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We formulate a nonequilibrium thermodynamic description for open chemical reaction networks
(CRNs) described by a chemical master equation. The topological properties of the CRN and
its conservation laws are shown to play a crucial role. They are used to decompose the entropy
production into a potential change and two work contributions, the first due to time dependent
changes in the externally controlled chemostats concentrations and the second due to flows main-
tained across the system by nonconservative forces. These two works jointly satisfy a Jarzynski
and Crooks fluctuation theorem. In the absence of work, the potential is minimized by the dynam-
ics as the system relaxes to equilibrium and its equilibrium value coincides with the maximum
entropy principle. A generalized Landauer’s principle also holds: the minimal work needed to create a
nonequilibrium state is the relative entropy of that state to its equilibrium value reached in the absence
of any work. © 2018 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

Nonequilibrium thermodynamic descriptions of stochas-
tic (bio-)chemical processes have long since been developed.
Among the first, Hill and co-workers studied bio-catalysts
as small fluctuating machines operating at steady-state. They
introduced the concept of free energy transduction and ana-
lyzed how one form of chemical work can drive another one
against its spontaneous direction.! The importance of decom-
posing currents into network cycles (i.e., cyclic sets of transi-
tions) was already emphasized. These results were, however,
limited to steady-state systems described by linear chemical
reaction networks (CRNs). The stochastic as well as the deter-
ministic dynamics of these CRNs is described by the same
linear rate equations for, respectively, probabilities or concen-
trations. They model, for instance, conformational changes of
an enzyme or of a membrane transporter. Inspired by these
seminal studies, Schnakenberg formulated steady-state ther-
modynamics for generic Markov jump processes and provided
a systematic cycle decomposition for the entropy production
(EP) rate.? He considered, in particular, the stochastic descrip-
tion in terms of the Chemical Master Equation (CME)>* of
nonlinear chemical reaction networks, i.e., CRNs described at
the deterministic level by nonlinear rate equations for con-
centrations. The Brussels school and Ross and co-workers
focused on the connection between the thermodynamic
description resulting from the stochastic and the deterministic
dynamics.>

With the advent of stochastic thermodynamics,”"!? the
focus moved to the study of fluctuations, rather than focusing
on the first two moments. Gaspard first showed that EP fluctu-
ations in nonlinear CRNs at steady state satisfy a fluctuation
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theorem (FT).'3 This result was later expressed in terms of cur-
rents along Schnakenberg cycles.!*!> Fluctuations in complex
chemical dynamics such as bistability was analyzed, amongst
others, by Qian and co-workers.!®"'® A first formulation of
stochastic thermodynamics for CRNs beyond steady state was
done by Schmiedl and Seifert.'”

Despite this long history, none of these descriptions made
use of the specific topology of the CRN encoded in its sto-
ichiometric matrix. Mathematicians know, however, that the
CRN topology plays an important role in its deterministic?%->!
as well as stochastic dynamics.?>?* But the question of how
it affects the thermodynamic description was only studied
recently: for deterministic dynamics in Refs. 24 and 25 and for
stochastic dynamics at steady state in Ref. 26. In this paper, we
address this question in full generality for CRNs whose dynam-
ics is stochastic. We will do so by presenting a formulation
of stochastic thermodynamics for CRNs which systematically
makes use of the conservation laws. Doing so leads to a signifi-
cantly more informative thermodynamic description. In partic-
ular, we decompose the EP into three fundamental dissipative
contributions: a newly defined potential change, a driving work
contribution due to time dependent changes in the externally
controlled chemostats concentrations, and a nonconservative
work contribution due to a minimal set of flows maintained
across the system by nonconservative forces. In contrast to
the traditional chemical work given by minus the free energy
change in the chemostats, these two new work contributions
are shown to jointly satisfy a finite-time detailed and integral
FT when the CRN is initially prepared in an equilibrium state.
In turn, the importance of the potential lies in the fact that it
is minimized by the relaxation dynamics towards equilibrium
in the absence of the first two work contributions, i.e., when
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the system is detailed-balanced. It can be seen as a Legen-
dre transform with respect to those conservation laws that are
broken by the chemostats. At equilibrium, it coincides with
the potential obtained from maximizing entropy with broken
conservation laws as constrains. We also discuss the connec-
tion of our findings to absolute irreversibility,”’ to free energy
transduction in nonlinear CRNSs, and to cycle decompositions
of the entropy production. Finally, we derive a nonequilibrium
Landauer’s principle for the driving and nonconservative work

which generalizes the previous ones to nondetailed-balanced
dynamics.?%%°

A. Outline

The paper is organized as follows. In Sec. II, we review
the stochastic description of closed and open CRNs and intro-
duce conservation laws and stoichiometric cycles. In Sec. III,
the connection with thermodynamics is made. The stochas-
tic reaction rates are expressed in terms of Gibbs potentials
via the equilibrium distribution of the closed CRN. Enthalpy
balance and entropy balance are defined along stochastic tra-
jectories, and Jarzynski-like FTs for the chemical work are
discussed. In Sec. IV, the EP is partitioned into its three con-
tributions. In Sec. V, we analyze open detailed balanced CRNSs;
more specifically, their relaxation to equilibrium as chemostats
are successively introduced. In Sec. VI, finite-time detailed
FTs for the driving and nonconservative work are derived. In
Sec. VII, the ensemble average description is presented and
the nonequilibrium Landauer’s principle is derived. Finally
in Sec. VIII, our results are applied on a simple model to
show the importance of our formulation for free energy trans-
duction. Throughout the paper, our formalism is illustrated
using a simple enzymatic scheme, whereas some technical
derivations are given in Appendixes A and B. We also provide
a table which lists the symbols used throughout the paper,
Table III.

Il. STOCHASTIC DYNAMICS AND CRN TOPOLOGY
A. Chemical reaction networks

We consider a homogeneous, isobaric, and isothermal
ideal dilute solution made of N, chemical species, encoded
in a vector z. Their integer-valued population n changes due
to internal reactions which we label by {p;} for p; = £1, ..,
iNi

Vo =V _p, ' Z. (1)

In open CRNs, the population of a subset of species, named
exchanged species and denoted by y where z = (X, y), varies
also due to exchanges with external chemostats denoted by
Y. Their effect is modeled by exchange reactions, {p.} for

pe==1, ..., +Ny (see Fig. 1)
kpe
Ve -y*ﬁv\_{pe Y. )

~Pe

The non-negative integer-valued vectors {v,, = (vf,, v,y))} for p
€ {pi} U {pe} encode the stoichiometric coefficients of each
reaction. Note that each entry of v}, and vge is nonzero and
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FIG. 1. Pictorial representation of an open CRN modeling an enzymatic
scheme discussed in example 1.

equal to one only if it corresponds to the species exchanged
by pe. Note also that all reactions are assumed elementary
and reversible. For any reaction p, —p denotes its backward
counterpart and the sums over p includes both + and —. The
different types of species are summarized in Table I.

The topology of the CRN is encoded in its stoichiometric
vectors

S, =v_,—v,and SZ = vfp - VZ. 3)

The former quantifies the change of the population induced
by a given reaction p, whereas the latter quantifies the corre-
sponding amount of chemostatted species that is exchanged.
By definition, S, = -S_, and SE = —S‘_{p. Collecting the col-
umn vectors S, (respectively, S;,{) corresponding to arbitrarily-
chosen forward reactions defines the internal (respectively,
external) stoichiometric matrix denoted by S (respectively,
SY). It is not difficult to see that these can be decomposed

as
)
S= (S Se)z(g; Sy) 4)
and
s¥= (s’ sY)=(0-s%). (5)

In closed CRNs, all exchange reactions disappear and the
stoichiometric matrix reduces to S;.

Remark Previous studies on thermodynamics of CRNs,
e.g., Refs. 19, 24, 25, and 30, describe open CRNs by assum-
ing that the exchanged species y are so abundant that they
can be regarded as particle reservoirs within the system. As a
result, the exchange reactions are disregarded, y are treated as
chemostatted, and the stoichiometric matrices read

TABLE 1. In the second column, the symbols used for the various species are
listed. The corresponding total number of entries and symbols used to denote
their abundance is given in the third and fourth column, respectively. The first
column summarizes the name used to refer to these species, while the last one
lists the symbol used to collect the abundances of the internal species. Internal
species, X and y, are characterized by low populations, rn. The population of
x can change only because of reactions, whereas that of y is also exchanged
with chemostats, which are identified by Y, Eq. (1).

Species Symbol Number Abundance
X Ny Ny n
Internal Exchanged y Ny ny
Chemostatted Y Ny [Y]
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Sac =S’ and SY

QY
i alt — Si : (6)
In the closed CRNSs, the stoichiometric matrix becomes
(Sart, Sgﬁt)T. As we will see, the two approaches are formally
very similar, but the former has the advantage of preserving
the number of internal species when the CRN is chemostatted.

This makes it more suitable for a stochastic description.

Example 1. For the open CRN in Fig. 1,
x = (E,E“E™), y = (A,B), Y = (A¢,Be) (N
and
n = (nE,nE*,nE**,nA,nB). (8)

Internal reactions, p; = =1, .. ., 4, are distinguished from the
exchange ones, p. = +a, +b, and the stoichiometric matrices
read

+1 +2 +3 +4 +a +b
Ef{-11-11]00
EEl 1 =10 0[0 O
S=g<l 0 0 1 -1/0 0 )
Al-10 0 1|1 0
B\0O 1 -10|0 1
and
+1 +2 43 +4 +a +b
Syer(OO 00 —10) (10)
B.\0 0 0 0| 0 -1
for our arbitrary choice of forward reactions. O

Notation Henceforth, we will use the following notation:

al = n.ai!,a'b = l—[_af" and ¢P = cZibi
1 1

for generic vectors a and b and for a generic constant c. “Ina”
must be read as a vector whose entries are the logarithm of the
entries of a. 1 denotes a vector whose entries are all equal to
1. Total and partial time derivatives are written as d, and 9,
and the overdot “-”” denotes the rates of change of observables
which are not state functions.

B. Chemical master equation

In our stochastic description, n is treated as a fluctuating
variable and all reactions are regarded as stochastic events. The
probability of finding the CRN in the state n at time ¢ is denoted
by pn = pa(t) and its evolution is ruled by the CME>*3!

dipn = Z{w—p(n + Sp)pn+Sp - wp(n)pn}

P
= > Wanbm, (11)

where the stochastic generator reads

Wam = pr(m){én,m+sp - 6n,m}- (12)
o

Since all reactions are assumed elementary, we consider mass-
action stochastic reaction rates

y n!

wp(n) =k, Ve (Y] (n——Vp)' (13)
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where {k,} denote the rate constants. The dependence on
the volume V ensures the correct scaling when taking the
large particle limit and guarantees that {k,} are the same
as in deterministic descriptions.’> The chemostat concentra-
tions [Y] only appear in exchange reactions p. and quantify
the concentration of the exchanged species in the chemostats.
Hence, they are real-valued, nonfluctuating, and unaffected by
the occurrence of exchange reactions. We assume that [Y] can
change over time and their value at each time ¢ is encoded in
the driving protocol ;. This may describe, for instance, the
controlled injection of certain molecules across a cell mem-
brane. In such situations, the CRN is said to be subjected to a
“driving.” In the absence of driving, the CRNs is instead said
to be autonomous.

Equilibrium probability distributions are of crucial impor-
tance for our discussion. They satisfy the detailed balance

property

wp(n)pflq =w_p(n+ Sp)p;‘isp, forallp,n. (14)

This means that the probability current of any reaction p occur-
ring from any state n vanishes. Stochastic CRNs which admit
a steady-state probability distribution satisfying Eq. (14) are
referred to as detailed balanced. Their stochastic thermody-
namics will be analyzed in Sec. V.

Example 2. For the CRN in Fig. 1, the transition rates are

wy1 = kyinang, w-y = k_yngr,

wy = kpngs,  w_p = k_ongng,

w43 = ky3ngng, w_3 = k_3ng=,

(15)
Wi4 = Kyang~,  w_g4 = k_4ngna,
Wig = kya[Ael,  w_y = k_ana,
wyp = kyp[Bel,  w_p = k_png. g

C. Stochastic trajectories

A stochastic trajectory of duration 7, n,, is defined as a set
of reactions {p;} sequentially occurring at times {7, } starting
from ng at time 9. Such trajectories can be generated by a
stochastic simulation algorithm.>> Given the initial state, a
trajectory is completely characterized by

Jo@,7) =" 00 0un, 6(r = 1), (16)

which encodes the reactions that occur ({p;}), the states from
which these occur ({r,,}), and the reaction times ({#;}). The
transition index / runs from [ = 1 to the last transition prior to
time ¢, N,. The instantaneous reaction fluxes

T = Y e 1) = Y ppdr—1) (A7)

quantify the instantaneous rate of occurrence of each reaction

irrespective of the state from which it occurs. Additionally, we

denote the population of the CRN at time 7 € [¢o =0, ¢] by n,.
The path probability of a trajectory reads

N, 1141 N,
P[nl‘] = 1_[ exp{_ / dT prp(nT9 T)} 1_[ wpl(nt]? tl)?
1=0 ! I=1

(18)
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where fy,41 = t is the final time of the trajectory. The first
term accounts for the probability that the system spends {7,
— 1;} time in the state {n,}, while the second term accounts
for the probability of transitioning. When averaging Eq. (16)
over all stochastic trajectories, we obtain the transition rates,
Eq. (13),
Up(r, 7)) = wp(n, T)pp(7). 19)
Changes of generic observables along trajectories are
written as

!
6X[nt]=/dT{X(nT,T)+ZéXp(n,T)jp(n,T)}, (20)
0 i

where X(n,n;) denotes its change in time while the CRN
dwells in the state n (it need not be an exact time derivative) and
06X, (n, ;) denotes its finite change along the reaction p occur-
ring while in n. By contrast, the changes of state observables
O(n, t) can be written as

AO[n,] = Ony, 1) = Olno, 0)
1
= /0 dr{[8:00, )]lu, + )" MO, 7) jo(m, T)},
np

(21)
where d,O(n, ) is the time derivative of O(n, 7) and
Ay O, 1) :=0m+S,,7) - O(n, 1) (22)

is the difference of O(n, 7) along reactions; see Fig. 2.

