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Abstract. This paper studies the restriction of the non-commutative Fourier
transform to the orbit of an irreducible unitary representation of an expo-
nential Lie group under an exponential action. This means the following :
let D = expd be an exponential Lie group acting on another exponential
Lie group G = expg, with Lie algebra g of the form g = gll)+n, leg
and n nilpotent. The corresponding action of © on the irreducible unitary
representation m = ind§; x is written as . For all f € L'(G) the kernel of
the operator P (f) is a function of D. In this paper we characterize a gen-
eralized Schwartz space endowed with an appropriate covariance condition
whose functions are precisely kernels of such operators Dx(f).
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Introduction

Le but du présent travail consiste a fournir certaines indications sur I'image
de la transformée de Fourier non commutative dans le cadre des groupes
de Lie exponentiels. Précisons les donndes : Soit G = exp g un groupe de
Lie exponentiel connexe simplement connexe. Supposons (7 soumis a une
action exponentielle par D = expd. Soit 7 = 7 € G fixé et supposons que
Palgébre de Lie g soit de la forme g = g(€) + n, ou n est un idéal nilpo-
tent. Alors 7(f) est un opérateur a noyau de méme que Br(f) = w(f2)
pour tout D € ®. Le noyau en question peut donc étre considéré comme
une fonction de D € D/D;, Dy désignant le stabilisateur de Vorbite de 7
sous l'action en question. Etudier les P7(f) et leurs noyaux revient alors a
étudier la restriction de la transformée de Fourier non commutative a I'or-
bite de 7. Dans ce travail nous caractériserons un espace I2S de fonctions
qui seront précisément des noyaux pour cette transformdée de Fourier. La
lettre S rappelle qu’il s’agira d’'un analogue des fonctions de Schwartz et
la lettre £ indique qu’il faudra exiger une décroissance exponentielle dans
certaines directions.

Liutilité du résultat démontré consistera entre autres dans le fait que le
théoréme en question permettra de remplacer certains raisonnements sur les
fonctions f par des raisonnements sur les noyaux des opérateurs Pm(f). Ces
techniques vont étre importantes dans 'étude des idéaux D-invariants des
algebres L'(G) et S(G), lorsque G est un groupe nilpotent soumis aune ac-
tion exponentielle ([Lud. Mol. 2]). Le présent travail est une généralisation
d'un résultat de Ludwig ([Lud.]), dont les techniques ont été adaptées aux
actions exponentielles.
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Chapitre 1

Groupes exponentiels et leurs
représentations

1.1. Intuitivement on peut dire que les groupes exponentiels constituent la
classe de groupes de Lie la plus vaste pour laquelle il existe un difféomorphis-
me entre le groupe et son algébre de Lie. Cette classe de groupes se situe
entre les groupes de Lie nilpotents et les groupes de Lie résolubles.  Les
groupes exponenticls ont ét¢ introduits par Dixmier ([Dix. 1]). L’adaptation
aux groupes exponenticls de la théorie de Kirillov pour les représentations
unitaires irréductibles est entre autres due a Pukanszky ([Puk. 1]), grace &
sa condition nécessaire et suffisante sur les polarisations. La caractérisation
topologique de 'espace G finalement est assez récente et est due a Leptin
et Ludwig ([Lep. Lud.]).

1.2. Convention : Dans la suite de ce travail G désignera un groupe de Lic
connexe simplement connexe d'algébre de Lie g. L’application exponentielle
de g dans G sera notée par exp. Les éléments de l'algébre seront notés par
des majuscules X, Y, ... et les éléments du groupe par des minuscules a, v, ... .

1.3. Définition : (|Dix. 1])

Un groupe exponentiel est un groupe de Lie connexe simplement connexe
résoluble G vérifiant une des trois conditions équivalentes suivantes :

(i) L’application exponentielle exp est un difféomorphisme entre g et G.
(i) Quel que soit X € g, ad X n’a pas de valeur propre non nulle imaginaire
pure.

(iii) Les racines de g (dans I'algebre complexifiée gc) ont la forme @(X) (14
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26 JHAPITRE 1. GROUPES EXPONENTIELS ET LEURS ...

iw),olw e Ret peg.

1.4. Les représentations unitaires irréductibles de G exponentiel sont obte-
nues de la maniere suivante :

(i) Soit £ € g*. On appelle polarisation an point £ toute sous-algtbre b
de g qui est en méme femps un sous-cspace totalement isotrope maximal,
c’est-a-dire telle que

{¢,[b,5)) =0
dimb = %((liln g+ dim g(f))

a0 = {X eg| (&[X,Y]) =0VY €g).

(i) On dit que la polarisation b vérific le critére de Pukanszky si
1 1 U

¢+ bt = {Ad* (W) | h € H}) = Ad* H({)
ol
bt ={keg"| kbh) =0}
D’ailleurs le signe = peut étre remplacé par le signe C, l'autre inclusion
étant. toujours vérifiée.
(iii) On obtient un caractére unitaire de /1 = exp b par
xe: H—C

ho— X!’(h) - C—i(f,ll‘;gh)_

(iv) Notons par Ag, resp. Ay les fonctions modulaires sur G, resp. H.
Soit A un homomorphisme de G dans RY tel que

l BRAY/
H A
]
H
en notant par AIH et A | les restrictions de A et Ag a H. Alors il existe
G
H

une mesure semi-invariante unique dij sur U'espace G/H telle que

=Y iy = T Vi
./(_.-/H p(x™ g)dy = Aw) /W” e(i)dg

oy



CHAPITRE 1. GROUPES EXPONENTIELS ET LEURS ... 27

pour toute fonction ¢ continue a support compact dans G/H ([B.C. et al]).
(v) On note par H, P'espace de Hilbert obtenu par complétion a partir de
I’espace des fonctions continues de G dans C vérifiant

E(z- h) = oo h){(:r:) — mf(‘?) Ve e G heH
/ IE(-'E-'H?'(.'T:i: &
Jern

On définit la représentation © de G sur Hy par
(r(2)€) (y) = A3 (@)E("y)-

On note 7 = ind§xe = 7(£,h) et on Pappelle représentation induite par x.
sur G.
(vi) La représentation induite 7 est irréductible si et seulement si b est une
polarisation vérifiant le critére de Pukanszky et toutes les représentations
unitaires irréductibles de G sont. obtenues de cette maniere.
(vii) Pour tout £ € g* il existe des polarisations vérifiant le critere de
Pukanszky.
(viii) La théorie des représentations induites des groupes de Lie exponen-
tiels est équivalente a la théorie de Dixmier ([Dix. 2|) des représentations
induites pour les algebres résolubles exponentielles et leurs algebres envelop-
pantes (|[Mol.]).
1.5. L'espace G de toutes les classes de représentations unitaires irréduc-
tibles de G est caractérisé grace aux résultats suivants :
(i) Tout 7 € G est obtenu comme en 1.4, et est indépendant de la pola-
risation de Pukanszky choisie. Par abus de notation, 7 désignera a la fois
une représentation et sa classe dans (]
(ii) Pour tout a € G, 7(£,h) et ﬁ((Arl* a)(f), (Ad a](h)) sont. unitairement,
équivalents. Done la classe d'équivalence de (¢, h) dépend uniquement de
I'orbite

Of) := {(Ad* a)(€) | a € G}
dans g*. On notera pour simplifier 7(£) au lieu de 7(€,1).
(iii) L’application de Kirillov

K : O(f) — 7(€)

est une bijection entre Pespace des orbites, identific & g */ Ad" G, et 'espace

'f

3

7}



28 CHAPITRE 1. GROUPES EXPONENTIELS ET LEURS ...

(iv) La topologie de G est déduite de manitre naturelle de la topologie
de Jacobson de l'espace Prim C*(G) des idéaux primitifs de C*(G). L'es-
pace g*/ Ad" G est muni de la topologie quotient. Dans ce cas I'application
de Kirillov pour les groupes exponentiels est un homéomorphisme entre
g*/Ad* G et G ([Lep. Lud.]).

(v) Lorsque le groupe G est nilpotent (ou, de maniere plus générale, #-
régulier), la topologie de G peut méme étre déduite de la topologie de Ja-
cobson de Pespace Prim, L'(G) des noyaux dans L'(G) des représentations
unitaires irréductibles de L'(G), puisque dans ce cas il y a homdéomorphisme

entre Prim C*(G) et Prim, L' (G) ([Boi.]).

1.6. (i) Soit G un groupe exponentiel connexe simplement connexe et
soient Gy et Gy deux sous-groupes fermés connexes de G tels que Gy C
G, C G. 1l existe alors des homomorphismes continus Ay de Gy dans RY,
A de G dans Ry et A de G dans R tels que

AC-‘Q
A] —_
Gy A
GG
- B &lr;1
A =
i A
lelled
A,
Al = ———
Gy A
GGy

el

B~ 008

(J'I &
Dailleurs A; pent méme étre étendu en un homomorphisme continu de G
dans R* | également. noté¢ Ay, tel que

A=A -A.
De plus, par construction,
An) = An) = Ay (n) =1

pour tout n € N = expn, n désignant le radical nilpotent de g.
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(ii) Notons par di, dij et dz les mesures semi-invariantes sur G//Gy, G1/Gy
et G/G, correspondant a A, Ay, A. On a alors

-/G/(-'g w(2)dz - ./(:/(-'1 A (x) 7 - p(ay)dy dx

pour tout ¢ € C.(G/Gy). (Voir [Lep. Lud.] pour la construction des
homomorphismes A et des mesures semi-invariantes. )

(iii) La définition des représentations induites de 1.4. admet la générali-
sation suivante : Soit H un sous-groupe fermé connexe de G. Soit. ¢ une
représentation unitaire de 77 dans un espace de Hilbert He. Soient A 1'ho-
momorphisme continu de G/ H dans R} et di la mesure semi-invariante cor-
respondante. On définit la représentation induite 7 = ind$; ¢ de la manicre
suivante :

L’espace H, est formé par Pensemble des fonctions mesurables de G dans
H, telles que

E(xh) = C(h)*E(x) pour tout h € H

pour presque tout x € G
2 .
aq i o).
_/{_;/H1|€(?)||H<*’f < +oo
La représentation 7 est encore donnée par

(m(2)€)(y) = A(x)~26(a~'y) pour touta € G
pour presque touty € G.

(iv) Soient G,Gy,G2, A, A, Ay comme en (i). Soit ¢ une représentation
unitaire de Gy. Posons

T = intlg2 ¢, m= imlg; (, ®= ind(::] -
Alors 7 et 7 sont unitairement équivalents, grace a
I.’:H,T ———F Hﬁ-
£ — ¢
ol

E)(q) = A (9)'"/%€(g 1) pour presque tous les
g€ G,m € Gy.
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En effet, grace a cette définition de v,
vom(x)=7(x)or pourtoul xe G.

1.7. Bases coexponentielles
(i) Soit h une sous-algebre de g. Alors il existe une base B = {By, ..., B, }
supplémentaire a h dans g telle que les applications

R" x exph — G
(L1, ooyl 1) — expl, ByocexptaBy - expty By - I

et

R" x explh — G
(ty,.oyly; h) ¥ h-exp ity By - explaBy...exp b, B,

soient des difféomorphismes. Une telle base est appelée base coexponentielle
a b dans g.

(ii) La construction des bases coexponentielles peut étre effectuée de la
maniére suivante :

a) Si b est un idéal de codimension 1 dans g et si B € g est un élément
quelconque tel que g = RB @ b, alors { B} est une base coexponentielle a h
dans g.

b) Si b est une sous-algtbre et non un idéal de codimension 1 dans g,
soit n le radical nilpotent. de g et soit ng = nNh. Alors dimn/ng = 1 et tout
B € n vérifiant n = RB @ ny est tel que {B} soit une base coexponentielle
A ng dans n et une base coexponentielle a b dans g.

¢) Si g/bh est un quotient irréductible de dimension 2 pour I'action de
ad g, alors dimn/ny = 2 et il existe B, B’ € n tels que

(ad X) ( g, ) = (X) ( :,: —lw ) ( f;, )mr_)d h

pour tout X € g, pour un certain w € R* et ¢ € g*. Dans ce cas {B, D'}
est une base coexponentielle i ng dans n et une base coexponentielle a b
dans g.

d) A Daide des étapes précédentes on peut construire une base coexpo-
nentielle & toute sous-algebre h de g ([Puk. 2]).
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1.8. Grace aux bases coexponenticlles, 'espace Hy de 1.4. peut étre iden-
tifié & un espace de fonctions sur R”.

1.9. Noyau d’une représentation unitaire irréductible
(1) Soit m € G. Pour [ € C((), définissons

7(f) /r [ () (x)da.

Alors 7(f) est. un opérateur a noyan, dont. le noyan [, est donné par
faleyy) = A7 P@)AZ A () [ ATV fahy ™ )xa(h)dh,
J i

. S . 03 : AG
A désignant la fonction modulaire de G et 7 §’¢éerivant 7 = indy; xe. Le
noyau [ est C™ et vérifie

Tr(@h, ') = xe(h)xe(W') fr(z,2")

pour z, 2’ € G, h,h' € I ([Lud.}).
(ii) Une base coexponentielle & B étant fixée, le noyau fr peut donce étre
identifi¢ & une fonction de C>(R" x R").



Chapitre 2

Actions exponentielles et leurs
orbites

2.1. Soit G un groupe exponentiel ef soit N = expn, n désignant le radical
nilpotent de g. Dans ce cas g agit sur n et G agit sur n et N par ad X|“,
Ad(exp X)| , resp. par conjugaison d’un élément de N par un élément de
G Drailleurs on peut. définir de manicre plus générale Paction d’un groupe
sur un sous-groupe normal. Cette constatation nous ameéne a définir une
action exponentielle sur un groupe exponentiel. Remarquons que certaines
propriétés de groupes soumis a des actions extérieures ont entre autres été
étudides par Ludwig ([Lud.]) et Poguntke (|Pog.]).

2.2. Définition : Soit G un groupe exponentiel d’algebre de Lie g. Soit
? une algebre de dérivations de g et posons D = expd. Nous disons que D
(resp. D) agit exponenticllement sur g (resp. G) si les conditions suivantes
sont, vérifiées :

(i) 0 est une algebre de Lie exponenticlle

(ii) adgcC o

(iii) g est un -module de type exponentiel, a savoir les poids pour 'action
de © dans ge ont la forme

d— p(d)(1 + ww)

avec w € R, ¢ € 2*. Cela signifie qu'il existe une suite de Jordan-Holder
d'idéanx de g
()= On <] On—1 <J...<q [ef <] go=— 4@

32



CHAPITRE 2. ACTIONS EXPONENTIELLES ET LEURS ... 33

pour 'action de ? vérifiant une des deux conditions suivantes :
o dimgr/gri1 = 1 et il existe Xy € ge\gry1 tel que

d(Xy) = @r(d) X mod geyq

pour toul d € 0, avee p, € 0*.
e dimgg/grp1 = 2 et il existe Xy, X € gi\gr41 tels que

X\ _ I —wy Xk
ff( X1 ) = i(d) ( b | ) ( X} mod g

pour tout d € 0, avec @, € 0*, wy € R*.
L’action de ® sur &G qu’on en déduit est expliquée en 2.4.

2.3. Lemme : Powr toute action exponentielle, 0(g) est un idéal o-invariant
contenu dans le radical nilpotent n de g et contenant |[g, gl.

Démonstration : Puisque les éléments de 0 sont des dérivations,

(add(X))(Y) = [d,ad X](Y) VX,Y €g,Vded

ol [d,ad X] = doad X —adX od. L’algebre d étant exponentielle, done
résoluble, Vopérateur [d,ad X| est nilpotent. 1II en est done de méme de
Popératenr ad d(X). Ceci prouve que 0(g) est une sous-algebre nilpotente
de g, done que 9(g) C n. Puisque ad g C d par hypothese, |g, g] C 2(g)-

2.4. L’action exponentielle permet de définir les actions suivantes :
(i) Pour d € 9, notons D = expd € D, cest-a-dire

o0 l

N gk . -
D(Xy= > Hri (X) pour tout X € g.
k=0 """

(ii) Pour & = exp X" € G posons

Dy = Plexp X) = cxp(D(X)).
Cette notation garantit que

(DiD2) g, D'(‘D’a:)

quels que soient Dy, Dy, € D,z € G.
(iii) Pour tout. [ € L'(G) définissons [P par

P(x) = 86(D)f(Px)



34 JHAPITRE 2. ACTIONS EXPONENTIELLES ET LEURS ...

o & désigne la fonction modulaire telle que
]fD(:I:)rl:f: /f(:}:)ri:r:.

Quels que soient. [ € L'(G), Dy, D, € D,

JPiDa) _ (D)2,
(iv) Pour 7 € G on définit P par
(Pr)(z) = ’n‘(“_]:;:) VDe®D,z€q.
On vérifie facilement que
(PrDoge = PPy WDy, Dy €D

el

#(f2)=(Px)(f) VD e VfelIl(Q)

(v) L’action coadjointe sur g* est. définie de maniere habituelle par

(d* - €, X) = (¢, —d(X))
(D* -6, X) = (¢, D~ (X)) Veeg' X eq,
deo,DeD.

2.5. Si GG est un groupe de Lie nilpotent, on peut définir son algebre de
Schwartz S(G). Nous renvoyons a ([Lud. Mol. 1]) pour la définition de
S(G) et des différentes normes engendrant la topologie de S(G). L’action
exponenticlle de ® sur G définit alors également une action de © sur S(G)
par fP(x) = §(D)f(”2). Un certain nombre de propriétés de continuité et
de transformations concernant cette action ont été démontrées dans ([Lud.
Mol. 1]) et seront utilisées dans la suite. Revenons & présent aux groupes
exponentiels.

