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Abstract

Propositional Typicality Logic (PTL) is a recently proposed logic, ob-
tained by enriching classical propositional logic with a typicality opera-
tor capturing the most typical (alias normal or conventional) situations
in which a given sentence holds. The semantics of PTL is in terms of
ranked models as studied in the well-known KLM approach to preferen-
tial reasoning and therefore KLM-style rational consequence relations can
be embedded in PTL. In spite of the non-monotonic features introduced
by the semantics adopted for the typicality operator, the obvious Tarskian
definition of entailment for PTL remains monotonic and is therefore not
appropriate in many contexts. Our first important result is an impossibil-
ity theorem showing that a set of proposed postulates that at first all seem
appropriate for a notion of entailment with regard to typicality cannot be
satisfied simultaneously. Closer inspection reveals that this result is best
interpreted as an argument for advocating the development of more than
one type of PTL entailment. In the spirit of this interpretation, we in-
vestigate three different (semantic) versions of entailment for PTL, each
one based on the definition of rational closure as introduced by Lehmann
and Magidor for KLM-style conditionals, and constructed using different
notions of minimality.

1 Introduction

Propositional Typicality Logic (PTL) [2, 3] is a recently proposed logic allowing
for the representation of and reasoning with an explicit notion of typicality. It is
obtained by enriching classical propositional logic with a typicality operator •,
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the intuition of which is to refer to those most typical (or normal or conven-
tional) situations in which a given sentence holds. PTL is characterised using
a preferential semantics similar to that originally proposed by Shoham [41] and
extensively developed by Kraus et al. [32] and Lehmann and Magidor [34] in
the propositional case, with close connections to the formalisms developed by
Pearl and Goldszmidt [38, 39], and by others [5, 9, 10, 29, 40, 18, 19, 20] in more
expressive languages.

In spite of the non-monotonic features introduced by the adoption of a pref-
erential semantics for •, the obvious definition of entailment for PTL, i.e., the
one based on a Tarskian notion of logical consequence, remains monotonic.
Of course, such a notion of entailment is inappropriate in non-monotonic con-
texts, in particular when reasoning about typicality, as is already clear from
an enriched version of the classical Tweety example: If birds typically fly, and
penguins are birds (and that is all we know), we would expect to be able to
conclude that typical penguins are typical birds, and therefore that typical pen-
guins fly. Learning that penguins typically do not fly should lead us to conclude
that penguins are not typical birds, and to retract the conclusions about typical
penguins being typical birds, and about typical penguins flying.

In this paper, we investigate three semantic versions of entailment for PTL,
constructed using three different forms of minimality. All these are based on the
notion of rational closure as defined by Lehmann and Magidor [34] for KLM-
style conditionals in a propositional setting. We show that they can be viewed
as distinct extensions of rational closure, equivalent with respect to the condi-
tional language originally proposed by Kraus et al., but different in the PTL
framework.

We shall study the aforementioned forms of entailment in an abstract formal
setting, obtained by proposing a set of postulates that, at first glance, seem
appropriate for any notion of entailment with regard to typicality. Our first
important result is a negative one, though. It is an impossibility result proving
that the set of postulates cannot all be satisfied simultaneously. A more detailed
analysis of the result shows that, instead of being viewed as negative, this result
should rather be interpreted as an indication that PTL allows for different types
of entailment, corresponding to different subsets of the full set of postulates we
provide. In line with this argument, we define three types of entailment for
PTL corresponding to distinct subsets of the postulates, referred to as LM-
entailment, PT-entailment, and PT’-entailment, a modification of the latter.
Our argument for more than one type of entailment for the same logic is in
line with the proposal put forward by Lehmann in the context of entailment for
conditional knowledge bases, where he proposes both prototypical reasoning and
presumptive reasoning as acceptable forms of entailment [33]. We elaborate on
this point in Section 8, but the gist of the argument is the acknowledgement of
the existence of more than one form of entailment for the same representational
formalism.

The remainder of the present paper is structured as follows. Section 2 pro-
vides the background and notation for the rest of the work. In Section 3 we
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discuss the complexities surrounding a notion of entailment for PTL. In Sec-
tion 4 we put forward our postulates and show the impossibility result. In
Section 5 we define LM-entailment while Section 6 is devoted to the definition
of PT-entailment, and Section 7 to the definition of PT’-entailment. Section 8
addresses the implications of the impossibility result, making the case for three
forms of PTL entailment. Section 9 discusses related work, while Section 10
concludes and discusses future work.

2 Logical preliminaries

Let P be a finite set of propositional atoms with at least two elements.1 We
use p, q, . . . as meta-variables for atoms. Propositional sentences (and, in later
sections, sentences of the richer language we shall introduce in Section 2.3 below)
are denoted by α, β, . . ., and are recursively defined in the usual way: α ::=
p | ¬α | α ∧ α | ⊤ | ⊥. All the other Boolean connectives (∨, →, ↔, . . . ) are
defined in terms of ¬ and ∧ in the standard way. With L we denote the set of
all propositional sentences.

We denote by U the set of all propositional valuations v : P −→ {0, 1}, i.e.,
U := {0, 1}P . Whenever it eases the presentation, we shall represent valuations
as sets of literals (i.e., atoms or negated atoms), with each literal indicating
the truth-value of the respective atom. Thus, for the logic generated from
P = {p, q}, the valuation in which p is true and q is false will be represented
as {p,¬q}. Satisfaction of a sentence α ∈ L by v ∈ U is defined in the usual
truth-functional way and is denoted by v 
 α.

2.1 KLM-style rational conditionals

In the conditional logic investigated by Kraus et al. [32], often referred to as
the KLM approach, one is interested in (defeasible) conditionals of the form
α |∼ β, read as “typically, if α, then β” (or, depending on the example at hand,
as “αs are typically βs” and variants thereof). For instance, if P = {b, f, p},
where b, f and p stand for, respectively, “being a bird”, “being able to fly”, and
“being a penguin”, the following are examples of defeasible conditionals: b |∼ f

(birds typically fly), p ∧ b |∼ ¬f (penguins that are birds typically do not fly).
Kraus et al. put forward the following list of properties that the condi-

tional |∼ ought to satisfy in order to be considered as appropriate in a non-
monotonic setting (these properties have been discussed at length in the non-
monotonic reasoning community and we shall not do so here):

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ

α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ

α ∨ β |∼ γ
(RW)

α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ β |∼ γ

1This (reasonable) assumption is needed for technical reasons.
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A conditional satisfying such properties is called a preferential conditional.
We can require |∼ to satisfy other properties as well, one of which is rational
monotonicity:

(RM)
α |∼ γ, α 6|∼ ¬β

α ∧ β |∼ γ

A preferential conditional also satisfying (RM) is called a rational conditional.
The semantics of KLM-style rational conditionals is given by structures

called ranked interpretations [34]:

Definition 2.1 (Ranked interpretation) A ranked interpretation R is a
function from U to N ∪ {∞} satisfying the following convexity property: for
every i ∈ N, if R(v) = i, then, for every j such that 0 ≤ j < i, there is a v′ ∈ U
for which R(v′) = j.

