
Deniable encryption, authentication, and key

exchange

Dimiter Ostrev

Abstract

We present some foundational ideas related to deniable encryption,
message authentication, and key exchange in classical cryptography. We
give detailed proofs of results that were previously only sketched in the
literature. In some cases, we reach the same conclusions as in previous
papers; in other cases, the focus on rigorous proofs leads us to different
formulations of the results.

1 Introduction

Encryption, message authentication and key exchange are important primitives
in cryptography. In this introduction, we give a high level idea of deniability for
these primitives. We use the traditional names Alice and Bob for two honest
users, and Eve for the adversary. We focus on the case of asymmetric keys.

The basic security notion for encryption gives to Eve the following powers:
the ability to perform probabilistic polynomial time computation, and the ability
to obtain cyphertexts for messages of her choice. Eve is then allowed to select
two messages of her choice, one of which is encrypted and the cyphertext given
to her. It is required that Eve be unable to guess which of the two messages
was used with probability significantly greater than 1/2.

The notion of deniable encryption extends the basic notion by giving Eve an
additional power: to approach the creator of the cyphertext, demand to see the
message and random coins used, and check for consistency with the cyphertext
she observed. The encryption scheme is called deniable if the creator of the
cyphertext can lie at this point in a way that is undetectable by any efficient
algorithm.

Do deniable encryption schemes exist? If they do, why would one be in-
terested in them? We give three answers, going from more theoretical to more
practical.

The first reason to be interested in deniable encryption is that it is a new
mathematical puzzle that presents a challenge: if a given cyphertext can con-
sistently match two different messages, then why does the intended receiver of
the cyphertext not get confused between the two messages?

The second reason to be interested in deniable encryption is that it is a useful
primitive for constructing some secure multi-party computation protocols.

1



The third reason is that in certain real-world scenarios, our intuition says
that something like deniable encryption would be required. Such scenarios in-
clude, for example, Alice voting electronically, and then Eve, a coercer or vote
buyer, approaching Alice and demanding to see how she voted. A second exam-
ple would be Alice storing encrypted data on her computer, and Eve approaching
Alice and demanding that Alice reveal the stored data.

We move now to message authentication. We begin our discussion with an
example: a protocol that allows Alice to authenticate a message to Bob:

Alice Bob
m−→

m,enc(pkA,k)←−−−−−−−−−
m,tag(k,m)−−−−−−−→

(1)

Here, enc(pkA, ·) is encryption under Alice’s public key, and k is a randomly
chosen key for a symmetric key message authentication scheme drawn by Bob as
a challenge for Alice. The intuition for the security of this protocol is that only
Alice could see k, and so only she can create the correct message authentication
tag under k.

While Bob is convinced that Alice sent him m, he cannot convince any
third party that such is the case. This is because Bob can produce the entire
transcript of a protocol execution for any message by himself. Therefore, we
say that this protocol provides deniable public key message authentication.

Thus, we have two modes of using asymmetric cryptography for message au-
thentication. A digital signature by Alice would assure Bob that Alice intended
to say m to him, and would also be verifiable by any third party. A deniable
message authentication protocol would again assure Bob that Alice intended to
say m to him, but would not present evidence to any third party.

When would deniable message authentication be useful? [7] gives one exam-
ple: a software producer wants to prove to paying customers that their copy of
the software is legitimate, and at the same time not allow them to make pirate
copies and sell them as original.

Other examples when deniable authentication would be useful are whistle-
blowing and off-the-record messaging. A recent press release from the Council
of the European Union [1] contains the following definition

Whistle-blowers are people speaking up when they encounter,
in the context of their work, wrongdoing that can harm the public
interest, for instance by damaging the environment, public health
and consumer safety and public finances.

We can see that the ability to report wrongdoing without fear of retribution is
important for a democratic society.

Finally, we discuss key exchange. The motivation for considering deniable
key exchange stems from the motivation for deniable authentication, combined
with the use of key exchange protocols to establish secure channels. Indeed,

2



consider the following common cryptographic scenario: Alice and Bob, who each
have a public key-secret key pair, wish to establish a secure communications
session. They run a key exchange protocol, and then use the resulting key
for symmetric key authenticated encryption of messages. Now, suppose that
Alice and Bob wish to have not only secrecy and integrity for their secure
communication session, but also deniability. Then, the key exchange protocol
they used to establish the session must also be deniable.

The rest of this paper is structured as follows: in section 2, we discuss some
background material from cryptography that will be useful in subsequent sec-
tions. In section 3 we discuss variations on the basic security notions; having
these variations will simplify the arguments in subsequent sections. In section 4
we discuss the first proposed construction that achieves deniable encryption. In
section 5, we show that our example of deniable authentication (1) is secure as
a message authentication protocol. We also give a definition of deniable authen-
tication and show that protocol (1) satisfies it under appropriate assumptions.
Finally, in section 6 we discuss deniability for key exchange protocols. We show
that the basic Diffie Hellman mechanism appropriately combined with (1) for
authentication is secure as a key exchange protocol, and is also deniable under
appropriate assumptions.

We conclude the introduction with brief remarks on the contributions of
this work. We give detailed definitions, theorem statements and proofs. In
some cases, we reach the same conclusions as the papers where the results were
first presented. In other cases, our conclusions differ. The most notable of
these concerns deniability of key exchange: we find that we require a different
assumption to rigorously prove deniability of the SKEME key exchange protocol.
This leads us to formulate a new security notion for asymmetric encryption,
which we call multi-user PA1 plaintext awareness. The relation of this multi-
user notion to the existing, single-user versions of plaintext awareness is left as
an open question for future work. More details are given in section 6.

2 Background

In this section, we cover asymmetric encryption (subsection 2.1), symmetric
key message authentication (subsection 2.2) and the Decisional Diffie Hellman
assumption (subsection2.3); all of these will be used in subsequent sections.

2.1 Asymmetric encryption

A public key encryption scheme ENC consists of three algorithms (kg, enc, dec).
kg takes as input a security parameter in unary, and returns a pair pk, sk. enc
takes as input a public key and a message, and outputs a ciphertext. dec takes
as input a secret key and a ciphertext, and outputs a message. kg, enc run in
probabilistic polynomial time, and dec runs in deterministic polynomial time.

Most of the time, we require ENC to satisfy perfect correctness; that is, we

3



require

∀n∀m, Pr((pk, sk)← kg(1n), c← enc(pk,m) : dec(sk, c) = m) = 1

In the present paper, we will also have to consider schemes where decryption is
correct with high probability, rather than perfect. More details are given in the
corresponding section.

Given an encryption scheme ENC and adversary strategy A, the chosen
plaintext attack security experiment proceeds as follows:

1. (pk, sk)← kg(1n), and pk is given to A

2. A produces m0,m1.

3. b← {0, 1}, c← enc(pk,mb), c is given to A.

4. A outputs a bit b′. We say here and afterwards leave implicit that A is
allowed to carry an internal state of its choice from the end of step 2 to
the beginning of step 4.

It is also possible to think of steps 1. and 3. as being performed by a challenger
for the CPA experiment.

Definition 1. Given an encryption scheme ENC and an adversary strategy A,
the advantage of A in the CPA experiment against ENC is

AdvCPA(A,ENC) = 2 ∗ Pr((pk, sk)← kg(1n), (m0,m1)← A(pk),

b← {0, 1}, c← enc(pk,mb), b
′ ← A(c) : b = b′)− 1

We say that ENC is IND-CPA secure if for all probabilistic polynomial time ad-
versary strategies A, AdvCPA(A,ENC) is a negligible function of the security
parameter.

The chosen ciphertext attack proceeds as the chosen plaintext attack, but
in addition, A is given access to a decryption oracle. Two variations are con-
sidered in the literature: CCA1, or CCA-pre, in which A is given access to the
decryption oracle only during step 2, and CCA2, or CCA-post, in which A is
given access to the decryption oracle both during step 2 and step 4 (during step
4, query of the challenge ciphertext to the decryption oracle is not allowed). In
the present paper, we will use the CCA2 version.

Definition 2. Given an encryption scheme ENC and an adversary strategy A,
the advantage of A in the IND-CCA2 experiment against ENC is

AdvCCA2(A,ENC) = 2 ∗ Pr((pk, sk)← kg(1n), (m0,m1)← Adec(sk)(pk),

b← {0, 1}, c← enc(pk,mb), b
′ ← Adec(sk)(c) : b′ = b)− 1

We say that ENC is IND-CCA2 secure if for all probabilistic polynomial time
adversary strategies A, AdvCCA2(A,ENC) is a negligible function of the se-
curity parameter.

4



For some proofs, it is more convenient to have an equivalent formulation of
CCA2 security. Here, we think of A as interacting with a single computational
entity, which we call CH −CCA2. CH −CCA2 takes as input the random bit
b, performs the key generation, gives pk to A, answers A’s decryption queries,
produces the challenge ciphertext c ← enc(pk,mb). We also think of the bit b′

produced by A as the output of the interaction [A,CH − CCA2(b)]. Thus, we
have rewritten the experiment

(pk, sk)← kg(1n), (m0,m1)← Adec(sk)(pk),

b← {0, 1}, c← enc(pk,mb), b
′ ← Adec(sk)(c)

as
b← {0, 1}, b′ ← [A,CH − CCA2(b)]

Further, we can rewrite the advantage of A as follows:

AdvCCA2(A,ENC) = 2∗Pr(b← {0, 1}, b′ ← [A,CH−CCA2(b)] : b′ = b)−1

= Pr([A,CH − CCA2(1)] = 1) + Pr([A,CH − CCA2(0)] = 0)− 1

= Pr([A,CH − CCA2(1)] = 1)− Pr([A,CH − CCA2(0)] = 1)

The alternative formulation emphasizes the role of A as a distinguisher trying
to tell whether it is interacting with CH − CCA2(0) or with CH − CCA2(1).

2.2 Symmetric key message authentication

A symmetric key message authentication scheme MAC consists of three algo-
rithms: (kg, tag, vrf). kg takes as input a security parameter in unary and
outputs a key k. tag takes as input a key and a message and outputs an au-
thentication tag. vrf takes as input a key, message and authentication tag and
outputs a decision: accept or reject. kg, tag run in probabilistic polynomial
time, and vrf runs in deterministic polynomial time.

Most of the time, we require MAC to satisfy perfect correctness:

∀n, ∀m, Pr(k ← kg(1n), t← tag(k,m) : vrf(k,m, t) = 1) = 1

Given a symmetric key message authentication scheme MAC and adversary
strategy A, the chosen message attack experiment proceeds as follows:

1. k ← kg(1n)

2. A is allowed to adaptively query tag(k, ·) on messages of its choice and
vrf(k, ·, ·) on message-tag pairs of its choice.

The interaction of A and MAC produces a transcript of A’s queries and the
corresponding responses; we denote this by T ← [A,MAC]. T is a random
variable.

We define B(T ) to be the event that there exist m, t such that the transcript
T contains a vrf query with input m, t and output 1 and no prior tag query
with input m and output t. Thus, the event B(T ) captures what we intuitively
perceive as the adversary breaking message authentication.

5



Definition 3. Given a message authentication scheme MAC and adversary
strategy A, the advantage of A in a chosen message attack against MAC is

AdvCMA(A,MAC) = Pr(T ← [A,MAC] : B(T ))

We say that MAC is EUF-CMA secure if for all probabilistic polynomial time
strategies A, AdvCMA(A,MAC) is a negligible function of the security param-
eter.

2.3 The Decisional Diffie Hellman assumption

In the present paper, we use the Decisional Diffie Hellman assumption in con-
structing translucent sets (subsection 4.2) and in proving the security of SKEME
(subsection 6.3).

Definition 4. A group generator is a probabilistic polynomial time algorithm
GroupGen that takes as input a security parameter 1n in unary, and outputs
a triple (G, q, g) where G is a finite cyclic group of prime order q and g is a
generator of G.

Conjecture 1 (Decisional Diffie Hellman assumption). There exists a group
generator GroupGen such that for all efficient D

AdvDDH(D,GroupGen)

= |Pr((G, q, g)← GroupGen(1n), (x, y)← Z2
q , h1 ← gx, h2 ← gy, h3 ← gxy

: D(G, q, g, h1, h2, h3) = 1)

− Pr((G, q, g)← GroupGen(1n), (h1, h2, h3)← G3

: D(G, q, g, h1, h2, h3) = 1)| (2)

is a negligible function of n.

3 Variations of the basic notions: multiple chal-
lenges and multiple keys

In the previous section, we presented the basic notions of security for public key
encryption and symmetric key message authentication. In order to better pre-
pare for the arguments in subsequent sections, we present the natural extension
of these notions to the case of multiple challenges and multiple keys. We begin
in subsection 3.1 by discussing an IND-CCA2 security experiment that allows
an adversary to adaptively ask for multiple challenge cyphertexts. Then, in
subsection 3.2, we consider an experiment in which the adversary attacks mul-
tiple key pairs, and can adaptively ask for multiple challenge cyphertexts under
each pair. Finally, in subsection 3.3, we discuss a variation of the EUF-CMA
security experiment in which the adversary is trying to break at least one out
of multiple keys.

6



3.1 The IND-CCA2 security experiment with one key pair
and multiple challenges

Let ENC = (kg, enc, dec) be an asymmetric encryption scheme and let N(n) be
a polynomially bounded efficiently computable function. Let A be an adversary
strategy that asks for at most N(n) challenge cyphertexts. The variation of the
IND-CCA2 security experiment with up to N(n) challenge cyphertexts proceeds
as follows:

1. CH receives as input the security parameter 1n and a vector~b ∈ {0, 1}N(n).

2. CH draws (pk, sk)← kg(1n) and gives pk to A.

3. CH answers A’s decryption queries.

4. If A submits the i-th request for a challenge cyphertext, with messages
mi,0,mi,1, CH draws ci ← enc(pk,mi,bi) and replies with ci. None of the
challenge cyphertexts can be queried to the decryption oracle.

5. At the end, A outputs a bit b′. We consider b′ as the output of the
interaction [A,CH(~b)].

We define the N -challenge advantage of A as

AdvCCA2N (A,ENC) = Pr([A,CH(1N )] = 1)− Pr([A,CH(0N )] = 1) (3)

The hybrid argument allows us to relate the advantage for multiple chal-
lenges to the advantage for a single challenge.

Theorem 1. Let ENC = (kg, enc, dec) be an asymmetric encryption scheme.
Let N(n) be a polynomially bounded efficiently computable function. Let A be
an efficient adversary strategy that asks for at most N challenges. Then, there
exists efficient adversary strategy A′ that asks for at most one challenge such
that

AdvCCA2N (A,ENC) = N ∗AdvCCA2(A′, ENC)

Proof. The main idea of the hybrid argument is contained in the equation

Pr([A,CH(1N )] = 1)− Pr([A,CH(0N )] = 1)

=

N∑
i=1

Pr([A,CH(1i0N−i)] = 1)− Pr([A,CH(1i−10N−i+1)] = 1)

This suggests to take algorithm A′ to be the following:

1. Receive pk from CH.

2. Pass pk to subroutine A.

3. Answer A’s decryption queries using CH.

7



4. Draw l← {1, . . . , N}.

5. For i = 1, . . . , l − 1, for the i-th of A’s challenge requests (mi,0,mi,1),
answer with ci ← enc(pk,mi,1).

6. For the l-th challenge request of A, answer using CH.

7. For i = l + 1, . . . , N , for the i-th of A’s challenge requests (mi,0,mi,1),
answer with ci ← enc(pk,mi,0).

8. When A outputs b′, output b′.

Then, A′ asks for at most one challenge and, for i = 1, . . . , N ,

Pr([A′, CH(1)] = 1|l = i) = Pr([A,CH(1i0N−i)] = 1)

Pr([A′, CH(0)] = 1|l = i) = Pr([A,CH(1i−10N−i+1)] = 1)

Then,

AdvCCA2(A′, ENC)

=

N∑
i=1

Pr(l = i)(Pr([A′, CH(1)] = 1|l = i)− Pr([A′, CH(0)] = 1|l = i))

=
1

N

N∑
i=1

(Pr([A,CH(1i0N−i)] = 1)− Pr([A,CH(1i−10N−i+1)] = 1))

=
1

N
(Pr([A,CH(1N )] = 1)−Pr([A,CH(0N )] = 1)) =

1

N
AdvCCA2N (A,ENC)

which proves the theorem.

