated with the entropies do not have
the same form as the microscopic ones but also contain the internal entropy Sint . This is
due to the coarse-grained degrees of freedom that give rise to Boltzmann entropies (4.19)
assigned to the mesostates. Physically, the conditions for the invariance of the stochastic
entropy balance [Eqs. (4.59) and (4.60) or (4.61) and (4.62)] can be understood as follows. If
the microscopic degrees of freedom inside the mesostates are not equiprobable, there are
microscopic currents that can not be grasped at the mesoscopic level and which only vanish
identically if uniform probability distributions inside the mesostates are achieved.

So far, we have established two descriptions of the stochastic thermodynamics at the
microscopic and mesoscopic level. These two formulations are equivalent for the stochastic
�rst law. In case of the stochastic entropy balance, the microscopic and mesoscopic ther-
modynamics coincide under the condition that the microstates inside each mesostate are
equiprobable. The thermodynamics consistency at each level is ensured by the respective
local detailed balance conditions in Eqs. (4.5) and (4.17). Alternatively, the thermodynamic
consistency is also encoded by the so-called detailed �uctuation theorem for the stochastic
entropy production derived in Eq (2.105). In the following, we will discuss this symmetry of
the �uctuations of the entropy production across scales as it will be of importance further
below.
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4.2.2.3 Detailed Fluctuation Theorems Across Scales

Let us consider a forward and backward process as depicted in Fig. 2.4. In this case, the
system starts from a state that is at equilibrium with respect to the reference reservoir ν = 1,

p
eq
α0
(λ0) = e−β

(1)[eα0 (λ0)−aeq (λ0)] . (4.63)

The system then evolves under the driven microscopic Markov process according to the
forward protocol λt ′, t ′ ∈ [0, t]. For the backward process the system is initially prepared in
the �nal equilibrium state of the forward process

p
eq
αM
(λt ) = e−β

(1)[eαM (λt )−a
eq (λt )] , (4.64)

and subsequently evolves under the time-reversed driven microscopic Markov process
according to the backward protocol λ̃t ′ = λt−t ′, t ′ ∈ [0, t]. Then, according to Eq. (2.108),
the following symmetry of the microscopic generating function holds

д
(
γ
λ
, {γ (ν )

f
}, {γ (ν )

e
}, t ) = д̃ (1 − γ

λ
, {1 − γ (ν )

f
}, {1 − γ (ν )

e
}, t ) e−β (1)∆a

eq
1 (λ), (4.65)

which implies the microscopic �nite-time detailed �uctuation theorem

p
(
β (1)δwλ , {δ j(ν )f } , {δ j

(ν )
e }

)
p̃
(
− β (1)δwλ , −{δ j(ν )f } , −{δ j

(ν )
e }

) = e
β (1)

[
δwλ−∆aeq1

]
+

L∑
ν=1

[
β (ν )δw (ν )

f
+
[
β (1)−β (ν )

]
δe(ν )

]
, (4.66)

where we used the compact notation for the microscopic time-integrated currents introduced
in Eq. 2.106. Moreover, ∆aeq1 = a

eq
1 (λt ) − a

eq
1 (λ0) refers to the change in global microscopic

equilibrium free energy with respect to the reservoir ν = 1 along the forward process that
only depends on the initial and �nal value of the driving protocol and thus does not �uctuate.

Analogously, we can de�ne the forward and backward process as de�ne above also in
the mesoscopic state space. In this case, the equilibrum distributions for the forward and, in
reversed order for the backward trajectory, read, respectively

P
eq
N0
(λ0) = e−β

(1)[AN0 (λ0)−Aeq (λ0)] (4.67)

P
eq
NM
(λt ) = e−β

(1)[ANM
(λt )−Aeq (λt )] . (4.68)

Crucially, all �uctuating quantities appearing in the microscopic detailed �uctuation theorem
(4.66) are invariant under the dynamically exact coarse-graining (4.14). Consequently, the
symmetry for the microscopic generating function (4.65) is also exhibited at the mesoscopic
level,

G(γ , t) = G̃(γ̃ , t) e−β (1)∆A
eq
1 (λ), (4.69)
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where ∆Aeq
1 = A

eq
1 (λt ) −A

eq
1 (λ0). Moreover, for brevity we introduced the notation

γ ≡ γΛ , {γ (ν )F
}, {γ (ν )E }, γ̃ ≡ 1 − γΛ , {1 − γ (ν )F

}, {1 − γ (ν )E }, (4.70)

where {δ J (ν )F } ≡
(
β (1)δW (1)

f
, . . . , β (L)δW (L)

f
) is the mesoscopic time-integrated autonomous

work currents and {δ J (ν )E } ≡ ([β (1) − β (2)]δE(2), . . . , [β (1) − β (L)]δE(L)
)

is the mesoscopic
time-integrated energy currents. Thus, the detailed �uctuation theorem (4.71) also holds at
the mesoscopic level,

P
(
β (1)δWλ , {δ J (ν )F } , {δ J

(ν )
E }

)
P̃
(
− β (1)δWλ , −{δ J (ν )F } , −{δ J

(ν )
E }

) = e
β (1)[δWλ−∆Aeq

1 ]+
L∑

ν=1

{
β (ν )δW (ν )

f
+[β (1)−β (ν )]δE(ν )

}
, (4.71)

where P
(
β (1)δWλ , {δ J (ν )F } , {δ J (ν )E }

)
is the probability to observe a mesoscopic nonautonomous

work β (1)δWλ , the mesoscopic time-integrated autonomous work currents {δ J (ν )F } and the
mesoscopic time-integrated energy currents {δ J (ν )E } along the forward process in the meso-
scopic state space. Conversely, P̃

(
− β (1)δWλ , {−δ J (ν )F } , {−δ J

(ν )
E }

)
is the probability to

observe a mesoscopic nonautonomous work −β (1)δWλ , the mesoscopic time-integrated
autonomous work currents {−δ J (ν )F } and the mesoscopic time-integrated energy currents
{−δ J (ν )E } along the time-reversed backward process in the mesoscopic state space.

We want to stress that the existence of the detailed �uctuation theorem for the entropy
production across scales (4.66), (4.71) ensures that the thermodynamics formulated at each of
these levels is consistent. We will make use of this result further below when we formulate
the �uctuations at the macroscopic level, that is �uctuations that scale exponentially with
the system size N .

4.2.2.4 Microscopic And Mesoscopic First And Second Law

Before turning to the macroscopic limit, for completeness, we want to formulate the thermo-
dynamics at the ensemble level on microscopic and mesoscopic scales and hereby, because
of their importance, focus on the laws of thermodynamics. Using Eq. (2.76) and Eqs. (4.44)
– (4.47) or Eqs. (4.53) – (4.57), we arrive at the microscopic or mesoscopic �rst law of
thermodynamics, respectively,

dte(t) = Ûq(t) + Ûw(t), dtE(t) = ÛQ(t) + ÛW (t), (4.72)

with the average internal energy that is equivalent at microscopic and mesoscopic scale,

e(t) =
∑
α

eα (λt ) pα (t) =
∑
N

EN (λt ) PN (t) = E(t). (4.73)
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and with the equivalent microscopic and mesoscopic heat currents

Ûq(t) =
L∑
ν=1

∑
α ,α ′

[
eα (λt ) − eα ′(λt ) − f (ν )αα ′

]
w (ν )αα ′(λt ) pα ′(t) (4.74)

=

L∑
ν=1

∑
N ,N ′

[
EN (λt ) − EN ′(λt ) − f (ν )NN ′

]
W (ν )NN ′(λt ) PN ′(t) = ÛQ(t)

as well as the equivalent microscopic and mesoscopic work currents

Ûw(t) =
∑
α

[ Ûλt · [∇λt Eα (λt )] pα (t) + L∑
ν=1

∑
α ′

f (ν )αα ′ w
(ν )
α ,α ′(λt ) pα ′(t)

]
(4.75)

=
∑
N

[ Ûλt · [∇λt EN (λt )] PN (t) + L∑
ν=1

∑
N ′

f (ν )NN ′W
(ν )
NN ′(λt ) PN ′(t)

]
= ÛW (t).

Next, with Eq. (4.59) or (4.61), respectively, we �nd the equivalence of the average system
entropy at microscopic and mesoscopic scale,

s(t) = −
∑
α

pα (t) lnpα (t) =
∑
N

[
SintN − ln PN (t)

]
PN (t) = S(t) (4.76)

ss(λ) = −
∑
α

psα (λ) lnpsα (λ) =
∑
N

[
SintN − ln PsN (λ)

]
PsN (λ) = Ss(λ). (4.77)

Using furthermore Eq. (4.60) or (4.62), respectively, the microscopic and mesoscopic second
law of thermodynamics reads

Ûσ (t) =
L∑
ν=1

∑
α ,α ′

ln
w (ν )αα ′(λt )pα ′(t)
w (ν )α ′α (λt )pα (t)

w (ν )αα ′(λt )pα ′(t)

=

L∑
ν=1

∑
N ,N ′

ln
W (ν )NN ′(λt ) PN ′(t)
W (ν )N ′N (λt ) PN (t)

W (ν )NN ′(λt ) PN ′(t) = ÛΣ(t) ≥ 0
(4.78)

Ûσ s(λ) =
L∑
ν=1

∑
α ,α ′

ln
w (ν )αα ′(λ)psα ′(λ)
w (ν )α ′α (λ)psα (λ)

w (ν )αα ′(λ)psα ′(λ)

=

L∑
ν=1

∑
N ,N ′

ln
W (ν )NN ′(λ) PsN ′(λ)
W (ν )N ′N (λ) PsN (λ)

W (ν )NN ′(λ) PsN ′(λ) = ÛΣs(λ) ≥ 0.
(4.79)
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4.2.3 Macroscopic Theory

4.2.3.1 Macroscopic Fluctuations

Thus far, we have established two equivalent representations of the stochastic dynamics
above, the microscopic and mesoscopic representation. We furthermore identi�ed the
conditions under which the thermodynamics at these levels coincide. In this section, the
question of how to infer the �uctuations in the macroscopic limit, N →∞, will be addressed.
To shed light on this question, we will employ the Martin-Siggia-Rose formalism [164,
165] which equivalently represents the Markovian jump process via a path integral. As
will be demonstrated in the following, this path-integral formalism allows to establish a
�uctuating description valid at macroscopic scales in the large deviation sense [163], that is
for �uctuations that scale exponentially with the number of units N .

For better readability, we defer a detailed presentation of the elementary concepts
underlying the construction of the path integral to appendix A.6. The mesoscopic generating
function G(γO , t) associated with a mesoscopic stochastic observable O[M(τ ), t] within the
path integral representation generically reads

G(γO , t)=
∫
D[N ]

∫
D[π ] e

t∫
0

dt ′
[
−π (t ′)· ÛN (t ′)+HγO

[N (t ′),π (t ′)]−γO Ûλt ′ ·
[
∇λt ′ON (t ′)

]
−γO dt ′ON (t ′)

]
PN (0)

≡
∫
D[N ]

∫
D[π ] eLγO [N (t

′),π (t ′)],

(4.80)

where D[X ] denotes the path-integral measure for the function X . The quantity π is
the conjugated �eld and can be physically interpreted as the instantaneous counting �eld
for variations in the mesostates dN . Moreover, the biased action functional LγO [N ,π ]
consists of the kinetic term −π ÛN , the biased Hamiltonian that accounts for the current-like
contributions to G(γO , t),

HγO [N (t
′),π (t ′)] =

L∑
ν=1

q∑
i,j=1

[
eπi (t ′)−πj (t ′) e−γOO

(ν )
i j (N (t ′)) − 1

]
W (ν )ij (λt ′,N (t ′)), (4.81)

of a contribution due to the nonautonomous driving

−γO
t∫

0

dt ′ Ûλt ′ ·
[∇λt ′ ON (t ′)

]
, (4.82)

of a state-like contribution

−γO
t∫

0

dt ′ dt ′ON (t ′) = −γO [ONM
(t) −ON0

(0)], (4.83)



116 4.2. Many-Body Systems with All-To-All Interactions

and of the initial condition ln PN (0). The quantities O (ν )ij (N ) andW (ν )ij (λ,N ) are the change
of the �uctuating mesoscopic observable O and the mesoscopic transition rate, respectively,
along a jump of the trajectory away from the mesostate N that, at the unit-state level,
corresponds to a transition from state j to i induced by the reservoir ν . For vanishing bias,
γO = 0, Eq. (4.80) reduces to the path-integral representation of the path probability in the
mesoscopic space.

To proceed, we notice that the microscopic stochastic entropy production with bounding
Gibbs states (2.103) is invariant under the dynamically exact coarse-graining (4.14). Inserting
the latter into the generic path-integral representation for a mesoscopic generating function
(4.80), we get

G(γ , t)=
∫
D[N ]

∫
D[π ] PeqN0

(λ0)·exp
{ t∫

0

dt ′
(
−γΛβ

(1) Ûλt ′ ·
[∇λt ′EN (λt ′)]+ q∑

i=1

{
−πi(t ′) ÛNi(t ′)+

+

L∑
ν=1

q∑
j=1

[
exp

{
πi(t ′)−πj(t ′)−γ (ν )F

β (ν ) f (ν )ij −γ (ν )E [β (1)−β (ν )]E
(ν )
ij

(
N (t ′))}−1

]
W (ν )ij (λt ′,N (t ′))

})}
,

(4.84)
where we used the shorthand notation from Eq. (4.70). We rescale the size-extensive state
variables to express them in terms of the size-intensive densityn ≡ N /N . In the macroscopic
limit, N → ∞, there is a single trajectory that carries all the weight of all possible paths
contributing to the path integral (4.80). This trajectory maximizes the size-intensive action
functional, max Lγ [n,π ] = Lγ [n∗,π ∗], and its coordinates are therefore determined as
follows

δLγ [n,π ]
δπ

���
n∗,π ∗

= 0,
δLγ [n,π ]

δn

���
n∗,π ∗

= 0, (4.85)

where n∗ ≡ limN ∗→∞N /N is the continuous mean-�eld density. We consequently obtain
via Eq. (4.80) the size-scaled cumulant generating function

G(Y, t) = lim
N→∞

1
N

lnG(γ , t) = LY[n∗,π ∗], (4.86)

where Y denotes a vector of �elds that count the size-extensive observables appearing in γ .
Crucially, the size-scaled cumulant generating function associated with the entropy

production (2.103) satis�es a symmetry that is formally equivalent to the one the mesoscopic
generating function (4.69) exhibits, as demonstrated in appendix A.7. Explicitly, we have

G(Y, t) = G̃(Ỹ, t) − β (1)∆Aeq
1 (λ). (4.87)

The last equation immediately stipulates the existence of a �nite-time detailed �uctuation
theorem in the spirit of Eq. (4.71) that asymptotically holds in the macroscopic limit,

lim
N→∞

1
N

ln
P
(
β (1)δWλ , {δ J (ν )F

} , {δ J (ν )E }
)

P̃
(
−β (1)δWλ ,{−δ J (ν )F

},{−δ J (ν )E }
)=β (1) [δWλ−∆Aeq

1
]
+

L∑
ν=1

[
β (ν )δW(ν )

f
+

[
β (1)−β (ν )]δE(ν )] ,

(4.88)
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where Aeq
1 (λ) = limN→∞A

eq
1 (λ)/N , δWλ = limN→∞ δWλ/N , δW(ν )

f
= limN→∞ δW

(ν )
f
/N

and δE(ν ) = limN→∞ δE(ν )/N are the size-intensive equilibrium free-energy with respect
to the reference reservoir ν = 1, the size-intensive nonautonomous work current, the size-
intensive autonomous work current and the size-intensive energy current, respectively, in
the macroscopic limit.

The existence of the �nite-time detailed �uctuation theorem (4.88) is an important result
as it ensures the thermodynamic consistency of the path-integral approach at macroscopic
scales, i.e. for �uctuations that are extensive in the system size N .

4.2.3.2 Mean-Field Description

Dynamics

We proceed by formulating the dynamics and thermodynamics in the macroscopic mean-
�eld limit, where the system behaves deterministically. First we note that for an unbiased
dynamics, γ = 0, that the extremal values of the auxiliary �eld are π ∗ = 0. Thus, the action
functional (4.84) needs only to be maximized with respect to the density resulting into the
following Hamiltonian equations of motion

δL[n,π ]
δπ

���
n∗,π ∗=0

= 0 ⇒ Ûn = δH [n,π ]
δπ

���
π=0
. (4.89)

The Hamiltonian equations of motion correspond to the mean-�eld equation governing
the deterministic dynamics of the most likely occupation (mean-�eld) density and read
explicitly,

∂tni(t) =
q∑
j=1

kij(λt )nj(t) ,
q∑
i=1

ni(t) = 1 , (4.90)

with the mean-�eld transition rate matrix

kij(λt ) =
L∑
ν=1

k (ν )ij (λt ), (4.91)

that is stochastic,
∑

i kij(λt ) = 0, and whose contributions corresponding to the di�erent
heat reservoirs obey the mean-�eld local detailed balance

k (ν )ij (λt )
k (ν )ji (λt )

= e
−β (ν )

{
ϵi (λt )−ϵj (λt )+[ui (λ′t )ni−uj (λ′t )nj ]+

∑
k,i

uik (λ′t )nk (t) −
∑
k,j

ujk (λ′t )nk (t)−f (ν )i j

}
. (4.92)

It is remarkable that the evolution equation for the mean-�eld density takes the form of a
nonlinear master equation. We furthermore note that because of probability conservation
the mean-�eld equation is q − 1 dimensional.
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First And Second Law

Analogously to Sec. 4.2.2.4, we now want to formulate the �rst and second law in the
macroscopic mean-�eld limit. Following a similar procedure as for the derivation of Eq.
(4.90), we obtain from Eqs. (4.80) and (4.81) for the mean-�eld energy,

E(t) =
q∑
i=1
Ei(λt )ni(t), Ei(λt ) = ϵi(λt ) + ui(λ′t ) +

∑
k,i

uik(λ′t )nk(t), (4.93)

whose time-derivative constitutes the �rst law in the macroscopic limit,

dtE(t) = ÛQ(t) + ÛW(t), (4.94)

with the mean-�eld heat and work current,

ÛQ(t) =
L∑
ν=1

q∑
i,j=1

[
Ei(λt )−Ej(λt )− f (ν )ij

]
k (ν )ij (λt )nj(t) =

L∑
ν=1

q∑
i,j=1
− 1
β (ν )

ln
[
k (ν )ij (λt )
k (ν )ij (λt )

]
k (ν )ij (λt ) nj(t)

(4.95)

ÛW(t) =
q∑
i=1

{
Ûλt · ∇λt Ei(λt ) ni(t) +

L∑
ν=1

q∑
j=1

[∑
k,i

ni(t)uik(λ′t )k (ν )kj
(λt ) + f (ν )ij k (ν )ij (λt )

]
nj(t)

}
.

(4.96)

A closer inspection of Eqs. (4.76) and (4.77) reveals that in the deterministic macroscopic
limit the stochastic (Shannon) part of the mesoscopic system entropy vanishes and only the
internal entropy of the mesostates (4.19) remains �nite. Using the Stirling approximation

lnN ! = N lnN − N + O(lnN ), (4.97)

we �nd with Eqs. (4.10) and (4.19) that the total internal entropy can be rewritten as follows,

Sint =

q∑
i=1
[Ni lnN − Ni] −

q∑
i=1
[Ni lnNi − Ni] + O(lnN ) = −

q∑
i=1

Ni lnni + O(lnN ), (4.98)

where O(lnN ) gives the order of magnitude of the error made by the approximation. As a
result, using Eqs. (4.76) or (4.77) we obtain for the macroscopic entropy, respectively,

S(t) = −
q∑
i=1

ni(t) lnni(t) (4.99)

Ss(λ) = −
q∑
i=1

nsi (λ) lnnsi (λ), (4.100)

where we used that (lnN )/N → 0 as N → ∞. The entropy in deterministic many-body
systems therefore originates from the Boltzmann entropies related to the internal structure
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of the mesostates. Remarkably, the deterministic macroscopic entropy takes the form of a
Shannon entropy for the mean-�eld density.

Next, Equations (4.78) and (4.99) or Eqs. (4.79) and (4.100) stipulate for the second law
in the macroscopic limit, respectively,

ÛSi(t) =
L∑
ν=1

q∑
i,j=1

ln
k (ν )ij (λt )nj(t)
k (ν )ji (λt )ni(t)

k (ν )ij (λt )nj(t) = ÛS(t) − ÛSe(t) ≥ 0 (4.101)

ÛSsi (λ) =
L∑
ν=1

q∑
i,j=1

ln
k (ν )ij (λ)nsj (λ)
k (ν )ji (λ)nsi (λ)

k (ν )ij (λ)nsj (λ) = − ÛSse (λ) ≥ 0. (4.102)

Hence the microscopic and mesoscopic observables in Eqs. (4.72)–(4.79) converge to the
corresponding macroscopic ones in Eq. (4.93)–(4.102) if the macroscopic limit is taken,

lim
N→∞

1
N
ÛO(t) = ÛO(t), O = E,Q,W , S, Se ,Σ, (4.103)

where we recall that the mesoscopic representations for O = S,Σ are only valid if the
microstates inside each mesostate are equiprobable.