D. Conservation laws

The topological properties of CRNs are encoded in the
matrices S and SY and can be identified via their cokernels
and kernels. Conservation laws € are defined as vectors in
coker S

t-S, =0,

They identify conserved quantities, called components>*

for all p. (23)

Ly :=¢-n. (24)

Despite the fact that L,, depends on the stochastic variable n,
the probability of observing any specific value L,

P(L) = ) pudlLa, L], (25)

is constant over time, i.e., d,P(L) = 0. 6 is a Kronecker
delta. More generally, any observable of type O(L,) does not
Sfluctuate

"(1 ’Itz J‘[3 J‘[4 et

FIG. 2. Pictorial representation of the change of a state variable observable O
along a trajectory. The orange dashed curves represent the changes due to the
protocol—the first term in Eq. (21)—while the vertical blue lines represent
changes due to reactions—the second term in Eq. (21).
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iy paOLa) =0, (26)

as a direct consequence of the fact that A,O(L,) = 0. Clearly,
P(L) can be deduced from the initial conditions p,(0) and only
those states for which P(L,, 0) is nonvanishing have a finite
probability of being observed during the subsequent stochastic
dynamics.

In closed CRNs, conservation laws (23) follow from

S, + - S,y)i =0, forallp;. 27
We denote a set of linearly independent conservation laws of
the closed CRN by {£,}, and the corresponding components by
{L,/} =€, -n},for/l =1,...,N, :=dimcokerS;. The choice
of this set is not unique, and different choices have different
physical meanings. This set is never empty since the total mass
is always conserved. The latter corresponds to a £ whose entries
are the masses of each species. Physically, the conservation
laws of closed CRNs can always be chosen so as to correspond
to moieties, which are parts of molecules exchanged between
species along reactions or subject to isomerization.>

For open CRNSs, the condition identifying conservation
laws, Eq. (23), becomes

(28a)
(28b)

- S;‘,i + 07 S};i =0, forallp;,

€S, =0, forallpe.
We now recall that for all p., there is one and only one
exchanged species for which the corresponding entry of Sly,e is
different from zero. Hence, Eq. (28b) demands that £¥ = 0 and
Eq. (28) become £* - S}, = 0 for all p;.

Crucially, any set of independent conservation laws of the
open CRN, Eq. (28), denoted by {£,,}, for 2, = 1,...,Ny,
:= dim coker S < N, can be regarded as a subset of the conser-
vation laws of the closed CRN, {£,} = {£,,}U{€,,}, since they
satisfy Eq. (27), too. In view of this, we call them unbroken
conservation laws. The remaining independent conservation
laws, labeled as {£ 3, } and referred to as broken, satisfy Eq. (27)
while not Eq. (28). They involve exchanged species, £ Zlb #0;

hence, £ S}, # 0 and the probability distribution of any set

{L}/zlb = [/lb ‘ n},

PALAY = pa] |, S L. (29)

changes in time.

Summarizing, in open CRNS, the chemostatting breaks a
subset of the conservation laws of the corresponding closed
CRN, {£,,}. Only the probability distribution of the unbroken
components {L,/,l“ =10, n},

PALLD = ) pu | S La], (30)

is invariant and completely determined by the initial probabil-
ity distribution p,(0). The state space identified by one particu-
lar set of values for {L,,} is called stoichiometric compatibility
class.

Example 3. The CRN in Fig. 1 has two conservation
laws
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E E* E* A B

te=(11 1 00), (31a)
E E* E* A B
tb=(01 11 1) (31b)

among which the second is broken. The unbroken conservation
law identifies the enzyme moiety and corresponds to the total
number of enzyme molecules populating the CRN, LE = ng
+ng++ng~. Instead, the broken one identifies the moiety A—or
equivalently B—L> = ng+ + nge + na + ng. O

E. Stoichiometric cycles

We can now set the stage for the thermodynamic descrip-
tion based on a stoichiometric cycle decomposition. This sec-
tion, as well as the other ones discussing cycles (Secs. IV D,
VI A, and VII C), may be omitted at a first reading.

Additional information about the CRN topology is pro-
vided by the stoichiometric cycles ¢ = {c,} as they are vectors
in ker S. Equivalently, these satisfy

Zpspcp =0 (32)

and at most one entry for each forward—backward transition
pair is nonzero. Since S is integer-valued, any ¢ can always
be chosen non-negative-integer-valued. In this way, its entries
denote the number of times each transition occurs along a
transformation which overall leaves the state n unchanged.
Alternatively, a stoichiometric cycle can be seen as a set of
reactions {peci1, Pe2, - - - » PeN, } identifying a closed loop in the
state space

Ne
no RS, ooty S, =n, (33)
i=1

where SN S, = 3, S,¢, = 0.

We now relate cycles of the closed and open CRNs as
previously done for conservation laws. In the closed CRN, the
stoichiometric cycles are given by

. Soicon =0, (34a)

Zpi SY ¢ = 0.

The entries corresponding to the exchange reactions are taken
equal to 0: ¢,, = 0, for all p.. Let us denote by {c®}, for
a =1,...,N, = dimkerS;, a set of independent stoichio-
metric cycles of the closed CRN.

In the open CRN, the condition identifying cycles,

Eq. (32), reads
Zpi Sxicpi =0,

Zpi Spico + Zpe S)Cp. = 0.

Since the cycles of the closed CRN satisfy Eq. (35), they
can be regarded as a subset of an independent set of cycles for
the open CRN, {c¢?, ¢ }. We refer to the additional cycles {¢" },

(34b)

(35a)
(35b)
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forn =1,...,N, := dimker S—dim ker S;, as emergent. They
are characterized by at least one nonzero entry for {p.}, and
the vectors

CY = Zp(— SHEAS Zpesf,ecge #0 (36)

quantify the amount of exchanged species flowing in the sys-
tem from the corresponding chemostats upon completion of
¢. As the concentrations of the chemostats are unaffected by
the exchange of particles with the system, the emergent stoi-
chiometric cycles can be thought of as pathways transferring
chemicals across chemostats while leaving the internal state
of the CRN unchanged.

As first proved in Ref. 24, by applying the rank-nullity
theorem to the stoichiometric matrices of the open and closed
CRNs, one can show that

Ny = Ny, +N,,. 37)

In words, for any exchanged species, either a conservation law
is broken or an emergent cycle is created.

Example 4. The CRN in Fig. 1 has one cycle

+1 +2 +3 +4 +a +b
cm=(111100) (38)
and one emergent cycle

+1 42 43 +4 +a +b
cea=(1100 1-1) (39)

Negative entries must be interpreted as reactions occurring in
the backward direction. The latter cycle corresponds to the
injection of one molecule of A, its conversion into one of B
passing via E*, and its ejection

A B
Cot= (1 -1). (40)

We can also check the validity of Eq. (37), as the number
of chemostats, 2, equals the number of broken conservation
laws, 1, see example 3, plus the number of emergent cycles,
1, Eq. (39). O

Remark Stoichiometric cycles must be distinguished
from graph-theoretic cycles, also called loops; see, e.g., Ref. 2.
To elucidate this point, we note that the network of transitions
of a CRN can be regarded as a semi-infinite graph whose ver-
tices are the accessible states n and whose directed edges are
given by the reactions—which are encoded in the stoichiomet-
ric matrix S. Hence, one can see that loops are the recursive
appearance of stoichiometric cycles, as in Eq. (33). However,
they may not be complete at the boundaries of the graph (low
n) due to peculiar topological properties of the CRN; see, e.g.,
Ref. 26. These observations will be used later to relate dif-
ferent approaches for cycle decomposition of thermodynamic
quantities.

lll. STOCHASTIC THERMODYNAMICS

We now build a nonequilibrium thermodynamic descrip-
tion on top of the stochastic dynamics. We assume that the
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solvent acts as a thermal reservoir by keeping the tempera-
ture, 7, and the pressure constant everywhere. Since particle
numbers are low, we can assume that that the time scale in
which molecules spatially homogenize is much faster than
that of reactions. Therefore, if all reactions could be instanta-
neously shut down, we would observe an equilibrium mixture
of inert species at all times. However, due to reactions, the
populations of species and their probability distribution can
be far from equilibrium. These hypotheses can be regarded as
a special case of local equilibrium’® since temperature, pres-
sure, and density are not only locally well defined, but also
constant.

A. Equilibrium of closed CRNs

Equilibrium statistical mechanics requires that the equi-
librium distribution of a closed CRN with given values of {L, }
reads

paliLa = 2 P skl @

where
gn=(u°—1kgTInng) -n+kgTInn! (42)

is the Gibbs free energy of the state n derived in Appendix A.
The first term quantifies the energetic contribution of each
single molecule: u° = u°(T) is the vector of standard-state
chemical potentials (see Appendix A), whereas —1kgT In ng is
an entropic contribution—constant for all species—since r; is
the population of the solvent. The last term is purely entropic
and accounts for the indistinguishability of molecules of the
same species. In Eq. (41),

ZAL) = ), expl=Ben) | | SlLmLal  @3)

is the partition function, while 8 = 1/(kgT). When taking into
account an ensemble of components, P({L,}), Eq. (41) allows
us to write

Pt = D0, P@LY) PALA)
= p™@m|{L; ) PULYY), (44)

which can be regarded as a constrained equilibrium distri-
bution. Hence, p®(n|{L;}}) is the conditional probability of
observing n given the stoichiometric compatibility class it
identifies.

Equation (44) can also be written as

put = exp{=pgn - Geq(1LID]} (45)
in terms of the equilibrium Gibbs potential of the CRN
Geq({La}) = kT In P({La}) — kT In Z({La}). (46)

It is worth emphasizing that G.q({L,}) is a function solely
of the set of components and that Geq({L,’,l}) needs to be
understood as Geq evaluated in {L}}. Invoking the hypothe-
sis of local equilibrium, we extend G to arbitrary probability
distributions py,

G(n) =kgTInp, + gn, 47)
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and we call it stochastic Gibbs potential, as it is the far-from-
equilibrium fluctuating expression of Geq. In addition to the
Gibbs free energy of the state n, g,, it accounts for the entropic
contribution due to the uncertainty of p,: kgT In p,, can indeed
be written as —7T(—kg Inp,), where the term in parentheses
is the self-information measured in kg units.’’ For closed
CRNs at equilibrium, using Eq. (44), G(n) reduces to Geq in
Eq. (46). Also, its average value, the nonequilibrium Gibbs
potential

(G) =) palksT Inpy +gu] 48)
takes its minimum value at equilibrium
(G) = (Geg)L = (G ~ Geg)
P
=kg Tann In an
Pn
= kgT D(p||p*?) = 0. (49)

In the first equality, we used the fact that the equilibrium Gibbs
potential depends only on the components

(Geghr = D, PULINGeq(La))

=3 [l T 018 14l [Gegttran

= > PuGeq({LiD). (50)

In the last equality of Eq. (49), D(p||p®?) is the relative entropy
of the transient probability distribution p, with respect to the
equilibrium one p,?. It is always positive and vanishes only
when p, = pf,q. We will see later (Sec. VII) that Eq. (49)
quantifies exactly the average dissipation of the relaxation to
equilibrium.

B. Local detailed balance

The zero-th law of thermodynamics for CRNs requires that
closed CRNs relax to equilibrium. To ensure this, the dynam-
ical requirement for detailed balance, Eq. (14), is combined
with the equilibrium distribution, Eq. (44). As a result, the
local detailed balance ensues

wpi(n) _
w_pi(n_'_spi) - ﬁA ign’ (51)

where A, - is defined as in Eq. (22). In agreement with deter-
ministic descriptions, see, e.g., Ref. 25, we recover the relation
between the rate constants and the standard-state chemical
potentials

ko,
In ki =B (u° - kgT1In[s]) - S,,, (52)
—Pi

in which [s] = ng/V denotes the concentration of the sol-
vent. The local detailed balance (51) should be regarded as a
fundamental property of the stochastic reaction rates of ele-
mentary reactions valid beyond closed CRNs. This central
concept is well known in stochastic thermodynamics because
it provides the connection between stochastic dynamics and
nonequilibrium thermodynamics.
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In open CRNS,
wp(n) Y
————— = —[(Apgn + uy - S 53
U)_p(n +Sp) ﬂ( Pgn I'lY p) ( )
generalizes Eq. (51), where
Ky = py +kgT In{[Y]/[s]} (54)

are the chemical potentials of the chemostats. The first con-
tribution accounts for the Gibbs free energy change of the
internal species, while the second one accounts for the Gibbs
free energy exchanged with the chemostats.