2.6. Lemme : Soient 7 = 7(€, ) et D € D. Alors D est une polarisation
pour D*¢ et les représentations P7 et mp = w(D*¢, Dh) sont unitairement
équivalentes.
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Démonstration : L'équivalence unitaire

U:Hpr=He — H?TD

est donnée par
Wy =e( P
(U(x) = (7 @)
a condition de prendre sur G/exp Dh la mesure semi-invariante corres-
pondant au caractére A o D=1 et définie par

L/ I n(a)di = / n o D).
! JG ) exp Dy f( ) Jatexphy ! (“)tr Y

2.7. Soit 7 = indf; x¢ € G et soit D € D. Sous quelle condition 7 et
D sont-ils unitairement équivalents ? D’aprés 2.6., P7 est unitairement
équivalent a mp = 7(D*¢, D). Dapres 1.5., w(D*E, DY) est unitairement
équivalent & (€, h) si et seulement. si

D0 € O(f) = (Ad* G)(#).
Or remarquons que
D*t € (Ad* G)(¢)
& Ad*G(D*0) C (Ad* G)(©)
= D'((Ad°G)(6)) C (Ad* G)(¥)
= D'-0) c O®
< D'-0) = 0

c'est-a-dire si et seulement si D* laisse T'orbite O(€) invariante, puisque
Ad® G est un sous-groupe normal de D*. Ce résultat nous amene aux
définitions suivantes.

2.8. Définition : Soit 7 € g*.
(1) L’annthilateur v, de € est défini par

vo={dev|d* =0}
Le stabilisateur ©, de € est défini par

De=expe={DeD|D*-2=1{]}.
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(ii) Le stabilisateur D o de Porbite est défini par

DO({:‘} - {D SR | D* . O(f)) C O(f")}
= {De®D|D* 0 =0())}
= {D eD| Px et w sont unitairement équivalents
sim=m(lh)}.

De plus on notera
Vo) = Dowy = {d €0 | expd € Doy }-

Si-m = m(f,h) on notera encore v, et D, au lieu de oy resp. Doe)-

2.9. Proposition : Le stabilisalenr Doy de orbite est un sous-groupe
connexe de D, contenant Ad G et vérifiant Doy = AdG - Dy.

Démonstration : La relation Doy = Ad G - D¢ déeoule de I'équivalence
De @()(p) =% D* -8 E ()’.'\(I“r G’)((’) (27)

La connexité¢ de D, découle de (|B.C. et al], 1.3.3.).
Puisqu’en plus Ad G est connexe par arcs, done connexe, on en déduit la
connexité de Doy = Dy
2.10. Définition : On appelle orbile généralisée de £ le sous-ensemble de
g* déhni par

200 ={D"-£|D=expdeD}.
Si aucune confusion n’est possible, l'orbite généralisée sera simplement ap-
pelée orbite. Elle jouera un role essentiel dans la suite de ce travail.
2.11. Certains raisonnements se feront par récurrence sur dim g+dim(2 /0, ).
On construira alors une base coexponentielle {d;,...,d,,} a v, dans 2. Une
fonction sur /D, sera identifiée & une fonction sur R par

Fexpt,d, - expt,—1d,_y...exptydy - Dy) = F(ty, ..., 1,).

Si D = explydy,...explydymod Dy, on notera indistinctement (D) et
o 5 )



Chapitre 3

Différentes étapes d’une
démonstration par récurrence

3.1. Soit £ € g* et soit 7 = w(f). Les démonstrations concernant certaines
proprié¢tés de 7 (fonetions qui sont noyaux des représentations P idéaux
D-premiers contenus dans Ker 7) se font par récurrence. Dans ce chapitre
nous analyserons les différentes étapes nécessaires a4 une telle récurrence.
Nous nous baserons essentiellement sur les travaux de Ludwig ([Lud.]).
Soulignons pour commencer les différences avec les résultats de Ludwig.
(i) Ludwig se limite aux algebres de dérivations 0 telles que d*(£) = 0 pour
tout d € 2\ adg, alors que nous étudierons des algébres d plus générales.
Cela aura entre autres comme conséquence que nos polarisations ne seront
plus d-invariantes.

(ii) En contrepartie nous nous limiterons a des algébres de Lie de la forme
g = g(f) + n, n désignant le radical nilpotent, de g. Cette hypothese simpli-
fiera un certain nombre de calculs. D’autre part, lors de I'étude des orbites
sous l'action de Ad*G, une telle restriction semble étre sans conséquences
pour nos problemes. En effet, soit. g une algebre exponentielle plus générale.
Posons m(¢) = g(#) + n. Dans ce cas l'orbite de £ dans g* pour 'action de
Ad*G est saturée pour m(f), c'est-a-dire O(€) + m(6)*+ = O(¢).

(iii) Finalement, Ludwig fait une récurrence sur dimg, alors que notre
récurrence se fera sur dimg -+ dim(2/05). Cependant, remarquons que si
d*(€) = 0 pour tout d € v\ adg, alors @ = 0,. Donc notre récurrence se
ramene a celle de Ludwig,.

(iv) Soulignons en fin de compte la différence de notations. Nous supposons

37
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d’office ad g C 0, alors que Ludwig note 0 + ad g pour tenir compte de cette
hypothese.

Lorsque nos démonstrations ressemblent considérablement & celles de Lud-
wig ([Lud.]), nous nous contenterons de donner de bréves indications.

3.2. Proposition : Soit. G = expg un groupe exponentiel muni d’une
action exponenticlle donnée par © expd. Soit £ # 0 € g*. Alors au
moins un des cas suivants se présente :

ler cas : Onao(g) =0, c’est-a-dire g est une algecbre abélienne ne subissant
aucune action extérieure.

2me cas : Il existe un idéal non nul a, d-invariant, annulé par £ et contenu
dans le radical nilpotent n.

dY)=@(d)-Y Vdeo*
. Y)=1.
Si g est de la forme g = g(€) -+ n, alors 50| = 0 et Y est central dans g.
ad g
4me cas : 1l existe Y1,Yo € 0(g) Cn, o€ 0*, 0 # 0 el w € R* tels que

rl(;/; ) zp(d)(:} f" ) ( ;,; ) Vd € o*

Si g est de la forme g = g(f) + n, alors chdBE 0 et Yy, Ys sont centraux

dans g.

Sme cas : 1l existe U, Y € 0(g) Cnet a,F € 0* tels que
d(Y) =0 V¥d e o, dong, en particulier, Y est central dans g
d(U) = a(d)U + p(d)Y Vded
{0 =0 {,Y)=1
a, # sont. indépendants, done non nuls.

G6me cas : llexiste Y € 0(g) Cn, U € g, B €0*, f#0 tels que
d(Y) =0 ¥d e, done, en particulier, Y est central dans g
d(U) = p(d)Y Wded
(£, U)=0et (£.Y)=1.

Si g est de la forme g = g(£) -+ n, on peut choisir U/ € n.

Tme cas : 1l existe U, V.Y € d(g) C n, ¢, a, € 0" tels que
d(Y) =0 V¥d €, done, en particulier, Y est central dans g

—w v(d
d(g):ap(r.{)(i J )(g)-f(%%d;)v Vd € d
0

U, V] -
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WU =, V) =06t UL Y) =1

@, @, 3 sont indépendants, done non nuls.

Démonstration : Si on n’est pas en présence des cas 1) ou 2) on fait le
raisonnement. suivant : Puisque action est exponentielle, les idéaux mini-
maux d-invariants (contenus dans 0(g) si 9(g) # 0) sont de dimension 1 ou
2. On a donc les cas

a) Ad(Y) = o(d)Y Vded', ((,Y)=1, Y ea(g)

¢ 1l —w Y, . .
bh) (l(},;):go(d)(w | )(YL) Vded*, Y,Y,e0(g)

16, Y0+ (€, Y2)| # 0.

Dans b) on peut supposer ¢ # () car sinon on se ramene a a). Dans a) il
faut distinguer ¢ # 0 et ¢ = 0.

Pour étudier a) avec ¢ = 0, supposons d’abord 2%(g) # 0. En particu-
lier RY G 0(g). Considérons les idéaux minimaux d-invariants de 9(g)
contenant strictement RY. Ils sont de dimension 2 ou 3. On trouve donc
les cas 5), 6) ou 7) avee I/, V,Y € d(g). Dans le Sme cas et le Gme cas,
on peut supposer (€, /) = 0 (en ajoutant, si nécessaire, un multiple de Y
a ). Dans les cas 5) et 6) on peut supposer F # 0 (sinon on est. dans le
2me cas avec a = RU). Si # = ka dans le bme cas, on retrouverait le 3me
cas pour Y/ = (U + kY). Donc on peut supposer a et 3 indépendants
dans le 5me cas. Dans le 7me cas on peut supposer (¢,U/) = ({,V) = 0
(en ajoutant, si nécessaire, un multiple de Y a U, resp. V). On a ¢ # 0,
car sinon RIJ + RV + RY ne serait pas minimal. L’indépendance de ¢, o, 3
se démontre par la méthode utilisée par Ludwig ([Lud.]) pour montrer
Iindépendance de ', 4}, 4. Le caleul de [/, U] et [U, V] montre que 0 =
d([U, V]) = 2¢(d)|U, V]. Puisque ¢ # 0 on en déduit que (U, V] = 0.
Considérons ensuite le cas 9?(g) = 0. Pour exclure le 2me cas on peut
supposer que 0(g) = RY. On cherche alors les idéaux minimaux d-invariants
de g contenant strictement RY . Puisqu’en plus 9(g) = RY/, seul le 6me cas
se présente avec [/ € g. Si o(n) # 0, 0(n) = RY et on peut chercher les
idéaux minimaux ?-invariants contenant strictement RY dans n, c’est-a-
dire on peut supposer U/ € n. Si, par contre, 9(g) = RY et 9(n) = 0, on
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an = RY (sinon on retrouverait le 2me cas). 11 faut alors distinguer deux
cas : [g,g] = O et [g,g] = RY. Si [g,g] = 0, g est abélien et / € n = g. Le
cas [g, g] = RY est exclu lorsque g est de la forme g = g(¢) + RY. Pour les
algebres de cette forme, on peut done toujours supposer [ € n dans le Gimne
cas.

Remarquons que dans les cas 3) el 4) on a go(ad n) = p(ad g(f)) = 0.

3.3. Dans la suite de ce chapitre, nous supposerons que g = g(€) + n.
Nous remarquerons que les cas 5), 6) et 7) doivent, étre séparés en différents
sous-cas. IMinalement, nous montrerons comment, dans un raisonnement
par récurrence, il faut construire la polarisation h pour £, la représentation
irréductible 7 = indf} x; et les bases coexponenticlles B & h dans g et € &
0, dans 0.

3.4. Début de la récurrence : dimg+ dim(0/0,) = 1.

Onadimg = 1, cest-a-dire g = R et 0 = 0, = {0}. En effet une dérivation
non nulle ne peut laisser stable Vorbite O(€) = Ad" G - £ = {£}. En parti-
culier 9(g) = {0} et ceci est un cas particulier du ler cas.

3.5. ler cas : 0(g) =0.

L’algebre g est abélienne, toute polarisation coincide avec g, 7 est le ca-
ractere yg, 0 = 0, et les bases coexponentielles 2B et € sont vides.

3.6. 2me cas : Toute polarisation h pour £ dans g doit contenir I'idéal a,
par maximalité, puisque hy = b a est encore une sous-algebre subordonnée
a £. Dans le raisonnement par récurrence on passe an quotient g = g/a sur
lequel on définit

d(X +a)=d(X)+a Vdcd VX eg
,X+a)=({X) VXeg

Soit P la projection canonique de g dans g. )

Soit ) une polarisation de Pukanszky de £ dans g. Alors h = P~'(h) est
une polarisation de Pukanszky de € dans g. De plus, si B = {B,,..., B,}
est une base coexponentielle & h dans § construite comme en 1.7. par
exemple et si P(B;) = B; pour tout i, alors B = {By,..., B,.} est une base
coexponentielle & h dans g. Dans (7 définissons 7 = ind§ 7. Onan = 7o P,
Alors dim(9/0,) = dim(2/07) et dimg < dimg. Done la récurrence se fait
sur dimg en passant de g a g. Finalement, si ¢ = {di,...,;d,,} est une
base coexponentielle 4 05 dans 9, on peut poser d; = d; o P pour tout i et
C = {d,...,d,} est une base coexponentielle a 9, dans 2.
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3.7. 3me cas : Puisque g = g(¢) + n, 0 = Kerg = {d € 2 | ¢(d) = 0}
est un idéal de codimension 1 de 9, contenant ad g. 1l existe d; € ? tel que
w(dy) = 1. Alors {d; } est une base coexponentielle & 0y dans 0, Papplication

flt.X[R ),.!‘-.)

(do,t) — exptdy - expdy

étant un diffécomorphisme. Pour 7 = ind}; x, on trouve

(.—f{f,y\’) =Y

m(expyY) = e

(nx]lh!,.uxpr.fn)ﬂ(“x”y)f) = ?T({'EX])(F_','_.!;Y)) (ﬂ_"." ry‘

De plus, 0, € 0p. Done (0g), 0, et dim(0¢/(00)x) < dim(d/0,). La
récurrence se fait sur dimo/o,, en remplagant @ par vy et en gardant
Palgebre g (done également hh el B) inchangée. Si €, est la base coexpo-
nentielle a (0y), dans v, alors € = €, U {d, } est une base coexponenticlle
a0, dans 0.

3.8. 4me cas : 1l s'agit de analogne complexe du 3me cas. En eflet, les

relations peuvent s’éerire

d(Yy +iYs) = @(d) (1 + iw)(Y; + 1Y) Vd €0
exp(—td)(Y; + iYs) = e~y L iY,) Vd e .

K (0) ( cosl) —sinf )

sinf)  cos()

[En notant par

la matrice de la rotation d’angle 0 et en identifiant 'élément 1Y) +12Y2 € g

r ; :
avec ( ' ) e R?, on obtient

To
ra

exp(—td) ( ;,' ) = e UK (—tp(d)w) ( ;,' )
9 2

et

exp(—td) ( :] ) e~ K (to(d)w) ( :l ) :
) 2
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Comme dans le 3me cas, 0o = Kerg est un idéal de codimension 1 dans
0, contenant, ad g. 11 existe d; € v tel que ¢(d;) = 1 et {d;} est une base
coexponentielle a 9y dans d. Les calculs montrent que, pour m = indf, Xe,

m(expr Y) expraYy) = ‘JT({L\:])('!‘[YI 4 ?"2},2)) = gt YitnY)

(CX]! 'dl exp d“) ({1:]')'}(’ 1 }jl 7 3} )) ' ( I ‘ (}/l Yz){ (( ) ( o ) ’ )
1 g T + ‘ 2 =19 €exp ?-!
— <r.{()]}l£)h(h“'3( a) >

Comme dans le 3me cas, 0, C g et dim(00/(00)x) < dim(2/0,). On a les

memes conclusions concernant la réeurrence.

3.9. bme cas : (i) Le calcul

[, dyJ(U) = (a(dy)B(d) — a(d)B(dy))Y

montre que Kera est un idéal de codimension 1 dans 0 et Ker 4 une sous-
algebre de codimension 1 dans 9. Puisque a et 4 sont indépendants, Ker an
Ker 3 est un idéal de codimension 2 dans 0.

(ii) 11 existe dy,dy € 0 tels que

aldy)) =1 p(dy) =0
ﬂ(dg) =0 ﬁ((b) 1.

(iii) En remplagant dy par [da,d,], on peut supposer que dy est dans le
racdical nilpotent de 0 et que les applications

Kerf xR — D KerAxR —®
el
(o, s) — exp sdy - expdy (do, 8) — exp do - exp sdy

sont des difféomorphismes analytiques par 1.7.
(iv) 11 faudra dans la suite distinguer les cas {3| [ =0et [3| ; £ 0.
vl g adg

3.10. Cas 5a) : 3|  =0.

adg
(i) On sait que vy = Ker / est une sous-algebre de codimension 1 dans 0 et
que {dy} est une base coexponentielle a 0y dans .

(ii) Toute polarisation § pour £ dans g doit contenir [/, par maximalité,
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puisque by = h 1 RU est encore une sous-algebre subordonnée a £,
.
(iii) Pour 7 = ind}; x¢ on trouve

m(expyY) = e~ HEWY) _ o—iy
m(expul) = 1

exp f.ulﬁ(d).'““(d)“l
(") (expull) = e el
(exp sdy-exp 'ﬁ')ﬂ'((‘.}:]) yY) = i

(exp sdy-expda) ‘.’T(

S

expull) = e™".

['n effet, on se base sur les calculs

exp(—ull)exp X = exp X cexp(—ue~ @ X)) VX €g
) Crr(d’.] -1
(expd)(lV) = DY + B(d) - ——=—Y
a(d)

t:x])(—-n’.u)(t:xlm(—sn'g))(u(f) = ¢~ )y J — suY.

(iv) La relation

cald) _
(uxp dﬂ_) ((!‘X[) 'H.”) - nua{i{d)-T,;(,ﬁ_l

entraine que 0; C 0y = Kerfd. A nouveau, (00)x = 05 et dim(do/(90)x)
< dim(0/05). La récwrrence se fait sur dim(9/05), en remplagant @ par 99
et en gardant Palgebre g (done également h et B) inchangde. Si o est la
base coexponentielle & (29), = 0, dans g, alors € = €y U {dy} est une base
coexponentielle a 0, dans 0.