This constitutes our main result: For thermodynamically consistent and discrete many-
body systems with all-to-all interactions there is an exact coarse-graining (4.14) of the
microscopic stochastic dynamics towards a mesoscopic one that is fully characterized
by the system occupation. In the macroscopic limit, N → ∞, the stochastic dynamics
asymptotically converges to a deterministic and nonlinear macroscopic (mean-�eld) master
equation (4.90). Hence the stochastic dynamics can be equivalently represented across
microscopic and mesoscopic scales and asymptotically on macroscopic scales as N →
∞. Furthermore, the thermodynamics can be equivalently formulated at microscopic and
mesoscopic scales if the microstates inside each mesostate are equiprobable (4.27). The
thermodynamic consistency at each of the two levels is encoded in the respective detailed
�uctuation theorem, see Eqs. (4.66) and (4.71). Using a path-integral representation of
the stochastic (thermo)dynamics à la Martin-Siggia Rose, the �uctuations which scale
exponentially with the system size also satisfy a detailed �uctuation theorem (4.88) and are
therefore also thermodynamically consistent.

4.2.4 Example

To illustrate the methodology developed in the preceding Sec. 4.2.3 we consider a semi-
analytically solvable autonomous Ising model which exhibits a dynamical phase transition,
thus representing a suitable model to demonstrate the utility of the aforementioned methods.
To this end, let us consider N →∞ spins with �at energy landscapes, ϵ1 = ϵ2, that globally
interact via a pair potential u/N if they occupy the same spin state i = 1, 2. The system is in
contact with two heat reservoirs at di�erent inverse temperatures βh and βc with βh < βc .
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According to Eq. (4.90), the mean-�eld dynamics is governed by the following nonlinear
master equation

∂tni = −
(
k (h)ji + k

(c)
ji

)
ni +

(
k (h)ij + k

(c)
ij

)
nj = −kji ni + kij nj , i, j = 1, 2 , (4.104)

with the mean-�eld transition rates which we assume to be of Arrhenius form

k (ν )ij = Γ exp
[
− β

(ν )

2 u(ni − nj)
]
, ν = c,h, (4.105)

with the constant kinetic prefactor Γ that sets the time-scale of the Markov jump process.
We note that the mean-�eld dynamics (4.104) is e�ectively a one-dimensional equation since
we have n2 = 1 − n1 because the number of spins are conserved. We can immediately read
o� the stationary solution nsi = 1/2, i = 1, 2 for Eq. (4.104). The stability of this symmetric
�xed point is encoded in the spectrum of the linearized Jacobian, Aij ≡ [∂(∂tni)/∂nj]|ni, j=1/2,
which can be readily determined as follows

λ1 = 0, λ2 = −Γ
[
4 + u

(
β (h) + β (c)

) ]
. (4.106)

The zero eigenvalue λ1 re�ects that the rank of the Jacobian is smaller than its dimension
due to the constraint

∑
i ∂tni = 0. More strikingly, the second eigenvalue λ2 changes its sign

for attractive interactions, u < 0, at the critical temperatures

4 + u
(
β (h)c + β

(c)
c

)
= 0, (4.107)

indicative of a supercritical pitchfork bifurcation that destabilizes the symmetric �xed point
into two asymmetric �xed points as can be seen in Fig. 4.1.

Figure 4.1: Density plot of the stationary solution ns1 for di�erent temperatures β (c) and all
physical initial conditions n1(0). We choose the following values for the parameters
Γ = 0.1, β (h) = 1,u = −1 so that β (c)c = 3 as indicated by the vertical dotted line.
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This density plot depicts the stationary solution ns1 as a function of all physical initial
conditions n1(0) and for di�erent cold temperatures β (c) while β (h) ≡ 1 and u = −1 are kept
constant. As can be observed, the symmetric �xed point is stable for β (c) < β (c)c = 3. In
contrast, for lower temperatures β (c) > β (c)c = 3 the symmetric �xed point is unstable and
the system dynamics goes to one of the two asymmetric stable �xed points depending on
the basin of attraction in which the initial condition lies. These two stable �xed points are
related to each other via permutations of their coordinates, in agreement with the invariance
of the mean-�eld Eq. (4.104) under a permutation operation. The phenomenology observed
in Fig. 4.1 can be physically seen as follows. In the high-temperature limit the system
behaves entropically, thus occupying the symmetric �xed point. Conversely, in the low-
temperature limit the system behaves energetically, thus exhibiting two asymmetric �xed
points that converge to the two energy ground states ni = 1,ni+1 = 0, i mod 2 as β → ∞.
For isothermal systems, Eq. (4.107) implies the critical point βc = −2/u. This is in agreement
with the q-dependent universal critical temperature, βc(q) = −q/u for isothermal and all-
to-all interacting q-state clock models derived in Eq. (3.106). We add that the isothermal
system displays a �rst-order equilibrium phase transition, as can be seen in Fig. 4.2 which
shows the equilibrium free energy close to the critical point βc = −2/u.

1.7 1.8 1.9 2 2.1 2.2 2.3

−0.9
−0.88
−0.86
−0.84

βc

β

A
eq

Figure 4.2: The equilibrium free energy as a function of the temperature close to the critical
point βc = −2/u with u = −1.

We now return to the non-isothermal case and consider the �uctuating quantity in Eq.
(2.103) that for the autonomous Ising model simpli�es to

δΣ[m(τ ), t]=
∑
ν=h,c

[
β (h)−β (ν )]δE(ν )[m(τ ), t], δE(ν )[m(τ ), t]=u t∫

0

dt ′
M∑
j=1

δ (ν−νj)δ (t ′−τj)[nj−nj−1].

(4.108)

According to Eq. (4.71), our model system therefore satis�es a �nite-time detailed �uctu-
ation theorem for the time-integrated energy current. Using the path-integral formalism
introduced in Sec. 4.2.3, we however observe that analytical progress is di�cult at �nite time
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as it would require to solve the full extremization problem (4.85) which is analytically not
possible. Instead, we therefore resort to the stationary case which considerable simpli�es
the problem of �nding the dominant trajectory among all paths contributing to the path
integral. The biased Hamiltonian (4.81) in the path-integral formulation of the generating
function (4.84) associated with the stochastic observable in the last equation reads

Hγ [n,π ] = k (h)21 n1
[
eπ2−π1 − 1

]
+ k (c)21 n1

[
eπ2−π1eγu[β (h)−β (c)](n2−n1) − 1

]
+

+ k (h)12 n2
(
e−(π2−π1) − 1

)
+ k (c)12 n2

(
e−(π2−π1)e−γu[β (h)−β (c)](n2−n1) − 1

)
.

(4.109)

At steady state, the Hamiltonian equations of motion resulting from the extremization of
the action functional in Eq. (4.85) read

∂niHγ (c)E
[n,π , λn, λπ ] = 0, ∂πiHγ (c)E

[π ,π , λn, λπ ] = 0, i = 1, 2, (4.110)

where we added the Lagrangian multipliers λn and λπ to enforce the spin conservation,
n1 + n2 − 1 = 0 and π1 + π2 = 0. The extremal value for π1 can be solved analytically,

π ∗1 =
1
4 ln©­« n1

n1 − 1 ·
eβ (h)u(2n1−1) + e

u
2 (2n1−1)

[
β (c)

(
2γ (c)E −1

)
−β (h)

(
1+2γ (c)E

) ]
1 + e

β (c)−β (h)
2 u(2n1−1)

(
2γ (c)E −1

) ª®¬+iπ (1 + 2k), k ∈ Z,

(4.111)

and the extremal value n∗1 is subsequently determined numerically. In the t →∞ limit, the
boundary terms in the action functional become negligible so that the time- and size-scaled
cumulant generating function is asymptotically equal to the biased Hamiltonian evaluated
at the extremal values n∗ and π ∗,

Gs (γ (c)E )
= lim

t→∞
1
t

lim
N→∞

1
N

lnG
(
γ (c)
E
, t

)
= H s

γ (c)E
[n∗,π ∗]. (4.112)

The scaled cumulant generating function is plotted in Fig. 4.3a). We choose the values
β (h) = 3, β (c) = 5,u = −1 corresponding to the phase where the mean-�eld dynamics exhibits
two asymmetric stable and a symmetric unstable �xed point. Similarly, we observe two
asymmetric γ -dependent �xed points n∗1(γ ) whose coordinates are related to each other
via a permutation as well as a symmetric �xed point at n∗1 = 1/2. The regime around 1/2
corresponds to the symmetric �xed point and thus to a null observable (4.108). Next, we
note that the curve is symmetric with respect to the value γ = 1/2, thus implying that the
scaled cumulant generating function asymptotically satis�es the symmetry relation

Gs (γ (c)E )
= G̃s (1 − γ (c)E )

, (4.113)

which in turn stipulates the existence of a macroscopic steady-state detailed �uctuation
theorem for the time-integrated energy current

lim
t→∞

1
t

lim
N→∞

1
N

ln
P
(
δ J (c)E

)
P̃
( − δ J (c)E

) = δJ (c),sE , δJ (c),sE = [β (h) − β (c)] lim
t→∞

1
t

lim
N→∞

1
N
δE(c).

(4.114)
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The existence of the steady-state �uctuation theorem is by no means obvious, here. In
general, the implicit assumption underlying steady-state �uctuation theorems is that the
contribution of the boundary terms related to the initial and �nal state of each trajectory
are subextensive in time and thus negligible in the in�nite-time limit. There are however
situations where this may not be true, e.g. in bistable systems for starting distributions of the
forward and backward process that are located in the di�erent basins of attraction. Though,
in this model the two γ (c)E -dependent �xed points are related to each other via permutation of
their coordinates and the statistics of the corresponding stationary states are thus identical.
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Figure 4.3: The cumulant generating function (4.112) scaled with time t and size N as a
function of the counting �eldγ (c)E in a) and the corresponding rate functionΦ

(
δ J (c)E

)
in b). The parameters are chosen as β (h) = 3, β (c) = 5,u = −1 so that for γ (c)E = 0
the stationary mean-�eld system is in its energetic phase which has two asymmetric
stable �xed points and a symmetric unstable one.

Figure 4.3b) shows the rate functionΦ
(
δ J (c)E

)
associated with the scaled cumulant generating

function Gs
(
γ (c)E ) in a). The rate function is de�ned as [163]

Φ
(
δ J (c)E

)
= − lim

t→∞
1
t

lim
N→∞

1
N

ln P
(
δ J (c)E

)
, (4.115)

and is related to its corresponding scaled cumulant generating function via a Legendre-
Fenchel transformation

Φ
(
δ J (c)E

)
= sup

δ J (c)E

[γ (c)E δ J (c)E − Gs (γ (c)E )], δ J (c)E =
∂Gs

(
γ (c)E

)
∂γ (c)E

. (4.116)

Here, P
(
δ J (c)E

)
is the probability to observe a change in the energy equal to δ J (c)E and sup

denotes the supremum. As can be seen in Fig. 4.3, both the scaled cumulant generating and
the rate function are convex functions and the latter has a unique minimum equal to zero.

Our thermodynamically consistent framework allows to translate the terminology of
nonlinear dynamics, i.e. the supercritical pitchfork bifurcation at the critical temperature
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(4.107), into the language of nonequilibrium statistical mechanics, i.e. a nonequilibrium
phase transition at the same critical temperature. For this purpose, we prepare the system
in its critical state by setting β (h) = 1, β (c) = 3,u = −1. Fig. 4.4 depicts in a) the scaled
cumulant generating function (4.112) with the system being in its critical state. The scaled
cumulant generating function exhibits a kink at γ (c)E = 0 indicative of a nonequilibrium
phase transition. Owing to the symmetry (4.113), the scaled cumulant generating function
has another kink at γ (c)E = 1. The non-di�erentiability of the generating function at γ (c)E = 0
implies that the rate function in Fig. (4.112) b) would be nonconvex over a �nite interval.
The Legendre-Fenchel transformation (4.116) yields not the nononvex rate function but
its convex envelope Φce

(
δ J (c)E

)
. Here, the part of the convex envelope that replaces the

nonconvex regime of the rate function corresponds to the �at part of the curve in the
vicinity of the δ J (c)E = 0. Thus, we �nd that the time-integrated energy current distribution
in Eq. (4.115) is bimodal, thus also encoding the nonequilibrium phase transition.
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Figure 4.4: The cumulant generating function (4.112) scaled with time t and size N in a) as a
function of the counting �eld γ (c)E and the corresponding convex envelope of the rate
functionΦce

(
δ J (c)E

)
in b). The parameters are chosen as β (h) = 1, β (c) = 3,u = −1

where the unbiased dynamics exhibits a phase transition (4.107).
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4.3 Two Interacting Underdamped Particles

So far, we considered overdamped stochastic systems governed by master equations. As a
complement to the study of thermodynamically consistent coarse-graining in underdamped
and all-to-all interacting systems, the following is devoted to investigating thermodynami-
cally consistent coarse-graining in the underdamped case.

4.3.1 Stochastic Thermodynamics in Underdamped Systems

4.3.1.1 Single Underdamped Particle

We consider a particle of massm with the phase-space coordinate Γ = (x ,v)> ∈ R6, where
x ∈ R3 and v ∈ R3 denote position and velocity of the particle, respectively. The particle
moves in a time-dependent potential u(x , t), hence its Hamiltonian reads

e(Γ, t) = m

2v
2 + u(x , t). (4.117)

The particle is furthermore subjected to a generic force f (Γ, t). If the force is conservative it
derives from a potential, f (x , t) = −∂xû(x , t). In this case, one can de�ne heat and work in
di�erent ways depending on whether û(x , t) is part of the system Hamiltonian (4.117) or
not, see Ref. [167]. Conversely, if the force f is nonconservative, it does not derive from a
potential. For generality, and since it will be useful later, we assume that the force may be
velocity-dependent, f (Γ, t).

The system is coupled to a heat reservoir at inverse temperature β , giving rise to zero-
mean delta-correlated Gaussian white noise

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t ′)〉 = 2ξ β−1 δijδ (t − t ′), (4.118)

for i, j = 1, 2, 3. We denote by ξ the friction the particle experiences. Then, the stochastic
dynamics of the system is governed by the following Langevin equation(

∂tx
∂tv

)
=

(
v

1
m [−∂xu(x , t) + f (Γ, t) − ξ v + ξ (t)]

)
, (4.119)

and the equivalent Fokker-Planck equation ruling the time evolution of the probability
density ρ(Γ, t) reads

∂t ρ = −∇ · (µρ) + ∇ ·
(
D · ∇ρ), (4.120)

with the drift and di�usion matrices

µ =

(
v

1
m [−∂xu(x , t) + f (Γ, t) − ξ v]

)
(4.121)
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Dij =
ξ δij

βm2

6∑
n=4

δin , (4.122)

and the nabla operator ∇ ≡ (∂x , ∂v)>. The Fokker-Planck Eq. (4.120) can be cast into a
continuity equation

∂tρ = −∇ · J = −∇ ·
(
Ldet + Ldiss

)
ρ. (4.123)

Here, the probability current J is split into a deterministic contribution

Ldet =

(
v

1
m [−∂xu(x , t) + f (Γ, t)]

)
, (4.124)

and a dissipative one

Ldiss = − ξ

m2

(
0

mv + β−1 ∂v ln ρ

)
. (4.125)

The average energy of the particle is

E =

∫
dΓ e ρ, (4.126)

and its rate of change

dtE = ÛQ + ÛW , (4.127)

can be decomposed into a work current

ÛW =
∫

dΓ ρ ∂te +
∫

dΓ ρ f ·v, (4.128)

and into a heat current

ÛQ =
∫

dΓ e ∂tρ −
∫

dΓ ρ f ·v . (4.129)

Eq. (4.127) constitutes the �rst law of thermodynamics ensuring energy conservation [126].
Using Eq. (4.123), the heat current can be written as follows

ÛQ = −ξ
∫

dΓ ρ
(
v +

1
βm
∂v ln ρ

)
v . (4.130)

The nonequilibrium system entropy associated with the particle at Γ is de�ned as [20]

s(Γ) = − ln ρ, (4.131)
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where the ensemble average coincides with the Shannon entropy

S = −
∫

dΓ ρ ln ρ. (4.132)

Its time-derivative

dtS =
∫

dΓ [∇ · Ldiss] ρ + ÛIF = β ÛQ + ÛΣ + ÛIF , (4.133)

can be split into the entropy �ow from the bath to the system, β ÛQ , and the entropy production
rate

ÛΣ = β ξ
∫

dΓ ρ
(
v +

1
βm
∂v ln ρ

)2
≥ 0, (4.134)

whose nonnegativity constitutes the second law of thermodynamics. Since it will be useful
later, we introduced the notation

ÛIF ≡ 1
m

∫
dΓ ρ ∂v · f . (4.135)

De�ning the nonequilibrium free-energy density f (Γ) = e(Γ) − β−1s(Γ), one has for the
average nonequilibrium free energy

A =

∫
dΓ ρ f = E − β−1S . (4.136)

Eq. (4.136) allows us to rewrite the work and heat current in Eqs. (4.128) and (4.130) as

ÛW =
∫

dΓ ρ ∂t f +
∫

dΓρ f ·v
ÛQ = dt (A + β−1S) − ÛW ,

(4.137)

and the entropy production rate in Eq. (4.134) as
ÛΣ = β( ÛW − dtA) − ÛIF ≥ 0. (4.138)

The additional term ÛIF in Eqs. (4.133) and (4.138) illustrates that the presence of the velocity-
dependent nonconservative force f modi�es the thermodynamics as noted in Refs. [168,
169].

4.3.1.2 Special Cases

Standard Stochastic Thermodynamics

Owing to the velocity-dependence of f (Γ, t ), Eqs. (4.133) and (4.138) constitute a generalized
entropy balance and a generalized second law, respectively. The standard thermodynamic
formulation

dtS = β ÛQ + ÛΣ, T ÛΣ = ÛW − dtA ≥ 0, (4.139)
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is recovered for velocity-independent or nonconservative Lorentz forces, that is forces
that are orthogonal to the velocity, ∂v · f = 0. In one dimension, this is only true for
velocity-independent forces ∂v f = 0.

Deterministic Limit

The dynamics is deterministic if ξ = 0, which physically corresponds to a decoupling of the
particle from the thermal reservoir. According to Eq. (4.130), one has ÛQ = 0 and dtE = dtW .
It follows furthermore from Eq. (4.134) that ÛΣ = 0, hence it holds, using Eq. (4.133), that

dtS =
1
m

∫
dΓ ρ ∂v · f . (4.140)

Again, if f is velocity-independent or a Lorentz force, the deterministic dynamics becomes
Hamiltonian and the rate of entropy change is identically zero, dtS = 0. In this case the
second law is a triviality.

Heavy Particle

Finally, we consider the limit where the mass of the particle diverges,m →∞. We suppose
that the conservative force scales with the mass, i.e. O(∂xiu/m) = 1∀i , to avoid the trivial
case of a particle in a �at potential. If ξ and f are �nite, so that ξ/m → 0 and f /m → 0,
one �nds using Eqs. (4.130), (4.133) and (4.134) that

ÛΣ = −β ÛQ = βξv2
t ≥ 0, dtS = 0, (4.141)

wherevt is the solution of the deterministic Eqs.

∂txt = vt , ∂tvt = − 1
m
∂xu(x , t)|x=xt . (4.142)

According to Eq. (4.141), the heavy particle corresponds to the limit of macroscopic friction.

4.3.1.3 Two Coupled Underdamped Particles

We now consider two particles labeled by i = 1, 2 of massmi with the phase-space coordinate
Γi = (xi ,vi)>, as depicted in Fig. 4.5. The particles move in a time-dependent potential

u(x1,x2, t) = u1(x1, t) + u2(x2, t) + uint12 (x1,x2, t), (4.143)

that contains the interaction potential uint12 (x1,x2, t) and the Hamiltonian therefore reads

e(Γ, t) = m1
2 v2

1 +
m2
2 v2

2 + u(x1,x2, t)
=

∑
i

ei(Γi , t) + uint12 (x1,x2, t) ,
(4.144)
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where we denote the bare Hamiltonian of each particle by ei(Γi , t) =miv
2
i /2 + ui(xi , t) with

i = 1, 2. Moreover, we assume that both particles are subjected to velocity-independent
nonconservative forces fi(xi , t) 1.

β1

β2

ξ1

f1(x1)

ξ2

f2(x2)

x1,v1,m1 1

uint
12

x2,v2,m2 2

x1,v1,m1

1

f (1) (Γ1)

f1(x1)

β1

ξ1

Figure 4.5: On the left, schematics of the two underdamped and via uint12 interacting particles
1 and 2 that are in contact with heat reservoirs at inverse temperatures β1 and
β2, respectively, are illustrated. It is furthermore assumed that both particles are
subjected to nonconservative forces fi(xi). The right depicts the coarse-grained de-
scription of solely the �rst particle in the presence of an additional nonconservative
force f (1)(Γ1) that encodes the interaction with the second particle.

