
Graphviz e TikZ

Claudio Fiandrino

Sommario

Graphviz è un potente software per disegnare grafi.
Questo articolo proverà a spiegare come esportare
tali grafi in figure TikZ in maniera semplice.

Abstract

Graphviz is a very powerful tool to draw graphs.
This article tries to explain how to export such
graphs as a TikZ picture in a very simple way.

Premessa

Nel corso dell’articolo Ubuntu 11.04 sarà il si-
stema operativo di riferimento. Tutti i coman-
di per l’installazione e la creazione del codice
TikZ saranno impartiti dal terminale. Le istru-
zioni sono molto semplici, ma chi ha poca dime-
stichezza con tale strumento trova in rete alcune
guide introduttive molto ben curate. A tale pro-
posito, si riporta http://wiki.ubuntu-it.org/
AmministrazioneSistema/RigaDiComando.

1 Introduzione

La creazione di grafi con Graphviz avviene me-
diante un linguaggio specifico, chiamato dot, la
cui sintassi è veramente semplice ed intuitiva. Una
breve introduzione sarà illustrata nella sezione 3.
L’uso di Graphviz è largamente diffuso per analiz-
zare, creare ed utilizzare i grafi. Un esempio pratico
è la creazione di nodi di rete per simulare attacchi
di pirati informatici (Zhang e Wu, 2008).

Il software che elabora il linguaggio dot creando
il relativo codice TikZ si chiama dot2tex ; permette
di ottenere anche il codice per PGF e PSTricks.
I seguenti programmi sono requisiti fondamentali
per dot2tex:

• python, versione 2.4 o successive;

• pyparsing versione 1.4.8 (raccomandata) o
successive;

• Graphviz.

Requisiti ulteriori sono i pacchetti LATEX Preview
e TikZ/PGF. Nella sezione 2 saranno illustrati i
passi per installare velocemente tutti i componen-
ti mentre nella sezione 4 sarà preso in esame il
funzionamento di dot2tex.

2 Installazione
Python è già disponibile con l’installazione pre-
definita di Ubuntu (web, d); in caso contrario è
sufficiente digitare da terminale:
sudo apt -get install python

Per installare pyparsing (web, c) e dot2tex (web,
a) converrà usare uno strumento estremamente
comodo, easy_install:
sudo apt -get install python - setuptools

I comandi per installare pyparsing e dot2tex sono
rispettivamente:
sudo easy_install pyparsing

e
sudo easy_install dot2tex

Graphviz (web, b) necessita di una lunga lista
di pacchetti di seguito citata: graphviz, graphviz-
doc, graphviz-dev, libgraphviz-dev, libgraphviz-
perl, libgv-lua, libgv-perl, libgv-php5, libgv-guile,
libgv-python, libgv-ruby, libgv-tlc, libgv-ocaml.
Possono essere installati con il solito comando:
sudo apt -get install <lista -pacchetti >

I pacchetti LATEX Preview e TikZ/PGF sono sup-
portati dalle distribuzioni TEX Live e MiKTEX. È
consigliabile l’uso della prima citata. Una guida che
illustra l’installazione su Ubuntu è (Gregorio,
2010).

3 Introduzione al linguaggio dot
Il codice 1 mostra un esempio di grafo realizzato
con dot.

Codice 1: il primo esempio.

digraph G {
1->2 [label ="1/2"];
2->3 [label ="1/2"];
3->1 [label ="1/2"];

}

Il grafo G è composto da tre nodi e tre archi;
dichiarato con la parola chiave digraph, tutto il
codice che lo definisce deve essere racchiuso fra
{ }. È evidente l’assenza di dichiarazioni: i nodi
e gli archi vengono creati direttamente. Una ri-
ga di codice finisce sempre con “;”. Il simbolo ->
caratterizza l’arco che unisce due nodi. In questo
caso l’arco ha una direzione, ma è possibile anche

1

http://wiki.ubuntu-it.org/AmministrazioneSistema/RigaDiComando
http://wiki.ubuntu-it.org/AmministrazioneSistema/RigaDiComando

Claudio Fiandrino ArsTEXnica Nº 0, Dicembre 2099

definire archi senza direzione. Gli archi possono
avere un’etichetta o meno; l’etichetta deve essere
inserita fra parentesi quadre con la parola chiave
label. L’esempio mostrato dal codice 1 (Il primo
esempio) sarebbe notevolmente più semplice sen-
za etichette, come mostra il codice 2 (Il primo
esempio semplificato).