3.11. Cas 5b) : 4 'dﬂgé 0.
(i) N existe X € n tel que [X,U] Y. En effet, comme ﬁ| | # 0,
aig

| o 0 et g = g(f) + n, on peut choisir X € n tel que flad X) = 1.
adg(f
Puisque ad X est nilpotent, a(ad X) = 0.

(ii) Dans la suite nous écrirons, par abus de notations Ker n-| o Ker(a o
il

ad) et I(erﬁ‘ o Ker(fBoad). Posons g; = Ker i ge = Ker r.rT lﬁm I\'erﬁ| 1
adg a ac a
Gy = exp g1, Gy = exp gy, 09 = Ker 3, Dy = expdg. On a

g=RX &g et UY €go
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La relation
ld, i} (U) = (a(d)B(d) — a(d)B(d))Y

montre encore que g; est une sous-algebre de codimension 1 de g et go un

idéal de g. Notons que d(g) C n C 1'\'(—!1‘0] " De plus, 'évaluation de
ad g
d(|W, U]) pour W € g montre que gy est dp-invariant et g, est d-invariant.

Posons encore /1 = £

) ai
(iii) Par 1.7. {X} est une base coexponentielle & g Nn dans n et a g, dans
g.

(iv) Par 3.9. 'application

KerxR — D

(dy,a) — expdy - expaad X

est un diffécomorphisme analytique.
(v) Le calcul de

(exp dy-exp aad X)ﬂ‘ = ?T(EXI)(—H.X)) . (nx]ldu)?‘_ ) ?T((ﬁ.‘(]} {LJ\})

montre que (©xpdorexpand X)g o (exp 4o) 7 sont unitairement équivalents.

(vi) Soit, h; une polarisation de Pukanszky pour £; dans g,. Alors h = b,
est également une polarisation de Pukanszky pour £ dans g. En effet le fait
que g(f) € g1(6y), U € gi(fy), U ¢ g(€) montre que h = by est une sous-
algebre subordonnée a ¢ dans g ayant la dimension correcte. La vérification
du critere de Pukanszky est due aux observations suivantes : Soit k € -
et posons ky = Ar|me hi. Par hypotheése de récurrence il existe Wy € by tel

que £ + ky = Ad* (exp Wy ) ().
On montre que
O+ ky = Ad" (exp(Wy + AU)) (B) VAER
¢’est-a-dire
£+ k= Ad" (uxp(W, + AU)) (€) sur g;.
D’autre part,
f,n(a(livl) — 1

(Ad* (exp(Wy + AU ) (€), X) = (A" (exp Wh)(€), X) + A~ _Q(Twl)_
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Lorsque A parcourt R, on peut done choisir A tel que
(Ad” (exp(ld"] N AU)) (£),X)= (€, X)+ (k, X).

Puisque Wy + AU € by — b, £+ bh+ € Ad*(H)(f), c’est-a-dire la polarisation
b vérifie également le critere de Pukanszky.
(vii) Soit Dy = expdy € Dy = exp 0. L'évaluation de
0= an(l)\’, I”J) = I(:'fu(X), U'I -+ |X, l’iﬂ({])]
donne
do(X) = —a(dy) X  modag,

= Dj!}{(X)= X mod g,

= B (exprX) = exp(re™™ X)) mod Gy avee Gy € Gy

= b (exprX exp W)) = exp(re™ ™ X)  modG, VreR,W, € g;.
(viii) Soit m; € &4 (par exemple m = imlﬁ' Xe, ) et étudions 7 = in(lgI m =
ind% xe = 7, si £ est obtenu en prolongeant €4 par 0 hors de gy. Identifions

G/Gy = Ret dg = dr (mesure semi-invariante sur G /). Lareprésentation
- . G .
7 = indg, m; est donnée par

Hz = {E 1 G — My | €(g- 1) = m(9)"€(g) Vo € Gy et

£ 3 dj < oo
Lo V@B, o

L*(R, H,)
L2(R, L*(R*))

7(g')(g) = A2 (9Nl - )
|7 (9" L2 reny = Nl Lraray V€ € Ha, Vy' € G.
(ix) Btudions I'action de D, sur la représentation . On a :
-1 _ DIt ,
[G/G';So( o g)dg = .[Rnp( (exprX -exle))rlr
= ‘/m<p(ex])(rff“('i")X))ri?‘

= e [ p(g)dg
Wil

If
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pour tout ¢ € L'(G/G,). Alors le caleul

_, -
||5||?,2((:;(;,) = |7 (P H’)ﬁ“i!(c/c.)
o = 3 D! 2
= A(”“ g-')—l/ 6( (y.f—l D"((!X]’J T'X - exp I/V] ))) ﬂ‘.?'
GG
~ - : Dt 9
A(Du FI’)_] / E( (g’_l cxp(rr’.‘“(d”)X))) dr
Jara,

= AP :‘l’)_'iA(!}'”|E||i?(c.'/r_.'1)

donne )
A"y = Aly') Vg €@

Rappelons finalement que P07 (g) = 7(Po '), done que

Hpez = Hr = (R, L*(R*)).

(x) Définissons ensuite Py (g1) = (P g1), g1 € Gy, et
T Dy = in(lg] (Pomry).

On a

Hep, {.E : G — Hpyr, = Hay | €0~ 91) = Pmi(01)*E(g) Vo € Gy

(B

Onalz = Ag,, = A, puisque ces fonctions modulaires sont toutes définies
& partir de la mesure semi-invariante sur G/Gy.

(xi) Les représentations Dozt et 7p, sont unitairement équivalentes, 1’équi-
valence unitaire étant donnée par

U =U(Dy) : Hpyz — Hap,
(UE)(g) = e™W2e(Pi' ) VE € Hpyz,Yg € G.
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On vérifie facilement que

UE € g, A€l iy, = 1ElIniny; ot

Uo Poft = xp, old.

(xii) Comme Y est central et D-invariant,

(expyY) = w(expyY) = m(expyY) = e HVY) = =W
Pr(expyY) = Pmy(expyY) = e
Dy = -

TlexpyY) = wp,(expyY) = e

Si a'| =0, U est central dans g = k(-srﬁlmg. Done

ad g
m(expull) = e~y _ 1

De plus, pour dy € 0y = ker 3, Dy = exp dy,

n;* :
Doz (expull) = ﬂl( (exp 'u.U)) = 7 (exp ue~ ) = 1.
Par contre, si r1-| | Z 0, remarquons que [J appartient a toute polarisation
adg
hydety, = f| dans g;. En effet, si by est une telle polarisation, b} = h+RU
a1

est une sous-algebre de g; subordonnée a &y, done b} = b par maximalité.
Done, pour Wy € g,

(m (exp -.':.U){f) (exp W) A;11/2(U>c|1 wll )€ (exp(—ull) - exp W)
A’:*I/Q (uxp ull)E(exp Wy - exp(—ue ™" W:]U))
— A;}I /2 (exp 'U.U){((—!x]_) Wh).

Puisque 7 est unitaire, A, (expull) = 1 et m(expul/) = 1. Comme
précédemment, Pory(expul/) = 1. Finalement,

(7 p, (expull )E) (expr X - exp W)
= A;:,t{z(exp'n.”)E((-:xp(—'r.r.t'f) cexprX - exp W)
= AZV2(expull)E(exprX - exp Wy - exp(—ue™*MDU) - expruY)

[y

= AZM2(expull)e™E(exprX exp Wy).

Dy
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Puisque 7p, (expul/) est unitaire, Ay, (expull) = 1 et
(7 py(expulNE) (exprX - exp Wp) = ™ E(exprX - exp Wy).

(xii) Supposons r.r| | £ 0. Alors il existe 7" € g tel que a(adT’) 1.
da

i

Puisque ﬂ*‘ = 0, on peut supposer T" € g(¢) (en ajoutant, si nécessaire,
adn

un élément de n) et Flad7’) = 0, comme ﬁ| i m?_- 0. Donce
ad g(&

T,U] = U et. Ad(exptT)(rU) = e'rU.

Plus tard on montrera qu'on peut en fait choisir 7' dans une sous-algehre
nilpotente gy de g telle que g = go + n. Les caleuls montrent que

aad[X,T]) = 0 et flad|X,T]) = 1

¢’est-a-dire, en remplagant X par [ X, 7], on peut supposer que X € [g, g] C

n, si r.r|

i

| # 0. D’autre part, puisque
dg

([T, x), 0] = - (X, U]

on a
= —X mod gs.

[
xiii) Notons gz = RX & gy et Gy = exp gz. Puisque
g

(T, X + g2 —ta X modgs

== () mod ga,

gs est un idéal de codimension 1 dans g et {7’} est une base coexponentielle
A g3 dans g. D’autre part, g, est un idéal de codimension 1 dans gs et {X'}
est une base coexponentielle & gy dans gz. Ceci prouve que application

R?’x g — G
(t,2,g2) — expiT - expaxX - go
est un difféomorphisme.

(xiv) Rappelons que @ = Rad X + 2, ad X € 0. Donc dim(d/07) =
dim(00/(00) ). D’antre part dimg, < dimg. La réawrrence va done se faire
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sur dimg, g étant remplacé par gy, et 0 par 9. Une base coexponentielle
Co & (00)x dans 0y, est également base coexponenticlle & 0, dans 2. Si b
est. une polarisation de Pukanszky pour £; dans gy, il en est de méme de
h =B pour £ et g. Si B, est une base coexponentielle a by dans gy,

B - {X}UB,

est une base coexponentielle a fh dans g. Remarquons pour terminer que
puisque g = g(€) +n, gi = gi(fr) -+ ny et (@) C nNgy C ny, ny désignant
le radical nilpotent de gy. En effet, nous savons que g(€) C g, (£1), done

g = @ N(a)+n)
C ;) +gnNn
C mll)+m

et g1 =g (6)+ny.
3.12. 6me cas : C'est un cas particulier du dme cas avec a = 0 et
r_1| | = 0. Les résultats précédents restent valables.
aag
3.13. Tme cas : (i) 1l s’agit de Panalogue complexe dn Hme cas. IEn effet,
les relations peuvent s’éerive :
diU +1iV) = (d)( +iw)(U +iV) + (r_r(rl) + ?fﬁ(r.’,))}/
(expd)(U +iV) P DO+ (1] 4 3V)

l w(d) (141w . R
T (x4 — 1) . (a(d) +iB(d))Y-

(ii) Nous montrerons que le 7Tme cas se réduit a trois possibilités :

a) tp| - n'| = [3| =0
adg ad g adg

b) ¢| =0, n-| el ﬁ| sont. indépendants
ad p ad g ad g

c) ap| ! ﬂf| el ﬂ| sont. indépendants.
adg adg adg

(iii) Supposons d’abord L,D| = 0 et (_l'l l # 0. Il existe
ad g ad g

Xeg tel que plad X)=0 et aladX)#0
ded tel que p(d) =1, a(d) = p(d) = 0.
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Supposons ﬁl = k - n-l L In développant les relations
ad g ad g

d(X,U) = [d(X), U]+ |X,dU)]
X,V]) = [d(X),V]+ [X,d(V)]

on trouve une contradiction. De méme si /}| l # 0. Par conséquent goi =
ad g adqg

0, alad g$ 0 ou ﬁ|mlg¢ 0 entraine o s

et [3| indépendants.
adg

=0. Il existe
adg
X eg telque pladX)=1 et afadX)= flad X) =
ded telque @(d) =0 et a(d) = 1.

(iv) Supposons ensuite t,C’| | # (. Supposons cr| = I}
adg ad g

De plus 0(g) Cn C l\'t—-.rc,o] " L’évaluation des mémes relations qu’en (iii)
adn
ﬂ?é 0 entraine n'lm_l ﬁé 0 ou ﬁLulu;é 0.
ﬂ]\'cr,6'| " Supposons z,o| | Z 0 el
adg adg

donne une contradiction. Donc ¢ ;
it

(v) Remarquons que g(¢) C Kera

it [l
¥ = isque Ler A a(f Ker rr’ Ker I ,
a4 = k= (p|“! Z 0. Puisque n C Kex Lp|m_|EI el g(f) C i [
3 ont ament a 'hypothese . Ainsi ot ¢ |
g C Ker <p|mln contrairement a 'hypothese anulg?‘é 0. Ainsi (P‘mlg et a o

sont indépendants. On fait un raisonnement analogue pour /3| | si ﬁ| | F
ad g ad g
0.
(vi) Supposons w‘ | # 0. Par (v) on peut supposer par exemple que Lpl l
ad g ad g

et u'| | sont, indépendants. Done il existe

ang

X, X'eg telsque pladX)=1 et aladX) =
plad XY =0 et aladX') =1

Supposons en plus

IH|iul g: Ty ad g—l_?.l”le a
[évaluation de [|X, X', U], [[X, X', V} et A(ad[X, X']) conduit & une con-
tradiction. Donec | o el {3! sont indépendants.
acd g ad g

De (iii) & (vi) on vient. de montrer qlu a), ), ¢) sont les seuls cas possibles.
(vii) Vu lindépendance de ¢, a, 3, il existe dy, da, d3 € 0 tels que

eldy) =1, a(dy) =0, F(d)=0
p(da) =0, a(dy) =1, A(d)=0
o(dy) =0, a(ds) =0, Ad;)=1.
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En remplagant. dy et dy par ”—lwf([tig,d]] — w|ds, dq]), resp. H—_]wg(u)[dg, dy] +
[d3,dy]), on peut supposer que dy et dz appartiennent au radical nilpotent
de 0. Donc les applications

(KeroNKeranKerf) x R* — D

(do,ty,ta,t3) +—— expdy-explydy - explady - expilgds
el

(KergNKeranKerf) x R — D

(do, by, to,l3) +—— explgdy - explady - explyd; - expdy

sont. des difféomorphismes analytiques par 1.7.

3.14. Cas Ta) : 4,9\ - r1'| =6  =0.

adg adp adg
(i) Posons 9; = kera MNker 3, sous-algebre de codimension 2 dans 2. Alors,
vu la décomposition 3.13. (vii), {da, d3} est une base coexponentielle a 9,
dans 0.
(ii) Puisque U, V,Y sont centraux, ils appartiennent a toute polarisation.
(iii) Pour 7 = ind$j x¢ on trouve

Pr(expyY) = n(expyY)=e™
mlexpull) = w(expwV)=1

(exp tady-exp tody-exp tydyexpdy Ji{touptan)

r(expull -expuV) =
En effet, on se base sur le calcul
exp(—do) exp(—tydy) exp(—tads) exp(—tads)(ull +vV)
e N ((cns thw)u — (sin f.,w)'u)U &g ((sin tiw)u + (cos f.lw)'n)V
—(f.-z'u. b Lq'”)Y.
(iv) La relation

(exp tady exp fody-exp tydy expdy) ) . (.Ifffg'ﬂ-{"f.:m)

m(expull - expoV
entraine que 0, C 0,. En effet

D = expd = exptady - exptads - expiydy - expdy € exp 0
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entraine que t; = {3 = 0. Donc
D = expd = expiid; - expdy

et
ﬁw{d}{l-l iw) ]

e(d)(1 + iw)

expd(U -+ V) e? DT (17 4 3V 4 (cr(d) + '.iﬁ(rf))}/

= b+ (7 4 1)

ce qui montre que a(d) = A(d) = 0.

(v) Puisque 0, € 0y, (01)s 0 €t clim(m/(a,),,) < dim(2/0,). La
récurrence se fait, sur dim(0/0,), en remplagant. @ par 9; et en gardant
Palgébre g (done également b et B) inchangée. Si € est la base coex-
ponentielle & (0), 0 dans 0y, alors € = € U {da,d3} est une base
coexponenticlle a 0, dans 0.

3.15. Cas 7b) et 7c) : Ces deux cas peuvent étre traités en partie simul-
tanément.

(i) Comme rr|ml el ﬁ|m[“ sont. indépendants, il existe Xy, X3 tels que
a(ad Xy) = flad Xy) = 1, a(ad X3) = flad X3) = 0. Puisque g = g(€) + n,

que — 3 mls(f’)E 0, on peut supposer X,, X3 € n (en ajoutant, si

nécessaire, un élément de g(€)). De plus tp]mlnz 0 et p(ad X,) = p(ad X3) -
0. Dans le cas ¢) on peut choisir X; € g(¢) (en ajoutant, si nécessaire, un
élément de n) tel que plad X;) = 1, a(ad X;) = flad X;) = 0.

(ii) Dans le cas ¢) on peut méme supposer Xq, X3 € [g,g]. En effet, dans
ce cas il suffit de remplacer Xy, X3 par XJ, X} donnés par

1
X-; — —'F—Q'(—lA,th] —|' Lt)lX;.,Xgl)
| 4+ w
r l - - r r
)\:'; =5 ]+w2(—w[.k],,\2]-— Iz\],)\:«;]).

Plus tard on verra qu’il est permis de choisiv X; dans une sous-algéhre
nilpotente gy de g telle que g = go + n.
(iii) Posons

0, = KeranKerfg

g = Ker ﬁl'm[ i‘lﬁ L ﬁl“d a

e = I\'m'n,a| ﬂl\'err}-| NKer gl .
adg ad g adg
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On a:

U VY €g2Cq
et g» = gy dans le cas b). En caleulant d,(|W;,U]) et d,([W;,V]) pour
W, € gy et dy € 0y, on voit que

01(g1) C g2 C g1

Donc g est une sous-algeébre 9, -invariante de g et go est un idéal d-invariant
de g.
(iv) En évaluant d(| Xy, U]),d([X2, V]), d([X3,U]), d([ X3, V]) on voil. que

X 1 X
rf,( X: ) = —(d) ( by T ) ( J\,;‘: )mnrl gz, mod(ge N n).

