Les groupes exponentiels

Deurdéme partie

Carine Molitor -Braun

3. Autre définition de I'algébre de Lie

3.1, Soit (V.-) un groupe exponentiel. On supposera V muni d'une base
de sorte que V pourra étre identifié 2 R™ pour un certain n.
Lintroduction suivante de l'algébre de Lie de G = (V,) se base
uniquement sur les résultats de 1.1. 4 1.12.

32. Definition : Seit G = (V,)) un groupe exponentiel. Quels que soient
X,y € V définissons Ad(x)(y) par

Ad(X)(y) = xyx!
3.3. Proposition : L'application
¢:R->G=(V,)
t = o) = AdX)(ty) = x-(ty)x"!
est un homomorphisme analytique de groupes de R dans G.

Démonstration : (1) o(s) = _x,:ﬁ,x-: : _x.ﬁmi,x‘.:
x[(ty)-(sy)] x" !

x.:+m€.x-u

o(l+s)

"

n

i



quels que solent s,t € R. L'application ¢ est analytique, comme il
en est ainsi de la multiplication dans G.

3.4. Corollaire : Quels que soient x,y € V, quel que soit t € R

]

Ad(x)(ty) = t-Adx)(y)
N.Ea.x-_ H.?.w.a-:

I

gﬁm"gu.pw.anﬁmﬁzm<§a:a

H.E;.x-u =¢t)=tu pourtoutte R

Alors t = 1 donne H.%.HL =u, c.a.d.

x —.qu X 1 =t Auh.%q.unu H_

3.5. Proposition : Quels que soient x,y,z € V :

Adx)(y+2) = Adx)(y) + Ad(x)(z)
Démonstration : Supposons x € V fixé et identifions V a R, Alors
AW = xyx1 = (A;0), Ax), ..A (),
les A; étant des fonctions analytiques de y. De plus,
Ad(x)(ty) = tAd(x)(y)
entraine
Ajlty) = tAy(y) pour tout t € R
= lywn

Montrons que ceci implique que A est nécessairement de la
forme

Afy)=Y ayyy Ol y=(yi,....yn)
=1

En effet, au voisinage de 0 on peut écrire
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M ayk ¥j yx + O3)

Afy)=ai+ Y ayy+
j=1 1.k=1

Or A{(0} = Ay(0y) = O-Ay) donne a; = 0. Par conséquent, pour
tout y € V et pour t suffisamment petit on a :

n

Y, ayky v+ Oft3)

n
t- >»@~w = En%u =1 M m.c %u + ﬂw.
_ j=1 1.k=1

et
Ab)=gileam) =X ay,

Par conséquent, A;(y+2z) = Aj(y) + Ay(2) pour tout i et

Ad(x)(y+z) = AdX)(y) + Ad(x)(z)
3.6. Proposition : L'application
Ad:G=(V,) - GLWV)

x —Ad(x)

est une représentation de groupe.

Démonstration : Par 3.4. et 3.5., Ad(x) est une application linéaire
de V dans V Elle est bijective, car

Ad(x)ly) = Ad(x)(z) ssi uonn.p = xzx1

ssi y=z

Ceci prouve l'injectivité. Comme V est de dimension finie, Ad(x)
est également surjective. Donc Ad(x) € GL(V).

Quels que soient x, x' € V on a Ad(xx') = Ad(x) Ad(x"). En effet,

Adxx)(y) = () y-(xx) ]
= XX yx" Hw.x.n
= Ad(x) (Ad(x)(y))

Comme l'application x — Ad(x)(y) est analytique pour tout y,
I'application x — Ad(x) est une représentation C* du groupe
Ou?ﬁ.
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3.7. Deéfinition ; Par deéfinition, ad(x) est 1a differentielle de Ad(x), c.a.d.

adix) = d(ad)(x) = 4. ( Aditx))

t=0
a savoir, pour touty eV,
2dp(y)= G (Ady) =L () v (1) .

