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Les polarisations de Vergne dans une

algebre de Lie exponentielle

Carine Molitor-Braun®*

1. Rappels (voir (1], Chapitre IV)

1.1. Soit B une forme bilinéaire alternée sur un espace vectoriel

1.2,

réel V' de dimension finie.

a) On appelle noyau de B et on note N(B) I'ensemble
N(B) = {z € V|B(z,y) =0 VyeV}.

b) Un sous-espace W de V est dit totalement 1sotrope si

B(z,y) =0 quels que soient z,y € W.

¢) La dimension d’un sous-espace totalement 1sotrope mai-
mal W est donnée par

dimW = =(dim V + dim N(B)).

S=R N

Soit g une algebre de Lie réelle de dimension finie et soit
¢ € g* non nul.

*Etude effectuée dans le cadre du projet de recherche MEN|CUL|90|009
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1.3.

a) L'application

e it }
ﬁu..,c__‘._ == Am_ Tﬁu @_v
définit une forme bilinéaire alternée sur g Le noyau de cette

forme est noté g(¢), cest-a-dire

8(6) = {zegl(t(zy) =0 Vy € g}
= {z€glad2(s) = ).

b) On appelle polarisation ay point £ de g* toute sous-
algébre h de g qui est en méme temps un sous-espace to-
talement, isotrope maximal, c’est-a-dire toute sous-algebre
h telle que

2, (b, h]) =0
dimh = WE:: g + dim g(¢)).

¢) Pour un sous-espace k de g on définit kL par
k' = {peg'|(p,k) = 0).

On montre alors facilement par des considérations sur les
dimensions que

(ad"g)(¢) = g(e)*.

d) Soit d une algebre de Lie de dérivations agissant sur g.
On appelle annihilateur de ¢ et on note d(¢) le sous-espace

d(¢) = {dedla*(e) = 0)
{d € d|(, d(g)) = 0}.

Il

a) Dans une algebre de Lie réelle g de dimension finie on

appelle bonne suite de sous-algébres toute suite décroissante
de sous-algébres

ﬁEnmanmim:.mmi_mmmm...m_m@nm

telle que

2.1,

14
(i) dimg;/giy; = 1 pour tout 7
(if) Si g; n'est pas i idéal de g alors Ei-1 el gy sont
des idéaux de g ot la représentation adjointe de g dans
i-1/8iy1 est irréductible.

b) Toute algtbre de Lie résoluble réelle, en particulier toute
algebre exponentielle réelle admet de bonnes suites de sons.
algeébres.

¢) Pour une bonne suite de sous-algtbres d’une algébre réso-
luble g on montre facilement que

(i) g1 est un idéal de g
(ii) Si g; n’est pas un idg¢al,
[Be-a, 8] © i,

En particulier, _m..L.m,._ C gi+1 C g et g; est un idéal dans
Bi-1.

But du travail

Dans la suite g désignera une algébre de Lie exponentielle
réelle et d désignera une algébre de Lie exponenticlle de
dérivations de 8, contenant ad g et faisant de g un d-module
de type exponentiel. Ceci signifie que si ge est l'algebre
complexifiée correspondante et si

Bc=golgib>.. bg,={0]

est une suite de Jordan-Hélder pour l'action de d, alors

d agit sur les quotients gk/Bks1 = Ciz) (qui sont tous de
dimension 1) par

d(Zk) = e(d)(1 + iwy)z,

%k étant une forme réelle sur d.
([1], Chapitre 1).
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2.2,

2.3.

3.2.

Dans ([1], Chapitre 1V), Vergne démontre le résultat sui-
vanb @ Sig est une algébre de Lie exponentielle reelle, si
£€g* et si
{0} =gnCgnuc..cgcg=¢g

est uue bonne suite de sous-algebres, alors

mn

h=>"g(t)
i=0

est une polarisation au point ¢ de g* ([1], IV.4.35. et
IV.43.7)

Le but du présent, travail consiste a raffiner les méthodes de
Vergne afin de construire une polarisation d(¢)-invariante,
en partant d’une suite de Jordan-Hélder de g pour "action
de d.

Sous-espace isotrope maximal dans un espace vec-
toriel

Dans ce paragraphe V désigne un espace vectoriel réel de
dimension finie, B une forme bilinéaire alternée sur V et

E*Hﬂ\am,\r_m.:mxtﬂSm:.ﬂSn_\cnﬂ\
une suite de sous-espaces de V telle que
dimV;/Viy1 =1 ou dim VilViey =2

Notons par B; la restriction de BaV; et par N;(B;) le noyau
de B; dans V. .

Théoréme : Si l¢ cas dimV;/V,,; = 2 et Ni(B;) =
Niy1(Big) est exclu pour tout %, alors

H = MU?,E;

est un sous-espace isotrope maximal de V.
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Démonstration : Les N;(B;) étant des SOUS-ESPaces vee-
toriels, il en est de méme de H. De plus, soit z € N;i(B;)
et soit y € N;(B;) avec i < j. Comme VicV,yev
et B(z,y) = 0 va que z € Ni(B;i). On en déduit que
B(H,H) = 0, c'est-a-dire que H est isotrope. Démontrons
par récurrence que

i i W@a V + dim N(B)).

Notons par H; le sous-espace M.?m, (Bj). Evidemment
j=i

B(H;, H;) = 0 pour tout 1.

Pouri=nonaV, = Nn(Bn) = H, = {0} et on a bien

dim H,, = WEME Va +dim N, (B,)).

Pouri=n — 1, il faut distinguer deux cas -

SidimV,_; = 1, alors Vo-1 = Rz,_y et Bl @n iy ipeci)
=0, la forme B étant alternée.

Done H, —1 = ..?_«:i_ﬁmuluv + .::. = EH:!H =V, et

dimH, | =1= wai_ Vot +dim No_ (Ba_y)).

SidimV,_; = 2, alors V,,_; = Rz, _; ®Rz!_,. Supposons
d’abord B(x,_y,z,_,) = 0.
Alors .mwﬂ:..lu = Edluﬁ.mﬁlhv + *Qw = M\ZIH et

H
dim H,y = 2 = 2 (dim Vo + dim Ny (B,_,)).

Si B(zy-1,z!,_,) # 0, alors Nn—1(Bn_1) = {0} = Nl B:)
et dimV,,_,/V,, = 2. Or ce cas est & exclure par hypothése.
Supposons & présent

1 .
dim mi._ = MHQE:. E.: + dim .?n.+u m.mwﬁ.+:v

et démontrons la méme formule pour l'indice 3.



W WEPR i - B e e . ]

144

m_vm:E.ES:m%mTo.i EEEA@LG S;.?ao:ocza
._wfﬂ_ﬁ._.mw._.v = .,_)ﬁ..*.;mh,._p._v. Alors

Jj=i

j=i+1
et dim H; = dim Hipa Distinguons deux cas.

al) Si dimV;/V;y, = 1, c’est-a-dire si V; = Rz, @ Vi1, on
a: Nip1(Biy1) est Pensemble des z € Vis1 tels que

mmH_S._Lva ﬁwvu

condition qui se réduit & un nombre finj d’équations linéaires,
si on remplace Vis1 par une base de Vigt.
N;(B;) est I'ensemble des z € Vit1 (comme Ni(B;) C Viqy)
tels que
B(z,Viy1)=0
(II).
B(z,z;)=0

Les rangs des systémes linéaires (I) et (II) vérifient donc
rg(l) < rg(I1) < rg(I) + 1.

Deux cas sont alors possibles.
Soit rg(I) = rg(II). Les systémes (I) et (II) sont équivalents
et .Z.aﬁ.muv — m.fpm.mu..—.uv. Alors

B3| =

1 1
= w. + M dim m.uﬂi.w
ce qui est impossible, puisque 1(dim V; + dim N;(B;)) est un
nombre entier. Donc ce cas est a4 exclure.
Soit rg(II) = rg(I) + 1.
Alors dim Nit1(Biy1) = dim Ni(B;) + 1 et

1
?:5 V; + dim ._Z_..,ﬁm...vv = MAQHE q\n,+m + 1 + dim >_ﬂ+u A.WI.HVV

1
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1

.M.ﬁﬁ—m:._. ,_w\“ —+ ....:HH.— L)_qu.ﬁmmuv = .m ﬁﬁ:ﬂ: .—\-..T~ + 1 4 ﬁ:H.H._— ..w/__.__.T.m hhw..?_w — ”_v

= dimH,.; par hypothese de
récurrence

c’est-a-~dire Ia formule est vraie pour lindice ;.

a2) Si dim Vi/Vig1 = 2, c'est-a-dire s Vi = Rz; &Rz SVii1,
on a: Niy1(Bitg) est ensemble des z e Vit tels que

B(z,Viy)=0 (1),

condition qui se réduit & un nombre fini d’équations linéaires.
Ni(B;) est 'ensemble des z € Viy1 (comme Ni(B;) C Viyy)
tels que

mwﬁHu S.TL =0

B(z,z;) =0 (II).

B(z,z)=0

Les rangs des systémes lindaires (I) et (II) vérifient donc
rg(1) < rg(11) < rg(1) + 2.