De plus, le calcul de [[X-g, X3, U] = [|X-3, Xsl, V] = 0 montre que [X2, X3| €

g2.
(v) Par 1.7., { X3, X3} est une base coexponentielle a gy Nin dans n et a g
dans g. De plus, puisque

I\'t-.rcp‘l .1;.: RX, BRX; P go

{ X3, X3} est également une base coexponentielle & go dans Ker spLd . Dans
le cas 7b), Kt-:l'(,oL“Iﬂ - g. Dans le cas 7¢), I(ur{p‘mlg est un idéal de codi-
mension 1 dans g et {X;} est une base coexponentielle & ]\'(‘.]‘tp‘mln dans g.
Donc les applications
R?' X @2 — G
(19,73, Wy) > exproXy-exprsX;-exp Wy

dans le cas 7h)
resp.

RB X o — G
(r1,72,73, Wa) +—— expri X -expraXa-exp r3Xa - exp Wa

dans le cas 7c)
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sont. des difféomorphismes analytiques. De plus, puisque
exp ro Xo-exp 13Xz = exp(ro Xo+73X3)- [exp(—r2 X2 —73X3) exp ra Xa expra Xa),
que ad X», ad X3 sont nilpotents, que [Xa, X3] € g,

loglexp(—reXg — raXs) expre Xy - expr3Xa] € go
et les applications

RZxg, — G
(ro, 73, Wo) +—— exp(roXo + 13X3) - exp Wy
dans le cas 7b)

resp.

R*xgy — G
(r1,79,73, Wa) = expr Xy exp(reXa +13X3) - exp Ws

dans le cas 7c)

sont des difféomorphismes analytiques. De méme, puisque { Xz, X3} est
également une base coexponentielle & gy dans g, les applications

R*xg — G

(rg,73, W1) +—— expraXs-exprzXz-exp W,

]Rg Xg — G

(19,73, W1) +—— exp(reXo + 73X3) - exp W)

sont des difféomorphismes analytiques.
(vi) Puisque gs et g2Nn sont 2 -invariants, la relation obtenue en (iv) donne

di(Xo+iX3) = —@(dp)(1 —iw)(Xs + iX3) mod(ga N n)©
expdy(Xa+iX3) = ¢ # N cos(ip(d))w) + isin(p(d))w)]
(X3 + iX3) mod(ga N n)©

-

exp dy ( - ) e K (p(dy ) ( & )mud(ﬂz nn)
3 3
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expdy (1o Xy +13X3) = expd,; [(X:e X3) ( :2 )]
3

= (Xg X3) - e P K (—p(d))w) ( :: )
mod(ge N n)
Drexp(roXo 4+ 13X3) = exp [(/\’g X3)e P K (—p(d) )w) ( :j )]
mod Gy
el,, puisque tout élément de G 8’éerit sous la forme exp(re Xo 473 X3)-exp Wi
on a pour 'action de ®; sur G,
Prlexp(roXa + 13 X3) exp W] = (5)([)[(X2 X3)e P K (—p(dy)w) ( :j )]
mod G

(vii) Soit £, = F?| et soit by une polarisation de Pukanszky pour £; dans g;.

Par maximalité, ?f V.Y € by, Alors h = b est également une polarisation

de Pukanszky pour £ dans g. En effet, le fait que g(£) € g1 (41), U,V € g1 (&)

et U,V ¢ g(£) montre que h = b est une sous-algebre subordonnée a € dans

g ayant la dimension correcte. La vérification du critere de Pukanszky est

due aux observations suivantes : Soit k € bt et posons k) = k|ﬂ € I];L Par
1

hypothese de récurrence il existe Wy € by tel que
b1+ ky = Ad* (exp Wh)(6).
On montre que
O+ ky = Ad* (exp(Wh + AU + iV))(6) VA pu€eR
c’est-a-dire
€+ k= Ad ((‘.xp(l-lﬁ + AU + ,u.V)) (€) sur g.
D’autre part

(Ad* (exp(W; A+ V) (0), Xo -+ i Xs)
enp(n(i Wi)(1—iw) _ 1

(1 —iw)p(ad W)

= (Ad"(exp W1)(£), X2+ iX3) + (A + ).
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Lorsque A + 7y parcourt. C, on obtient C tout entier, donc on peut choisir
A ety tels que

(Ad* (exp(Wy + AU 4 ;r.V))(f),X2+ iX3)
(nﬂ' z\’g =} ?':A,g) | (;i:, }(2 -+ JX';)
Puisque Wy + AU + iV € by = b, €+ bt C Ad*(H)(¥), cest-a-dire la
polarisation h vérifie également le critere de Pukanszky.
(viii) Sur G /Gy nous définissons la mesure semi-invariante par
/ & (exp Wdexp W Weag
JG G
N /R‘z ‘E(”X]J(?'QXQ - 7'31\’_1) =eXp I’V[)I’f?‘gd.?’g W, e 1
= /’ f_(trxp(mz\’g 1 7'3A’g))(f'r’2rf?'3,
JR2

¢ étant une fonction constante sur les classes modulo G L'homomorphisme

A tel que
f {((t:xp W exp H")ri exp W = Aexp W) / E(exp W)dexp W
G/G) Jaya

x]
vérifie

/ E(exp(—Wa) exp W)d exp W
Jara,
= / E(exp Wlexp(—W) exp(—Ws) exp W])dexp W
GG
= / Elexp W)dexp W
- (;;(,"I
cest-a-dire A(exp W) = 1 pour Wy € gs.
] E(exp(—s3Xg) exp W)dexp W
G /G
= f / E(CX]}(— 53)\’3) (!X])(TQArQ B ?’;;Xg) cxXpP 1‘V| )l‘ﬂ?'g(ff':{
GGy
= /f E(exp(raXa + (ra — s3) X3) exp Wi exp Wy )dradrs
Je/ay
— .[g/(.;l {((!X])(?'gA’g - T';),X;;))l’l'."g(h‘g

= / E(exp W)dexp W
Jaya,
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cest-a-dire A (exp s3X3) = 1.
De méme A(exp soX3) = 1. Ainsi A = 1 dans le cas 7Tb). Pour Dy = expd,
avec d, € 0y,

[ € o )dexp v

=5 /erﬂ é(Dl_] (exp(ro Xy + r3X3) - D! exp W) )drodrs

= / E(uxp[(,\’g X3)e?"™) K (o(d) w) ( & )])n’.?'grifr;;
Jaja, T3

e~ 20(d) £ (I Xp(teXg + uzXs )) dusclus
. (_-'f(x'1

= ¢ 2pldh) E(exp W)dexp W.
. (;[’(;'1

Do, dans le cas 7c¢),

/ E(exp(—s1 X1) exp W)dexp W
G /Gy

(nxp ad(—s1 X))

_ exp W - exp(—s, X, ))rf exp W
0 e e
expad(—s1.X71)

*( exp W) dexp W
JG ey

= g / E(exp W)dexp W
Jeye,

c'est-a-dire A(exp s, X;) = e 2.
Comme dans le cas 5b) on montre que

A(“lllexp W) = A(exp W) VYW € g,VD; € exp0.
(ix) Soit £, = F.| el soit h; une polarisation de Pukanszky pour £ dans
a
g1. Alors h = by est une polarisation de Pukanszky pour £ dans g et
7= ind§ xo & i:ulgl (imlﬁ‘l _\f.a_t) = in(lg] T =T

5 o 3 G ) =
en posant mp = indy} xr,. Posons 7p, = ltl(l(;](Dlm) el montrons que Dig

et 7p, sont unitairement équivalents pour Dy € expdy. On a

'HD].,TI = ey = fJE(Rk“2) el
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HDI'E'T = Hf;
= {{ : G — Hy, | E(exp W - exp Wy) = 7 (exp Wi)*E(exp W)
! ey 1 2 z _'
VIV, € gy el ./c.'/C' |1£(e)\pr)||H«] dexpW < Ioo}

2]

L? (m‘ﬂ, L“(R*‘-ﬂ))
Hﬂn' N {f :G— Hf}.m = Hﬂ'l I (f(l‘,){]) W exXp l"V])
e (I}l'ﬁ])((‘!xv l1/| )*E(UX]) ‘“V)
VW, € gy et ./c.'/r_" ||€ (exp W[5, dexp W < —|-00}

r]

= L*(R? L*(R*?)).

Ona Az = Aqp = A, puisque ces fonctions modulaires sont. toutes définies
a partir de la mesure semi-invariante sur G/G4. L'équivalence unitaire entre
Diz et wp, est alors donnée par

U= M(Dl) 2t e — Hrr_n]

(UE)(9) = ff“’"“’f(ﬂ (9)) VE€Hn;,VyeEG.

On vérifie facilement que

Ug EHWIJ, ) ”uallﬂﬂn. = ||£||'Hnl.ﬁ. et
Uo n]ﬁ’ = TP, old.
(x) Comme Y est central et D-invariant
7 (expyY) = m(expyY) = m(expyY) = 7
Dr(expyY) = Pa(expyY) = P'mi(expyY) = mp,(expyY) = e W,

Pour d; € 0, on a
di(U+iV) = o(d)(1 +iw)(U + V)
expdi (U +iV) = e (cos(ip(dy)w) + isin(ip(di)w) ) (U + V)

expd, ( g ) = ¥ K (o(d))w) ( g )

xedi(yl] 4 V) = (U V)eP"IK (—p(d))w) ( :”' ) .

i)
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Ceci a lieu en particulier pour d; = ad W, avec Wp € g;. D'on

(my (exp ull - expoV)E) (exp Wy)
- A;‘U?((:xp ull - expoV)E(exp(—ull — vV)exp W)

= A;l] 2(expull - expoV)E (cx]) Wi - exp [(U V)e#lad W)

K (p(ad Wy )w) ( :': )D

A,:l] Xg(t:};p ull - exp oV )E(exp Wy)
= E(exp W)
puisque m; est unitaire. D’on
mi(expull - expoV) = m (l:xli(‘u.(f 4 ’HV)) =1 Yu,v

el
Py (exp(ull + V) = my ((U V)e ? I (p(dh )w) ( . )) =,

Finalement.
7p, (exp ull exp vV )E(exp 13 X3 - exp o X exp W)
= A7 2(expull expoV)E(exp(—vV) exp(—ul) expraXs
expraXqexp W)
= ElexprsXs - [P XD exp(—wV )| expraXe
[expad=re XD expy (—ull)] - exp W)

= E(expryXs - expryXy - exp(—ull — vV ) exp Wy exp(rau + r3v)Y)

= gilrautrav)e (cxp r3 Xz exp rqoXg exp Wy exp [(H V)e~ead W)

K (p(ad W)w) ( :i: )])

= e (exp ra X3 exp re Xa exp Wh).

(xi) Dans le cas 7b) on a pour D = expdy - expsidy - exp(szad Xz) -
exp(s3 ad X3),
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exp do-exp spdypexp(sg ad Xo)-exp(sa ad X:;)ﬂ,

—= 7 ((‘!X])(—S:;X:‘])) ™ ((‘!X]](—Sg){g)) (“"]‘ dy-exp sy dy jIT) . 71'((-3)([) -5'2)(2) .

m(expsa3Xs).

Dongc (X %-exp sidi-exp(sa ad Xa)-explss ad Xa) ) gt (expdo-expsidiq) gonf unitaire-
ment équivalents, avec dy € Kerp N Kera N Ker 3.

De méme, dans le cas 7¢), (2P do-exp sy ad Xy-exp(sz ad Xa) explsa ad Xa)7) o, (oxp dogr)
sont. unitairement, équivalents.

(xii) Rappelons que @ = Rad Xy + Rad X3 + 0y, ad Xy € 0, ad X3 € 0.
Done dim(d/0,) = dim(2,/(9;),). D’autre part, dimg, < dimg. La
récurrence se fait sur dimg, g étant remplacé par g, et 9 par 9,. Une
base coexponentielle € a (0)), dans 0y, est également une base coexponen-
tielle & 9, dans 0. Si h; est une polarisation de Pukanszky pour £, dans g,
il en est. de méme de ) = by, £ et g. Si B est une base coexponentielle a

by dans gy,
B - {Xg, X:;} u !B]

est une base coexponentielle a b dans g. Remarquons pour terminer que
puisque g = g(0) +n, g — g (€1) +ny et 91(gy) € nNgy C ny, 0y désignant
le radical nilpotent de g,. Le raisonnement est analogue a celui du cas 5b).



Chapitre 4

Les espaces IS

4.1. D’apres 1.9. Topérateur w(f), m € G, est un opérateur 4 noyau
dont le noyau f; est défini sur G x G el vérifie une certaine propriété
de covariance. Vu notre action exponentielle, nous pouvons considérer le
noyau de (P7)(f) = n(f?), cest-d-dire nous pouvons regarder la fonc-
tion noyau comme une fonction de D. Cependant, puisque Pz et 7 sont
unitairement équivalents si D € D, la fonction noyau sera seulement, con-
sidérée comme une fonction sur D /D . Etant donné la base coexponentielle
¢ = {dy,...,d, } a v, dans 0 construite en 3. par récurrence, tout ¢lément
de D /D, sera identifié & un élément de R™ par

(exp sndy,) - ...(exp sads) - (exp s1dy) - Dx = (81, -0y S0 )-

Au chapitre 3 nous avons construit pour £ € g* une polarisation de Pukan-
szky b ainsi quune base coexponentielle a h dans g particulieres. Dans la
suite nous supposerons ces bases fixées une fois pour toutes. Nous poserons
i imlﬁ xe et k = dim(g/h). Nous pourrons alors introduire 'espace
de fonctions ES(N,R",G/H x G/, ¥€), fonctions qui seront noyaux des
opérateurs Pr(f), ot D € ®/D, = R". Grace a la base coexponentielle
fixe, cet espace pourra étre identifié & un espace ES(N,R™ R* x R¥). La
lettre N indique que, pour des raisons techniques, nous devrons introduire
N parametres supplémentaires. La lettre & dans ES suggere qu'il s’agit
d’un analogue des fonctions de Schwartz et la lettre E indique qu'il faut
exiger une décroissance exponentielle dans certaines directions.

Dans ([Lud.]), Ludwig introduit les espaces [2S dans un contexte légerement
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différent. Contrairement & Ludwig nous n’avons pas besoin d’introduire des
transformations de Fourier partielles dans la définition de FS. Cela est
di & la forme particuliere g = g(£) + n de notre algébre de Lie. En effet,
grace a cette forme particulicre les noyaux considérés seront des fonctions
de Schwartz dans les directions correspondant & G/H. Chez Ludwig par
contre, les noyaux ne dépendent pas de Paction. Cela provient du fait que
son algebre de dérivations extéricures vérifie 9*(¢) = 0. Elle est done con-
tenue dans 0;. Dans ([Lep. Lud.]) on travaille avec un espace de fonctions
légerement différent.
4.2. Deéfinition : L'espace ES(N,R",R* x R*) est I'ensemble des ap-
plications C™ de RY x R" x R* x R* (lam C telles que quels que soient,
a=(a1,...,0n), S = (S1,.y8u), T'= (1, ..., 0) et T = [
(1) ||p“"'pff| ) P75, T, T = 0 .d.., 8‘, 'r’) )
Yoz’ 08’ a1’ OT"
F(z; S; T; 'f")lrﬂ:i: dS dT dT" < 400

pour tout P, ot (o, S) = a;s; + ... + a8, et ol P désigne une expression
polynomiale en les variables &, S, 7', 7" et leurs dérivées partielles. On munit
Pespace ES(N,R" R* x R¥) de la topologie engendrée par les semi-normes
Fla,p-

4.3. La condition (1) est équivalente & chacune des conditions suivantes :
a d o0 0
|(n,.5)[ ‘q T Tf
2) /I & ( i 3:'{')9"(‘)1"(’)?")
F(z; 8; T; T'")dz dSdT dT" < +

Vo= (ay,...,0,) € R*, VP,

o ad 0 0
L (f'r } ») ;‘7' I .F C o
®) :";I"]T’l P(% 8, T\ 5 56 37 577)

% §; T T’)' < +o00
Va = (ay,...,a,) € R",VP.

Ces expressions forment également une famille de semi-normes pour la

topologie de ES(N,R", R* x R*).

a o a0
|(n ‘:)| ; (’! ] !, Pl ()
) ,,2'“1’7':’ P 8,17 9% 35" FT 7T)

F(3 $,T;T")| < +oo
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Ya = (oy,...,a,) € R",VP.

(5) L’application

3 . Yy 1
(J-,S],...,Su, f‘!)"')tkl ']1'-')11-)
TR i) (7 TR - O % e ty)

est, une fonction de Schwartz pour tout (aq, ..., a,) € R™.

Remarquons simplement, que I'équivalence de (1) et (2) resp. de (3) et (4),
est obtenue en divisant le domaine d’intégration en deux domaines, & savoir
celui ol @181 + ...+ ansn > 0 et celui ot aysy + ... +ays, < 0. L’équivalence
de (1) et (3) découle des propriétés des fonctions de Schwartz.