3.8. Remarque : Comme Ad(tx) (Ay+pz) = AAd(t)(y) + pAd(tx)(z), on a
également ad(x)(Ay+uz) = Aad(x)(y) + padx)(z), c.a.d.
ad(x) € end(V).
3.9. Proposition : Quels que soient A, HeER x,zeV,
ad(Ax + pz) = Aad(x) + pad(z)

Démonstration : Remarquons d'abord que
= hl t
adadty) = & adody)

ﬂwhlﬁmic; enposant s=2At si A=0
ds 8=0

= Aad(x)(y)
Notons ensuite que pour y fixé on peut écrire

AdX(y) = (By(), By(x), ..., B, (x)) = B(x),

les B, étant des fonctions analytiques de x. Alors

2dly)= g Adtdly) =Bty 3. 50 x

||
HM =

wo dt
et

aded)y) = &8l tper)

= M o —(0) (x4+z)

M 5o (0} x; + M 50}z,

= ad(X)(y} + ad(z)(y)
= (ad(x) + ad(z) )(y)
3.10. Définition : On définit le crochet de Lie dans V par

[.1:VxVvov

ou

=adXy)= & Adt)ly)

3.11. Remarque : Par 3.8. et 3.9,, le crochet de Lie est bilinéaire,
3.12. Lemme : Quels que solent x, y € V,

(tx)-(sy)-(tx) " 1

= (tx)-(sy)-(-tx)

= sy + stQ(x,y) + st2 Alt)  pour s,t sufisamment petits

Alt) étant une fonction analytique en t, dépendant de X, y.

Démonstration : Dans un voisinage de 0, la forme locale de la
multiplication s'écrit :

Xy =X+y+2Q(xy) + O(3)

ou Q(x.y) est bilinéaire et alternée. Donc, pour s,t suffisamment
petits

(9-(sy) = tx + sy + ZstQ(x.y) + O(3)
et

(tx) (sy) (-tx) = tx + sy + W st Q(x,y) + O3) + (-tx)

+ Wﬂ tx + sy +,meH Qx,y) + O(3),-tx T O(3)



=8y + w. st Qx,y) u._p t2 Qfx,x) m st Oy, x)
,m st? Q( Q(x,y)x ) + O(4) + O(3)
=Sy +stQxy)+OB8)  car Qfy.x)=-Qx.y)
=Sy + st Qx,y) + st? Alt)
car le terme restant O(3) doit étre linéaire en s.
3.13. Remarque : Pour tout s € R et pour t sufisamment petit on a

Ad(tx)(sy) = sy + st Qx,y) + mﬁwbﬁ_.

En effet, 'égalité est vraie pour s suffisamment petit. Comme les
deux membres sont linéaires en S, I'égalité reste vraie pour tout
s € R. En particulier, pours =1,

AdX)(y) =y + t Qlx.y) + ﬁw>3 pour t suffisamment petit

3.14 Corollaire : Quels que soient x, y e V

[x.y] = adX)(y) = Q(x,y)
Démonstration :
ad(x)(y) = - Ad(tx)(y) -
=&y +tomy) + eaw) >
= Qlx.y)
3.15. Remarque : La forme locale de la multiplication s'écrit donc
Xy=X+y +w:x.5 +0(3)

pour x,y suffisamment petits.
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3.16 Corollaire : Quels que soient XyeV
(x.y] = -ly,x]

Démonstration : On sait que Qx,y) = -Q(y,x)
3.17 Huwmh.@m_mod : L'application
ad: (V,[,]) - (endv,[,)

est un homomorphisme d'algébres ou le crochet est défini dans
endV par [A,B] = AB - BA. En particulier,

ad([x,z]) = [adx, adz] = adx adz - adz adx

Démonstration : Dérivons la relation
Ad((tx) (sz) (-tx) ) = Ad(tx) Ad(sz) Ad(-tx)
d.