3.2 The IND-CCA2 security experiment with multiple key
pairs and multiple challenges

Let ENC = (kg, enc, dec) be an asymmetric encryption scheme and let N(n),
N ′(n) be polynomially bounded efficiently computable functions. Let A be an
adversary strategy that takes as input the security parameter 1n and a vector of
N ′(n) public keys and asks for at most N(n) challenge cyphertexts under each
public key. The variation of the IND-CCA2 security experiment with N ′(n) key
pairs and up to N(n) challenge cyphertexts per pair proceeds as follows:

1. CH receives as input the security parameter 1n and a matrixB ∈ {0, 1}N ′×N .

2. For i = 1, . . . N ′(n), CH draws (pki, ski) ← kg(1n). CH gives ~pk =
(pk1, . . . pkN ′) to A.

3. CH answers A’s decryption queries.

8



4. If A submits the i-th request for a challenge cyphertext to the j-th public
key, with messages mj,i,0,mj,i,1, CH draws cj,i ← enc(pk,mj,i,Bj,i) and
replies with cj,i. None of the challenge cyphertexts can be queried to the
decryption oracle.

5. At the end, A outputs a bit b′. We consider b′ as the output of the
interaction [A,CH(B)].

We define the N ′-user N -challenge advantage of A as

AdvCCA2N ′,N (A,ENC)

= Pr([A,CH(1N
′×N )] = 1)− Pr([A,CH(0N

′×N )] = 1) (4)

Again, a hybrid argument allows us to relate the advantage for multiple
users and multiple challenges to the advantage for a single user and multiple
challenges.

Theorem 2. Let ENC = (kg, enc, dec) be an asymmetric encryption scheme.
Let N(n), N ′(n) be polynomially bounded efficiently computable functions. Let A
be an efficient adversary strategy for the N ′ user N challenge case. Then, there
exists efficient adversary strategy A′ for a single user and multiple challenges
such that

AdvCCA2N ′,N (A,ENC) = N ′ ∗AdvCCA2N (A′, ENC)

Proof. Take algorithm A′ to be the following:

1. Receive pk from CH.

2. Draw l← {1, . . . , N}.

3. For i = 1, . . . , l − 1, l + 1, . . . N , draw (pki, ski)← kg(1n).

4. Pass ~pk to subroutine A.

5. Answer A’s decryption queries for user l using CH. Answer decryption
queries for other users using the corresponding secret key.

6. For j = 1, . . . , l − 1, for i = 1, . . . N , answer the (j, i)-th of A’s challenge
requests (mj,i,0,mj,i,1), with cj,i ← enc(pk,mj,i,1).

7. For challenge requests to the l-th user, answer using CH.

8. For j = l+ 1, . . . , N ′, for i = 1, . . . N , answer the (j, i)-th of A’s challenge
requests (mj,i,0,mj,i,1), with cj,i ← enc(pk,mj,i,0).

9. When A outputs b′, output b′.

9



Then, A′ participates in the single user N -challenge IND-CCA2 experiment,
and, for j = 1, . . . , N ′,

Pr([A′, CH(1N )] = 1|l = j) = Pr([A,CH((1N )j(0N )N
′−j)] = 1)

Pr([A′, CH(0N )] = 1|l = j) = Pr([A,CH((1N )j−1(0N )N
′−j+1)] = 1)

Then,

AdvCCA2N (A′, ENC)

=

N ′∑
j=1

Pr(l = j)(Pr([A′, CH(1N )] = 1|l = j)− Pr([A′, CH(0N )] = 1|l = j))

=
1

N ′

N ′∑
j=1

(Pr([A,CH((1N )j(0N )N
′−j)] = 1)−Pr([A,CH((1N )j−1(0N )N

′−j+1)] = 1))

=
1

N ′
(Pr([A,CH(1N

′×N )] = 1)− Pr([A,CH(0N
′×N )] = 1))

=
1

N ′
AdvCCA2N ′,N (A,ENC)

which proves the theorem.

3.3 The EUF-CMA security experiment with multiple keys

Let MAC = (kg, tag, vrf) be a symmetric key message authentication scheme.
Let N(n) be a polynomially bounded efficiently computable function. Let A
be an adversary strategy. The EUF-CMA security experiment with N(n) users
proceeds as follows:

1. For i = 1, . . . N , draw ki ← kg(1n).

2. A is allowed to submit queries to tag(ki), vrf(ki) for i = 1, . . . N . A
transcript T of all queries is recorded.

For i = 1, . . . , N let Bi(T ) be the event that there is a query (m, t) to vrf(ki)
that passes verification, and there is no prior query to tag(ki) with input m and
output t. Let B(T ) = ∪Ni=1Bi(T ). The N -user EUF-CMA advatange of A is

AdvCMAN (A,MAC) = Pr(T ← [A,CH] : B(T ))

This time, the union bound allows us to relate the advantage in the multi-key
experiment to the advantage against a single secret key.

Theorem 3. Let MAC = (kg, tag, vrf) be a symmetric key message authen-
tication scheme. Let N(n) be a polynomially bounded efficiently computable
function. Let A be an efficient adversary strategy for the N -user EUF-CMA
experiment. Then, there is an efficient adversary strategy A′ for the single user
EUF-CMA experiment such that

AdvCMAN (A,MAC) ≤ N ∗AdvCMA(A′,MAC)

10



Proof. Take A′ to be the following

1. Draw l← {1, . . . N}.

2. For i = 1, . . . , l − 1, l + 1, . . . , N , draw ki ← kg(1n).

3. Use A as a subroutine. Answer A’s queries for user l by passing them to
the single user CH. Answer A’s queries to any user i 6= l using ki.

This experiment generates two transcripts: a transcript T of the queries at the
interface between A and A′ and a transcript T ′ of the queries at the interface
between A′ and the single user CH. Moreover, we have, for i = 1, . . . , N ,

Pr(B(T ′)|l = i) = Pr(Bi(T ))

Then,

AdvCMA(A′,MAC) =

N∑
i=1

Pr(l = i)Pr(B(T ′)|l = i)

=
1

N

N∑
i=1

Pr(Bi(T )) ≥ 1

N
Pr(B(T )) =

1

N
AdvCMAN (A,MAC)

which proves the theorem.

4 Deniable Encryption

Here, we follow [4]. Alice wants to send an encrypted message to Bob. After
observing the ciphertext, Eve demands to see the private random values that
Alice used during encryption. Alice wants to be able to give fake random values
at this point, and lie about the message that was actually transmitted. We
give a specific construction that matches this intuition, and we state and prove
formally the properties it achieves in Theorem 4.

We begin this section by defining a primitive called translucent sets (sub-
section 4.1), and showing how to achieve this primitive under the Decisional
Diffie Hellman assumption (subsection 4.2). Then, we construct the parity
scheme for deniable encryption from the translucent sets primitive (subsection
4.3), and formally state and prove the security and deniability properties of
the parity scheme (subsection 4.4). We conclude this section with some results
demonstrating the limits of the design approach underlying the parity scheme
(subsection 4.5).

4.1 Translucent sets

The authors of [4] propose to achieve deniable encryption based on a primitive
that they call translucent sets. We describe this primitive:

11



Definition 5. The primitive translucent sets consists of the following function-
alities:

1. Key generation: On input t ∈ N, outputs a pair (St(), Vt()) at random
from the set of acceptable pairs for security parameter t.

2. Generation of random translucent set elements: the algorithm St() outputs
an element of a certain subset Im(St) ⊂ {0, 1}t. The outputs of St() have
the uniform distribution over this set.

3. There exists a negligible function ε such that for all efficient distinguishers
D, for all t,

|Pr((St, Vt)← KG(t), x← St() : D(x, St) = 1)

− Pr((St, Vt)← KG(t), x← Ut() : D(x, St) = 1)| < ε(t)

where Ut is the algorithm that outputs uniformly random elements of
{0, 1}t.

4. There exists a negligible function δ such that for all t

Pr((St, Vt)← KG(t), x← St() : Vt(x) = 1) > 1− δ(t)
Pr((St, Vt)← KG(t), x← Ut() : Vt(x) = 1) < δ(t)

4.2 Construction of translucent sets

We present a simple construction of translucent sets based on the Decisional
Diffie-Hellman assumption (subsection 2.3). Let GroupGen be the efficient gen-
erator that is conjectured to exist in the DDH assumption (Conjecture 1). Now,
we construct translucent sets as follows:

1. Key generation proceeds as follows:

(a) (G, q, g)← GroupGen(1t).

(b) x← Zq, X ← gx.

(c) pk ← (G, q, g,X), sk ← (G, q, g, x)

(d) Output the algorithm S associated to pk and the algorithm V asso-
ciated to sk (explained below).

2. The algorithm S associated to (G, q, g,X) proceeds as follows: y ← Zq,
output (gy, Xy).

3. The algorithm V associated to (G, q, g, x) proceeds as follows: on input
(h1, h2), if hx1 = h2 output 1, else output 0.

Property 3. of Definition 5 follows from equation (2) of the Decisional Diffie
Hellman assumption. Property 4. of Definition 5 holds for any function δ(t)
such that δ(t) > 1/min(q(t)) for all t, where min(q(t)) denotes a lower bound
on the size of primes output by GroupGen on input security parameter t.

12



4.3 The parity scheme

The parity scheme uses the translucent sets primitive to achieve deniable en-
cryption. Choose odd n ∈ N, a parameter that governs the level of deniability
that is achieved. Then, the parity scheme works as follows:

• Key generation: Bob uses the key generation algorithm of translucent sets
and obtains (St, Vt) ← KG(t). St is Bob’s public key, and Vt is Bob’s
secret key.

• Encryption: to send bit b to Bob, Alice obtains Bob’s public key St and
then does the following:

1. If b = 0, choose a random even k ∈ {0, 2, . . . , n − 1}, and if b = 1
choose a random odd k ∈ {1, 3, . . . , n}.

2. For i = 1, . . . , k, ci ← St(), and for i = k + 1, . . . , n, ci ← Ut().

3. Send c = (c1, . . . cn) to Bob.

• Decryption: on receiving c, Bob does the following:

1. For i = 1, . . . , n, bi ← Vt(ci).

2. b←
∑

i bi mod 2.

• Sender deniability: to claim that c corresponds to an encryption of 1− b,
Alice does the following:

1. Instead of k, Alice reveals k− 1. If k = 0, the faking algorithm fails.

2. Alice reveals the randomness r1, . . . rk−1, used for generating c1, . . . ck−1.
Then, Alice claims that ck was chosen uniformly at random from
{0, 1}t, and honestly reveals that ck+1, . . . , cn are chosen uniformly
at random from {0, 1}t.

4.4 Properties of the parity scheme

Theorem 4. The parity scheme achieves the properties below. Each of the
properties holds for all t.

1. Correctness:

∀b, Pr((St, Vt)← KG(t), c← Enc(St, b), b
′ ← Dec(Vt, c) : b′ 6= b) < nδ(t)

2. IND-CPA security: for all efficient distinguishers D,

|Pr((St, Vt)← KG(t), c← Enc(St, 0) : D(St, c) = 1)

− Pr((St, Vt)← KG(t), c← Enc(St, 1) : D(St, c) = 1)| < ε(t)

13



3. (2/(n+1)+ε(t))-sender deniability: first, Eve, cannot distinguish between
an honest reveal of an encryption of 0 and a faked reveal of an encryption
of 1 as an encryption of 0; that is, for all efficient distinguishers D,

|Pr((St, Vt)← KG(t), k ← Even≤n, r ← R⊗k(), c← Enc(St, 0, k, r)

: D(St, c, k, r) = 1)

− Pr((St, Vt)← KG(t), k′ ← Odd≤n, r
′ ← R⊗k

′
(), c← Enc(St, 1, k

′, r′),

k ← k′ − 1, r ← (r′1, . . . , r
′
k) : D(St, c, k, r) = 1)| < ε(t)

where R() is the algorithm that tosses coins for the algorithm St(), and
where R⊗k() means running R() independently k times.

Second, Eve cannot distinguish between an honest reveal of an encryption
of 1 and a faked reveal of an encryption of 0 as an encryption of 1: for
all efficient D,

|Pr((St, Vt)← KG(t), k ← Odd≤n, r ← R⊗k(), c← Enc(St, 1, k, r)

: D(St, c, k, r) = 1)

−Pr((St, Vt)← KG(t), k′ ← Even≤n, r
′ ← R⊗k

′
(), c← Enc(St, 0, k

′, r′),

k ← k′ − 1, r ← (r′1, . . . , r
′
k) : D(St, c, k, r) = 1)| < 2

n+ 1
+ ε(t)

Remark: Note that increasing n improves the deniability but makes worse the
effort required for encryption and decryption and the correctness of the scheme.

Proof. Take any t.
First, we show correctness. The event that b = b′ contains the event that

each ci is decrypted correctly. Then,

Pr(b′ 6= b) ≤ Pr(some ci is decrypted incorrectly)

≤
n∑

i=1

Pr(ci is decrypted incorrectly) < nδ(t)

where we have used the union bound, then the fourth property of translucent
sets.

Next, we show secrecy. Given D that can distinguish between encryptions
of zero and one, we construct D′ that can distinguish between elements of the
translucent set and random elements of {0, 1}t. Specifically, D′ works as follows:

1. On input (x, St), choose random even k ∈ {0, 2, . . . , n− 1}.

2. For i = 1, . . . , k, ci ← St().

3. ck+1 ← x.

4. For i = k + 2, . . . , n, ci ← Ut().

14



5. b← D(St, c).

6. Output b.

Note that the events

(St, Vt)← KG(t), x← Ut() : D′(x, St) = 1

and
(St, Vt)← KG(t), c← Enc(St, 0) : D(St, c) = 1

are equivalent. The same holds for the events

(St, Vt)← KG(t), x← St() : D′(x, St) = 1

and
(St, Vt)← KG(t), c← Enc(St, 1) : D(St, c) = 1

Therefore,

|Pr((St, Vt)← KG(t), c← Enc(St, 0) : D(St, c) = 1)−
Pr((St, Vt)← KG(t), c← Enc(St, 1) : D(St, c) = 1)|

= |Pr((St, Vt)← KG(t), x← Ut() : D′(St, x) = 1)

− Pr((St, Vt)← KG(t), x← St() : D′(St, x) = 1)| < ε(t)

as needed.
Next, we show (2/(n + 1) + ε(t))-sender deniability. Consider first the case

of honest reveal of encryption of 0 and faked reveal of an encryption of 1 as
an encryption of 0. The experiment corresponding to an honest reveal of an
encryption of zero is the following:

1. (St, Vt)← KG(t).