Codice 2: il primo esempio semplificato.

digraph G {
1->2->3->1;

}

Per scrivere il codice del grafo è necessario creare
un file con estensione .dot: qualsiasi editor di testo
può andare bene; gli esempi qui riportati sono stati
creati con gedit.
Ulteriori informazioni sono reperibili sul si-

to con la documentazione ufficiale: http://www.
graphviz.org/Documentation.php

4 Come funziona
Per ottenere il codice di una figura non esiste un co-
mando standard funzionale in ogni caso. A seconda
dell’obbiettivo, alcuni comandi sono più funziona-
li rispetto ad altri. Ad esempio, i comandi circo
e neato producono un risultato diverso a partire
dallo stesso codice.

4.1 Il primo esempio
La procedura che descrive la realizzazione del pri-
mo esempio è valida anche per tutti gli altri ed è
la seguente:

1. Creare una directory di nome ex1 sul desktop.

2. Creare all’interno di tale cartella un file dal no-
me ex1.dot in cui incollare il codice mostrato
nel codice 1 (Il primo esempio).

3. Aprire il terminale (click sul pulsante Ap-
plicazioni della dashboard quindi digitare
terminale nel campo cerca) e scrivere:
cd Desktop /ex1/

per spostarsi all’interno della directory.

4. Creare il file .tex attraverso il comando:
dot2tex --preproc ex1.dot\
| dot2tex > ex1.tex

Il carattere \, usato qui per esigenze tipografi-
che, serve comunque a far capire al terminale
che il comando è stato spezzato su più righe
e l’invio dopo \ non indica l’esecuzione del
comando.

5. Digitare:
pdflatex ex1.tex
evince ex1.pdf

I due comandi compileranno il file .tex creato
e mostreranno il risultato, qui riportato nella
figura 1, con il visualizzatore di pdf indicato.

1/2

1/2

1/2

1

3

2

Figura 1: il primo esempio

Il documento LATEX creato nel punto 4 è com-
pleto: utilizza la classe article, ha un proprio pre-
ambolo ed è composto da una sola pagina in cui
viene inserita l’immagine.

È possibile esportare molto facilmente la figura
copiando il codice, ma bisogna fare attenzione a
copiare anche i pacchetti e le librerie scritti nel
preambolo e necessari alla figura; in questo caso:
\ usepackage {tikz}
\ usetikzlibrary {snakes ,arrows , shapes }

4.2 Le opzioni sul tipo di codice
Il comando dot2tex permette di ottenere:

• il codice PGF – opzione fpgf;

• il codice TikZ – opzione ftikz;

• il codice PSTricks – opzione fpst.

In generale, non specificare un’opzione fa sì che
la figura sia scritta in PGF. Tuttavia il medesimo
risultato è ottenibile digitando:
dot2tex -fpgf ex1.dot > ex1_pgf .tex

La generazione del codice TikZ avviene con:
dot2tex -ftikz ex1.dot > ex1_tikz .tex

mentre il seguente comando:
dot2tex -fpst ex1.dot > ex1_pst .tex

è necessario per ottenere un’immagine PSTricks.
I comandi riportati possono essere tranquilla-

mente applicati al primo esempio.

4.3 Le opzioni sulle etichette dei nodi
Si consideri il codice mostrato in codice 3 (Il
secondo esempio).
La procedura indicata nella sezione 4.1 implica

che il file ex2.dot sia presente in una directory di

2

http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php

ArsTEXnica Nº 0, Dicembre 2099 Graphviz e TikZ

Codice 3: il secondo esempio.

digraph G {
a_1 ->b_2 [label ="1/2"];
b_2 ->c_3 [label ="1/2"];
c_3 ->a_1 [label ="1/2"];

}

nome ex2 nel desktop. Dal codice si evince come
sia facile assegnare un’etichetta ad un nodo: è suf-
ficiente inserirla quando si crea l’arco. Un secondo
metodo sarà analizzato più avanti.