C.a.
Ad(s(z + tix,2) + t2A(t) ) ) = Ad(t) Ad(sz) Ad(-tx)

Donec

mn_mw Ad( sz + ffx,Z) + t2A(t))) . Ad(tx). mnmﬁmn_ . Ad(-tx)

ad( z + fx,2] + t2A(t)) = Ad(tx} ad(z} Ad(-tx)

adz + t ad([x.2]) + t2 adA(t) = Ad(tx) adz- Ad(-tx)

%m?an +tad(x,z]) + t2 makﬁ;uo = %%P%ﬁ.m%&&-ﬁg

=0

ad([x,z]) = mat Ad(tx) - adz Ad(0) + Ad(0) adz. 4. Ad(-tx)
t =0 d t t=0

ad([x,z])=d Ad(tx) -adz-adz d Ad(tx)
dt t=0 dt =0

ad([x,z]) = adx- adz - adz. adx

ad([x.z))=[adx,adz]



3.18 Remarque : Dans les calculs précédents on a utilisé la propriéte
Suivante :

Si A(t) € end(V), B(t) e end(V) sont dérivables termes a termes,

(At BiY)) = Ay Bito) + Alto} LB)

nnna t=tp t=lo

c.a.d. on a les régles habituelles de dérivation. Ceci provient de la
distributivité du produit d'endomorphismes pour l'addition et la
soustraction d'endomorphismes.

3.19. Corollajre : Quels que soient XyzeV

(x.yl.z] + [ly,z],x] + [[z,x] yl=0 identité de Jacobi

Démonstration : [[x,y].z] = ad( [xy]) (2)

= (adx ady - ady adx) (z)
xly.2l] - [y.[x,z]]
-lly.zl.x] - [[z,x],y]

I

3.20. Définition : Soit G = (V,’) un groupe exponentiel. L'espace vectoriel
V muni du crochet de Lie [ , | est appelé algébre de Lie du groupe G
et est notée g, c.a.d. g=(WV.l[,I.

3.21. Remarque : g = (V,[, ] vérifie les propriétés caractéristiques des
algébres de Lie, 4 savoir

(D [, ] est bilinéaire
(I [x,y] = -[y,x] quels que sofent x,y e V
(D) [[x,y1.2] + [ly.z).x] + [[z.] ¥l =0 quels que solent x,y,z e V

3.22. Proposition : Soit
h:G=(V,) - cLw

un homomorphisme C* de groupes. Alors, pour tout x € V et tout
N e N*,

.uu. nh z
at hitx) =0 _n: Epiﬁo“
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Deémonstration : par récurrence
La relation est vraie pour N = 1. Supposons le résultat vrai pour
1,2,...N-1.0Ona:

A5 hitx)= S n( N i) = S{ bl ) = L5 (i

en remplacant t par Nt. Evaluons

N N .
St (Bt N = G5 hitx) h(txg- hitx)
N facteurs

Il'y a N possibilités pour faire agir la premiére dérivée. Dans
chacun de ces cas il y a N possibilités pour faire agir la deuxiéme
dérivée, etc. On obtient donc NN produits de la forme

_%WEEI%ME :.. %w_hz?; o T

Parmi tous ces produits il y en a N ot une dérivée n-iéme
intervient, a savoir

Z
%ﬁrzziv h(tx)-- h(tx)

zi _ %zﬂ%x;: hitx)

h(tx} hitx- A5 it

En t=0 on trouve :

h(tx) -0 =h(0) =id
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ToE.f.nzn

Démonstration : Vu 3.23., cette relation est vraie pour t
& suffisamment petit. Comme le membre droit converge
A hitx) = Ahf htx) vs absolument pour tout t, et que les deux membres sont des
dt t=0 \dt t=0

fonctions analytiques de t, on a égalité partout.
hypothése de rs . D'ou
pat lypothese de récurrence. Doy 3.25. Remarque : Soit h un homomorphisme analytique de groupes de
G=(V,)d GL(W), E t
hzﬂEsa =L d% (pipp (V.) dans GL(W). En posan
dt 0 NN dtV t=0 4
dhix) = £ h(tx) o

nlrz.nmuziiz_fz_. A hitx) ¥
Zzh dtV t=0 Aﬁ: _nchg on trouve de méme

Ainsi
hit)= 3 L7( dhx) < = exp( t dhix))
(N¥-N) 4% pity) Lz:-z:hrzi _z _wua o ™
dt t=0 dt t=0
et
pour toutxe Gettoutte R
S0 =(gmiey P
e b0 3.26 Remarque : Par 2.18., on voit que I'approche de la section 3 est
3.23 Cas particulier : Soit G = x équivalente a I'ntroduction traditionnelle de l'algébre de Lie,
Pour tout x € V., (V.-) un groupe SXponentel, présentée dans la section 2.
%ﬁwﬁi = (adx)V
= 4. Centre. Sous-groupes
En effet,