2. k ← {0, 2, . . . , n− 1}.

3. r ← R⊗k().

4. For i = 1, . . . , k, ci ← St(ri).

5. For i = k + 1, . . . n, ci ← Ut().

6. b← D(St, c, k, r).

Call this Experiment1.
Next, we modify the first experiment so that the k + 1-st element is chosen

from the translucent set. Let Experiment2 be

1. (St, Vt)← KG(t).

2. k ← {0, 2, . . . , n− 1}.

15



3. r ← R⊗k().

4. For i = 1, . . . , k, ci ← St(ri).

5. ck+1 ← St().

6. For i = k + 2, . . . , n, ci ← Ut().

7. b← D(St, c, k, r).

We want to bound

|Pr(Experiment1 : b = 1)− Pr(Experiment2 : b = 1)|

We consider the third property of translucent sets and the distinguisher D′ given
by: ”on input (St, x),

1. k ← {0, 2, . . . , n− 1}.

2. r ← R⊗k().

3. For i = 1, . . . , k, ci ← St(ri).

4. ck+1 ← x.

5. For i = k + 2, . . . , n, ci ← Ut().

6. b← D(St, c, k, r).

7. Output b.

Then,

|Pr(Experiment1 : b = 1)− Pr(Experiment2 : b = 1)|
= |Pr((St, Vt)← KG(t), x← Ut() : D(St, x) = 1)

− Pr((St, Vt)← KG(t), x← St() : D(St, x) = 1)| < ε(t)

Now, let Experiment3 describe a faked reveal of an encryption of 1 as an
encryption of zero. Specifically, Experiment3 proceeds as follows:

1. (St, Vt)← KG(t).

2. k′ ← {1, 3, . . . , n}.

3. r′ ← R⊗k
′
().

4. For i = 1, . . . , k′, ci ← St(r
′
i).

5. For i = k′ + 1, . . . , n, ci ← Ut().

6. k ← k′ − 1.

7. r ← (r′1, . . . r
′
k).

16



8. b← D(St, c, k, r).

The joint distribution of the inputs to D is the same for Experiment2 and
Experiment3. Therefore,

Pr(Experiment2 : b = 1) = Pr(Experiment3 : b = 1)

We conclude that Eve can distinguish an honest reveal of an encryption of 0
and a faked reveal of an encryption of 1 as an encryption of 0 with advantage
at most ε(t).

Next, we consider an honest reveal of an encryption of 1 and a faked reveal
of an encryption of 0 as an encryption of 1. Let Experiment1 correspond to
an honest reveal of an encryption of 1; specifically, Experiment1 proceeds as
follows:

1. (St, Vt)← KG(t).

2. k ← {1, 3, . . . , n}.

3. r ← R⊗k().

4. For i = 1, . . . , k, ci ← St(ri).

5. For i = k + 1, . . . , n, ci ← Ut().

6. b← D(St, c, k, r).

Next, we modify how ck+1 is computed. Let Experiment2 be

1. (St, Vt)← KG(t).

2. k ← {1, 3, . . . , n}.

3. r ← R⊗k().

4. For i = 1, . . . , k, ci ← St(ri).

5. If k < n, ck+1 ← St().

6. For i = k + 2, . . . , n, ci ← Ut().

7. b← D(St, c, k, r).

Next, we want to bound |Pr(Experiment1 : b = 1)−Pr(Experiment2 : b = 1)|.
Let D′ be given by: ”on input (St, x), do the following:

1. k ← {1, 3, . . . , n}.

2. r ← R⊗k().

3. For i = 1, . . . , k, ci ← St(ri).

4. If k < n, ck+1 ← x.

17



5. For i = k + 2, . . . , n, ci ← Ut().

6. b← D(St, c, k, r).

7. Output b.

Then, the experiment (St, Vt)← KG(t), x← Ut(), b← D′(St, x) is equivalent to
Experiment1, while the experiment (St, Vt) ← KG(t), x ← St(), b ← D′(St, x)
is equivalent to Experiment2. We conclude that

|Pr(Experiment1 : b = 1)− Pr(Experiment2 : b = 1)| < ε(t)

Next, we look at a faked reveal of an encryption of 0 as an encryption of 1.
Let Experiment3 be:

1. (St, Vt)← KG(t).

2. k′ ← {0, 2, . . . , n− 1}.

3. r′ ← R⊗k
′
().

4. For i = 1, . . . , k′, ci ← St(ri).

5. For i = k′ + 1, . . . , n, ci ← Ut().

6. k ← k′ − 1.

7. r ← (r′1, . . . r
′
k).

8. b← D(St, c, k, r).

Now, we want to bound |Pr(Experiment2 : b = 1)−Pr(Experiment3 : b = 1)|.
We look at the inputs to D in the two experiments; let p, q denote the joint
distributions of the inputs in Experiment2 and Experiment3 respectively. We
look at the statistical distance between p and q:

1

2
‖p− q‖1 =

1

2

∑
St,c,k,r

|p(St, c, k, r)− q(St, c, k, r)|

=
1

2

∑
St,c,k,r

|p(k)p(St, c, r|k)− q(k)q(St, c, r|k)|

Now, when k ∈ {1, 3, . . . , n− 2}, we have p(k) = q(k) = 2/(n+ 1), and we have
p(St, c, r|k) = q(St, c, r|k) because in both cases St is independent of k, r has k
elements, and c has k+1 random translucent set elements and n−k−1 random
t-bit strings. When k = n, we have p(k) = 2/(n+ 1), q(k) = 0. When k = −1,
we have p(k) = 0, q(k) = 2/(n+ 1). We conclude that

1

2
‖p− q‖1 =

2

n+ 1

18



and therefore

|Pr(Experiment2 : b = 1)− Pr(Experiment3 : b = 1)| ≤ 2

n+ 1

From this and the previous discussion, we conclude that Eve can distinguish an
honest reveal of an encryption of 1 from a faked reveal of an encryption of 0 as
an encryption of 1 with an advantage at most 2/(n+ 1) + ε(t). This completes
the proof.

4.5 Lower bounds on the level of deniability

We see from the proof of Theorem 4 that for the parity scheme, there exists a
distinguisher that can tell apart an honest reveal of an encryption of 1 from a
faked reveal of an encryption of 0 as an encryption of 1 with advantage 2/(n+
1). One such distinguisher is the following: ”On input St, c, k, r, if (k = n) ∧
(∧ni=1St(ri) = ci) output 1 else output 0”.

In this section, we generalize this observation to a class of schemes that [4]
calls separable. In performing the generalization, we want to keep the following
feature of the parity scheme: the faking algorithm claims that the number of
translucent set elements is lower than it actually is.

First, we generalize our idea of deniable encryption protocol. We want to
model the publicly observable communication, the intended message, the private
randomness of Alice and Bob, and the method that Alice uses to lie about
the message and the private randomness. Let τ(b, r, s) denote the publicly
observable transcript during execution of the protocol with desired message
bit b, private randomness for Alice r, and private randomness for Bob s. Let
φ(b, r, τ) be the method by which Alice takes the actual message bit b, her actual
private randomness r, and the publicly observable transcript τ and produces fake
randomness to present to Eve or outputs a failure message indicating that no
faking is possible in the given case. We arrive at the following

Definition 6. A deniable encryption protocol is a tuple (R,S,T, τ, φ), where
R,S are the sets of possible private inputs for Alice and Bob, T is the set of
possible public transcripts for the protocol,

τ : {0, 1} × R× S→ T

is the function that takes a message bit, and private inputs for Alice and Bob
to the resulting public transcript, and

φ : {0, 1} × R× T→ R ∪ {⊥}

is the (possibly randomized) algorithm that takes the actual message bit, private
input for Alice and public transcript and returns a fake private input for Alice
or an indication of failure.

If it is desired to model also the role of the security parameter then one could
consider a sequence of such tuples; however, this will not be necessary in this
section.

19



We illustrate this definition using the parity scheme as example. In the parity
scheme, the publicly observable communication consists of Bob’s public key St

and of the ciphertext c that Alice sends to Bob. The private randomness for Bob
is the randomness he uses to generate his public key-secret key pair. The private
randomness for Alice consists of the choice of the number k of translucent set
elements, the values d1, . . . , dk she uses to generate the translucent set elements,
and the values ck+1, . . . , cn she uses to generate the random elements of {0, 1}t.
Note however that this natural representation for the private input of Alice
has the following property: the sets of private inputs used to encrypt 0 and to
encrypt 1 are disjoint.

In order to fit this to the generalized definition above and avoid certain tech-
nical issues (see also the remarks below), we need a uniform representation for
the private inputs used to encrypt 0 and the private inputs used to encrypt
1. Therefore, think of elements of R as being tuples (k, d1, . . . dn, c1, . . . , cn)
where k is a number in {0, 2, . . . , n − 1}, d1, . . . dn are seeds for the generation
of translucent set elements, and c1, . . . cn are elements of {0, 1}t. In this repre-
sentation, Alice’s encryption algorithm takes the first k + b of the d’s and the
last n−k− b of the c’s in order to encrypt message bit b. In this representation,
Alice’s faking algorithm works as follows:

φ(b, (k, d1, . . . , dn, c1, . . . cn), τ)

=


(k, d1, . . . , dk, d

′
k+1, dk+2, . . . dn, c1, . . . , ck, St(dk+1), ck+2, . . . , cn) if b = 1

(k − 2, d1, . . . , dk−1, d
′
k, dk+1, . . . , dn, c1, . . . ck−1, St(dk), ck+1, . . . , cn) if b = 0 ∧ k ≥ 2

⊥ if b = 0 ∧ k = 0

where in the first line d′k+1 is chosen so that St(d
′
k+1) 6= St(dk+1) and in the

second line d′k is chosen so that St(d
′
k) 6= St(dk).

Now, we want to introduce something analogous to the fact that in the parity
scheme, Alice fools Eve by claiming a lower number of translucent set elements.
The first step in this direction is the classification function.

Definition 7. A classification function for a deniable encryption protocol

(R,S,T, τ, φ)

is a function
γ : {0, 1} × R× T→ {0, 1, . . . , n}

for some n ∈ N.

In the case of the parity scheme, the classification function returns k + b,
where b is the message bit and k is taken from the element of R.

Based on the intuition from the parity scheme, we define separable schemes
to be the ones where applying the faking method leads to a lower value of the
classification function.

20



Definition 8. A deniable encryption protocol (R,S,T, τ, φ) is called n-separable
if there exists a classification function γ : {0, 1} × R× T → {0, 1, . . . , n} with
the property: there exists b ∈ {0, 1} such that

E

[
γ
(
b, φ
(
1− b, R, τ(1− b, R, S)

)
, τ(1− b, R, S)

)]
≤ E[γ(b, R, τ(b, R, S))]− 1

where R,S are a random variable taking values in R,S with the appropriate dis-
tributions, and where we take γ(b,⊥, τ) = −1 in order to avoid having undefined
expressions when φ returns an error.

We illustrate this definition using the parity scheme. For the parity scheme,
for all r ∈ R, s ∈ S, we have

γ(0, φ(1, r, τ(1, r, s)), τ(1, r, s)) = k(r) = γ(0, r, τ(0, r, s))

γ(1, φ(0, r, τ(0, r, s)), τ(0, r, s)) = k(r)− 2 + 1 = γ(1, r, τ(1, r, s))− 1

and therefore the condition in the definition of separable schemes holds for b = 1.
Now, we are ready to show that the existence of a good distinguisher between

honest and fake openings is not limited to the parity scheme, but extends to
any separable scheme.

Theorem 5. Let (R,S,T, τ, φ) be an n-separable deniable encryption protocol.
Then, there exists b ∈ {0, 1}, and there exists a distinguisher that can tell apart
an honest opening of an encryption of b and a faked opening of an encryption
of 1− b as an encryption of b with advantage at least 1/(n+ 1).

Proof. We introduce the following shorthand notation. LetXb = (b, R, τ(b, R, S))
be the random variable describing the adversary view for an honest opening of
an encryption of b, and let Yb = (b, φ(1− b, R, τ(1− b, R, S)), τ(1− b, R, S)) be
the random variable describing the view of the adversary for a faked opening of
an encryption of 1− b as an encryption of b.

Let b be the message bit such that E(γ(Yb)) ≤ E(γ(Xb))− 1 (Definition 8).
Define the set Z ⊂ {0, 1, . . . , n} by

Z = {z ∈ {0, 1, . . . , n} : P(γ(Xb) = z) > P(γ(Yb) = z)}

Then,

1 ≤ E(γ(Xb)− γ(Yb)) =

n∑
z=−1

z(P(γ(Xb) = z)− P(γ(Yb) = z))

≤ P(γ(Yb) = −1) +
∑
z∈Z

z(P(γ(Xb) = z)− P(γ(Yb) = z))

≤ P(γ(Yb) = −1) + nSD(γ(Xb), γ(Yb))

≤ (n+ 1)SD(γ(Xb), γ(Yb))

where SD(·, ·) denotes the statistical distance of two random variables.

21



Remark: [4, Definition 4] defines a scheme to be separable if for all rA either
one or the other of the two inequalities

ERB

(
C
(
φ
(
0, rA, COM(0, rA, RB)

)))
≤ C(rA)− 1

ERB

(
C
(
φ
(
1, rA, COM(1, rA, RB)

)))
≤ C(rA)− 1

holds.
However, it is not clear how with that version of the definition, the conclusion

”either
E(C(RA)− C(φ0(RA, RB))) ≥ 1/2

or
E(C(RA)− C(φ1(RA, RB))) ≥ 1/2”

can be reached in the second paragraph of the proof on page 12.
To illustrate the problem with the argument on page 12 of [4], we present

the following example: we will show that there exists random variable X and
functions f, g, h such that

∀x ∈ range(X), either f(x) ≤ h(x)− 1 or g(x) ≤ h(x)− 1

and in addition E(f(X)) > E(h(X)) and E(g(X)) > E(h(X)). Indeed, let X be
a random 3 bit string and let f, g, h be given as in the table:

x 000 001 010 100 011 101 110 111
f −1 3 0 3 1 3 1 3
g 3 0 3 0 3 1 3 2
h 0 1 1 1 2 2 2 3

Then, E(f(X)) = 13/8, E(g(X)) = 15/8, E(h(X)) = 12/8.

Remark: Consider the parity scheme. The most natural representation of the
random inputs for Alice is rA = (k, r1, . . . rk, ck+1, . . . , cn). With this represen-
tation, the random inputs used for an encryption of zero and the random inputs
used for an encryption of one are members of disjoint sets. This leads to the fol-
lowing problem: the expressions COM(b, rA, rB) and φ(b, rA, COM(b, rA, rB))
used in the proof of the claim on page 12 of [4] are not well-defined when rA is
a private input for the encryption of 1-b.

We have seen above that it is possible to encode the random input of Alice in
such a way that the same set of random inputs is used for an encryption of zero
and of one, but with this encoding, another problem arises: if the classification
function is given only Alice’s private input, it will not be able to distinguish
whether it has 2l or 2l+1 translucent set elements. Therefore, we have deviated
from the exposition in Section 4 of [4] and have allowed the classification function
to take also the message bit and the transcript as inputs.

22



5 Deniable Authentication

In this section, we examine the security and deniability of example (1) from the
introduction. We reproduce the example here adding one additional layer of
detail.