Trois cas sont possibles.

Soit rg(I) = rg(Il). Les systemes (I) et (II) sont équivalents
et .m)ﬁﬁ.mnv = zn,+mﬁ.m.-.+~v avec dim S\EITH = 2. Ce cas a été
exclu d’avance par hypothese.

Soit rg(Il) = rg(I) + 1.

Alors dim Niy1(Biy1) = dim Ni(B;)+1 et

1. . Lo :
MAQHES.TQ__EEAWLV = WT:ESII+M+Qma.?ﬂ.+um.m~.+LFHv

1 .
= 3 +dim H;;; par hypothese

de récurrence.

Ceci est impossible, comme 3 (dim V; +dim Ni(B;)) doit étre
entier.



R e e Y

146

Soit rg(Il) = rg(I) + 2.
Alors dim NV, , (Biy1) = dim Ni(B;) +2 et

2| =

= dimH;;y par hypothese
de récurrence
= QMHD .m,u_

c’est-a-dire la formule est vraie pour lindice ;.

b) Supposons ensuite Ni(B:) ¢ Vi, c’est-a-dire
Ni(B;) ¢ Nit1(Biy1). Montrons d’abord que

Ni(B:)NHipr = Ny(By)n( 2 Ni(By))
=41
= Ni(Bi) N\ Niy1(Biyy).

En effet, d'une part
Ni(Bi) N Nip1(Bir1) € Ni(Bi) N ( D Ni(B))).

j=it1
D’autre part, soit

MH.....m Mzu.ﬁ.mwuvﬂ MSHE._.HHS.

J=it1 i=i+1 J=it1

T
Supposons en plus que M Tj € Ni(B;). En particulier
F=i+1

n
B( ) 2,Vi) =0
h.”n.n*um
et forcément

B( M zj, Vig1) = 0.

(dimV; + dim Ni(B;)) = wa:: Vie1 + 2 + dim Nit1(Big) ~ 2)

T
Done M T; € Niyi(Bigy) et

J=i+t1

Ni(Bi)n( M N;(B;)) € Ni(B;) N Ny, (Biy1),
J=141

¢’est-a-dire les deux expressions sont en fait ¢gales. On en
déduit que

dimH; = dim()" N;(B;))

i=i

= dim(N;(B;) + Mau N;(B;))

J=it1

= dimN;(B:) +dim( Y N;(B,))

—dim[N(B) N (3 Ny(By))]
J=i+1
= ngmﬂ.u_.m + Q__E z—mmnw == Q—Eﬁ.z.uﬁ.mwﬂv M ‘2.6..: ﬁ‘ml‘_ v_‘

Distinguons maintenant deux cas.

bl) Si dimV;/Viy; = 1, il existe Zi € Ni(B;) tel que
Z; & Vigr et donc tel que V; = Rz; @ Vit1, puisque
N{B) 2 ¥ 'Onig e Nit1(Big1) est Pensemble des
z € Viqy tels que

B(z,Visi)=0 (1),

condition qui se réduit & un nombre fini d’équations.
Ni(B;) est I’ensemble des z € V; tels que

A B(z,Viy1) =0
WAHMHL =

ce qui est équivalent 3

B(z,Vig1) =0 (11)
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puisque xz; € Ny(B;), done que B(z,x;) = 0 pour toui
z € V. On en déduit immédiatement que

Ni(B:) N Vi = Nyyy (Bij1) = Ni(By) N Niy1(Big1)

c’est-a-dire que Niy1(Biy1) C Ny(B;).

Remarquons encore que (1) et (I1) ont méme rang dans Vi,
resp. Vi. En effet, soit €1,..-,€p une base de Vigy. Les
systemes (I) et (TT) définissent les noyaux des applications
linéaires de Vi, resp. V; dans R? données par

B(z,ey)
\WAH_ mmv

H_Iv . = V(z)

B(z,ep)

Le rang du systéme (I) est donc égal an nombre maximumn de
vecteurs linéairement indépendants parmi V(e;),...,V(e,).
Le rang du systéme (IT) est égal au nombre maximum de
vecteurs linéairement indépendants parmi V(e,),. .., Vie,),
V(z;). Or

—

B(z;,e;) (

Vilz:) = Bl ez} =

(=

Bz, ep)

=

puisque z; € Ni(B;) et les systémes (I) et (II) ont méme
rang p. Par conséquent

dimNiy(Biy1) = dim Viter —p
dim Ni(B;) = dim Vi—p
et
dim V;(B;) = dim Niy1(Biy1) + 1.
Finalement
dimH; = dim Hiq+ dim N;(B;) — ..,:H_.E....*._AQIL
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Lo -
= WE:: Nip1(Big) 4 dimViy,) +1
L :
= mT_:: Vi + dim Ni(B,))
c’est-a-dire la formule sur les dimensions est vérifie pour
lindice 4.

b2) Si dimV;/Viy, =2, on a

dim N;(B;) < dim([N;(B;) n Vit1] + 2. Supposons d’abord
dim N;(B;) = dim[N;(B;) n Visal + 2. Alors il existe
Byl e Ni(B;), n’appartenant pas a Viy tels que

Vi = zH.ﬁ_ m@—.ﬁH“ <8) a\nw:.

Le raisonnement est alors analogue au cas dim Vi/Vig1 =1.
Niy1(Bit1) est 'ensemble des z € Vi tels que

Bz, Vi) =0 (1)
Ni(B;) est I'ensemble des z € Vi tels que

.mﬁuhh q\“rT.—u =0
B(z,z;) =0
B{z,zl) =0

ce qui est équivalent 3
B(z,Viy1)=0 (1)

comme z;,x; € N;(B;), donc que B(z,z;) = Bz, %) =0
pour tout z € V;. On en déduit immédiatement que

Ni(Bi))NViyy = Niy1(Bigy) = Ny(B;) NNiy(Biy)

c’est-a~dire que Nip1(Biyy) © Ni(B;). Avec les mémes
définitions que dans le cas dimV;/Viyy = 1, le rang du
systeme (I) est égal au nombre maximum de vecteurs linéai-
rement indépendants parmi V(er)i-: ., Vie,). Le rang du
systéme (IT) est égal au nombre maximum de vecteurs ling-
airement indépendants parmi Ve, .,ﬁ\?u:\?;;\@“v.
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Or .
B(xi,e) 0
B(x;,ea) 0
ViEe) = .. -
.mﬁhnn.umuuv O
.MWHA.H_ ..n..wu \ (O
B(z],eq) 0
et V(z)) = “ = .
B(z,ep) 0
puisque z;,z; € N;(B;). Donc les systemes (I) et (II) ont
méme rang p. Par conséquent
dim Niy1(Biy:) = dim Viti—p
dim ..?ﬁﬁ.wwv = dim .a\“ =zfd

et

dim .?_.H.ﬁmmu = dim 2~.+~ h.mn..f_v + 2.
Finalement

dim ._mﬁ. = dim ._m.n..._.u + dim zuﬁwav - Qma.?ﬂ,.*.;mm.:v
= WEWB Viy1 +dim Nit1(Biy1)) +2

= W?:E Vi + dim N;(B;))

c’est-a-dire la formule sur les dimensions est vérifige pour
Iindice 7. Supposons ensuite que
dim Ni(B,) = dim(N:(B,)NV, 1) +1 = dim(N; (B:)N Ny 1 (Big1))+1.
Donc il existe x; € .?ﬂ_ﬁ.mn.v_ T & .S+T X m .?m,_,uﬁ.mp.+; tel
que

Ni(B:) = Rz; & (Ni(B;) n Nit1(Bit1)).
Deux cas peuvent alors se présenter :
Soit 2m+mﬁ.mwu.+mv © zﬂmm-v Alors ?«mﬁ.wu_v = —.wHu_@zu_.+_ A.WT: Y
dim .?ﬂﬁm.w = Qma.?m,?;mm,_._v + 1 et

1

WAQHE Vi + %Ebﬁ_mm_gu = Hﬁzuﬁ S+H + 2 4 dim 2~_+H ALWI._V + :

+ dim H;

B3| Lo o

(%)

S:E,omﬂwnwxc_:aonc:::m w?:E Vi+dim Ni(B;)) est un en-

tier.  Soit Nigr(Biyy) ¢ Ni(B;). Il existe alors
Tit1 € Niy((Biyg) tel Que x4 & Ny(B;). Par conséquent
(N:(B:)n Nijy(Biy1)) ®Rzyy, Ni1(Biyy)
et
dim .?«-_.._._ H.mm._,ruv W Q::ﬁan.mhwmv ([ 2m+_ﬁ._mm+_: +1
= dim ‘?ﬂﬁm—v

On en déduit que

—

1
MAQ:.: .w\“ + dim .?_ﬂm.mw.vv < IMu
= l+dimH,,,.

D’autre part,,

=Y Ni(B,) = N(B)+( > Ni(B;))
j=i F=it1
= Rz ®( M N;(B;))

carz; ¢ SJL
doncz; ¢ Ni(Bj),j>i+1
= Rz, ®H;,.