Observe that R generates a modular order ≺R on U as follows: u ≺R v if and
only if R(u) < R(v) (where i < ∞ for every i ∈ N). If there is no ambiguity,
we will omit the subscript and refer to the modular order as ≺.2

In a ranked interpretation R the intuition is that valuations lower down in
the ordering are deemed more normal (or typical) than those higher up, with
those with an infinite rank (a rank of ∞) being regarded as so atypical as to be
impossible.

The possible valuations in R are defined as follows: UR := {u ∈ U | R(u) <
∞}. Given α ∈ L, we let JαKR := {v ∈ UR | v 
 α}. Note that it may be
possible that R(u) = ∞ for every u ∈ U , and therefore that UR = ∅.

Given α, β ∈ L, we say R satisfies (is a ranked model of) the conditional α |∼
β (denoted R 
 α |∼ β) if all the ≺-minimal α-valuations also satisfy β, i.e., if
min≺JαKR ⊆ JβKR. We say R is a ranked model of a set of conditionals C if
R 
 α |∼ β for every α |∼ β ∈ C, and that a set of conditionals C is satisfiable
only if it has a ranked model R for which UR 6= ∅. Observe that if C is
unsatisfiable, it has as its only ranked model the ranked interpretation R for
which UR = ∅.

Sometimes it is convenient to represent a ranked interpretation R as a
partition (L0, . . . , Ln−1, L∞) of U where, for i ∈ N ∪ {∞}, Li = {u ∈ U |
R(u) = i} and where n is some i ∈ N for which Li = ∅. That is, for each
i ∈ {0, . . . , n− 1,∞}, Li is the set of all valuations of rank i. We refer to such
a ranked interpretation as an n-rank interpretation.

Observe that the partition above has a finite number of cells, but includes
the possibility for some of the Lis to be empty. This is necessary for three
reasons. First, the cell L∞ (the set of all impossible valuations) may be empty.
Second, it may be the case that L∞ = U . That is, it may be that all valuations
are impossible. Third, as we shall see below, this representation will often be
used to compare ranked interpretations. In cases where such ranked interpre-
tations do not have the same number of non-empty cells, this representation

2Recall that, given a set X, ≺ ⊆ X × X is modular if and only if there is total order ≤

on a set Ω and a ranking function rk : X 7→ Ω s.t. for every x, y ∈ X, x ≺ y if and only if
rk(x) < rk(y).
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allows us to represent them as having the same (finite) number of cells, say
(L0, . . . , Ln−1, L∞) and (M0, . . . ,Mn−1,M∞), where n is the smallest integer
such that Li =Mi = ∅.

Figure 1 depicts an example of a ranked interpretation for P = {b, f, p}
satisfying both b |∼ f and p ∧ b |∼ ¬f. (In our graphical representations of the
ranked interpretations we frequently omit the rank ∞.)

2 {b, f, p}
1 {b,¬f,¬p}, {b,¬f, p}
0 {¬b,¬f,¬p}, {¬b, f,¬p}, {b, f,¬p}

Figure 1: A ranked interpretation for P = {b, f, p}.

For a better understanding of the reasons behind the aforementioned prop-
erties and the semantic constructions, the reader is referred to the work of
Kraus et al. [32, 34].

2.2 Rational closure

Given a set of conditionals C, reasoning in the KLM framework amounts to
the derivation of new conditionals from C. Towards this end, Lehmann and
Magidor [34] proposed what they refer to as rational closure. Here we focus on
the semantic version of rational closure they present.

Their idea was to define a preference relation ELM over the set of possible
ranked interpretations and then to base entailment on choosing only the most
preferred, i.e., minimal w.r.t. ELM, ranked models of C.

The relation ELM can be described as follows.

Definition 2.2 (LM-preference) Let R1 = (L0, . . . , Ln−1, L∞) and R2 =
(M0, . . . ,Mn−1,M∞) be any pair of ranked interpretations. Then,

R1 ELM R2 if either Li =Mi for all i ∈ {0, . . . , n− 1,∞},
or Lj ⊇Mj for the smallest j ≥ 0 s.t. Lj 6=Mj.

R1 ⊳LM R2 if and only if R1 ELM R2 and not R2ELMR1.

ELM forms a partial order over ranked interpretations, and, for every satisfi-
able set of conditionals C, there exists a unique ELM-minimum element R

rc(C)
among all the ranked models of C (see Proposition A.2 in Appendix A). We will
refer to this element as the LM-minimum.

This is not exactly the semantic representation defined by Lehmann and
Magidor, but this representation can easily be derived from other work on ra-
tional closure, such as that of Booth and Paris [4] (see Appendix A).

Proposition 2.1 Given a set of conditionals C and a conditional α |∼ β. α |∼ β
is in the rational closure of C iff:
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1. C is unsatisfiable; or

2. Rrc(C) 
 α |∼ β.

The idea is that those ranked interpretations should be preferred in which
as many valuations as possible are judged to be as plausible as the background
knowledge C allows. Observe also that one of the consequences of this ordering
is that, all other things being equal, a ranked interpretation in which a valuation
is deemed to be possible will be preferred over one in which the same valuation
is seen as impossible.

Then the rational closure of C is the set |∼rc
C
:= {(α, β) | Rrc(C) 
 α |∼ β}.

Rational closure is commonly viewed as the basic (although certainly not the
only acceptable) form of entailment over propositional conditional knowledge
bases, on which other, more venturous, forms of entailment can be constructed.
It is therefore an appropriate choice on which to base our investigations into
versions of entailment for PTL.

2.3 Propositional Typicality Logic

PTL [2] is a logical formalism explicitly allowing for the representation of and
reasoning about a notion of typicality. Syntactically, it extends classical propo-
sitional logic with a typicality operator •, the intuition of which is to capture
the most typical (alias normal or conventional) situations or worlds. Here we
shall briefly present the main results about PTL relevant for our purposes.

The language of PTL, denoted by L•, is recursively defined by:

α ::= p | ¬α | α ∧ α | ⊤ | ⊥ | •α

As before, p denotes an atom and all the other Boolean connectives are defined
in terms of ¬ and ∧.

Let P = {b, f, o, p}, where b, f and p are as before and o represents “being an
ostrich”. The following are examples of L•-sentences: •b (being a typical bird),
o→¬•b (ostriches are not typical birds), (p∨o) ↔ (b∧•¬f) (being a penguin or
an ostrich is equivalent to being a bird and being a typical non-flying creature).

Intuitively, a sentence of the form •α is understood to refer to the typical
situations in which α holds. Note that α can itself be a •-sentence. The se-
mantics of PTL is also in terms of ranked interpretations (see Definition 2.1).
Satisfaction is defined inductively in the classical way, adding the following con-
dition: v 
 •α if v 
 α and there is no v′ such that v′ ≺ v and v′ 
 α.
That is, given R, J•αKR := min≺JαKR. In the ranked interpretation R of Fig-
ure 1, we have J•bKR = {{b, f,¬p}}, J•pKR = {{b,¬f, p}} and J•(b ∧ ¬f)KR =
{{b,¬f,¬p}, {b,¬f, p}}.

We say that α ∈ L• is satisfiable in a ranked interpretation R if JαKR 6= ∅,
otherwise α is unsatisfiable in R. We say that R is a ranked model of α (denoted
R 
 α) if JαKR = UR. Observe that when UR = ∅, then R is a model of every
α ∈ L•.