Alice Bob
m,s−−→

m,s,enc(pkA,k)←−−−−−−−−−−
m,s,tag(k,(m,s))−−−−−−−−−−−→

(5)

As before, enc(pkA, ·) is encryption under Alice’s public key, and k is a randomly
chosen key for a symmetric key message authentication scheme drawn by Bob
as a challenge for Alice. The new detail is the string s: it allows Alice and Bob
to associate incoming protocol flows to the appropriate session. We assume that
Alice generates the session identifier s independently, uniformly at random from
{0, 1}n for each message.

In the remainder of this section, we first define a notion of security for
interactive message authentication (subsection 5.1) that is analogous to the
EUF-CMA security notion. Then, we show that our running example (5) sat-
isfies this security notion (subsection 5.2). We proceed to define deniability
for interactive authentication (subsection 5.3). Our first result on deniability
is negative: we show that IND-CCA2 secure encryption and EUF-CMA se-
cure message authentication are not sufficient for example (5) to be deniable
(subsection 5.4). We then show that a stronger requirement on the encryption
scheme, plaintext awareness, does suffice for deniability (subsection 5.5). One
may wonder whether plaintext aware encryption schemes exist at all; we present
one construction that has this property under a non-standard assumption called
the Diffie Hellman Knowledge of Exponent assumption (subsection 5.6). The
exposition in this section is influenced by the ideas of [6, 2].

5.1 Asymmetric key interactive message authentication
protocols

An asymmetric key interactive message authentication protocol consists of three
algorithms: (kg, send, rec). kg is a probabilistic polynomial time key generation
algorithm, that takes as input the security parameter in unary and outputs a
pair (pk, sk). send is an interactive probabilistic polynomial time algorithm
that takes as input sk and reacts to external requests from the user or from
the network to initiate and continue the interactive protocol execution as the
message sender. rec is an interactive probabilistic polynomial time algorithm
that takes as input pk and reacts to external requests to perform the interactive
protocol as the message receiver.

We require the protocol (kg, send, rec) to satisfy perfect correctness, i.e.
when (pk, sk)← kg(1n) and messages are faithfully forwarded between send(sk)
and rec(pk), the receiver eventually accepts the message as coming from the
sender.

23



We would like to have a notion of security for interactive authentication
protocols. We take the main idea of the chosen message attack against non-
interactive message authentication (subsection 2.2), and adapt it to the interac-
tive case. Before we proceed, we remark on the difference between the interactive
and non-interactive case. The main conceptual difference between the two cases
concerns open sessions and interleaving (ordering in time) of messages.

In the non-interactive case, an adversary query to the tag or sign oracle
opens a new session for the sender, but with the output of the response of tag
or sign, this session is immediately closed. Similarly, a call to the vrf oracle
opens a session for the receiver, and this session immediately closes with the
output of the corresponding response. This means that the sender and receiver
never have more than one session open at the same time, and implies that the
order of sessions in time satisfies simple properties, such as ”if one session starts
before another, then it also ends before the other.”

In the interactive case, the adversary can open a session of a sender or a
receiver and keep it open for a long time; messages of other sessions may occur
between the opening and closing. This means that the sender and receiver can
have many open sessions at the same time, and need to be able to match external
requests to the appropriate open session. It also means that simple properties
of the time order such as our example ”if one session starts before another, then
it also ends before the other” are no longer true.

Now, we proceed to describe the chosen message attack security experiment
for interactive authentication protocols. Given a protocol IMA = (kg, send, rec)
and adversary strategy A, the experiment proceeds as follows:

1. (pk, sk)← kg(1n).

2. A is given pk. A can adaptively submit activation requests of its choice
to send(sk), rec(pk) and see their response.

The interaction of A and IMA produces a transcript; we denote this by T ←
[A, IMA]. T is a random variable.

We defineB′(T ) to be the event that T contains a session of rec that accepts a
message m without a corresponding session of send that previously sent message
m. B′(T ) captures our intuition about what it means for A to break IMA.

Definition 9. Given an interactive message authentication protocol IMA and
a probabilistic polynomial time adversary strategy A, we define the advantage of
A against IMA in the chosen message attack experiment by

AdvCMA′(A, IMA) = Pr(T ← [A, IMA](1n) : B′(T ))

We say that the interactive message authentication protocol IMA is secure
against a chosen message attack if for all probabilistic polynomial time adver-
sary strategies A, AdvCMA′(A, IMA) is a negligible function of the security
parameter n.

Finally, we remark that it is often convenient to think of a single compu-
tational entity, called a challenger, that gives pk to A and answers all of A’s
queries to send(sk) sessions and rec(pk) sessions.

24



5.2 Security proof for an interactive message authentica-
tion protocol

In this section, we show that our running example (5) satisfies the security
notion of subsection 5.1. The exposition here was influenced by the ideas in [2].

Let IMA denote our running example protocol, and let ENC, MAC denote
the underlying public key encryption and symmetric key message authentication
schemes. Now, we show

Theorem 6. Let A be a probabilistic polynomial time adversary strategy against
IMA. Let Nr be an upper bound on the number of receiver sessions that A
activates. Then, there exists probabilistic polynomial time A′, A′′ such that

AdvCMA′(A, IMA) ≤ AdvCCA2Nr (A′, ENC) +AdvCMANr (A′′,MAC)

Corollary 1. If ENC is IND-CCA2 secure and MAC is EUF-CMA secure,
then IMA is secure against a chosen message attack.

Proof. Intuitively, the adversary can break the authentication protocol if it man-
ages to break one of the receiver sessions. This in turn can happen in two cases:
if the adversary can learn the ephemeral symmetric key used in that session, or
if the adversary can create a correct message authentication tag without know-
ing the corresponding ephemeral key. The first case is prevented by the security
of the encryption scheme, while the second case is prevented by the security of
the symmetric-key message authentication scheme. We follow this intuition in
constructing the proof.

We now proceed with the details. The security experiment against IMA can
be described by the following pseudo-code:

1. (pk, sk)← kg(1n)

2. T ← EmptyList

3. While A(pk) has not terminated

(a) If A makes a query to send(sk) with values (Message0,m),

i. s← {0, 1}n

ii. give (m, s) to A, add (Message0,m, (m, s)) to T

(b) If A makes a query to rec(pk) with values (Message1,m, s)

i. Draw k ← kgmac(1n). Associate k to (m, s).

ii. c← enc(pk, k). Associate k to c.

iii. Output (m, s, c) to A, add (Message1, (m, s), (m, s, c)) to T .

(c) If A makes a query to send(sk) with values (Message2,m, s, c)

i. Check if there is an open session with associated message and ses-
sion id (m, s). If not, output ⊥ to A, add (Message2, (m, s, c),⊥)
to T . Else, continue.

25



ii. If c was previously produced by rec(sk), retrieve the associated
k, draw t← tag(k, (m, s)).

iii. Else k ← dec(sk, c), t← tag(k, (m, s))

iv. Give (m, s, t) to A, add (Message2, (m, s, c), (m, s, t)) to T .

(d) If A makes a query to rec(pk) with values (Message3,m, s, t)

i. Check if there is an open session with associated message and ses-
sion id (m, s). If not, output ⊥ to A, add (Message3, (m, s, t),⊥)
to T . Else, continue.

ii. Retrieve k associated to (m, s). If vrf(k, (m, s), t) = 0 output ⊥
toA, and add (Message3, (m, s, t),⊥) to T , else if vrf(k, (m, s), t)
= 1 output SessionDone to A, and add

(Message3, (m, s, t), SessionDone)

to T .

Now, we modify this experiment in small steps. Let [A,CH1] denote the
interaction in the original experiment, as described above.

First, we limit the ability to learn the ephemeral symmetric keys used for
authentication. Let the interaction [A,CH2] proceed as [A,CH1] except that
lines 3.(b).i, 3.(b).ii change to

3.(b).i’ Draw k0 ← kg(1n). Draw k1 ← kg(1n). Associate k0 to (m, s).

3.(b).ii’ Draw c ← enc(pk, k1). However, associate k0 to c, so that k0 is retrieved
in line 3.(c).ii.

Now, we need to evaluate the change of adversary advantage from [A,CH1]
to [A,CH2]. For that purpose, we think of the of the instructions in lines
2, 3 (with all sub-items) as a single algorithm A′ which takes input pk and
participates in the Nr-challenge IND-CCA2 experiment (subsection 3.1). We
interpret line 3.(c).iii as A′ making a query to the decryption oracle, and we
interpret lines 3.(b).i,3.(b).ii, respectively 3.(b).i’,3.(b).ii’, as A′ requesting a
new challenge cyphertext on message pair (k0, k1). Finally, we define the output
of A′ to be 0 if B′(T ) occurs and 1 otherwise. Thus, we have:

Pr(T ← [A,CH1] : B′(T )) = 1− Pr([A′,MC − CCA2(0Nr )] = 1)

Pr(T ← [A,CH2] : B′(T )) = 1− Pr([A′,MC − CCA2(1Nr )] = 1)

where we have used MC−CCA2 to denote the challenger in the multi-challenge
IND-CCA2 security experiment. Thus, we have

Pr(T ← [A,CH1] : B′(T ))− Pr(T ← [A,CH2] : B′(T ))

= AdvCCA2Nr
(A′, ENC) (6)

Next, we want to evaluate the adversary advantage in the interaction [A,CH2].
For that purpose, interpret the instructions in lines 1,2,3 (with all sub-items ex-
cept the drawing of the keys k0 in line 3.(b).i’, and the retrieval of the keys

26



in lines 3.(c).ii and 3.(d).ii) as a single algorithm A′′ that participates in the
Nr-key EUF-CMA security experiment (subsection 3.3). We interpret the keys
k0 drawn in line 3.(b).i as the secret keys of the EUF-CMA experiment. We
interpret line 3.(c).ii as A′′ making a query to the tag oracle. We interpret line
3.(d).ii as A′′ making a query to the verify oracle.

Now we want to relate the advantage of A and A′′. Before we do that,
first we summarize the situation. We have an experiment that we can think
of either as the interaction [A,CH2] or as the interaction [A′′,MK −MAC]
where MK −MAC denotes the challenger in the Nr-key EUF-CMA security
experiment. We have two transcripts: the transcript T produced at the interface
between A and CH2, and the transcript T ′′ produced at the interface between
A′′ and MK −MAC.

We claim that the event B′(T ) implies the event B(T ′′). To prove this,
suppose that B(T ′′) does not occur. If no tag verification succeeds, then B′(T )
also does not occur. If there are k,m, s, t such that vrf(k, (m, s), t) = 1 in line
3.(d).ii, then, for any such tuple, the tag t was produced by a tag(k, (m, s))
oracle query in line 3.(c).ii. Again, we see that B′(T ) does not occur. Thus, we
have

Pr(T ← [A,CH2] : B′(T )) ≤ Pr(T ′′ ← [A′′,MK −MAC] : B(T ′′))

= AdvCMANr
(A′′,MAC) (7)

Combining (6), (7) proves the theorem.

5.3 Deniability for interactive authentication protocols

Let IMA = (kg, send, rec) be an interactive message authentication protocol.
Intuitively, the sender is able to deny participating in the protocol if the receiver
could generate by himself a transcript that looks indistinguishable from a real
interaction with the sender.

A further refinement of this idea is that such a property should hold not
only against a receiver that follows the protocol, but also against a receiver that
arbitrarily deviates from it. We can see immediately that our running example
(5) is deniable against an honest receiver. However, we will see later on that the
situation against arbitrary receiver is more complex. We postpone the details,
and for now concentrate on defining deniability against an arbitrary receiver.

We model this situation with the following experiment: given a probabilistic
polynomial time algorithm A,

1. (pk, sk)← kg(1n).

2. r ← Rand(1n), where Rand is a procedure that generates the random
coins for A.

3. A takes inputs pk, r and has oracle access to send(sk). A can start many
sessions of send, interleaving them arbitrarily. The interaction of A and
send produces a transcript; we denote this by T ← Asend(sk)(r, pk)

27



The view of A in the above experiment consists of the inputs (r, pk) that A
receives and the transcript T . Now, we require that a computationally indistin-
guishable view can be produced without access to the send(sk) oracle:

Definition 10. The interactive message authentication protocol (kg, send, rec)
is deniable if for all efficient algorithms A, there exists efficient S such that for
all efficient D,

|Pr((pk, sk)← kg(1n), r ← Rand(1n), T ← Asend(sk)(r, pk) : D(r, pk, T ) = 1)

− Pr((pk, sk)← kg(1n), r ← Rand(1n), T ← S(r, pk) : D(r, pk, T ) = 1)|

is negligible.

5.4 IND-CCA2 secure encryption and EUF-CMA secure
message authentication are not enough for our exam-
ple protocol to be deniable

Now we start investigating whether our running example protocol (5) is deni-
able. Our first result is negative: we show that it is not sufficient to require that
the encryption scheme used is IND-CCA2 secure and that the message authenti-
cation scheme used is EUF-CMA secure to ensure that the protocol is deniable.
Intuitively, the problem is that a receiver that deviates from the protocol can
submit an ill-formed ciphertext in the second flow of the protocol. We proceed
with the details.

Suppose that ENC = (kg, enc, dec) is an IND-CCA2 secure encryption
scheme. Let f be a length preserving one-way function. We construct a new
encryption scheme ENC ′ = (kg′, enc′, dec′). kg′ proceeds as follows:

1. On input 1n,

2. (pk, sk)← kg(1n)

3. u1 ← {0, 1}n, u2 ← {0, 1}n

4. U1 ← f(u1), U2 ← f(u2)

5. pk′ ← (pk, U1, U2), sk′ ← (sk, u1, u2)

6. Output (pk′, sk′)

enc′ proceeds as follows: on input (pk, U1, U2,m), c← enc(pk,m), output (0, c).
dec′ proceeds as follows:

1. On input ((sk, u1, u2), (b, c)),

2. If b = 0, d← dec(sk, c),

3. Else if b = 1 and c = (U1, U2), d← (u1, u2),

4. Else d← ⊥

28



5. Output d.

Thus, we have taken ENC and have added an independent mechanism involving
a one-way function to it. Intuitively, ENC ′ should be as secure as ENC, and
indeed we have

Claim 1. Let A′ be an efficient adversary strategy in the CCA2 experiment
against ENC ′. Then, there exists an efficient adversary strategy A in the CCA2
experiment against ENC such that AdvCCA2(A,ENC) = AdvCCA2(A′, ENC ′)

Proof. We construct an interactive algorithm A′′ such that in the interaction

[[CH − CCA2(ENC), A′′], A′] = [CH − CCA2(ENC), [A′′, A′]]

the combination [CH−CCA2(ENC), A′′] is equivalent to CH−CCA2(ENC ′),
and such that the combination A = [A′′, A′] is an adversary strategy against
ENC. Specifically, A′′ operates as follows:

1. It receives pk from CH −CCA2(ENC). It draws u1, u2 ← {0, 1}n, U1 ←
f(u1), U2 ← f(u2) and gives (pk, U1, U2) to A′

2. A′′ answers decryption queries (b, c) from A′ as follows

(a) If b = 0, query CH − CCA2(ENC) on c, and forward the response
to A′.

(b) If b = 1 and c = (U1, U2), reply with (u1, u2).

(c) Else reply with ⊥.

3. When A′ produces m0,m1, forward these to CH −CCA2(ENC), obtain
the challenge ciphertext c, and give (0, c) to A′.

4. When A′ outputs b′, output b′.

Thus, it is clear that AdvCCA2(A,ENC) = AdvCCA2(A′, ENC ′).