Ainsi dim H; = din Hi 141 et
1
mﬁ&:: a\“ + dim ._P_ﬂA.m._VV M dim ._m,n_.

Comme H; est un Sous-espace isotrope, sa dimension ne
beut dépasser L(dim V; + dim Ni(B;)). 1l faut done avoir
égalité et la formule sur les dimensions est vérifiée pour
Pindice 5. Supposons finalement que  dim N;(By)
= dim(N;(B;) n Vis1). Done N; (B:) © Vigy contrairement,
a notre hypothése.

La discussion de cas est maintenant achevée et Je théoreme
est démontré.

(2+dim Viy + dim Niy1(Biy1))
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3.3.

4.1.

4.2.

4.3.

Le fait d’exclure des le départ le cas dim Vi/Vie1 = 2 el
Ni(B:) = Nij1(Biy) est bien une restriction nécessaire
comme nous allons le voir dans la section suivante.

Sous-espace isotrope maximal dans une algébre ex-
ponentielle g soumise 4 une action exponentielle d

Dans la suite g désignera une algebre exponentielle, n un
idéal nilpotent de g (par exemple le radical nilpotent), d
une algebre exponentielle de dérivations de g, contenant
ad g, faisant de g un d-module de type exponentiel et tel
que d(g) C n. Comme d(g) C n, n est un idéal d-invariant.
Soit £ € g*.

Exemples : a) Soit g une algebre exponentielle et d =

ad g. Alors d(g) = [g,g] est nilpotent, donc d(g) c n,
radical nilpotent de g.

b) Soit k une algebre exponentielle. Posons g = k(€)+[k, k].
Alors g est un idéal dans k et d = ad k|g convient car
d(g) = [k, g] C [k, k] qui est nilpotent, donc inclus dans le

radical nilpotent de g.
Comme g est un d-module de type exponentiel, il existe une
suite d'idéaux g; de g, d-invariants, tels que
E=BoDgID...DEDEID...D>g, = {0}
Bp = N pour un certain p < n
dimg;/gi11 = 1 ou dim gi/Biv1 = 2.
Le quotient g;/g; . est irréductible pour laction de d. Ceci
signifie :
Sidimg;/giy1 = 1, il existe pied*, T, €8, 1; & git1 tels
que

d(z:) = p;(d)z; mod g1, pour toutd € d.

Sidimg; /g, = 2, il existe wi € d*, w; € R*, o, 1l € g,
Ti, T, & gip1 tels que
ZT; it —wW; L3
d w = copﬁﬂ.c A 1 A i v mod Biddy

oot w; i

1

pour tout d € d.
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4.4. Comme 8 = n, il faut avoir dim gi/Biy =1 pour i < p.

4.5.

4.6.

4.7.

En effet, supposons dimg;/g;,, = 2. Puisque d(z;) rm n
= &p C Biy1 et que d(z) € n = & C Birl, i = @ Or
alors le quotient Bi/gi+1 n'est plus irréductible, contraire.
ment a I'hypothése. Done dimg; /g, = 1, 8 = Rz; g, _
d(z;) = 0 mod Bi+1 pour tout d € d épant donné “H:“
d(z;) en = By CBiyy. |

Remarque : Dayg tous les cas, [g;,g;] ¢ 8i+1. En cof-
fet, comme 8i+1 est un idéal, (8i+1,8i] C gi+1. De plus
pi(ad ;) = ,(ad ;) = 0, donc [z, z) € gy

Soit £ € g* non nul. La forme bilinéajre utilisée sera

(@,9) = (€, [z,y)).

On .:o?:.m £ = m_m_. et les noyaux correspondants seront
notés g, (¢;).

ﬂonamnmoz suffisante pour exclure le cas
dimg;/giy; =2 et gi(ti) = 8it1(lity)
a) Dans cette section nous montrerons Je résultat suivant -

Si QWE 8i/8iy = 2 et gi(6;) = Bi+1(liyr1), alors i existe
Tir X € By, Ty, z} Bi+1 tels que

g = mHm $5] EH” D giyy
(€, [z, 2] # 0
AN_ WH:WT_-_C = Am, _HH.W.I._C =

0
i 1 =y _
&A 2! v = @i(d) A w0, Hc v A MH v mod g, .
On en déduit, que
(€ d(la:, 2])) = 20,(d) (e, (21, 27]).

Donc s'il existe d € d el que ¢;(d) # 0 et tel que (€,d([z;, r]))
= 0 (par exemple sj (¢,d(n)} = 0), on a une ccE_EEn::w
oﬁ\_o cas dimg; /g, | = 92 ot gi(l) =gy, (€iy1) est excly
Démontrons Jeg résultats précédents. .



tkmm-m-:‘maw-ftﬁm

i

L LAy

154

b) Supposons g;(¢;) Gi+1(lir). Comme gy(¢;) c Bir1, 0n
a m%.__m._ﬂ ma_ﬁbv:m_ﬂ (ad®g:)(£:). Soit 0 #pEgh, _nm_
Il existe done z, ¢ gi Lel que p == (ad*z;)(4). Supposons

Ti € Giv1. Comme (ad*xz,)(4;) € mm*.;m._ ceel signifie que
Ti € Bir1(biy1) = gi(ly) et p = (ad*z;)(¢;) = 0, contraire-
ment a notre hypothese. Donc z; ¢ Bii1, ¢'est-a-dire

Ti € Bi, Ti & iy
prss AEQ+HLANL S ﬂm_u_.__m._aﬂnv A.m_ MH? WILC = D._
¢) Supposons en plus dim gi/8i+1 = 2. Alors
&:Am%ﬁ _mv =dimg; —dimg;,, = 2,
Donc il existe p’ & m...._w._ _m._ tel que p et p' forment, unce base
de m%i_m.. Comme en b) il existe x; tel que
Ti € 8,7} & git

Montrons que z; et z; sout indépendants modulo Bi+1. En
effet, supposons Ti — ATy = g, € Bi+1- De plus
,|x; — Az}, gi+1]) = 0. Done T; — Azt € Bit+1(liy1) =
gi(£:), c'est-a-dire ad*(z; — Azl)(&) = 0 et p =(ad*z;)(¢;)
= AMad*z)) (&) = Ap, contrairement & notre hypothése.
Donc z; et x! sont mdépendants modulo gi11 et

8 =Rz; Rz p gy (.

Drailleurs z;, ! peuvent étre choisis tels que

o _ 1 —uy br )
d o = ;(d) B ¥ mod g; 48

pour tout d € d, 0 # ¢, € d*. En effet, si (¢, [z;, gy 4]) = 0
et (¢, [z}, gi11]) = 0, il en ost de méme de toutes les com-
binaisons linéaires Ti et I de z; et x; et, pour des combi-
naisons linéaires approprices, on a la formule précédente. De
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plus, (€,[#;,g]) # 0 ou (6. [T} g]) # 0. En effet,
(€ [T, 84)) = 0 et (€, [}, 8i]) = 0 entraine (€ [z, 8:]) =0 et
(¢, [z}, &) =0, contrairement a notre hypothese de départ
p#EOet p' 0.

Supposons 4 présent (€, i, 2f]) = 0, resp. (€, [2;,21]) = 0
si on a di remplacer z; et z! par des combinaisons linéaires
Zi et Zl. Alors

(€, [zi, Az; T Uz gigy]) =0 quels que soient AMHER

c'est-a-dire

(6 |z, g]) =0
et p = ad*z;(4) = 0, contrairement 3 Phypothese. Op
montre de méme que (¢, [Zi,8:]) = 0 et (&, g]) = 0
dans le second Cas, contrairement i notre hypothese. Done
(4, [z, 21)) # 0, resp. (¢, [Z;,!]) # 0. Notons T et x! A la

place de &; et &; dans la suite.

d) Soit d € d. 1l existe 9i+1, 9041 € Eiyq tels que

dz:) = @i(d)z; — vild)wz; + g,
d(z}) vildwiz; + p;(d)z] + 9it1

Il

et

(€, d([z:, z)))

I

(€, [d(z:), z]) + (e, [2:, d(z})])

= {2, [ps(d)x; — ei(d)w;x + Gi+1, )
O [20, pi(d)wiz; + (d)z + g, ,))

= 2pi(d){¢, [z;,2])).

Ceci achéve la démonstration deg résultats de a).