Esistono tre opzioni per caratterizzare l’output:

• in modalità matematica (opzione tmath)
l’etichetta sarà inserita fra $ $;

• in modalità verbatim (opzione tverbatim) l’in-
terprete farà sì che i caratteri speciali di LATEX
vengano riconosciuti;

• in modalità raw (opzione traw) la label non
viene processata in alcun modo; se sono pre-
senti caratteri speciali è possibile incorrere in
errori.

Il comando:
dot2tex -tmath ex2.dot > ex2.tex

genera il risultato mostrato nella figura 2a, diverso
da quello riportato in figura 2b ottenuto con:
dot2tex -tverbatim ex2.dot > ex2.tex

1/2

1/2

1/2

b2

c3

a1

(a) label opzione
tmath

1/2

1/2

1/2

b_2

c_3

a_1

(b) label opzione
tverbatim

Figura 2: esempi con le diverse opzioni label

Il comando:
dot2tex -traw ex2.dot > ex2.tex

fornisce invece un errore perché il carattere _ è un
carattere speciale.
Il secondo metodo che permette di specificare

delle etichette per i nodi è più pesante di quello
visto ora in quanto è necessario scrivere più righe di
codice nel file .dot per ottenere lo stesso risultato.

Ha però il grande vantaggio di essere indipendente
dalle opzioni precedentemente elencate. Il motivo
è molto semplice: grazie alla parola chiave texlbl,
l’opzione da utilizzare viene definita a priori nel
file .dot; questo è il motivo per cui è indispensabile
scrivere più righe di codice.

Il codice 4 (Una variante del secondo esem-
pio) riporta la variante del secondo esempio con
le modifiche illustrate. In questo caso è sufficiente

Codice 4: una variante del secondo esempio.

digraph G {
1 [texlbl =" a_1 "];
2 [texlbl =" b_2 "];
3 [texlbl =" c_3 "];
1->2 [label ="1/2"];
2->3 [label ="1/2"];
3->1 [label ="1/2"];

}

digitare

dot2tex ex2.dot > ex2.tex

per creare il file ex2.tex ed ottenere il risultato
mostrato nella figura 2a.

4.4 Personalizzare le etichette
È possibile personalizzare il colore delle etichette
attraverso la parola chiave lblstyle. Più in genera-
le, è possibile introdurre tutti i comandi standard
usati in TikZ. La modifica del file ex2.dot come
riportato nel codice 5 (Il secondo esempio con
label rossa) e l’immissione del comando:

Codice 5: il secondo esempio con label rossa.

digraph G {
1 [texlbl =" a_1", lblstyle =" red "];
2 [texlbl =" b_2 "];
3 [texlbl =" c_3 "];
1->2 [label ="1/2"];
2->3 [label ="1/2"];
3->1 [label ="1/2"];

}

dot2tex ex2.dot > ex2.tex

genera il risultato mostrato nella figura 3.
La modifica del codice 5 riportata nel codice 6

(Il secondo esempio con comandi TikZ) il-
lustra come è possibile introdurre altri comandi
TikZ.

Come prima, il comando:

dot2tex ex2.dot > ex2.tex

genera il risultato mostrato nella figura 4.

4.5 Personalizzare i nodi
La personalizzazione dei nodi può avvenire
caratterizzandone:

3

Claudio Fiandrino ArsTEXnica Nº 0, Dicembre 2099

1/2

1/2

1/2

a1

c3

b2

Figura 3: il secondo esempio con label rossa

Codice 6: il secondo esempio con comandi TikZ.

digraph G {
1 [texlbl =" a_1", lblstyle =" red "];
2 [texlbl =" b_2", lblstyle =" red "];
3 [texlbl =" c_3", lblstyle =" red "];
1->2 [label ="1/2" ,

lblstyle =" rounded corners ,
fill=blue !20, rotate =30"];

2->3 [label ="1/2" ,
lblstyle =" rounded corners ,
fill=blue !20"];

3->1 [label ="1/2" ,
lblstyle =" rounded corners ,
fill=blue !20, below =0.1 cm "];

}

• la forma:

· circonferenza,
· ellisse,
· rettangolo;

• i colori:

· dei bordi,
· del riempimento;

• i font.