Similarly, suppose that MAC = (kgmac, tag, vrf) is a EUF-CMA secure
message authentication scheme. We construct a new scheme MAC ′ = (kgmac′,
tag′, vrf ′), which operates as follows

1. kgmac′(1n) draws independent k1, k2 ← kgmac(1n) and outputs (k1, k2).

2. tag′(k1, k2,m) draws t← tag(k1,m) and outputs (t, k2).

3. vrf ′(k1, k2,m, t1, t2), takes b1 ← vrf(k1,m, t1), b2 ← (k2 = t2) and out-
puts b1 ∧ b2.

Thus, we have introduced an independent second key, and, intuitively, MAC ′

should be as secure as MAC. Indeed, we have:

Claim 2. Let A′ be an efficient adversary strategy against MAC ′. Then, there
exists an efficient adversary strategy A against MAC such that

AdvCMA(A,MAC) = AdvCMA(A′,MAC ′)

29



Proof. Similarly to the previous proof, we construct an interactive algorithm
A′′ such that in the interaction

[[MAC,A′′], A′] = [MAC, [A′′, A′]]

the combination [MAC,A′′] is equivalent to MAC ′ from the point of view of
A′ and the combination A = [A′′, A′] is an efficient strategy against MAC.
Specifically, A′′ operates as follows:

1. It draws k2 ← kgmac(1n).

2. On (tag,m) query from A′, A′′ obtains t1 ← tag(k1,m) from MAC and
gives t1, k2 to A′.

3. On (vrf,m, t1, t2) query from A′, A′′ obtains b1 ← vrf(k1,m, t1) from
MAC, computes b2 ← (k2 = t2) and returns b1 ∧ b2 to A′.

Thus, the interaction [MAC,A′′, A′] produces two transcripts: a transcript T
of the queries at the MAC −A′′ interface and a transcript T ′ of the queries at
the A′′−A′ interface. The queries in T and in T ′ are in a one-to-one correspon-
dence, and the event B(T ) occurs if and only if the event B(T ′) occurs. Thus,
AdvCMA(A,MAC) = AdvCMA(A′,MAC ′).

Now, we let IMA be our interactive message authentication protocol (5)
instantiated with ENC and MAC, and let IMA′ be the same protocol instanti-
ated with ENC ′, MAC ′. If ENC is IND-CCA2 secure and MAC is EUF-CMA
secure, then IMA′ is secure against a chosen message attack. However, we have
the following:

Proposition 1. IMA′ is not deniable.

Proof. We present a specific A, for which no simulator can produce a computa-
tionally indistinguishable view. A operates as follows:

1. It receives (pk, U1, U2).

2. It pick any m, and initializes a single send session, asking it to send
message m. The sender session outputs (m, s), where s is a randomly
chosen session ID.

3. A submits (1, U1, U2) as challenge ciphertext. The sender session responds
with (tag(u1,m), u2), where u2 is the pre-image of U2 under the one-way
function f . Then, A halts.

Intuitively, it should not be possible to simulate this transcript without
access to the send oracle. Let D be the distinguisher which expects to see
input of the form

(r, pk′, T ) = (r, pk, U1, U2,m, s, c, t, u2)

30



and checks whether f(u2) = U2 and if so outputs 1, else outputs 0. Then,

Pr((pk′, sk′)← kg′(1n), r ← Rand(1n),

T ← Asend(sk′)(r, pk′) : D(r, pk′, T ) = 1) = 1

while for any efficient simulator S,

Pr((pk′, sk′)← kg′(1n), r ← Rand(1n), T ← S(r, pk′) : D(r, pk′, T ) = 1)

is negligible, because it is the probability that the algorithm S′ given by

1. On input U2

2. u1 ← {0, 1}n

3. U1 ← f(u1)

4. (pk, sk)← kg(1n)

5. r ← Rand(1n)

6. T ← S(r, pk, U1, U2)

7. Output the last entry ot T

succeeds in the one-way function pre-image finding experiment

u2 ← {0, 1}n, U2 ← f(u2), w ← S′(U2)

In summary, we have shown that ∃A∃D∀S

|Pr((pk′, sk′)← kg′(1n), r ← Rand(1n),

T ← Asend(sk′)(r, pk′) : D(r, pk′, T ) = 1)

− Pr((pk′, sk′)← kg(1n), r ← Rand(1n), T ← S(r, pk′) : D(r, pk′, T ) = 1)|
= 1− negl(n)

and therefore IMA′ is not deniable.

5.5 Plaintext aware encryption and deniability of protocol
(5)

We have seen in the previous subsection that IND-CCA2 security of the encryp-
tion scheme and EUF-CMA security of the message authentication scheme are
not enough to guarantee that the interactive message authentication protocol
is deniable. In this section, we will see that a stronger requirement on the en-
cryption scheme: that it is plaintext aware, is sufficient to ensure that (5) is
deniable.

The intuitive idea behind plaintext aware encryption is to require the follow-
ing: if an adversary outputs a ciphertext, then it must know the corresponding
plaintext. A further idea is that we capture ”knows the plaintext” by requir-
ing that the plaintext be efficiently computable from the view of the adversary.
Thus, we arrive at the following:

31



Definition 11 ([3]). Let ENC = (kg, enc, dec) be an asymmetric encryption
scheme. We say that ENC is PA0 if for every efficient algorithm A, there exists
an efficient algorithm A∗ such that

Pr((pk, sk)← kg(1n), r ← Rand(1n), c← A(r, pk) : A∗(r, pk, c) 6= dec(sk, c))

is negligible.

A useful question for gaining intuition at this point is: in what sense is A∗

different from a decryption algorithm? Why doesn’t A∗’s ability to decrypt
without the secret key contradict the security of the encryption scheme? The
answer is the following: A∗ ”knows” the algorithm that produced the ciphertext
c and its random coins; this is captured by the order of quantifiers ∀A∃A∗ and
by giving r as input to A∗.

Before we proceed to the more advanced notions of plaintext awareness, we
remark that this basic notion is enough to prove a limited kind of deniability
for protocol (5), namely, deniability in the case of a single sender session.

Proposition 2. Let IMA = (kg, send, rec) be the protocol (5) using a PA0
encryption scheme. Let A be any efficient algorithm that interacts with only a
single send session. Then, there exists efficient S such that for all efficient D,

|Pr((pk, sk)← kg(1n), r ← Rand(1n), T ← Asend(sk)(r, pk) : D(r, pk, T ) = 1)

− Pr((pk, sk)← kg(1n), r ← Rand(1n), T ← S(r, pk) : D(r, pk, T ) = 1)|

is negligible.

Proof. We first spell out in detail how the interaction of A with the single sender
session proceeds:

1. A receives input its random coins r and the public key pk. A computes
a message m and asks the sender session to send m. The sender session
outputs m together with a session id s← {0, 1}n.

2. A computes a ciphertext c to submit to the sender session; we denote this
by c← A(r, s, pk). By the PA0 property of the encryption scheme, there is
an efficient algorithm A∗ that on input (r, s, pk) decrypts c with negligible
probability of failure.

3. The sender session computes k ← dec(sk, c) and t← tag(k, (m, s)).

This suggests the following simulator S:

1. On input (r, pk) do the following:

2. m← A(r, pk)

3. Draw s← {0, 1}n

4. c← A(r, s, pk)

32



5. k′ ← A∗(r, s, pk)

6. t′ ← tag(k′, (m, s))

7. Output the three message transcript T ′ ← ((m, s), (m, s, c), (m, s, t′)).

Since the probability that k′ in step 5 differs from k ← dec(sk, c) is negligible,
no distinguisher can tell apart (r, pk, T ) from (r, pk, T ′) except with negligible
advantage.

Thus, we see that the PA0 property is intuitively clear, and easy to define
and use. Unfortunately, we can also see why it is not sufficient for our purposes:
if we try to prove deniability for many concurrent sender sessions, we will have
to deal with adversaries that produce not one but many ciphertexts.

Thus, we are led to the property PA1. We follow the definitional approach
of [3]. Instead of requiring that A∗ decrypts each of a sequence of ciphertexts
correctly, we require that A∗ be able to serve as a decryption oracle for A,
without A, or an external distinguisher, noticing the difference.

Definition 12. We say that ENC = (kg, enc, dec) is PA1 if for all efficient A
there exists efficient A∗ such that for all efficient D,

|Pr((pk, sk)← kg(1n), r ← R(1n), x← Adec(sk)(r, pk) : D(x) = 1)

− Pr((pk, sk)← kg(1n), r ← R(1n), x← AA∗(r,pk)(r, pk) : D(x) = 1|

is negligible. We remark that in acting as a decryption oracle, A∗ is allowed to
keep internal state between queries, and to have its own internal coin tosses.

Now, we will see that the PA1 property is enough to show that protocol (5)
is deniable according to definition 10.

Theorem 7. Let IMA = (kg, send, rec) be protocol (5) with a PA1 encryption
scheme. Then, IMA is deniable according to definition 10.

Proof. Take any efficient A.
We look in detail at how the experiment

(pk, sk)← kg(1n), r ← R(1n), T ← Asend(sk)(r, pk), b← D(r, pk, T )

from definition 10 proceeds.

1. (pk, sk)← kg(1n)

2. r ← R(1n)

3. T ← EmptyList

4. While A(r, pk) has not terminated

(a) If A makes a query to send(sk) with message m,

33



i. s← {0, 1}n

ii. give (m, s) to A, add (StartSession,m, (m, s)) to T

(b) If A makes a (m, s, c) challenge to send(sk)

i. Check if there is an open session with associated values (m, s).
If not, output ⊥ to A, add (Challenge, (m, s, c),⊥) to T . Else,
continue.

ii. k ← dec(sk, c)

iii. t← tag(k, (m, s))

iv. Give (m, s, t) to A, add (Challenge, (m, s, c), (m, s, t)) to T .

5. T̄ ← (r, pk, T )

6. b← D(T̄ )

Now, we think of the random coins r generated in line 2. and the random
coins s1, . . . sw (with w being some polynomial function of n) generated in line
4.(a).i. as being generated by an extended randomness generation procedure R̄.

We also think of lines 3., 4. (with all sub-items except the generation of the
si’s), 5. as a single algorithm Ā that takes input (r, s1, . . . sw, pk), makes queries
to a decryption oracle in line 4.(b).ii., and outputs T̄ at the end.

Thus, we have rewritten the experiment

(pk, sk)← kg(1n), r ← R(1n), T ← Asend(sk)(r, pk), b← D(r, pk, T )

as the experiment

(pk, sk)← kg(1n), (r, ~s)← R̄(1n), T̄ ← Ādec(sk)(r, ~s, pk), b← D(T̄ )

Now, from the assumption that the encryption scheme is PA1, we deduce
that there exists efficient Ā∗ such that for all efficient D,

|Pr((pk, sk)← kg(1n), (r, ~s)← R̄(1n), T̄ ← Ādec(sk)(r, ~s, pk) : D(T̄ ) = 1)

−Pr((pk, sk)← kg(1n), (r, ~s)← R̄(1n), T̄ ← ĀĀ∗(r,~s,pk)(r, ~s, pk) : D(T̄ ) = 1)|

is negligible.
Now, we look at the details of the experiment

(pk, sk)← kg(1n), (r, ~s)← R̄(1n), T̄ ← ĀĀ∗(r,~s,pk)(r, ~s, pk), b← D(T̄ )

They are the same as the pseudo-code above, but with line 4.(b).ii replaced by
k ← Ā∗(r, ~s, pk), and with all the session ids si drawn at the beginning.

Now we think of the instructions in line 3. and the modified line 4. (with all
the sub-items) as forming a single algorithm S, that takes input (r, pk), draws
the random session ids, and produces output T . Thus, we have rewritten the
experiment

(pk, sk)← kg(1n), (r, ~s)← R̄(1n), T̄ ← ĀĀ∗(r,~s,pk)(r, ~s, pk), b← D(T̄ )

34



as the experiment

(pk, sk)← kg(1n), r ← R(1n), T ← S(r, pk), b← D(r, pk, T )

Combining all observations so far, we see that ∀A∃S∀D

|Pr((pk, sk)← kg(1n)r ← R(1n), T ← Asend(sk)(r, pk) : D(r, pk, T ) = 1)

− Pr((pk, sk)← kg(1n), r ← R(1n), T ← S(r, pk) : D(r, pk, T ) = 1)|

is negligible. Therefore, IMA is deniable according to definition 10.

Having seen that PA1 encryption is sufficient for deniability, it may be worth
revisiting the example ENC ′ of IND-CCA2 secure encryption that is not suf-
ficient (subsection 5.4). For the scheme ENC ′ constructed there, and for the
particular problematic cyphertext (1, U1, U2), we see that no efficient algorithm
A∗ can decrypt that cyphertext without access to the secret key. Thus, the
scheme ENC ′ from that example is not PA0 or PA1.

5.6 Candidate construction of a PA1 encryption scheme

One encryption scheme that is conjectured to have the PA1 property is Damgard’s
variant [5] of the El Gamal encryption scheme [8]. The key generation kg(1n)
operates as follows:

1. (G, q, g)← GroupGen(1n) where G is a cyclic group of prime order q, g is
a generator of G, and GroupGen is the group generator that is conjectured
to exist in the Decisional Diffie Hellman assumption (conjecture 1).

2. (x, y)← {0, 1, . . . q − 1}2, X ← gx, Y ← gy.

3. pk ← (G, q, g,X, Y ), sk ← (G, q, g, x, y), output (pk, sk).

Encryption enc(G, q, g,X, Y,m) operates on messages m ∈ G as follows:

1. r ← {0, . . . q − 1}

2. Output (gr, Xr, Y r ∗m)

Decryption dec(G, q, g, x, y, c1, c2, c3) operates on cyphertexts (c1, c2, c3) ∈ G×
G×G as follows:

1. Check cx1 = c2, and if it fails, output ⊥.

2. Else, if the check passes, output c3 ∗ c−y1 .

The intuition for the IND-CPA security of this encryption scheme is the same
as for El Gamal encryption and Diffie-Hellman key exchange. The intuition for
the PA1 property is the following: it seems hard to produce c1, c2 that would
pass the check without knowing the exponent r such that c1 = gr, c2 = Xr. It
is possible to formalize this intuition into an assumption that is tailor made to
prove the PA1 property of the above encryption scheme; for details, see [3].

35



6 Deniable key exchange

In this section we explore deniability of key exchange protocols. We begin by
introducing our candidate deniable key exchange protocol in subsection 6.1. We
then give a definition of security for key exchange (subsection 6.2) and prove
our example secure according to this definition (subsection 6.3). Next, we make
some preliminary remarks on the deniability of our example (subsection 6.4).
Then, we discuss multi-user plaintext awareness in subsection 6.5. We conclude
by discussing deniability of our example in subsection 6.6. The exposition in
this section is influenced by the ideas of [2, 6].

6.1 The SKEME protocol

Our running example in this section will be the SKEME protocol [11] that is
used in the Internet Key Exchange proposed standards [9, 10]. We use the three
flow version of the protocol presented in [6]:

Alice Bob
x ← Zq, sA ← {0, 1}

n,

kA ← kgmac(1n)
A,sA,gx,enc(pkB,kA)
−−−−−−−−−−−−−−−−−−−→ y ← Zq, sB ← {0, 1}

n,

B,sB,A,sA,gy,enc(pkA,kB),tag(kA,(gy,gx,B,sB,A,sA))
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− kB ← kgmac(1n)

Output gxy A,sA,B,sB,tag(kB,(gx,gy,A,sA,B,sB))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Output gxy

Here, Alice and Bob each have a public key secret key pair. They use the
interactive authentication protocol (5) to authenticate to each other the pair of
Diffie-Hellman terms gx, gy that they use in this session. Finally, they compute
the output as the Diffie Hellman term gxy.