4.4. Rappelons la construction de la base coexponentielle a hy dans g. Les
veeteurs de cette base B sont obtenus dans les cas 5b), 7b) et 7¢). Apres
changement de notations on trouve alors une suite de sous-algebres g = g, D
gp_1 D . D @ D bh. Sidim(gi/gi—1) = 1, {Ci} est une base coexponentielle
A gi—1 dans gi, out C; est P'élément X obtenu dans le cas Hb). Les éléments
de G; = exp g; s'éerivent alors sous la forme (exp £;C5) - gi—1 00 gi—1 € Gia.
Si dim(gi/gi—1) = 2, {C!,C"} est une base coexponentielle & g;—y dans g;,
ot C! et CY sont les éléments Xy, X3 obtenus dans les cas 7h) et 7c). Les
éléments de G; s'éerivent alors exp(t:C! + t7Cl') - gi—y avec gi1 € Gi.
Posons Ti = (&), resp. Ty = (4, t7) et gi(T:) = exptiCi, vesp. gi(13) =
exp(t.C! -+ 1/CY). Les éléments de G s’¢erivent done

f)";.(Tp) . !};;—1('}1;»—] )yl (111 ) . h‘

avec h € H = expl).

4.5. Définition : L'espace ES(N,R",G/H x G/H,{) est I'ensemble des
fonctions C® de RN xR" x Gx G dans C, vérifiant la propriété de covariance

F(@; a1, an;9-hig' - 1) = eHbmh) =6 P g g3 )
quels que soient h, h' € H et telles que la fonction

(T, cons @iny Sy 55T Ty o Tp)
s ettt (g s Gp(Sp)--01(S1); 9 (1) 01 (T ),

1

soit une fonction de Schwartz sur RY x R™ x R¥ x R¥ (si Sy,..., 5, se
composent de k coordonnées) quels que soient aq, ...,an € R.
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On peut identifier les espaces ES(N,R",G/H x G/H, ) et ES(N,R™, Rk x
R¥) en posant, pour tout Iy € ES(N,R",R* x R¥),

I(T; D; g, (Sp)---g1 (Sh) - I g,,(']},)...q] (1) - 1)

_pitenny C_J(r-',u.h')pl(:;;; D S ooy Sy Ty o e )

De plus, 'espace ES(N,R",G/H x G/H,£) sera muni de la topologie de
ES(N,R", R* x R¥).

4.6. Soit R € g un élément tel que (R) # 0 pour toute racine ¢ non nulle
pour P'action de ad g. Alors R est un élément générique et go defini par

go={W e€g|Im:(adR)™(W) =0}

est une sous-algthre nilpotente de g telle que g = go + n ([Dix. 2], 1.9.9).
Dans la suite go désignera une sous-algebre nilpotente quelconque de g telle
que g = go -+ n.

4.7. Soit, (Cy, ..., Cy) une base de Jordan-Holder de n ([Lep. Lud.], p. 2) et
soit (B, ..., By) une base coexponentielle a n dans g choisie dans gg (toule
base supplémentaire a n choisie dans go convient). On obtient une base de
Malcev de g par réunion de ces deux bases et la mesure de Haar de g coimeide
alors avee la mesure de Lebesgue pour les fonctions [ définies comme dans
la suite ([Lep. Lud.], p. 9). Nous appellerons bases n-spéciales les bases
construites de cette maniere ([Lep. Lud.], p. 72). Pour toute fonction [ sur
RN x G, définissons la fonction f sur RN x R™™ par

f(.'i:; 81, eery Seytay ey b ) = (&, X 82 By...exp 51 By - exp by Con...exp t1CY).

4.8. Définition : L'espace ES(N, ) est 'ensemble des fonctions [ définies
sur RN x G telles que les foncetions f correspondantes soient des applications
C* de RN x R™ dans C vérifiant

d 0

e Ao S) | o ‘SI T
(1) Ulloe = [P (255,75 2, o, =) (@i 5:)
dxdSdT < +oo

Ya = (ai,...,ar) € R",VP,

ot S = (81,..0,8.), T'= (t1, ..., ;) et P désigne une expression polynomiale
en les wumb]u 7,8, T et leurs dérivées partielles. On munit ES(N, G) de
la topologie en;_,cn(h ée par les semi-normes || f||a,p-
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4.9. Remarques : (i) D’aprés ([Lep. Lud.], p. 73), la définition précédente
est indépendante de I’algebre nilpotente gq et de la base n-spéciale choisies.
(ii) Dans ([Lep. Lud.], p. 72) on fait une construction analogue pour une
base coexponentielle & une sous-algebre p de g donnée.

(iii) La condition (1) est équivalente & chacune des conditions suivantes :

(e, S)| ) "o, 8 d T, 7] 7449 BT
2) f |P(z; 5,7 ==, ,)S,m)f(q,s 1)|dz dS dT < +oo

Va = (ay,...,a,) € R",VP.

0 0
3 sup et S P(a: S, T; —
@ sl P ST g 5

)f('r,b T)| < -

Ya = (ay,...,a,) € R",VP.

. a0
"-1 ST __J{”)‘SHP q B - i l oy
(4) ;}}},}\‘” (78T BT )f(q, g, 1)| oo
Va = (nll 3oy ”'7') € Rr,VJ“.

(5) L’application

(:}_:;'qlv-":'qr‘:f'la m) '_>P”I“1_l ishees f(rf}""lj- -181'?f'la'-':'(ru)

est une fonction de Schwartz V(ay, ..., a,) € R".
(iv) Afin de simplifier les notations on identifiera f et f dans la suite.

4.10. Revenons aux notations du chapitre 3. Dans les (h[l'ére:lt;s cas a con-
sidérer dans la récurrence, on choisira les bases de maniére plus particuliere
et on modifiera légerement. la forme de f, resp. I
(i) ler cas : Puisque g est abélien, le choix de la base est arbitraire.
(ii) 2me cas : Comme a C n et que a est un idéal, on peut choisir les pre-
miers vecteurs de base de n dans a et les suivants dans un supplémentaire
a a dans n
(iii) 3me cas : Puisque Y est central dans g, on prend C) =Y.
(iv) 4me cas : Puisque Y et Y3 sont centraux dans g, on prend €7 = Y; et
Ca=Ya.
(v) Hme cas :

a) Cas 5a) : Par minimalité de 'idéal RU 4 RY', on peut choisir ¢ =Y
et Cy = U.
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b) Cas 5b) : Puisque ad X est nilpotent, {X} est une base coexpo-
nentielle & g; N n dans n et on peut choisir ¢y} =Y, Cy = U, C,, = X.
Choisissons C4, ..., C,—1 dans Ker anKer [J'Ldgﬂll. Alors (C, ..., Cyp—1) est

un idéal. Montrons ensuite que si o'|adg¥ 0, on peut choisir go de manicre
A avoir 1' € go. Dans ce cas on pourra done prendre B, = T En effet sup-
posons que a1+ bX + W, avee Wy € gy soit un élément générique. Puisque
Paddition d’un élément nilpotent ne change pas le caractere générique,
al + Wa est également géndérique.  Alors néeessairement @ # 0, puisque
Wy, U] = 0, ¢’est-d-dire que Wy annule la racine a. D’ott, en remplagant
T par T+ L W,, on trouve un élément générique tel que [T+ LW, U] = U.
Dans la suite nous supposerons 1" générique tel que [7,U] = U. Alors

Tego={Weg|Im: (@dT)™(W) =0}

et on peut choisir B, = T'. Dans ce cas on peut modifier légerement lovdre
des vecteurs de base, ¢’est-a-dire [ € ES(N, G) si et seulement si la fonction

f(ff:, Sy oie Bty Nodny sy Bapstyit)
= f(@;exp AT exp puX exp Sp—1 Br—y...exp 51 By exp tm—1Cm—1-..exp 11 Cy)

vérifie les conditions équivalentes (1) a (5) de 4.8. et 4.9. On notera sim-
plement. f(z;exp AT exp X - w - exp il exptyY) avec

w = exp Sy_1Br_1...exp s1 Byexp ty—1Cp—i...exptzCz. En effet, il suffit de
remarcquer que

exp(—s1B1)... exp(—s,—1 Br—1) exp X exp 8,1 By—1...exp s1 B,
peut s'écrire sous la forme
(:XI][.IL}“l (Sl ey Sr—1 )(-"l + st fl"-Fm("'-"l: 203 S?'—l)(;m]

ott les F; sont des fonctions C'™ a croissance bornée exponentiellement, de
méme que leurs dérivées, par ([Lep. Lud.], p. 69). Donc

exp AT exp j1X exp S,y Byr_y...exp s) Brexpty, 1 G- exply )

—exp AT exp S,—1 By_j... exp s; By exp QX exp Quu_1Cp—1... €Xp Q¢4

ott les Q; sont. des fonctions €™, polynomiales en ty, ..., t,—1,/t €t & crois-
sance bornée exponentiellement en sy, ..., $,—1, de méme que leurs dérivées,



JHAPITRE 4. LES ESPACES ES 67

par la formule de Campbell-Baker-Hausdorff qui est. polynomiale pour ’al-
gebre nilpotente n. Réciprogquement,

exp AT exp 8,1 By_y...exp sy By exp pX exp i, 1Cpuy..exp by O
—exp AT [exp 5,1 By—1... exp s1 By exp X exp(—s1B)
v €XP(—=8y_1Br_1)] r exp 81 By_1...exp 51 By explpy_1Cpi_y-.. exp 11 G
—exp AT expQ,, X expQ.,_1Cm_i...exp QC) exp s, 1 By_y...exp sy By
« exXp lin—1Cm—1---exp Gy
—exp N exp Q' X exp s,y By _j...exp s Byexp QL _Cp_y...exp QY C,

T

ot Q! sont des fonctions C™, polynomiales en j¢, a croissance bornée expo-
nentiellement en 8y, ..., $p—1, de méme que leurs dérivées, par ([Lep. Lud.],
p. 69). De méme, les QY sont des fonctions C, polynomiales en ty,..., 4,1,
ju, A croissance bornée exponentiellement en sy, ..., 5,3, de méme que leurs
dérivées. In effet, on fait un raisonnement analogue a celni eflectué précé-
demment en on utilise le fait que (Cy, ..., C,,—1) est un idéal. D’on la con-

clusion. Lorsque | = 0, le facteur exp AT manque dans les expressions

adp

précédentes. 11 est important. de remarquer que dans ces raisonnements, les
coefficients de By, ..., By—y,T restent inchangés. Remarquons aussi qu’avec
le nouvel ordre des vecteurs de base, on a toujours une base de Malcev,
done que la mesure de Haar coincide avec la mesure de Lebesgue.

(vi) 6me cas : Ceci est un cas particulier du dme cas.

(vii) 7me cas :

a) Cas Ta) : Puisque U, V)Y sont centraux, on peut choisir ¢} = Y

=V, C3=U.

b) Cas 7b) : La base de Jordan-Holder dans n peut étre choisie de
maniere a ce que G} =Y, Cr =V, Cy = U, Cpy = Xa, O = X3. En
effet, goNn est un idéal dans n, X2, X3| € nNgy et n = RX,BRX; @ (gaMNn).
De plus, [ € ES(N,G) si et seulement si la fonction

_f(:’i:,.&-’;,...,s,._;‘/\; b1y ooy b1, 1)
f(z;exp AT exp X exp s,—1 By_q...exp s; By exp b0 Cnia
eexpliCh)
vérifie les conditions équivalentes (1) a (5) de 4.6. el 4.T.
En effet,
HXI]U-m-—IC'.m—I + f'm(;m) exp 1?:1—2(:111—2--- exp f'J C“l
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— Al ol aeouel ™y, 5 ! v o
= expl! Cnexpt,._1Cn-16xpiy_oCn—a...expt;Cy,

les ¢/ étant, des fonctions polynomiales des t; et réciproquement, par nilpo-
tence. Par un raisonnement analogue a celui effectué dans le cas 5b), on
montre qu'on peut faire passer le facteur exp(t,—1Chi—1 + £, Cy,) en téte
de la décomposition. On notera simplement, aprés changement du nom de
certaines coordonndes,

f(@, exp(taXy + 13 Xs) - w - expull expoV expyY)

avee w = exp s, By.... exp sy By exp ty—2Chn—2...expt4Cy. De plus, la mesure
de Haar coicide toujours avee la mesure de Lebesgue pour les coordonnées
“mitigées” considérées.

¢) Cas 7c¢) : Comme dans le cas 7b), la base de Jordan-Holder de n est
choisie telle que €y =Y, Co =V, C3 = U, Cpmy = Xg, Ch = X3. Comme
dans le cas 5b) on remarque qu’on peut choisir Xy € go (X générique) tel

que
v (U (1 —w U
ad X, ( vi=le 1 v

Done on peut poser B, = X;. Un raisonnement analogue a celui du cas 7b)
montre alors qu'il suffit de considérer les expressions de la forme

[(@; exp by Xy exp(ta Xz + t3X3) - w - expull - expvV -expyY’)

avec w = expSp_1 Byr_1...exp s By - explyu_oC—2...exp 14C4, la décrois-
sance exponentielle étant exigée pour les coordonnées £y, 8y,...,5,-1- De
plus, la mesure de Haar coincide tonjours avec la mesure de Lebesgne pour
les coordonnées “mitigées” considérées.



Chapitre 5

Les fonctions de
ES(N,R" G/H x G/H,{) comme
noyaux

5.1 Dans ce chapitre nous démontrerons que les fonctions de
ES(N,R",G/H x G /H,f) peuvent. étre considérées comme noyanx d’opé-
rateurs Pr(f). Comme précédemment, nous supposerons g = g(€) +n expo-
nentiel, £ € g* et G = exp g groupe de Lie exponentiel connexe, simplement,
connexe associ¢. De plus, nous supposerons que © = exp 0 agit exponen-
tiellement sur GG. Nos démonstrations s’inspireront de celles de Ludwig.
Les différences avec le cas étudié par Ludwig ([Lud.]) ont déja été soulevées
en 4.1. La démonstration du théoréme étudié est tres technique. Elle se
base sur les différents cas de récurrence étudiés précédemment et utilise de
facon primordiale le théoreme d’inversion de Fourier. Soient £ € g*, b la
polarisation de Pukanszky pour £ dans g construite en 3., H = exph et
= indj;'. Xe- Nous identifierons D /D, a R" grace a une base coexponen-
tielle {d,,...,d,} & 2 dans ® construite comme en 3. Nous supposerons
cette base coexponentielle fixée une fois pour toutes.

4 . . G . » . -
5.2. Soit m = ind}; x¢ et soit H, Uespace de représentation de . Pour
tout I € ES(N,R",G/H x G/H,{), notons Ap(z, D) 'opérateur sur Hs
admettant F(z; D;.;.) comme noyau, a savoir 'opérateur défini par

(Ar(z, D)§)(9) = _/;_m F(z;D; 9;9")6(9")dg" V€ € Ha.

69
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Vu les propriétés de covariance de F' et de €, cette intégrale sur G/H a un
sens et fournit bien un élément de H,.

5.3. Théoréme : Soit £ € g*. Alors il existe une polarisation de Pukan-
szky b pour £ dans g, une base coexponentielle & h dans g et une base
coexponentielle a 0, dans 0 telles que /1 =exph et 7 - in(lﬁ. ¢ vérifient :
Pour tout ' € ES(N,R™,G/H x G/H,¥) il existe [ € FS(N,G) tel que
(i) Px(f) a pour noyau F, c’est-a-dire

(Pr(f(z.-)E)(g) (Ap(z, D)E)(9)
- /( I F(z; D; g;9")&(9") g’

quels que soient & € RV, £ € Hy, D € D/D, = R" et presque tout g € G.
(ii) Si F'(z0;.;.;.) = 0 pour un certain &y € RV, alors f(zo;.) = 0.

(iii) Si, pour une certaine fonction ¢ sur RV, q- F' € ES(N,R",G/H x
G/H,0), alors q- [ € ES(N,G).

Démonstration : La récurrence se fait, sur dim g+ dim(0/05). Le début de la
récurrence est obtenu pour dimg -+ dim(9/0;) = 1, ¢’est-a-dire pour g = R
et 9/, = 0. 1l g’agit. d'une situation particuliere du ler cas étudié dans la
suite. Nous traiterons assez rapidement les raisonnements analogues a ceux

de Ludwig ([Lud.]).

5.4. Etude du ler cas : Puisque g est abélien, on peut supposer g = R™
et 0 = {0}. On a ES(N,R",G/H x G/H,f) = S(RY) et ES(N,G) =
S(RN x R™). La représentation 7 coincide avec le caractere xg, c’est-a-dire
7(f) peut étre identifi¢ a la transformée de Fourier en —£. Soit I € S(RM).
Choisissons v € C=(R™) tel que 9(—£) = 1, la transformée de Fourier d'une
fonction f € L'(R™) étant définie par f(€) = [ f(x)e!™Odx pour 2:, € € R™.
Posons f(7;2) = F(z)v(x). Alors [ € S(RY x R™) et ?T(f('?‘, )) = I'(7)

multiplication par (x)). 1l n’y a pas d’action a considérer dans ce cas.
: 1

5.5. Etude du 2me cas : Puisque G/H = G/H, que /o, = 9/0z,
que (£,a) = 0 et que a C b, les espaces ES(N,R",G/H x G/H,¢) et
ES(N,R”,(:'/]‘-I ¥ f‘/ﬁlg) peuvent étre identifiés, de méme que les es-
paces H, et Hz. Soit FF € ES(N,R",G/H x G/H,¢). Par hypothese

de récurrence il existe g € ES(N, ) tel que

D (g(&,.))E ()
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f_ _F(z; D;a; ﬁ")é('ﬁ.’)dﬁ’

G/

= / F(a; Dy’ )éE(u')da .
Jeyn

Soit A = expaet soit k € C*(A) tel que [, k(x)dx = 1. La base de Jordan-
Holder de n est choisie de maniere a ce que C,...,Cs € aet Coyq,...,Cp, €
n\a. Définissons f € INS(N, ) par

(T expt,By...exp by By exp 8§, Chyo.. €XP 8541 Cs41 - €xp 505
..exps;Ch)
= g(T;explyBr...exp ity By exp 8, Cr... €xp 5s41Csq1) - k(exp s.Cs

..exps;C)).