La parola chiave style e il contestuale uso dei
comandi usuali di TikZ consente di personalizzare
i colori e il font. La forma viene definita, invece, con
la parola chiave shape. L’esempio ex3.dot illustra
tali caratteristiche attraverso il codice 7 (Il terzo
esempio). C’è da notare che le impostazioni date
con la parola chiave node diventano le impostazioni
di default, ma possono essere cambiate per un
singolo nodo.

È utile mostrare come la compilazione del codi-
ce 7 mediante i comandi TikZ o PGF faccia otte-
nere due risultati diversi. Le opzioni da utilizzare
sono quelle descritte nella sottosezione 4.2:
dot2tex -ftikz ex3.dot > ex3.tex

dot2tex ex3.dot > ex3_pgf .tex

1/2

1/2

1/2

a1

c3

b2

Figura 4: il secondo esempio con comandi TikZ

Codice 7: il terzo esempio.

digraph G {
node [style =" fill=green !20"];
1->2 [label ="1/2"];
2->3 [label ="1/2"];
3->1 [label ="1/2"];
3 [shape=rectangle ,

style =" fill=cyan !20, draw=blue "]
}

Le figure 5a e 5b mostrano tale diversità, no-
nostante entrambe presentino lo stesso fattore
di scala. Non sono chiare le motivazioni di tale
comportamento.

1

3

2 1/2

1/2

1/2

(a) opzione ftikz

1/2

1/2

1/2

1

3

2

(b) opzione fpgf

Figura 5: esempi con le diverse opzioni di output

Si ipotizzi sia necessario caratterizzare diversi
tipi di nodi in un grafo, ad esempio una rete di
sensori in un’area geografica che monitori la tempe-
ratura oppure una rete di antenne accese e spente.
Colorando in modo diverso i nodi sarebbe possibile
visualizzare immediatamente quali antenne sono
attive oppure quali sensori misurano un aumento
della temperatura.

Risolvere questo problema caratterizzando i no-
di come fatto in precedenza sarebbe poco pratico.

4

ArsTEXnica Nº 0, Dicembre 2099 Graphviz e TikZ

L’impostazione di default unica implicherebbe do-
ver agire manualmente per modificare i nodi del
secondo tipo. Sulla documentazione online que-
sto problema non è affrontato, anche se è opi-
nione dell’autore che rivesta notevole importan-
za. La soluzione proposta utilizza la parola chia-
ve d2tfigpreamble; il codice 8 (Il quarto esem-
pio) riporta un esempio in cui viene illustrato tale
metodo.

Codice 8: il quarto esempio.

digraph G {
d2tfigpreamble ="
\ tikzstyle {cold }=\ [draw=blue !50,
very thick ,fill=blue !20] ,
\ tikzstyle {hot }=\ [draw=red !50,
very thick ,fill=red !20]";
A [style =" cold "];
B [style =" cold "];
C [style =" hot "];
D [style =" hot "];
A->B->D;
A->C->D;
D->C;
D->B->A;
B->B [topath =" loop left "];
C->B;

}

È molto importante notare la sintassi: entrambe
le definizioni degli stati sono racchiuse fra doppi
apici; è necessario inserire un backslash prima della
parola chiave tikzstyle e prima di definire le ca-
ratteristiche del nodo fra []. Inoltre, come succede
per TikZ, i vari comandi devono essere separati da
una virgola.
Naturalmente è possibile definire anche più di

due stati con questo metodo.
Rimane da analizzare come comandi diversi di

Graphviz generano risultati diversi partendo dal
medesimo esempio. Il comando:
circo -Txdot ex4.dot |\
dot2tex -ftikz > ex4.tex

genera il grafo riportato nella figura 6.

A

CB

D

Figura 6: il quarto esempio comando circo

Utilizzando invece il comando:

circo -Txdot ex4.dot |\
dot2tex -ftikz --styleonly > ex4.tex

e seguendo sempre la procedura illustrata nella sot-
tosezione 4.1 il risultato ottenuto, riportato nella
figura 7, sarà diverso.

A

CB

D

Figura 7: il quarto esempio opzione styleonly

È facile intuire che il motivo di tale differen-
za è dovuto all’opzione styleonly. Se l’opzione è
assente, il codice TikZ che definisce un nodo è:
\node (A) at (108.21 bp ,19.5 bp)

[draw ,ellipse ,cold] {A};

mentre, quando è attiva il codice è:
\node (A) at (108.21 bp ,19.5 bp)

[cold] {A};

In ultimo, il comando:
neato -Txdot ex4.dot |\
dot2tex -ftikz --styleonly > ex4.tex

genera il grafo visibile nella figura 8.