6



For X ⊆ L• we define Mod(X) := {R | R 
 α for every α ∈ X}. X is
satisfiable iff X has at least one model R for which UR 6= ∅. Observe that if X
is unsatisfiable, it has as its only ranked model the ranked interpretation R for
which UR = ∅. A PTL knowledge base is a set of sentences KB ⊆ L•.

A useful property of the typicality operator • is that it allows us to express
KLM-style conditionals. That is, for every ranked interpretation R and every
α, β ∈ L, R 
 α |∼ β if and only if R 
 •α → β. The converse does not
hold since it can be shown that there are L•-sentences that cannot be expressed
as a set of KLM-style |∼-statements on L. To give an example (taken from
Booth et al. [3]), assuming P = {p, q} then •p is one such sentence, since •p
has exactly four ranked models, corresponding to the cases in which UR is
respectively taken to be (1) {{p, q}, {p,¬q}}, (2) {{p, q}}, (3) {{p,¬q}} and
(4) ∅ (and where, in each case the ordering ≺R is taken to be empty). Yet there
exists no set X of KLM-style |∼-statements with exactly these models.

The representation result below, extending Theorem 3.12 of Lehmann and
Magidor [34] to L•, shows that the formalisation of the KLM rational condi-
tional |∼ inside PTL is appropriate.

Observation 1 (Booth et al. [3], Corollary 22) Let R be a ranked inter-
pretation and let |∼R := {(α, β) | α, β ∈ L• and R 
 •α → β}. Then |∼R is a
rational conditional. Conversely, for every rational conditional |∼, there exists
a ranked interpretation R such that, for every α, β ∈ L•, α |∼ β if and only if
R 
 •α→ β.

For more details on PTL and the aforementioned properties, the reader is
referred to the work by Booth et al. [3].

3 The entailment problem for PTL

The purpose of this section is to provide a more formal motivation for the
remainder of the paper. From the perspective of knowledge representation and
reasoning (KR&R), a central issue is that of what it means for a PTL sentence
to follow from a PTL knowledge base KB. An obvious approach to the matter
is to embrace the notion of entailment advocated by Tarski [42] and largely
adopted in the logic-based KR&R community.

Definition 3.1 (Ranked entailment and consequence) Let KB be a PTL
knowledge base and α ∈ L•. We say KB ranked-entails α (noted KB |≈0 α)
if Mod(KB) ⊆ Mod(α). Its associated ranked consequence operator is defined
by setting Cn0(KB) := {α ∈ L• | KB |≈0 α}.

As we shall see below, this version of entailment is not appropriate in the con-
text of PTL for a number of reasons. For one, consider the following definition
of a conditional induced from a set of PTL sentences.

7



Definition 3.2 (Induced conditional relation) Let KB ⊆ L•. We define
|∼KB := {(α, β) | α, β ∈ L and •α→ β ∈ KB}.

It is worth investigating whether |∼Cn0(KB) is rational for a PTL knowledge
base KB, i.e., whether it satisfies all the KLM properties for rationality from Sec-
tion 2.1. The following proposition, which mimics a similar result by Lehmann
and Magidor in the propositional case, shows that this is not the case:

Observation 2 (Booth et al. [3], Proposition 25) For a PTL knowledge base
KB, |∼Cn0(KB) is a preferential conditional, but is not necessarily a rational con-
ditional.

Hence, ranked consequence as defined above delivers an induced defeasible
conditional that is preferential but that need not be rational. This forms an
argument against ranked entailment being an appropriate notion of entailment
for PTL.

One of the principles to give serious consideration when investigating PTL
entailment is the presumption of typicality [33, p. 63]. Informally, this means
that one should assume that every situation is as typical as possible. Sections 4
and 6 contain a formalisation of this principle. For now, we illustrate it with an
example.

Example 3.1 Let KB1 = {p → b, •b → f} (penguins are birds, and typical
birds fly). Given just this information about birds and penguins, it is rea-
sonable to expect •p → •b (typical penguins are typical birds), and therefore
•p → f (typical penguins fly), to follow from KB1. With ranked entailment,
these requirements are not met, as there is a ranked model of KB1, depicted
in Figure 2, invalidating the expected conclusions. This is so because ranked
entailment, being a Tarskian relation, is not ampliative, i.e., it does not allow
for venturing beyond what necessarily follows from the knowledge base. �

2 {b, f, p}
1 {b,¬f,¬p}, {b,¬f, p}
0 {¬b,¬f,¬p}, {¬b, f,¬p}, {b, f,¬p}

Figure 2: A ranked model of KB1 = {p → b, •b → f} satisfying neither •p → •b
nor •p → f.

Besides requiring PTL entailment to be ampliative, we also want it to be
defeasible, that is, the conclusions derived under the presumption of typicality
in an ampliative way can be retracted in case of new conflicting information.
This is illustrated by the following example.

Example 3.2 Assume •p → •b and •p → f (somehow) could follow from KB1

in Example 3.1, but then we are informed that typical penguins do not fly. That
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is, let KB2 = KB1 ∪ {•p → ¬f}. While we want p → ¬•b (penguins are not
typical birds) to follow from KB2, we do not want •p → f to follow from KB2,
which is not possible with ranked entailment. �

4 Towards a notion of entailment for PTL

We have seen that ranked entailment has some serious drawbacks in a non-
monotonic context. Therefore, the question as to what logical consequence
in PTL should mean remains mostly unanswered so far. In this section, we first
specify and discuss a list of postulates formalising the requirements motivated
in the last section and that, at first glance, seem reasonable for an appropriate
notion of entailment in PTL. In the subsequent section, we consider specific
alternatives to ranked entailment and check them against our postulates.

We start by introducing some notation. With |≈? ⊆ P(L•) × L•, we de-
note any entailment relation on the language of PTL. Given an entailment
relation |≈?, its associated consequence operator is defined in the usual way by
setting, for each KB ⊆ L•, Cn?(KB) := {α ∈ L• | KB |≈? α}.

Following the tradition in the non-monotonic reasoning literature, the obvi-
ous starting point is to consider some of the basic properties of classical conse-
quence operators.

P1 For every KB ⊆ L•, KB ⊆ Cn?(KB) (Inclusion)

P2 For every KB,KB′ ⊆ L•,
if KB ⊆ KB′ ⊆ Cn?(KB), then Cn?(KB′) = Cn?(KB) (Cumulativity)

Note that Cumulativity and Inclusion imply Idempotence. Idempotence,
formalised as

For every KB ⊆ L•, Cn?(KB) = Cn?(Cn?(KB)) (Idempotence)

can be derived from Cumulativity by setting KB′ = Cn?(KB), and letting In-
clusion impose the satisfaction of the antecedent. Idempotence indicates that
a consequence operator behaves as a ‘once-off’ operation, that is, as a closure
operator. There is agreement in the literature that both Inclusion and Cumu-
lativity are desirable properties to have [35, p.43].

Ranked entailment, as defined in Section 3, satisfies Properties P1 and P2.
Nevertheless, Cn0(·), the associated consequence relation of ranked entailment,
also satisfies the classical property of Monotonicity: If KB ⊆ KB′, then Cn0(KB) ⊆
Cn0(KB′). As seen in Example 3.2, this is a property that we do not want Cn?(·)
to satisfy (certainly not in general).