Each of the particles is connected to a heat reservoir at inverse temperature βi giving
rise to uncorrelated zero-mean Gaussian white noise

〈ξ (i)j (t)〉 = 0, 〈ξ (i)j (t)ξ (i)j ′ (t ′)〉 = 2 ξiβ−1
i δj,j ′ δ (t − t ′), (4.145)

where ξi refers to the friction the particle i experiences. The stochastic dynamics of the

1For velocity-dependent nonconservative forces, e.g. magnetic forces, the following procedure is analo-
gous to the case of velocity-independent forces. The only formal modi�cation are the additional terms,∑

i 1/mi
∫

dΓiρi∂vi · fi , that appear in the entropy balance equation (4.156), cf. Eq. (4.133).
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two-body system is ruled by the following Langevin equation(
∂txi
∂tvi

)
=

(
vi

1
mi
[−∂xiu(x1,x2, t)+ fi(xi , t)−ξivi+ξ (i)(t)]

)
, (4.146)

and the equivalent Fokker-Planck equation governing the time evolution of the probability
density ρ(Γ, t) reads

∂tρ = −∇ · J = −∇ ·
(
Ldet + Ldiss

)
ρ, (4.147)

with ∇ = (∂x1, ∂v1, ∂x2, ∂v2)>. The probability current J can be split into a deterministic part

Ldet =
©­­­«

v1
1
m1

[−∂x1u(x1,x2, t) + f1(x1, t)
]

v2
1
m2

[−∂x2u(x1,x2, t) + f2(x2, t)
]ª®®®¬ , (4.148)

and a dissipative one

Ldiss =

©­­­­­«
0

−ξ1
m2

1
(m1v1 + β

−1
1 ∂v1 ln ρ)

0
−ξ2
m2

2
(m2v2 + β

−1
2 ∂v2 ln ρ)

ª®®®®®¬
. (4.149)

The average energy of the system is

E =

∫
dΓ e ρ, (4.150)

and the �rst law of thermodynamics reads

dtE = ÛQ + ÛW , (4.151)

with the heat and work current

ÛQ =
∫

dΓ e ∂tρ −
∫

dΓ ρ (f1 ·v1 + f2 ·v2) (4.152)

ÛW =
∫

dΓ Ûe ρ +
∫

dΓ ρ (f1 ·v1 + f2 ·v2). (4.153)

Using the Fokker-Planck Eq. (4.147), we can write the heat current in terms of additive
contributions,

ÛQ =
2∑

i=1
Ûq(i), Ûq(i) = −ξi

∫
dΓρ

(
vi +

1
βimi
∂vi ln ρ

)
vi . (4.154)
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Like in the single-particle case (4.132), the nonequilibrium system entropy is de�ned as

S = −
∫

dΓ ρ ln ρ, (4.155)

and the entropy balance is thus given by

dtS =
2∑

i=1
βi Ûq(i) + ÛΣ, (4.156)

where the non-negative entropy production rate

ÛΣ=
2∑

i=1
Ûσ (i), Ûσ (i)=βi ξi

∫
dΓ ρ

(
vi+

1
βimi
∂vi ln ρ

)2
≥ 0, (4.157)

constitutes the second law of thermodynamics. In fact, Eq. (4.157) formulates a stronger
statement: the additive contributions Ûσ (i) are separately non-negative.

4.3.2 Coarse graining

4.3.2.1 E�ective Dynamics

We now shift our attention to the �rst particle alone. This formally amounts to integrating
the Fokker-Plank Eq. (4.147) over the coordinates of the second particle Γ2 = (x2,v2) such
that we obtain the marginalized probability distribution of particle one, ρ1 ≡

∫
dΓ2 ρ, that

satis�es the following e�ective Fokker-Planck equation

∂tρ1 = −∇1 · J1 = −∇1 ·
(
Ldet1 + L

diss
1

)
ρ1, (4.158)

with ∇1 = (∂x1, ∂v1)>. The marginal probability current J1 can be split into a deterministic
part

Ldet1 =

(
v1

1
m1

[−∂x1u1(x1, t) + f1(x1, t) + f (1)(Γ1, t)
] ) , (4.159)

and a dissipative one

Ldiss1 =

(
0

−ξ1
m2

1
(m1v1 + β

−1
1 ∂v1 ln ρ1)

)
. (4.160)

By comparison with the exact single-particle Fokker-Planck Eq. (4.123), we note that
the coarse-graining of the second particle encodes the interaction between the two particles
in the e�ective and nonconservative force imposed on particle one

f (1)(Γ1, t) = −
∫

dΓ2 ρ2|1(Γ, t) ∂x1u
int
12 (x1,x2, t). (4.161)
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We note that the evolution Eq. (4.158) is not closed since f (1) depends on ρ2|1. Thus, solving
the e�ective Fokker-Planck Eq. (4.158) is as di�cult as treating the full-Fokker-Planck Eq.
(4.147).

Moreover, for speci�c choices of the interaction potential, the �rst particle might be
considered as an active Brownian particle. In this case, the velocity-dependent nonconser-
vative force (4.161) is interpreted as an additional energy in�ow leading to active motion.
The latter is described e�ectively by negative dissipation in the direction of motion with
velocity-dependent friction kernels. Some prominent models of active Brownian particles
can, for instance, be found in Ref. [170].

4.3.2.2 E�ective Thermodynamics

Marginalization

In the following, we attempt to formulate a consistent thermodynamic description for this
reduced dynamics. Naively, it is tempting to use as an educated guess the single-particle
expressions in Sec. 4.3.1.1 for the reduced dynamics. In this case, the naive entropy balance
reads

dtS1 = β1 Ûq(1) + ÛΣ(1) + ÛI (1)F , (4.162)

where we use the notation from Eq. (4.135),

ÛI (1)F ≡
1
m1

∫
dΓ1 ρ1 ∂v1 · f (1), (4.163)

and denote the single-particle Shannon entropy by

S1 = −
∫

dΓ1 ρ1 ln ρ1, (4.164)

which implies for the non-negative e�ective entropy production rate

ÛΣ(1) = β1ξ1

∫
dΓ1 ρ1

(
v1 +

1
β1m1

∂v1 ln ρ1

)2
≥ 0. (4.165)

For reasons that will become clear soon, we however de�ne the e�ective entropy balance as
follows,

dtS = β1 ÛQ (1) + ÛΣ(1) + ÛI (1)F , (4.166)

where the e�ective heat

ÛQ (1) = Ûq(1) + β−1
1 S2|1, (4.167)
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is supplemented by the conditional Shannon entropy

S2|1 = S − S1 = −
∫

dΓ1 ρ1

∫
dΓ2 ρ2|1 ln ρ2|1. (4.168)

The di�erence between the full (4.154) and e�ective (4.167) heat current can be written as

ÛQ − Ûq(1) = Ûq(2) − β−1
1 S2|1. (4.169)

Moreover, the di�erence between the full (4.157) and the e�ective entropy production rate
(4.165) is given by

ÛΣ − ÛΣ(1) =
∫

dΓ1 ρ1 Û�1, (4.170)

with the internal entropy production rate kernel

Û�1 = Û�′1 + Û�′′1 , (4.171)

that can be split in the following two non-negative contributions

Û�′1 = β2 ξ2

∫
dΓ2 ρ2|1

(
v2+

1
β2m2

∂v2 ln ρ2|1

)2
≥ 0 (4.172)

Û�′′1 =
ξ1

β1m2
1

∫
dΓ2 ρ2|1

(
∂v1 ln ρ2|1

)2 ≥ 0. (4.173)

The �rst contribution Û�′1 is the entropy production rate of the second particle if the coor-
dinates of the �rst one are �xed, see Eq. (4.157). Conversely, the second contribution Û�′′1
can be viewed as a contribution to the entropy production rate due to the correlation of the
particles as we will see in Eq. (4.181).

An equivalent decomposition to Eq. (4.171) for Markovian master equations was found
in Ref. [112]. From the last two equations we deduce that the e�ective entropy production
(rate) always underestimates the physical one

ÛΣ ≥ ÛΣ(1). (4.174)

It is important to note that at this general level it is impossible to fully capture the full thermo-
dynamics solely in terms of properties of the reduced dynamics. The missing contributions
require knowledge about the conditional probability ρ2|1.

Bipartite System

A second approach to formulate an e�ective thermodynamics is provided by a bipartite
system where the two-particle system is split into two single-particle subsystems. The
e�ective entropic expressions in both subsystems are de�ned in the same formal way as one
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would for a single particle. Subsequently, the sum of the e�ective entropy balances in both
subsystems is compared with the full one of the two-particle system in order to identify the
so-called information �ows exchanged between the subsystems.

Physically, a bipartite system provides a simple and convenient representation of a
Maxwell’s demon since the thermodynamic cost of the latter becomes fully accessible [114,
116, 117]. Mathematically, the bipartite structure identi�es the non-additive contributions of
the full thermodynamic quantities for the two particles. We �rst note that the additive con-
tributions to the two-particle heat current (4.154) can be rewritten in terms of marginalized
probabilities only as follows

Ûq(i) = −ξi
∫

dΓiρi
(
vi +

1
βimi
∂vi ln ρi

)
vi , (4.175)

where the marginal probability ρ2 is obtained analogously as ρ1, that is by marginalizing
the two-point probability ρ over Γ1. Using the last Eq. along with Eqs. (4.129) and (4.154),
we see that the following relation holds,

Ûq(i) =
∫

dΓi ei ∂tρi −
∫

dΓi ρi vi ·
(
fi + f (i)

)
, (4.176)

with the nonconservative force f (2)

f (2)(Γ2, t) = −
∫

dΓ1 ρ1|2(Γ, t) ∂x2u
int
12 (x1,x2, t). (4.177)

Conversely, the additive contributions Ûσ (i) to the entropy production rate in Eq. (4.189)
can not be represented by marginal distributions only. Therefore, the entropy-balance
equations for the subsystems of the bipartite system can not be expressed in terms of its
associated degrees of freedom only. We proceed by deriving the non-additive contribution
to the entropy and identifying them as the information �ow.

To this end, we �rst de�ne the relative entropy (or Kulback-Leibler divergence) as a
statistical measure of the distance between the distributions ρ and ρ1ρ2 as follows

I = D[ρ | | ρ1ρ2] =
∫

dΓ ρ ln ρ

ρ1ρ2
≥ 0, (4.178)

whose non-negativity readily follows from the inequality ln ρ ≤ ρ − 1. From Eqs. (4.132) and
(4.155) follows that the relative entropy is the non-additive part of the two-particle system
entropy, i.e.

I = S1 + S2 − S . (4.179)

Physically, this quantity corresponds to the mutual information that is a measure of corre-
lations that quanti�es how much one system knows about the other. If I is large, the two
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systems are highly correlated, whereas small values of I imply that the two systems know
little about each other. The time-derivative of the mutual information

dt I = ÛI (2→1) + ÛI (1→2), (4.180)

can be split into two directional information �ows

ÛI (2→1) =
∫

dΓ1 ρ1

(
1
m1
∂v1 · f (1) − Û�′′1

)
(4.181)

ÛI (1→2) =
∫

dΓ2 ρ2

(
1
m2
∂v2 · f (2) − Û�′′2

)
, (4.182)

where we used Eqs. (4.161) and (4.173) in the �rst equation. In the second equation we used
Eq. (4.177) and introduced the integral kernel specifying the di�erence between the full and
the e�ective entropy production rate for the second particle,

ÛΣ − ÛΣ(2) =
∫

dΓ2 ρ2 Û�2 =

∫
dΓ2 ρ2( Û�′2 + Û�′′2 ), (4.183)

with

Û�′2 = β1 ξ1

∫
dΓ1 ρ1|2

(
v1 +

1
β1m1

∂v1 ln ρ1|2

)2
≥ 0 (4.184)

Û�′′2 =
ξ2

β2m2
2

∫
dΓ1 ρ1|2

(
∂v2 ln ρ1|2

)2 ≥ 0. (4.185)

The directional information �ows can be interpreted as follows: When ÛI (i→j) > 0, the
dynamics of particle j increases the mutual information and thus the correlations between
the two particles. In other words, j is learning about i and vice versa. Conversely, ÛI (i→j) < 0
corresponds to decreasing correlations between the two particles due to the evolution
of particle j, which can be interpreted as either information erasure or the conversion
of information into energy [114]. We furthermore point out that a positive directional
information �ow indicates that its force contribution

ÛI (i→j)
F ≡ 1

mj

∫
dΓj ρj ∂vj · f (j), (4.186)

dominates its entropic part

ÛI (i→j)
S ≡ −

∫
dΓj ρj Û�′′j , (4.187)

since the latter is non-positive according to Eq. (4.173). Various other interpretations of
these mutual information �ows have been discussed in the literature [171–176].
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An inspection of Eq. (4.163) reveals that the force contribution of the information
�ow, ÛI (i→j)

F , is the additional term that enters in the e�ective entropy balance due to the
velocity-dependent nonconservative force f (j),

dtSj = βj Ûq(j) + ÛΣ(j) + ÛI (i→j)
F . (4.188)

Using Eq. (4.187), we furthermore �nd that the di�erence between the e�ective (4.165) and
the additive contribution to the two-particle entropy production rate (4.157) corresponds to
the entropic part of the information �ow,

ÛI (i→j)
S = ÛΣ(j) − Ûσ (j). (4.189)

The last two equations stipulate the following e�ective entropy balance equation for particle
j,

dtSj = βj Ûq(j) + Ûσ (j) + ÛI (i→j). (4.190)

It is important to note that Eq. (4.190) states that the directional information �ows are the
non-additive quantities entering in the e�ective entropy balance. We emphasize that Eq.
(4.190) is the underdamped Fokker-Planck analogue of the result found for master equations
in Ref. [114]. Moreover, using Eqs. (4.172) and (4.189), it holds that∫

dΓi ρi Û�′i = Ûσ (j) = ÛΣ(j) − ÛI (i→j)
S , (4.191)

which because of Eq. (4.157) implies that

ÛΣ = ÛΣ(1) + ÛΣ(2) − ÛI (2→1)
S − ÛI (1→2)

S , (4.192)

An identical result for bipartite master equations was found in Ref. [177] and recently for
the more general case of systems undergoing a quantum dynamics formulated in terms of a
density matrix, where the generator is additive with respect to the reservoirs [178].

Hamiltonian of Mean Force

Finally, we present a third approach to de�ne an e�ective thermodynamics for the reduced
dynamics of particle 1 in Fig. 4.5, where we set β1,2 = β and f2 = 0. For reasons that will be-
come clear soon, we furthermore consider an explicitly time-independent bare Hamiltonian
of the second particle ∂te2 = ∂tu2 = 0. As we will see, for this approach only a speci�c class
of initial conditions can be considered.

The key concept is the so-called Hamiltonian of mean force, originally utilized in equi-
librium thermostatics [179], which de�nes an e�ective energy for particle 1 that accounts
for the strong coupling [119] to the second particle 2. Using it, this approach attempts
to overcome the problem identi�ed in the context of Eq. (4.166) that there is a priori no
systematic way to embed the global energetics into the reduced dynamics.
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The marginal of the global (Gibbs) equilibrium distribution over the second particle can
be expressed as

ρ
hmf
1 =

∫
dΓ2 ρ

eq=

∫
dΓ2 e−β(e−Aeq )=e−β(H

hmf −Aeq
hmf ), (4.193)

where we introduced the e�ective free energy A
eq
hmf

of particle one which is de�ned as the
di�erence between the full equilibrium free energy

Aeq = − 1
β

ln
∫

dΓ e−βe , (4.194)

and that of the second particle

A
eq
2 = −

1
β

ln
∫

dΓ2 e−βe2, (4.195)

that is Aeq
hmf
= Aeq −Aeq

2 . Consequently the Hamiltonian of mean force is de�ned as

Hhmf ≡ e1 − β−1 ln〈e−βuint12 〉eq2 . (4.196)

We denote by 〈·〉eq2 and 〈·〉eq an ensemble average over the equilibrium distribution of particle
two, ρeq2 = exp[−β(e2 −Aeq

2 )], and over the global equilibrium distribution, respectively.
The conditional equilibrium distribution ρ

eq
2|1 is obtained by dividing the global (Gibbs)

equilibrium distribution by the marginal one in Eq. (4.193)

ρ
eq
2|1 =

ρeq

ρ
hmf
1

= e−β
(
e−Aeq

2 |1
)
, (4.197)

where the free-energy landscape of particle one for a conditionally equilibrated particle two
is

A
eq
2|1 = e1 − β−1 ln〈e−βuint12 〉eq2 +A

eq
2 = Hhmf +A

eq
2 . (4.198)

It is noteworthy that Aeq
2|1 is parametrically time-dependent, whereas A

eq
2 has no time-

dependence due to the choice of a time-independent Hamiltonian e2. Eq. (4.198) shows
that up to A

eq
2 , the Hamiltonian of mean force is equal to the free energy that the locally

equilibrated second particle generates for given coordinates of the �rst particle.
Furthermore, we note the standard equilibrium identities

A
eq
2|1 = E

eq
2|1 −β−1S

eq
2|1, (4.199)

E
eq
2|1 = ∂β (βA

eq
2|1) =

∫
dΓ2 ρ

eq
2|1 e (4.200)

S
eq
2|1 = β

2∂βA
eq
2|1 = −

∫
dΓ2 ρ

eq
2|1 ln ρeq2|1, (4.201)
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which, using Eq. (4.196), can be rewritten as

E
eq
2|1 = ∂β

[
β
(
Hhmf +A

eq
2
) ]

(4.202)

S
eq
2|1 = β

2 ∂β
(
Hhmf +A

eq
2
)
. (4.203)

Inspired by [118], we employ the Hamiltonian of mean force (4.196) and its derived quan-
tities in Eqs. (4.202) and (4.203) and average them over arbitrary nonequilibrium probabilities
for particle one, i.e.

Ehmf (t) = 〈∂β (β Hhmf )〉(t), (4.204)

and

Shmf (t) ≡ S1(t) + β2〈∂β Hhmf 〉(t), (4.205)

where 〈·〉(t) refers to an ensemble average over a generic nonequilibrium distribution ρ(t).
We note that the de�nition of the entropy (4.205) also includes the single-particle Shannon
entropy of particle one in addition to the contribution that stems from the Hamiltonian of
mean force. Choosing a de�nition of work that coincides with the global one (4.153),

W hmf (t) ≡
t∫

0

dt ′
[
〈dte〉(t ′) +

( ∫
dΓ1 ρ1 v1 · f1

)
(t ′)

]
, (4.206)

the �rst law of thermodynamics imposes the following de�nition for heat

Qhmf (t)=−W (t)+〈∂β (β Hhmf )〉(t)−〈∂β (β Hhmf )〉(0). (4.207)

De�ning the nonequilibrium free energy to be of the same form as in the standard equilibrium
case (4.199),

Ahmf (t) = Ehmf (t) − Shmf (t)
β

= 〈Hhmf 〉(t) − S1(t)
β
, (4.208)

we can rewrite the entropy balance

∆Shmf (t) = βQhmf (t) + Σhmf (t), (4.209)

in the form of a second law of thermodynamics as follows

Σhmf (t) = β [
W (t) − ∆Ahmf (t)] ≥ 0. (4.210)

In order to prove the non-negativity of this de�nition for the entropy production [118, 120],
an initial condition of the form

ρ(0) = ρ1(0) ρeq2|1 = ρ1(0) e−β(e−Hhmf −Aeq
2 ), (4.211)
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is required. Indeed, using Eqs. (4.136) and (4.210), we have

Σhmf (t) − Σ(t) = β
(
∆A − ∆Ahmf (t)

)
. (4.212)

Due to the special choice for the initial condition (4.211), Eqs. (4.202) and (4.203) are valid at
t = 0 so that

A(0) −Ahmf (0) = A
eq
2 . (4.213)

At later times, Eqs. (4.202) and (4.203) are no longer valid and we need to resort to the
de�nitions (4.205) and (4.204) to obtain

A(t)−Ahmf (t)= 〈e〉(t)−〈Hhmf〉(t)+β−1[S1(t)−S(t)]. (4.214)

Since the Hamiltonian of mean force can also be expressed as

〈Hhmf 〉(t) = 〈e〉(t) + β−1〈ln ρeq2|1〉 −A
eq
2 , (4.215)

we have

A(t) −Ahmf (t) = A
eq
2 + β

−1
〈

ln ρ(t)
ρ
eq
2|1 ρ1(t)

〉
, (4.216)

and �nally arrive at

Σhmf (t) − Σ(t) = D[ρ(t) | | ρeq2|1ρ1(t)] ≥ 0. (4.217)

Thus, the entropy production based on the Hamiltonian of mean force always overestimates
the global two-particle entropy production which, because of Eq. (4.157), proves the in-
equality in Eq. (4.210). Furthermore, with Eq. (4.174) we obtain the following hierarchies of
inequalities

Σhmf (t) ≥ Σ(t) ≥ Σ(1)(t), (4.218)

where the equality signs hold in the limit of time-scale separation, as will be shown further
below. The last equation is the Fokker-Planck analogue of the result found for master
equations in Ref. [120]. This reference also identi�es the conditions under which the rate of
the entropy production (4.210) is non-negative.

4.3.2.3 Limiting Cases

As already pointed out above, the e�ective Fokker-Planck Eq. (4.158) is, in general, not
closed because of the dependence on the conditional probability ρ2|1. With the results of the
preceding section at hand, we now study the three di�erent coarse-graining schemes for
two limiting cases in which the e�ective Fokker-Planck equation becomes closed and thus
analytically tractable.
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Fast-Dynamics Limit: The Heat Reservoir

First, we assume a time-scale separation between the stochastic dynamics of the two particles
where particle two evolves much faster than particle one. Hence for �xed coordinates of
the �rst particle, the second generically relaxes towards a nonequilibrium steady state and
the stationary conditional probability ρtss2|1 can be determined by solving the fast dynamics
for �xed Γ1. As a consequence, the e�ective Fokker-Planck Eq. (4.158) becomes closed and
the e�ective thermodynamics follows from replacing ρ2|1 by ρtss2|1 in all expressions in Sec.
4.3.2.2. However, this e�ective thermodynamics naturally does not match with the full one,
as we would neglect hidden degrees of freedom that are out-of-equilibrium.