LAdtx)  =ad) 4.1 Définitions : Soit (g[ , ]) une algebre de Lie,
t =0 Un sous-espace vectoriel f de g est une sous-algébre de g si

3.24 Corollaire : Soit G= (V,) un groupe exponentiel,
Quel que soit x € V, quel que soitt e R, Y€ h= byl e hques due solent xy.

s Un sous-espace vectoriel i de g est un jdéal de g si
Adltx)= 3 mAmnEw = exp(t adx)
k=0

Xel yeg=[xy] € iquels que soient x,y.

En particulier, Comme [y,x] = -[x,y] on a alors également

§nM%Amnianﬁmai Xegyei=[xylei
k=0
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4.3.

4.4.

4.5.

4.6.

On appelle centre de g et on note Z(g) I'ensemble
Zg=xeglilxyl=0 Vy € g)

Remarque : Le centre de g est un idéal de g. En effet, c'est un
sous-espace vectoriel de g vu la bilinéarité du crochet de Lie, De
plus, pourxe Z(g), y e 9. [xyl = 0 e Z(g).

Définition : Soit G un groupe quelconque. On appelle centre de G
et on note Z(G) I'ensemble

Z(G) uvnmo_x.w.nw.x Vy e G}
=xe Gl N.%.MLH% Vy e G}

Remarque : Le centre de G est un sous-groupe distingué de G (au
sens de la théorie des groupes). En effet, si x,z € Z(G), alors

(x2)y = x(zy) = x(y2) = xy)z = (yx)z = y-(x2)
pourtouty e G, c.ad. xze Z(G). De meéme,
Xy=yx = w.HL = N-_.% pour touty e G

etx!e Z(G). Donc Z(G) est un sous-groupe. De plus quels que
solentx € Z(G), ae G,y € G,

F.x.m-p; = Hm.m-n.i.w =Xy=yx=y(xaal)= %.Hm.x.m;_
etaxale Z(G). Done Z(G) est un sous-groupe distingué.
Définition : Soit G = (V,) un groupe exponentiel. On appelle sous-

groupe de G = (V,) un sous-espace vectoriel H de V stable pour la
multiplication.

Remarque : Soient H et G = (V,-) comme en 4.5. Alors H est bien un
Sous-groupe (au sens de la théorie des groupes) de G car :;

xyeH=xye H
NmIva-Hn-NmI

a2

4.7. Lemme : Soit G = (V,-) un groupe exponentiel. Sofent x,y € G.

Alors
Xy =yx < (sx)(ty) = (ty)(sx) quels que solent s,t € R.

Démonstration : 11 suffit de démontrer = .

Supposons x-y = y-x et montrons x-{ty) = (ty)-x, ou, de maniére
équivalente, x-(ty)x"!= ty. Or, par 3.4., M.F&.M-H = H.?uﬁx-uu.
D'autre part, x-y = y-x entraine x.%.NL =y, donc N.ﬁﬁ.x-_ =tyet
x-(ty) = (ty)-x, pour tout t € R. Ensuite un raisonnement
analogue montre que (sx)(ty) = (ty)-(sx) pour tout s € R.

Proposition : Soit G = (V,) un groupe exponentiel et soit
g =(V.[, ]) son algébre de Lie. Alors

Xy=yx =[xyl =0
De plus, si xy = yx, alors x:y = X+y.

Démonstration : < Par hypothese, ad(x)(y) = [x,y] = 0. Alors

xyxt=Adwly)= 3, Liadxk) =y

et xy = yx.