Ooiﬁm:m#m::&m ¢ L’exemple suivant montre que MWWRL

i=0
n'est pas necessairement, un Sous-espace isotrope maximal,

done n’est, Pas nécessaircment une polarisation.
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Soit g = Rt + Ru + Ry + Hy avee

tyvl=y  [u,y =0

it ] 1 1 fg]

e = -l — — ! =

y U w: m.::. [, v Y

[t,9] = 3 v [, 9] =0
= — -+ —=u 1 = Z

U m:E f 3 v,y

Soit £ = y* ¢ g* et soit d = ad g.

a) Vérifions d’abord 4ue g est une algebre de Lie, c’est-a-
dire que I'identité de Jacobi est vérifiée. En offet -

_..E. —e.@: == —c.._ O_ =0

.IT..__ —@_ ﬁ: - —@._ —ﬁue: = .IT..__O_ - —m?w; =0
et Th_ —Q_ ..Q: == .IT_..H_. F___ ,R: - M@_ ?.‘_ m.._:

[t [v, 9]l = [t,0] = 0

~[: v, 8] = [v, [, o)) = o, 4] — [y, Juu + 39 =0
et _N_ —d_ mxz = I._e_, —w\_ m: - —“._u? ?, C:

[t [u,y]] = [t,0]=0

~[u, [y, 8] = [y, [t, u]] = [u,y] — [y, 3 — Jwy) =0
et —wu T..._ @..: = I.Th_ F\_ n: - —@._ _.m_ ﬁ:

[t, [, 0] = [t,9] = y

~[u, [v, 8] = [v, [t u]] = [, dwu + 3] — [v, 3% — 1wy

= _.n...: ‘C._ =Y
et ?_ Th_ e_: = |Thv T.___ m.: - —C. —w_ 2:

Comme I'inégalité de Jacobi reste vérifiée si on modifie ’ordre
des éléments et si deux éléments sont ¢gaux, g est bien une
algebre de Lie,

b) L’algebre de Lie g est exponentielle comme nous le ver-
rons en déterminant ses racines, En effet, soit : .

8= 80 =Rt+Ru+Ru+Ry
81 = Ru+Rv + Ry
g2 =Ry
ﬂu”ﬁ:w.

Done
E= 80D g g gy = {0}

Les racines sont données par :

(i) pour go/g; : (ad 2)(t) = 0 mod g1 pour tout r € g

(ii) pour g1/82: (ad ,L_ H v = 1h(z) ﬁ_ :bE v m u v

v U
mod gy pour tout x g

avec
Y(t) = 3
Y(u) =0
Y(v) =0
Y(y) =0

(iii) pour gy /gy : (ad 2)(y) = ¢(x)y pour tout z cg
avec
p)=1 ov)=0
pu)=0 o) =0
La forme des racines montre done que g est une algebre
exponentielle.
2
¢) Déterminons & présent, Mm%mﬂ.v et montrons que ce n'est
=0
Pas un sous-espace isotrope maximal.

(i) Soit w = at + Bu +yv + fy € go(o). Alors
O = (b Lw,t) = Be,[u,t]) + (e, v, 1)) +6(¢, [y, t])
1 1 1 1
= B G- )~ e gunt Loy~ s(ey) - -5
Donc 6§ = 0.

0 = (Glo,ul) = o, [t,u]) + (¢, [v,]) + 84, [y, u))
= aff, Wc - wéev — 7l y) = .
Done v = 0.
0 = {6 [w,)) = afe|t,v)) + pee, [, v]) + 8¢¢, [y, v])
= aff, WE: + ch + 8, y) = B.
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Douc g = .
0 = (£ wy)) = ae, [t 91) + BE, [, y]) + (¢, [v, y])
= afl,y) = a.
Donc a = 0,

Par conséquent go(€y) = {0}.
(ii) Soit w = gy + TV + 8y € g1(€y). Alors

U = (& wu) =5t [v,u]) + 6(€, [y, u])
B f\wmmu @v =
Done v = .
0 = (¢ w)) = s, [, v]) + 8(¢, [y, v])
= bAm, ucv =p.
Done g = 0.

P = ANu T__..._, .@__.C = \Qﬂm_ _Q.._ @.C + J\Am_ _..cu ut.C = 0.

Par conséquent 81(¢41) = Ry.
(iii) Comme 82 est abélien, on a 82(€2) = gy = Ry.

(iv) Nous Temarquons en particulier que dimg; /gy = 2 ot
g1(¢1) = 82(¢2), cas que nous avons di exclure dans g
théorie générale.

(v) On a
2
D &i(t) =Ry,
i=0
2
d) Remarquons finalement que M@.Q& n’est pas un sous-
i=0

espace isotrope maximal, done n’est Pas une polarisation.
En effet, ]a dimension de tout Sous-espace isotrope maximal,
et done de toute polarisation, est donnae par

1
= dim g + dim 8(0) = —(4 + (=2,
geine 2

4.10.
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Une  polarisation de g ost par exemple donnée par
h = Ry 4 Ry. En effet, dimh = 2, [hh] = 0 o done
(¢, [h, b)) = 0.

Sile cas dim 8i/Biy1 =2 et &ill) = Bit1(fisy) se présente,
il faut donc intercaler un Sous-espace de manidre 3 se rame-
ner & des quotients de dimension 1, tout en tenant compte
le mieux possible de 'action de d.

Construction d’un Sous-espace isotrope maximal ;
Soit la situation présentée en 4.3, of 4.4. Considérons la
Sous-algebre n sowmise 3 Paction de d, — QQ_SI,
ad n. Remarquons d’abord que d; est unc sous-algebre
de dérivations de 5. En effet, EQ?YQE:: C QE.L
puisque d(n) ¢ n, [ad n,ad n/ C ad n et quels que soient
de QEEV_ n,n' € n,

[d,adn](n’) = (doadn—adno d)(n’)
= d([n,n]) - [n,d(n)]
= [d(n),n]
= add(n)(n’)

avec ad d(n) € ad n, puisque d(n) e . Done

[d,adn] € ad n. Remarquons que Ia suite

:Hmuvmuiv.:..vm;HmE

est évidemment, Eﬁm_zTr ad :Y:_SEE:_@_ puisque
ES:YT ad n) C n:w. Rappelons que si dim gi/git1 = 2
il existe Ti, T tels que Ti, T} € g;, Ti, Z; & iy ot

Ty 1~y x;
# L vi(d) w; ] 2!

modg;, .
Rappelons encore que si gi(l:) = mz._hm__iu. on peut choisir
Ti, zp tels que (€, [zi,2%]) # 0. Remarquons finalemen que
vi(ad n) = ( puisque ad n est, nilpotent..

Supposons d'abord le quotient, 8:i/8iy1 irréductible pour
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l'action de an_:I. ad n. Il existe done d € QS-L tel
que @;(d) #0. Alors

0= —~(d"¢, [x;, 27)) = (€, d([ay, 2Y))).

Or, dans le cas ot gi(€:) = giy1(€iy1), on peut choisir z;,
z; tels que (€, d([z;, 21))) = 2p;(d)(¢, [, 25]) et (€, [z;, 27))
# 0. Ceci est une contradiction. Donc si gi/8is1 est ir-
réductible pour 'action de d(€],,)+ ad n, le cas gi(6;) =
gi+1(%i+1) ne peut pas se présenter.

Supposons ensuite gi/Bi+1 réductible pour laction de
d([,,)+ ad n. Donc il existe g

(par exemple g} = Rz; + giy1) ET&:V+ ad n)-invariant
tel que giyy C gl C g; et dimg;/g! = dimg!/g:\| = 1.
Comme g! est ad n-invariant, g! est un idéal dans n. De
cette manieére on intercale & certains endroits des g/ entre
gi €t giyy de manitre a exclure le cas dim gi/8it1 = 2 et
8i(&) = giy1(4iy1). Soit J I'ensemble des indices i pour
lesquels on intercale un tel 8- Dans ce cas (3.2.) montre

que
Doeil) + S gl(t)
i=p ied

est un sous-espace isotrope maximal de n et
Dogl) + > gl(t)

est un sous-espace isotrope maximal de g.

4.11. Par construction dans 4.10., g; est un idéal dans n, donc

.1

dans g;. De plus, 8i+1 ost un idéal dans g, donc également
dans g!.

5. Polarisation d(¢)-invariante

. Théoréme : Le Sous-espace isotrope maximal construit en

4.10. est cn fait une polarisation d(€)-invariante.
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Démonstration . Dans tous les cas of 8i/Bit1 = 2 on
peut en fait intercaler yn Sous-espace g; qui est une sous.
aloalirn . i A ? R = - - »
algebre (par exemple g/ - Rz] + Bit1), étant donné (e
piladn) = 0. De cette maniere on obtienf yne bonue suite
de mo_,rm.rm_,_%.wcnmm. Soit. K 'ensemble des indices parcory
par les indices des g: de cette honne suite de sous-algébres
¢t J celui de 4.10. Op » évidemment J ¢ K et

D_Eil) + Y glt) D_&ll)+ 3 gl(e).

1=() 1eJ i=( el

Par le théoreme de Vergne (2.2.) on sait que

n
Mumv.?ﬁ + Mmm?ﬁ est une polarisation. Or ( ‘apres 4.10.
=0 ieK

Mm.ﬁi + MWHQL emﬁFEm::m-omtmﬁa mmop:%o:_m.xm::z.
=0 i)

Done les deux coincident et, le Sous-espace isotrope construit
en 4.10. est en fait une polarisation. Les g, (€:) sont d(¢)-
Invariants. En effet, sojent 9i €8i(l:), gl € g et d e d(?).
Alors

(€. [d(g:), 9i]) = (¢,d[gs, g (€ [9:,d(gD)) = 0

buisque d € d(¢), dgi) € gi et g, gi(¢:). Donc
d(9:) € gi(€;). Les &i{0): 1 € J, sorit également d(¢)-
imvariants. Ep effet, le raisonnement précédent reste val-
able, étant donng que les g!, i € J sont d(€)-invariants par

hypothése.