The latter equilibrate only if f2 = 0 and β1,2 = β , that is when the second particle
instantaneously equilibrates with respect to each value of the slow coordinates of particle
one. Then, the conditional probability is given at any time by the Gibbs distribution [112]

ρtss2|1(x1, Γ2) ≡ ρeq2|1(x1, Γ2) = e−β
(
e−Aeq

2 |1
)
. (4.219)

As a result, the e�ective force f (1) in Eq. (4.161), becomes a velocity-independent force that
derives from an e�ective potential so that[ − ∂x1u1 + f (1)

] ���
tss
= −∂x1A

eq
2|1, (4.220)

where the notation Z |tss corresponds to the conditional probability ρ2|1 in the expression
Z being substituted by the equilibrium one in Eq. (4.219). Hence in the limit of time-scale
separation and local equilibrium, the particle is subjected to the e�ective potential given by
the free-energy landscape of the �rst particle, Aeq

2|1.

Marginalization. Substituting Eq. (4.219) into Eq. (4.168) and accounting for probability
conservation, we get

dtS2|1
��
tss

β
=

∫
dΓ ∂tρ1(t) ρeq2|1

(
e −Aeq

2|1
)

(4.221)

=

∫
dΓ ∂tρ1(t) ρeq2|1 e −

∫
dΓ1 ∂tρ1(t)Aeq

2|1. (4.222)

With Eqs. (4.176) and (4.198), we note the relation

Ûq(1)
���
tss
=

∫
dΓ1 ∂tρ1(t)Aeq

2|1, (4.223)

from which along with Eq. (4.167) follows that

ÛQ (1)
���
tss
= Ûq(1)

���
tss
+ β−1dtS2|1

��
tss
= ÛQ

��
tss
, (4.224)
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hence clarifying why the e�ective heat (4.167) was de�ned to contain the conditional
Shannon entropy.

We have therefore proven that in the limit of time-scale separation the e�ective (4.167)
and the global heat current (4.152) coincide and the �rst law of thermodynamics remains
formally the same as in Eq. (4.151),

dtE |tss = ÛQ (1)
���
tss
+ ÛW

��
tss
= ÛQ

��
tss
+ ÛW

��
tss
. (4.225)

Furthermore, in the limit of time-scale separation, the time-dependence of all quantities
stems only from the dynamics of particle one and the parametric time-dependence of the
Hamiltonian. Equation (4.224) proves that the second law of thermodynamics formally also
remains the same as in Eq. (4.157),

ÛΣ(1)
���
tss
= dtS |tss − β ÛQ (1)

���
tss

(4.226)

= dtS |tss − β ÛQ
��
tss
= ÛΣ

��
tss
≥ 0. (4.227)

Hence in the limit of time-scale separation, the full thermodynamics of the two particles
can be described solely by the reduced dynamics of a single particle that is subjected to
the potential Aeq

2|1. Physically, the second particle can be viewed as being part of the heat
reservoir the �rst particle is coupled to.

Bipartite System. Furthermore, substituting (4.219) into Eqs. (4.181), (4.186) and (4.187),
gives a vanishing directional information �ow from the fast to the slow particle,

ÛI (2→1)
F

���
tss
= ÛI (2→1)

S

���
tss
= ÛI (2→1)

���
tss
= 0. (4.228)

This means that in the limit of time-scale separation the information �ow is completely
asymmetric, dt I |tss = dt I (1→2)��

tss
. From the last equation follows that the additive and

e�ective entropy production rate (4.165) agrees with the global one (4.157),

Ûσ (1)
���
tss
= ÛΣ(1)

���
tss
= ÛΣ

��
tss
, (4.229)

which in turn implies that Ûσ (2)
��
tss
= 0. Though, there is a mismatch between the e�ective

entropy balance of the slow particle (4.190) and the full entropy balance (4.156) given by the
conditional Shannon entropy,

dtS1 |tss = β Ûq(1)
���
tss
+ Ûσ (1)

���
tss
= dtS |tss − dtS2|1

��
tss
. (4.230)

Moreover, the e�ective entropy balance of the second particle reads

dtS2 |tss = β dtq(2)
���
tss
+ dt I (1→2)

���
tss
, (4.231)
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that can be rewritten as

dtS2 |tss − dtS2|1
��
tss
= dt I (1→2)

���
tss
. (4.232)

Equation (4.232) stipulates that the information �ow dt I |tss = dt I (1→2)��
tss

from the slow to
the fast particle does, in general, not vanish. This is physically plausible since the parti-
cles are still correlated. The information �ow dt I (1→2)��

tss
re�ects time-varying correlations

between the two particles due to the change of the probability distribution of both out-of-
equilibrium particles. Consequently, the information �ow is zero for a global equilibrium
state characterized by ρeq = ρeq2|1 ρ

eq
1 .

Hamiltonian of Mean Force. We now turn to the Hamiltonian of mean force formalism
in the limit of time-scale separation and local equilibrium, β1,2 = β and f2 = 0. Further, as
done above in the introduction of the Hamiltonian of mean force formalism, we assume
that the bare Hamiltonian of the second particle is time-independent, ∂t e2 = 0. Because of
Eq. (4.219), the requirement of an initial equilibrium conditional probability distribution
(4.211) is ful�lled at all times t . Hence Eqs. (4.202) and (4.203) are valid at any time t and a
comparison with Eqs. (4.204) and (4.205), respectively, shows that

Ehmf (t)
��
tss
= E(t)|tss − ∂β (β Aeq

2 ) (4.233)
Shmf (t)

��
tss
= S(t)|tss − β2 ∂β A

eq
2 . (4.234)

This explains the choice of a time-independent Hamiltonian e2, since in this case Aeq
2 has no

time-dependence. As a result, the Hamiltonian of mean force de�nitions of the corresponding
currents coincide with the global ones,

dtEhmf (t)
��
tss
= dtE(t)|tss (4.235)

dtShmf (t)
��
tss
= dtS(t)|tss . (4.236)

Moreover, we conclude that an agreement of the de�nitions for the time-integrated
quantities would be achieved in the limit of time-scale separation, if the Hamiltonian of
mean force was de�ned as Hhmf ∗ ≡ A

eq
2|1 which corresponds to the de�nition A

eq∗

hmf
≡ Aeq . In

this case, the equivalence of de�nitions would still be true for a time-dependent Hamiltonian
e2.

By construction, the de�nitions of work agree [cf. Eqs. (4.153) and (4.206)], thus it
follows from Eq. (4.235) that the de�nitions of heat current also coincide

ÛQhmf (t)
��
tss
= dtEhmf (t)

��
tss
− ÛW (t)

��
tss
= ÛQ(t)

��
tss
. (4.237)

Since according to Eqs. (4.235) and (4.237) the entropy production rates are also identical,

ÛΣhmf (t)
��
tss
= dtShmf (t)

��
tss
− β ÛQhmf (t)

��
tss
= ÛΣ(t)

��
tss
, (4.238)
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we �nd that at the di�erential level the Hamiltonian of mean-force formalism captures the
full thermodynamics in the limit of time-scale separation. Furthermore, we have proven
that in the limit of time-scale separation all de�nitions of the entropy production rate in
Eqs. (4.157), (4.165) and (4.209) are equivalent, i.e.

ÛΣ(t)
��
tss
= ÛΣ(1)(t)

���
tss
= Ûσ (1)(t)

���
tss
= ÛΣhmf (t)

��
tss
. (4.239)

Together with Eq. (4.226), this proves the equality signs in Eq. (4.218) in the limit of
time-scale separation.

This constitutes our �rst main result: In the limit of time-scale separation and local
equilibrium, the e�ective thermodynamic descriptions resulting from marginalization and
the Hamiltonian of mean force formalism fully capture the full thermodynamics. In contrast,
the e�ective bipartite description does not match with the full thermodynamics since it
neglects the correlations between the two particles.

Large-Mass Limit: The Work Source

We proceed by studying the limit of a diverging mass of the second particle, m2 → ∞,
that has already been discussed in Sec. 4.3.1.2. In view of active Brownian motion, this
limit is interesting since the heavy second particle could represent a passive cargo, while
the light particle may be considered active. Again, in order to avoid any triviality we
assume that the potentials scale with the mass m2 as follows: O(∂x2i

u2/m2) = 1∀i while
∂x2i

uint/m2 → 0∀i as m2 → ∞. Because of the in�nite mass of particle two its motion
occurs deterministically such that we can neglect the in�uence of particle one. Consequently,
the marginal probabilities become statistically independent and the conditional distribution
reads

ρdet2|1 (Γ2, t) = ρdet2 (Γ2, t) = δ (x2 − xt )δ (v2 −vt ), (4.240)

for all times t including the initial time t = 0. Here, xt and vt are the solutions of the
deterministic equations of motion (4.142). As a result, the e�ective force (4.161) becomes
conservative,

f (1)(x1, t)
���
det
= −∂x1 u

int
12 (x1,x2, t)

��
x2=xt

, (4.241)

where the notation Z |tss corresponds to the conditional probability ρ2|1 in the expression
Z being substituted by the delta-correlated one in Eq. (4.240). Thus, we are dealing with a
closed e�ective Fokker-Planck Eq. (4.158) for the light particle one that is externally driven
by the deterministic motion of the heavy second particle.

Marginalization. Since the marginal probabilities are statistically independent, the con-
ditional Shannon entropy (4.168) vanishes,

S2|1
��
det
= 0 (4.242)
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such that the de�nition of the e�ective heat (4.167) reduces to the naive one (4.162), ÛQ (1)
��
det
=

Ûq(1)
��
det

. Therefore, by inserting Eq. (4.240) into Eq. (4.152), we get

ÛQ
��
det
− Ûq(1)

���
det
= Ûq(2)

���
det
= −ξ2v

2
t . (4.243)

Thus, the �rst law of thermodynamics remains - up to a macroscopic frictional term related
to the heavy particle - formally the same as in Eq. (4.151),

dtE |det = Ûq(1)
���
det
+ ÛW

��
det
− ξ2v

2
t =
ÛQ
��
det
+ ÛW

��
det
. (4.244)

Here, the di�erence is that the time-dependence of all quantities comes from the dynamical
time-dependence of particle one alone, the parametric time-dependence of the Hamiltonian
and from the deterministic trajectory of the second particle (xt ,vt ). Further, Eq. (4.242)
implies that the de�nitions for the single-particle Shannon entropy (4.164) and the full
system entropy agree (4.155),

dtS1 |det = dtS |det , (4.245)
which, in turn, proves that the e�ective second law of thermodynamics (4.165) - up to a
macroscopic frictional term of the heavy particle - formally also remains the same as in Eq.
(4.157),

ÛΣ(1)
���
det
= dtS1 |det − β1 Ûq(1)

���
det
=
Û̃Σ
���
det
, (4.246)

where Û̃Σ
���
det
= ÛΣ

��
det
− β2 ξ2v

2
t . The e�ective thermodynamic description for the two par-

ticles therefore reduces, up to a simple macroscopic term, to the standard one of a single
particle that is subjected to an external driving. Consequently, the physical interpretation of
this limit is that the second particle represents a work source that modulates the energy
landscape of the �rst particle according to a protocol (xt ,vt ). If the deterministic particle
is furthermore Hamiltonian, ξ2 = 0, the work source is non-dissipative and the e�ective
description coincides with the full one.

Bipartite System. Owing to the statistical independence of the marginal distributions,
the mutual information (4.178) and thus the information �ow is identically zero,

I |det = ÛI 2→1��
det
= ÛI 1→2��

det
= 0. (4.247)

As a result, the e�ective entropy balance of the light particle coincides with the full one,

dtS1 |det = β1 Ûq(1)
���
det
+ Ûσ (1)

���
det
= ÛQ

��
det
+ ÛΣ

��
det
= dtS |det , (4.248)

while the corresponding e�ective entropy balance equation for the heavy particle takes the
simple macroscopic form

β2 Ûq(2)
���
det
= −Ûσ (2)

���
det
= −β2 ξ2v

2
t . (4.249)
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Hamiltonian of Mean Force. The large-mass limit represents a special case of systems
away from time-scale separation. Yet, the assumption of a conditional Gibbs state (4.211)
is inconsistent with the independent single-particle distributions (4.240). Therefore, the
Hamiltonian of mean force formalism and the deterministic limit are incompatible.

We can therefore summarize our second main result: In the deterministic limit, the
e�ective thermodynamics of the �rst two coarse-graining schemes - marginalization and
bipartite structure - are, up to a simple macroscopic frictional term, equivalent to the full
thermodynamics. In contrast, the Hamiltonian of mean force formalism is incompatible
with the deterministic limit. In fact, the Hamiltonian of mean force thermodynamics only
matches with the full one in the limit of time-scale separation. This is not surprising since
the Hamiltonian of mean force de�nitions [cf. Eqs. (4.196) and (4.211)] are motivated by
equilibrium thermostatics. Notably, in the time-scale separation limit there is a completely
asymmetric information �ow from the slow to the fast particle, while in the deterministic
limit all information �ows vanish.

4.3.3 Two Linearly Coupled Harmonic Oscillators

4.3.3.1 Full Solution

In this section, the results derived above are illustrated for an analytically solvable example.
For this purpose, we consider an isothermal version of the setup in Fig. 4.5 in one dimension.
Moreover, the Hamiltonian (4.144) is assumed time-independent

u(x1,x2) = (k1x
2
1)/2 + (k2x

2
2)/2 + β(x1x2), (4.250)

and the nonconservative forces fi taken zero. Consequently, there is no work done on or by
the two-particle system, dtE = dtQ . The Fokker-Planck Eq. (4.147) reads

∂t ρ = −∇ · (γ · Γρ) + ∇> ·
(
D · ∇ρ), (4.251)

with Γ = (x1,v1,x2,v2)> and ∇ ≡ (∂x1, ∂v1, ∂x2, ∂v2)>. The constant drift coe�cient and
di�usion matrix read, respectively,

γ =

©­­­­«
0 1 0 0
− k1
m1
− ξ1
m1
− β
m1

0
0 0 0 1
− β
m2

0 − k2
m2
− ξ2
m2

ª®®®®¬
(4.252)

D =

©­­­­­«
0 0 0 0
0 ξ1

βm2
1

0 0
0 0 0 0
0 0 0 ξ2

βm2
2

ª®®®®®¬
. (4.253)
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This partial di�erential equation is supplemented by the initial condition ρ(0) = δ (Γ(t)−Γ(0)).
The solution of this Fokker-Planck equation is given by a Gaussian [180]

ρ =
1

(2π )2
√

detϒ
exp

[
− 1

2 (Γ−〈Γ〉)
> ·ϒ−1 ·(Γ−〈Γ〉)

]
, (4.254)

where the average values of the coordinates are determined as follows

〈Γ〉(t) = eγt · Γ(0), (4.255)

and the covariance matrix is calculated as

ϒkl (t) ≡ 2
∑
i,j

1 − e−(λi+λj )t
λi + λj

Cij u
(k)
i u(l)j . (4.256)

Here, we introduced the transformation matrix

C = V · D ·V>, V =
(
v(1),v(2),v(3),v(4)

)
, (4.257)

where λi and u(i) (v(i)) denote the ith eigenvale and right (left) eigenvector of the drift
coe�cient matrix γ , respectively, i.e.

γ · u(i) = λi u(i)
v(i) · γ = λi v(i),

(4.258)

such that the left and right eigenvectors ofγ constitute an orthonormal dual basis,v(i) ·u(j) =
δij . Substituting Eq. (4.254) into Eqs. (4.154) and (4.157), we obtain for the heat current and
the entropy production rate

ÛQ =
2∑
i=1

[
−ξi

(
ϒ2i,2i + 〈Γ2i 〉2

)
+

ξi
βmi

]
=

2∑
i=1
Ûq(i) (4.259)

ÛΣ =
2∑
i=1

[
β ξi

(
ϒ2i,2i +〈Γ2i 〉2

)
−2 ξi

mi
+

ξi

βm2
i
ϒ−1

2i,2i

]
=

2∑
i=1
Ûσ (i), (4.260)

and because of Eq. (4.156)

dtS(t) =
2∑

i=1

(
ξi

β m2
i

ϒ−1
2i,2i −

ξi
mi

)
. (4.261)

In the following, the distribution for particle one ρ1(t) is needed. The latter is readily
determined by marginalizing Eq. (4.254) over the coordinates Γ2 of the second particle,

ρ1 =
1

2π
√

detϒ̃
exp

[
−1

2 (Γ̃ − 〈Γ̃〉)
> · ϒ̃−1 · (Γ̃ − 〈Γ̃〉)

]
, (4.262)
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with Γ̃ = (x1,v1)> and the inverse of the marginalized covariance matrix ϒ̃ that is given by

ϒ̃−1
11 =

1(
ϒ−1

34
)2 −ϒ−1

33 ϒ
−1
44

[ (
ϒ−1

14
)2
ϒ−1

33 − 2ϒ−1
13 ϒ

−1
14 ϒ

−1
34 +ϒ

−1
11

(
ϒ−1

34
)2
+

(
ϒ−1

13
)2
ϒ−1

44 −ϒ−1
11 ϒ

−1
33 ϒ

−1
44

]
ϒ̃−1

12 =
1(

ϒ−1
34

)2−ϒ−1
33 ϒ

−1
44

[
ϒ−1

14 ϒ
−1
24 ϒ

−1
33−ϒ−1

14 ϒ
−1
23 ϒ

−1
34−ϒ−1

13 ϒ
−1
24 ϒ

−1
34+ϒ

−1
12

(
ϒ−1

34
)2
+ϒ−1

13 ϒ
−1
23 ϒ

−1
44−ϒ−1

12 ϒ
−1
33 ϒ

−1
44

]
ϒ̃−1

22 =
1(

ϒ−1
34

)2 −ϒ−1
33 ϒ

−1
44

[ (
ϒ−1

24
)2
ϒ−1

33 − 2ϒ−1
23 ϒ

−1
24 ϒ

−1
34 +ϒ

−1
22

(
ϒ−1

34
)2
+

(
ϒ−1

23
)2
ϒ−1

44 −ϒ−1
22 ϒ

−1
33 ϒ

−1
44

]
.

(4.263)

Inserting Eq. (4.262) into Eqs. (4.161) and (4.186), gives the force contribution to the infor-
mation �ow from particle two to one

ÛI (2→1)
F = − β

m1

(
ϒ̃−1

12 ϒ13 + ϒ̃
−1
22 ϒ23

)
, (4.264)

which can be seen by noting that

− β

m1

∫
dΓ ρ1 x2 ∂v1ρ2|1 =

β

m1

∫
dΓ ρ x2 ∂v1 ln ρ1. (4.265)

Moreover, from Eq. (4.165) follows for the e�ective entropy production rate

ÛΣ(1)=β ξ1
(
ϒ̃22+〈Γ2〉2

)
−2 ξ1

m1
+

ξ1

βm2
1
ϒ̃−1

22 , (4.266)

from which via Eqs. (4.189) and (4.260) we get the entropic contribution to the information
�ow

ÛI (2→1)
S =β ξ1

(
ϒ̃22−ϒ22

)
+

ξ1

βm2
1

(
ϒ̃−1

22 −ϒ−1
22

)
. (4.267)

Combining the last three equations with Eqs. (4.166), (4.167) and (4.168), yields

ÛI (2→1) = β ξ1
(
ϒ̃22 −ϒ22

)
+

ξ1

βm2
1

(
ϒ̃−1

22 −ϒ−1
22

)
− β

m1

(
ϒ̃−1

12 ϒ13 + ϒ̃
−1
22 ϒ23

)
(4.268)

dt S2|1 =
ξ2

βm2
2
ϒ−1

44 −
ξ2
m2
− β

m1

(
ϒ̃−1
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4.3.3.2 Fast-Dynamics Limit

Since f2 = 0, the limit of time-scale separation implies that the second particle is at local
equilibrium conditioned on the coordinates of particle one. Within time-scale separation,
the e�ective force (4.220) reads

f (1) = β2x1
k2
, (4.271)

and closes the e�ective Fokker-Planck Eq. (4.158),

∂tρ1 = −∇1 ·
[(
γ1 · Γ̃

)
ρ1

]
+ ∇1 ·

(
D1 · ∇1ρ1

)
, (4.272)

with ∇1 ≡ (∂x1, ∂v1)>. The drift coe�cient and the di�usion matrix read

γ1=

(
0 1

− k1
m1
− β2

k2m1
− ξ1
m1

)
, D1=

(
0 0
0 ξ1

βm2
1
,

)
. (4.273)

This Fokker-Planck equation implies that we are dealing with a bivariate Ornstein-Uhlenbeck
process, thus its solution is given by a bivariate Gaussian [180]

ρ1 =
1

2π
√

detϒ̃
e−

1
2 (Γ̃−〈Γ̃〉)>· ϒ̃−1· (Γ̃−〈Γ̃〉) , (4.274)

where the covariance matrix ϒ̃ is speci�ed by Eq. (4.256) and the averages of the coordinates
Γ̃ are determined as follows

〈Γ̃〉(t) = eγ1t · Γ̃(0). (4.275)

In the following of this subsection, we employ the numerical values ξ1 = 0.8, β = 0.05,
k1 = 1,m1 = 1, while we consider three di�erent spring constants k2 massesm2 and friction
coe�cients ξ2: (k2 = 15,m2,a = 5 , ξ2,a = 0.75), (k2 = 25,m2,b = 7.5 , ξ2,b = 0.25) and
(k2 = 50,m2,c = 10 , ξ2,c = 0.1). This choice of parameters corresponds to an increasing
separation of the time-scales between the di�erent stochastic dynamics of the two particles.
In the order a − b − c , the second particle approaches equilibrium conditioned on the
coordinates of the �rst particle: Since the interaction potential scales linearly in the inverse
temperature [Eq. (4.250)], we chose a relatively small value for β to implement a weak-
coupling condition between the �rst and second particle - a crucial requisite for the second
particle to behave like an ideal heat reservoir [123, 124]. As k2 and m2 increases and ξ2
decreases, the relaxation time-scale of the second particle further shrinks, hence the time-
scales of the particles dynamics start to separate, as desired. Moreover, we prepare the initial
condition (4.211) with ρ1(0) = δ (Γ̃ − Γ̃(0)) with Γ̃(0) = (2, 1)>.