= Supposons Xy = yx. Par 4.7., (sx)-(ty) = (ty)-(sx) quels que
solent s,t e R. Définissions

¢ R-5G
t - o(t) = (tx)-(ty)
Alors

0(t)-9(s) = (tx):(ty)-(sx)-(sy) = (tx)-(sx)-(ty)-(sy)
= ((t+s)x )-( (t+s)y ) = @(t+s),

c.a.d. ¢estun homomorphisme analytique de groupes. Par
1.12., il existe u € G tel que



49.

olt) = (x)-(ty) = tu pourtoutte R
Alors t = 1 donne Xy =uet
(&-(ty) = t-(xy) pour tout t e R,

Remarquons encore que la forme locale de la multiplication
donne

(tx) (ty) = tx + ty + w t2[x,y] + Ot3)
pour t suffisamment petit, par 3.15. D'oq
xy=L(dx y)) o = al((tx) (ty)) »
= %ﬂ tx + ty +wm?.s +o:m; L =X

En remplacant dans le raisonnement précédent x et Yy par sx et
Sy respectivement, on trouve done que

(sx)(sy) = sx + sy = s(x+y) pour tout s € R.

Finalement, la forme locale de la multiplication donne, pour t
suffisamment petit,

tcay) = (00H(ty) = tx + ty + 32 [xy] + O(t3)

& teay) = &5y + L ey ofe)

ﬁ:w t=0 Q»n t=0

0=[xy]

Corollaire : Soit G = (V,)) un groupe exponentiel. Le centre Z(G) de
G est un Sous-groupe distingué de G = (V,.).

Démonstration : Par 4.4. on sait déja que Z(G) est un sous-
groupe distingué au sens de la théorie des groupes. Par 4.7., on
voit que six € Z(G), alors Ax e Z(G) pour tout A € R. Par 4.8., on
voit que si x,y € Z(G), alors Xty = xy € Z(G). Donc Z(G) est
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€galement un sous-espace vectoriel et Z(G) est un sous-groupe
au sens de 4.5.

4.10 Corollaire ; Soit G = (V,-) un groupe exponentiel et soit g = (V,[ , ])
son algébre de Lie. Alors le centre du groupe Z(G) coincide avec le

centre de I'algébre Z(g).

Démonstration : xy = yx VyeV & [xyl=0 VyeV
4.11. Exemple : Déterminons le centre du groupe G = mww.._

représentant la composante connexe de I'élément neutre du
groupe affine de la droite (1.7., 1.11. et 2.9.). Il suffit de déterminer

le centre de son algébre de Lie g = (RZ[ , ]) avec
(), (u'.v)] = (0,uv'-u'v)
Or (u,v) € Z(g) ssi
[V, xy) 1= Ouy-xv)=0 Vxy

u x|_
ﬂ_ﬂ %‘ro vV xy
&Su=v=0

En effet, si (u,v) #(0,0), il existe toujours un vecteur indépendant
de (u,v) dans R2,
Donc Z(g) = {(0,0)) et Z(G) = {(0,0)).

4.12. Corollaire : Soit G = (V,) un groupe exponentiel. Les
homomorphismes de groupes continus de R dans G sont tous
de la forme

t-stx, xeG.

En particulier, tout homomorphisme continu de R dans G est
analytique.
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4.13.

Démonstration : Soit
o:R-G

un homomorphisme continu de groupes. Quels que solent t 1
tre R,

Plt))9lty) = olt; +ty) = Plta+t) = olty)qlt))
D'aprés 4.8.,

?(t))lty) = olt))+ @lts)
donc

ety +tg) = (t;)+ olty)

quels que soient t1. t € R. Alors il existe x e V tel que ¢(t) = tx

pour tout t eR. En effet, en se limitant a la i-éme coordonnée p.ex.
ona

Pyt +to) = o;(ty) + 9i(ty) quels que soient tj.toe R

Donc ¢, est un homomorphisme de (R,+) dans (R,+) et est donc
nécessairement de la forme ﬁa = Xt pour tout te R, ou X € R

Proposition : Soit G = (V,) un groupe exponentiel et soit g= (V,[ , ])
son algeébre de Lie. Soit H ¢ V tel que (H,') soit un sous-groupe

du groupe exponentiel G = (V..). Alors (FL[, 1) est une sous-algébre
deg =(V,[,]), c.ad. tout sous-groupe de G coincide avec une
Sous-algebre de g.

Démonstration : Par (4.5.), H est un Sous-espace vectoriel de V,
D'ailleurs H est fermé dans V, étant donné que V est de
dimension finie. Soient xy € H. Alors

x.yl = adx)(y)

=gl y- ()

(tx} y- (-tx) - y
t

=lim

t—0

Comme H est un sous-groupe et un sous-espace vectoriel,

(tx) %.M-ﬁi YeH pour tout teR’

Donc [x,y] € H, H étant fermé, et H est une sous-algébre.