Remarques : a) En fait le raisonnement précédent montre
que la polarisation est méme &Emv-msﬁzgﬁw. c’est-a-dire
invariante sous 'action des d e g tels que (¢,d(n)) = 0. En
effet, la seule proprigté utilisée est le fait que (¢,d(lgs, 9]))
= 0 et ceci est le cas pour d € QQTL étant donné que
[9:,9!] € n.

b) Notons g(¢) = {u € g|(¢, [u, n]) = 0}. Donc
ad(g(¢)) d(¢],,) et la remarque précédente montre que Ja
polarisation de Vergne est ad(g(¢'))-invariante.
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¢) Pour tout k

b= Mmkm.v 4 M ﬂm:ﬂ_v == MWLML + __mMMﬂ. WMQ_L

i>k W izk i>k

-
ol

-

est une polarisation QE:Y:_S:&:;F et donc d(€)-invariante,
au point £, = m_m» de gj.
De méme, si k € J,

b = gh(l) + ) &ill) + T gi(l) = gh(e)

£ e
i>k i>k
Do)+ Y gl
>k MWM

est une polarisation QE_L,ESEE;P et donc d(€)-invariante,
au point £ = m_mp de g;*.

En effet, dans la construction par récurrence, on obtient une
polarisation & chaque ctape.

D’ailleurs, si k K, k¢J,

! i ) _.. Nu
hi = gh(6) + ) gi(8:) + ,.mMa g:(¢:)
i>k ik
: s ] o I#
est également une polarisation au point £ = 2 g de g*,
non QQ_ n -invariante, car g n'est pas Qﬁm_ﬁv,:imz.&;.
d) Les polarisations hy et hj, précédentes sont données par
he = hngy, resp. hi =hng,.

En effet, dans le cas de gk par exemple, il est évident que
hy c hnge. D’autre part, soit

.3.

AMUS +MU&V mr:m»
i=0 ie.J

avee g € gi(4i) et g! € gli(£:). Pour ¢ >k, gi, 9! € gr. Done

'
m_”m gi + Wm”.u.bﬂ.mm»
i<k i<k

[y

(e }
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el (¢, F__mlv = 0, étant donné que ﬂw._m.._m.__v = (),
gl g]) = 0 et aue gx C gy, resp. g, g:. Ainsi
91 € gu(fy) et

AMS # M.&v € hy.
=0

icJ
On fait une démonstration analogue dans le cas de g)-

e) En particulier, on en déduit que hNn est une polarisation
au point m_: de n* qui est &m_zvrmzézE;m.

f) De méme, si E=B0281D...0g, = {0} est une bonne
T

suite de sous-algtbres, si h — Mwﬁ_ (€;) est la polarisation
i=0
de Vergne correspondante, alors, bour tout k,

hy =h Ngr = Mmmﬁmmv
>k

est la polarisation de Vergne au point £ = m‘m_ﬂ de gr.

Critére de m.:rm:muww : Soit G un groupe de Lie connexe
simplement connexe exponentiel d’algebre de Lie g. Soit
€ € g* et soit h une sous-algebre de g telle que (¢, [h, h)) = 0.
Soit H = exp h. Dans ce cas h est une polarisation ay point
Cde g* telle que IT = m:ammm soit une représentation unitajre
irréductible de ¢ ssi

£t b ={Ad*exp h)élh € h} = Ad*H(¢)

([3]). Nous allons montrer que les polarisations de Vergne
satisfont au critere de Pukanszky et permettent done de
construire deg représentations irréductibles,

Théoreme : Soit E=gDOg D...og, = {0} une borme
suite de sous-algebres.  Alors |a polarisation de Vergne
n

h= Mmkﬁ.v vérifie le critore de Pukanszky.
i=0
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Démonstration - Faisons une démonstration par réenr-

rence. Comme g, | == Rz, | est abélien, h,_, = Enis

I,y = Rm_d est un caractere, done rréductible, of
-

m:a._.*, Fl_w.l = Ly = ?_Am:.._:\m:,.._v. Supposons i
présent le critére démontré pour hyyy dans g, et démon-
trons-le pour h; dans gi- Rappelons d’abord que pour
toute bonne suite de sous-algebres, g1 est un idéal dans
g:. Soit p; = 4 + ©: € 6 + _—m_.. Alors Pivl = EL@...:”
Cit1 + piq avec Vit = Eﬂ._m,.._ € hi |, Par hypothése de

récurrence, il existe hiy1 € hiyy tel que Pipl = ?._m..:H
Ad*(exp Piy1)(€igy). Supposons d’abord que g;(4;) ¢ gy ,.
Donc il existe b; € gi(€:) tel que b; ¢ Bi+1 et g = Rb; g, ;.
Alors

(D3, b;) = (€3, b;) + AS_.,P.V = ({;, b;)
buisque b; € g,(¢;) h; et que ¢, € h. D'autre part

(Ad™(exp hiy1)(6:),b;) = (i, Ad(exp h ) (b))
= Am.__?.v+MQ_E~»TF+L@LV
k=1
= A.N.—,_mw.mv

étant donné que ad*(—hiy, )(bi) € [hy, hi] et que (¢, (b, h])
= 0. Comme de plus ?__m.IH .PLAcxHi:.IKmL_W; o ona
évidemment p, — Ad*(exp hiy1)(¢:) dans g!.

Supposons & présent que g:(¢;) C giyy. Donc gi(¢;)
C giv1{li1) et h; = h;y). Soit g; = Rz; + giy 1. Comme

1 .
w.?_:: gi +dimg;(¢;)) = dim h; = dim hy |
- .
= MT._:: 8it+1 + dim Bit+1(iyy1)),
dim gy 1 (€i41) = dim gi(€i)+1 et il existe Uit € Giyy(liy)
tel que wu;,, ¢ gi(l:). Puisque wu;,, € gi on a donc

o luisi ) £ 0et on peut par exemple supposer que
(€, [iyr,2:]) = 1. Dailleurs w,,, € Bi+1(liy1) C h;;,
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et exp h;y - exp tu;y € Hii '€ Hy On g pour tont
git1 € 8iqy

(Ad™(exp iy - exp ¢ Uis1)(Cigr), gigy)
= (Ad"(exphiy,) - >Q.Amu€uﬁ...IXStVrcI,_v
= At ) (), Ad(exp(- g )) (g )
= Gy, Ad{exp(~hiy 1)) (gig 1))
= Aba*?x@bl_Xml_v.bi_v
= ?..ir?.iV avee piy H.S_m__t

étant donné que ?:oxtﬁlkr__x.?+_: € Bit1 et que
Yit1 € giy1(ligy). D'antre part,
(Ad* (exp hiyi - exp tuiyy )(6;), z;)
= Abmiﬁoxﬁ?_tv.>a.?§;c~_+cnm&u§v
= Ab%?an:mi:ﬁ%>&¢HEJF+_EHLV
= Abm.?xvnstim__yaﬂ.v
+A>ai?xﬁm5+_:mﬂ.v_?:oxvmf.‘r.i:?& —xg)
= (t,z:) - t(e,, [wis 1, z:]) + (Ad*(exp hyy )
baf?xﬁu:*i:mmyam — Ad(exp hiy1)(z;))
= (b, m)— (e, (i1, z:]) + (pi, z; — Ad(exp hiy1)(z;)).

En effet, ?mi,HL € Bit1 et uyy,y € 8i+1(fiy1). Done
Am.mam?mtxﬁvv = 0 de méme que ANWE_»?_#LAHLV pour
k> 2 De plus,

oo

1
T; — Ad(exp hipi)(z;) = - M ﬁma»?tlxﬁv € Biyl

k=1

étant donné Quehiyy € gy et qQue g est un idéal dans gi.
Or sur g;,,, ba.?xt?x,nv. >a..?xvm5iv§+_v = piy
= ﬁLm._t . Puisque (¢;, _E+:Hm_v # 0 on peut alors détermi-
Ner univoquement ¢ e que

(Ad*(exphy, "exptuiy )(6),z;) = (i, z;).
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Par  conséquent, Pi = Ad*(exphyy,; - exXpd gy )(€;)
4 € Ad*H,(¢,).
w Ceci prouve que €4 ht Ad*(H)(¢). o
7 L'inclusion Ad*(H)(£) € 1+ ht est H..._mm___.:_:,.wo:_ vérifide étant.
: ‘ +k ;
donné que pour k € h, Ad*(exp h)(¢) = .f.Mm_lﬁ ad**(h)(¢)
.. k=i
et que pour Ay € h quelconque,
(ad**(h)(€), hy) = (¢, ad*(=h)(h1)) =0 pourk > 1
buisque ad*(~h)(h;) € [h, h] et que (¢,[h,h]) = 0. Done
oo
D & ad**(R)() € ht.
k=1
9.5. Corollaire : Les polarisations QE:Y::&ZE;E constru-

ites dans ce travail vérifient le critere de Pukanszky, étant

donné que ces polarisations peuvent également étre obtemies
H b - [

a partir d'une bonne suijte de sous-algébres (5.1.).