We introduce the transition affinities which quantify the
force acting along each transition

wo(n)pp

A,(n) =kgTln ————.
. B w_p(n + Sp)pn+Sp

(55)

They measure the distance from detailed balance (14), where
they all vanish. Using Eq. (53), they can be rewritten in terms
of differences of stochastic Gibbs potential (47) as

Ap(m) = =AyG(n) + pry - (= S)). (56)

This fundamental relation reveals the thermodynamic nature
of the dynamical forces acting along reaction. Its early for-
mulation for deterministic chemical kinetics is due to de
Donder.*®

We will prove in Sec. VII that our theoretical framework
based on Eq. (53) guarantees that closed CRNs described by a
CME (11) relax to equilibrium, Eq. (44): the average potential
(G) is minimized by the dynamics during the relaxation and
hence plays the role of a Lyapunov function.

C. Enthalpy and entropy balance

Starting from the stochastic Gibbs potential (47) and the

J. Chem. Phys. 149, 245101 (2018)

to the temperature

0G
Sn) = _(ﬁ)n = —kgInp, + sp. 57

Similar to G(n), S(n) is the far-from-equilibrium fluctuat-
ing expression of the entropy.>® The first term on the rhs is
the self-information, while the second is the entropy of the
state n

_0gn
oT
It accounts for both the entropic contribution carried by each
species, i.e., the standard entropies of formation
o_ O
S ==
and the entropic contribution due to the multiplicity of indis-

tinguishable states. When averaged, we recover the Gibbs—
Shannon entropy plus an internal entropy contribution

Spn =

= (s°+kglnng) -n—kglnn! (58)

(59)

(Sy=" pul-ksInp, +sul. (60)
The enthalpy follows from
Hn)=Gn)+TS(n) =g, +Ts, =h-n, (61)
where
h=u"+Ts°=h° (62)

denotes the vector of standard enthalpies of formation,
in agreement with traditional thermodynamics of ideal
dilute solutions.>* Likewise, the chemical potentials of the
chemostats, Eq. (54), will be decomposed in terms of enthalpic
and entropic contributions

Hy = hy — Tsy, (63)

where hy = hy and sy = s, — kg In{[Y]/[s]}.

To recover the enthalpy balance along stochastic trajecto-
ries, we write the change of enthalpy as the sum of its changes
due to reactions

AH[w] = H(n,) — H(no)

local detailed balance (53), we now formulate the energy and d ) (64)
entropy balance along stochastic trajectories. = /0 dr Z ApH(n)jp(n, 1),
The stochastic entropy of the CRNs follows from the P

derivative of the stochastic Gibbs potential (47) with respect =~ where

AHm)=h-Sy=h-S,+hy-S)+Tsy - (—=S})+puy-(-SY), foralln. (65)

=or =0p™ =W
=:Qp

We used Egs. (21), (62), and (63). The first two contributions, heat flow

Q' account for the heat of reaction, i.e., the heat flowing from
the thermal reservoir (the solvent). The third term characterizes
the heat flowing from the chemostats, Qf,hm. The first three
terms, Q,, integrated along the trajectory quantify the total

!
Oln,] = /O dT{Zpleer(r)ﬂsY(T).IY(T)}, (66)
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where the instantaneous external currents
(1) = Zp( ~S¥)J,(1) (67)

give the amount of exchanged species injected in the CRN at
each time; see Eq. (17).

The last term in Eq. (65), W$, quantifies the Gibbs free
energy exchanged with the chemostats. Once integrated, it
gives the chemical work

Weln,] =/ dt py (1) - I¥ (). (68)
0

From Egs. (64)—(68), the enthalpy balance along a trajectory
follows

S
TA,S() = TAysu — ks Tln %

n

=h-S,+hy S} +Tsy - (=S))—|Apgn+ksTIn

=0,

where we have used Eq. (61). As highlighted with underbraces,
the first three terms are the heat flow along reactions, while the
last three terms correspond to the affinity of transition, Eq. (56).
When integrating over the whole trajectory, we recover the
entropy balance

1
AS[n,] = - Oln] + X[ny], (72)

where the EP (times the temperature) reads

t
TE[n,] = /O dr{[~0cks T n pa(D)]],, + > Apn,7) jp(m, 7))

np
(73a)
_ Pny(0) [T wy(n, 7)
=kgT In o) + A d7j,(n, T)kpT In —w_p(n ¥5,.0)
(73b)
= W.[n] — AG[n,]. (73c)

The second equality follows from the definition of affinity,
Eq. (55), when integrating the changes of the probability
distribution. Instead, the third one readily follows from the
relationship between affinity and Gibbs potential, Eq. (56).
It expresses the overall energy dissipated as the difference
between the Gibbs free energy supplied by the chemostats
and that changing internally.

Mindful of Eq. (18), the EP can be rewritten as the ratio
of the probability of observing the trajectory n; under a for-
ward dynamics driven by a protocol 7, over the probability of
observing the backward trajectory n; under a dynamics driven

by the time-reversed protocol 7" such that IT: =T_r

J. Chem. Phys. 149, 245101 (2018)

AH[n;] = Qfn ] + We[n,]. (69)

This is the expression of the first law of thermodynamics for
stochastic CRNss at the trajectory level (cf. Ref. 40, Eq. 2.10).

To recover the entropy balance along stochastic trajecto-
ries, we notice that since the entropy is a state function, its
change along a trajectory reads

AS[n,] =/0 dr{[~dcks In pa(D)]l,, + > ApS(m) jp(n, )},
n.p

(70)

as seen in Eq. (21). The changes along transitions can be recast
into

Pn+S,,

+py - (- S)), (71)
n ————
=Wg
=A,G(n)
=Ap(n)

T[] =kgTIn .
Pn, (1) Pln,; 17}

(74)

This central result in stochastic thermodynamics'!-** was for-

mulated for CRNs in Ref. 19 and clearly shows that the EP
measures the statistical asymmetry of a trajectory under time
reversal. It implies that the EP satisfies the following integral
FT:

(exp{-Z/kg}) = 1, (75)

where the ensemble average (-) runs over all trajectories. It
represents a refinement of the second law of thermodynamics
at the trajectory level. Using Jensen’s inequality, the second
law ensues, (X) > 0.

Remark Using Eqgs. (62) and (63), the local detailed
balance, Eq. (53), can be rewritten as

n
o) = 2O + 5y - SY + Apsa.  (76)

kg In —2
B m+s,) T

The first term is the entropy change in the thermal bath, the
second one is the entropy change in the chemostats, whereas
the last one is the internal entropy change of the CRN.

Remark Chemical work and Gibbs potential are defined
up to a gauge, which accounts for the choice of the standard-
state chemical potentials. Indeed, let us consider the following
transformation:

Ko pt Z/la/lf/l,

17
Hy = py + Zﬂa,ﬂ’ﬁ,
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where the second term is a linear combination of conservation
laws. This transformation leaves affinities (56) and EP (74)
unchanged, while transforming both the chemical work (69)
and the Gibbs potential (47). The former changes as

Welnd = Welnd + ) an 8 - T¥Ind,  (78)
where
[0 = / drIY(7) (79)
0

are the integrated currents of exchanged species flowing in the
system. Likewise, the Gibbs potential becomes

G(n) - G(n) + Z/la AL (80)

Using the properties of conservation laws, Sec. I D, it is easy
to verify that

ALy, [0l =0, ALy [0 = € - IV[n], 81)

which confirms that the gauge terms cancel in the EP,
Eq. (73c).

Alternatively, one can apply the transformation (77) to
either (k, hy) or (s°, 55,) and investigate how the terms in the
entropy balance (72) change. In the former case, one can easily
verify that both Q[n;] and S(n) are unaltered. In the latter case,
instead

S(m) = S+ Y ail),
0™ [n] — Q"™[n], and (82)
Q™ (n] = QMM+ T aalf, TV [

where we distinguished the thermal and chemical heat contri-
butions.

We thus emphasize that, W, G(n), S(n), and Q™ are
not uniquely defined, in contrast to X and Q"". Despite that,
once the gauge is fixed—i.e., the values of the standard-state
quantities are chosen—they are useful concepts for character-
izing the dissipation of the process. Further discussions on the
gauge arising in the work-potential connection will be given
in Sec. V C.

Remark Rather than defining the heat as minus the
entropy change in the environment times T, Egs. (65) and (66),
we could have defined it as minus the entropy change in the
thermal reservoir times T, chr, thus leaving the chemical part
aside. Clearly, this does not affect the EP, but its expression
would lose the typical Kelvin—Clausius form, Eq. (72), as it
would read Z[n,] = AS[n,] - 0™ [n,] — [ drsy(7) - IV (7).
These two different but equivalent approaches are not new to
nonequilibrium thermodynamics and have been discussed in
Ref. 41, Chap. I1I, Sec. 3, for instance.

D. FT for the chemical work and comparison
with previous results

When combining the EP FT (75) with Eq. (73c), we
immediately obtain the integral FT for the chemical work

J. Chem. Phys. 149, 245101 (2018)

(exp{-B(W. — AG)}) = 1. (83)
However, a Jarzynski-like integral FT*** for the
chemical work—i.e., expressions such as (exp{—BW.})
= exp{— BAGeq }—does not ensue. This relation would require
that (i) the process starts and finishes at equilibrium in a closed
network, AG = AG.q—the condition on the final state can be
relaxed, though—and (ii) AG.q is a nonfluctuating quantity
along the process so that its exponential can be moved out of
the average. However, due to broken conservation laws, Geq
fluctuates along any trajectory of open CRNSs.

Let us consider a generic process in which the CRNs is
initially closed and at equilibrium, Eq. (44), with a Gibbs
free energy 3z, 1P({L1})Geq({La}). The CRN is then open
and driven according to some time-dependent protocol, 7.,
for 7 € [0, #]. At time 7, the CRN is closed again and let
to relax to a new equilibrium distribution p,". Since the
chemostatting procedure unavoidably breaks some conser-
vation laws, the accessible state space suddenly increases.
The final distribution of broken components, P({L,, }; ), will
thus have a support broader than that of the initial distribu-
tion, P({L,,};0); see, e.g., Fig. 3. This process is akin to
the free expansion of a gas that is initially at equilibrium
in a constrained region of space. The crucial point is that
the initial state is a constrained, or local, equilibrium with
respect to the state space where the dynamics subsequently
evolves.

The stochastic thermodynamics of these processes is char-
acterized by absolute irreversibility.”” Namely, when the EP
(74) is integrated over all trajectories to obtain the FT (75),
there are some backward trajectories whose corresponding for-
ward probability is vanishing. These are the trajectories leading
to values of the broken components not in supp{P({Ly, }; 0)}.
Since the EP of these trajectories diverges negatively, see
Eq. (74), the expression of the integral FTs (75), as well
as (83), is invalidated but can be replaced by (exp{—X/kg})
= 1 — As, where 0 < Ag < | measures the probability
of those backward trajectories whose forward one has zero
probability.?’

Hence, let us assume that supp{P({L,,};0)} spans all
possible values of {L,,} so that no absolute irreversibility
occurs. By conditioning the average in Eq. (83) upon observa-
tion of specific initial and final components ((-)(z,},(z;,))» We
obtain

D Dy PALE O PALL YD
x exp{ BlGeq, (IL})) = Geq,({La1)]}
x(exp{—ﬁWC}>{LM’{L“ =1. (84)

However, this equation cannot be simplified further: since
the Gibbs potential depends on the broken components, it
fluctuates during the transient dynamics and an average over
all components must be taken. As a result, no Jarzynski
FT for the chemical work in the Gibbs ensemble can be
derived.

In Ref. 19, a Jarzynski relation for the chemical work is
derived using the grand canonical ensemble Ref. 19, Eq. (61).
Translated into our notation, this result reads
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(exp{=BIWe — A - m)]}) = exp{-BAG.y},  (85)

where the initial and final equilibrium states are grand canon-
ical

Pt = exp{ B[Geq — g + 1% - n]}. (86)

The grand potential is defined as
B :=G-u®-n, (87)

and p® are implicitly defined by
pt- Sy +pyt Sy =0, forall p, (88)

[Ref. 19, Eq. (27)]. The absence of the exchange transition is
due to a different form of chemostatting; see the remark in
Sec. IT A. The grand potential is naturally suited to describe
CRNs in which all species are chemostatted and u®9 are their
chemical potentials. But for most CRNs, where only a subset
of species are typically chemostatted, the grand potential is not
the most convenient and intuitive potential to work with. The
physical interpretation of the contribution —A(u®d-n) is, for
instance, not transparent. In Secs. IV-VIII, we will make use of
conservation laws to identify the potential which best describes
CRNs where only a subset of species are chemostatted. New
work contributions with a transparent physical interpretation
will ensue.