Alors Pr(f(z,.)) = P#(g(z,.) et Pr(f(z,.)) a pour noyau F'(z; D;.;.).

5.6. Etude du 3me cas : Posons D = expid, - expdy = expitdy - Dy et
notons les éléments de G par g = w - exprY. On montre que

| "7 (/@ ))€] (exp X)
= Ff e e ./(-'/ exp RY /[rt f("_: (exp ¥ T“)

cexprY)m(Po I w)-e” " 'ﬁ(exp X)dr du.
Rappelons que dans la base coexponentielle a 0, dans 0, d, = d;. Donc
D = expid, - Dy = exptd, - ex;m,,,_ﬂfn_l... exp ulrf, mod D,
avec )
Dy = expan_1d,_y...expayd;  modD.
Soit ' € ES(N,R",G/H x G/H,£) et définissons Fy € ES(N + 1,
R*-!,G/H x G/H,¥{) par

Fi(T,1; @1y ey Wt o3.) = 2W 27 RS T VR SO | A
pour t >0

Byl@, 6 Gys s Bietiny), =0
pour t < 0.
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Puisque
e’ F(Z; a1, ..., Gn-1,1;.;.) € ES(N,R",G/H x G/H,l) VB eR,
tPEy (Tt ayy ey @y ) € ES(N + 1,R™ G/H x G/H,f) VB €R.
Par hypothese de récurrence il existe g € ES(N + 1,G) tel que
| Pom (9,15 ))€] (exp X)
/ Iy (2, t; Dosexp X exp X)E(exp X')d(exp X7)

pour tout Dy € Dq. De plus, comme Fy(z,1;.;.;.) = 0 pour ¢t < 0, I'hy-
pothese de récurrence donne g(x,1;.) = 0 pour ¢ < 0. Définissons

N (T, texp X) = /g(:&:,i;ex]},\’ cexprY)e dr
et

+o0
f@expX) = / I ('?,r", exp(—udi) (expy X))rfu

S — o

too
= / i (:i:, g; expl=lu ‘“f'](t:x]) X)) . —ds
0 5

400 1

o0 S

puisque g, (x,s;.) = 0 pour s < 0. Les calculs montrent que

f(Z;w-exprY) = /r;.(: et expl=udi)y)eire™ iy

SO |
- / q (.’ff, 1, exp(lnstfl)_w)ﬁu-.u . Zds
JR S 3

et
[D ('r ) ](\p,\’)

- -1
=, f’“'”h _(_?-—f/’ // f!l('? fu. exp(t—u)dy, HJ')F'”P -—n'f ( n 1”)
G/expRY
E(exp X)dudrdi

" = 1 . Ly s
— etW dy | et / / [ alz,—; exp(t-+in |s|)d, L
JGfexpRY JR JR s
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ol s I
e ire ?T(’)l'l'ilf)ﬁ(eX])X) ; :d.ﬁfh'(hh

1 .
ettt [ e w)eep X) o
1 :
= %r)f" b D”ﬂ'(y(:’;’:, e'; .)){_—'(epr)
1

Eﬁ“"'“ /Fl(:::,(-‘; Dy; exp X exp X')é(exp X')d(exp X')

= /F(:i:; Do, t:exp X;exp X')é(exp X' )d(exp X')

= /F'(:'f':;D;upr;t_:xp/\”)ﬁ((-:xpX')rl(u)'(]) X0

Nous avons déja remarqué qu'on a bien Iy € ES(N + 1,R*1 G/H x
G/H, ). De plus, puisqu’il en est de meéme de la fonetion ¢# - Iy pour tout
A € R, on sait, par hypothise de récurrence, que t?.g9g € ES(N + 1,G),
donc t# - g, € ES(N + 1,G/expRY). Remarquons ensuite que la fonction
g2 définie par

g2 (T, s;w) = g1 (@, L exp(lnadilyy) . % pour s > 0
HQ("}:!'S;I“}) = () pour s S 0

est une fonction de ES(N + 1;G/expRY). Par conséquent, la fonction
f(@;w-exprY) est dans ES(N; G), comme transformée de Fourier partielle
de la fonction go. Pour les justifications détaillées, il faut se baser sur le fait
que

exp(lnsdi)(oxpt,B;) = {-:xp(!.,-l_s‘,; 1 Z%(lns)kd‘f(!.,l?i))
k!

= (-!X})(n"-ii“i w N,-_(S,'h))

avec N;(s,t;) € n, lindaire en ¢;, & croissance bornée exponentiellement en
|In 5|, de méme que ses dérivées. De plus

exp(lsd) (expy 1, B;) = exp tiB; - exp N!(s, 1)

avec N!(s,t;) € n, & croissance bornée exponentiellement en ¢; et |Ins
([Lep. Lud.], p. 69). Raisonnement comparable pour ®PUm<d) (exp ¢;C5). 1l
faut ensuite utiliser ([Lep. Lud.], p. 69) pour éerire les termes dans lordre

, par
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correct. On voit alors que les coordonnées qui nécessitent la présence d’une
exponenticlle dans la définition de S ne sont pas modifiées par exp(In sdy).
Puisque t?- gy € ES(N+1,G/expRY) pour tout # € R, on en déduit alors
que go € ES(N + 1;G/expRY). Ceci termine la récurrence dans le 3me
cas.

5.7. Etude du 4me cas : Posons a = RY; + RY; et A = expa =
expRY; - expRY,. Les éléments de G seront notés g = w - exp(r1Ys
roYs) = w - expriY: - expraYe et les éléments de © seront notés D =
exp tdy - expdy = expldy - Dy. Comme dans le 3me cas, d,, = d;. De plus
on a la méme décomposition de D dans une base coexponentielle & 9. Soit
F e ES(N,R",G/H x G/H,¥) et définissons I € ES(N+1,R*, G/H x
G/H,¥f) par

Fi(Z,4;a1, ey Qa1 5 .) = (2m)2 -t~ N TE; @y -y Qg1 DTS 55
pour & >0

Fi(@,t a1, .y nii-) = 0
pour t < 0.

Comme dans le 3me cas,
PR (T, L a1,y Gy -) € BS(N+1,R" G/H x G/H, ) VB ER.
On montre que
D T oxny X)) = Ardy —2L / / :—:;cxptrh,
[ ?T(f(f, )){](t\]) ) = ¢ .(:M.sz(: w

it <ﬂ.K(t“')( s ) >(f(

Par hypothése de réeurrence on trouve g € ES(N + 1,G) tel que 'opérateur
Dog (g(z,¢; )) ait pour noyau Iy (2, ¢; Do; -;.) pour tout Do et tout t. La
définition de gy et f est légerement différente :

cexp(s1Y1 + .ﬁ'-;_}’fg)) - Dogr(w)e exp X )dsdsqdu.
g :R""! xGxa*—C

g (@, texp X; YY) :/ ."f(."i:,i;ex])Xi‘—Xli(lel —I—jfjg)’g))(-"(""-':'l"H-?sz-z)
A
day .
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En particulier, g (Z,%;.;.) = 0 pour £ <0 et

g (Tt exp X -exp(r Y + raY2); YY)
Y mYidnYa) g (7 1 exp X; Y*).

On définit
2m foo
f(Z;expX) = / / r,r| 7, ey *P-ud) (exp X); K (1) (€], ))(Eu dr
2w Joo
/ / i :i:, g; @P(=Insd) (o X); K(?')(F.’[“)) —ds dr
JO S0 5
= \ 1
= [ / N (:‘::, gy xp(=Insd) ey X); K(r)(ﬂn))—d.&' dr
Joo JR S
puisque gy (2, ;.) = 0 pour s < 0. Les caleuls montrent. que
f(:i:; w-exp(rY) + }’2))
L |
2 il e " K (r—nw)(L n)'
= / [.‘71 (:i.',r‘.“; oxp(=udi)y), fﬁ’(?‘)(ﬂn))(‘( | ( " )>u'.'u. dr
Jo o JR
el
[ P (f (.)€ (exp X)

- le oy .{’—Ai‘/ f /h‘ / 0 7, ¥ m:]:(f u)rilm K (T) I))
G/AJR?
) N e G

E(exp X)du dr dsydsydii

iy —zr[ / / L exp(ttin llall)d,,
“ JosaJre Jenioon? |al|’

"]
K(—In||a||w) - Tall ( :l )) < TR (— ru)f’( & ))
=<( : )( - )> . Pog(w)€(exp X) -

e ‘N az —daydasdsydsqdiv

1K II"

en effectuant le changement de parametres

e~ K (1 — uw)(0]) = ¢ K (1 — ww) (6 Y + 6Y5) = ( :; )
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et & condition de supposer que £ + €3 = 1.
Done

[” (f(@5))€] (exp X)
= ( )A{ B g f(,-;;. g ('I_, el w; K (tw) - e - F—"!\"(—!.w)(ﬂn))
Doz (w)€(exp X) - e diiv

par le théortine d’inversion de Fourier

— J- 2 tir e, = A ) ' .
- &) /m /A-‘" (7,50 - exp(nYi + paY2))

e it gan Vit Ya) Doge ()€ (exp X )dyy dygdii

- (2]7r) gty Do (g(:?:, et _))g(exp X)

— (l ) gt trd) /F(: e's Do; exp X;exp X')€(exp X "Yd(exp X')

:)T_

= /If @ Do, b exp X exp X)E(exp X )d(exp X')

] F(a; D;exp X;exp X)é(exp X')d(exp X').

Comme dans le 3me cas, t°I, € ES(N + LR G/H x G/H,{), donc
th.ge ES(N+1,G). Alorst#-g; € ES(N+1,G/A,a*) comme transformée
de Fourier particlle de £ - g. De plus, en effectuant dans 'expression de [ le
méme changement de variables que celui utilisé dans le caleul de :rr(f('r ))
on peut écrire

k7 ('T, weexp(r Yy + 1‘2}’2))
| a
= cexp(bo|fel|d), w; '—I( In lla U:.') ( 1 ))
Jevioon? ( all’ "] (=Inlal az
{0 )

: T r dayday

c’est-a-dire f (T, w-exp(r Yy + ?'3}’;)) est la transformée de Fourier partielle
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r . .
en 11 de la fonction
T9

= exp(in |||ty )q . 4 0
i (:z:,n}ln; xp(in [lalldi)y,), meh(— In ||a||w) ( G ))

g2(7; a1, az;w) = e Dour [l # 0
0 pour ||al| = 0.

Vu les propriétés de gy, on peut montrer par un raisonnement analogue a
celui du 3me cas que g2 € ES(N +2,G/A). Par conséquent [ € ES(N,G).

5.8. Etude du cas 5a) : Posons DD = expldy - exp dy = expldy - Dy et
notons les éléments de G par g = w-expul/ -expyY . Posons a = RU +RY
et A= expa=exp(RU/ +RY) = expRU - expRY. On montre que

D v £ -
[ :rr(j (4% )){] (exp X)
ehirdz / f(@&, Pty - expul - expyY) Doge (w)
Jaja JR?
ceTWe E (exp X )du dy da.
Rappelons que dans la base coexponentielle a 9, dans 0, d,, = dy. Donc

D = exptdy - Dy = expidy - exp n.“_uf.,,_hl... exp rmf, mod D,

avec
Dy = exp gy _ydp_y...expard;  modDy.

Soit ' € ES(N,R",G/H x G/H,f) et définissons I € ES(N + 1,
R"!',G/H x G/H,{) par

Fi(@, ;a1 ..., o3 5.) = 27 - &= PP (B Gy sy gy B 55+ )
Par hypothése de récurrence il existe g € ES(N + 1, G) tel que
[ Pom (9@, 15.))€] (exp X)
= / Fy (&, 15 Do; exp X; exp X')€(exp X"d(exp X').

Ddéfinissons

a1 (Z, 4, w) = /;, g(@, t;w-exprl) - exp r'Y)e™ " dr dr'.
5
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On a
g (z, Lw - expull expyY) = g (z,1;w)

hn (:'z:, £, (=542 (4 . oxp ull exp ;.;.'Y)) — e . e~y (T, 1; P )y).

Soit alors @ € C®(R) € S(R) tel que a(—1) = 1 et posons, dans la base
fixe de g,

f(a;wexpull expyY) = /yl(:if:,.s; exp(=sd2)y ) e (s - a(y).
i décomposant
expidayy — qp, - expu) - expyY

dans la base en guestion on trouve

[Px (.)€ X)
etirds /GM I f(@;w, - exp(u+ u)U exp(y +y)Y) D“?‘:’(’I‘H)

cem e (exp X )du dy dio

¢
r.:”‘""'*/ / /.‘II(.’?:,.‘."; “""“_“')'i'*'ur)r’_‘-'" . g (g
JGIA SR JR

aly +y) Por(w) - e - e (exp X)du dy diiv
o - 1 ;
= etYrhg(—1). — / 01 (T, 4 w) Do (w)€(exp X)daio
2w JG/A
(théoreme d'inversion de Fourier)

— . .

= etuh. o D“;’r(g(:r:,t; .))_E(uxp)\)
1 .

o / Fy (@, 4; Do; exp X;exp X' )é(exp X')d(exp X')
.

= / F(&; Do, t; exp X; exp X' )E(exp X")d(exp X7)

€f. trlg X

= / F(a; D; exp X; exp X')€(exp X )d(exp X').

Vu les propriétés de I, on a bien e/ - Iy € ES(N A 1,R*),G/H x G/H, )
pour tout p € R. Par hypothese de récurrence, et . g € ES(N + 1,G).
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Donc et - g1 € ES(N + 1,G/A) pour tout p € R. La fonction g définie
par
92(&, s, y;w) = g1 (@, 5, P Bw) - aly)

est une fonction de LS(N + 2,G/A). Done [ € ES(N,G) par transformée
de Fourier partielle de go. En effet, un raisonnement, analogue a celui fait
dans le 3me cas permet de décomposer exp(—sd2)gy lans la base utilisée,
les coordonnées le long des vectewrs de base B; étant inchangées, les co-
ordonnées le long des vecteurs de base O étant, des fonetions a croissance
exponentielle en s el en les coordonnées le long des B;, a croissance poly-
nomiale en les coordonmées de w le long des C;. On utilise alors le fait que
ePs . g\(Z,s;.) € ES(N + 1,G/A).

5.9. Etude du cas 5b) : a) Soient A, A et Ay les homomorphismes de G
dans RY intervenant dans la définition des mesures semi-invariantes (voir
1.6.) et vérifiant

—A-A

A
A(n) = A(n) = Ay(n) pour tout n € N.

Posons
e e aG o A i aG o aG G
7 = ind$; xe, m = indjj xe, 7 = indg, m = indg, (indg' Xe)-
D’aprés (1.6.), m et @ sont unitairement équivalents grace a

vyi:Hey — Hsz
£ «— £

ol

E(9)(g1) = Ai(9)'*&(g g1)  pour presque tous les g € G
g € Gy.

b) Puisque D = Dy-expaad X, D = Dymod D, et il suffit de travailler
avec Dy. De plus, v est également une équivalence unitaire entre Dogr et
Doz clest-a-dire

D”ﬁ oy =1y o D“‘,’T
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et, pour «f = ik,
(Por(2)€) (9) (1)
(Poqt(z) 0 1€)(9) (o)
= (1 o P'n(2)€)(9) (o)
= A (g)' (P ()) (9 91)-
Posons alors mp, = in(lg‘( Poz.). Les représentations
tairement équivalentes grace a

vyt H)'Ju.‘, H?Tn“

Doz et 7 p, sont uni-

avec 1
- aldy) /260 D
(1€)(9)(g1) = €™ “W2E( D0 g) (1)
pour presque tous les g € G, g1 € Gy.

¢) Etudions d’abord le cas (_1"

| £ 0. Il existe 7' € go (sous-algehre
ad g &
nilpotente) tel que [1',U] = U. L’étude de la mesure semi-invariante sur
G /G, montre que A(exptT -expaX -w-expull -exp yY) = e ". On vérifie
que

[TI'Du (f(T, ))E] (exp sX)
- ff('f’“xl”'T cexpaX - w - expull - expyY) Pomy (exptT -

exp(—tT1")
exp(—sX) exptT exp(e'sX)] - [exp(—e's + 2)X - w-expul) - expyY
exp(e's — :;:)A'])g((axll((:t.s — ) X)e'2dt da daiv du dy

= /f('l_, exp tT - exp(ets — p) X - exp pX - w-expull - expyY
: exp(—u)«’)) Doz (exp T - lexp(—tT) exp(—sX)exptT

-exp(etsX)] - [w-expull - exp y}’])é(exp;eX)e""’?rH dp dair du dy

en posant pr = e's —x. En multipliant les ¢léments de Gy a gauche par
exp(—etsX) exp(—tT) exp sX exp tT" on trouve

['J‘T,r)(, (f(:'r:, ))E] (exp sX)

= /f(:'r:, exp T - explets — 1) X exp X exp(—e'sX) exp(—tT) exp s X
exptT - w - expull expyY (:xp(—;f,X)) Pogy (exptT - wexpull expyY)
E(exp X ) et 2dt djudiir du dy.
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Grace a la définition
QN pt,8) = exp(—puX) exp(—=AT") exp sX exp AT exp(jt — e*s)X € GaNN

pour A\ i, s € R
on trouve
[?Tpu (f (&, ))ﬂ (exp sX)
- /f(:?:,v.x]) 1T explets — )X - Qt, —pu + e's, 5) - P Xqy.
exp ull expyY) Pomy (exp T - w)e™ Ve E (exp X Ye'l?
dt dyu deir duddy.