A
C

B

D

Figura 8: il quarto esempio comando neato

Il confronto tra le figure 6 e 8 fa dedurre che il
comando circo è preferibile con topologie circolari
perché utilizza un algoritmo che posiziona i nodi
mentre neato no. Il manuale di Graphvix conferma
l’osservazione.

4.6 Personalizzare gli archi
Esistono due metodi per personalizzare gli ar-
chi: mediante la sintassi edge[style="..."] oppure
attraverso la parola chiave topath.
Il codice 9 (Il quinto esempio) analizza il

primo approccio.
Si noti come la sintassi che caratterizza l’arco

deve essere inserita prima del codice di definizione.
Il risultato grafico mostrato in figura 9 è stato
ottenuto con il comando:

5

Claudio Fiandrino ArsTEXnica Nº 0, Dicembre 2099

Codice 9: il quinto esempio.

digraph G {
d2tfigpreamble ="
\ tikzstyle {cold }=\ [draw=blue !50,
very thick ,fill=blue !20] ,
\ tikzstyle {hot }=\ [draw=red !50,
very thick ,fill=red !20]";
A [style =" cold "];
B [style =" cold "];
C [style =" hot "];
D [style =" hot "];
edge [style =" snake= zigzag "];
A->B->D->C->A;
edge [style =" snake=snake "];
A->D;
C->B;

}

circo -Txdot ex5.dot |\
dot2tex -ftikz -s > ex5.tex

A

CB

D

Figura 9: il quinto esempio

L’opzione -s deve essere specificata per poter
riconoscere i percorsi di tipo snake. La libreria
TikZ richiesta dal comando
\ usetikzlibrary { snakes }

è snakes, una libreria obsoleta recentemente sosti-
tuita da decorations. Questo è il motivo per cui le
forme selezionabili sono poche. Essere vincolati a
una libreria obsoleta non permette neanche l’uso
di opzioni estremamente interessanti come pre/-
post length. Queste permettono di personalizzare
il punto di inizio e fine del cambiamento di forma
dell’arco. Ovviamente è possibile editare il codice
TikZ in un secondo momento, ad esempio inseren-
do la libreria decorations e il codice relativo alla
forma dell’arco. È sufficiente individuare la parte
di codice giusta:
\draw [->,snake= zigzag] (C) -- (A);
\draw [->,snake=snake] (A) -- (D);

Il codice 10 (Il sesto esempio) permette invece
l’analisi del metodo che fa uso della parola chiave
topath.

Questo esempio è diverso dal precedente poiché
mostra una proprietà diversa: non viene cambiata

Codice 10: il sesto esempio.

digraph G {
d2tfigpreamble ="
\ tikzstyle {cold }=\ [draw=blue !50,
very thick ,fill=blue !20] ,
\ tikzstyle {hot }=\ [draw=red !50,
very thick ,fill=red !20]";
A [style =" cold "];
B [style =" cold "];
C [style =" hot "];
D [style =" hot "];
A->B->D->C->A[topath =" bend left =20"];
A->C->D->B->A[topath =" bend left =20"];
B->B [topath =" loop left "];

}

la forma dell’arco ma l’angolazione di partenza ed
arrivo dell’arco dai/nei nodi. Entrambi gli approcci
permettono l’uso dei classici comandi TikZ essendo,
pertanto, equivalenti. È dunque possibile inserirli
contemporaneamente nello stesso codice.

Il comando:
circo -Txdot ex6.dot |\
dot2tex -ftikz > ex6.tex

permette di ottenere il risultato riportato nella
figura 10.