IV. CRN-SPECIFIC STOCHASTIC THERMODYNAMICS

We now proceed with our main results. Making use of the
conservation laws identified in Sec. II D, we decompose the EP
into three fundamental contributions: a potential difference, a
contribution due to time-dependent driving, and a minimal set
of contributions due to nonconservative chemical forces. To
do so, we first decompose the local detailed balance and then
proceed with the EP.

A. Entropy production

We start our EP decomposition by partitioning the set of
chemostatted species Y into two groups, denoted by Y, and Y.
Likewise, the corresponding exchanged species are denoted
by y, and y, respectively. The former group is composed by
a minimal set of chemostatted species which—when starting
from the closed CRN—break all broken conservation laws. In
other words, each entry of Y, breaks exactly one distinct con-
servation law. The remaining chemostatted species form the
latter group. For a given CRN, our partitioning is not unique,
but the number of y, and y is uniquely defined: Ny = N,
and Ny = Ny — N, , respectively; see example 5.

We now notice that the linear independence of {£,}
implies that the matrix whose rows are {fﬁ‘;} is nonsingular.
We will denote by {?ﬁ‘;} the column vectors of the inverse of
the latter matrix. By making use of this important property, we
can recast the identity

ALt = €3y Sy = 6 Sy + 6 S48 -8 (89)
into

ooy, Sy + e8], 90)

Ap Ay

Sy =AMy -
where

my =Y Bk o

Mindful that Sg = —SZ, and [ﬁb . Sze = 0 for all pe, one can
use Eq. (90) to rewrite the chemical work along reactions as
_ﬂY'SE = p[ﬂYp'MZp] _fYr'SZf’ 92)

where
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Fy, = Hy, — Hy, - Zaﬁi ey (93)

A reformulation of the local detailed balance Eq. (53) readily
ensues

wp(n) Y
P — _B(A Fy. - STt 4
LU—p(n + Sp) ﬁ( pg” " i SP )’ (9 )
where
On = 8n — My, M) 95)

We now notice that the expression of the potential g, is
reminiscent of a Legendre transform of g, with respect to M ,y,” ,

in which My, are the conjugated intensive fields. To reveal the

physical meaning of M ,};" , let us consider the case in which the

broken conservation laws correspond to moieties, see Sec. II D,
and hence each species can be thought of as a composition of
these. Through yp, some combinations of these moieties are

exchanged with the environment. The entries of M Z” quantify
the total abundance of these combinations in state n, and hence
we refer to Mf,p as the moiety population vector. In view of this
and the fact that (in general) not all moieties are exchanged,
one can interpret g, as the semigrand Gibbs free energy of
the state n.3* Note also that, from the definition of broken
conservation law, Eq. (27), it follows that AMM,Y,p = (), for all
pi—Viz., internal reactions never create or destroy moieties—
whereas for p. only we have that ApeMZp # 0—viz., exchange
reactions introduce or remove moieties. We also mention that
an alternative interpretation of g,, can be given once we rewrite
it as

G =gn— ) Sulats (96)
where
2y
fay =y, ) o7

In this form, g,, is reminiscent of a Legendre transform with
respect to the broken components {L,’,lb }, in which {f;, } are the
conjugated intensive fields.

In the second term on the rhs of Eq. (94), Fy, identifies
chemical potential gradients imposed by the chemostats on the
CRN. Its entries, denoted by {F,}, foryr = 1,..., Nyf, are a
maximal independent set of nonconservative chemical forces:
if and only if Fy, = 0, then the rhs of Eq. (94) is conservative.
In this case, the CRN is detailed-balanced since the steady-
state probability distribution defined by p,! o exp{-pg,}
satisfies the detailed balance property, Eq. (14). Since {Fy,}
make the CRN non-detailed balanced, we refer to them as fun-
damental nonconservative chemical forces. Equation (94) is
our first major result.

To proceed with our EP decomposition, we combine
Egs. (73b) and (94)

T3(n,] = ke T In 220 —/’drz Ao (7)o, 7)
t pn,(l) 0 oo PIn PN
+ 2, Wil o8

where
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!
W;?fc[n,] = / dr F, (D, (7). 99)
’ 0

{I;(7)}, for yr = 1,...,Ny,, denote the entries of the instan-
taneous external currents corresponding to Yy, Eq. (67). We
now recall that g, is a state function; hence,

!
Agln] = Waln,] + / ATy Apgu(D)jpm, 7, (100)
0 o

where

t

t
Waln,] = /0 dr [0:9,(D)]|,, = /0 dr [0y, (1)] - M.
(101)

Therefore, combining Egs. (98) and (100), we obtain
TE[n] = ~AGIn ]+ Walnd + 0 Wicln].  (102)

where the first term is the difference of stochastic semigrand
Gibbs potential
Gn) = kgT Inp, +g,. (103)
The EP decomposition in Eq. (102) is a major result of
our paper. The first term on the rhs constitutes the conser-
vative force contribution of the EP. It describes the dissipa-
tion due to overall changes of thermodynamic state variables:
enthalpy, H(n), entropy, S(n), and chemical energy { My, -M Z” }.
The second term, Eq. (101), arises in the presence of time-
dependent driving and accounts for the changes caused by
manipulations of the chemical potentials My, As it is a con-
trolled way of changing the Gibbs free energy landscape of
the CRN, we refer to it as driving chemical work. Finally, for
each exchanged species Y, a nonconservative force contri-
bution (99) arises, {W}f}. All together, they account for the
chemical energy flowing between different chemostats across
the CRN and we refer to them as nonconservative chemi-
cal work contributions. Equation (102) holds for an arbitrary
CRN, yet it is CRN-specific, as it is derived using the topo-
logical properties of the CRN encoded in the conservation
laws. To gain more intuition, we now focus on specific classes
of CRNs, whose resulting decomposition is summarized in
Table II. In Sec. IV B, we continue our discussion on the work
contributions W4 and {W;}fc}, whereas in example 5 and in
Sec. VIII, we evaluate them for specific models. Finally, in

Secs. VI and VII, we will further explore the implications of
Eq. (102).

TABLE II. Entropy production for specific processes. “0” (respectively,
“v’”) denotes a vanishing (respectively, a finite) contribution.

Dynamics —-AG Wy whne

Autonomous detailed-balanced
Unconditionally detailed-balanced
Autonomous

SIS
o o N o
NNeeo

Nonequilibrium steady state
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1. Autonomous detailed-balanced CRNs

The CRN is autonomous and all fundamental forces
vanish. The trajectory EP becomes minus a potential difference

TZ[n:] = —AG[n,]. (104)

We will prove in Sec. VII that this is the class of open CRNs
which relax to equilibrium and in which the average potential
(@) is minimized at equilibrium by the dynamics described by
CME (11).

2. Unconditionally detailed-balanced CRNs

The set of species Yy is empty—i.e., each exchanged
species breaks a conservation law—and no fundamental force
arises. Hence, these CRNs are detailed-balanced irrespective
of the values of uy, but the time-dependent driving prevents
them from reaching equilibrium, and their EP reads

TZ[n] = —AG[n] + Wan,]. (105)

3. Autonomous CRNs

The driving work vanishes and the forces are constant in
time. Hence, the EP becomes

TE[n] = ~AGIn )+ )| FyTylnl.  (106)

The nonconservative chemical work displays a typical current—
force structure. In the long time limit, AG[n,] is typically subex-
tensive in time, and we obtain the EP typical of nonequilibrium
steady states

TEn] = Y B Zyln

[see Eq. (79)]. In other words, TX[n,] is dominated by the
dissipative flows of chemicals across the CRN.

(107)

Remark For CRN with infinite number of species and
reactions—e.g., aggregation—fragmentation and polymeriza-
tion processes*®*®—the CRN may undergo steady growth
regimes in which AG is not subextensive in time and cannot
be neglected in the long-time limit.

Remark Our EP decomposition is not unique and differ-
ent expressions for g, and Fy; correspond to different ways
of partitioning Y into Y, and Y.

Example 5. For the open CRN in Fig. 1, the chemostat-
ted species can be split into Yp, and Y in two possible—and
trivial—ways: either A is regarded as the species breaking the
conservation law (31b), or B. We consider the former choice,
¥p = (A) and yr = (B). Since 6’?\ = 1, the only entry of the
moiety vector reads

M2 = nge +nge +np +ng = L, (108)

which is equal to the total abundance of the A—B moiety. The
intensive variable conjugated to the broken conservation law
is equal to the chemical potential of A,

Jo = HA.- (109)

The potential thus readily follows from Eq. (95), or equiva-
lently Eq. (96),
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On = n = HAMy (110)
The instantaneous driving work rate associated with any
manipulation of the latter potential is

Wa(n) = =0, M, (111)

Once integrated over a trajectory, it gives the driving work,
Eq. (101). Since yr = (B), the conjugated fundamental chemical
force reads

FB. = HB. — HA, (112)

and the instantaneous dissipative contribution due to this
force is
W]g‘: = Fp.Iz., (113)

where Iy, = Ji — Jp. When integrated over a trajectory,
it measures the work spent to sustain a current between
A. and B, across the CRN. A pictorial illustration of the
work contributions is given in Fig. 4. The trajectory EP thus
reads

TZ[n] =/0 d7 [~ pa (DM, — AGIn,]

1
+ / dr Fp, (7)IB, (7). (114)
0

B. Energy balance

In Eq. (102), the driving and nonconservative chemical
work, Wq4 and {Wy“fc}, emerge as dissipative contributions. To
strengthen their interpretation as work contributions, we now
show that they can also be described as part of an energy
balance. For this purpose, let us introduce the semigrand
enthalpy®

Hin) = H@) - py - M, = Gn) + TS(n). (115)

This CRN-specific potential quantifies the portion of energy
which is not attributed to volume (—pV, where p is the external
pressure) and exchanged moieties, My, ~Mf,p. It accounts for
the energy stored in its internal chemical composition, i.e.,
the internal species x and the unbroken components {L, }.
When combining its definition with the enthalpy and entropy
balances, Eqs. (69), (72), and (102), we obtain

Ha

Wa

Environment

Chemical Network

A+E -

AT [
o — o

FIG. 4. Pictorial illustration of the work contributions. The driving one arises
when the chemical potential of the chemostat A, changes in time. The non-
conservative chemical work, instead, characterizes the sustained conversion
of A into B.
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AH[n] = Oln,] + Waln ] + Z Wil ], (116)
e

viz., the overall change of semigrand enthalpy is equal to the

sum of heat flow, driving, and nonconservative chemical work.

By analogy with Eq. (69), this can be interpreted as a CRN-

specific formulation of the first law.

In Sec. III C, we introduced the chemical work as the
Gibbs free energy exchanged with the chemostats, Eq. (68).
By comparing Eqgs. (61) and (116), we obtain its relationship
with Wq and { W€}

Weln = Ay, - M| = Walnd+ 3 Wikn]. (117)

We emphasize that in contrast to the chemical work, the driving
one does not account for direct exchanges of Gibbs free energy,
but it captures the instantaneous changes of the chemostats
Gibbs free energy.

Remark The driving work is reminiscent of the mechan-
ical work as defined in stochastic thermodynamics. In this
framework, Wpech[n] = f0’ dr 8. Ey(7)l,, describes internal
energy changes due to external time-dependent control; see,
e.g., Refs. 44 and 50. In CRNSs, the time-dependent control
is exerted via the chemostats, and Wy[n,] indeed accounts for
this fact.

C. Equilibrium of open CRNs

We have already seen that in the absence of fundamental
forces, the rhs of the local detailed balance (94) becomes a state
function difference. The steady-state probability distribution

Pea(nliLa,) = %nhamm (118)

satisfies the detailed balance property (53) and therefore char-
acterizes the equilibrium of open CRNs. Not accidentally, the
relationship between the partition function Z({L,,}) and that
of closed CRNs, Eq. (43),

2L = ), expl=Bam} | |, 61 La,]
- Z{Ldb}eXp{ﬂZMfﬂbLﬂh}Z({La}), (119)

is akin to that between canonical and grand canonical par-
tition functions; see, e.g., Ref. 51. With an ensemble of
unbroken components, P({L,,}), the constrained equilibrium
distribution reads

=)0 Pea@l(La, ) PULAD)

= Peq(mI{Ly" ) P(Ly" ), (120)
where peq(nI{L,’,l“ }) is the probability distribution of observ-
ing the state n given its stoichiometric compatibility class.
Equation (120) thus generalizes the equilibrium probability
distribution (44) to open CRNS.

Importantly, the average semigrand Gibbs potential (103)
takes its minimum value at p,e,q, Eq. (120), where it reduces to
the equilibrium semigrand Gibbs potential
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Geq({La,}) = —kpT In Z({La, })+kpT In P({Ly,}), (121)
averaged over P({L,,}). Indeed,
(G) = (Geg)L, =G — Geq) = kT D(pllpeq) = 0, (122)

where

(Gea)y, = D PULADGeg(ILa ). (123)

The first equality follows from the fact that G is nonfluctu-
ating, since it depends solely on the unbroken components.
As for the Gibbs free energy in closed CRNs, we will show
later (Sec. VII) that Eq. (122) quantifies the average dissipation
during the relaxation to equilibrium.