Rappelons que 2/, = 04/(00) 5 et écrivons

D = (:X]m,?,r?,,_... exp r:.,rf| mod D,
= 1y mod®, = mod(Dg)x-

Soit ' € ES(N,R",G/H x G/H,€) et définissons Iy, € ES(N + 2,
R",G1/H x Gy/H, ) avec £; = ﬁl par
o
Fi(a, s, p6; Dosw, w')
= 2re™ ) [ (; Dy; nf'l(uxps/\’) -, Dy’ (exp puX) - w').

Par hypothése de récurrence, il existe g € ES(N + 2, Gy) tel que

(P (a2, .1)6s] )

/ Py (@, 8, 03 Do w; w') €y (w') dai!

G /H

pour tout & € H,,. Définissons g, par

q1(Z, s, pr; w) = [_r,-(:'r:,s,;:.;'u:(-:xp uwll expyY e Ydudy.

Soit k € S(R) tel que k(—1) = 1. La fonction f € ES(N,G) est alors
définie par

f(@, exp AT exp X - w - expull expyY)

c_’Vz{/.y, (&, e (ju+ v),v;exp AT - [*P=vXIQ (N, pi, e~ (v + W) ™!

. "“"(“"‘Y)w:)r"""”’ff'u}ﬂ'.:(y).
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On pose Q(t,—p + e's,s) - (¥PHXw) = wr - expriUexprsY € Gy et on
vérifie que
[TI'DU( )E] exp s/\)
= f/ i q e t(els — p+v),v;exptT -
[('XI’(“1"¥}CQ(f.,fL’ g — )‘t,ﬁ_f(?} T f."-tS - }L))] . pr{-_vX)'”-’R)
Doz (exp 1T - w)e ™™ - e &(exp pu X )duv dt dju dais du

|

= o5 /{"”"(‘-_i“”_f}](:f:,.ﬁ‘,;t;(’,X])f.TICXP(_"“'\'}Q(t,CtS — 1, 8)]"
.

xXp(=1 X)) Pogey (exp 7" - w)€ (exp X )dt dpediv
(théoréme d’inversion de Fourier)
| Ty
= 5 / [r.”"r*""”"y(:‘;:, s, i exp T - w-exp(u— 1)U -
exp(y — 72 + 1) Y)e™™ Doy (exptT - w)€(exp pX)
dt dyu i du dy
1
= 2—/ /r;(:?: s, juexpt? - w - expull - expyY)e™™ Poxy (exptT - w)
E(exp pX )t dyu dais i dy
= = f D"?Tl r; T, 8, I .)){(t—:xl);aX)rﬂ;a.
Puisque Po "(expsX) € N et que A, ( Dy (CX])SX)) = 1 par conséquent,

e /22, ))e) (% (exp ) )
"2y 0 Pom(f(,.))€) (P (exp sX) ) (wn)
([rowo D"w(f(ffa ))]€) (exp sX) (wi)
([,,Qo 0z (f(; o,;l]g)(exps,\')(w,)

([7p0 (£ (@) 0 2 0 14 ]€) (exp 5 X) ()

= (w0, (J(@,)) (128) ) (exp 5X) (1n)

- Qﬂ/D“?ﬁ (y(-‘rl',s';t; -))(uzé)(uxl-;;ax),g;,,(w[)

- ./ / Fy (i, 8, 113 Do; wy; w') (1:€) (exp pX ) (w') dai' o
27 G /H
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& 3 = =
= ez L@, s Dogwn w)E( 70 (exp X)) ()
2w J JayH
i’ dpu
e(do)/2 | golda) // F(x; Dy; Dy’ (exp sX) - wy; Dy’ (exppX) - w')
J JeH
Dt - AYRY
f( o (exp pX) - w )dw dp
e(do)/2  por(do) // F(&; Do; .; D"_l(cx]m/\’) ')
J Jeyn
f( Dy i((-mp X)) - w')rl'u'r’ri;a( Dy’ (exp sX) - 'w,).
La relation précédente étant vraie pour presque tous les s, wy, on a
(Por (f(&,))€) (@)
et _// F(a; Dy; g, D5 (exp X)) - w')E( P20 (exp puX) - w'
- (5 Doy g3 20" (exp jiX) - w0’ )€( 20 (exp X)) - ')
i dju.
Remarquons que

Dy’ (exp pX) = exp(p g™ (e) X) mod Gy NN
= exp(pe® ™ X) - g, Do)

ou g(p, Dy) € GaNN C GyNN. In particulier
Av(y(je, Do) =1
quels que soient yt, Dy. D'olt
(Por(f(2,))€)(0)
g () [[ F(x; Do; g exp(pe™ X)) - g(p, Dy) - w')
J JeyH
exp(jee™ XY - g(je, Do) - w')diid dp
Pl gl /
: // F'(x; Dy; g; exp pX - g(e= "y, Do) - w')
J Jayn
E(exp pX - g(e™ ™0, Dy) - w')diidp
= // F(@; Dy; g; exp pX - w')é(exp pX - w')du'dp
J JaH

= / F(@; Do; g: 969" )i
Jan
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puisque A, (g(e‘”{"“)ﬂ.‘ UU)) = 1. Pour les justifications, remarquons que
Q(A, 11, 8) = exp(—pX) [exp(—AT") exp sX exp AT exp(p — e*s) X

est un élément de Gy NN dont les coordonnées dans toute base de Jordan-
Holder de n sont des fonctions €', & croissance bornée exponentiellement
en \, a croissance polynomiale en j et s, de méme que les dérivées de ces
coordonnées ([Lep. Lud.], p. 69). Il en est de méme des coordonnées de
[“""[F"‘Y)Q(/\,;L,r.’."’\('u F )] ™! et de leurs dérivées. D’autre part, I'étude
de ®P(=vX)y se fait de maniére analogue a Pétude de <*rU" =y dans le
troisitme cas. Notons alors que par hypothese ¢ € FS(N + 2,G), done

0 € E'S(N +2,G /[ exp(RU + RY)). Par conséquent la fonction
(@ exp AT exp pX - w - expol))

. exp(—uvX
— e, ( e+ o), vyexp AT [T VQ00 1,

e Mo »“-))] - “xh(_"'\')?u)

appartient & ES(N,G/expRY). On en déduit que f € ES(N,G).
b) Le cas (1'| o 0 est une version simplifiée de ce qui précede. Dans
e [I
ce cas, g1 = g2 est un idéal dans g et les éléments de G se décomposent en
expxX -w-expul/ -expyY. Pour tout f € ES(N,G), on trouve

[wpn (f('?, ))f] (exp sX)
= /f(:i:,t:x]) aX - w-expull -expyY) Pom (exp(x — )X -
‘ expul/ - expyY exp(s — 2) X)E(exp(s — ) X)da dib du dy
- /f(ff,ﬂxp(s — )X - XXy expull - expyY) Pomy(w) - e -
"€ (exp X )dyudid du dy.

La définition de Fy est analogue a celle du cas cr| ;é 0. Les fonctions g et

g1 sont obtenues comme précédemment. La fmlchml J est donnée par
[, exp X -w-expull -expyY)
- /ql(r 1+ v, 0; TP ) e dy - k(y).
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On montre que

1
2ir.

[70a(/)El(exp s X) = / Pory (g(&, 5,415 ) Eexp X )dpe

et on termine comme précédemment.
Pour faire les détails des justifications on peut dans les deux cas utiliser les
résultats (|Lep. Lud.], p. 69).

5.10. Etude du 6me cas : C'est un cas particulier des cas ba) et 5b).
5.11. Etude du cas 7a) : Posons

D = exprads - exprady - exp tydy - exp dy = exprads - exprads - Dy

avec D) € exp(Rd, + 0y) = Dy = expd; et notons les éléments de G par
g = w-expull - expoV -expyY. On montre que

D - -
[ :'T (f(:r:, ))E] (exp X)
= entrdz. gratrdy / J(x, expraduexnradyy, oxpul] exp oV expyY)
"J:‘Tr(m)r-—"-"'r‘""’”‘c""“”ﬁ((:xp X)duw dudu dy.

Rappelons que dans la base coexponentielle a0, dans 0, d,,_; = dy, d,, = dj.
Donc

D = expryds - expraody - exp ay_ody_o...expayd;  mod Dy,

— exprads - exprady - Dy mod Dy

Soit 1 € ES(N,R",G/H x G/H,f) et définissons Fy € ES(N + 2,
R"2 G/H x G/H,¥) par

Pl 40, ¥ Qiipess Bnse8) 370)

(27 )2e T2 Dg=ratrd [(Fe gy, oy Gz, Ta5 T8} 5 )
Par hypothése de réeurrence il existe g € ES(N + 2, G) tel que

[ D:'w(;;(:i:, re,13; ))E] (exp X)
= / Fy (%, 72,733 D exp X exp X )E(exp X')d(exp X7).
Ja/u
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Définissons

q1(T, S2,83;exp X) = [.‘I(.’I:, s9,83;exp X - expu'Uexpo'Vexpy'Y)

—1y’

du'dv'dy'.
On a
q1(, 82, s3;exp a X expull expoVexpyY) = e g, (z, s2, 53; exp X).

lhmp])oionq que la base de n est choisie telle que Oy, = Y, Chy =V,
o = U. Soit n € C*(R) € S(R) tel que a(—1) = 1. T’mnns

f(@;w - expull expoVexpyY)

. /{}'1(5:,52,33; (:xp(—s')ti;z)nxp(—:::drt],m)c—t.vz-u._ —1*31:{5“2(353 ”-(U)

Décomposons

exp 1'3{!;; exXpre rfz 1w

w' - expu’U -expo'Vo-expy'Y.
On trouve
[ D?r(f(:z_:, ))E] (exp X)

= gntrds, gnitrds, / f(@w' - exp(u -+ u')Uexp(v + ")V exp(y +y)Y)
l'3"”'fr('w).f:._‘-"*(:":""""nf?‘-"""”_E(uxp X)dw du do dy

e'? tredy e Ly / /.’fl T, 89, S3; exp(—sgdy) exp(—sady) exp rady exp 1'9(1;?”
. exp(—83ds) exp(—s3ds) (cx])(—'u."f_f) exp(—v'V) exp(—y'Y )))
('_"""‘"("“L"'?)P_f‘““("’4"*”)r!s;rl.s';; aly +y') D:':rr(m)
e Wt I E (exp X )duir du do dy

e’ trdy e’3 Lry / /!}[ (.’f-', S92, S3; exp(—sady) exp(—=sada) exp rady exp T'If!'}.,w)
=W L gt o= g dea aly + 1) Dbz (w)e ™

et eI E (exp X)di dudo dy
: - 142 ' ;
= a(-1)- gr2trdzgratrda (2—) [_r;;(:'r’:,'r-z,'r:;; w) Por (w)€ (exp X )dur
iy Q
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1 \2 4y
B ratrdy  _ratrds | D, = s i 4
= ¢ 2GR (—zﬁ) “?T(ﬂ(.’l.,?’g,?g‘.))E(CX])A)
1

ro trds . CT':; tr ey . (___

2
— ! - -t
. ) I (&, r2, 13; D exp X;exp X')
2n/ JayH

= €

E(exp X')d(exp X')
- /CN F(z&; D)y, 79, 735 exp X exp X' )E(exp X' )d(exp X
JGLH

= //H F(z; D;exp X;exp X')E(exp X' )d(exp X7).
Ja

Les justifications sont analogues a celles du cas ba).
5.12. Etude du cas 7b) : Il s’agit de Péquivalent complexe du cas

5b) on (1’| o 0. Rappelons que 07 = Kera NKerf, g1 = Kera 1 N
adg adg

Ker 3 o2 G, = expg;. Les ¢léments de G se décomposent
ad g

g = exproXo-exprs Xy modG
= (!X[)(?'Q;\lg EE ?'3)\’3) maod (1‘1

Les éléments de D s’éerivent. D = Dy - exp so ad Xy - exp sz ad X3 avee Dy €
D, = expd;. Done D = Dymod®D;, et il suffit de travailler avec Dy.
Comme en (5.9.) définissons

. G o A0 o i A . G i G
=ind$ xe, ™ =indy' xe, 7= indg, m = indg, (indg' xe)-
L’équivalence unitaire vy entre m et 7, respectivement Digp et D7, est
. 1G
obtenue comme dans le cas 5b). Posons 7p, = indg, (P'm). Alors les
représentations P17 et mp, sont unitairement équivalentes grace a

g Hf)lﬁ - H'—"T.f':,

avec

(1) (9) (1) = *DEP ) (gn).
Pour f € ES(N,G), évaluons
[TFD, (f(-’i" ))é] ((‘XI’(S'ZX:& + Saxs))
= [f(:i:,exp(tz/\'g + 13X3) - w - expull expvV expyY)
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[ﬁul (exp(taXy + 13X3) - w - expul expoV expy)")é]
(cxp(sz/\'g + .'43}(3))(3.".2(.{.*.3({11'1 du dudy
= /f(F exp(taXy + 13 Xs)wexp ull exp vV exp yYJE((:)(p(—yY)

e anenfis 3 (2)1(2))]
l{exll(—(xz X3) - (— ( :25 ) + ( zj ))) exp(—t2Xy — l3X3)

exp(saXy + s3X3 )] dtodtzeiir du dv dy

avec  exp|—(Xg Xg)| — 2 4 2 exp(—t, Xy — 13X
f.'; &3 ]

exp(se Xo + 53 X3) € Gy. Alors

[7"& (J(T}))E] (exp(s2 X2 + $3X3))

= /f(fl.',(‘.xp(-ﬁ;g/\’g + 53X3) - w - (—:X])(— (Xa Xg)(— ( ;i ) | ( :‘: )))

exp ull exp oV exp(y + (5o — to)u + (53 — t3)0)Y) Pimy(w - expull

expvV expyY)E ((‘5X])((X2 X:s)(_ ( :j ) + ( :j )))

dtodtsdi dudv dy
= f f(:f:,exp((xsa Xs) ( )) exp(—baXa — by Xa) PXI ),
53
exp ull expovV expyY) Pix, (w)e™ et bt b““)é(cxp(hg)\’g -+ :');;X;,))
dbydbciir du o dy

en effectuant le changement de variables

t2 ), by e by | t2 4 [ 2
ly bs e by ) Ly sz )
Rappelons que 2/0; = 0,/(01)# et écrivons

DD =exp (L”{I,;_...(!X]‘) u.l(z] mod D,
= I} mod D, = mod(D;),.
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Soit ' € ES(N,R",G/H x G/H,{) el définissons F; € IS(N + 4,
R", G /H x Gy /H, ) avec {, = fl par
o

Iy (%, 82, 83, ft2, pt3; Dy w,w')
= (2n)?e® N (5 Dy; Dl_l((‘,X])(.‘i'ng + 53 X3)) - w;
=1
Ps (exp(;ag)\'g + j13X3)) - 'm').

Par hypothese de récurrence il existe g € ES(N + 4, G) tel que
Yl !
[ Py (."!(31-', 52,53, f02, 1135 -))fl] (w)
= [ I (@, 52, 83, Juz, ja; Dy w; w')q (w' )i
Jey i
Définissons gy par

!/ ' = !
01(Z, @, T3, g, Ta; W) = /y(:a:, To, X3,45, Tg; wy exp ull expoV expyY)
e Vdudvody

pour w; € Gy quelconque. Soit k& € S(R) tel que k(—1) = 1. La fonction
f € ES(N,G) est, alors définie par

f(@, exp(taXe + t3X3) - w - expull expoV expyY)

E== (/ 1 (.-j_-’ ){2 -+ Ua, f-.'i E U3, Uy, U3; { exp(—13 Xy —v3X3) [(!X])(—(X-_g X:;)
!'2 * Ve r ?(2 R '“2 = r r
exp| (X2 X3) . exp| —(X2 X3)
f-g f._-; tlg
—1
( :’:2 ))]} nxp(—u!_\';g-—tl;{.\':t},f”) y ﬁ—i(nug IUI”H)(Z’.*-’g(E?J:;) . .Iih(f})
3

On vérifie que

[Tr‘{)‘ (-f(i’ ))‘E] (“x]’ s2 X2 + -S:;X:s))

el (2)0(2) bl
((2)+(2) = (2)

—
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. f?)(])(—bg 1\12 N bg A:g) Cexp(baXatba X:})T”]

~expul/ exp vV exp y)-’) Dig, ('u:)e“""f'i(*'?"‘*"’“")
é (}(])({J_‘gj\z | b;}(;))rﬁurlb;riu:rlu dv dy

( 1 (:f:, —by + S5+ vg, —bs + s3 + v3, V9, Us;

- (V. 3 o hg i S9 o

enfmnl-(2):(2)+(2)
exp(s2Xag + s3.X3) - w -

exp(—by Xy — by X3) exp(vaXa + v3X3 )) —Wvg =i o dvg )

*(f}') Iy ('H?)f‘_i” bt bgar)
é(l NP (0 Xo + b3 X35 ))rfhzrh';f,rf:n du dv dy

= i’(—l) ‘ (E) /!,-'1(-'7-"-‘52,8:5‘332,133;'“’) Dlﬁ]('ff?)é((‘!){l)([}ng 1 J;:,X;i))

dbadbaeliir

(:—;})l / D7, (y(:r":, S92, 83, 02, ba; .))E(uxp(by\’z 't {)3}(3))(”)2(“)3.