A

CB

D

Figura 10: il sesto esempio

5 Considerazioni finali
Questa sezione cercherà di rispondere alla domanda
“perché non scrivere il codice del grafo direttamente
con TikZ?”
Non esiste una risposta univoca. I vantaggi del

metodo illustrato sono evidenti quando occorra
importare in un documento dei grafi con un certo
numero di nodi ed archi. Se invece il grafo ha due
o tre nodi forse è più conveniente scrivere diretta-
mente il codice TikZ. La figura 11 è un esempio di
questo tipo e raffigura una semplice catena di Mar-
kov. Il sorgente è riportato in codice 11 (grafo
composto con TikZ).
C’è da notare che, a differenza del codice dot,

debba essere indicata la posizione dei nodi e la
sintassi del codice sia leggermente più complicata.
Si può quindi affermare che il linguaggio dot:

6

ArsTEXnica Nº 0, Dicembre 2099 Graphviz e TikZ

0 12
3

1
2

1/2

1/3

Figura 11: un esempio di grafo composto direttamente con
TikZ

Codice 11: un grafo composto direttamente con TikZ.

\begin{ tikzpicture }[-latex ,auto ,
node distance =4cm ,on grid ,semithick ,
state /. style ={ circle , draw ,
top color=white ,
bottom color=cyan !20, cyan ,
circular drop shadow ,text=blue ,
minimum width =1cm}]

% Nodes
\node[state] (A) {0 };
\node[state] (B) [right=of A] {1 };
% Edges
\path (A) edge [loop left]

node{$\dfrac {2}{3} $} (A);
\path (B) edge [loop right]

node{$\dfrac {1}{2} $} (B);
\path (B) edge [bend left =25]

node[below]{$1/2$} (A);
\path (A) edge [bend right =-25]

node[above]{$1/3$} (B);
\end{ tikzpicture }

• è più intuitivo;

• non richieda di posizionare manualmente i
nodi perché lo fa autonomamente in ba-
se al comando usato (quindi all’algoritmo
opportuno);

• permetta di ottenere la stessa qualità di TikZ
grazie alla possibilità di personalizzare gli stati
attraverso i preamboli.

6 Conclusioni
Questo articolo ha analizzato un metodo per espor-
tare grafi creati con Graphviz in immagini prodotte

con codice TikZ, PGF e PSTricks.
Dopo aver illustrato come installare i programmi

necessari, sono stati presentati numerosi esempi
(codice e risultato grafico) per discutere i punti di
forza e di debolezza del metodo.
L’articolo non è esaustivo avendo discusso so-

lo gli aspetti di base dei comandi introdotti e
non avendo preso in considerazione il pacchetto
dot2texi. In teoria, grazie all’ambiente dot2tex, l’u-
so del pacchetto dovrebbe essere preferibile al me-
todo illustrato in questo articolo: il codice dot viene
inserito nell’ambiente citato e produce automatica-
mente la figura. Le compilazioni fatte sugli esempi
tratti dal manuale di dot2texi danno sempre un
errore in corrispondenza della linea di apertura
dell’ambiente, errore che comunque non pregiudica
l’ottenimento del grafo finale, seppur leggermente
diverso da quanto riportato nel citato manuale.

Riferimenti bibliografici
(a). «dot2tex». URL http://www.fauskes.net/

code/dot2tex/.

(b). «Graphviz». URL http://www.graphviz.
org/Download.php.

(c). «Pyparsing». URL http://pyparsing.
wikispaces.com/.

(d). «Python». URL http://www.python.org/.

Gregorio, E. (2010). «Installare TEX live 2010
su ubuntu». ArsTEXnica, (10), pp. 7–13. URL
http://www.guit.sssup.it/arstexnica/.

Zhang, T. e Wu, C. (2008). «Network
security analysis based on security sta-
tus space». Web-Age Information Manage-
ment. URL http://ieeexplore.ieee.org/
xpl/freeabs_all.jsp?arnumber=4597065.

. Claudio Fiandrino
http://claudiofiandrino.altervista.org
claudio dot fiandrino at gmail
dot com

7

http://www.fauskes.net/code/dot2tex/
http://www.fauskes.net/code/dot2tex/
http://www.graphviz.org/Download.php
http://www.graphviz.org/Download.php
http://pyparsing.wikispaces.com/
http://pyparsing.wikispaces.com/
http://www.python.org/
http://www.guit.sssup.it/arstexnica/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4597065
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4597065
http://claudiofiandrino.altervista.org

	Introduzione
	Installazione
	Introduzione al linguaggio dot
	Come funziona
	Il primo esempio
	Le opzioni sul tipo di codice
	Le opzioni sulle etichette dei nodi
	Personalizzare le etichette
	Personalizzare i nodi
	Personalizzare gli archi

	Considerazioni finali
	Conclusioni