D. Dissipation balance along stoichiometric cycles

We can now formulate the EP decomposition in terms
of stoichiometric cycle affinities. These are defined as the
sum of the transition affinities along stoichiometric cycles

{c = Pcl, pcls e apCNc}
A=A, 1) +A,om+Sp 1) +......
N.-1
+AchC(n + Zj:l Spcj)'

Using Eq. (56), and the fact that —A,G(n) vanishes when
summed over the loop ¢, we obtain

(124)

Ne
A=—py- Zs;fci SN Zpsgcp. (125)
i=1

Since ZPSZCg = 0, those evaluated along the stoichiomet-
ric cycles of the closed CRN, {c®}, always vanish. By con-
trast, those along the emergent cycles, {¢”}, do not vanish in
general

A’] = Hy CZ

[see Eq. (36)]. These affinities can be thus understood as the
chemical potential gradient imposed by the chemostats on the
cycle.

To rewrite the EP (102) in terms {.A,,}, let us highlight
their relationship with the fundamental forces

(126)

A, = Fy, - C), (127)

which is obtained when summing the local detailed balance
(94) along {c"} as in Eq. (124). Since the matrix whose

Yiy - . .
columns are {C,,'} is square and nonsingular—as it can be
deduced from the linear independence of the set of emergent
cycles—we can invert it and write

—Y

Fi=2., C, Ay, (128)
—Y

where {Cnf} denote the rows of the inverse matrix. This

relation clarifies the one-to-one correspondence which lies

between {F,} and {.A,,}. Inserting the last expression in the

local detailed balance, Eq. (94), we obtain

wpm) -B(Apg, — Zn Anlnp)s  (129)

w_p(m+8S,)
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where the coefficients

—Y
Lnp=-C, - S) (130)
quantify how much each reaction contributes to the emergent
cycles. Algebraically, the row vectors {{,} are dual to the
cycles, {c"}

, —Y =Y
g, ¢l =~ pCU‘-SZfCZ = Cnf_czf = 8y, (131)

As previously done for Eq. (102), when integrating the
trajectory EP (73b) with the local detailed balance (129), we
obtain

TZ[n] = —AG[n ]+ Waln ] + ann [n]. (132)
The stochastic semigrand Gibbs potential and the driving work
read asin Egs. (103) and (101), respectively. For each emergent
stoichiometric cycle,

!
D= [ar 4@ Gl (139
quantifies the chemical work spent to sustain the related cyclic
flow of chemicals. For autonomous CRNSs,

TEn] = ~AGIn ]+ ) ApJylnl. (134)

where

!

Tt = [ 40 Y Gl 0 (135)
quantifies the integrated current along the cycle n. In the long-
time limit, in which AG[n,] is negligible, we obtain

TEn] "= ) ATyl (136)
When all emergent cycle affinities vanish—as well as when
no emergent cycle is created—the CRN becomes detailed-
balanced, in agreement with the Kolmogorov—Wegscheider
condition.’>>*

We emphasize that the cycle chemical work contributions
and currents, Eqgs. (133) and (135), can be written as combi-
nations of fundamental external currents, {I Yf} Eq. (67), via
Eq. (130). The added value of Eq. (102) over (132) lies in the
fact that each force is conjugated to the external current of only
one external species.

Remark An alternative approach that can be used for
cycle EP decompositions is the graph-theoretic one based
on the identification of the loops appearing in the network
of transitions.>> Once these loops are identified, they can
be sorted according to the chemostats they are coupled to,
as these determine their affinity; see Eq. (124). Equivalently,
loops are classified according to the stoichiometric cycle they
correspond to. In Ref. 56, a graph-theoretic approach based on
loop affinities led to the expression analogous to Eq. (136). By
contrast, our cycle EP decomposition is based on a stoichio-
metric approach: emergent cycles are directly identified by the
kernels of S; and S.
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This observation points out the redundancy which is
intrinsic in bare graph-theoretic EP decompositions: many
loops may be coupled to the same set of reservoirs and thus
carry the same affinity, while many others may carry a vanish-
ing affinity—for CRN, these latter are those corresponding to
stoichiometric cycles of the closed network, {¢®}. For generic
networks, a systematic way of identifying these so-called sym-
metries was derived in Ref. 57, whereas in Ref. 58, they are
used to formulate generic thermodynamic—rather than mere
graph-theoretic—EP decompositions.

Example 6. The emergent cycle affinity corresponding to
the emergent stoichiometric cycle (39) reads

A= HMB, — MA. = 'FBe' (137)

The contributions to the corresponding cycle current follow
from Eq. (130)

+1 +2 43 +4 +a +b

¢=(000 0 0-1) (138)

The entries corresponding to the backward reactions are minus
those of the forward. Notice that, since the CRN has exactly
one emergent cycle, the force and cycle EP decompositions
are identical; see Eq. (127).

V. SEMIGRAND GIBBS POTENTIAL

Here we further elaborate on equilibrium distributions
and semigrand Gibbs potentials by addressing three points:
(i) the relationship between Eq. (120) and the equilibrium
distributions as expressed in chemical reaction network the-
ory; (ii) the role of conservation laws for characterizing the
dissipation of CRNs subject to sequential introduction of
exchanged species; (iii) the gauge freedom intrinsic to the def-
inition of driving work. This section can be skipped at a first
read.

A. Equilibrium distributions in chemical
reaction network theory

In Ref. 22 (see also Ref. 59), equilibrium distributions of
CRNs are proven to be multi-Poissonian

exp{n . ln{[z]eqv}}

Peq(ml{Ly,}) = n! Z{Ly})

/lu
[ 1,80z La.
(139)

where [z]q is the equilibrium concentration distribution of the
same CRN described by a set of deterministic rate equations.
Z({L,4,}) is again a normalizing factor. To highlight the rela-
tionship between this equation and Eqgs. (120) and (86), we
need to recall that, for deterministic CRNs, thermodynamic
equilibrium is defined by the fact that chemical potential dif-
ferences along all reactions vanish; see Eqs. (88) and (A8). As
observed in Ref. 25, this entails that

et = Z/lf/ll’a,

(140)
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where {f 1} are real coefficients depending on gy and {L,,}.
Those related to the broken components, {f,, }, are indeed those
appearing in Eq. (97). Using the expression of chemical poten-
tial valid in the thermodynamic limit, Eq. (A7), we therefore
have

In{[zleqV} = -8 (uO—kBTlnns—Zlf,lfl), (141)

from which

n- ln{[z]qu} —Inn!=-B(g, — u*-n)
=B, ~ ) Sula) (142)

ensues. At this point, Egs. (86), (118), and (139) appear identi-
calupto ), uf,luL,’}“. However, since this term involves only the
unbroken components it vanishes in Eq. (139). This shows the
connection between the CRN theoretical and thermodynamic
expression of equilibrium distributions.

B. Hierarchies of equilibriums

Here we show that when starting from a closed CRN,
a sequential introduction of exchange reactions that keep
the CRN detailed balanced drives it down in the semi-
grand Gibbs potential by equilibrating previously constrained
degrees of freedom: the conservation laws; see Fig. 5. Let
us imagine a closed CRN whose initial probability distribu-
tion is pu(0) = Xz, po(rl{La}) Po({La}), where Po({Ly})
= T Pé(L/l), i.e., different components are independently
distributed. As it relaxes to equilibrium, Po({L,}) will not
change, while po(rl{L,}) will relax to Eq. (41). The average
dissipation is

() = -A(G)
B p(l{La})
= D, PoiLa) [kBT > p@HLhn ST
= D00, PoltLad) [ MGULID)]- (143)

This expression is obtained when combining the prop-
erties of the Gibbs potential, Eq. (49), with the equilibrium

transient nonequilibrium state

G minimized
closed CN equilibrium

9, minimized
open CN equilibrium: A; broken

a1, A, Minimized
open CN equilibrium: Ay, ..., An broken

\ Guaira Minimized
open CN equilibrium: all conservation laws broken
FIG. 5. Pictorial representation of the hierarchy of equilibrium states and the
semigrand Gibbs free energy drops following the relaxation to equilibrium
when conservation laws are broken.

J. Chem. Phys. 149, 245101 (2018)

distribution of closed CRNs, Eq. (44). It shows that the aver-
age drop of Gibbs free energy can be expressed as the weighted
average of the drops of Gibbs free energy at given components,
~AMG{LaD).-

We now open the CRN by chemostatting one species.
Hence, one conservation law is broken, e.g., the total mass
£,,, and the CRN relaxes to a new equilibrium, Eq. (120),
whose partition function is denoted by Z,,, Eq. (119). Clearly,
Pg (Lp), for A # A1, will not change during the relaxation, and
we can rewrite the new equilibrium as

P ) =

exp{~Ben + By Lu l_l Pl

Z/l]({ /l¢/11 A#1,

_ exp(—Bga) ZULa)) exp{Bfy, L' | [
Z(LyY) Z0, (LY aea) a0 En):

@I =P (L L aea,)

(144)

The first term is the equilibrium distribution of the closed
CRN, while the second can be interpreted as the equilib-
rium distribution of the broken component for a given unbro-
ken component. In other words, the final equilibrium can
be understood as a closed CRN equilibrium with an equi-
librium probability distribution over the broken component.
Hence, the average amount of semigrand Gibbs free energy,
Ga,(n) = G(n) - f,llL,’,I‘, dissipated during the relaxation can
be written as

~AGa) = keT ) peamLyh | | P

Phh
xin——ola) (145)
Peq(Lnl |{Ln }/l¢/1|)

upon application of Eq. (122) with the distributions (44) and
(144). When rewriting this expression as a sum over all values
of the components and performing the summation over the
states of peq(nl{L"}), we finally obtain

~NGy)y = Y. P

{Lataza,

PG (La)
X PY Ly kgTIn —2 "2
; o T T
1

= Z PHL)[-AGa, (L} aza))]-

{Lataza,

(146)

In the first line, we recognize the relative entropy between the
initial probability of the broken component, Pg‘ (La,), and the
equilibrium one, Peq(La, [{La}aza,)- It is equal to the differ-
ence of semigrand Gibbs free energy at a given component, as
highlighted in the second line. We thus see that the dissipation
following the relaxation from one equilibrium to the other is
completely characterized by the equilibration of the initially
constrained degrees of freedom.
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This procedure can of course be repeated when a further
species is chemostatted and it breaks another conservation
law. The dissipation is quantified by a difference of semi-
grand Gibbs free energy, which accounts for the relaxation
of the degree of freedom which has been released. When the
chemostatting breaks all conservation laws without generat-
ing fundamental forces, the CRN finally reaches the global
minimum of available semigrand Gibbs free energy, Fig. 5.
In this case, the potential becomes the grand potential used in
Ref. 19 and discussed in Sec. III D [cf. Egs. (87), (96), (103),
and (140)].

C. Wy3—G gauge

The driving work and the stochastic semigrand Gibbs
potential are defined up to a gauge—distinct from that involv-
ing G and W.—which corresponds to the choice of the
components. Let us consider a basis change in the space of
conservation laws

Lt = /I,Q/u/f,y, (147)
with Q, 4, = 0 for all Ay, A}, so that the unbroken ones pre-
serve their properties. Accordingly, the conjugated intensive
variables transform as

= 1= (148)
[see Eq. (140)], where Q denotes the inverse of Q. We now
notice that when the sum involves only the broken conservation
laws, such a bilinear form becomes

Z/lbf/lbf/lb - Z/lbf/lbf/lb - Z/{uf/,ut’,lu,

where

(149)

fa, = Zf/lgﬂ/lg)wuﬂ,vu/lu-

4

(150)

Therefore, the instantaneous driving work rate [the integrand
of Eq. (101) rewritten with Eq. (97)] and the semigrand
potential become

Wa(n) = Wo@) + ) o, Li (151)

and

/lu
gm) — G+ Y i, L, (152)
respectively. By contrast, the nonconservative forces—and
thus the nonconservative work—is left invariant

Fy; —>.7:Yf+Z/luf/lufii = Fv;, (153)
since t’y‘ = 0. Crucially, the gauge terms in W4 and —Ag can-
cel and the EP is unaltered. After all, the physical process is
not modified. Notice also that since the gauge term is nonfluc-
tuating, it vanishes for cyclic protocols when integrated over
a period.

We thus conclude that driving work and semigrand Gibbs
potential are not univocally defined as they are affected by a
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gauge freedom. The gauge affecting the potential-work con-
nection in stochastic thermodynamics led to debates; see Ref.
60 and references therein. As observed in the latter reference,
the problem is rooted in what can be experimentally measured
as work, as different experimental setups entail different gauge
choices. In our chemical framework, different choices of the
broken components involve expressions of the work in which
different species appear and whose abundances need to be
measured to estimate the work.