Remark: In [6], the session key is computed as prf(kA, g
xy) + prf(kB , g

xy),
where prf is a keyed pseudo random function family. This approach creates
problems when writing a security proof. To see why, consider the modification
MAC ′ of a EUF-CMA secure scheme MAC described in subsection 5.4. In
MAC ′, which is also EUF-CMA secure, half of the symmetric keys kA, kB are
revealed in the authentication tags. Now, how does one deal with the prf when
a substantial fraction of its secret key is known? The present author does not
know what [6] had in mind, and that paper does not attempt a proof of security
for their version of SKEME. The paper [11] that introduces SKEME also does
not include security proofs. In [2], a security proof appears for a protocol that
is essentially the same as we are considering here. The present exposition of the
protocol and its security proof was influenced by [2].

6.2 Security definition for key exchange

We would like to argue that SKEME is secure as a key exchange protocol.
We first need to explain the definition of security for key exchange that we
will use. We use the game-based (also known as indistinguishability based)
approach, and model concurrent executions of many instances of the protocol,

36



full adversarial control of the network, revealing of established session keys, and
static corruptions.

The security experiment for key exchange is an interaction between a chal-
lenger and an adversary. The challenger simulates to the adversary interaction
with users of the protocol. The adversary can guide this interaction by sub-
mitting queries to the challenger. In more detail, the experiment proceeds as
follows:

1. The security experiment is parametrized by the number of corrupt and
honest users. Let m(n),m′(n) be functions of the security parameter that
are bounded by a polynomial in n. We will denote the honest users by
{U1, . . . , Um}, and the corrupt users by {V1, . . . , Vm′}.

2. CH,A receive input the security parameter 1n in unary.

3. CH draws (pk, sk) ← kg(1n) for all users and gives all public keys and
the secret keys of corrupt users to A.

4. CH draws (G, g, q) ← GroupGen(1n) for use in the Diffie Hellman part
of the protocol and gives (G, g, q) to A.

5. A may submit queries to the simulated honest users {U1, . . . , Um}:

(a) A may ask user Ui to start a new protocol session with intended
partner X ∈ {U1, . . . Um, V1, . . . Vm′}.

(b) A may ask user Ui to process an incoming protocol message.

(c) A may ask to take a challenge on the key computed by a particular
session. A may ask to take a challenge once at any point during
the experiment (in particular, A is allowed to continue asking other
queries to the challenger after taking the challenge). To specify which
session is tested, A must submit a tuple (Ui, s,X, s

′) such that user
Ui has a completed session with associated values (Ui, s,X, s

′) and
X is an honest user. CH draws random b ← {0, 1} (sometimes it is
more convenient to think of b as drawn outside CH and supplied to
it as input) and if b = 0 replies with the real session key associated
to (Ui, s,X, s

′) by user Ui, and if b = 1, CH draws an independent
random string of the same length and replies with that.

(d) A may ask to reveal the session key of a particular session. A
specifies a tuple (Ui, s,X, s

′) where honest user Ui has completed
a session with values (Ui, s,X, s

′) and X is any user (honest or cor-
rupt). CH replies with the session key computed by Ui associated to
(Ui, s,X, s

′). The only restriction is that A is not allowed to reveal
the session key of the test session or its partner, where if (Ui, s,X, s

′)
is the test session, we define its partner to be any instance of user X
that has values (X, s′, Ui, s), if such instance exists.

37



6. When A has finished making queries, it computes a guess b′ for the value
of b. A wins if b = b′. The advantage of A is

AdvKE(A,CH) = 2Pr((b, b′)← [A,CH] : b = b′)− 1

= Pr([A,CH(1)] = 1)− Pr([A,CH(0)] = 1)

The protocol is deemed secure if for all efficient A, AdvKE(A,CH) is
negligible.

6.3 Proof of security for SKEME

In this subsection, we show:

Theorem 8. Let SKEME be instantiated with encryption scheme ENC mes-
sage authentication scheme MAC and cyclic group generator GroupGen. Let
m(n),m′(n) be functions of the security parameter that are bounded by a poly-
nomial in n, and consider the security experiment with m honest and m′ corrupt
users. Let A be an efficient adversary that creates at most N sessions of honest
users. Then, there exist efficient A′, A′′, A′′′ such that

AdvKE(A,SKEME) ≤ 2N2

2n
+ 2AdvCCA2m,N (A′, ENC)

+ 2AdvCMAN (A′′,MAC) + 2AdvDDH(A′′′, GroupGen)

Corollary 2. Suppose SKEME is instantiated with a IND-CCA2 secure asym-
metric encryption scheme, a EUF-CMA secure symmetric message authenti-
cation scheme, and a group generator for which the Decisional Diffie-Hellman
assumption holds. Then, SKEME is secure in the sense of subsection 6.2.

Proof. Our intuition tells us that there are several methods by which an adver-
sary may try to break the protocol. The first method is to attempt to mismatch
sessions. The second method is by attempting to break the authentication of
the protocol; as in the proof of Theorem 6, this can be broken down further
into attempting to learn something about the ephemeral authentication key, or
trying to break authentication without knowing anything about the ephemeral
key. Finally, the adversary may attempt to learn something about the generated
session key via an eavesdropping attack.

Out proof follows this intuition. We use the sequence of games technique.
In each successive game, we limit the adversary’s ability to pursue one of the
above strategies. At a high level, the games are:

1. Let [A,CH0] denote the interaction in the security experiment for SKEME
as described in subsection 6.2.

2. Next, we limit the adversary’s ability to mismatch sessions. Let CH1

operate as CH0, except that whenever a new s value must be drawn for
some user instance, CH1 ensures that this value does not collide with any

38



previously observed s value, either adversary or user generated. In the
interaction [A,CH1] for every honest user instance with associated values
(X, s, Y, s′), there exists at most one honest instance with associated values
(Y, s′, X, s).

3. Next, we limit the adversary’s ability to learn something about the ephemeral
symmetric keys used for authentication. Let CH2 be as CH1, except
that whenever a user instance has as partner one of the honest users
X ∈ {U1, . . . Um} and needs to generate a symmetric key for authenti-
cation, it generates two independent keys k0, k1 ← kgmac(1n)⊗2. k1 is
used to generate the cyphertext c ← enc(pkX , k1) that is sent out, and
k0 is used to verify incoming authentication tags. In addition, whenever
c is delivered to user X, CH2 knows to substitute k0 instead of k1 in the
decryption. Thus, in effect, CH2 ensures an ”ideally secret” delivery of k0

to X.

4. Next, we limit the adversary’s ability to break the authentication mecha-
nism. Let CH3 be as CH2, except that when a user instance receives an
authentication tag, CH3 not only verifies the correctness of the authenti-
cation tag, but also verifies that this authentication tag was produced by
its partner instance.

5. Finally, we limit the ability of the adversary to obtain information about
the session keys by breaking the Diffie Hellman mechanism. Let CH4 be
as CH3, except that when two honest user instances have authenticated to
each other the values (gx, gy, X, s, Y, s′) and (gy, gx, Y, s′, X, s), CH4 gen-
erates their session key as an independent random group element instead
of as gxy.

Now, we proceed with the details. The interaction [A,CH0(b)] can be spec-
ified in pseudo-code as follows:

0. b← {0, 1}.

1. On input the security parameter 1n, and the secret bit b (alternatively, we
can think of b as drawn inside the interaction; we switch between the two
ways of thinking as needed).

2. For i = 1, . . .m, (pkUi , skUi)← kg(1n).

3. ~pkU ← (pkU1 , . . . , pkUm), ~skU ← (skU1 , . . . , skUm).

4. For j = 1, . . .m′, (pkVj
, skVj

)← kg(1n).

5. ~pkV ← (pkV1
, . . . , pkVm′ ),

~skV ← (skV1
, . . . , skVm′ ).

6. T ← EmptyList

7. While A( ~pkU ,
~pkV ,

~skV ) has not terminated:

39



(a) If A makes a (message0, X, Y ) query instructing honest user X ∈
{U1, . . . Um} to start a new session with honest or corrupt user Y ∈
{U1, . . . , Um, V1, . . . Vm′} then

i. Draw s← {0, 1}n.

ii. Draw x← Zq. Associate x to (X, s, Y ).

iii. Draw k0 ← kgmac(1n), k1 ← kgmac(1n) independently. Asso-
ciate k0 to (X, s, Y ). The key k1 plays no further role in this
game but will be used in subsequent games.

iv. c← enc(pkY , k0). Associate k0 to (Y, c).

v. Output (X, s, gx, c) toA and append ((message0, X, Y ), (X, s, gx, c))
to T .

(b) If A makes a (message1, Y, (X, s, h, c)) query to honest user Y ∈
{U1, . . . Um} then

i. Draw s′ ← {0, 1}n.

ii. Draw y ← Zq. Associate y to (Y, s′, X, s). Also associate the
peer DH element h to (Y, s′, X, s).

iii. Draw k′0, k
′
1 ← kgmac(1n) independently. Associate k′0 to (Y, s′, X, s).

The key k′1 plays no further role in this game but will be used in
subsequent games.

iv. c′ ← enc(pkX , k
′
0). Associate k′0 to (X, c′).

v. If there is a key associated to the pair (Y, c) (i.e. if c was pre-
viously produced by an honest user using Y ’s public key), then
retrieve the associated k.

vi. Else k ← dec(skY , c).

vii. t′ ← tag(k, (gy, h, Y, s′, X, s))

viii. Output (Y, s′, X, s, gy, c′, t′) to A and append

((message1, Y, (X, s, h, c)), (Y, s
′, X, s, gy, c′, t′))

to T .

(c) If A makes a (message2, X, (Y, s
′, X, s, h′, c′, t′)) to honest user X ∈

{U1, . . . Um} then

i. If there is no open session with values (X, s, Y ), output ⊥ to A
and append ((message2, X, (Y, s

′, X, s, h′, c′, t′)),⊥) to T .

ii. Else retrieve the symmetric key k and the DH exponent x asso-
ciated with (X, s, Y ).

iii. If vrf(k, (h′, gx, Y, s′, X, s), t′) = 0, output ⊥ to A and append
((message2, X, (Y, s

′, X, s, h′, c′, t′)),⊥) to T , else continue.

iv. Compute session key (h′)x. Associate this session key to (X, s, Y, s′).

v. If there is a key associated with (X, c′) (i.e. if c′ was previously
produced by an honest user using X’s public key), retrieve the
corresponding k′.

40



vi. Else k′ ← dec(skX , c
′).

vii. t← tag(k′, (gx, h′, X, s, Y, s′)).

viii. Output (X, s, Y, s′, t) to A and append

((message2, X, (X, s, Y, s
′, h′, c′, t′)), (X, s, Y, s′, t))

to T .

(d) If A makes a (message3, Y, (X, s, Y, s
′, t)) query to honest user Y ∈

{U1, . . . Um} then

i. If there is no open session with values (Y, s′, X, s), output ⊥ to
A and append ((message3, Y, (X, s, Y, s

′, t)),⊥) to T .

ii. Else retrieve the symmetric key k′, the DH exponent y, and the
peer DH group element h associated to values (Y, s′, X, s).

iii. If vrf(k′, (h, gy, X, s, Y, s′), t) = 0, output ⊥ to A and append
((message3, Y, (X, s, Y, s

′, t)),⊥) to T , else continue.

iv. Compute session key hy. Associate this session key to (Y, s′, X, s).

v. Output SessionDone to A and append

((message3, Y, (X, s, Y, s
′, t)), SessionDone)

to T .

(e) If A makes a (RevealSessionKey, (X, s, Y, s′)) query to a session of
honest user X ∈ {U1, . . . Um}, then

i. If there is no completed session with values (X, s, Y, s′), then out-
put ⊥ to A and append ((RevealSessionKey, (X, s, Y, s′)),⊥) to
T .

ii. Else if session (X, s, Y, s′) or (Y, s′, X, s) is marked as tested, then
output ⊥ to A and append

((RevealSessionKey, (X, s, Y, s′)),⊥)

to T .

iii. Else retrieve the session key h ∈ G associated to values (X, s, Y, s′),
mark (X, s, Y, s′) and (Y, s′, X, s) as revealed, output h to A and
append ((RevealSessionKey, (X, s, Y, s′)), h) to T .

(f) If A makes a (Test, (X, s, Y, s′)) query to a session of honest user
X ∈ {U1, . . . Um} whose intended partner Y is also an honest user,
then

i. Check that there was no prior Test query in T . If there was,
output ⊥ to A and append ((Test, (X, s, Y, s′)),⊥) to T .

ii. If there is no completed session with values (X, s, Y, s′), then
output ⊥ to A and append ((Test, (X, s, Y, s′)),⊥) to T .

41



iii. Else if session (X, s, Y, s′) or (Y, s′, X, s) is marked as revealed,
then output ⊥ to A and append

((Test, (X, s, Y, s′)),⊥)

to T .

iv. Else, if b = 0 retrieve the session key h ∈ G associated to values
(X, s, Y, s′) and if b = 1 draw h← G.

v. Mark (X, s, Y, s′) and (Y, s′, X, s) as tested, output h to A and
append ((Test, (X, s, Y, s′)), h) to T .

8. When A outputs b′ output b′.

In the interaction [A,CH1] we modify the following lines:

7.(a).i’ Draw s← {0, 1}n − {session ids that have appeared previously}

7.(b).i’ Draw s′ ← {0, 1}n − {session ids that have appeared previously}

Now, we have to place upper bounds on the change in adversary advantage
from one game to the next. We have

|Pr((b, b′)← [A,CH0] : b = b′)− Pr((b, b′)← [A,CH1] : b = b′)| ≤ N2

2n

This is because the interactions [A,CH0], [A,CH1] proceed identically unless in
the first interaction there is a collision of a newly drawn s value with a previously
observed one, and this occurs with probability at most N22−n. Then, we have

|AdvKE(A,CH0)−AdvKE(A,CH1)| ≤ 2N2

2n
(8)

Next, we consider the second game. In the interaction [A,CH2], the lines
7.(a).iv, 7.(b).iv are modified to:

7.(a).iv’ If Y is honest c ← enk(pkY , k1). However, associate k0 to (Y, c), so that
k0 is retrieved in lines 7.(b).v, 7.(c).v. If Y is corrupt, c ← enk(pkY , k0)
and associate k0 to (Y, c).

7.(b).iv’ If X is honest, c′ ← enk(pkX , k
′
1). However, associate k′0 to (X, c′), so that

k′0 is retrieved in lines 7.(b).v, 7.(c).v. If X is corrupt, c′ ← enk(pkX , k
′
0)

and associate k′0 to (X, c′).