Fig. 4.6 depicts in a) the di�erence between the global ÛQ and e�ective heat current ÛQ (1)
and in b) the scaled di�erence between the global ÛΣ and e�ective entropy production rate
ÛΣ(1) as a function of time t .
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Figure 4.6: Di�erence between the full ÛQ and e�ective heat current ÛQ (1) in a) and between
the scaled full β ÛΣ and scaled e�ective entropy production rate β ÛΣ(1) in b) as a
function of time t . The information �ow ÛI (2→1) is depicted in c). Moreover, the
e�ective quantities based on the Hamiltonian of mean force are overlaid in Figs. a)
and b).

We observe that both the e�ective heat current and entropy production rate converge to the
corresponding full quantities in the limit of time-scale separation. The overall system remains
out-of-equilibrium as re�ected by �nite (e�ective) heat currents and (e�ective) entropy
production rates of the �rst particle. Since the corresponding single-particle de�nition
for the heat, Ûq(1), does not agree with de�nition of the e�ective one [not shown in a)], it
follows that the time-derivative of the conditional Shannon entropy, dtS2|1 remains �nite
in the limit of time-scale separation. We furthermore note that the e�ective heat current
and entropy production rate are in agreement with the time-derivative of the heat (4.207)
and entropy production (4.209) using the Hamiltonian of mean force formalism. Moreover,
Fig. 4.6 c) shows that the directional information �ow ÛI (2→1) vanishes in the limit of time-
scale separation. This in turn implies �rst that the additive contribution Ûσ (2) to the full
entropy production rate becomes zero while the inverse information �ow ÛI (1→2) remains
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�nite. It furthermore follows from the nonpositivity of ÛI (2→1) that the non-positive entropic
contribution ÛI (2→1)

S dominates over the non-negative force contribution ÛI (2→1)
F .

4.3.3.3 Large-Mass Limit

In the large-m2 limit, the e�ective force (4.241) reads

f (1) = −β x2 |x2=xt
, (4.276)

and closes the e�ective Fokker-Planck Eq. (4.158),

∂tρ1 = −∇1 ·
[(
γ1 · Γ̃ + f (1)

)
ρ1

]
+ ∇1 ·

(
D1 · ∇1ρ1

)
. (4.277)

The constant drift coe�cient, the scaled e�ective force vector and the di�usion matrix read

γ1 =

( 0 1
− k1
m1
− ξ1
m1

)
, f (1) =

(
0
− βxtm1

)
, D1 =

(
0 0
0 ξ1

βm2
1
,

)
. (4.278)

This partial di�erential Eq. is supplemented by the initial condition ρ1(0) = δ (Γ̃ − Γ̃(0)) with
Γ̃(0) = (2, 1)>. The averages are determined as follows

〈Γ̃〉(t) = eγ1t · Γ̃(0) +
∫ t

0
eγ1(t−t ′) · f (1)(t ′) dt ′, (4.279)

while the coordinates (xt ,vt ) of the second particle follow the solution of the deterministic
equation of motion (4.142),

xt = 2 cos
(
k2
m2

t

)
+
m2
k2

sin
(
k2
m2

t

)
vt = cos

(
k2
m2

t

)
− 2 k2

m2
sin

(
k2
m2

t

)
,

(4.280)

for the initial condition as chosen above. In the following, we employ the numerical
values ξ1 = 0.3, ξ2 = 1.5, β = 1, k1 = 4 , m1 = 1, while we consider three di�erent
masses m2 and constants k2 such that their ratio remains constant: (m2,a = 4 , k2,a = 3.8),
(m2,b = 40 , k2,b = 38) and (m2,c = 400 , k2,c = 380). It is important to note that the set of
parameters a,b, and c are chosen such that the ratio ofm2 and k2 remains constant and thus
leaves the determinstic trajectory of the second particle invariant according to Eq. (4.280).

Fig. 4.7 depicts the variancesϒ11 andϒ33 of the positional variables x1 and x2, in panels a)
and b) respectively. As expected, the �uctuations of the �rst particle do not exhibit striking
qualitative changes since the variance of the second particle vanishes with growing mass
m2. We verify that

ϒij = 0, ∀ ij , {11, 12, 21, 22}, (4.281)
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Figure 4.7: Variance ϒ11 in a) and ϒ33 in b) of the positional degrees of freedom x1 and x2,
respectively, as a function of time t .

thus con�rming that the second particle behaves deterministically in the large-m2 limit as
prescribed by the equations of motion (4.280).

Next, Fig. 4.8 a) shows that the e�ective heat current, ÛQ (1), converges to the full one, ÛQ ,
minus the macroscopic dissipation of the heavy particle, ξ2v

2
t , asm2 increases.
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Figure 4.8: Di�erence between the full ÛQ and e�ective ÛQ (1) heat current in a). Moreover,
the heat current associated with the heavy particle, Ûq(2) = −ξ2v

2
t , as well as the

di�erence between ÛQ and Ûq(1) is overlaid. Fig. b) is analogous to a) but depicting
entropy production rates. Information �ow ÛI (2→1) is shown in panel c).

This macroscopic term is naturally non-negative and periodic with the frequency k2/m2
due to the choice of a harmonic potential (4.250). Furthermore, Fig. 4.8 b) illustrates the
convergence of the e�ective entropy production ÛΣ(1) to the full one, ÛΣ, plus the macroscopic
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dissipation of the heavy particle with increasing ,m2. Since the single-particle de�nitions
for the heat current, Ûq(1), and the entropy production rate, Ûσ (1), also converge to the full
quantities, respectively, it follows that the time-derivative of the conditional Shannon
entropy, dtS2|1, and the information �ow from the light to the heavy particle, ÛI (1→2), vanish
asm2 grows. Finally, in Fig. 4.8 c) the directional information �ow from the heavy to the
light particle ÛI (2→1) is shown to decrease in modulus with increasingm2. It is interesting to
note that the vanishing directional �ow becomes negative ifm2 is su�ciently large. This
means that the non-positive entropic contribution converges at a slower rate to zero than
the force one does.



Chapter 5
Conclusion and Perspectives

Thermodynamics is the study of energy conversion processes. It is a universal theory in the
sense that all energy and matter exchanges have to obey constraints imposed by the laws
of thermodynamics. These laws have prevailed throughout the past two centuries, during
which the formalism of thermodynamics has changed tremendously from its traditional to its
state-of-the-art formulation, known as stochastic thermodynamics. In chapter 2 we brie�y
reviewed the evolution from a macroscopic and quasistatic thermodynamic - more precisely
thermostatic - theory towards the modern formulation of stochastic thermodynamics. The
latter was introduced in detail as it represents the formal pillar on which this dissertation is
based on.

Chapter 3 addressed the �rst main research question of this thesis: How collective
e�ects arising in macroscopic ensembles of microscopic units can a�ect its thermodynamic
performance. For this purpose, we �rst studied in Sec. 3.2 an open and driven network of
interacting three-state units in the framework of stochastic thermodynamics. The stochastic
dynamics and ensemble thermodynamics was consistently formulated across di�erent scales,
that is at the microscopic, mesoscopic and mean-�eld level. In the latter case, we discovered a
rich phenomenology of this model: a phase characterized by a single stable �xed point in the
high-temperature regime, a stable limit cycle indicative of synchronization for intermediate
temperatures and a multistability phase at low temperatures. The �rst and second phase are
separated by a Hopf bifurcation, while the second phase transitions into the third phase via
an in�nite-period bifurcation. This model was shown to be a minimal one as it contains the
key ingredients to exhibit synchronization while being thermodynamically consistent at the
same time.

Importantly, we resolved the apparent paradox that an irreducible linear Markovian
master equation at the microscopic and mesoscopic level, which has a unique stationary
state, can asymptotically converge to a nonlinear mean-�eld equation exhibiting complex
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and non-unique solutions at in�nite-time. This was achieved by studying the spectrum of
the generator of the Markovian dynamics: The two complex-conjugated eigenvalues with
the largest �nite real part were shown to encode the mean-�eld dynamics over metastable
timescales which increase with the system size N . The predictions based on the spectral
analysis were con�rmed employing dynamic Monte Carlo simulations.

We formulated the average values of the thermodynamic quantities at the three di�erent
scales and then characterized the nonequilibrium phase transitions using the work dissipated
by the external driving of the units as a proxy for the total dissipation (entropy production).
At the mean-�eld level, the dissipated work undergoes a �rst-order phase transition at the
Hopf bifurcation followed by a second order one at the in�nite-period bifurcation point.
Next, we compared the dissipation of a single unit to those of a unit in an interacting network
and found that at the mean-�eld level the dissipation of the units is equal in the �rst phase.
Conversely, compared to a single unit, the dissipation of the interacting unit monotonously
drops in the synchronization phase and in the third phase with decreasing temperature.
Interestingly, in the presence of interactions and when N is too low to produce a meaningful
metastable mean-�eld dynamics, the average dissipated work in the second (third) phase
is lower (higher) than in the mean �eld (N → ∞). Finally, when operating our system in
the mean-�eld limit as a work-to-work converter, we found that the synchronization phase
leads to a signi�cant boost in the power output. The e�ciency at maximum power of this
far-from-equilibrium machine is surprisingly close to the universal linear-regime prediction.

Subsequently, we generalized the three-state model to a class of isothermal and all-to-all
interacting q-state clock models. Using simple thermodynamic arguments, we demonstrated
that the high- and low-temperature phase exhibited by the three-state model, a single
symmetric and q asymmetric stable �xed points, respectively, are universal for all q. More
strikingly, we derived the universal Hopf temperature as a function of q below which the
universal high-temperature symmetric �xed point destabilizes into a limit cycle. Though,
numerical evidence suggests that only for odd q these limit cycles are stable over time, while
for even q they degenerate in the in�nite-time limit into the multiple �xed points of the
universal low-temperature phase. This classi�cation of the clock models into two classes of
universal phenomenology according to the oddness or evenness of q could not be grasped
physically, which re�ects the nontrivial character of this result. We furthermore investigated
the thermodynamic implications of this striking di�erence in dynamical phenomenology:
For systems with odd q the dissipated work undergoes a �rst-order phase transition at
the supercritical Hopf bifurcation followed by a second-order one at the in�nite-period
bifurcation point, while systems with even q only display the �rst-order phase transition at
the subcritical Hopf bifurcation point. In case of work-to-work conversion processes, the
optimal power-e�ciency trade-o� was shown to be attained in the synchronization regime,
that is for odd q.

We furthermore explored the relationship between collective e�ects and the thermody-
namics of information processing in Sec. 3.3. For this purpose, we compared the performance
of a single-unit bit and a majority-logic bit that corresponds to an array of binary units under
majority-logic decoding. We identi�ed multiple bene�ts of employing a majority-logic bit
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in �nite-time information erasure processes: First, the time required to perform a given
erasure is reduced. Secondly, for a given erasure duration the resulting erasure error can
be narrowed. Finally, for fast erasure processes, the majority-logic unit displays a higher
e�ciency. A further optimization of the erasure process under majority-logic decoding was
observed for the optimal protocol that minimizes the heat dissipation.

Thus, the results presented in chapter 3 suggest that there is a strong analogy between
the thermodynamics of energy conversion and information erasure processes. In both cases,
collective e�ects in large macroscopic ensembles - synchronization and decoding schemes -
enhance the power-e�ciency and precision-speed-e�ciency trade-o�, respectively, com-
pared to the performance of a single microscopic constituent of that macroscopic ensemble.
While we derived these results for several speci�c models, they may �nd various applications
(e.g. interacting molecular motors or coupled quantum dots for the minimal three-state
model). We furthermore emphasize that the analytical and computational methods we used
are generic in that they can be used on other models.

Motivated by the intrinsic complexity of large many-body systems, chapter 4 studied
various methods to consistently coarse-grain systems with many interacting degrees of
freedom and can thus be topically considered as the second half of this thesis. Here, we
investigated two conceptionally di�erent cases: First, we demonstrated in Sec. 4.2 how to
consistently build a stochastic dynamics and thermodynamics description across scales for
many-body systems with all-to-all interactions: For this purpose, we generalized the clock
models towards a system of N all-to-all interacting identical and classical units consisting
of q states. Here, the units are connected to several heat reservoirs and subjected to both
autonomous and nonautonomous external forces. We showed that for this class of systems
the microscopic stochastic dynamics characterized by many-body states can be exactly
coarse-grained towards a mesoscopic one that is determined by the occupation numbers of
the di�erent unit states. The all-to-all interactions give rise to equienergetic many-body
states which form the mesostates. Importantly, the coarse-graining signi�cantly reduces
the complexity of the many-body system as the growth of the state space changes from an
exponential to a power-law one with respect to N . Employing the formalism of stochastic
thermodynamics, it was proven that the stochastic �rst law of thermodynamics is always
invariant under the dynamically exact coarse-graining. Conversely, this only holds true for
the stochastic entropy balance if the microstates within each mesostate are equiprobable.

We then considered the macroscopic limit, N → ∞. To consistently determine the
macroscopic �uctuations (�uctuations that are extensive in and thus scale exponentially
with the system size N ) the Martin-Siggia-Rose formalism was used. It was demonstrated
that the macroscopic �uctuations are thermodynamically consistent as they obey a detailed
�uctuation theorem. Detailed �uctuation theorems of the same form were also derived at
the microscopic and mesoscopic level, hence proving thermodynamic consistency across
scales. Moreover we proved via the path integral representation of the stochastic dynamics
that the mesoscopic master equation asymptotically converges to a nonlinear rate equa-
tion. The methodology to determine macroscopic �uctuations was demonstrated via a
semi-analytically solvable Ising model in contact with two reservoirs and which exhibits a
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nonequilibrium phase transition.
Next, we investigated in Sec. 4.3 two interacting and underdamped Brownian particles

for which we reconsidered three thermodynamically consistent coarse-graining methods
established in the literature for master equations: The observation of only one particle
while the other one has been coarse-grained, the partitioning of the two-body system into
two single-particle systems exchanging information �ows and the Hamiltonian of mean
force formalism. We demonstrated that the e�ective thermodynamics of the �rst and third
approach is equivalent to the correct global thermodynamics in the limit of time-scale
separation between the two particles, where the faster evolving particle equilibrates with
respect to the coordinates of the more slowly evolving particle. Conversely, we observed
a mismatch between the e�ective and full thermodynamics in the bipartite case, since the
entropic contribution due to the coupling of the two particles is not taken into account.
Physically, in this limit the faster evolving particle becomes part of the heat reservoir to
which the other particle is coupled to. Conversely, if one particle becomes deterministic
because of an exceedingly large mass compared to the other particle’s mass, it acts as an
additional work source on the lighter particle. In this case, the e�ective thermodynamics of
the �rst two of the aforementioned three approaches agree, up to a simple macroscopic term
related to the dissipation of the work source, with the correct global one. The Hamiltonian
of mean force formalism however was shown to be incompatible with the large-mass limit.
In fact, the same is true for any physical regime outside the time-scale separation limit.
This re�ects that the Hamiltonian of mean force formalism was originally motivated by and
employed in equilibrium thermostatics. These theoretical predictions were con�rmed via
an analytically tractable model made up of two linearly coupled harmonic oscillators. We
remark that the generalization to an arbitrary many-body system, where particle one and
two are replaced by two subsets of interacting particles is straightforward and deferred to
appendix A.8.

In this doctoral thesis, the results developed during the doctorate were presented. While
signi�cant contributions were made to the �eld of many-body stochastic thermodynamics,
the research on this topic is far from complete. Among the many open research questions
we want to selectively point out some potential follow-up projects based on the research
that was presented in this thesis.

Thermodynamics of Nonequilibrium Phase Transitions

An obvious question is if the phenomenology of the three-state model is retained if the
assumption of all-to-all interactions is relaxed. To this end, it should be noted that a
closed version of the three-state model with totally irreversible transition rates and all-to-all
interactions was investigated as a nonliner dynamics problem in Refs. [85, 86]. Although only
the Hopf bifurcation is reported in the latter references, their mean-�eld solution exhibits
in fact the same two phase transitions we observe in the thermodynamically consistent
version of the three-state model. Using a tremendous amount of computational resources, it
was shown that even for nearest-neighbor interactions on a three-dimensional lattice, the
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mean-�eld characteristics can be reproduced. Thus, it is reasonable to expect that the same
holds true in our open version of the three-state model. It might nonetheless be interesting
to determine the lower critical dimension for which the mean-�eld phenomenology can be
observed under local interactions.

Another research path worthwhile to pursue is to explore the �uctuating thermodynam-
ics, in particular across the nonequilibrium phase transitions. Numerically, this amounts to
extending the dynamic Monte-Carlo simulations to count the statistics of the relevant ob-
servables. Here, the path-integral formalism introduced in Sec. (4.2.3) could be a promising
strategy to determine the �uctuations in the large N limit. In Sec. 4.2.4 the formalism proved
instrumental to semi-analytically compute macroscopic �uctuations in the Ising model. Yet,
to which extent analytical progress can be made in the three-state model, in particular in the
regime of its non-stationary complex solutions, is a priori not clear. Nonetheless, the path-
integral formalism represents an alternative numerical method to determine �uctuations in
the large N limit.

Of particular interest is to consider non-tightly-coupled energy-converters, that is sys-
tems that have more than one net current, in the presence of a synchronous-asynchronous
phase transition. At the time of writing, it was unfortunately not possible to �nd a regime in
which the driven three-state model in contact with two heat baths at di�erent temperatures
could function like a heat engine and still display synchrony. The motivation to build
and study such a heat engine converting thermal energy into mechanical energy while
being in synchrony is twofold: First such an engine is of higher practical relevance than a
system that on the net-level merely dissipates energy taken from the driving into the heat
bath. Secondly, since such a system has at least two independent �uctuating currents, the
e�ciency �uctuations [28] of that energy conversion can be studied. Harnessing critical
�uctuations in the vicinity of phase transitions seems to be a promising strategy to enhance
the energetic performance of a machine. Indeed, Ref. [181] corroborates that intuition: The
authors consider locally interacting discrete rotors on a two-dimensional lattice subdivided
into two sublattices each in contact with a heat bath at distinct temperature. At equilibrium,
there is a high-temperature disordered and a low-temperature ordered phase separated by a
quasi-liquid phase at intermediate temperatures. In the nonequilibrium model a directed
rotation of the spin variables can be observed corresponding to a conversion of thermal
into mechanical energy. Remarkably, when perturbing the equilibrium in the vicinity of
the lower critical temperature, the operation of these autonomous motors is optimal. This
suggests that critical �uctuations can indeed be exploited to enhance the performance of a
system made up of interacting microscopic machines.

Physical Modeling of Majority-Logic Decoding

There are two possible extensions to the work on the e�ects of majority-logic decoding on
the thermodynamics in information erasure processes. First, it could possibly be interesting
to consider a hierarchical system of majority-logic bits and to study if the thermodynamic
bene�ts of majority-logic decoding can be further enhanced by such an iterative approach.
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Secondly, as discussed at the end of Sec. 3.3.2.1, the majority-logic decoding can be thought
of as a coarse-graining procedure. As a consequence, the logical information stored in the
macroscopic bit is, in general, not equal to the sum of microscopic physical information
stored in the units contained in the bit. However, the di�erence between real and physical
information was not quanti�ed. In order to corroborate the conclusions made regarding
the advantages of majority-logic decoding, these hidden costs need to be accounted for in
the various de�nitions related to the information erasure in the majority-logic bit. A more
rigorous approach would possibly be to implement a physical mechanism that mimics the
majority-logic decoding, e.g. an interacting system of microscopic units that exhibits a phase
transition reminiscent of the features of majority-logic decoding. As an educated guess, a
two-state model as studied in Sec. 3.2.2 could be used in the context of information erasure.
This model is of interest since it has a phase transition that separates a disordered from two
ordered phases where all spins tend to occupy one of the two states depending on which
state is more populated at initial time.

Coarse-Graining in Stochastic Thermodynamics

In view of applications, the emergence of velocity-dependent nonconservative forces in
coarse-grained underdamped Brownian systems found in Sec. 4.3 could give our work
signi�cant methodological value for active particles, where the issue of coarse-graining
is indeed very important. Active Brownian particles are typically modeled as Brownian
particles subjected to nonlinearly velocity-dependent friction. There is thus a practical
motivation to identify the conditions, in particular the type of interactions among the
Brownian particles, so that the coarse-grained description coincides with typical models of
active Brownian particles.

Moreover, to the best of our knowledge, there is no systematic study of an e�ective
�uctuating thermodynamics in underdamped systems. In this context, it would be interesting
to explore if coarse-graining methods applied to jump processes, other than the three
presented in Sec. 4.3, like for instance the ones proposed in Refs. [29, 182], can also be
utilized in underdamped Fokker-Planck systems. These studies could give rise to new
strategies for systematically and consistently coarse-graining the thermodynamics of many-
body systems.