Example 7. To illustrate the potential-work gauge, we
use the CRN in Fig. 1. Let us consider the transforma-
tion of the set conservation laws, Eq. (31), identified by the

matrix
a-(' ! (154)
\o 1/
according to which the conservation laws become
E E' E* A B
th=te=(11100) (155a)
E E' E* A B
G =t-te=(-10 0 11) (155b)
Using Eq. (109), the gauge term reads
fa,(m) = pa(m) (156)

from which we can easily derive the expression for the new
driving work rate

Wa(n) = (ng — na — ng)d pa. (157)
The semigrand Gibbs free energy easily follows. We can now
highlight the difference between the two definitions of driving
work, Egs. (111) and (157): while the first entails the measure-
ment of the population of A, B and of the activated complexes
E* and E**, the latter entails that of A, B and of the free enzyme
E. The values of the two expressions will differ except for
cyclic protocols integrated over a period. O

VI. FLUCTUATION THEOREMS

We now proceed to show that the driving work and the
nonconservative chemical work satisfy a finite-time detailed
FT. The FT holds for any process, referred to as forward, if
the open CRN is initially prepared at equilibrium, Eq. (120).
For the sake of simplicity, and without loss of generality, we
assume that the initial distribution of unbroken components is

Ly =11 2,0 S[L, Ly, ]. Let mo be the initial value of the
protocol which corresponds to equilibrium ruled by g(mp). At
time 0, the driving is activated and the CRN evolves controlled
by the protocol 7., for 7 € [0, t]. The corresponding backward
process is again initially prepared at the equilibrium—where
Fy; = 0—but the chemical potentials pry, must have the
same value they have at time ¢ in the forward process. This
guarantees that the equilibrium distribution is ruled by g,,(7;).
The backward process is driven by the time-reversed protocol,
i = m_q, for T € [0, 1] (Fig. 6).
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noneq: gn (7¢)
=]

\ .
, relaxation:
14 —
ATy =0}

\\\’D

equilibrium: equilibrium:
gn(70) gn(7)

B=_

FIG. 6. Schematic representation of the forward and backward processes.
The relaxation to the equilibrium obtained by shutting down the driving and
turning off the forces at time # (respectively, 0) for the forward (respectively,
backward) process merely relates the two processes, but it is irrelevant for
the FT.

The finite-time detailed FT establishes the relationship
between the forward and backward process

Pi(Wq, (W)

P Wa (—WE)) exp{B(Wa+ Y, Wi = AGe) ]

(158)

where P;(Wy, {W;‘fc}) is the probability of observing Wy
driving work and {WJf} nonconservative contributions
along the forward process, Egs. (101) and (99). Instead,
Pj(—Wd, {=WJF}) is the probability of observing —Wq driv-
ing work and {—W/} nonconservative contributions along the
backward process. Finally,
Z(m, {La, })
Adea = =BT 3 L)
is the difference of the equilibrium semigrand Gibbs potential
between the backward and forward initial equilibrium states.
When integrating this expression over all possible values of
Wa and {WyF}, we recover a Jarzynski-like integral FT

(159)

<exp{—,8(Wd+nyWy“fc }> = exp{~BAGeq}. (160)

We emphasize that in contrast to the FT for the chemical work
discussed in the first part of Sec. III D, the driving and non-
conservative work contributions require that the process starts
from the equilibrium state ruled by G, which is that of open
CRNs. As a consequence, there is no break of conservation
laws happening during the process and Geq is nonfluctuat-
ing. The proof of the FT (158) is given in Appendix B and
it hinges on the generating function techniques presented in
Ref. 58.

We now discuss some special yet interesting cases of
the FT (158). In unconditionally detailed-balance CRNs, the
nonconservative work vanishes and we obtain

Pi(Wa)

: (161)
P (=Wa)

= exp{ﬁ(Wd - Ageq)}.

This is the analog of Crooks’ FT for CRNs %! since solely the
work due to external manipulations is involved. By contrast,
for autonomous processes, the driving chemical work vanishes
and the FT can be formulated as

AT~ exp(8Y, P}

162
P, (162)
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which evidences the symmetry that the fluctuations of the
fundamental currents [see Eq. (79)] satisfy.

The FT in Eq. (158) is inspired by an analogous result
derived in Refs. 58 and 62 in the context of generic Markov
jump processes. It is a major result of this paper and its impor-
tance is manifold. It holds for processes of finite duration ¢
and it is expressed in terms of measurable chemical quantities.
Its only constraint is the initial state, which must be equi-
librium. It reveals the most appropriate boundary conditions
under which Jarzynski—Crooks-like FTs can be formulated for
CRNs: equilibrium distribution of open CRNs. Most impor-
tantly, it evidences the merits of our stoichiometric approach
based on the identification of conservation laws: it allowed us
to characterize the potential describing the equilibrium distri-
bution of open CRNs and to formulate the decomposition of
the EP which supports our FTs, Eq. (102).

Remark A physical interpretation of the argument of the
exponential in Eq. (158) follows from the following observa-
tion: if, at time ¢, the driving is stopped and the fundamental
forces (93) turned off—viz., set to zero by an appropriate
choice of py,: ,u§f =My, > /lhiﬁi t’ﬁ;—the CRN relaxes to
the initial condition of the backward process. During the relax-
ation, neither W4 nor {W)‘,’fc} are performed and the related EP
is TZretax = G(n, ;) +kpT In Z(7;, {La,}). The argument of the
exponential can thus be interpreted as the EP of the fictitious
combined process “forward process + relaxation to the final
equilibrium.”

Remark For autonomous CRNs and arbitrary initial con-
ditions, the steady-state FT follows

M 100 exp{tﬁzyf]:yf'zyf},

- 163

where 79({‘Iyf }) is the probability of observing average rates of
fundamental external currents {% Joy dt L, (1)} equal to {Z,,}.
Equation (163) can be proved using the large deviation tech-
nique used in Ref. 13 in combination with the local detailed
balance (94).

A. FT along stoichiometric cycles

An alternative yet equivalent formulation of the FT (158)
is that given in terms of nonconservative contributions along
emergent stoichiometric cycles, Eq. (133),

Pi(Wa, (T })

P Wa T} Wa+ > Ty=AGe) | (164
Pl (—Wa, (-, }) eXp{ﬁ( d Z,,n q)} (164)

where P;(Wq, {I;}) is the probability of observing Wq driv-
ing work and {I';,} nonconservative contributions along the
forward process. We discuss its proof in Appendix B.

Remark As for the fundamental currents, the local
detailed balance (129) can be used to prove a steady-state FT
for currents along emergent stoichiometric cycles

PUT, D) 120 exp{l‘ﬁZnA”j"}’

. (165)
PA=Tqh)
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which is valid for autonomous CRNs and arbitrary initial con-
ditions. 77({\7,] }) is the probability of observing average rates of
emergent cycle currents {% Jo 47 X 8npd (1)} equal to { T, ).
In contrast to the analogous FT obtained in Ref. 14, Eq. (165)
is achieved using a stoichiometric approach based on the iden-
tification of stoichiometric cycles. For this reason, it accounts
for the minimal set of nonzero macroscopic affinities.

VIl. ENSEMBLE AVERAGE RATES DESCRIPTION

We now summarize our main results for ensemble average
rates and discuss the relaxation to equilibrium of detailed-
balanced CRNs. We also highlight the difference between an
approach that does and does not take into account the topol-
ogy of the CRN. We do so by recapitulating the procedure to
decompose the EP into its fundamental contributions. We end
by formulating a nonequilibrium Landauer’s principle.

A. Traditional description
1. Enthalpy balance
The enthalpy balance follows from the time derivative of

the average enthalpy, Eq. (61),

dtznpn(h “n) = d(H) = (Q) + (Wo). (166)

It characterizes the average rate of change of enthalpy in the
same way Eq. (69) characterizes the enthalpy change along
stochastic trajectories. The average heat flow rate is given
by

(Q) = (Q"y + (™).

The first term quantifies the average rate of heat of reaction

(167)

Oy = Zp [h-S,+hy - SY1U,), (168)
where (J,) = Y ,w,(1)p, is the average reaction current. The
second term is the average heat flow in the chemostats

(QM™y = Tsy -(IY), (169)

where (IY) = Zp(—Sg)Up) are the average external cur-
rents, Eq. (19). Instead, the ensemble average chemical work
rate

(We) = py - ()

quantifies the average rate of exchange of Gibbs free energy
with the chemostats.

(170)

2. Entropy production rate

At the ensemble average level, the second law of ther-
modynamics manifests itself in the non-negative average EP
rate

() = d«(S) — +(0)
=ks ), wpmpaln

Wy ()P

— 50, (171)
wp(n + Sp)pn+Sp

where (S) = Y.,pnS(n), Eq. (57). Using the expression for the
transition affinity, Eq. (56), it can be recast into
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T(Z) = (W) — d(G), 172)

where the chemical work rate and the average Gibbs potential
are given in Eqgs. (170) and (48), respectively. Equivalently,
Egs. (166), (171),and (172) can be obtained by directly averag-
ing Egs. (69), (73a), and (73c¢), respectively, over all stochastic
trajectories.

For closed CRNs, Eq. (172) reduces to d,(G) = ~T(Z)
< 0. This relation, together with Eq. (49), shows that: (i) (G)
is a Lyapunov function and hence that closed CRNs relax to
equilibrium, Eq. (44); (ii) {(G) — (Geq)L = T(Z) is the average
dissipation during the relaxation to equilibrium.

B. CRN-specific description
1. Entropy production rate

We now summarize the procedure to recover the EP
decomposition (102) at the ensemble average level. (i) Iden-
tify the broken and unbroken conservation laws, {£,, €y, },
Sec. II D. (ii) Identify a set of N, exchanged species, yp, for

which the matrix whose rows are {l’i’;}
columns of its inverse are denoted by {fﬁ" }. Physically, each
species y, breaks exactly one conservation law. The remain-
ing exchanged species form the set denoted by yy. (iii) The
nonequilibrium semigrand Gibbs potential follows from the

average of Eq. (103)
9) = ann [ksT Inpy, + g, ]

It depends on the vector ({M?») which describes the average
population of the combination of moieties whose conserva-
tion is broken by the chemostats, Sec. I D and Eq. (91). (iv)
The change in time of (g) due to the time-dependent driving
describes the average driving work rate, Eq. (101),

(Wa) = —[upry, ] - M),

It quantifies the average amount of work spent to change the
chemical potentials of the chemostats Yp. (v) The second
group of exchanged species, yr, is used to identify the min-
imal set of fundamental nonconservative forces, Fy, = {Fy,},
Eq. (93). The average nonconservative chemical work rate fol-
lows from the product of these forces and their corresponding
instantaneous external currents, Eq. (67),

is nonsingular. The

(173)

(174)

(W) = Fydly)-

f

(175)

They quantify the average work per unit time spent to sustain
a net current of species yr across the CRN. (vi) The aver-
age EP rate decomposed as in Eq. (102) finally follows from
Eqgs. (173)—(175)

T(E) = ~d(G) +(Way + 3 (Wi).  (176)
Its three fundamental contributions appear: a conservative
force contribution, a time-dependent driving contribution, a
minimal set of nonconservative terms.

For open autonomous detailed-balanced CRNs, Fy; = 0,
6,;1Yp = 0, and hence Eq. (176) reduces tod,;{G) = ~T(X) < 0.
Recalling Eq. (122), this relation shows that: (i) (G) is
a Lyapunov function and hence that these CRNs relax to
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equilibrium, Eq. (120); (ii) {(G) = (Geq)L, = T(X) is the average
dissipation during the relaxation to equilibrium.

2. Enthalpy balance

By averaging Eq. (116), the CRN-specific average
enthalpy balance also ensues

d(H) =(Q) +(Wa) + Z:yf(Wy"fc ; 77)
which strengthens the interpretation of (Wg) and {(W)‘,‘fC } as
average work rate contributions.

C. Average EP along stoichiometric cycles

The average EP decomposition expressed in terms of
emergent cycle currents and affinities can be achieved through
an analogous recipe. (i) Identify broken and unbroken conser-
vation laws, {£,,, £, }, as well as stoichiometric and emergent
stoichiometric cycles, {¢?, ¢} [Secs. II D and II E]. Follow
steps (ii)—(iv) as above. (v) Identify the emergent stoichiomet-
ric cycles affinities, Eq. (126), as well as their corresponding
average currents ),y o{Jp), Eq. (130). (vi) The average EP
rate follows from Eqs. (173) and (174) and the emergent
stoichiometric cycles currents and affinities

T() = ~d(G) +(Wa) + anﬁ, (178)

where

() = Ay Lyotdo) (179

as in Eqgs. (132) and (133).