Now, we need to give a bound for |AdvKE(A,CH1)−AdvKE(A,CH2)|. Think
of the instructions in lines 0,1,3,4,5,6,7,8 as an algorithm A′ that participates
in the m-key N -challenge IND-CCA2 security experiment (subsection 3.2). We
interpret the (pk, sk) pairs of honest users as the keys of the IND-CCA2 exper-
iment. We interpret the honest intended partner case of lines 7.(a).iv, 7.(b).iv,
7.(a).iv’, 7.(b).iv’ as A′ requesting a challenge cyphertext. We interpret the

42



corrupt intended partner case as A′ performing encryption by itself. We inter-
pret lines 7.(b).vi, 7.(c).vi as A′ querying the decryption oracle. At the end, A′

outputs 1 if b = b′ and 0 otherwise. We have

Pr((b, b′)← [A,CH1] : b = b′) = Pr([A′,MKMC − CCA2(0m×N )] = 1)

Pr((b, b′)← [A,CH2] : b = b′) = Pr([A′,MKMC − CCA2(1m×N )] = 1)

Therefore,

|AdvKE(A,CH1)−AdvKE(A,CH2)| ≤ 2AdvCCA2m,N (A′, ENC) (9)

Next, we consider the third game. In the interaction [A,CH3], the lines
7.(c).iii, 7.(d).iii are modified:

7.(c).iii’ If the intended partner Y is corrupt, perform 7.(c).iii. Else: If

vrf(k, (h′, gx, Y, s′, X, s), t′) = 0

or T does not contain the session (Y, s′, X, s) producing tag t′ on values
(h′, gx, Y, s′, X, s), output ⊥ to A and append

((message2, X, (Y, s
′, X, s, h′, c′, t′)),⊥)

to T , else continue.

7.(d).iii’ If the intended partner X is corrupt, perform 7.(d).iii. Else: If

vrf(k′, (h, gy, X, s, Y, s′), t) = 0

or T does not contain the session (X, s, Y, s′) producing tag t on values
(h, gy, X, s, Y, s′), output ⊥ to A and append

((message3, Y, (X, s, Y, s
′, t)),⊥)

to T , else continue.

Now, we need to give a bound for |AdvKE(A,CH2)−AdvKE(A,CH3)|. Think
of the pseudo-code of the interaction [A,CH2] (with modifications explained
below) as an algorithm A′′ participating in the N -key EUF-CMA experiment
(subsection 3.3). We interpret the keys k0 drawn by honest user sessions whose
intended partner is also an honest user as the secret keys of the N -key EUF-
CMA experiment. If A′′ needs to produce a tag under one of these keys in lines
7.(b).vii and 7.(c).vii, then A′′ queries the corresponding tag oracle of the EUF-
CMA experiment. If A′′ needs to verify a tag under one of these keys in lines
7.(c).iii, 7.(d).iii, then it queries the corresponding vrf oracle of the EUF-CMA
experiment.

Thus, we have shown that the same pseudo-code can be thought of either as
the interaction [A,CH2] or as the interaction [A′′,MK −CMA], where MK −
CMA denotes the challenger for the N -key EUF-CMA security experiment.

43



Now, observe that the interaction [A,CH2] proceeds identically to the inter-
action [A,CH3], unless A′′ wins the EUF-CMA experiment in the alternative
interpretation [A′′,MK − CMA] of [A,CH2]. Therefore,

|Pr((b, b′)← [A,CH2] : b = b′)− Pr((b, b′)← [A,CH3] : b = b′)|
≤ Pr(T ′′ ← [A′′,MK − CMA] : B(T ′′)) = AdvCMAN (A′′,MAC) (10)

and

|AdvKE(A,CH2)−AdvKE(A,CH3)| ≤ 2AdvCMAN (A′′,MAC) (11)

We have one more game left, game number 4. Before we describe the changes
in game 4, we comment on the consequences of the design of game 3. In game
3, a session of honest user X, with values (X, s, Y, s′), whose intended partner
is honest user Y accepts only if there is exactly one session of Y with values
(Y, s′, X, s), and moreover the two sessions (X, s, Y, s′), (Y, s′, X, s) are using the
same pair of group elements for the Diffie-Hellman mechanism.

Now, we describe the game [A,CH4]. The lines 7.(c).iv, 7.(d).iv are modified:

7.(c).iv’ If the intended partner Y is corrupt, execute 7.(c).iv. Else, compute the
session key as γ ← G and associate it to session (X, s, Y, s′).

7.(d).iv’ If the intended partner X is corrupt, execute 7.(d).iv. Else, find the
session key associated to session (X, s, Y, s′), and associate it also to session
(Y, s′, X, s).

Next, we claim there exists A′′′ such that

|Pr((b, b′)← [A,CH3] : b = b′)− Pr((b, b′)← [A,CH4] : b = b′)|
≤ AdvDDH(A′′′, GroupGen)

and therefore,

|AdvKE(A,CH3)−AdvKE(A,CH4)| ≤ 2AdvDDH(A′′′, GroupGen) (12)

To see this, let A′′′ be an algorithm trying to decide whether the triple of group
elements (α, β, γ) it receives is a Diffie Hellman triple or three independent
random group elements. A′′′ plays the role of CH3 or CH4 for A, with the
following changes:

1. A′′′ gives the specification of the group (G, g, q) it receives from its own
challenger to A.

2. When a new instance of some honest user X is created as protocol initiator
with intended partner honest user Y , A′′′ draws a ← Zq and computes
the Diffie Hellman term for that instance of X as αga.

3. If a new instance of honest user Y is created as protocol responder with
intended partner honest user X, then A′′′ draws b ← Zq and computes
the Diffie Hellman term for that instance of Y as βgb.

44



4. If (X, s, Y, s′) is a session of honest user X acting as protocol initiator with
intended partner honest user Y , and if X has verified the authentication
tag associating DH elements (βgb, αga) to (Y, s′, X, s), then A′′′ computes
the session key associated to (X, s, Y, s′) as γαbβagab.

5. If (Y, s′, X, s) is a session of honest user Y acting as protocol responder
with intended partner honest user X, and if Y has verified the authen-
tication tag associating DH elements (αga, βgb) to (X, s, Y, s′), then A′′′

computes the session key associated to (Y, s′, X, s) to be the same as the
key associated to (X, s, Y, s′) (i.e. γαbβagab).

We see that if (α, β, γ) is drawn as a Diffie Hellman triple, then A′′′ provides
the same view to A as CH3, and if (α, β, γ) is drawn as a triple of independent
random group elements, then A′′′ provides the same view to A as CH4. This
proves equation (12).

Finally, we see that in Game 4, the view of the adversary is independent of
the hidden bit b. Therefore,

AdvKE(A,CH4) = 0 (13)

Combining equations (8), (9), (11), (12), (13) we complete the proof of the
theorem.

6.4 Preliminary remarks on the deniability of SKEME

We have already seen many of the ideas that allow us to define deniability for
key exchange and prove that the SKEME protocol is deniable. These ideas are:
the definition of deniability as the ability to simulate the view of an adversary
interacting with an honest user (subsection 5.3), the observation that IND-
CCA2 secure encryption and EUF-CMA secure authentication are not sufficient
for deniability against an arbitrary receiver (subsection 5.4), and the observation
that another requirement on encryption, plaintext awareness (subsection 5.5),
does suffice for the authentication protocol underlying SKEME to be deniable.

Thus, we are almost ready to declare that SKEME is deniable. However,
there is an additional complication in the case of SKEME: in the security ex-
periment from subsection 6.2, there are multiple (pk, sk) pairs of honest users,
while in the definition of PA1 encryption (definition 12) there is only one such
pair. In the next subsection, we discuss this complication.

6.5 Multi-user plaintext awareness

We begin by defining multi-user PA1 encryption. Let m(n) be a polynomially

bounded function and let ( ~pk, ~sk) ← kg(1n)⊗m denote independently drawing
m(n) (pk, sk) pairs.

Definition 13. ENC = (kg, enc, dec) is multi-user PA1 if for all polynomi-
ally bounded m(n), for all efficient A there exists efficient A∗ such that for all

45



efficient D

|Pr(( ~pk, ~sk)← kg(1n)⊗m, r ← R(1n), x← Adec( ~sk)(r, ~pk) : D(x) = 1)

− Pr(( ~pk, ~sk)← kg(1n)⊗m, r ← R(1n), x← AA∗(r, ~pk)(r, ~pk) : D(x) = 1)|

is negligible.

We note that A must specify i ∈ {1, . . .m} when querying its oracle.
At this point, a natural question is this: does single-user PA1 imply multi-

user PA1? Could, for example, one prove such an implication by a standard
hybrid argument, replacing the decryption oracles one by one? The author of
this paper attempted the hybrid argument approach, but encountered a prob-
lem. After the first decryption oracle is replaced by an A∗ algorithm, one gets to
a situation in which the ordinary PA1 definition no longer applies. To illustrate
the difficulty more concretely, we write an attempted hybrid argument for the
case of two key pairs, and point out where we get stuck.

Assume ENC = (kg, enc, dec) is single-user PA1. Given algorithm A, the
experiment in which two key pairs are drawn, and algorithm A is allowed to
adaptively query two decryption oracles can be described in pseudo-code as
follows:

1. (pk1, sk1)← kg(1n).

2. (pk2, sk2)← kg(1n).

3. r ← R(1n) (generation of the random coins for A).

4. While A(r, pk1, pk2) has not terminated:

(a) If A makes a query c to the first decryption oracle

i. m← dec(sk1, c).

ii. Return m to A.

(b) If A makes a query c to the second decryption oracle

i. m← dec(sk2, c).

ii. Return m to A.

5. A outputs x and terminates.

Now, we want to apply the single user PA1 definition (definition 12) and
replace the first decryption oracle by an algorithm that does not use the first
secret key. First, we need to identify the algorithm that is making queries
to the first decryption oracle: this algorithm consists of lines 2, 3, 4, 5, and
makes decryption oracle queries in line 4.(a).i. The important point is that the
algorithm that makes queries to the first decryption oracle contains in its view
the second secret key.

Let Ā denote the algorithm consisting of lines 2,3,4,5. Algorithm Ā uses
A as a subroutine and makes queries to the oracle dec(sk1). Let r̄ ← R̄(1n)

46



denote drawing the coins for Ā. The coins r̄ consist of two parts: the coins r
for subroutine A, and the coins needed to draw the pair (pk2, sk2).

Thus, we have rewritten the experiment

(pk1, sk1)← kg(1n), (pk2, sk2)← kg(1n), r ← R(1n), x← Adec(sk1),dec(sk2)(r, pk1, pk2)

as the experiment

(pk1, sk1)← kg(1n), r̄ ← R̄(1n), x← Ādec(sk1)(r̄, pk1)

Now, we apply definition 12. There exists Ā∗ such that for all D,

|Pr((pk1, sk1)← kg(1n), r̄ ← R̄(1n), x← Ādec(sk1)(r̄, pk1) : D(x) = 1)

− Pr((pk1, sk1)← kg(1n), r̄ ← R̄(1n), x← ĀĀ∗(r̄,pk1)(r̄, pk1) : D(x) = 1)|

is negligible.
Now, we look at the experiment

(pk1, sk1)← kg(1n), r̄ ← R̄(1n), x← ĀĀ∗(r̄,pk1)(r̄, pk1)

and write it in pseudo-code:

1. (pk1, sk1)← kg(1n).

2. (r, rkg)← R̄(1n).

3. (pk2, sk2)← kg(1n, rkg).

4. While A(r, pk1, pk2) has not terminated:

(a) If A makes a query c to the first decryption oracle

i. m← Ā∗(r, rkg, pk1).

ii. Return m to A.

(b) If A makes a query c to the second decryption oracle

i. m← dec(sk2, c).

ii. Return m to A.

5. A outputs x and terminates.

Now, we encounter a problem: there appears to be no way to view this
pseudo-code as an algorithm that is entirely ignorant of sk2 that makes queries
to the oracle dec(sk2). This is because Ā∗ takes as input rkg, the coins that
were used to generate (pk2, sk2).

The authors of [6] attempt to get around this problem by using PA2 encryp-
tion (see below for a definition) instead of PA1. However, the present author
does not believe that PA2 encryption would solve the problem, as the definition
of PA2 also involves a security experiment with a single (pk, sk) pair. Attempt-
ing a hybrid argument to show that single user PA2 implies multi-user PA2

47



seems to run into even more problems than the PA1 case. To be concrete, we
give below definitions for single-user and multi-user PA2 plaintext awareness,
attempt a hybrid argument to show that single-user PA2 implies multi-user PA2,
and explain where we get stuck.

We begin with the definition of PA2 plaintext awareness. Intuitively, the
requirement on PA2 encryption is the following: even if an algorithm has an
external source of cyphertexts for which it does not know the plaintexts, that
algorithm is not able to produce any new (not provided by the external source)
cyphertext of which it does not know the corresponding plaintext. In the defini-
tion below, all details of the external source of cyphertexts are abstracted into
a single oracle available to the adversary:

Definition 14 ([3]). ENC = (kg, enc, dec) is PA2 if for all efficient A there
exists efficient A∗ such that for all efficient P and for all efficient D

|Pr((pk, sk)← kg(1n), r ← R(1n), x← Adec(sk),enc(pk)◦P (r, pk) : D(x) = 1)

−Pr((pk, sk)← kg(1n), r ← R(1n), x← AA∗(r,pk),enc(pk)◦P (r, pk) : D(x) = 1)|

is negligible. Here, the oracle enc(pk) ◦ P operates as follows:

1. A submits a query q.

2. P computes a plaintext m based on q. P is allowed to keep state between
queries and is allowed its own internal coin tosses.

3. c← enc(pk,m) is given to A

4. A is not allowed to query c on the decryption oracle interface.

This definition does not match what we need in the analysis of SKEME.
The reason is that definition 14 involves only a single (pk, sk) pair, while the
security experiment for key exchange (subsection 6.2) contains many (pk, sk)
pairs. Thus, we present a modified definition with many (pk, sk) pairs.

Definition 15. ENC = (kg, enc, dec) is multi-user PA2 if for all polynomi-
ally bounded m(n), for all efficient A there exists efficient A∗ such that for all
efficient P and for all efficient D

|Pr(( ~pk, ~sk)← kg(1n)⊗m, r ← R(1n), x← Adec( ~sk),enc( ~pk)◦P (r, ~pk) : D(x) = 1)

−Pr(( ~pk, ~sk)← kg(1n)⊗m, r ← R(1n), x← AA∗(r, ~pk),enc( ~pk)◦P (r, ~pk) : D(x) = 1)|

is negligible.

We note that A must specify i ∈ {1, . . .m} when querying its oracles.
Now, we consider the case of two key pairs and attempt a hybrid argument

to replace the real decryption oracles one by one.
Assume ENC = (kg, enc, dec) is single-user PA2. Take any A. Take any P .

The experiment of drawing two key pairs, and allowing A adaptive queries to
dec(sk1), dec(sk2), enc(pk1) ◦ P, enc(pk2) ◦ P can be written in pseudo-code as
follows:

48



1. (pk1, sk1)← kg(1n).

2. (pk2, sk2)← kg(1n).

3. r ← R(1n).

4. While A(r, pk1, pk2) has not terminated:

(a) If A asks (dec, 1, c) query, and if c was not previously output by the
oracle enc(pk1) ◦ P ,

i. m← dec(sk1, c).

ii. Return m to A.

(b) If A asks (dec, 2, c) query, and if c was not previously output by the
oracle enc(pk2) ◦ P ,

i. m← dec(sk2, c).

ii. Return m to A.

(c) If A asks (enc, 1, q) query,

i. m← P (1, q),

ii. c← enc(pk1,m),

iii. Return c to A.

(d) If A asks (enc, 2, q) query,

i. m← P (2, q),

ii. c← enc(pk2,m),

iii. Return c to A.