Appendix A
Appendices

A.1 Derivation of the Fluctuation Theorem (2.105)

In this section we prove the detailed �uctuation theorem (2.105) following a procedure
detailed in Ref. [133]. We denote by p

(
wλ, {jνwf

}, {jνe },m, t
)

the joint probability to observe a
nonautonomous work contribution wλ de�ned in Eq. (2.71) and work and energy current
ones equal to the amount {jνwf

} and {jνe } de�ned in Eqs. (2.71) and (2.69), respectively, along
a trajectory that is in statem at time t . In the following, we note arrays with bold characters
and in case of the generating function д and the associated probability p correspond to
di�erent microstates m. According to Eq. (2.75), the microscopic generating function
associated with wλ, {jνwf

} and {jνe } is given by

д(γwλ , {γjνwf
}, {γjνe }, t) =

∞∫
−∞

∏
ν

dwλ djνwf
djνe e

iγwλwλ+iγjνwf
jνwf
+iγjνe j

ν
e
p
(
wλ, {jνwf

}, {jνe }, t
)
,

(A.1)

and its time evolution is governed by the following biased stochastic dynamics

dt д(γwλ , {γjνwf
}, {γjνe }, t) =W (γwλ , {γjνwf

}, {γjνe }, λt ) · д(γwλ , {γjνwf
}, {γjνe }, t), (A.2)

with the biased generator

Wmm′(γwλ , {γjνwf
}, {γjνe }, λt ) = γwλ

[ Ûλt · ∇λt em(λt )]δm,m′ +
+Wmm′(λt )

∏
ν

e
γjνwf

jνwfmm′
+γjνe j

ν
emm′ .

(A.3)
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We easily verify with Eq. (2.37) that the biased generator satis�es the following symmetry

W >(γwλ , {γjνwf
}, {γjνe }, λt ) = A−1(λt ) ·W (γwλ , {1 − γjνwf

}, {1 − γjνe }, λt ) ·A(λt ), (A.4)

with the matrix

Amm′(λt ) = e−βem δmm′ . (A.5)

In this notation, the initial Gibbs state (2.96) can be written as

д(γwλ , {γjνwf
}, {γjνe }, 0) = peq(λ0) = A(λ0) · 1 eβA

eq
1 (λ0), (A.6)

where 1 refers to a vector whose entries are all unity.
Since it will be useful to proceed later, we proceed by proving a preliminary result. To

this end, we consider a generic biased dynamics as in Eq. (A.2)

∂t д(γ , t) =W (γ , λt ) · д(γ , t), (A.7)

which has the formal solution

д(γ , t) = U (γ , t) · p(0), (A.8)

with the time-evolution operator

U (γ , t) = T+ e
t∫

0
dt ′W (γ ,λt ′)

, (A.9)

where T+ is the time-ordering operator. We de�ne a transformed time-evolution operator

Û (γ , t) = B−1(λt ) ·U (γ , t) · B(λ0) (A.10)

with a generic but invertible operator B and �nd for its evolution equation

∂tÛ (γ , t) =
{
dt [B−1(λt ) · B(λ0)] + B−1(λt ) ·W (γ , λt ) · B(λt )

}
Û (γ , t) ≡ Ŵ (γ , λt ) · Û (γ , t),

(A.11)

which implies for the transformed time-evolution operator

Û (γ , t) = T+ e
t∫

0
dt ′Ŵ (γ ,λt ′)

. (A.12)

Combining the last three equations, we arrive at the preliminary result

B−1(λt ) ·U (γ , t) · B(λ0) = T+ e
t∫

0
dt ′

{
dt ′[B−1(λt ′)·B(λt ′)]+B−1(λt ′)·W (γ ,λt ′)·B(λt ′)

}
. (A.13)
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We now return to the speci�c biased stochastic dynamics considered in Eq. (A.2) and
obtain for the generating function

д(γwλ , {γjνwf
}, {γjνe }, t) =

= 1 ·U (γwλ , {γjνwf
}, {γjνe }, t) ·A(λ0) · 1 eβA

eq
1 (λ0)

= eβA
eq
1 (λt )1 ·A(λt ) ·A−1(λt ) ·U (γwλ , {γjνwf

}, {γjνe }, t) ·A(λ0) · 1 e−β∆A
eq
1 (λ),

(A.14)

where U (γwλ , {γjνwf
}, {γjνe }, t) is the time-evolution operator for that biased stochastic dy-

namics. Owing to the assumption of initial equilibrium distributions for the forward and
backward process, peq(λ0) and peq(λt ), we have

peq(λt ) = 1 ·A(λt ) eβA
eq
1 (λt ). (A.15)

Substituting the last and Eq. (A.13) into Eq. (A.14) gives
д(γwλ , {γjνwf

}, {γjνe }, t) =

= peq(λt ) ·T+ e
t∫

0
dt ′

{
∂t ′[A−1(λt ′)·A(λt ′)]+A−1(λt ′)·W (γwλ ,{γjνwf

},{γjνe },λt ′)·A(λt ′)
}
· 1e−β∆A

eq
1 (λ)

= peq(λt ) ·T+ e
t∫

0
dt ′A−1(λt ′)·W (γwλ−1,{γjνwf

},{γjνe },λt ′)·A(λt ′) · 1 e−β∆A
eq
1 (λ)

= peq(λt ) ·T+ e
t∫

0
dt ′W >(γwλ−1,{1−γjνwf

},{1−γjνe },λt ′) · 1 e−β∆A
eq
1 (λ),

(A.16)

where we used Eq. (A.4) in the last equality. Next, we transform the time from t ′ to t̃ ′ = t − t ′
corresponding to a time-reserved process. As a result of this transformation, the time-
ordering operator becomes an anti-time-ordering one T− and the diagonal entries of the
biased generator (A.3) become

Wmm(γwλ , {γjνwf
}, {γjνe }, λt−t̃ ′) = γwλ

Ûλt−t̃ ′ · ∇λt− ˜t ′ em(λt−t̃ ′) +Wmm(λt−t̃ ′) −
− γwλ

Ûλt−t̃ ′ · ∇λ ˜t ′ em(λt−t̃ ′) +Wmm(λt−t̃ ′).
(A.17)

Thus, we conclude that
Wmm′(γwλ , {γjνwf

}, {γjνe }, λt−t̃ ′) =Wmm′(−γwλ , {γjνwf
}, {γjνe }, λt−t̃ ′)

≡ W̃mm′(−γwλ , {γjνwf
}, {γjνe }, λ̃t̃ ′),

(A.18)

where W̃mm′(γwλ , {γjνwf
}, {γjνe }, λ̃t ′) is the biased generator of the time-reversed stochastic

dynamics that is naturally a function of the time-reversed protocol, λ̃t ′ = λt−t ′, t ′ ∈ [0, t].
Consequently, Eq. (A.16) becomes

д(γwλ̃
, {γjνwf

}, {γjνe }, t) = p̃eq(λ̃0) ·T− e
t∫

0
dt̃ ′W̃ >(1−γwλ ,{1−γjνwf

},{1−γjνe },λ̃t ′) · 1 e−β∆A
eq
1 (λ)

= 1 ·T+ e
t∫

0
dt̃ ′W̃ (1−γwλ ,{1−γjνwf

},{1−γjνe },λ̃t ′) · p̃eq(λ̃0) e−β∆A
eq
1 (λ).

(A.19)
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In the last equality we applied a global transposition and used the relationship

T+
(∏

i

C(λti )>
)
=

(
T−

∏
i

C(λti )
)>
, (A.20)

that is valid for a generic operator C . Inserting Eq. (A.12) into Eq. (A.19) yields

д(γwλ , {γjνwf
}, {γjνe }, t) = 1 · Ũ (1 − γwλ , {1 − γjνwf

}, {1 − γjνe }, t) · p̃eq(λ̃t ) e−β∆A
eq
1 (λ), (A.21)

from which we conclude the following symmetry

д(γwλ , {γjνwf
}, {γjνe }, t) = д̃(1 − γwλ , {1 − γjνwf

}, {1 − γjνe }, t) e−β∆A
eq
1 (λ), (A.22)

which via inverse Fourier transformation of the de�nition (A.1) stipulates the detailed
�uctuation theorem

p
(
β (1)wλ, {jνwf

}, {jνe }
)

p̃
(
− β (1)wλ , {−jνwf

}, {−jνe }
) = e

β (1)
[
wλ−∆Aeq

1

]
+

L∑
ν=1

[
β (ν )w (ν )

f
+
[
β (1)−β (ν )

]
e(ν )

]
, (A.23)

as stated in Eq. (2.105).
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A.2 Proof of Supercritical Hopf Bifurcation (3.38)

We shall in the following prove that the Hopf bifurcation is supercritical, i.e. results in stable
limit cycless. To characterize the limit cycles close to the bifurcation point, we consider
the normal form of the Hopf bifurcation. The procedure is detailed in [183]. At �rst, we
transform the two-dimensional system in Eq. (3.31) into a single equation

∂tz = λ(∆β)z + h(z, z∗,∆β), (A.24)

where z is a complex variable, z∗ its complex-conjugate, ∆β = β − βc1 gives the distance
of the inverse temperature to the critical inverse temperature of the Hopf bifurcation and
h = O

(| |z | |2) is a smooth function of (z, z∗,∆β). Such a transformation is achieved by �rst
�nding the complex eigenvectors r andv determined by

J (0)r = λ(0)r , J (0)>v = λ(0)∗v, (A.25)

where the real and non-symmetric Jacobian J resulting from the linearization of Eq. (3.31)
is evaluated at the Hopf bifurcation point β = βc1 , yielding

r =

(
1
2 (−1 +

√
3 i), 1

)>
(A.26)

v =
1

3 − √3 i

(
1 +
√

3 i, 2
)>
. (A.27)

If |∆β | is su�ciently small, the two-dimensional system from Eq. (3.31) can be written as

∂tn = J (∆β) · n + F (n,∆β), (A.28)

where H (n,∆β) is a smooth vector function whose components have Taylor expansions in
n starting with at least quadratic terms, H1,2 = O

( | |n2) . Using Eq. (A.24) together with the
properties 〈v,r 〉 = 1 and 〈v,r ∗〉 = 0, one can show that

h(z, z∗,∆β) = 〈v(∆β),H (z r (∆β) + z∗r ∗(∆β),∆β)〉. (A.29)

The function h can be formally written as a Taylor series in the two complex variables z and
z∗,

h(z, z∗,∆β) =
∑
k+l≥2

1
k!l !

∂k+l

∂zk∂z∗l
hkl (∆β) zkz∗l , (A.30)

with

hkl (∆β) = 〈v(∆β),H (zr (∆β) + z∗r ∗(∆β),∆β)〉|z=0 . (A.31)
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Moreover, if the function H (n,∆β) from Eq. (A.28) is represented as

H (x , 0) = 1
2A(x ,x) +

1
6B(x ,x ,x) + O

(| |x | |4), (A.32)

where A(x ,y) and B(x ,y,u) are symmetric multilinear vector functions of x ,y,u ∈ R2, it
follows that

д20 = 〈v,A(r ,r )〉 = 0 (A.33a)
д11 = 〈v,A(r ,r ∗)〉 = 0 (A.33b)
д21 = 〈v,B(r ,r ,r )〉. (A.33c)

In coordinates, one has for these vector functions

Ai(x ,y) =
2∑

j,k=1

∂2Hi(xi, 0)
∂xij∂xik

����
xi=0

xj yk , i = 1, 2 (A.34)

Bi(x ,y,u) =
2∑

j,k,l=1

∂3Hi(xi, 0)
∂xij∂xik∂xil

����
xi=0

xjykul , i = 1, 2. (A.35)

With these expressions at hand, we can determine the �rst Lyapunov coe�cient Λ1 as

Λ1 =
1

2ω2
lc

Re (iд20 д11 + ωlc д21) , (A.36)

where the eigenvalue of the Jacobian (A.25) is decomposed as λ(∆β)=σ (∆β) + iω(∆β), with
the limit cycle frequency

ωlc = λ(0) =
√

3 Γ sinh
(
−3f

2u

)
. (A.37)

For Eq. (A.36) to hold, the two requirements ω(0) > 0 and σ ′(0) < 0 must be met. From
Eq. (A.37) and

σ ′(0) = u Γ cosh
(
3f
2u

)
, (A.38)

follows that this is requirement is only met for attractive interactions, u < 0, which is the
condition to observe a Hopf bifurcation (3.38) at all. Collecting results, we �nally arrive at

Λ1 = −81
2 Γ cosh

(
3f
2u

)
, (A.39)

which is negative for u < 0, hence for attractive interactions stable limit cycles emerge at
the bifurcation point βc1 as in the main body above.
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A.3 Simulation of a Markovian Jump Process

In this section we rigorously derive the dynamic Monte-Carlo techniques employed in this
work to numerically simulate the Markov process that the ME (3.14) describes analytically.
Although the ME is never solved explicitly, the simulation algorithm is equivalent to the
ME. It relies, like the ME itself, only on the fundamental hypothesis thatWNN ′ dt gives the
probability, to �rst order in dt , that there will be a transition from N ′ to N in the next time
interval dt .

Instead of solving the ME numerically, the so-called Gillespie algorithm [146, 147] is
based on determining a quantity we shall refer to as the transition probability density
P(τ , µ) dτ . It is de�ned as the joint probability at time t that the next transition will occur in
the di�erential time interval (t + τ , t + τ + dτ ) and is a transition from N ′ to N indexed
by µ. As will be demonstrated, this quantity allows us to rigorously construct an algorithm
for simulating exactly the time evolution of the probability PN (t) ruled by the ME. The
technical details of the algorithm are taken from Ref. [146].

We can calculate the transition probability density

P(τ , µ) = P0(τ ) ·Wµ dτ , (A.40)

as the product of the probability at time t that no reaction will occur in the time interval
(t , t + τ ), timesWµ dτ . The probability that more than one reaction occurs is O(dτ ) and
can therefore be neglected. To determine P0(τ ), we subdivide the interval (t , t + τ ) into
K subintervals of equal length ∆t = τ

K . The probability, to �rst order in ∆t , that none of
the M possible transition occurs in the �rst subinterval (t , t + ∆t) is with the fundamental
given by

M∏
ν=1
[1 −Wν∆t + o(∆t)] = 1 −

M∑
ν=1

Wν ∆t + O(∆t). (A.41)

We note that this is also the subsequent probability that there is no transition in (t +∆t , t + 2∆t),
and then in (t + 2∆t , t + 3∆t), and so on. Thus we can write

P0(τ ) =
[
1 −

M∑
ν=1

Wν ∆t +
(
∆t)

]K
=

[
1 −

M∑
ν=1

Wν
τ

K
+ O

(
K−1) ]K . (A.42)

In the limit K → ∞, we arrive at

P0(τ ) = lim
K→∞

[
1 −

M∑
ν=1

Wντ

K
+
O

(
K−1)
K2

]K
= e
−

M∑
ν=1

Wντ
. (A.43)

Collecting results, we obtain for the transition probability density

P(τ , µ) =Wµ e
−

M∑
ν=1

Wντ
, (A.44)
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which is normalized, since
∞∫

0

dτ
M∑
µ=1

P(τ , µ) =
M∑
µ=1

Wµ

∞∫
0

dτ e
−

M∑
ν=1

Wντ
= 1. (A.45)

The Gillespie algorithm is a Monte-Carlo method, as it uses uniformly generated pseudo-
random numbers r to generate a (pseudo-)random pair (τ , µ) according to the probability
density function in Eq. (A.44). While there are several methods to achieve this, we only
discuss the so-called direct method, as this was also used for all the Monte-Carlo simulations
in this work. Here, the idea is to express the joint probability density in the form

P(τ , µ) = P1(τ ) · P2(µ |τ ), (A.46)

where P1(τ )dτ is the probability that any transition will occur between times t + τ and
t + τ + dτ and P2(µ |τ ) is the probability that the next transition will be the one indexed
by µ given that it occurs at time t + τ . Consequently, the probability P1(τ )dτ is obtained by

P1(τ ) =
M∑
µ=1

P(τ , µ), (A.47)

and we �nd for the conditional probability

P2(µ |τ ) =
P(τ , µ)

M∑
ν=1

P(τ ,ν )
. (A.48)

Using Eq. (A.44), yields

P1(τ ) =
M∑
µ=1

Wµ e
−

M∑
ν=1

Wντ (A.49)

P2(µ |τ ) =
Wµ

M∑
ν=1

Wν

. (A.50)

We easily verify normalization of the distributions and remark that P2(µ |τ ) is independent
of τ . The crucial idea of the direct method is to �rst generate a random value for τ according
to Eq. (A.49) and then to generate a random integer µ according to Eq. (A.50).

To this end, a general Monte-Carlo technique called the inversion method is applied. It
uses random numbers from the uniform distribution in the unit interval to generate random
numbers distributed according to any prescribed probability function P(x). Consider the
probability distribution function

F (x) =
∫ x

−∞
P(x′) dx′. (A.51)
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A uniformly distributed random number r1 drawn from the unit interval can be converted
into a random number x according to P(x) by taking

x = F−1(r1), (A.52)

where F−1 is the inverse of the distribution function F . This can be seen by calimit cyclesu-
lating the probability that the x-value will lie between x′ and x′ + dx′. This probability is
equal to the probability that r1 will lie between F (x′) and F (x′ + dx′), hence

F (x′ + dx′) − F (x′) = F ′(x′)dx′ = P(x′) dx′. (A.53)

It readily follows from Eqs. (A.49) and (A.52) that

τ =

( M∑
µ=1

Wµ

)−1
ln

(
1
r1

)
, (A.54)

where we have replaced the random variable 1 − r1 by the statistically equivalent random
variable r1. To determine the integer value µ we have to consider the discrete case which is
analogous to the continuous case. The distribution function F (i) for the discrete random
variable i with the probability density function P(i) reads

F (i) =
i∑

i ′=−∞
P(i′). (A.55)

Given a uniformly distributed random number r2 in the unit interval, an integer i obeying
P(i) is found by taking the value for i which satis�es

F (i − 1) < r2 ≤ F (i), (A.56)

since the probability that i takes the value i′ is indeed equal to the probability that r2 lies
between F (i′ − 1) and F (i′)

F (i′) − F (i′ − 1) =
i ′∑

i ′′=−∞
P(i′′) −

i ′−1∑
i ′′=−∞

P(i′′) = P(i′). (A.57)

Using Eqs. (A.49) and (A.57), we �nd as the selection rule for the random integer variable µ

µ−1∑
ν=1

Wν < r2

M∑
ν=1

Wν ≤
µ∑

ν=1
Wν (A.58)

With these theoretical results at hand, the simulation algorithm can be outlined as follows:

Step 1: Initialization of the system in the state N (0) ≡ N0 at time t = 0. Set the �nal time of
the simulation t f and de�ne time marks ti of equal length.
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Step 2: Generation of the random numbers τ and µ according to the joint probability density
function P(τ , µ) using the Monte-Carlo techniques from above.

Step 3: Update the time t + τ and the state the system occupies according to the the transition
speci�ed by µ.

Step 4: Iteration of Step 2 and 3 until t > ti . The corresponding state is taken to be the
representative state the system is occupying at time ti . Iteration of Step 2,3 and 4 until
t > t f .

The Gillespie algorithm is heavily used in cellular chemical kinetics. Owing to its proper
account of the discrete, stochastic nature of chemical reactions, it is more accurate than
the deterministic reaction-rate equations given by a set of ordinary di�erential equations.
However, this stochastic simulation often turns out to be unpractical as every successive
molecular reaction (Monte-Carlo Step) is simulated. An approximate acceleration to the
Gillespie algorithm is given by the so-called tau-leaping, in which the time steps are �xed
by an amount τ and the number of the reactions of the the di�erent molecular species are
approximated by Poisson random numbers [184]. For sti� systems1, τ must be chosen small
with respect to the fastest time-scale in the dynamics, which makes even tau-leaping seem
too slow. This issue is addressed with the implicit tau-leaping, which mirrors the implicit
Euler method, and the slow-scale Gillespie algorithm in which the fastest reactions are
skipped over and only the slow reactions are directly simulated using specially modi�ed
reaction-rate functions [184].

1Sti� systems evolve on well-separated fast and slow time-scales with the fastest dynamic modes being stable.
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A.4 The Monotonicity of the Entropy Function (3.140)

The �rst-order derivative of the function S(p,N ) introduced in Eq. (3.140) with respect to p
can be expressed as

∂S(p,N )
∂p

= N ln 1 − p
p
− (1 − p)

N−1
2 p

N−1
2

B (N+1
2 ,

N+1
2

) ln 1 − h(p,N )
h(p,N ) , (A.59)

where we write the regularized incomplete beta function with symmetric arguments as
h(p,N ) ≡ Ip

(
N+1

2 ,
N+1

2

)
and introduce the Beta function B (a,b) ≡

∫ 1
0 ta−1(1 − t)b−1 dt . We

�nd for the second-order derivative

∂2S(p,N )
∂p2 =

(N − 1)(1 − p)N−3
2 p

N−3
2 (2p − 1) ln 1−h(p,N )

h(p,N )
2B(N+1

2 ,
N+1

2 )
−

− N

p(1 − p)

[
1 −

(
N
N−1

2

)2
N (1 − p)NpN

[1 − h(p,N )]h(p,N )

]
.

(A.60)

We easily verify that the �rst term on the right-hand side of Eq. (A.60) is non-positive for
any p.