So, we require Cn?(·) to be a non-monotonic consequence operator. This
amounts to requiring Cn?(·) to satisfy the following two postulates:

P3 For every KB ⊆ L•, Cn0(KB) ⊆ Cn?(KB) (Ampliativeness)

P4 For some KB,KB′ ⊆ L•, KB ⊆ KB′ but Cn?(KB) 6⊆ Cn?(KB′) (Defeasibil-
ity)

9



Ampliativeness, a property generalising supra-classicality [36] (where the
basic underlying entailment relation is classical), says that Cn?(·) should be at
least as venturous as its underlying ranked entailment. Defeasibility specifies
that Cn?(·) should be flexible enough to disallow previously derived conclusions
in the light of new (possibly conflicting) information. In Example 3.1, assuming
•p → f ∈ Cn?(KB1) is the case, then •p → f should no longer be concluded
if •p → ¬f is added to KB1. Note that adding Defeasibility to Ampliativeness
actually implies a strict version of Ampliativeness which says Cn?(·) should in
some cases be more venturous than its underlying ranked entailment. (Since, if
Cn?(KB) = Cn0(KB) for all KB, then Cn?(·) is just ranked entailment, which
is monotonic.)

P1, P2 and P3 together imply that the closure operation Cn?(·) gives as
output a theory that is closed under Cn0(·).

Lemma 4.1 If Cn?(·) satisfies P1, P2 and P3, then, for every KB ⊆ L•,

Cn?(KB) = Cn0(Cn?(KB))

Proof:
Cn0(·) is a Tarskian consequence relation (see Definition 3.1), and, as such, it
satisfies Inclusion. That is, for every set of formulas S, S ⊆ Cn0(S). To see
it, it is sufficient to check that, according to Definition 3.1, for every α ∈ S,
S |≈0 α. Hence, since Cn0(·) satisfies Inclusion, Cn?(KB) ⊆ Cn0(Cn?(KB)).

By P3 we have Cn0(Cn?(KB)) ⊆ Cn?(Cn?(KB)), that, by Idempotence (con-
sequence of P1 and P2), implies Cn0(Cn?(KB)) ⊆ Cn?(KB). �

Similarly to KLM in the propositional case, we would ideally like the de-
feasible conditional induced by Cn?(KB) (see Definition 3.2) to satisfy all the
rationality properties:

P5 For every KB ⊆ L•, |∼Cn?(KB) is a rational conditional relation on L (Con-
ditional Rationality)

As observed above, P5 requires the defeasible conditional induced by Cn?(KB)
to be rational—that is, to satisfy all the rationality properties. But from Theo-
rem 3.12 of Lehmann and Magidor [34] it follows that every rational defeasible
conditional can be obtained from a single ranked interpretation. So, from this
it follows that requiring the defeasible conditional induced by Cn?(KB) to be
rational amounts to requiring that the defeasible conditional be generated by a
single ranked interpretation. That is, by courtesy of this result, P5 can also be
rephrased as follows:

P5’ For every KB ⊆ L•, there is a ranked interpretation R s.t., for every
α, β ∈ L, α |∼Cn?(KB) β if and only if R 
 •α→ β. (|∼ Single Model)

The next postulate we consider, which is easily shown to be a strengthening
of P5, simply applies this same requirement, not just to defeasible statements,
but to all statements expressible in PTL:
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P6 For every KB ⊆ L•, there is a ranked interpretation R s.t., for all α ∈ L•,
α ∈ Cn?(KB) if and only if R 
 α (Single Model)

An important special case of a PTL knowledge base is when the individual
elements of KB correspond to KLM-style conditionals.

Definition 4.1 ((Propositional) conditional knowledge base) A PTL knowl-
edge base KB will be called a (propositional) conditional knowledge base if
each element of KB is of the form •α→ β, for α, β ∈ L.

The next postulate says that if KB is a propositional conditional knowledge
base, then the result should coincide with Lehmann and Magidor’s definition of
rational closure:

P7 For every conditional knowledge base KB, |∼Cn?(KB)= |∼rc
KB (Respects

Rational Closure)

P7 implies P4, since rational closure is a non-monotonic closure operation.
The following property was shown by Lehmann and Magidor to be satisfied

by the rational closure for conditional knowledge bases.

P8 For every KB ⊆ L• and α ∈ L, α ∈ Cn?(KB) if and only if α ∈ Cn0(KB)
(Strict Entailment)

P8 states that Cn?(·) should coincide with ranked entailment for those sen-
tences not involving typicality. The motivation for Strict Entailment is twofold.
First, it is a proposal for ranked entailment to be the lower bound for entail-
ment w.r.t. classical sentences (those not involving typicality), a proposal that
is not controversial. But secondly, it also requires entailment of classical sen-
tences to correspond to exactly those sanctioned by ranked entailment. This
can be viewed as adhering to the principle of minimal change. Being Tarskian,
ranked entailment is monotonic, and the argument is therefore that, while non-
monotonicity may be applicable for sentences involving typicality, it should not
be applicable to classical statements.

We are also interested in a couple of progressively weaker versions of Strict
Entailment (the reasons for that will become clear later on). The first restricts
it to hold only when KB is a conditional knowledge base.

P9 For every conditional knowledge base KB and α ∈ L, α ∈ Cn?(KB) if and
only if α ∈ Cn0(KB) (Conditional Strict Entailment)

Note that P7 also implies P9. To see this, first it is easy to check that every
propositional formula α is equivalent to the PTL formula •¬α→ ⊥.

Proposition 4.1 For every formula α ∈ L and every ranked interpretation R,
R 
 α iff R 
 •¬α→ ⊥.

Proof:
R 
 α implies JαKR = UR, that is equivalent to R 
 ¬α → ⊥, that, in turn,
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implies R 
 •¬α → ⊥. In the opposite direction, R 
 •¬α → ⊥ means that
for every u ∈ UR, u 6
 •¬α. u 6
 •¬α for every u ∈ UR implies that for every
u ∈ UR, u 6
 ¬α: if we had a valuation v satisfying ¬α in some cell Li, with
i <∞, we would either have that v 
 •¬α, or there would be a valuation v′ in
some Lj, j < i, such that v′ 
 •¬α. Consequently, u 
 α for every u ∈ UR,
that is, R 
 α. �

P7 implies that, for every α ∈ L and every conditional knowledge base
KB, (α,⊥) ∈|∼Cn?(KB) iff (α,⊥) ∈|∼rc

KB. A well-known result by Lehmann
and Magidor [34, Lemma 5.16] states that for every α ∈ L and every condi-
tional knowledge base KB, α |∼ ⊥ is in the rational closure of KB iff α |∼ ⊥
is a ranked consequence of KB, that is, (α,⊥) ∈|∼rc

KB iff (α,⊥) ∈|∼Cn0(KB).
Hence we have that for every α ∈ L and every conditional knowledge base KB,
(α,⊥) ∈|∼Cn?(KB) iff (α,⊥) ∈|∼Cn0(KB), that, together with Proposition 4.1,
implies P9.

In turn, P9 implies that entailment for PTL coincides with classical propo-
sitional entailment in the case of propositional knowledge bases, as formalised
by the next property.

P9’ For every KB ⊆ L and α ∈ L, α ∈ Cn?(KB) if and only if KB entails α in
classical propositional logic. (Classical Entailment)

Since for every KB∪{α} ⊆ L, KB entails α in classical propositional logic if
and only if α ∈ Cn0(KB), and any α ∈ L is equivalent •¬α→ ⊥, P9’ is indeed
a weakening of P9 (provided that P8 also holds).