4.14. ul 11-B -Hau : Soit G un groupe de Lie

quelconque d'algébre de Lie g. Pour XY dans un volsinage
suffisamment petit de 0 dans g on a

loglexpX: expY) =X + \ ¥i ( expladX))( explt ady))](Y) dt

i i&un_omn

z-1

La fonction ¥(z) est analytique au voisinage dez =1 ounelle
admet le développement en série

oy (1
ﬁwvinu”w M.TIH]RN 1

_, Az-1) &M% -nm% -

b

Pour la démonstration, voir [1].

Soit a présent G = (V,) un groupe exponentiel et g = (V,[ , ]) son
algébre de Lie. Puisque l'application exp est alors l'application
identique, la formule de Campbell-Baker-Hausdorff s'écrit :
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x wﬂi\ ¥ (expladx))( exp( t ady))](y)dt

pour x,y suffisamment prés de 0,

4.15. Proposition : Soit G = (V,)) un groupe exponentiel et soit g=(V,I[,)]

son algébre de Lie. Soit h ¢ V tel que (h,[, ]) soit une sous-algebre
deg=(V,([,]). Alors (k,) est un sous-groupe de G = (V, ), c.a.d.
toute sous-algébre de g coincide avec un Sous-groupe de G = (V,.),

Démonstration : Par hypothése, h est un sous-espace vectoriel
de V. Solent a présent X,y € h sufisamment prés de O de maniére
a avolr la formule de Campbell-Baker-Hausdorff et le

développement en série de VYl(exp(adx)) (exp(tady))l(y) pour tout
t € [0,1]. Montrons que pour tout k € N,

(expladx) (exp(tady)[ (exp(adx)) (exp(tady) - 1%y e h.

En effet, pour tout z € h,

expladx)(z)= ¥ L(adx(z)e h

ko K

puisque Am&a_ﬁﬁ_ € h et que h est fermé, comme sous-espace
vectoriel de dimension finie de V. De meéme,

explt ady)(z)= m Lladyk(g)e h

k=0

On en déduit que :
(exp(adx) (expltady)) [ (exp(adx)) (exp(tady)-1/%() ¢ k

¥ (expladx))(exp(tady)) I(y) € h pour tout t € [0,1).

Alors
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4.16.

Xy = \ W (expladx)) (expit ady)](y) dt e

étant donné que I'intégrale peut étre approchée par des sommes
finies d'éléments de h et que h est fermé. Donc xy eh pour x,y
dans un voisinage suffisamment petit de 0.

Sofent a présent X,y € h quelconques. Définissions

F:R2 5G= v,)
(s.t) = Fi(s,t) = (sx)-(ty).

La fonction F est analytique puisqu'il en est ainsi du produit.
Considérons alors la décomposition V= h @ k. Sqit ;. €0 vy
€p) une base de V telle que €y n_.u soit une base de h et Hn_ui.

ep) une base de k. Pour tout z € V posons p;(z) = z, z; désignant la
i-éme coordonnée de z dans la base (€. eq. ..., €,). Les fonctions
de p; sont des fonctions analytiques, étant donné que tout

changement de base est linéaire, donc analytique. De plus,
zeh & p(z)=0 pour i€ (p+l....n)
Remarquons alors que pour s,t suffisamment prés de 0,

PF(s.0) = [(sx)(ty)]; = O pourie {p+1, ..., n]

étant donné qu'alors (sx)-(ty) € h. Puisque Py F est une fonction
analytique, on en déduit que quels que soient s,te R,

Pi*F(s,t) = [(sx)-(ty)]; = 0 pour i € {p+1, ..., n}.