6. Base coexponentielle

Rappel ([4]) : Soit h une sous-algebre de I'algebre expo-
nentielle g et soit G = expg. Il existe by,...,b, g tels
que

6.1

&= (®j_,Rb;) ®h
et tels que application

R"xh —» @
?__..._.m_,.i - oxb.m:_:.mxvmwou.:..mxtma?.oxtb

’ . » . 1
soit un difféomorphisme. I est Cquivalent d’exiger que | ap-
plication

hxR" - @
(hys1,...,8,) mxtb.oxwmﬂ.?.....mﬁ;u@w‘mxtm_?

soit un difféomorphisme.
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Définition : Oy dit que (6150 ,8:) est vine base coexpo-
nentielle i h dang £

6.2. Remarques . a) Soient b et b’ deux sous-algebres de g
telles que h ¢ 1 ¢ g Saient (b, ... b) une base coexpo-
nentielle 4 h' dans get(ei,. .. y Ca ) Une base coexponentielle
a h dans b, Alors (b, . .. sbriey,. . 1 Cs) est une hage COOX-
ponentielle & h dang g.

b) Si h est un idéal de codimension 1 dans g et si g — Rzdh,
alors {z} est une base coexponentielle a h dans g

06.3. Construction d’une base Coexponentielle 3 | polari-
sation obtenue ey 4.10 : Soient g; et gl les sous-algébres,
resp. idéaux utilisés ey 4.10. dans la construction de gy po-

n

_mammsczrﬂ Mm._mm..v + Mm“ mm__v.Oo:m:.:mw::m une base
i=0 ieJ
coexponenticlle a h par récurrence,
Sign_) = Rz, |, En-1 = h,_; et la bage Coexponentielle
a b, ; dans Bn—1 est vide. De méme Sin—-1¢€ J gt
@“_l._ = zu\.u_l_.
Shifhycg = Rz, _, ®Rz,,_, on peut donc supposer que g, _,
est (d(¢[,,)+ ad n)-irréductible. Ey particulier, Bn—1(€y_)
# wxmmzw = {0}. Donc le cas e lznial D) # 0 est 4 ex-
clure, car alorg Bn_1(€n_y) = {0}. Ainsi, (¢, [Zn, 2l ]) = 0
et h, | = mzi;m:rl = Bn—1. La base coexponentielle 3
h, | dans EBn—1 est vide.
Supposons & présent que (b, . .. +0r), resp. ¢ soit une base
Coexponentielle § h;,, dans &i+1 et construisons yne base
coexponentielle & h; dans gi.

a) Supposons dim 8i/Biy1 = 1. La démonstration qui suit
reste valable pour Jes quotients g, /g ot 8i/Bir1siieJ

m_.: Si Wmhmu,v = Bit1, ma.mm‘_,v C Wm+_ﬁmu_+_v et —,r_ = m:.:. Soit
g = Rz, @D git1. Conune Bit1 est un idéal de codimension
1 dans g, {Z:} est une base coexponentielle & g;, | dans
8i. Soit (by,. .., b.) une base coexponentielle i hiy, dans

Bit1. Alors ?\.:?,:;P.v est une bhase coexponentielle i
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hi = hyy ¢ dans g;.

a2j Si gi(€:) ¢ gy, il existe z; € g (&) tel que
i & Boy1- Alors g = Ra, © gy ot Rz @ by © gi(6) +
T

By = Mmu (¢;) = hy. Pour montrer qu’on a en fait égalité,
=i

il suffit de montrer que gi(¢;) C Rz; ® hyy,. En effet, soit
Ui = AT + git1 € gi(4;). Donc
(€, _crm..ﬂ._v =0 = A, _Hrm_.c %+ Am;mf,:mm_v =0

= (6[gi+1,8i41]) =0 carz; € gi(6:) et

Bi+1 C gi

=>  Git1 € Zip1(big1)

= ui €Rz; Dgiy1(liy1) CRz; B hyyy.
Donc h; = Rz; & h;y;. D’ailleurs h;;; est un idéal de

codimension 1 dans h; et {x;} est une base coexponentielle
a h;y, dans h;. En effet

[zi, hi1] € hiN (g, giga] = hiNgip1 = hyy.
Par conséquent 'application

hiy; xR — H,=exph;

(hiy1,t) — exphiy, -exptz,
est un difféomorphisme, de méme que 'application
git1 XR — Gi=expg;
(gi41,t) = exp Giy1 - explx;

puisque {z;} est également une base coexponenticlle it
dans g;. Soit (by,...,b,) une base coexponentielle a h;
dans g, . Montrons que ¢'est également une base COCXpOo-
nentielle & h; dans g;. Par hypothese 'application

R" xhiyt — Gipy =expgigy

Am_.....?,_}miv = expS1by...exps.b, - exp hiy
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est un difféomorphisme. Done lapplication composce

by _— R H,

S T R" = hiyy = R

| ;
(o1, oo, R [EN e exph,) (8, Al L)

stexph; =exph,,, exptr,

N |
G <R

(exp sy by Cexpachocexphg,t)

|

Gy

exp by - expa, b, . exphiyy -exptr,

exp by - exps, b, cexp hy

est un Q_mmoz_o%_:mam_ puisqu'il en est ainsi de I"application
exponentielle entre une algebre de Lie exponentielle et le
groupe de Lie connexe simplement connexe associé. Cecj

prouve que (by,...,b,) est une base coexponentielle i h,
dans g;. ,

b) Supposons ensuite dim &i/Bi+1 = 2. Par a) on peut sup-
boser que g;/g;.; est irréductible pour 1'action de

d(€l,,) + ad n et donc ue le cas g;(¢;) = g, (¢ :
mko:-.w. 4 as gi(¢;) Bit+1(iy1) est

b1) Si g;(€) c gy, 8:i(6) C giv1(€iy1) et hy = hy,. Soit
& =Rz, Rz, ® g, | tel que

!

T; 1 —w; i
d = pi(d) * ) modg,,

bour tout d € d avec vilad x;) = pi(ad /) = 0 et
wi(ad git1) = 0. Par conséquent, g, est un idéal de

..
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codimension 1 dans g/ = R @ givr of {2} est une base puisque (z;,2%) est également une base coexponentielle 3
coexponentielle & g; . ; dans g:. De méme g; st un idéal de giv1 dans g, g, étant un idéal dans g, (4.5.) . Soit
codimension 1 dans gi ot {ai} est une base coexponentielle (B b)) une hase coexpouentielle 4 h;, _" dans m el
a g; dans g;. Si i .by) est une base coexponentielle 3 :5:___.3_5 que c’est également une base n:cx_::_S:.:;__ﬁ._ﬂ r\n
hiy) dans g1, on en déduit donc que (x5, z5,by,...,b,) est dans g;. Par hypothese "application

»

une base coexponentielle 3 h; = h;; dans g

b2) Si g;(¢,) ¢ Bi+1, il faut, par 3.2, distinguer les denx cas R™>xhiyy — Gir = XD i1

dimg;(¢;) = dim[g,;(¢;) N gir1] + 2 et dimg;(¢;) = ?_....,,..._,,F.,Iv = expsiby .. .exps,b, - exphi,
dim{g; (€:) Ngiy1] +1. Si dim gi(¢:) = dim(g;(€:) Ngi 4] +2,

il existe x;, z/ € gi(£:) tels que g; = Ra;, ®Rz{®g;, 1. Donc est un difféomorphisme. Donc Papplication composée

H«..HM S m-? H..,..H_.__ mw —-n_.r_ ot —.ﬂm: &b zH“ D T«..: & —_—u_. Mon-
trons qu’on a égalité. Soit Uy = Ax; + L+ giyy € gi(4;).

R hy _— R« 1f, ————— R hy,, <R?
Donc (81, a0, k) (a1, 5., exph,) (0=, iy, a0
(€ lugl) =0 = At o) + (e, [ g1)
Hl [giv1,8:]) =0 *
= (G lgiv1,8in1]) = 0 car 2,2 € g (6) o
et gy C g (expoiby - expab,  exphyyy, s, t)

= Gi+1 € Gig1(liy1) C hyy,

= 4 €Rz; &Rz, g hyy .
Ainsi g;(¢;) © Ra; @ Rz} @ hiyy et, par conséquent, e,

h; =Rz; ® Rzl ¢ by, D’ailleurs,

expsyby - exps, b, “exphiyy exp ST, exptr;
_H«._ wu__.*.L C h;n ﬁmn_ W:.L C h;n Biy1 = m.n...._._.

De méme pour z/. On en déduit que h;i est un idéal

dans h; et dans h! = Ra; @ hiyy et que h} est un idéal . eXpayby - expa,b, - exph,

dans h;, puisque [£5, 28] € hy n Bi+1 = hiyy (4.5.). Par

couséquent (z;, z}) est une base coexponentielle & h;, , dans

h; et Papplication est un &mmoEo@EmEm_ puisqu'il en est ainsi de Papplication

€Xponentielle dans notre cas. Ceci prouve que (by,...,b,)
est une base coexponenticlle & h; dans gi.