Finally, we consider another property shown by Lehmann and Magidor to
be satisfied by the rational closure for conditional knowledge bases.

P10 For every KB ⊆ L• and α ∈ L, •⊤ → α ∈ Cn?(KB) if and only if
•⊤ → α ∈ Cn0(KB) (Typical Entailment)

The motivation for P10 is similar to that for P8 above in that we want
to constrain what should hold in the most typical situations. That is, given a
knowledge base, the property speaks to which formulas of the form •⊤ → α
should follow. Ranked entailment clearly provides a lower bound for such a
kind of statement, but P10 also proposes to consider ranked entailment as the
upper bound, thereby requiring that the set of statements •⊤ → α entailed
by a knowledge base should correspond exactly to those sanctioned by ranked
entailment. The argument for this is that ranked entailment is monotonic and,
applying the principle of minimal change, it is only when dealing with atypical
situations that ranked entailment is not always sufficient.

Although these postulates all seem reasonable on their own, it turns out
that they cannot all be satisfied simultaneously. In fact, this impossibility result
already holds for a strict subset of the postulates.

Theorem 4.1 There is no PTL consequence operator Cn?(·) satisfying all of P1,
P2, P3, P5, P8 and P10.
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Proof:
Regarding P5, requiring |∼Cn?(·) to satisfy (RM) is equivalent to requiring that,
for every knowledge base KB and whatever formulas α, β, γ, if •α→ γ ∈ Cn?(·)
and •α→ β /∈ Cn?(·), then we have •(α ∧ ¬β) → γ ∈ Cn?(·).

Assume Cn?(·) satisfies the given properties, and let KB = {•⊤ → p, •¬p→
•q}. By Strict Entailment (P8), p 6∈ Cn?(KB) (because of e.g. the 2-rank
model ({{p,¬q}}, {{¬p, q}}) of KB). By Typical Entailment (P10), •⊤ →
¬q 6∈ Cn?(KB) (because of e.g. the 1-rank model ({{p, q}, {p,¬q}}) of KB). By
Inclusion (P1) •⊤ → p ∈ Cn?(KB), and then by (RM) we must conclude that
•(⊤ ∧ q) → p ∈ Cn?(KB), that is, (⊤ ∧ q, p) ∈|∼Cn?(KB); since |∼Cn?(·) must
satisfy LLE, the latter implies (q, p) ∈|∼Cn?(KB), that is, •q → p ∈ Cn?(KB).

Since by Inclusion (P1) •¬p → •q ∈ Cn?(KB), we have {•q → p, •¬p →
•q} ⊂ Cn?(KB). Since •¬p → p ∈ Cn0({•q → p, •¬p→ •q}) and Cn0(·) is
monotonic, we have •¬p → p ∈ Cn0(Cn?(KB)). Then, by Lemma 4.1, that
assumes P1, P2 and P3, we have that •¬p→ p ∈ Cn?(KB).

We have that p ∈ Cn0({•¬p→ p}) holds: let R 
 •¬p → p, and let v be
a world in R s.t. v 
 ¬p. v cannot satisfy •¬p, since we would have that
v 
 ¬p ∧ p; but v 
 ¬p and v 6
 •¬p implies that in R there is a world w, such
that w ≺ v and w 
 •¬p, that, again, implies w 
 ¬p ∧ p.

From p ∈ Cn0({•¬p→ p}), •¬p → p ∈ Cn?(KB), and the monotonicity
of ranked entailment, we must conclude also p ∈ Cn0(Cn?(KB)), that is, by
Lemma 4.1, p ∈ Cn?(KB), against P8. �

While, at first glance, this seems to be a negative result, our contention is
that it should be interpreted as an indication that a logic as expressive as PTL
admits more than one form of entailment. We elaborate directly on this point
in Section 8, and indirectly in Sections 5 and 6, where we define and discuss two
instances of entailment for PTL.

5 LM-entailment

We now come to our first construction of an entailment relation in PTL. We
first observe that there is nothing to stop us from using the preference relation
ELM (see Section 2.2) to compare ranked interpretations of any PTL knowledge
base KB. The question then is, does there always exist a unique LM-minimum
element of the ranked models of KB, as there does in the restricted conditional
case? And if so, how can we construct it? We now answer these questions.

We assume as input a PTL knowledge base KB, where each sentence α ∈ KB
is in normal form:

Definition 5.1 (Normal form) α ∈ L• is in normal form if it is of the
form

∧
i≤t •θi → (φ ∨

∨
i≤s •ψi), where t, s ≥ 0 and the θi, φ and ψi are all

purely propositional sentences.

13



Theorem 5.1 The normal form is complete for L•, i.e., for every sentence
α ∈ L• there is a (finite) set of sentences X ⊆ L•, each one in normal form,
such that Mod(α) = Mod(

∧
X).

Proof:
From the results by Booth et al. [2, Section 4], it follows that we need only
consider sentences with non-nested instances of the typicality operator. So we
let α be such a sentence. We let the set of typicality atoms be the propositional
atoms occurring in L• together with every sentence of the form •β where β is
a propositional sentence (we refer to the latter as pure typicality atoms). And
we define the set of typicality literals in the obvious way: the set of typicality
atoms and their negations. The set of pure typicality literals consists of the pure
typicality atoms and their negations.

Now we define typicality conjunctive normal form as a conjunctive normal
form defined on typicality atoms. It follows immediately that α can be rewritten
as a sentence, say α′, in typicality conjunctive normal form. Let X ′ be the set
of conjuncts occurring in α′. We show below how to rewrite each conjunct in X ′

into a sentence in normal form. The resulting set X of sentences in normal form
is the set referred to above.

By construction, each sentence γ ∈ X ′ is a disjunction of typicality literals.
We separate them into three disjoint sets, the set of propositional literals, the
set of positive pure typicality literals (with cardinality of, say t, where t ≥ 0)
and the set of negative pure typicality literals (with cardinality of, say s, where
s ≥ 0). Let φ be the disjunction of propositional literals, denote the s positive
pure typicality literals by ψ1, . . . , ψs, and the t negative pure typicality literals
by θ1, . . . θt. It follows immediately that γ can be rewritten as the sentence∧

i≤t θi → (φ ∨
∨

i≤s ψi). �

For any ranked interpretation R, and S ⊆ UR, let R∞
S be the ranked in-

terpretation such that R∞
S (v) = R(v) for every v ∈ S, and R∞

S (v) = ∞ for
every v ∈ U \ S. That is, R∞

S is the ranked interpretation obtained from R

by turning all valuations not in S into impossible valuations. Similarly, let R1
S

be the ranked interpretation such that R1
S(v) = R(v) for every v ∈ S, and

R1
S(v) = R(v) + 1 for every v ∈ U \S. That is, R1

S is the ranked interpretation
obtained from R by increasing the rank of all valuations not in S by 1.