Donc (sx)(ty) € h quels que solent s,t € R. En particulier, xy € h.
Comme de plus x1= -x € h, (h,”) est un sous-groupe,

Proposition : Soit G = (V,) un groupe exponentiel et soit g = (V[ , )
son algébre de Lie. Soit i <V tel que (i, , )) soit un idéal de g. Alors
(i) est un sous-groupe distingué de G = (v,), c.a.d. tout idéal deg
coincide avec un sous-groupe distingué.
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bbﬁnmub”mnbz ‘ Par 4.15., (i, est un Sous-groupe de G. Soit vei

et soitx e G. Alors

Xy xt=Adx)(y) = SPadn)(y)= 3. Ladxky)

Comme { est un idéal, ﬁm&a_n@ € i. De plus, i est fermé en tant

que sous-espace de dimension finie de V. Donc xy xle et (i,)
est distingué.

Démonstration : Par 4.13., (L[, ]) est une sous-algebre de g.

Soity eI et soit x e g. Alors

[x.y] um&@vu%mb&ﬁic; o - :3?5 y-(-tx) -y

t—0 t

Comme I est un Sous-groupe distingué, (tx) Y-(-tx) € I de méme
que

pourtout te R

(9 ytt-y |
t

De plus, I est fermé et par conséquent [x,y] e 1. Donc I est un ideal.
4.18. Proposition : Soient G = (V,) et G = (V4. ) deux groupes

exponentiels. Tout homomorphisme continu dy groupe G dans
le groupe G, est une application linéaire de I'espace vectoriel v

dans I'espace vectorie]l V 1

Démonstration : Soit

¢:G=(V.) 56y =(v,.)
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un homomorphisme continu. Définissions, pourxe V
quelconque,

L4 'R iOH = am.u
t-Yt) = o(tx).
Alors V¥ est un homomorphisme continu de R dans Gy =(vy,)

car
Yis+t) = g((s+t)x) = Plsxtx) = o(sx)-g(tx) = Y(s)-V(t).

Par 4.12., il existe x' ¢ G, tel que ¢(tx) = V(D) = tx'. Pour t = ] on
trouve x' = g(x) et

0(tx) = t-o(x) quel que soit t € R, quel que soit x e G.

ox)=ltox) =d gy o =2 220 x,

=0 dt i=1

Si x; désigne la i-éme coordonneée de x dans la base en question.
On en déduit que

W)= 3 2(0) ()
i=

~ n m_ﬁ n 3o
I_W.. mlumﬁow. yi+ _uM_. Mxl_aov z
=qy)+¢(z) quels que sojent y,z ¢ v

et

=]

olhx) = _%ma:?__n»ﬁx_

n

quel que soit 4 € R, quel que soit x e v,
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4.19. Remarque : En fait, la differentielle de ¢ est donnee par imEax o) (-t gx)- o) par linéarité de ¢
t

(o)=L attn)
=d
di At ex)aty)
La démonstration précédente montre que si ¢ est un

roEch:uEwEm continu entre deux groupes exponentiels = ad(e))(e(y))
G=(V,)et Gi= V1., alors

= lox), oly)l.

Donc ¢ est également un homomorphisme d'algébres de Lie.

a condition d'identifier les algébres de Lie getgy avec (V,[,]) et
V1.l ) respectivement.

4.20, Epob : Tout roEoEcGEmEm continu entre les groupes
€xXponentiels G = (V,)) et G 1=V )estun homomorphisme

d'algébres entre les algebres de Lie g = (v, , Detg, = (Vi.[.]. En
particulier, si G = (V,) et G 1= (V) sont Isomorphes, il en est de Bibliographie

mémede g = (V,[, ]) et 91 =V, ).
[1] M. Hausner and J. Schwartz, Lie Groups. Lie Algebras,

Démonstration : Soit ¢ un tel homomorphisme de groupes. Par Gordon and Breach, 1968

4.18. on sait que est également un homomorphisme d'espaces i

vectoriels, Um.w_:me & = P [2] L. Pukanszky, Lecons sur les représentations des groupes,
! Dunod, 1967

o(xy]) = pladx(y))

=q %EQEE_
=¢f limAdtd(y) -%v
= ‘ Etude effectuée dans le cadre du projet de recherche MEN/CUL/90/009
=lim E par continuité et linéarité de 0]
t—0
= __BE ¢ homomorphisme Séminaire de mathématique
(-0 t Centre Universitaire de Luxembourg

162A, Avenue de la Faiencerie
L-1511 Luxembourg
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