D. Nonequilibrium Landauer’s principle

We can now formulate the nonequilibrium Landauer’s
principle for the driving and nonconservative work. We have
already seen that when the driving is stopped and all forces
are turned off, the CRN relaxes to equilibrium by minimizing
the nonequilibrium semigrand Gibbs potential. Equation (122)
can be thus combined with Eq. (176), and by integrating over
time, we obtain

(Wa) + ny<W§‘;‘> = MGeg)L, + kT ADplipeg) + T (Z) .
>0
(180)

This fundamental result shows that the minimal cost for
transforming a CRN from an arbitrary nonequilibrium state
to another is bounded by a relative entropy difference, as
depicted in Fig. 7. This entropy is an information-theoretical
measure of the dissimilarity between two probability distri-
butions: the actual nonequilibrium one and its corresponding
equilibrium, which is used as a reference. For processes start-
ing at equilibrium, kgTAD = kgTD(pslIpeq,) = O quantifies
the minimal cost of producing the final nonequilibrium state.
By contrast, for processes relaxing to equilibrium, kgTAD
= —kgTD(pillpeq,) < 0 quantifies the maximum amount of
work that can be extracted from the initial nonequilibrium
state. For transformations in the absence of nonconservative
forces (Fy, = 0), we obtain the chemical version of the result
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FIG. 7. Pictorial representation of the transformation between two nonequi-
librium probability distributions. The nonequilibrium transformation (blue
line) is compared with the equilibrium one (green line). The latter is obtained
by shutting down the driving and turning off the forces at each time (dashed
gray lines).

of Ref. 28. The original Landauer’s principle®® is recovered
when considering erasure in a two state system (0 and 1)
with identical energies. In this process, the initial equilibrium
state (system equally likely to be found in O or 1) is trans-
formed into a metastable nonequilibrium one (system found
with probability one in 0) via a cyclic protocol. The difference
of relative entropy is AD = In2 and thus (W4) > kT In2.
Finally, Kelvin’s formulation of the second law is recovered
for transformation between equilibrium states in the absence
of nonconservative forces, (Wg) > A(Geg)L, -

Remark To obtain the Landauer’s principle for (Wy) and
{(Wy“fC }, the equilibrium states of the open CRN have been
used as reference states; see Fig. 7. Alternatively, one could use
the equilibrium states of the closed CRN, which are obtained
by shutting down all exchange reactions. If one does so and
uses Eq. (172), an analogous Landauer’s principle for the
chemical work can be derived

(We) = AGeq)L + kT AD(p||peq) + (). (181)

The traditional thermodynamic work relation (W) > A(Geq)L
is recovered for processes whose initial and final states are
equilibrium ones.

E. Connection with deterministic descriptions

For CRNs with very abundant populations of species, a
deterministic dynamical description in terms of nonlinear rate
equations is justified. The corresponding nonequilibrium ther-
modynamics was analyzed in Ref. 25, where the counterparts
of Egs. (166), (172), and (105) can be found. Following a pro-
cedure similar to that described in this paper, one can also
formulate the deterministic analog of the EP decomposition
(176).

One can also recover the deterministic thermodynamic
description from the ensemble average one by performing the
thermodynamic limit—n > 1, V > 1, with n/V =: [z] finite,
see Appendix A—and assuming that p, = 0, v[z], i.e., the
distribution is very peaked around the population that is the
solution of the rate equations, V|[z].

We conclude with two remarks.

Remark Not all results valid for stochastic CRNs hold
for the deterministic ones. An example is provided by the



245101-20 R. Rao and M. Esposito

adiabatic—nonadiabatic EP decomposition introduced in Ref.
64 for generic stochastic processes: it is valid for determin-
istic CRNs only for complex-balanced CRNs; see Refs. 25
and 65.

Remark As briefly mentioned in Sec. II A, there is
an alternative way of modeling open CRNs in which the
exchanged species y are treated as particle reservoirs with very
large population. All main results of our paper—i.e., the EP
decomposition (102), the finite-time detailed FT (158), and the
Landauer’s principle (180)—still hold. The only difference lies
in the fact that the different definitions of stoichiometric matri-
ces, Eq. (6), also entail slightly different definitions of broken
conservation laws. Besides that, the procedure described in
Sec. VII B can be followed in the same way.

VIIl. APPLICATION

We now illustrate our EP decompositions (102) and (132)
on a CRN displaying more than one fundamental force,
which allows us to introduce the phenomenology of free
energy transduction. We consider the following active catalytic
mechanism:

ki1 kys kyq
T+E=ET =ED=E+D,

ki3

- (182)
ET+S = E* = ED +P.

It describes the T-driven catalysis of S into P, having D as a
byproduct; see Fig. 8. All substrates and products are regarded
as exchanged species

S=S.,P=P, T=T,, D=D.. (183)
ks kap I ka
The stoichiometric matrices S and SY read
+1 42 +3 +4 +5 4s +p +t +d
Ef(-10 0 1 0{0000O0
ET[ 1 -1 0 0-1/0000
el 0 1 -10 0[{00O0O0
Ebp|] 0 0 1 -11 0000’ (184)
s{0-100 01000
PO 0O 1000100
T|-10 0 0 0{]0010O0
p\0 0O 0 1 0|00O01

in which the stoichiometric matrix of the closed CRN is
highlighted, and

Environment

Chemical Network

Te :'Tv/E\(D/ t’l)e
ET — ED

RN ACE

Pe

Sel

FIG. 8. Pictorial illustration of the open CRN in Egs. (182) and (183), from
which one can see the active catalytic mechanism more clearly.
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+1 +2 +3 +4 +5 +s +p +t +d
ssf0 0O 0 0 O0|-1 0 0O O
{0 O O O O] O -1 O O (185
.0 0 0 O O 0 0 -1
p,\0O O 0 0 O] 0O O O -1
respectively.

We now follow the procedure described in Sec. VII and
characterize all terms of Eq. (102). (i) The closed CRN has
three independent conservation laws

EETE"EDSPDTS. Po T De

te=(11110000000 0) (1862
E ET E* ED S P D T S¢ P T. D¢
ts=(00 1 011001 10 0), (186b)
E ET E*E ED S P D T S¢ P. T De
tr=(01 110011001 1) (1860

The first corresponds to the enzyme moiety and it is unbroken
in the open CRN. By contrast, the last two correspond to the
moieties S—P and T-D, which are broken in the open CRN.
(ii) We choose S, and T, as chemostatted species Y, since the
entries of s and {1 corresponding to these species identify a
nonsingular matrix—it is an identity matrix. (iii) The moiety
population vector reads

S ng +ns +n
Yy E S P
an _—T(

), (187)

NgT + NEx + Ngp + Nt + np

from which the semigrand Gibbs potential G follows,
Egs. (103) and (173). (iv) The driving work rate follows from
the scalar product of the vector above and

Se _6 :use
- atllyp = ( ' ),

(188)
Te \ —0: uT,

Egs. (101) and (174). (v) The chemostatted species P. and D,
form the set Yy and determine the fundamental forces

‘Fpe Pe :uPe - I’lse
Fy, = = )
Fp. )  De\HD, — HT,

Eq. (93). Together with the instantaneous external currents

o <1pe ) P (J+p —Jp>’
Ip,| De\Jra—Jg

they identify the nonconservative contributions, Eq. (99). The
first one, Fp Ip,, characterizes the work spent to convert S
into P, while the second, Fp,Ip,, characterizes that due to
the consumption of T. The sum of these terms and the driv-
ing work integrated over time contribute to the EP as in
Eq. (102).

The similar EP decomposition written in terms of non-
conservative contributions along stoichiometric cycles follows
when these latter are identified. The kernel of stoichiometric
matrix of the closed CRN is empty, while that of the open is
spanned by

(189)

(190)
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FIG. 9. (a) Average external currents and (b) average work rates vs. time for the CRN in Fig. 8. The plots are obtained using 104 trajectories generated via the
stochastic simulation algorithm. To simplify the illustration, all substrate and products are treated as chemostatted species. The concentrations of Se, Pe, and
D, are kept constant ([Se] = 10, [Pe] = 70, and [D.] = 10), whereas that of T increases according to a logistic function: [Te] = [Telmax /(1 + exp{—«(t — 1) })
([Telmax = 200, k = 20, to = 1.5). This mimics the process in which the force that sustains the active catalysis, Fp,, is switched on from O to a finite value
after #o. The change of the chemical potential uT, is plotted in red in the inset. The choice of the rate constants is as follows: k| = 103; kyp = 10°; kys = 10%;
ky4 = 10%; kys = 10%, whereas the backward rates are obtained by means of Eq. (52) using the following values for the standard-state chemical potentials:
y]‘j: =1; /JET =3; ”E* =4 #ED =2; yge =1; ,ulf;e =2; ,u%e =10; 'UIODe = 1. Since reactions are unimolecular, the constant term —kg7'11n[s] is ignored. Finally,

ksT =1 and the value of the enzyme moiety is Lg = 10.

+1 42 +3 +4 +5 +s 4+p +t +d

ecr=(10011001-1) (191a)
+1 42 +3 +4 45 +s +p +t +d
a=(111101-11-1), (191b)

which are regarded as emergent stoichiometric cycles. Along
the first, the enzyme converts one molecule of T into one of
D, while for the second it processes T and S and produces D
and P

Se P T De

cY=(001-1), (192a)
Se Pe Te De

Y= (1-11-1). (192b)

At this point, we can proceed from step (v) and determine the
affinities

Ay = pr, — b, (193a)

Ay = pr, + ps, — Up, — Hp,, (193b)
as well as the related instantaneous currents

Ti = Jap —Jp = Jaa = Ja, (194a)

T =Jp = Jsp. (194b)

The nonconservative work follows from the products
A1 Jp and A, 7> and the decomposition in Eq. (132) can thus
be expressed. The former characterizes the dissipation due to
the futile consumption of T, since S is not converted into P.
The latter, instead, is the work spent to convert T and S into D
and P.

This system can be used to illustrate free energy trans-
duction when one considers the autonomous regime where
Fp, <0, Fp, > 0, but <ng§> > —(W;}:) > (. Namely, the
external current of P, flows towards the chemostat, (Ip,) < 0
(P. produced), despite the fact that its force is positive,

Fp, > 0. This can happen thanks to the free energy provided
by the conversion of T, into D, (W]‘;i) > 0. In Fig. 9, we
illustrate the behavior of the average external currents and
work contributions as function of time when the transducer
in Fig. 8 is smoothly switched from a nontransducing regime
to a transduction one. At early times, fp, = 0, Fp, > O,
and one observes only a consumption of P.: {(Ip,) > 0 and
(Ip,) = 0 [respectively, orange and blue curves in Fig. 9(b)].
Consequently, the nonconservative work contributions are
(W{,‘:} > 0 and (Wgz) = 0 [respectively, orange and blue
curves in Fig. 9(b)]. By contrast, when the motive force Fp,
is switched on (at large times), the current (/p,) turns neg-
ative, whereas the motive current (Ip,) aligns itself with its
corresponding force. We thus observe that (WBZ) > —(WI‘,‘:) >
0. At intermediate times, driving work is extracted follow-
ing the smooth increase of the motive force [green curve in
Fig. 9(b)].

IX. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented a thorough description of
nonequilibrium thermodynamics of stochastic CRNs. The fun-
damental results of traditional irreversible chemical thermody-
namics (viz., enthalpy and entropy balance) are formulated at
the level of single trajectories, Eqs. (61) and (72). By mak-
ing use of the CRN topology and by identifying conservation
laws, we decompose the EP into two fundamental work con-
tributions and a semigrand potential difference, Eqgs. (102) and
(176). The driving work describes the thermodynamic cost of
manipulating the CRN by changing the chemical potentials
of its chemostats. Instead, the nonconservative work quanti-
fies the cost of sustaining chemical currents through the CRN.
These currents prevent the CRN from reaching equilibrium,
but when the related fundamental forces vanish (and the chem-
ical potentials of the reservoirs are kept constant in time),
the CRN relaxes to equilibrium by minimizing the semigrand
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Gibbs potential. We elucidate the relationship between this
thermodynamic potential and the dynamical potentials used
in chemical reaction network theory. Our EP decomposition
written in terms of stoichiometric cycle affinities general-
izes previous decompositions formulated for linear CRNs or
steady-state dynamics.

Two detailed FTs follow from our EP decompositions,
Egs. (158) and (164). They are valid at any time and entirely
expressed in terms of physical quantities. Hence, they offer the
possibility of validating our findings experimentally and, from
a wider perspective, of validating the foundations of stochastic
thermodynamics beyond electronic devices or colloidal parti-
cles.®®%7 Finally, we derive a nonequilibrium Landauer’s prin-
ciple for the work contributions, Eq. (180), which quantifies
the minimum thermodynamic cost involved in transformations
between arbitrary nonequilibrium states. In contrast to early
formulations of the latter principle, we consider not only the
cost of external manipulations but also that related to sustained
currents across the system.

Our EP decomposition identifies the fundamental dis-
sipative contributions in CRNs of arbitrary complexity and
thus it can be used to analyze free energy conversion in
CRNs beyond single biocatalysts, molecular motors, or sen-
sory systems, which are usually described by linear CRNs.%%-71
The nonconservative work contributions capture Hill’s idea
of free energy transduction and extend it to nonlinear CRN’s
with an arbitrary number of chemical forces. (As illustrated
in Sec. VIII, transduction occurs whenever one contribu-
tion becomes negative, thus requiring the other ones to be
positive and larger than the former in absolute value by
virtue of the second law of thermodynamics.) In turn, the
driving work contribution allows us to generalize transduc-
tion to CRNs with reservoirs externally controlled in time.
Hence, our framework can be used to analyze pumping
in CRNs,’%73 namely, mechanisms whose periodic external
control sustains a chemical current against its spontaneous
direction.