Given a PTL knowledge base KB we now define a ranked interpretation
R∗

KB, obtained from KB, as follows:

Step 1 Set R0(v) := 0 for all v ∈ U , S0 := ∅, and i := 1;

Step 2 S1 := JKBKR0 (separate the valuations which satisfy KB w.r.t. the cur-
rent ranked interpretation R0 from those that do not);

Step 3 If Si = Si−1, then R∗
KB

:= (Ri)
∞
Si

, and stop. (if there is no change in
the new Si then set the rank of those valuations that do not satisfy KB
w.r.t. Ri to ∞, let R∗

KB be the interpretation that remains, and stop);

Step 4 Otherwise Ri := (Ri−1)
1
Si

(otherwise create a new ranked interpretation
Ri by increasing the rank of every valuation not in Si by 1);
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Step 5 Si+1 := JKBKRi and i := i + 1 (separate the valuations which satisfy
KB w.r.t. the current ranked interpretation Ri from those that do not, and
increment i);

Step 6 Go to Step 3.

Algorithm 1 below gives a compact description of the steps above. Note that
if the input to the algorithm, KB, is unsatisfiable, the ranked interpretation R∗

KB

that it returns is such that UR
∗

KB = ∅.

Algorithm 1: LM-minimal

Input: KB
Output: R

∗

KB

1 PKB := {p | p is a propositional letter occurring in KB};
2 Let U be the universe of valuations for the vocabulary PKB;
3 R0(v) := 0 for every v ∈ U ;
4 S0 := ∅;

5 S1 := JKBKR0 ;
6 i := 1;
7 while Si 6= Si−1 do

8 Ri := (Ri−1)
1
Si

;

9 Si+1 := JKBKRi ;
10 i := i+ 1;

11 R
∗

KB := (Ri−1)
∞

Si
;

12 return R
∗

KB

Example 5.1 Let us assume, for the sake of the example, that we are only
talking about birds. Let KB := {•⊤ → (¬p ∧ ¬r), •p → •¬f, •r → •f, p → ¬r}
(the most typical things are neither penguins nor robins, typical penguins are
typical non-flying birds, and typical robins are typical flying birds, penguins
are not robins). The procedure initialises with all valuations being assigned the
rank of 0. The only valuations that satisfy all three sentences w.r.t. R0 are those
satisfying both ¬p and ¬r. Thus S1 := JKBKR0 = {{¬f,¬p,¬r}, {f,¬p,¬r}} and
so we obtain R1 by changing the rank of all valuations not in S1 to 1. Note that
J•¬fKR1 = {{¬f,¬p,¬r}} and J•fKR1 = {{f,¬p,¬r}}, so we can see that none of
the valuations in U \ S1 is able to satisfy either •p → •¬f or •r → •f w.r.t. R1.
As a consequence, S2 := JKBKR1 = S1 and so the procedure terminates here
with R∗

KB as the ranked interpretation in which all valuations in S1 ({¬f,¬p,¬r}
and {f,¬p,¬r}) have rank 0 and all other valuations have rank ∞. See Figure 3
for the ranked interpretations generated by this example. �

We now proceed to show that: (i) the algorithm always terminates if KB
is finite; (ii) the ranked model R∗

KB it returns is a ranked model of KB, and
(iii) for any other ranked model R of KB, we have R

∗
KB ELM R. We know the

following about (i) and (ii):
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R0 0 {¬f,¬p,¬r}, {¬f,¬p, r}, {¬f, p,¬r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}

R1
1 {¬f,¬p, r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}
0 {¬f,¬p,¬r}, {f,¬p,¬r}

R∗
KB

∞ {¬f,¬p, r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}
0 {¬f,¬p,¬r}, {f,¬p,¬r}

R∗
KB with the valuations of rank ∞ omitted: 0 {¬f,¬p,¬r}, {f,¬p,¬r}

Figure 3: The ranked interpretations generated in Example 5.1.

Lemma 5.1 The following hold for each i ≥ 0:

1. Si ⊆ Si+1, i.e., [S0 ⊆ S1 and, for all i ≥ 0, JKBKRi ⊆ JKBKRi+1 ];

2. For all v1, v2 ∈ U , if Ri(v1) < Ri(v2), then v1 ∈ JKBKRi ;

3. Ri is a ranked interpretation.

Proof:
See Appendix B.1. �

From Item 1 in Lemma 5.1 above, we know the algorithm terminates if KB
is finite, since it generates a sequence of ranked interpretations (by Item 3)
in which the set of valuations satisfying KB increases monotonically from one
ranked interpretation to the next. Since each of these is finite, and since there is
a finite number of valuations, the stopping criterion in Line 7 of the algorithm
is guaranteed to occur eventually.

To show that the algorithm returns a ranked model of KB it suffices to show
the following.

Lemma 5.2 For every i > 0, (Ri)
∞
Si

is a ranked model of KB.

Proof:
See Appendix B.2. �

So, at each stage of the algorithm, the current ranked interpretation, when
those valuations not satisfying KB are excluded, forms a ranked model of KB.
Since the output R∗

KB takes precisely this form we have the following result.

Proposition 5.1 R∗
KB 


∧
KB.

Proof:
Follows from Lemma 5.2 and the construction of R∗

KB. �

Next we want to show that for any other ranked model R of KB, we have
R∗

KB ELM R.
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Lemma 5.3 Let R∗
KB

:= (L0, . . . , Ln−1, L∞) and let R := (M0, . . . ,Mn−1,M∞)
be any other ranked model of KB. Let i ∈ {0, . . . , n − 1}. If Lj = Mj for all
j < i, then Mi ⊆ Li.

Proof:
See Appendix B.3. �

From this lemma we can state:

Proposition 5.2 Consider any KB and let R be a ranked model of KB. Then
R∗

KB ELM R.

That Algorithm 1 runs in time that is (singly) exponential in the size of
the input knowledge base KB whenever KB is finite is not hard to see. Let
|KB| = k and |PKB| = j. The procedure starts by computing the universe U of
all valuations for the vocabulary PKB, and therefore we have |U| = 2j. Next, in
the first round of the loop, each sentence in KB has to be checked against all of
the exponentially many valuations in U , which amounts to k × 2j verifications.
In the worst-case scenario, only one valuation is kept at level 0, with all the
others moved up to level 1. In the next round, each sentence in KB has to
be checked against the 2j − 1 valuations at level 1, but also against the only
valuation at level 0, because the truth of •-sentences in a model also depends
on those valuations that are lower down in the model. This amounts to k × 2j

verifications, which in the worst case will again result in a single valuation kept
at level 1 with all the 2j − 2 ones moved up to level 2, and a number of k × 2j

checks to be performed in the next round. By repeating this argument one can
see that, in the worst case, the algorithm will have built a ranked interpretation
consisting of 2j layers, each one containing a single valuation, i.e., a linear
ordering on the 2j valuations. This process will have involved 2j runs, each run
requiring k × 2j valuation checks to create a new layer. It remains to know
the cost of checking whether a sentence is satisfied by a valuation in a ranked
model. In the first run of the loop, namely when there is a single layer, since the
preference relation at this stage is empty, each of such verifications amounts to
a propositional verification, which is a polynomial-time task. From the second
run of the loop onward, i.e., when truth depends on the lower layers, we have
that all valuations at the lower layers have to be inspected, which in the worst
case amounts to m × 2j checks to be performed, with m the number of sub-
formulas of the one being checked. Putting the results together, we have that in
the worst case there are a maximum of 2j runs of the main loop, each with k×2j

checks, and each of such valuation checks taking at most m′ × 2j operations,
with m′ the number of sub-formulas in KB, i.e., m′ = 2ℓ, for some ℓ. Hence
the algorithm runs in 2j × (k × 2j) × (2ℓ × 2j) = k × 23j+ℓ, and is therefore in
ExpTime.