(hit1,8,8) = exphiy - eXp S T; - exp bz Remarquons qu'en fait le cas

dim gi(¢4;) = dim|(g; (¢;) N gi+1] + 1 ne peut pas se présenter.

En effet, soient Ti, T € g; tels que

bisR® 5 Hee exp h;

est un diffécomorphisme. de meéme que Papplication
]

gir1 xR*? — @, = eXp g

(Gi+1,8,8) = expgiy eXpszl-exptay .
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.1,

() =wia( g )

et montrons que pour tout = € g;, = # git+1, T et d(x) sont
indépendants modulo g, | si pi(d) £ 0. Soit = Ax; + [l
mod g;,,. Alors

T 10d
;) mod g,y

pour toutd € d

d(x) = Ad(z;)+ pd())
= Api(d)(x; — wiz;) + ppi(d)(wiz; + 1) mod g; 4,
= ()X + pwi)z; + @i(d)(—Aw; + p)ai mod gy ;.
Comine
A Iz R % N R T .
Atpwg =dwi+p| ATwi o+ M= A= g
= —(A+pd)w
£ 0

z et d(z) sont indépendants modulo Bi+1 8l pi(d) # 0. Par
hypothese le quotient g;/gi,; est irréductible pour 'action
de QQ_SY_. ad n. 1l existe donc d € d(f|,,) tel que ;(d)
# 0. Prenons un tel d, soit z € gi(l:) tel que = & gy ct
montrons que d(x) € g;(¢;). En effet,

(€.ld@),0:)) = (6,d([z,g:))) — (&, [z, d(g:)])
0 pour tout g; € g;

il

puisque [z,g;] € n et que d € QE:Y que d(g;) € g; et
que = € gi(¢;). Ainsi z,d(z) sont deux éléments de g:(4:)
indépendants modulo g;,, donc

dim mmﬁmmv > &muﬂ.—mu_mm& M @-.+L i

Autre construction de la polarisation de Vergne pour
une algébre nilpotente

Dans toute cette section g désignera une algebre de Lie
nilpotente.

il

7.3,
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a) Soit B = (by,ba,...,b,) une base de g. Pour ¢ ¢
{0,1,...,n — 1} notons g = M_..?wr = Vee(bipy, ..., b,)
k>i

et posons g,, = {0}. En particulier, Bo = g. On dit que la
base B est une base de Jordan-Hdilder de g si [b;,b;] € g,
= Vec(byyy,...,b,) avee r = max(z, 5) si 4,7 < n et (b, b;]
=0sii=nouj=n Tlest équivalent de dire que (g, b;]
& <@0ﬂ®u+~_.. ; u@.:.v.

b) Toute sous-algebre de codimension 1 dans une algebre
nilpotente est un idéal,

c¢) Toute algebre de Lie nilpotente possede une base de
Jordan-Holder.

Soit B = (by, by, ... »bu) une base de Jordan-Holder de g et

posons g; = Muz?. Alors, pour tout i, g; est un idéal de
k>i

g et la suite (g;); est une bonne suite de sous-algebres telle

que dimg;/g; 1 = 1 pour tout .

Soit £ € g*. On en déduit que le sous-espace isotrope ma-

n
ximal VB(g) = Mumkmu est une polarisation de Vergne
i=0

au point £ de g* = g} et que VB(gr) = Mmﬂ. (€;) est une
i>k
polarisation de Vergne au point £ = m_m* de gy.

Soit B = (by,...,b,) une base de Jordan-Hélder de g. Soit
g une sous-algébre de codimension 1 (donc un idéal) de g
et soit ¢ tel que b; ¢ g. Par conséquent, g = Rb;, & g.

a) Pour tout k # 4, il existe o unique dans R tel que
br — akb; € g. En effet, by € g = Rb; @ g. Donc by admet
une décomposition unique de la forme by, = agb; + gk avec
gk € g.

b) Si b € g, l'unicité de la décomposition entraine ap = ().

!.
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¢) Soit ¢ le plus grand indice tel que b # g. Posons

@». == m;. - :.*Ou .L .hr < q
&r. = _vr.+_ s Q».*._P si r W 7.

Orsik >4 by, € g, par maximalité de b aryy = 0 et
by = biy1. Alors B = Qw__ . _m_,.-L est une base de Jordan-
Holder de g. En effet, montrons d’abord Pindépendance
lingaire. Soit

n—1

M\/»wr = ()

k=1

M»»?ﬂ + M\{Fﬂi e AM\{QLF =0.

k<i k>i k<i

Par indépendance lindaire des br, Ak = 0 pour tout k.
Puisque dimg = n — 1, on en déduit que .mv est une base de
g Il reste & montrer que [bg,b,,] € <cc@.,+r:;o:|1 ol
7 = sup(k,m). Distinguons plusieurs cas :

Sik,m >,

—m»“mﬁ—_ = ?».:_&3+__ = <anh_c1+mf .. qozv

= e s _.wzi_w.
Sim <<k,

—m;.._ W_,L = Twr+_ ) &:_ = D;:&L
Tm:l._ s FL — Gy _m:l. 1y __L._L i
Vee(bryo,. . ., by,) = Vee(bry g, ... v 1)

= <cnhm_a_+_ 3 il

Il

m

De méme si k < 4 <m.
Sik,m <4,
—@r_ _w-:_ = T_u». F:_ == QLF_ &.3_ — ?»_.@n_‘_
€ Vee(byy,,... yby)

car _F,@E_ € Vee(byy,. .. sy} G Vee(b,y ... b ) ot ._w
méme, [be, b;] € Vee(byr, ..., by,). D'antre part, puisque B
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est une base de g,

fi—1

T;:,._ mz; = Mtu@u

r'

g=1
= 3 il b+ b,
J<t jzi

Comme E?m:; € Vec(b,,(,... y0.), on en déduit que 1
=0sij<r41et que [by, b,] € Vec(b, 44, ... ,mz|L.

d) B = (b, m__. o wua_v est une base de Jordan-Hélder de
8. BEn effet, si k >4

[bi, 6] = [b;, by, 1] € Vee(beyg,... b,) = Vee(bry, ... b,).
Sik<iq,
[bi, bk] = [by, by] & Vee(bivr,. .. b,) = Vee(bi, ... b,_,)

En tenant compte de ¢), on voit done que B est une base
de Jordan-Hslder de g.

i

1=

- Soient g une algébre nilpotente, ¢ ¢ g*, B = Q.:_.:_PL
une base de Jordan-Hélder de =

@v Si (¢ (g,g]) = 0 8 = g(f) est une polarisatiop qui
comcide forcément avee la polarisation de Vergne et Xe(expx)

= e~ H{t3) définit un caractore sur G = expg.

b) Supposons (¢,[g,8)) # 0. Done (¢,[B,g]) # 0. Soit J
le plus grand indice tel que (¢, [b;, g]) # 0. Donc (¢, [B, b;])
# 0. Soit ; = i(7) le plus grand indice tel que (e, [bi, b;]) # 0
et soit g = {y gl(¢, [u,b;]) = 0}. Donc i est le plys grand
Indice tel que bi € g. De plus b; € . Montrons que g est
un idéal, forcément de codimension 1. En effet, soit 4 ¢ g
et soit g € g. Alors

llwglbs) = —e, llo. b1, ) ~ (e, (16, u], g))
= 0

P



ar g, b;], [b;.u) € Vee(byyy,...,b,) € g(€), par maximalits
de 'indice 7. Done g est un idéal de codimension 1 admet-
tant {b;) comme base coexponentielle.

¢) Coustruisons la base de Jordan-Holder B de g comme en
7.3. Ici

bk —arbi € g & (€ [bk — arby, by]) =
(€, [bi, b;])
Am, ?TF_ .

= Q=

On sait qu’alors B = hm: v b

Hélder de g et que B = (bi, by, .. ..szV est. une base de
Jordan-Holder de g.

1) est une base de Jordan-

d) Montrons que g(£) ¢ g(¢) on € = m_m En effet, soit

Abi + g € g =Rb; @ g avec g € g et supposons que Ab; + g
€ g(¢). En particulier, 0 = (€, [Ab; + g,b;]) = (¢, [b:, b5])
puisque g € g, donc que (¢, [g,b;]) = 0. Ceci implique que
A =0 et que g(£) C g et g(f) C g(4).

e) Notons par V¥ (g), a\.bﬁ ) et ﬁ\wﬁwv les polarisations dans
g, resp. g, construites a partir des bases de Jordan-Holder

B, B et B. Comme g(f) c g(€) et que B (b, by,...,b b))
avec B = (by,...,bn_1), on a évidemment VB(g) = d__\:A 1.
Montrons que A\wﬁmu = a\mﬁ ). Soient B = (by,..., bn)

et m.w = ﬁ&__,m__ e I_v = ﬁ&m_::&:v avece &_ = & et m:n
=be,pour k> 1 Onagg= > Rbu, g = Mm@a,
.:au;n m>k
Mmimw ct ?w. Mm»@t avec 90 = m_
=0

EE:EQ:EE que to.: m > 1, @3 = b1 = by et pour
l<m<i,b, = m—1 = bm—1 — @u_1b;. Pour k = 0 on

ago =gy =gt gu(lo) = &y(f) = g(€). De méme, pour

17

k> g = mmr et g (€y) = T\_ ). Pour 0 <

k<4, soit
.Ir = M\J \.’Qm: ._l M}EWD
k<n< a>i
= M \znﬁbal_ = Q:.I_m:.v + \/ b
k<a<i W o
A (78}
Done
(€ [z, b)) = (€, [z,b2]) =0 poura>;

(6 [z,b]) = (¢, [ax, bam1 — aa_1bi)) =0 pour k < ¢ 4.