In biochemical information-handling systems
and chemical computing,’® information is stored and pro-
cessed at the molecular level. Conservation laws play a cru-
cial role since they enable storing information in the form
of nontrivial probability distributions’’ [see, e.g., Eq. (120)].
Early applications of the nonequilibrium Landauer’s prin-
ciple proved successful for characterizing the thermody-
namic cost of information processing in simple mecha-
nisms.”®” Our generalization of this principle could thus
be used to analyze biochemical information-handling sys-
tems of far greater complexity. This endeavor is important
in the light of the current understanding that biological sys-
tems evolved by optimizing the gathering and representation of
information.3%-8!

Noise is known to play an important role in many bio-
chemical processes. Since a complete stochastic descrip-
tion remains both analytically and computationally demand-
ing, developing hybrid stochastic—deterministic descriptions
would be of great importance.?>%283 Also, many of these pro-
cesses are regulated by enzymes, thus extending the present
theory beyond mass-action kinetics, as already done for
deterministic CRNs,3* is also necessary.

48,70,74,75
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APPENDIX A: THERMODYNAMIC POTENTIALS

Using equilibrium statistical mechanics, we derive the
equilibrium Gibbs free energy of a CRN in a given state n.
Our derivation is similar to that found in Ref. 85, Sec. 3.2,
whereas for different approaches, we refer the reader to Refs.
86-89.

We regard the reacting species, labeled by o = 1,

N, as solutes of an ideal dilute solution in a closed vessel.
Since the solvent, s, is much more abundant than the solutes,
ng > Y ,nq. As in ideal solutions, interactions among solutes
are negligible and the partition function of the whole solution
O(T, n, ny) can be written as the product of single species par-
tition functions, g = {g,(T)} and ¢s. By idealizing the solution
as a lattice gas, in which each site is occupied by one molecule,

we obtain
qs(ns) 1—[ C]

The combinatoric term accounts for all possible permutations
of molecules, in which the overcounting due to the indistin-
guishability of molecules of the same species is removed.
We note that the fact that different molecules might occupy
different volumes is neglected.

Since we deal with dilute solutions, g = {g(T)} depends
mainly on the temperature and the solutes—solvent interactions,
whereas g5 depends on the abundance of solvent as well as the
external pressure (which we omit for brevity). Using Stirling’s
formula and the high relative abundance of the solvent, the
combinatoric term can be approximated as

(ns + Zo‘n(r)

Q(Tan’ns) - 'H

(AD)

TSI I
n!'Tlone!  1loeng! ™ nl”

Using Eq. (A1), the Gibbs free energy of a given state n is thus
given by

gn = _kBTln Q(T,n,ns)

= (u° - 1kpTInng) -n+kpTlnn!+g;, (A3)

where

p°=—kgTIng (A4)

can be identified as standard chemical potentials. Since the
contribution that derives from the solvent, gs := —kpT In gs(n;),
is constant, it can be set to zero without loss of generality. We
emphasize that despite the idealizations that we introduced,
Eq. (A3)is consistent with a rigorous approach based on mean-
force potentials [cf. Ref. 87, Eq. F.44.a].

The Gibbs free energy changes along internal reactions
read
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TABLE III. List of symbols used throughout the text. The physical quantity
that they denote and the equation number in which they are defined are also
reported.

Symbol Physical quantity Equations
Sy Stoichiometric vectors 3)

S Stoichiometric matrix (4) and (5)
wp(n) Stochastic reaction rates 13)
Jp(T) Instantaneous reaction fluxes a7

t Conservation laws (23)

L, Component 24)

c Stoichiometric cycles (32)

ny Chemostats chemical potential 54)

gn Gibbs free energy of n 42)
G(n) Stochastic Gibbs potential 47
(G(n)) Nonequilibrium Gibbs potential (48)

VA Closed-CRN partition function 43)
Ap(n) Reaction affinity (56)

Sn Entropy of n (58)
S(n) Stochastic entropy 57)
(S(n)) Gibbs—Shannon entropy (60)
H(n) Enthalpy (61) and (166)
0 (0 Heat flow (rate) (66) and (167)
We ((We)) Chemical work (rate) (68) and (170)
Y Instantaneous external currents (67)
(2 Entropy production (rate) (74) and (171)
M,y,p Moiety population vector 91)

Fy; Fundamental forces 93)

IYf Fundamental external currents (79)

On Semigrand Gibbs free energy of n (95)
G(n) Stoch. semigrand Gibbs pot. (103)
(G(n)) Noneq. semigrand Gibbs pot. (173)

zZ Open-CRN partition function (119)

Wq ((Wg)) Driving chem. work (rate) (101) and (174)
W;fc ((W}‘,‘fc)) Nonconservative chem. work (rate) (99) and (175)
H(n) Semigrand enthalpy (115) and (177)
Ay Stoichiometric cycle affinity (126)

Tn Stoichiometric cycle current (135)

Iy Nonconservative cycle chem. work (133) and (179)

Apig = 8n+S,, ~ 8n
(m+S,)! (AS)

= (u° —1kgTInng) - Sy, + kg7 In p

1. Thermodynamic limit

For V > 1,n > 1, and finite [z] = n/V, the Gibbs potential
(A3) becomes

gn/V = p-z] - kpTl[z] -1, (A6)

where
p = p° +kgT In{[z]/[s]}

are the chemical potentials of solutes in an ideal dilute solution
and [s] = ns/V is the concentration of the solvent. We thus
recover the Gibbs free energy density of ideal dilute solutions;
see, e.g., Refs. 51 and 90.

When applying the same limit to the Gibbs free energy
differences, Eq. (AS), we recover the Gibbs free energies of
reaction

(A7)

Apg=p-S,. (A8)
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This result also justifies the form of the second term in the
local detailed balance of exchange reactions, Eq. (53).

Remark The chemical potentials of ideal dilute solutions
obtained in Eq. (A7) are expressed in terms of the concentra-
tion of the solvent. By including this term in p° and introducing
areference concentration for each species [zy], we recover the
common expression for the potential of ideal dilute solutions
p = ji° + kgT In{[z]/[2¢]}, where the standard-state chemical
potential 1° = u° + kgT In{[zp]/[s]} is that measured at the
reference concentration.

Summarizing, g, given in Eq. (A3) characterizes the free
energy of each CRN state. In the thermodynamic limit, the
traditional potentials of ideal dilute solutions are recovered.

APPENDIX B: PROOFS OF DETAILED
FLUCTUATION THEOREMS

To prove the finite time detailed FT's (158), we use moment
generating functions and change the notation in favor of one
using brackets and operators.

Let P;(n, Wy, {W)’,‘fc}) be the joint probability of observ-
ing a trajectory ending in the state n along which the driv-
ing work is W4 while the nonconservative contributions are
{Wy}. These probabilities, one for each n, are stacked in
the ket |P,(Wy, {W;,‘f})). The time evolution of their moment
generating function,

A€o, (€ D) = / awo[ ], awseexp{-cawa- ) &, wie)
X |P{(Wa, AW D), (B1)
is ruled by the biased stochastic dynamics

dt |Al(§d7 {é:yf })) = Wl(fds {é:yf })lAl(fd, {é:yf }))9 (B2)

where the entries of the biased generator are given by

WnaEa, 16,0 = . wpm{exp{-D" &7 (-5}

X O, = Oman )~ €00,8nOnm.  (B3)
We denoted the entries of Szf as {S[y,r }. As a consequence of the

local detailed balance (94), the stochastic generator satisfies
the following symmetry:

W (&a A&y ) = BT Wiéa. (1 - &, ) B, (B4)
where the entries of B, are given by
Bum.: = exp{—Bgn(®)}nm- (BS)

Introducing the partition function for the generic equilibrium
state identified by the protocol at time 7, Z, = Z(n,{L,,})
= exp{—BGeq. }, the initial condition can be written as

|A0(Ea A&y D) = IPeg,) = Bo/Zol1). (B6)
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The ket I1) refers to the vector in the state space whose entries
are all equal to one.

In order to proceed further, it is convenient to first
prove a preliminary result. Let us consider the generic biased
dynamics, e.g., Eq. (B2),

di|AL(£)) = WiDIA(E)),

whose initial condition is |Ao(£¢)) = Ip(0)). A formal solu-
tion of Eq. (B7) is |A;(&)) = U (&) |p(0)), where the time-
evolution operator reads U (¢) = 7. exp{ fot dr WT(f)}, with
T+ being the time-ordering operator. We clearly have d,if,(¢)
= Wi(E)U(€). Let us now consider the following transformed
evolution operator:

(B7)

U (&) = X' Ui (6) X, (B8)

with &, being a generic invertible operator. Its dynamics is
ruled by the following biased stochastic dynamics:

At (€) = X7 UE X + X7 U)X
= {d X7 + XTI X T (€)
= W& U(),

which allows us to conclude that the transformed time-
evolution operator is given by

(B9)

!
Ue) = ﬂexp{/ dr Wr(f)} (B10)
0

From Egs. (B8)-(B10), we deduce that

!
X U@EX =T, exp{ / dr [de A7 X + X;IWT(f)XT]}.
0
(B11)

We can now come back to our specific biased stochas-
tic dynamics (B2). The moment generating function of
P (Wq, {WyF}) is given by

As(&a: 1€y D) = (LA(Ea. (£, 1)
= (1t (&a, 1€y DBo/ 2ol 1)

B, Z
:<1|ZB[lut(é:da{é:yf})[j’0|1>§;7 (B12)

where U; (&4, {£,,}) is the time-evolution operator of the biased
stochastic dynamics (B2). Note that { 1|13,/ Z; is the equilibrium
initial distribution of the backward process (peg,|. Using the
relation in Eq. (B11), the last term can be rewritten as

!
= (peq, I T exp{ / dr[0.B;' B, + B, Wr (&, {fy,.})BT]}|1>
0
X exp{—fAGeq . (B13)
where AGeq is defined in Eq. (159). Since 9.B;'B;
= diag{d. g, }, the first term in the square bracket can be added
to the diagonal entries of the second term, thus giving

t
= @eq,lﬁexp{ /0 dr [B' We(éa - 1, {§>yf}>Bf]}|1>

X eXp{—BAGeq |- (B14)
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The symmetry (B4) allow us to recast the latter into

=<pec,f|71exp{/0 erI(fd—l,{l—fyf})}|1>
X exp{—BAQeq}.

The crucial step comes as we transform the integration variable
from 7 to 77 =1 — 7. Accordingly, the time-ordering operator,
T+, becomes an anti-time-ordering one 7_, while the diagonal
entries of the biased generator become

(B15)

Wmm,t—‘r’f(fd, {f)t}) = prp(m, t— TT) + &4 &Hgm([ - TT)
(B16)
from which we conclude that
an,t—ﬂ' (&as {‘fyf D= an’t_-r'r(—fd, {f),f )

=W (e D BID)

W:r (&4, {&y,}) is the biased generator of the dynamics subject

to the time-reversed protocol, 7', ie., the dynamics of the
backward process. Equation (B15) thus becomes

= (Peq, I T exp{/o de" WL (1 - o, {1 - fyf})}|1>
X exp{—ﬁAgeq}.

Upon a global transposition, we can write

(B18)

= (1|7 exp{/o dr' WL (1 =&, {1 - fyf})}lpeq)
X eXp{_ﬁAgeq}7

where we also used the relationship between transposition and

time-ordering
ﬂ(l—LAE) - (T‘nz‘A”)T’

in which A; is a generic operator. From the last expression, we
readily obtain

(B19)

(B20)

= (U} (1= £a, 11 = £,))Ipeq,) exp{~ BAGeq |

(B21)
= A,T(l —&q. {1 - fyf}) eXP{—IBAgeq}’

where AZ (fd, {fyf}) is the moment generating function of

P,T Wy, {W)‘,‘fc}). Summarizing, we have the following symme-
try:

Ao (& D) = A (1= €0, 11 = £,}) exp{-BAGeq}. (B22)

whose inverse Laplace transform gives the FT in Eq. (158).

1. Fluctuation theorem for emergent
stoichiometric cycles currents

The finite-time detailed FT for nonconservative contribu-
tions along fundamental cycles, Eq. (164), follows the same
logic and mathematical steps described above. The moment
generating function which now must be taken into account
is
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[Ai(€as {fn}» = /del_L]drn CXP{—ded - anr]rn}
X |P{(Wq, {Ty})), (B23)

which is ruled by the biased generator whose entries are
WanaEa &) = Y wp{exp{- &,4,0,,}

X Gmnss, — 6,,,,"} — £40/9mOnm.  (B24)

The symmetry of the latter generator—on top of which the
proof is constructed—is based on the expression of the local
detailed balance given in Eq. (94)

WE(Ea, (&) = B Wiéa, {1 - &) By,

where the entries of B, are given in Eq. (B5). Following the
steps from Eq. (B12) to Eq. (B22), with the definitions and
equations in Egs. (B23)—(B25), proves the FT in Eq. (164).

(B25)
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