We are now in a position to define our first form of entailment for PTL.

Definition 5.2 (LM-entailment) Let KB ⊆ L• and α ∈ L•. We say KB
LM-entails α, denoted KB |≈LM α, if R

∗
KB 
 α. Its corresponding consequence

operator is defined as CnLM(KB) := {α ∈ L• | R∗
KB 
 α}.
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The next result outlines which properties from the previous section are sat-
isfied by CnLM(·).

Theorem 5.2 CnLM(·) satisfies P1–P7, P9, and P10, but not P8.

Proof:
For P1, Proposition 5.1 guarantees that R

∗
KB is a model of KB. About P2,

by Proposition 5.2, R∗
KB is the LM-minimum model of KB. If KB ⊆ KB′ ⊆

CnLM(KB), then Mod(KB′) ⊆ Mod(KB) and R∗
KB ∈ Mod(KB′); consequently

R∗
KB must also be the LM-minimum model of KB′. For P3, note that R∗

KB

is a ranked model of KB (Lemma 5.1, Item 3, plus Proposition 5.1), and so
if α ∈ Cn0(KB), then α ∈ R∗

KB. P4 is an immediate consequence of the
satisfaction of P7.3 P5 is an immediate consequence of the satisfaction of P6.
The latter holds by definition of CnLM(KB). For P7, see Section 2.2. P9 is an
immediate consequence of the satisfaction of P7.

Now consider P10. From right to left, it is an immediate consequence of P3.
From left to right, assume there is a formula •⊤ → α that is in CnLM(KB), but
not in Cn0(KB). It means that there is a ranked model R of KB that has
in its lower layer a propositional valuation v s.t. v 
 ¬α; but, given that the
model R∗

KB defining CnLM(KB) is the LM-minimum model of KB, then also the
lower layer of R∗

KB must contain the valuation v, against the hypothesis.
Failure of P8 can be seen in Example 5.1. There we have ¬p ∈ CnLM(KB)

(there is no penguin) because ¬p holds in both valuations occurring in R
∗
KB.

Thus LM-entailment forces us to infer ¬p from KB. But ¬p 6∈ Cn0(KB), because
there does exist a ranked model R of KB for which JpKR 6= ∅, for instance the
model R2 appearing in Example 6.1 below. �

In summary then, LM-entailment satisfies all our postulates, except for Strict
Entailment (P8). Lest this be seen as a negative result, bear in mind that LM-
entailment satisfies Conditional Strict Entailment (P9), the weakened version
of Strict Entailment, and therefore also Classical Entailment.

In the next section we turn to a form of entailment satisfying Strict Entail-
ment, but at the price of having to forego Conditional Rationality, and therefore
the Single Model postulate as well.

6 PT-entailment

In this section we consider another option for entailment based on a version of
minimality, and derived from the characterisation of rational closure by Gior-
dano et al. [28, 30]. The general idea is to respect the principle of presumption
of typicality (see Section 3), We shall refer to this form of entailment as Pre-
sumption of Typicality entailment, shortened to PT-entailment. Such a principle
indicates the way in which the property (RM) should be satisfied. If we have
α |∼ γ in our knowledge base KB, then, in order to satisfy (RM), we have to add

3For this conclusion we need the requirement (specified in Section 2) that P contains at
least two elements.
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either α |∼ ¬β or α∧β |∼ γ. The presumption of typicality requires that, when-
ever possible, we prefer the latter (that corresponds to a constrained application
of monotonicity) over the former. Semantically, given the ranked models of a
knowledge base KB, this corresponds to considering only those models in which
every valuation is taken as typical as possible, that is, it is ‘pushed downward’
in the model as much as possible, modulo the satisfaction of KB.

In order to identify the interpretations that are necessary for the definition
of a notion of entailment, we introduce a preference relation EPT on the set of
ranked interpretations that follows directly from the presumption of typicality.

Definition 6.1 (Relation EPT) For two ranked interpretations R1 and R2,
R1 EPT R2 if and only if for every w ∈ U , R1(w) ≤ R2(w). R1 ⊳PT R2 if and
only if R1 EPT R2 and not R2EPTR1.

It is easy to check that EPT is a pre-order. Consistent with the principle of
presumption of typicality, as a guideline in the choice of the relevant interpreta-
tions, the relation EPT can be used to identify the relevant interpretations for
the definition of a notion of entailment: we choose the models of KB in which
the valuations are presumed to be as typical as possible, that is, the relevant
models are those that are in minEPT

Mod(KB). Then, KB entails α if and only
if α holds in all the (preferred) models in minEPT

Mod(KB). We will sometimes
refer to the models in minEPT

Mod(KB) as the PT-minimal models of KB. Note
that if KB is unsatisfiable, it has exactly one PT-minimal model, namely the
ranked interpretation R for which UR = ∅.

If we consider knowledge bases composed only of classical non-monotonic
conditionals α |∼ β, Giordano et al. have proved that for every satisfiable knowl-
edge base there is a unique PT-minimal model [30, Theorem 1], and that such
a PT-minimal model characterizes the rational closure of the knowledge base
[30, Theorem 2]. Given such results, it is quite immediate to prove that, given
a satisfiable conditional knowledge base, its PT-minimal model corresponds to
the LM-minimal model.

Proposition 6.1 Let KB be a satisfiable conditional knowledge base. A ranked
interpretation R is KB’s PT-minimal model iff it is KB’s LM-minimal model.

Proof:
If KB is a satisfiable conditional knowledge base, then it has a unique LM-
minimal model R (see Proposition A.2) and a unique PT-minimal model R′

[30, Theorem 1]. R and R′ are equivalent, in the sense that they satisfy exactly
the same conditionals, since they both characterise the rational closure of KB
(see Proposition 2.1 here for LM-minimality and the theorem by Giordano and
others for PT-minimality [30, Theorem 2]).

In order to show that they are exactly the same model, we just need to
prove that whenever two ranked interpretations R and R

′ satisfy exactly the
same set of conditionals, then they are the same interpretation. Let R =
(L0, . . . , Ln−1, L∞) and R′ = (M0, . . . ,Mn−1,M∞).
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First of all, we prove UR = UR
′

: let v ∈ UR and v /∈ UR
′

, and let v be
the characteristic formula of the valuation v; we would have R′ 
 v |∼ ⊥ and
R 6
 v |∼ ⊥, against the hypothesis that R and R′ satisfy the same set of
conditionals. UR = UR

′

immediately implies that L∞ =M∞.
We conclude the proof by induction on the rank of the cells below ∞. Given

a cell Li = {v1, . . . , vn}, let Li := (v1 ∨ . . . ∨ vn).
Assume L0 6=M0, that is, w.l.o.g., there is a v s.t. v ∈ L0 and v /∈M0. That

implies R′ 
 ⊤ |∼ ¬v, while R 6
 ⊤ |∼ ¬v, against the hypothesis.
Given a number j ≤ (i − 1), let Lk = Mk for every k s.t. 0 ≤ k < j, but

Lj 6= Mj , that is, w.l.o.g., there is a v s.t. v ∈ Lj and v /∈ Mj . That implies
R′ 
 ¬(

∨
0≤k<j{Lk}) |∼ ¬v, while R 6
 ¬(

∨
0≤k<j{Lk}) |∼ ¬v, against the

hypothesis. Since all their cells must contain the same valuations, R and R′

are the same model. �
Despite Proposition 6.1, given the extra expressive power of PTL, we obtain

the surprising result that the two semantic constructions are not equivalent
anymore. Moreover, in the present context, this notion of minimality can give
back a number of minimal models, as the following example shows.