5. A outputs x.

Now, we want to apply the single-user PA2 definition. To this end, we
have to view the above pseudo-code as a single algorithm that makes queries to
dec(sk1), enc(pk1) ◦ P . We immediately encounter a problem: that algorithm
would have to use P as a subroutine to handle queries (enc, 2, q) by A.

We may try to avoid this first problem by considering only independent
algorithms P1, P2 that handle (enc, 1, q) and (enc, 2, q) queries respectively.
Thus, given A,P1, P2 let A(A,P2) be the algorithm consisting of lines 2,3,4,5
above and making oracle queries to dec(sk1) and enc(pk1) ◦ P1. The algorithm
A(A,P2) takes as input pk1. It needs as input three different strings of random
coins: (r, rkg, rP ), where r are the random coins for subroutine A, rkg are the
random coins needed to generate the second key pair, and rP are the random
coins needed for subroutine P2. Thus, we have rewritten the experiment above
as

(pk1, sk1)← kg(1n), (r, rkg, rP )← R̄(1n),

x← A(A,P2)dec(sk1),enc(pk1)◦P1(r, rkg, rP , pk1)

49



Applying the single-user PA2 definition we obtain: for all A, for all P2 there
exists A∗ such that for all P1, for all D

|Pr((pk1, sk1)← kg(1n), (r, rkg, rP )← R̄(1n),

x← A(A,P2)dec(sk1),enc(pk1)◦P1(r, rkg, rP , pk1) : D(x) = 1)

− Pr((pk1, sk1)← kg(1n), (r, rkg, rP )← R̄(1n),

x← A(A,P2)A
∗(r,rkg,rP ,pk1),enc(pk1)◦P1(r, rkg, rP , pk1) : D(x) = 1)|

is negligible.
Now, our problems have multiplied. To begin with, we have the problem

that we had in the PA1 case: that A∗ takes as input the random coins rkg that
are used to generate the second key pair. In addition, we have the problem
that A∗ ”knows everything” about P2: this is because of the order of quantifiers
∀P2,∃A∗, and because A∗ takes the random coins rP of P2 as input. In such
a situation, it is not clear how the next step of the hybrid argument could be
taken.

After contemplating the above problems, one gets the feeling that the no-
tion multi-user PA2 may be genuinely different than single-user PA2. Intuitively
the difference is the following: in single user PA2, the claim is that one can-
not change cyphertexts with unknown plaintext under one key pair into other
cyphertexts with unknown plaintext under the same key pair. In multi-user
PA2, this is strengthened to say that one cannot change cyphertexts with un-
known plaintexts of any key pair into cyphertexts with unknown plaintexts of
the same or any other key pair.

In conclusion, the present author does not know whether the multi-user
versions of PA1 and PA2 plaintext awareness are equivalent or strictly stronger
than the single-user versions. We leave this question for future work.

6.6 Deniability of SKEME

We now proceed to argue that SKEME is deniable if the underlying encryption
scheme is multi-user PA1. Our first task is to state a definition of deniability
for a key exchange protocol. Consider the key exchange security experiment
from subsection 6.2. We are interested in the view of the adversary in this
experiment; the view consists of the inputs, the transcript of the interaction
with the challenger, and any output that A may produce. For the purposes
of discussing deniability, the query with which the adversary asks to take a
challenge is superfluous, so we eliminate it. We use the summary notation

( ~pkU ,
~skU , ~pkV ,

~skV , r)← Init(1n), V iew ← [A(r, ~pkU ,
~pkV ,

~skV ), CH]

to denote the generation of the adversary view; here, we use

( ~pkU ,
~skU , ~pkV ,

~skV , r)← Init(1n)

to denote an initialization procedure which draws random coins for the adversary
and vectors of public keys and secret keys for the honest users {U1, . . . Um} and

50



for the corrupt users {V1, . . . Vm′}. With this notation, we can define deniability
for key exchange as follows:

Definition 16. A key exchange protocol is deniable if for all polynomially
bounded m(n),m′(n), for all efficient A, there exists efficient S such that for all
efficient D

|Pr(( ~pkU , ~skU , ~pkV , ~skV , r)← Init(1n), V iew ← [A(r, ~pkU ,
~pkV ,

~skV ), CH]

: D(V iew) = 1)

− Pr(( ~pkU , ~skU , ~pkV , ~skV , r)← Init(1n), V iew ← S(r, ~pkU ,
~pkV ,

~skV )

: D(V iew) = 1)|

is negligible.

We will show the following:

Theorem 9. Let SKEME be initialized with a multi-user PA1 encryption scheme.
Then, SKEME is deniable.

Proof. Take any polynomially bounded m(n),m′(n). Take any efficient A. We
look in detail at how the experiment

( ~pkU ,
~skU , ~pkV ,

~skV , r)← Init(1n), V iew ← [A(r, ~pkU ,
~pkV ,

~skV ), CH]

proceeds.

1. ( ~pkU ,
~skU , ~pkV ,

~skV , r)← Init(1n)

2. V iew ← (r, ~pkU ,
~pkV ,

~skV )

3. While A(r, ~pkU ,
~pkV ,

~skV ) has not terminated:

(a) If A makes a (message0, X, Y ) query instructing honest user X ∈
{U1, . . . Um} to start a new session with honest or corrupt user Y ∈
{U1, . . . , Um, V1, . . . Vm′} then

i. Draw x← Zq.

ii. Draw s← {0, 1}n.

iii. Draw k ← kgmac(1n).

iv. c← enc(pkY , k).

v. Output (X, s, gx, c) toA and append ((message0, X, Y ), (X, s, gx, c))
to V iew.

(b) If A makes a (message1, Y, (X, s, h, c)) query to honest user Y ∈
{U1, . . . Um} then

i. Draw y ← Zq.

ii. Draw s′ ← {0, 1}n.

iii. Draw k′ ← kgmac(1n).

51



iv. c′ ← enc(pkY , k
′).

v. If c was previously produced by an honest user using Y ’s public
key, then retrieve the corresponding k.

vi. Else k ← dec(skY , c).

vii. t′ ← tag(k, (gy, h, Y, s′, X, s))

viii. Output (Y, s′, X, s, gy, c′, t′) to A and append

((message1, Y, (X, s, h, c)), (Y, s
′, X, s, gy, c′, t′))

to V iew.

(c) If A makes a (message2, X, (Y, s
′, X, s, h′, c′, t′)) to honest user X ∈

{U1, . . . Um} then

i. If there is no open session with values (X, s, Y ), output ⊥ to A
and append ((message2, X, (Y, s

′, X, s, h′, c′, t′)),⊥) to V iew.

ii. Else retrieve the symmetric key k and the DH exponent x asso-
ciated with (X, s, Y ).

iii. If vrf(k, (h′, gx, Y, s′, X, s), t′) = 0, output ⊥ to A and append
((message2, X, (Y, s

′, X, s, h′, c′, t′)),⊥) to V iew, else continue.

iv. Compute session key (h′)x.

v. If c′ was previously produced by an honest user using X’s public
key, retrieve the corresponding k′.

vi. Else k′ ← dec(skX , c
′).

vii. t← tag(k′, (gx, h′, X, s, Y, s′)).

viii. Output (X, s, Y, s′, t) to A and append

((message2, X, (X, s, Y, s
′, h′, c′, t′)), (X, s, Y, s′, t))

to V iew.

(d) If A makes a (message3, Y, (X, s, Y, s
′, t)) query to honest user Y ∈

{U1, . . . Um} then

i. If there is no open session with values (Y, s′, X, s), output ⊥ to
A and append ((message3, Y, (X, s, Y, s

′, t)),⊥) to V iew.

ii. Else retrieve the symmetric key k′, the DH exponent y, and the
peer DH group element h associated to values (Y, s′, X, s).

iii. If vrf(k′, (h, gy, X, s, Y, s′), t) = 0, output ⊥ to A and append
((message3, Y, (X, s, Y, s

′, t)),⊥) to V iew, else continue.

iv. Compute session key hy.

v. Output SessionDone to A and append

((message3, Y, (X, s, Y, s
′, t)), SessionDone)

to V iew.

(e) If A makes a (RevealSessionKey,X, (X, s, Y, s′)) query to honest
user X ∈ {U1, . . . Um}, then

52



i. If there is no completed session with values (X, s, Y, s′), then out-
put⊥ to A and append ((RevealSessionKey,X, (X, s, Y, s′)),⊥)
to V iew.

ii. Else retrieve the session key h ∈ G associated to values (X, s, Y, s′),
output h toA and append ((RevealSessionKey,X, (X, s, Y, s′)), h)
to V iew.

4. Append any output that A produces to V iew.

5. Output V iew.

Now, we group the instructions above into two new algorithms. Let r̄ be the
random coins used in generating the session ids, DH exponents, and symmetric
keys for lines 3.(a).i-iii, 3.(b).i-iii. Let ExtInit be an extended initialization
procedure that draws also the coins r̄. Let Ā be an algorithm that takes as
input (r, r̄, ~pkU ,

~pkV ,
~skV ), and performs the instructions on lines 2,3 (with all

sub-items), 4, and finally outputs V iew, with the following modifications:

1. Ā uses the coins r̄ to generate the session ids, DH exponents, and sym-
metric keys for lines 3.(a).i-iii, 3.(b).i-iii.

2. Ā makes queries on a decryption oracle interface for lines 3.(b).vi, 3.(c).vi.

Thus, we have rewritten the experiment

( ~pkU ,
~skU , ~pkV ,

~skV , r)← Init(1n), V iew ← [A(r, ~pkU ,
~pkV ,

~skV ), CH]

as the experiment

( ~pkU ,
~skU , ~pkV ,

~skV , r, r̄)← ExtInit(1n),

V iew ← Ādec( ~skU )(r, r̄, ~pkU ,
~pkV ,

~skV )

Now, we apply the assumption that the encryption scheme is multi-user PA1.
We get that there exists Ā∗ such that for all efficient D

|Pr(( ~pkU , ~skU , ~pkV , ~skV , r, r̄)← ExtInit(1n),

V iew ← Ādec( ~skU )(r, r̄, ~pkU ,
~pkV ,

~skV ) : D(V iew) = 1)

− Pr(( ~pkU , ~skU , ~pkV , ~skV , r, r̄)← ExtInit(1n),

V iew ← ĀĀ∗(r,r̄, ~pkU , ~pkV , ~skV )(r, r̄, ~pkU ,
~pkV ,

~skV ) : D(V iew) = 1)|

is negligible.
Now we consider the experiment

( ~pkU ,
~skU , ~pkV ,

~skV , r, r̄)← ExtInit(1n),

V iew ← ĀĀ∗(r,r̄, ~pkU , ~pkV , ~skV )(r, r̄, ~pkU ,
~pkV ,

~skV )

53



and convert it back to line-by-line instructions. The instructions are the same as
before, except that in lines 3.(b).vi, 3.(c).vi, queries are made to Ā∗(r, r̄, ~pkU ,

~pkV ,
~skV )

instead of to the decryption oracle.
Now, we consider a single algorithm S that takes input (r, ~pkU ,

~pkV ,
~skV ),

draws by itself the random coins r̄, performs the instructions in lines 2, 3 (with
Ā∗ instead of dec), 4, and outputs V iew. Thus, we have rewritten the experi-
ment

( ~pkU ,
~skU , ~pkV ,

~skV , r, r̄)← ExtInit(1n),

V iew ← ĀĀ∗(r,r̄, ~pkU , ~pkV , ~skV )(r, r̄, ~pkU ,
~pkV ,

~skV )

as the experiment

( ~pkU ,
~skU , ~pkV ,

~skV , r)← Init(1n), V iew ← S(r, ~pkU ,
~pkV ,

~skV )

Combining all observations so far, we conclude that for any polynomially
bounded m,m′, for any efficient A, there exists efficient S, such that for all
efficient D,

|Pr(( ~pkU , ~skU , ~pkV , ~skV , r)← Init(1n), V iew ← [A(r, ~pkU ,
~pkV ,

~skV ), CH]

: D(V iew) = 1)

− Pr(( ~pkU , ~skU , ~pkV , ~skV , r)← Init(1n), V iew ← S(r, ~pkU ,
~pkV ,

~skV )

: D(V iew) = 1)|

is negligible. Therefore, SKEME instantiated with a multi-user PA1 encryption
scheme is deniable.

Acknowledgment

This work was supported by the Luxembourg National Research Fund, under
CORE project Q-CoDe (Project ID 11689058).

References

[1] Better protection of whistle-blowers: new eu-wide rules
to kick in in 2021. URL: https://www.consilium.

europa.eu/en/press/press-releases/2019/10/07/

better-protection-of-whistle-blowers-new-eu-wide-rules-to-kick-in-in-2021/

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to
the design and analysis of authentication and key exchange protocols. In
Proceedings of the thirtieth annual ACM symposium on Theory of comput-
ing, pages 419–428. ACM, 1998.

54

https://www.consilium.europa.eu/en/press/press-releases/2019/10/07/better-protection-of-whistle-blowers-new-eu-wide-rules-to-kick-in-in-2021/
https://www.consilium.europa.eu/en/press/press-releases/2019/10/07/better-protection-of-whistle-blowers-new-eu-wide-rules-to-kick-in-in-2021/
https://www.consilium.europa.eu/en/press/press-releases/2019/10/07/better-protection-of-whistle-blowers-new-eu-wide-rules-to-kick-in-in-2021/


[3] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key
encryption without random oracles. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 48–
62. Springer, 2004.

[4] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable
encryption. In Annual International Cryptology Conference, pages 90–104.
Springer, 1997.

[5] Ivan Damg̊ard. Towards practical public key systems secure against chosen
ciphertext attacks. In Annual International Cryptology Conference, pages
445–456. Springer, 1991.

[6] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable au-
thentication and key exchange. In Proceedings of the 13th ACM conference
on Computer and communications security, pages 400–409. ACM, 2006.

[7] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
Journal of the ACM (JACM), 51(6):851–898, 2004.

[8] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE transactions on information theory,
31(4):469–472, 1985.

[9] Dan Harkins, Dave Carrel, et al. The internet key exchange (ike). Technical
report, RFC 2409, november, 1998.

[10] Charlie Kaufman et al. Internet key exchange (ikev2) protocol. Technical
report, RFC 4306, December, 2005.

[11] Hugo Krawczyk. Skeme: A versatile secure key exchange mechanism for
internet. In Proceedings of Internet Society Symposium on Network and
Distributed Systems Security, pages 114–127. IEEE, 1996.

55


	Introduction
	Background
	Asymmetric encryption
	Symmetric key message authentication
	The Decisional Diffie Hellman assumption

	Variations of the basic notions: multiple challenges and multiple keys
	The IND-CCA2 security experiment with one key pair and multiple challenges
	The IND-CCA2 security experiment with multiple key pairs and multiple challenges
	The EUF-CMA security experiment with multiple keys

	Deniable Encryption
	Translucent sets
	Construction of translucent sets
	The parity scheme
	Properties of the parity scheme
	Lower bounds on the level of deniability

	Deniable Authentication
	Asymmetric key interactive message authentication protocols
	Security proof for an interactive message authentication protocol
	Deniability for interactive authentication protocols
	IND-CCA2 secure encryption and EUF-CMA secure message authentication are not enough for our example protocol to be deniable
	Plaintext aware encryption and deniability of protocol (5)
	Candidate construction of a PA1 encryption scheme

	Deniable key exchange
	The SKEME protocol
	Security definition for key exchange
	Proof of security for SKEME
	Preliminary remarks on the deniability of SKEME
	Multi-user plaintext awareness
	Deniability of SKEME