Si en plus (¢, [z, b,]) = 0, alors

TEB1= Y R(buot — au_ib) + R, + > Rb,
k<a<i a>i
:.: que x € g1 ().
Si (€, [z, b;]) # 0, il existe # € R* unique tel que

(€, [x + uby, b)) =
) Am_ H.Hu @Lv
(€, [bi, bs])”

De plus, par maximalité de i, (£, [bj, b))
> 1. Par conséquent

mh”

0 pour tout

(¢, [z + 105,b,]) =0 pour tout a =g,

P
Amocm M < 4, by — ammb; € g par construction et donc
[b;, b, — QH& :]) = 0 par définition de g. Ainsi

(€ [z 4 pbj, by — bil) =0 pour k <a <

Cost-di-dire z pb; anmule gy . D’autre part, & + ub,

S Brk-1 puisque j > i of 2 + by € gr_i(€x_1). De plus

rl

/
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|

bj € gi(€;) comme (£, (i, bl = 0 pour tout m > 4. C_u en
déduit que z Bk—1(€x—1) + gi(€:). Par conséquent, VP (g)
C VE(g). Puisque V#(g) et V8 (&) sont des polarisations,
il faut que V5(g) = V8 (g).

a) Faisons une construction par récurrence pour obtenir la
polarisation de Vergne. Soient g une algebre de Lie nilpo-
tente et B = (by,... ,b,) une base de Jordan-Holder de g
Si (¢, g, g]) # 0, reprenons la construction faite en 7.4. et
posons

g1 = W o= T__.. € m_ﬂm_ —.ts m.__.Lv - Ow

v =b; € gy

by = kb; avec k € R* tel que (€,[b}, m]) =1

bl = b;,b) = Ogsionn b mmbpay

(nouvelle signification de g, ). Alors (b)) est une base coex-

ponentielle a g; dans g ct By = (b!,. .. ,bL_ 1) est une base

de Jordan-Hélder de g,. Par 7.4e), VB(g)=vhH (g1).
b) Si (¢,[g1,&1]) # 0, on refait un raisonnement analogue
pour g;.
¢) Pour faire le raisonnement par récurrence, supposons
BOEr 2. Dy
Yis- o ¥r € 8r
(b7,...,b%) une base coexponenticlle & g, dans g telle que
8k = Rbi | @ gry1 pour tout k
Bk = {u € ge—1[(€, [u,yk]) = 0} pour 1 <k < r
By = (bf,...,55_,) une base de Jordan-Holder de gy pour
1 <k <7 telle que

Vi) =VPi(g)=...= Vik(g)=.. = Vi (g,).
Supposons de plus que

(b, w)) =1 pourl <k < 7 par construction
(€ [y, ue]) =0 pour1<jk<p

1749
Car si par exemple j < fk, Y €85 ={ue gi-1l(¢, ?_.q._:
=0} et - "
(¢, _@T.S,C =U pour 1 ji<k<yr

2l \ i —

car alors .?n CBk-1Cg={ue Bi-1[{€, [u, y;]) = 0}. Par
construction, chaque 8k est un idéal de codimeunsion 1 dans
Bi—1-

d) Si (¢, (g, g.]) = 0, Vir(g.) = &r est la polarisation (e
Vergne de g, par 7.4.a) et #\xﬁmv = 8 est également la
polarisation de Vergne de g par 7.5.c). De plus (&1,...,8)
est une base coexponentielle 4 VB(g) dans g B

e) Si (¢, (& 8-]) # 0, soit J le plus grand indice to] que
(¢, FM,MLV # 0 et soit § = ¢(7) le plus grand indjce tel que
(e, b7, b%]) # 0. Posons

Yry1 = &M
Brit = {u € g (¢, [u, ypp]) = 0}

by = kbl avee k € R* tel que (¢, E.+:?.+_C i |
W.M..T._ - bm _ (£,[b b7

¢_ . . .
@m+ =bp, sik >4,

. . 1 4 |
Par74., B,y = € - BT _1) est une base de Jordan-

Hélder de gr41 telle que VEBe(g, ) = vBeii (8r+1). Par cons-
truction,

Br =Rb.,, ©gryy

b1 €8 Cgrr ... C g Cg.

Done (e, (6741, 9%)) = 0 pour k < 7 + 1, ¢est-a-dire k < 7.
De plus, -

Yr+1 €Br+1C g C ... C g, cg

ot gy = {u € g;-11(4 [u,,]) = 0}. Done (€ [yr1,95]) = 0
bour tout 7, j < r 41 e YL+ Yrs Yrt € Bryt, puisqu'on
..i:.. aw._m que yi,...,y. € g,. Par construction, gry1 est
_.E idéal ﬁ_o. ncn:,:.:._:m::_ L dans g, et ( +41) €st une basa
“Oexponenticlle & g, | dans .
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f) Conclusion : On construit done g Dgy o ... > gp
jusqu'a ce que (¢,lg,, g,]) = 0. Alors VB(g) = VBi(g))
=gy e ﬂmiwwv = Bp est la polarisation de Vergne associde
a la base de Jordan-Holder de départ B. Par construction
chaque g, est un idéal de codimension 1 dans g,_;. La cons-
truction donne une base coexponenticlle (Bree o) & 15
dans g telle que g,_; = Rb. @ g, pour tout r et des éléments
Yi,. -, Yp de g, tels que

(Clwl) =1 pour1<r<p
Am_ —w‘q.u@uc = () pour 1 < s < P
(& [y Yr]) =0 pourl <r<s<p

a) Dans cette section on montre qu’'on peut modifier les

b}, y; obtenus en 7.5. de manitre A vérifier

(€[4, b)) = 0
(€, b, y;]) = b5 quels que soient 3, j

1

(6 [yi,y3]) = 0.

b) Remplagons chaque Yyj parun yi = y; + M\f; s en choi-
87

sissant les A, de maniére & avoir (€, [6;, y;]) = 6:;. Ceci est

possible. En effet, remarquons d’abord que pour i > j>s

on a (£, [b},y;]) = 0 et (¢, (b, ys]) = 0. Done, pour i > j on

a également (€, (b}, y/]) = 0 ot (¢, [b, 1)) = (¢, b3 wi]) = 1.

Pour i < j on obtient

(6 5 y30) = (€ 06yl + 37 Aule, [y + A

i<8<j

Pour j fixé on obtient le systeme suivant en annulant Jes

(€ b, y50), i < 5,

18]

t=1: Avt A (6 (b, p0)) .. Ai—1(6 6], y4])
= —{€,[b,3;])

P=20 0 X+ X6 by, aul) + .. 4 Aj— (L, [by, 1))
= (& [by, y;])

Lasfiesil \_(.rm = fAm_ —&H..._.ITQLV.

Ce systéme admet done une solution unique pour les Ag.
Remarquons que les @..“. construits appartiennent toujours i
8p et vérifient également (¢, [y, ¥i]) = 0 quels que soient %7,

¢) Remplagons chaque b par un b = b th.ﬁ en choi-
sissant les p, de maniére 3 avoir (e, ?m.._ﬁ;vnﬂ 0 quels que
soient 7, 7. Faisons cette construction par récurrence. Ey of-
fet, remarquons d’abord que (¢, (b, y!]) = (¢, Ly d+0=1
pour tout 7 et (¢, [bY,y]]) = (e, [, %5]) = 0 pour t,7 dis-
tincts.

Pour ¢ = 1, prenons =

Pour ¢ = 2, posons

0 = (¢ 1[b3,07])

= (6,165,])
= (€.[t5,8]) - 4

Done p; = (e, [b}, 1]) et by est déterming.
Supposons bY,..., b, construits tels que (¢, [b),8"]) = 0
bour r,s <4 — 1 et déterminons b;. Pour k < i on exige

0 = (€ [b,6¢])
= ANH ?H, ﬂ_v — Mk
Done py, = (€, b5, b7]) et b est déterming,

On construit ainsi de proche en proche Jles by tels que
L . "
(@, (b, 71} = 0 quels que soient i 7.
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base coexpotientielic A gy daiy B Enetlet, comme e €1y
pour

g, 0D w encore gy - R0y, @ ey ool plisgine

Brag est i idénd Je codinension | diuis gy, (b p ) est une
base cocxpoucntielle a4 gr . dags Bk Ou ubticnt alors (Jo

proche en proche une base coexponentielic 4 g dans g

i

Y

dans le rais muement par réenrrernee donnant )a polarisation
et la premiere base coexponentielle

d) Les constructions precédentos auraien PU etre intégries
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