In order to determine the sign of the second term on the right-hand side of Eq. (A.60),
we �rst recast the term [1 − h(p,N )]h(p,N ) into

[1 − f (p,N )]f (p,N ) =
N∑

i=N+1
2

N−1
2∑

j=0

(
N

i

) (
N

j

)
pi+j(1 − p)2N−(i+j)

=

N−1∑
m=N+1

2

m∑
i=N+1

2

(
N

i

) (
N

m − i

)
[pm(1 − p)2N−m + p2N−m(1 − p)m] +

+

N∑
i=N+1

2

(
N

i

) (
N

N − i

)
pN (1 − p)N , (A.61)

where we have introduced the indexm = i + j. Using the inequality

ps(1 − p)4n+2−s + p4n+2−s(1 − p)s ≥ 2p2n+1(1 − p)2n+1, (A.62)

Eq. (A.61) can be transformed into the inequality

[1 − f (p,N )] f (p,N ) ≥
2

N−1∑
m=N+1

2

m∑
i=N+1

2

(
N

i

) (
N

m − i

)
+

N∑
i=N+1

2

(
N

i

) (
N

N − i

) pN (1 − p)N ,
(A.63)
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where the equal sign holds for p = 1/2.
Furthermore, using the binomial theorem, we write

22N−2 =


N∑

i=N+1
2

(
N

i

)

N−1

2∑
j=0

(
N

j

)
=

N−1∑
m=N+1

2

m∑
i=N+1

2

(
N

i

) (
N

m − i

)
+

N∑
i=N+1

2

(
N

i

) (
N

N − i

)
+

3N−1
2∑

m=N+1

N∑
i=m−N−1

2

(
N

i

) (
N

m − N−1
2

)
=2

N−1∑
m=N+1

2

m∑
i=N+1

2

(
N

m − i

) (
N

i

)
+

N∑
i=N+1

2

(
N

i

) (
N

N − i

)
, (A.64)

which is exactly equal to the prefactor in Eq. (A.63). Thus, we arrive at the inequality

[1 − f (p,N )]f (p,N ) ≥ 22N−2pN (1 − p)N . (A.65)

Substituting Eq. (A.65) into Eq. (A.60), we derive

∂2S(p,N )
∂p2 ≤ 0, (A.66)

by using the inequality

2
π
<

4N
22N

(
N − 1
(N − 1)/2

)2
≤ 1. (A.67)

Since ∂S(p,N )/∂p is a monotonically decreasing function with respect to p, it follows
from ∂S(p,N )/∂p |p=1/2 = 0 that ∂S(p,N )/∂p is positive (negative) for p < 1/2 (p > 1/2).
Therefore, S(p,N ) is monotonically increasing (decreasing) for p < 1/2 (p > 1/2). Ac-
cording to Eq. (3.120), P(p,N ) is a monotonically increasing function with respect to p and
P(1/2,N ) = 1/2, thus we prove that S(P ,N ) is also monotonically increasing (decreasing)
for P < 1/2 (P > 1/2).
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A.5 Derivation of the Optimal Erasure Protocol

For Arrhenius rates, the master equation (A.68) can be recast as follows

β∆ϵ = − ln
(
∂tp + p

1 − p

)
. (A.68)

The heat dissipated by a microscopic Arrhenius unit is given by the functional

βq = β

∫ τ

0
∆ϵ(∂tp)dt = β

∫ pf

pi

∆ϵ dp =
∫ τ

0
L(p, ∂tp)dt , (A.69)

with the explicitly time-independent Lagrangian

L(p, ∂tp) ≡ −(∂tp) ln
(
∂tp + p

1 − p

)
. (A.70)

The minimization of the heat functional amounts to solving the Euler-Lagrange equation

L − (∂tp) ∂L
∂(∂tp) = K , (A.71)

that admits the solutions

∂tp1 =
K −

√
K2 + 4Kp
2 , ∂tp2 =

K +
√
K2 + 4Kp
2 , (A.72)

where K is constant resulting from the time-integration of the Euler-Lagrange equation.
Since we consider the erasure branch from the initial state pi = 1/2 to the �nal one

p f ≤ pi , we restrict to the solution Ûp1. This ordinary di�erential equation yields the
following explicit expression of the erasure duration τ

τ =

∫ pf

pi

1
∂tp

dp = h(p f ) − h(pi), (A.73)

where we de�ned the function h(p) as

h(p) = −
√

1 + 4p
K
− ln

(√
1 + 4p

K
− 1

)
. (A.74)

Substituting Eq. (A.72) into Eq. (A.69), we obtain the following expression for the dissipated
heat

βq = β

∫ pf

pi

∆ϵ dp = H (p f ) − H (pi), (A.75)

where we de�ned the function H (p) as

H (p) = 1
2
√
K2 + 4Kp − ln (1 − p) − p ln

(
K + 2p −

√
K2 + 4Kp

2(1 − p)

)
. (A.76)



174 A.6. Martin-Siggia Rose Formalism in a Nutshell

A.6 Martin-Siggia Rose Formalism in a Nutshell

In the following, we derive the path-integral representation of the Markovian jump process
studied in Sec. 4.2. This derivation is mainly adopted from Ref. [185]. The path integral will
be constructed via the Martin-Siggia-Rose formalism which considers a stochastic process
with Poissonian white noise. For this purpose, let us consider the stochastic occupation
number Ni(t) and write its change during a time interval ∆t as follows

Ni(t + ∆t) = Ni(t) +
L∑
ν=1

q∑
j=1

[N (ν )ij (N (t),∆t) − N (ν )ji (N (t),∆t)
]

(A.77)

where N (ν )ij (N (t),∆t) refers to the number of jumps from j to i induced by the reservoir ν
during the time interval ∆t given that the system is in state N at time t . If the considered
interval ∆t is su�ciently small we can consider the probability per unit time for such a
transition,W (ν )ij (λt ,N (t)), to be constant during the interval ∆t . Then, the number of jumps
N (ν )ij (N (t),∆t) are statistically independent random variables X(ν )ij that take nonnegative
integer values which Poisson distribution with parameterW (ν )ij (λt ,N (t)) ∆t , i.e.

L∏
ν=1

q∏
j=1

∑
X(ν )i j

[
W (ν )ij (λt ,N (t)) ∆t

]X(ν )i j

X(ν )ij !
e−W

(ν )
i j (λt ,N (t)) ∆t . (A.78)

The path probability P[m(τ )] for a trajectory conditioned to be in state N at time t ′ = 0
reads

P(m(τ ))=
〈
t−1∏
t ′=0

δ

(∑
i

[
Ni(t ′+1)−Ni(t ′)−

L∑
ν=1

q∑
j=1

[N (ν )ij (N (t ′),∆t ′)−N (ν )ji (N (t ′),∆t ′)
] )〉

Poisson

PN (0) ,

(A.79)

Using the identity for the delta-distribution

δ (N (t)) =
q∏
i=0

∞∫
−∞

dπi(t) e−iπi (t)Ni (t), (A.80)

we can express the path probability (A.81) as

P(m(τ ), t) =

=

q∏
i=1

t−1∏
t ′=0

∞∫
−∞

dπi(t ′ + 1)e−iπi (t ′+1)[Ni (t ′+1)−Ni (t ′)] PN0(0) ·
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·
L∏
ν=1

q∏
j=1

∑
X(ν )i j

[
W (ν )ij (λt ′,N (t)) ∆t ′

]X(ν )i j

X(ν )ij !
e−W

(ν )
i j (λt ′ ,N (t ′)) ∆t ′ e

iπi (t ′+1)
L∑

ν=1

q∑
j=1
X(ν )i j

=

q∏
i=1

t−1∏
t ′=0

∞∫
−∞

dπi(t ′ + 1)e−iπi (t ′+1)[Ni (t ′+1)−Ni (t ′)] PN0(0) ·

·
L∏
ν=1

q∏
j=1

eW
(ν )
i j (λt ′ ,N (t ′)) ∆t ′ eW

(ν )
i j (λt ′ ,N (t ′)) ∆t ′ eiπi (t ′+1)

=

q∏
i=1

(
t−1∏
t ′=0

∞∫
−∞

dπi(t ′ + 1)
)

e
t−1∑
t ′=0
−iπi (t ′+1)[Ni (t ′+1)−Ni (t ′)]+∆t ′

L∑
ν=1

q∑
j=1

W (ν )i j (λt ′ ,N (t ′))
[
eiπi (t ′+1)−1

]
PN0(0)

≡
∫
D [π ] e

∫ t
0 dt ′

(
π ÛN+H [N (t ′),π (t ′)]

)
PN0(0) =

∫
D [π ] eL[N (t ′),π (t ′)], (A.81)

where we de�ned the path integral measure
∫
D ≡

q∏
i=1

t−1∏
t ′=0

∞∫
−∞

dπi(t ′ + 1)[π ] under the

transformations iπ → π and
∑
t ′
∆t ′→

∫
dt ′. Moreover, H [N (t ′),π (t ′)] and L[N (t ′),π (t ′)]

denote the unbiased Hamiltonian and action functional, see Eq. (4.80) and hereinafter.
Let us consider a generic observable O which changes along the trajectory m(τ ) until

time t by the amount δO[m(τ ), t] that might be split into a time-integrated current-like
contribution

L∑
ν=1

q∑
i,j=1

t∫
0

dt ′O (ν )ij (N (t ′)), (A.82)

in a contribution due to the nonautonomous driving
t∫

0

dt ′ Ûλt ′ ·
[∇λt ′ ON (t ′)

]
, (A.83)

and into a state-like contribution
t∫

0

dt ′ dt ′ON (t ′) = −γO [ONM
(t) −ON0

(0)]. (A.84)

The generating function associated with that change is given by

G(γO , t ,m(τ )) = eγO δO[m(τ ),t] P(m(τ ), t), (A.85)

so that, substituting the last equation into (A.81), we obtain

G(γO , t ,m(τ )) =
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=

q∏
i=1

t−1∏
t ′=0

∞∫
−∞

dπi(t ′ + 1) PN0(0) ·

· e−iπi (t ′+1)[Ni (t ′+1)−Ni (t ′)]−γO [ON (t ′+1)−ON (t ′)]−γO [λt ′+1−λt ′]
[
∇λt ′+1 ON (t ′+1)−∇λt ′ ON (t ′)

]
·

·
L∏
ν=1

q∏
j=1

∑
X(ν )i j

[
W (ν )ij (λt ′,N (t)) · ∆t ′

]X(ν )i j

X(ν )ij !
e−W

(ν )
i j (λt ′ ,N (t ′))·∆t ′ e

iπi (t ′+1)
L∑

ν=1

q∑
j=1
X(ν )i j −γOX

(ν )
i j O (ν )i j (N (t ′))

=

q∏
i=1

t−1∏
t ′=0

∞∫
−∞

dπi(t ′ + 1) PN0(0) ·

· e−iπi (t ′+1)[Ni (t ′+1)−Ni (t ′)]−γO [ON (t ′+1)−ON (t ′)]−γO [λt ′+1−λt ′]
[
∇λt ′+1 ON (t ′+1)−∇λt ′ ON (t ′)

]
·

·
L∏
ν=1

q∏
j=1

eW
(ν )
i j (λt ′ ,N (t ′))·∆t ′ eW

(ν )
i j (λt ′ ,N (t ′))·∆t ′·e

iπi (t ′+1)−γO O (ν )i j (N (t
′))

=

q∏
i=1

(
t−1∏
t ′=0

∞∫
−∞

dπi(t ′ + 1)
)
·

· e
t−1∑
t ′=0
−iπi (t ′+1)[Ni (t ′+1)−Ni (t ′)]−γO [ON (t ′+1)−ON (t ′)]−γO [λt ′+1−λt ′]

[
∇λt ′+1 ON (t ′+1)−∇λt ′ ON (t ′)

]
·

· e
∆t ′

L∑
ν=1

q∑
j=1

W (ν )i j (λt ′ ,N (t ′))
[
eiπi (t ′+1)−γO O (ν )i j (N (t

′))−1
]
PN0(0)

≡
∫
D [π ] e

∫ t
0 dt ′

[
π ÛN+HγO

[N (t ′),π (t ′)]−γO Ûλt ′ ·
[
∇λt ′ON (t ′)

]
−γO dt ′ON (t ′)

]
PN0(0)

=

∫
D [π ] eLγO [N (t

′),π (t ′)]. (A.86)

Integrating over all possible paths,
∫
D[N ], we �nally arrive at the following path-integral

representation of the generating function

G(γO , t) =
∫
D[N ] G(γO , t ,m(τ )) =

∫
D[N ]

∫
D[π ] eLγO [N (t

′),π (t ′)], (A.87)

as stated in Eq. (4.80).
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A.7 Derivation of the Fluctuation Theorem (4.87)

We rescale the extensive state variables n = N /N so that NOn ≡ O(N ). Also, the discrete
gradient of an observable along an edge asymptotically becomes a derivative with growing
size, N (∂ni − ∂nj )On = Oij(N ). The path-integral representation of the generating function
(4.84) then reads

G(γ , t)=
∫
D[N ]

∫
D[π ] PeqN0

(λ0)·exp
[ t∫

0

dt ′
(
−NγΛβ

(1) Ûλt ′ ·
[∇λt ′En(λt ′)]+ q∑

i=1

{
−πi(t ′) ÛNi(t ′)+

+

L∑
ν=1

q∑
j=1

[
eπi (t

′)−πj (t ′)−γ (ν )F
β (ν ) f (ν )i j −Nγ (ν )E [β (1)−β (ν )](∂ni−∂nj )E

(ν )
nt ′ (λt ′) − 1

]
W (ν )ij (λt ′,N (t ′))

} ) ]
.

(A.88)
The crucial step of the derivation is to de�ne physically consistent transformation rules to
time-reverse the biased stochastic dynamics. Time-reversal transformations of unbiased
Langevin dynamics have been investigated in Ref. [186]. For the generating function in
question (A.88), we de�ne the time-reversed biased stochastic dynamics as follows

t̃ ′ = t − t ′, ñ = n, λ̃t ′ = λt−t ′,

π̃ = −π + Nβ (1) ∇n A(1)(n) = −π + Nβ (1) ∇n E(n) − N∇n Sint (n), γ̃ = 1 −γ ,
(A.89)

while reusing the shorthand notation from Eq. (4.70). The de�nitions of the time-reversed
physical quantities in the �rst line are trivial. Less obvious is the transformation rule of the
auxiliary �eld π . This transformation rule amounts to inverting the directions of the edges
corresponding to a reversion of the Markov dynamics: The change of the sign in front of π
can be seen by noting that the latter is a counting �eld for variations in the state variables
dN . Moreover, the a�nity along an edge is inverted by the free energy shift.

We proceed by demonstrating that the above transformation, up to a non-�uctuating
quantity, indeed leaves the generating function invariant. For better readability, we will
split the action functional (A.88) into two parts and investigate how they transform under
the time reversal in Eq. (A.89). First, the invariance of the biased Hamiltonian under this
time-reversal transformation can be seen as follows,

H̃γ̃ [N (t ′),π (t ′)] =

=

L∑
ν=1

q∑
i,j=1

[
exp

{
πj(t ′) − πi(t ′) + Nβ (1)(∂ni − ∂nj )A(1)(n(t ′)) +

(
γ (ν )
F
− 1

)
β (ν ) f (ν )ij +

+
(
γ (ν )E − 1

)
N [β (1) − β (ν )](∂ni − ∂nj )E(ν )(n(t ′))

}
− 1

]
W (ν )ij (λt ′,N (t ′))

=

L∑
ν=1

q∑
i,j=1

[
exp

{
πj(t ′) − πi(t ′) − Nβ (1)(∂nj − ∂ni )A(1)(n(t ′)) +

(
1 − γ (ν )

F

)
β (ν ) f (ν )ji +
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+
(
1 − γ (ν )E

)
N [β (1) − β (ν )](∂nj − ∂ni )E(ν )(n(t ′))

}
− 1

]
W (ν )ij (λt ′,N (t ′)) (A.90)

=

L∑
ν=1

q∑
i,j=1

[
exp

{
πj(t ′) − πi(t ′) − β (ν )

[
N (∂nj − ∂ni )A(ν )(n(t ′)) − f (ν )ji

] − γ (ν )
F
β (ν ) f (ν )ji −

(A.91)

− γ (ν )E N [β (1) − β (ν )](∂nj − ∂ni )E(ν )(n(t ′))
}
− 1

]
W (ν )ij (λt ′,N (t ′))

=

L∑
ν=1

q∑
i,j=1

[
exp

[
πj(t ′) − πi(t ′)

] W (ν )ji (λt ′,N (t ′))
W (ν )ij (λt ′,N (t ′))

·

· exp
{
− γ (ν )

F
β (ν ) f (ν )ji − γ (ν )E N [β (1) − β (ν )](∂nj − ∂ni )E(ν )(n(t ′))

}
− 1

]
W (ν )ij (λt ′,N (t ′))

=

L∑
ν=1

q∑
i,j=1

[
eπj (t

′)−πi (t ′)−γ (ν )F
β (ν ) f (ν )ji −γ (ν )E N [β (1)−β (ν )](∂nj−∂ni )E(ν )(n(t ′)) − 1

]
W (ν )ji (λt ′,N (t ′))

= Hγ [N (t ′),π (t ′)]. (A.92)

Furthermore, we �nd for the sum of the kinetic and non-autonomous driving terms together
with the initial condition under time-reversal,

t∫
0

dt ′
{[
N β (1) ∇n A(1)(n(t ′)) − π (t ′)

] · ÛN (t ′) + N (1 − γΛ ) β (1) Ûλt ′ · [∇λt ′En(λt ′)] }
+ ln P

eq
Nt
(λt ) =

=

t∫
0

dt ′
{
Nβ (1)

(
dt ′A(1)(n(t ′))− Ûλt ′ ·

[∇λt ′A(1)(n(t ′))]−π (t ′)· ÛN (t ′)+N (1−γΛ ) β (1) Ûλt ′ · [∇λt ′En(λt ′)]}+ln P
eq
Nt
(λt )

=−
t∫

0

dt ′{π (t ′)· ÛN (t ′)+NγΛβ (1) Ûλt ′ ·
[∇λt ′En(λt ′)] }

+Nβ (1)
[
A(1)(n(t))−A(1)(n(0))]+ln P

eq
Nt
(λt )

=−
t∫

0

dt ′{π (t ′) · ÛN (t ′)+NγΛ β (1) Ûλt ′ ·
[∇λt ′En(λt ′)] }

+ln
P
eq
N0
(λ0)

P
eq
Nt
(λt )
+β (1)

[
Aeq(λt )−Aeq(λ0)

]
+ln P

eq
Nt
(λt )

= −
t∫

0

dt ′ {π (t ′) · ÛN (t ′) + NγΛ β (1) Ûλt ′ ·
[∇λt ′En(λt ′)] }

+ ln P
eq
N0
(λ0) + β (1)

[
Aeq(λt ) −Aeq(λ0)

]
.

(A.93)

Collecting results, we thus �nd that the size-intensive action functional is invariant under
the time reversal (A.89) up to a non-�uctuating term corresponding to the change in the
size-intensive part of the equilibrium free energy, i.e.

Lγ [n,π ] = L̃γ̃ [n,π ] − β (1)∆Aeq
1 (λ). (A.94)

In the macroscopic limit, the scaled cumulant generating function is equal to the extremal
action functional, cf. Eq. (4.86). Moreover, the action functional contains the initial condition
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of the trajectories so that its extremization does not give rise to additional boundary terms,

δLγ [n,π ] = δ L̃γ̃ [n,π ]. (A.95)

Hence the invariance of the action functional is preserved in the macroscopic limit that in
turn stipulates the following symmetry for the scaled-cumulant generating function,

G(Y, t) = G̃(Ỹ, t) − β (1)∆Aeq
1 (λ), (A.96)

which is exactly Eq. (4.87).
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A.8 Generalization to Many-Body Systems

Setup

The procedure detailed in Sec. 4.3 for two interacting and underdamped particles can be
straightforwardly generalized to N underdamped Brownian particles. We consider two
subsystems E and M that consist of E and M particles, respectively, such that E + M = N .
The particles in the subsystems E and M are interacting with each other via the potential
uintE (xE, t) and uintM (xM , t), respectively, while the subsystems are coupled to each other
according to the cumulated interaction potential uintEM ({xi}). We label the particles by the
index i , with the massmi by i = 1, 2, . . . ,N and the phase-space coordinate Γi = (xi ,vi)>.
Again, each particle is subjected to velocity-independent nonconservative forces fi(xi , t)
and coupled to a heat reservoir at inverse temperature βi , as depicted in Fig. A.1.

The total potential of the many-body system reads

u({xi}, t) =
N∑
i=1

ui(xi , t) + uintE (xE, t) + uintM (xM , t) +
E∑
j=1

N∑
k=N−M

uintjk (xj ,xk , t)︸                        ︷︷                        ︸
≡uint

EM
({xi },t)

. (A.97)

We stress that the interaction potentials uintE (xE, t) and uintM (xM , t) need to be distinguished
from the sum of the single-particle bare potentials in the respective subsystem which we
denote by uE(xE, t) =

∑E
i=1ui(xi , t) and uM (xM , t) =

∑N
i=N−M ui(xi , t), respectively. The

Hamiltonian is given by

e =
E∑
i=1

ei(Γi , t) + uintE (xE, t)︸                        ︷︷                        ︸
eE

+

N∑
i=N−M

ei(Γi , t) + uintM (xM , t)︸                             ︷︷                             ︸
eM

+uintEM ({xi}, t), (A.98)

with the bare single-particle Hamiltonians ei(Γi , t) = miv
2
i /2 + ui(xi , t).