Puisque 21 (exp(.sz/\’;;--i—s;j/\’;;)) € N et que A, ( D (BX]?(SzXz | S;;X;;))) =
1 par conséquent,

(s 0,)) (7 (s 4 50) )

= f"‘a(d')(f’ ° D’?’f(f(’I ))E)(!‘ (exp(s2X2 + ‘*'s}\a)))('ﬂﬂ)
([*"2 ov o (J(f )]E) Hl"(-‘-*‘?Az + -5'3)\3))("'”1)
([rae 2 (£(2,)) 0 14 €) (exp(s2X2 + 53 Xa) ) (wi)
= ([rn, (f(@,.)) o va 01 ]€) (exp(saXa 53 X)) (wr)
(7, (F (@) (18)) (exp (52 X2 + 53.X3) ) (1)
(=) | / Dizey (9@, 52, 53, ba, bas ) (v2) (exp(b2 X + by X))
by dbs (1)
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1 \2
= (g) ‘//('_I/” I (2, 2, 83, b2, bg; Dy wy;w')
(Ug«f)(t X])(1)2X2 + b3 X3)) (w")dair' dbycby
g2 pPld) // Z; Dy Byt (exl)(“ﬁ'zxz + -‘-’:;X:i)) O
G ./u
Dy (t:xp(bg/\-g A= b X 3)) -?U")E( D, (exp ba Xy | (J3X3))(111’){5?1';’(!{;2(3&3.

La relation précédente étant vraie pour presque tous les s, 3,1y, on a

(P (/@ 1)) )

e2e(h) . // F :}":; Dy;g; 2V (ex])(bz/\'g 1 b;v,)\’:;)) "m’)
JoJoy

é( 2N ((’.Xl}(ng;g i hg)\’3)))(m’)n’.'tff'r."bgribg

- (T'.ZIP(rli] // ]‘1((?‘ 1)%‘.‘!’ .‘31_1 (CX])({:".!XQ 1 h.‘ixii)) .‘“;.");

J Sy
8 i - , b
E( 1 (u:\p o Xo + b;j)\;;)) - )rim dbaddbs.
Remarquons que

UI_I((!XI)(bz.X‘_J_ | h:{)\r:;))

= exp l(,\'g X3)e? "M K (o(dy )w) ( 32 )] mod Gy NN
3

= exp [()\2 X3)e?") K (o(dy )w) ( g"! )] - g(by, by, D))
3

ot g(ba, bz, Dy) € Gy N N. En particulier Ay(g(bz,bs, D)) = 1 quels que
soient. by, bz, Dy. Dot

[P (f (@, ))€] (@)
() [f(] o F (:’r:; Dy; g; ex])[(Xg ,’\’3)0""M'}]\"(<p(r£1)u)) ( gi )]
0, Doy D ) ( w[( X)) K (i) ( )]

- g(by, b3, Dy) - ‘ur") dair dbycby
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2 (d) Al B -TON i WPt W, e(dy) h:& ol
€ -/-/G'z/h' F(.T_,])l,g,(.)\p[(,\z X3)e K(p(d))w) ( by )] ur)
{(t-‘:x]') l()\’g X3)e? ) K (p(dy )w) ( ;;}2 )] -u:’) i dbydbs
3
puisque A (fj(bg,b;;,f)|)) = ]
= [,y G Drigiexp(baXa o+ baXa) - w)E(exp(baXa + bsXs) - )
71
dui dbydby
= / F(@; Dy; g5 9")e(g")dg'.
Ja/n

Les justifications se font de maniére analogue a celles du cas 5h).

5.13. Etude du cas 7c) : Les raisonnements sont analogues a ceux du
cas 7h), mais plus complexes. Les définitions de 9, et gy sont les mémes.
Les éléments de G se décomposent

g = expnX;-exproXg-exprzXs mod Gy
= expr Ay cexp(reXs + 13 X3)  mod Gy

= expr Xy - exp(roXy + 13 Xy) - w - expull - expoV - expyY.
Les éléments de © s'éerivent
D = Dy - exp sy ad Xy - exp spad Xg - exp sz ad X3

avec Dy € Dy = exp(Keryp N KeranKerA). Done D = Dymod D, et il
suffit de travailler avec Dy. Comme dans le cas 7b) il suffit d’ailleurs d’écrire

D = Dy -expsyad Xy - exp sz ad Xy

avec Dy € Dy = exp(Ker aon Ker ). Les définitions de ., 7y, &, 7p,, v1, %
sont les mémes que dans le cas 7b). Pour f € ES(N,G), évaluons

[wul (f(?, ))E-] ((_‘.X!)(.ﬁ';gz\rg 1 ,'-;;;Xg))
- /f(ﬁr,(:xlut,X, exp(taXg + 13X3) - w - expull - expoV - exp yY e
E(exp(—yY) exp(—vV) exp(—ull) - w™ exp(—ta Xy — t5X3) -

lexp(—t1 X1) exp(seXa + s3X3) exp t Xy exp(—t; X, )) dtydtodts
duir e clo dyy.
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Posons

exp(—11 X7) exp(s2Xa + 53 X3) exp iy X

— exp [(Xg X3)e" K (tw) ( :: )] : ((:xp l—()\’g X3)e" K (tw) ( :i )]

cexp(—1 X1) exp(s2 Xo + s3X3) exp ,\’1)

avec {-!X[')[—(XQ X3)e" K (thw) ( :J )] - exp(—t Xy) exp(s2 X2 + $3X3)
3
cexphi Xy € Gy et

(:){])(—(X-z Xy) ( :j )) -{?X])((X2 Xa)e" K (1 w) ( :i ))
exp l(Xg X3) (*— ( :i ) +e" K (1hw) ( ::: ))] - ga(ty, ta, L3, 52, 53)

avec gy € Gy puisque [Xo, X3| € go. D'olt
[TF Dy (f(-’f?, ))q ((33’(]"(-92)\'2 1 S:iX:;))
= /.f(j:,t:x])!.ll\’] exp(le Xy + t3X3) - w - expull expvV exp yY) - el .

Dy m ((‘!X]'l f-]X] s [L!X]‘J(-—f-l X| ) ('.X]l(—.t-i-,;Xg — -S;;X:;) exp f-[)\’]

Ux]"((/\"z X3)e' K (w) ( :2 ))] - go(tr, o, b3, $2,83) "
23

-lexp (u(X-z X3) (— ( ii ) + e" K (tw) ( :i ))) cw - expul/
expvVexpyY -exp(()\'-z X3) (— ( ;’i ) + " K (tw) ( z:i )))])
é(exp ((,\’2 X3) (— ( ;i ) + e" K (tw) ( ::: ))))

dtydiodtsdit dudv dy.

b-z
b3

Effectuons le changement. de variables

Lo
—
Ly
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avec !
"2 ty 1 S2 = )2
_(f.:;)—l_ﬂ h(hw)(s:;)”(b;;)'

On trouve

(70, (£(,-))€] (exp(s2X2 + 53Xa))
— /f(:r:,cxph){l C}C])((Xg X,-;)(— ( 22 ) +e" K (thw) ( L:‘! )))
3 23
exp(ba X -+ 03 X3) [ex])(—hg)\’g — b3 X3) L:x])(—(/\’g X3) (— ( ;jz )
3
+e" K (tw) ( a ))) ux])((/\’g X3)e" K (hw) ( 2 ))]
53 S3
[t!X]'}(—(XQ X3)e" K (tw) ( :z )) exp(—11 Xy)
S3
exp(seXg 4 55X3) exp !,],\'1} s - exp(—be Xg — by X3) expul/

exp vV exp(y -+ uby + ‘ub;;)}/)r:" - P (exp ty Xy - w - expull
cexpoV - exp y)’)f(t:X]')(f)gA’g I E);;X;;))di]dbgrlb_-;rf‘m du dv dy.

Grace a la définition

o (2)(2))
ool oL (#)
+ Crlf\,(f-jw) ( :i ))) : L‘,X[)(-—-()\’Q X';) ( ji ))

exp ((X2 X3)e" K (tw) ( :j ))] -

[ex[J(~(X2 Xs)e" K (tyw) ( :2 )) exp(—t1Xy)
S3

exp ((Xg X3) ( :j )) exp tJﬁ]}
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on trouve

[?TDI (f(.’i', ))é] ({-!X])(SQXQ —|— 33){3))

- /f(i’ex”f“x' “"‘“((Xz X:s)(“‘ ( :?2 ) + e" K (tw) ( SQ ))) :
)3 Sy
Q (f-],— ( gj ) + " K (hw) ( :j ) , ( :z )) _exp(byXatbaXa),,, |

expull expoV (:xpyY) et . Py (exp by Xy - w) - e~ Wgibarthav)
é((“.)\'])(h;‘g)\lg + b,-_‘X;;))rﬂ!;ldhzdb;{rﬂm du v dy.
Comme dans le cas 7b), /0, = 0,/(01)r. Pour tout I € ES(N,R",
G/H x G/H, (), la définition de Iy, Pexistence de g et g, sont obtenues
comme dans le cas 7h). Soit ensuite k& € S(R) tel que k(1) = 1. La
définition de f € ES(N,G) est alors donmée par

f(:r_:,(zx]) £ X exp(taXa + 13 X3) - w - expull expovV t:xpy'}’)

B ) ) !,- L 1) >
e "'{_[{n (:‘r:,r: ’H&[—hw)(( !i ) 1 ( ::i )), ( :,j ) sexply Xy -
exp(—vg Xg—aXa) I _’2 Vo -1
. 2 —ly Jr(_ i ! : .
[ Q(fl!(f-:i)m K( f-1w)(( 1'3)—} (1}'3 )))]

(Y—w) pitud wwﬂm}A:(y).

On pose
Q(’-l. B ( b2 ) | nflh'(hw) ( 52 ) ’ ( S2 )) . exp(baXatbaXa),
b.‘l 53 Sa
— awpg-expril-expraV -exprsY € Gy

et on vérifie que

[Trpl (f(? ))5] (IEX]](HZJ\IQ + .H;{Xg))

- /f(:?:,exp.ij,\’] -(!X]}((Xz X_-;)(— ( ii ) +e" K (thw) ( :i ))) :
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Q(f,]‘— ( h2 ) ] ft']}\’(hw) ( 59 ) , ( 52 )) : exp(b?"\'?'l"”'-"\’“)-w-
b;; 53 53

exp ull exp oV (!xpy}’) et - P (exp ti Xy -w)e'"”r’.‘_“""’”“”“'“}

{f (ex])(ngg | b;;X;;))r:’..-',erJgr.’,bgri‘dr dudv dy

/c_’"{/yi (i,(:_”h’(—hw)(— ( 22 ) +e" K (thw) ( :‘! )
. N 3 a3
(n)) )
Us Uy

xp(—1pXo—vaX3) b 5

exp f.',Xl[ Q(f.l,— ( bi ) + " K (tw) ( .: ) g
—1
—ty 7 b2 P 0 52 U2

e MK (—hw) (— ( by ) Fe'' K(thw) ( . ) ¥ ( o )))]

cexp(—va XNg—uy .\':\},w“)

e~ tutn)vr , g—ilvbr )"""rl?;fgd'u;i}kt(y Frg)e’t - D‘ﬂl(CXI) Xy - w)

¢ W etbad ”"‘”)f(ux]a(hg)(g | IJ;;,X:;))(JMr[(’:zrﬂh;gr.’ﬂi; du dv dy

EI(—]}./{_[UI (;I;}f-'“t'K(_filw)(_ ( g‘: ) + ﬁh]{(ﬁ]w) ( :j ) b 1 ( ::

. xp(—rp Xg—11Xa) b So

2 ). - el R b K -
( s ) :Cx]}f'lf\l[ Q(i” ( b3 ) S ( 53 ) ’

53
E:_rlf"(—ﬂlw) (._ ( gj ) | nh]{(f.lw) ( :j ) = ( :ji )))] ;
:.-.xp(—vaf\’z—'ﬂaxa)Q (!‘la“‘ ( ;::2 ) +e"K(thw) ( :2 ) ) ( :i )) ’
3 3 24

expl(—ug Xa—1aX3) exp(hy Xo+by X'-')u’) BT rl'ugri'u;i}

Pig (exp ty X, - -;;:)p’"“‘“““’“’”f((:xp(b-z)s"g f h;;)\’g))dt] dbydbscliir du dv

))
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142
B (Zw) //-‘7‘ (""'=( :z ) ) ( Ez ) yexp i X, -w) Diz (expt1 X7 - w)
w3 3

€ (exp(baXa + by Xs) ) dtydbydbsdiis
142 =
D . . - -
= (27r) / b (g(:::, 82, 83, b2, ba; .)){((-!x])(bg,kg + b3 X 3))(1'.b2flb3.
La démonstration se termine alors comme dans le cas 7b). Les justifications
se font, comme dans le cas 5b).

5.14. A chaque étape de la récurrence on vérifie facilement que la construe-
tion de la fonction [ respecte les propriétés (ii) et (iii) de 5.3. Ceci prouve
done le théoreme en question.

5.15. Proposition : L'application
R:ES(N,R",G/H x G/H,f) — ES(N,G)
F— f
est une application linéaire continue vérifiant
R(q-F)=q-R(F)
pour toute fonction ¢ sur RV, Elle est appelée rétracte.

Démonstration : Il suffit. de remarquer que la construction de [ respecte la
topologie des espaces [4S.

5.16. Remarques : a) Rappelons qu'on peut identifier les espaces
ES(N,R",G/H x G/H,f) et ES(N,R",R* x R*) (4.5.). Donc on peut
dire que tout F' € ES(N,R" R* x R¥) est noyau d'opérateurs Pw(f(z,.)).

b) Pour f € ES(G), le noyau F(D;.;.) des opérateurs Pm(f) n’est
pas nécessairement. une fonction de ES(N,R", G/H x G/H,f). A titre
d’exemple notons par D la composante connexe du groupe ax -+ b, d’algebre
de Lie 0 = (X, Y) avec [X,Y] =Y. Soient g = [0,0] =RY et G =expg =
R. L’action de ® sur G et sur L'(G) est donnée par

g = (0, g)
= (z,9)(0,9)(z,y)~"

(0,e%g)
= e’y

fE0g) = e fle"y).
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Soit alors 7 € G défini par 7(g) = €. On a 7(f) = f(1). On voit que

{'T"'”)Tr(f) - ﬂ-(f(”'?")) - .f((:""').

En remarquant que @/, = {(z,0) | x € R} = R et que les noyaux des
opérateurs ¥z (f) sont des fonctions de z uniquement, puisque G/H =

-

{0}, on peut done éerive F'(x) = f(e=%). Donc, si f(0) #£0, F' ¢ ES(R) =
ES(®/D;).

¢) Supposons a présent le groupe G nilpotent, connexe, simplement. con-
nexe. Donc ES(N,G) = S(N, (), espace de Schwartz. D’apres R. Howe
([Ho.]), Papplication

S(N,G) — S(N,G/H x G/H, )

f — [fa

ott fr indique le noyau de opérateur «(f), est une surjection continue
ouverte. D'apres ([Lud. Mol. 1], 9.7.), Papplication

D/D, — S(N,G)
D +— f”

est continue, f € S(N,G) étant fixé. Par conséquent, puisque Dr(f) =
7(fP), Papplication

D/D, — S(N,G/H x G/H,?)
D — F(;D;.;.)

ou F(.;D;.;.) est le noyau de Vopérateur Pz(f), est continue. En par-
ticulier, quels que soient @, g, ¢, F'(7; D; g; ¢') dépend contintiment de D.
De plus, on voit facilement que la relation Px(f) = «(f”) entraine que
le noyau I'(;; D;.;.) est méme C™ en D si f € S(N,G). On a le méme
résultat pour le noyau I'(;; D; .;.) de Nopérateur Pr(f) si D parcourt D
(au lien de ©/Dy).

Finalement, si [||.|]] désigne une norme de Schwartz quelconque sur

S(G/H x G/H,¥), 'application

/D, — R
D w— ||1F (@ D; ;5 ),
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Z étant un parametre fixé, est continue.
d) Dans le cas de g = g(£) -+ n exponentiel, la formule suivante du noyau

de P (f) = n(fP)
(S2)n(,y) = A2 (@) AZ (A2 () A B=YERYFP (aihy™)

xe(h)dh
(|[Lud.]) montre encore que le noyau de Pz (f) est C= en D si f € ES(G).

5.17. Question ouverte : Supposons que D = expd agil exponen-
tiellement. sur G = expg avec g = g(f) + n. Soit f € I2S(G). Peut-on
trouver une condition nécessaire et suffisante sur f pour que le noyau de
Pr(f) = w(fP) appartienne & ES(R",G/H x G/H,£) 7 Cette condition
pourrait-elle ¢tre la suivante @ La transformée de Fourier non commutative

: A . .
de f et des fonctions f’(:a:, )—)f(r] s’annule sur la frontiere de 'orbite €2,
o
P désignant une expression polynomiale en les variables x et leurs dérivées,

¢’est-a-dire la fonction P(:;:, (—) J(2) est annulée par toute représentation
unitaire irréductible ¢ € 9 7 D’ailleurs la question du comportement de la
transformée de Fourier non commutative sur le bord de 'orbite semble jouer
un réle important dans plusieurs questions, telle par exemple la question de
la densité éventuelle de Ker 2 N S(G) dans Ker 2, si G est nilpotent, et si
Porbite € n’est pas fermée.
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