Stochastic Dynamics And Thermodynamics

The resulting stochastic dynamics of the many-body system is ruled by the following
Fokker-Planck equation

∂tρ = −∇ · J = −∇ ·
(
Ldet + Ldiss

)
ρ, (A.99)
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M
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f3(x3)f2(x2) f1(x1)
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ξ3ξ2

ξ4 ξ5
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M

Figure A.1: Schematic depiction of a system of �ve interacting underdamped Brownian parti-
cles. The E = 3 particles in subsystem E are interacting via uintE (xE), while the
M = 2 particles belonging to the subsystemM are interacting via uintM (xM ). The
two subsystems are coupled by the interaction potentialuintEM ({xi}). Moreover, each
particle is coupled to a heat reservoir at inverse temperature βi and is subjected to
a nonconservative force fi(xi).

with ∇ = (∂x1, ∂v1, . . . , ∂xN , ∂vN )> and

Ldet =

©­­­­­­«

v1
1
m1

[−∂x1u({xi}, t) + f1(x1, t)
]

...
vN

1
mN

[−∂xNu({xi}, t) + fN (xN , t)
]
ª®®®®®®¬

(A.100)
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Ldiss =

©­­­­­­­«

0
−ξ1
m2

1
(m1v1 + β

−1
1 ∂v1 ln ρ)
...
0

−ξN
m2

N
(mNvN + β

−1
N ∂vN ln ρ)

ª®®®®®®®¬
. (A.101)

The average energy of the system is de�ned as

E =

∫
dΓ e ρ, (A.102)

and gives rise to the �rst law of thermodynamics

dtE = ÛQ + ÛW , (A.103)

with the heat current

ÛQ =
∫

dΓ e ∂tρ −
N∑
i=1

∫
dΓ ρ vi · fi . (A.104)

and the work current

ÛW =
∫

dΓ ρ ∂te +
N∑
i=1

∫
dΓ ρ vi · fi , (A.105)

Like in the two-particle case (4.175), the heat current splits into additive contributions that
each are functionals of the single-particle probabilities ρi only,

ÛQ =
N∑
i=1
Ûq(i), Ûq(i)=−ξi

∫
dΓρ

(
vi +

1
βimi
∂vi ln ρ

)
vi . (A.106)

We de�ne the N -particle Shannon entropy as the nonequilibrium system entropy

S = −
∫

dΓ ρ ln ρ, (A.107)

which gives rise to the entropy balance

dtS =
N∑
i=1

βi Ûq(i) + ÛΣ, (A.108)

with the non-negative entropy production rate,

ÛΣ =
N∑
i=1
Ûσ (i), Ûσ (i)=βi ξi

∫
dΓ ρ

(
vi+

1
βimi
∂vi ln ρ

)2
≥ 0. (A.109)
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Coarse-Graining

Marginalization

We proceed by formulating an e�ective description for a reduced dynamics in the subsystem
E. To Integration of the N -particle distribution ρ over ΓM yields the marginal probability,
ρE ≡

∫
dΓM ρ, that satis�es the following e�ective Fokker-Planck equation

∂tρE = −∇E ·
(
LdetE + L

diss
E

)
ρE, (A.110)

with ∇E = (∂x1, ∂v1, . . . , ∂xE , ∂vE )> and

LdetE =

©­­­­­­«

v1
1
m1

[−∂x1[u1+u
int
E ](xE, t)+ f1(x1, t)+ f (1)(ΓE, t)

]
...
vE

1
mE

[−∂xE[uE+uintE ](xE, t)+ fE(xE, t)+ f (E)(ΓE, t)
]
ª®®®®®®¬

(A.111)

LdissE =

©­­­­­­­«

0
−ξ1
m2

1
(m1v1 + β

−1
1 ∂v1 ln ρ)
...
0

−ξE
m2

E
(mEvE + β

−1
E ∂vE ln ρ)

ª®®®®®®®¬
. (A.112)

The interaction between the e�ective E and the coarse-grained subsystem M are encoded in
the nonconservative forces

f (i)(ΓE, t) = −
∫

dΓM ρM |E ∂xiu
int
EM , (A.113)

for i ∈ E.
Following the reasoning in the context of Eq. (4.166), we de�ne an e�ective entropy

balance for the reduced dynamics of the subsystem E as

dtS = ÛQ (E) + ÛΣ(E) +
E∑
i=1

1
mi

∫
dΓi ρi ∂vi · f (i) , (A.114)

where the probability associated with the ith particle is denoted as ρi . Here, the e�ective
heat

ÛQ (E) =
E∑
i=1
Ûq(i) + β−1

E dtSM |E, (A.115)
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is supplemented by the conditional Shannon entropy

SM |E = S−SE =−
∫

dΓE ρE
∫

dΓM ρM |E ln ρM |E, (A.116)

with the Shannon entropy of subsystem E

SE = −
∫

dΓE ρE ln ρE . (A.117)

The last three equations imply for the e�ective entropy production rate

ÛΣ(E) =
E∑
i=1

βiξi

∫
dΓEρE

(
vi +

1
βimi
∂vi ln ρE

)2
≥ 0. (A.118)

The di�erence between the real (A.106) and e�ective heat current (A.115) reads

ÛQ − ÛQ (E) ≡ ÛQ −
E∑
i=1
Ûq(i) − dtSM |E ≡ Ûq(M) − dtSM |E, (A.119)

where the additive components of the heat current can, as in the two-particle case (4.176),
be rewritten as follows

Ûq(i) =
∫

dΓi ei Ûρi −
∫

dΓi ρi vi ·
(
fi + f (i)

)
. (A.120)

Here, the nonconservative forces f (i) in the subsystem M read

f (i)(ΓM , t) = −
∫

dΓE ρE |M ∂xiuintEM , (A.121)

for i ∈ M .
Next, we have for the di�erence between the entropy production rates

ÛΣ − ÛΣ(E) =
∫

dΓE ρE Û�E =

∫
dΓE ρE

( Û�′E + Û�′′E ), (A.122)

swith the non-negative integral kernels

Û�′E =
N∑

i=N−M
βi ξi

∫
dΓM ρM |E

(
vi +

1
βimi
∂vi ln ρM |E

)2
(A.123)

Û�′′E =
E∑
i=1

ξi

βim
2
i

∫
dΓM ρM |E

(
∂vi ln ρM |E

)2
, (A.124)

and we note that the following relation holds true∫
dΓE ρE Û�′E =

N∑
i=N−M

Ûσ (i) = ÛΣ − Ûσ (E) ≡ Ûσ (M). (A.125)
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Bipartite System

The relative entropy between subsystem E and subsystem M reads

I = SM + SE − S =
∫

dΓ ρ ln ρ

ρE ρM
≥ 0, (A.126)

and its time-derivative can be decomposed into two directional information �ows

ÛI (M→E) =
∫

dΓE ρE

(
E∑
i=1

1
mi
∂vi · f (i) − Û�′′E

)
(A.127)

ÛI (E→M) =
∫

dΓM ρM

(
N∑

i=N−M

1
mi
∂vi · f (i) − Û�′′M

)
, (A.128)

where we introduced the integral kernel specifying the di�erence between the entropy
production rates

ÛΣ − ÛΣ(M) =
∫

dΓM ρM Û�M =

∫
dΓM ρM ( Û�′M + Û�′′M ), (A.129)

with

Û�′M =
E∑
i=1

βi ξi

∫
dΓE ρE |M

(
vi +

1
βimi
∂vi ln ρE |M

)2
(A.130)

Û�′′M =
N∑

i=N−M

ξi

βim
2
i

∫
dΓE ρE |M

(
∂vi ln ρE |M

)2
. (A.131)

We note the following relation ∫
dΓM ρM Û�′M = Ûσ (E). (A.132)

The �rst term in the directional information �ow, (A.127) and (A.128), represents the force
contribution ÛIF while the second term is its entropic part ÛIS . From the identities

ÛI (E→M)
S = ÛΣ(M) − Ûσ (M) (A.133)
ÛI (M→E)
S = ÛΣ(E) − Ûσ (E), (A.134)

follows, using Eq. (A.114), the e�ective entropy balance equations for the two parts of the
bipartite system, E and M ,

dtSE =
E∑
i=1

βi Ûq(i) + Ûσ (E) + ÛI (M→E) (A.135)

dtSM =
N∑

i=N−M
βi Ûq(i) + Ûσ (M) + ÛI (E→M). (A.136)
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Hamiltonian of Mean Force

In the following, we assume that the system is isothermal, βi = β ∀i , that the nonconserva-
tive forces inside the subsystem M are zero, f (i) = 0, i ∈ M and that the Hamiltonian of the
subsystem M is time-independent, ∂teM = ∂tuM = 0. Following the same reasoning as in
Sec. 4.3.2.2, we impose the following initial condition

ρ(0) = ρE(0) ρeqM |E(0) = ρE(0) e
−β

(
e−Aeq

M |E
)
, (A.137)

where ρE(0) is an arbitrary initial state and A
eq
M |E the free-energy landscape of the subsystem

E for a locally equilibrated subsystem M ,

A
eq
M |E(ΓE) = eE−β−1 ln

∫
dΓM e−β(eM+uintEM

−Aeq
M )+Aeq

M , (A.138)

whereas Aeq
M is the equilibrium free energy of M . Next, the Hamiltonian of mean force is

de�ned as

Hhmf ≡ eE − β−1 ln〈e−βuintEM 〉eqM = A
eq
M |E −A

eq
M , (A.139)

which in turn allows us to rewrite Eq. (A.137) as follows

ρ(0) = ρE(0) e−β(e−Hhmf −Aeq
M ), (A.140)

Next, we employ the de�nitions

Shmf (t) ≡ SE(t) + β2〈∂β Hhmf 〉(t), (A.141)

and

Ehmf (t) ≡ 〈∂β
(
β Hhmf )〉(t). (A.142)

Using the de�nition of work that coincides with the one of the full system in Eq. (A.105),

W hmf (t) ≡
t∫

0

dt
[
〈 Ûe〉(t) +

E∑
i=1

∫
dΓE ρE vi · fi

]
, (A.143)

imposes the following de�nition for the heat

Qhmf (t) ≡ −W (t) + 〈∂β
(
β Hhmf )〉(t) − 〈∂β (β Hhmf )〉(0). (A.144)

With the nonequilibrium free energy

Ahmf (t) ≡ Ehmf (t) − Shmf (t)
β

= 〈Hhmf 〉(t) − SE(t)
β
, (A.145)
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we can rewrite the entropy balance

∆Shmf (t) = βQhmf (t) + Σhmf (t) ≥ 0. (A.146)

in the form of a second law of thermodynamics as follows

Σhmf (t) = β [
W (t) − ∆Ahmf (t)] ≥ 0. (A.147)

To proof that inequality, we �rst note that along the lines of the derivation of Eq. (4.217) we
can obtain

Σhmf (t) − Σ(t) = D[ρ(t) | | ρeq
M |E ρE(t)] ≥ 0, (A.148)

which, because of Eq. (A.109), proves the inequality in Eq. (A.147).

Limiting Cases

Fast-Dynamics Limit

We assume time-scale separation between the stochastic dynamics of subsystems E and M ,
with M evolving much faster than E, and furthermore take fi = 0, i ∈ M and βi = β ∀i .
As a result, the subsystem M instantaneously equilibrates with respect to the coordinates of
E and the conditional probability is given by

ρ
eq
M |E(xE, ΓM ) = e−β

(
e−Aeq

M |E
)
. (A.149)

Consequently, the e�ective forces f (i) in subsystem E (i ∈ E) become conservative and the
total force acting on subsystem E is generated by the free-energy landscape of the latter,[

f (i) − uE − uintE

] ���
tss
= −∂xiAeq

M |E . (A.150)

Marginalization Inserting Eq. (A.149) into Eq. (A.116), we obtain

β−1 dtSM |E
��
tss
=

∫
dΓ [∂tρE(t)] ρeqM |E

(
e −Aeq

M |E
)
=

∫
dΓ [∂tρ(t)] e −

∫
dΓE [∂tρE(t)]Aeq

M |E .

(A.151)

From Eqs. (A.120) and (A.138) follows the relation

Ûq(E)
���
tss
=

∫
dΓE [∂tρE(t)]Aeq

M |E, (A.152)



188 A.8. Generalization to Many-Body Systems

and with Eq. (A.115) we get

ÛQ (E)
���
tss
= Ûq(E)

���
tss
+ β−1dtSM |E

��
tss
= ÛQ

��
tss
, (A.153)

and therefore prove that within time-scale separation, the equivalence of the e�ective and
real �rst law,

dtE |tss = ÛQ (E)
���
tss
+ ÛW

��
tss
= ÛQ

��
tss
+ ÛW

��
tss
. (A.154)

as well as that the e�ective and real second law agree,

ÛΣ(E)
���
tss
= dtS |tss − β ÛQ (E)

���
tss
= dtS |tss − β ÛQ

��
tss
= ÛΣ

��
tss
≥ 0. (A.155)

Physically, the coarse-grained system M corresponds to an ideal heat reservoir the subsys-
tem E is coupled with.

Bipartite System Moreover, substituting (A.149) into Eq. (A.127), shows that the direc-
tional information �ow from the fast M to the slow subsystem E is identically zero,

ÛI (M→E)
F

���
tss
= ÛI (M→E)

S

���
tss
= ÛI (M→E)

���
tss
= 0, (A.156)

Hence both the additive and e�ective entropy production rate (A.118) agree with the real
one (A.109),

Ûσ (E)
���
tss
= ÛΣ(E)

���
tss
= ÛΣ

��
tss
, (A.157)

which implies that Ûσ (M)
��
tss
= 0.

Yet, the e�ective entropy balance of the slow particle (A.135) deviates from the real
entropy balance (A.108) by the conditional Shannon entropy (A.151),

dtSE |tss = β Ûq(E)
���
tss
+ Ûσ (E)

���
tss
= dtS |tss − dtSM |E

��
tss
, (A.158)

such that, using Eqs. (A.158) and (A.153), the e�ective entropy balance of the second particle
reads

dtSM |tss − dt SM |E
��
tss
= dt I (E→M)

���
tss
. (A.159)

Thus, the totally asymmetric information �ow dt I |tss = dt I (E→M)��
tss

from the slowly to the
quickly evolving subsystem is �nite. This is physically plausible since the subsystems are
still correlated. The information �ow corresponds to time-varying correlations between the
two subsets due to the changes of their out-of-equilibrium probability distributions. This
means that at a global equilibrium state, ρeq = ρeq

M |E ρ
eq
E , the information �ow is zero.
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Hamiltonian of Mean Force We note the standard equilibrium identities

A
eq
M |E = E

eq
M |E − β−1S

eq
M |E, (A.160)

E
eq
M |E = ∂β (βA

eq
M |E) =

∫
dΓM ρ

eq
M |E e (A.161)

S
eq
M |E = β

2∂βA
eq
M |E = −

∫
dΓM ρ

eq
M |E ln ρeq

M |E, (A.162)

which, using Eq. (A.139), can be rewritten as

E
eq
M |E = ∂β

[
β
(
Hhmf +A

eq
M

) ]
(A.163)

S
eq
M |E = β

2 ∂β
(
Hhmf +A

eq
M

)
. (A.164)

In the limit of time-scale separation and local equilibrium of the subsystem M , Eqs.
(A.163) and (A.164) are valid at any time t . A comparison with Eqs. (A.142) and (A.141),
respectively, shows that

Ehmf (t)
��
tss
= E(t)|tss − ∂β (β Aeq

M ) (A.165)
Shmf (t)

��
tss
= S(t)|tss − β2 ∂β A

eq
M . (A.166)

Since we choose a time-independent Hamiltonian eM and the de�nitions of the Hamiltonian
and mean force (A.143) and the full work agree (A.105), it follows that the de�nitions of
heat current coincide

ÛQhmf (t)
��
tss
= dtEhmf (t)

��
tss
− ÛW (t)

��
tss
= ÛQ(t)

��
tss
. (A.167)

According to Eqs. (A.165) and (4.237) the entropy production rates are also identical,

ÛΣhmf (t)
��
tss
= dtShmf (t)

��
tss
− β ÛQhmf (t)

��
tss
= ÛΣ(t)

��
tss
, (A.168)

hence the Hamiltonian of mean-force formalism captures the full di�erential thermody-
namics in the limit of time-scale separation. Furthermore, with Eq. (A.155) we have proven
that

ÛΣ(t)
��
tss
= ÛΣ(1)(t)

���
tss
= Ûσ (1)(t)

���
tss
= ÛΣhmf (t)

��
tss
. (A.169)

Large-Mass Limit

We now study the limit of diverging masses mi → ∞ for i ∈ M and assume, to avoid
trivialities, the following scaling: O(∂xiui/mi) = 1 while ∂xiuint/mi → 0 as mi → ∞, for
i ∈ M . Consequently, the distributions ρE and ρM become statistically independent and the
conditional distribution reads

ρdetM |E(ΓM , t) =
N∑

i=N−M
δ
(
xi − x (i)t

)
δ
(
vi −v(i)t

)
, (A.170)
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where x (i)t andv
(i)
t are the solutions of the deterministic equations of motion (4.142) in the

subsystem M . As a result, the e�ective forces (A.113) in subsystem E (i ∈ E) are conservative,

f (i)(xE, t)
���
det
= −∂xi uintEM (xE,xM , t)

��
xM=x

(M )
t
. (A.171)

Marginalization. Obviously, SM |E
��
det
= 0, that is the naive de�nition for the system

entropy in E, (A.117), and the real system entropy (A.107) agree,
dtSE |det = dtS |det , (A.172)

such that we �nd for the di�erence between the real (A.106) and the e�ective heat current
(A.115),

ÛQ
��
det
− Ûq(E)

���
det
=

N∑
i=N−M

[ Ûq(i) − ξi (v(i)t )2] ���
det
, (A.173)

and for the di�erence between the real (A.109) and the e�ective entropy production rate
(A.118),

ÛΣ
��
det
− ÛΣ(E)

���
det
=

N∑
i=N−M

βi
(
v
(i)
t

)2
. (A.174)

This means that the e�ective thermodynamics de�ned for the subsystem E agrees - up to
the cumulated macroscopic friction associated with the particles in M - with the full one.
If the subsystem M is furthermore Hamiltonian, ξi = 0 ∀i ∈ M , the work sources are
non-dissipative and the e�ective description coincides with the full one. Physically, the
particles of M represent M independent work sources that modulate the energy landscape
of the subsystem E according to a protocol x (M)t ,v

(M)
t .

Owing to the statistical independence of ρE and ρM , the mutual information and thus
the information �ow is identically zero,

I |det = ÛIM→E
��
det
= ÛIE→M

��
det
= 0. (A.175)

Therefore, in the large-mass limit the e�ective entropy balance of the subsystem E coincides
with the full one,

dtSE |det =
E∑
i=1

βi Ûq(i)
���
det
+ Ûσ (E)

���
det
= dtS |tss , (A.176)

while the corresponding e�ective entropy balance equation for the subsystem M becomes
macroscopic and thus a triviality,

Ûσ (M)
���
det
= −

N∑
i=N−M

βi Ûq(i)
���
det
=

N∑
i=N−M

βi
(
v
(i)
t

)2
. (A.177)
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Hamiltonian of Mean Force. As already pointed out in the two-particle case, the Hamil-
tonian of mean force formalism and the deterministic limit are incompatible since the
assumption of a conditional Gibbs state (A.137) is inconsistent with the independent subsys-
tem distributions (A.170).

To sum up, the generalization of the two-particle discussion to multiple particles is
formally straightforward and leads to identical results.
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The authorship of the �ve included references is not entirely due to myself. The �rst
article [1] on the three-state model is the result of a very intense collaboration with Juzar
Thingna. Starting from a well-de�ned setup and an ad-hoc mean-�eld equation proposed by
Prof. Esposito, I realized that one can in fact start from a microscopic representation and
arrive at the mean-�eld equation in the macroscopic limit. The numerical advice of Juzar
Thingna was crucially important as he made me aware of how nontrivial the numerical
problem is and kept me motivated during the tedious and at times frustrating process of
coding. He furthermore introduced me to high-performance computing using the HPC
facilities of the University of Luxembourg [148]. The calculations and the implementation
of the numerics were mainly done by myself and I wrote the paper in close exchange with
Prof. Esposito.

The underlying idea and implementation of the second article [2] was due to me. I
realized that, using simple thermodynamic arguments, the low- and high-temperature
limit phases of the three-state model are universal for all clock models with in�nite-range
interactions and numerically discovered the existence of two classes which exhibit universal
(thermo)dynamical phenomenology. The discussions with Prof. Esposito inspired me to also
derive the critical Hopf-bifurcation temperature for all clock models. The thermodynamic
analysis was entirely conducted by myself. I wrote the paper myself with instructions from
Prof. Esposito.

The manuscript which culminated into article [3] was already well-established regarding
its scienti�c results by Shiqi Sheng. While I added minor results on the physics, my main
contribution was to rewrite the entire draft in order to create a coherent narrative and to
signi�cantly improve the presentation of the results.

Similarly, the draft for the article [4] was already in an advanced stage due to the work of
Kamran Shayanfard. Yet, the formulation of the coarse-graining contained inconsistencies,
which I, under guidance by Prof. Esposito, could resolve. Besides, Prof. Esposito inspired
me to also make contact with the theory of the Hamiltonian of mean force. Furthermore, I
overall signi�cantly improved the presentation of the results that were already established
and shaped the draft into a paper.

Inspired by the works [1] and [2], I realized that it is possible to consistently formulate
the stochastic thermodynamics across microscopic, mesoscopic scales as well as on the
mean-�eld level for all-to-all interacting identical systems. The di�erent thermodynamic
descriptions for the averages at these levels had already been established for the three-
state model and could be straighforwardly generalized to a much more generic setup. I
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furthermore formulated the �uctuating thermodynamics at the microscopic and mesoscopic
scale and identi�ed the conditions under which these representations coincide. Regarding
the �uctuating thermodynamics at macroscopic scales, Prof. Esposito realized the connection
with the work of Gianmaria Falasco and Tommaso Cossetto on path integral representations
of the nonequilibrium thermodynamics for large many-body systems. Together we succeeded
in consistently formulating the �uctuating thermodynamics at macroscopic scales using
path integral techniques. I wrote the entire paper [5] under guidance of Prof. Esposito.
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