Example 6.1 Consider the knowledge base KB from Example 5.1. Then, one
can see that minEPT

Mod(KB) = {R1,R2,R3}, where:

R1 : 0 {¬f,¬p,¬r}, {f,¬p,¬r},

R2 :

2 {f, p,¬r}
1 {¬f,¬p,¬r}, {¬f, p,¬r}
0 {f,¬p,¬r}

R3 :

2 {¬f,¬p, r}
1 {f,¬p, r}, {f,¬p,¬r}
0 {¬f,¬p,¬r}

In Example 6.1, note that R1 is the LM-minimum of KB. In fact, it is
easy to check from the characterisation of rational closure in Section 2.2 and
Definition 6.1 that the LM-minimum of KB is always in minEPT

Mod(KB).

Proposition 6.2 For every knowledge base KB, the LM-minimum of KB is in
minEPT

Mod(KB).

Proof:
Consider the definition of the preference relation for LM-minimality.

R1 ELM R2 if and only if either Li =Mi for all i ∈ {0, . . . , n− 1,∞},
or Lj ⊇Mj for the smallest j ≥ 0 s.t. Lj 6=Mj,

where R1 = (L0, . . . , Ln−1, L∞) and R2 = (M0, . . . ,Mn−1,M∞). The result
follows from the fact that if R1 ⊳PT R2 then R1 ⊳LM R2. To see that this holds,
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assume R1 ⊳PT R2. Then R1(w) ≤ R2(w) for all w ∈ U , with R1(w
′) < R2(w

′)
for at least one w′ ∈ U . From the latter, we know we cannot have Li = Mi

for all i, so let j ≥ 0 be minimal such that Lj 6= Mj. To show the conclusion
R1 ⊳LM R2 we must show Lj ⊇ Mj , so let u ∈ Mj . Then R2(u) = j. Since
R1 ⊳PT R2 we know R1(u) ≤ j. But if R1(u) = k < j then u ∈ Lk = Mk

(by minimality of j), contradicting u ∈ Mj. Hence R1(u) = j, i.e., u ∈ Lj as
required.

Knowing that R1⊳PTR2 implies R1 ⊳LMR2, it is easy to conclude our proof.
Let R be the LM-minimum of KB, but not an element of minEPT

Mod(KB).
That is, there is an R∗ ∈ Mod(KB) s.t. R∗ ⊳PT R, that implies R∗ ⊳LM R, thus
contradicting the LM-minimality of R. �

We are now ready for the definition of our second type of entailment.

Definition 6.2 (PT-entailment) Let KB ⊆ L• and α ∈ L•. We say KB PT-

entails α, denoted KB |≈PT α, if and only if minEPT
(Mod(KB)) ⊆ Mod(α).

Its corresponding consequence operator CnPT(·) is inferentially weaker than
CnLM(·), since it is defined on a possibly larger set of models.

Proposition 6.3 CnPT(·) satisfies P1–P4 and P7–P10.

Proof:
P1. CnPT(KB) is defined using only models of KB.
P2. Since KB ⊆ KB′ ⊆ CnPT(KB), we haveminEPT

Mod(KB)) ⊆ Mod(CnPT(KB)) ⊆
Mod(KB′) ⊆ Mod(KB). It is sufficient to prove that minEPT

Mod(KB′)) =
minEPT

Mod(KB)).
Let R be a model of KB and KB′ s.t. R ∈ minEPT

Mod(KB′) and R /∈
minEPT

Mod(KB)). That is, there must be a model R′ of KB s.t. R′ ⊳PT R

and R′ ∈ minEPT
Mod(KB). However, since minEPT

Mod(KB)) ⊆ Mod(KB′),
R′ is also a model of KB′ that is PT-preferred to R, that is, it cannot be the
case that R ∈ minEPT

Mod(KB′). Inversely, let R be a model of KB and KB′

s.t. R ∈ minEPT
Mod(KB) and R /∈ minEPT

Mod(KB′)). That is, there must
be a model R

′ of KB′ s.t. R
′ ⊳PT R and R

′ ∈ minEPT
Mod(KB′). However,

since KB ⊆ KB′, R′ is also a model of KB that is PT-preferred to R, that is, it
cannot be the case that R ∈ minEPT

Mod(KB).
Hence, for every KB,KB′ s.t. KB ⊆ KB′ ⊆ CnPT(KB), it must be minEPT

Mod(KB) =
minEPT

Mod(KB), that implies P2.
P3. Every model in minEPT

Mod(KB) is by definition a ranked model of KB.
Hence if α ∈ Cn0(KB), i.e., α is true in all ranked models of KB, then it is true
in all ranked models in minEPT

Mod(KB), i.e., α ∈ CnPT(KB).
P4. It is an immediate consequence of the satisfaction of P7.4

P7. See the analagous result by Giordano et al. [30, Section 2.3.2]; in par-
ticular Theorem 2, that implies that in case of a conditional KB the use of

4As in Theorem 5.2, for this conclusion we need the requirement (specified in Section 2)
that P contains at least two elements.
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PT-minimality leads to a single minimal model, characterising Rational Clo-
sure.
P8. Let α be a propositional formula s.t. α /∈ Cn0(KB): then there is a ranked
model R of KB s.t. R(v) < ∞ for some v s.t. v 
 ¬α. Either R is a PT -
minimal model of KB itself, or there is a PT -minimal model R

′ of KB s.t.
R′ EPT R; that is, it must be the case that R′(v) < ∞ for some model
R′ ∈ minEPT

Mod(KB), that in turn implies that α /∈ CnPT(KB).
P9. It is an immediate consequence of the satisfaction of P7, as explained in
Section 4, immediately after introducing P9.
P10. It is a direct consequence of Proposition 6.2 and the satisfaction of P10
for LM-entailment. �

Unfortunately, Conditional Rationality (P5) is not valid and therefore, nei-
ther is the Single Model postulate (P6).

Theorem 6.1 There is some KB such that the conditional induced by CnPT(KB)
is not a rational conditional.

To see this, consider Example 6.1: we have •¬p → ¬r ∈ CnPT(KB) (typical
non-penguins are not robins). This is because we have min≺Ri

J¬pKRi ⊆ J¬rKRi

for each i = 1, 2, 3. However both •¬p → ¬f 6∈ CnPT(KB) and •(¬p∧ f) → ¬r 6∈
CnPT(KB). The former holds because, e.g., min≺R1

J¬pKR1 * J¬fKR1 , the latter

because min≺R3
J¬p ∧ fKR3 * J¬rKR3 . This means the rational monotonicity

property (RM) is not satisfied.
On the other hand, observe that ¬p /∈ CnPT(KB). Recall from the proof

of Theorem 5.2 that we used the fact that ¬p ∈ CnLM(KB) to show that LM-
entailment does not satisfy Strict Entailment (P8).

7 PT’-entailment

As we have shown above, relying on LM-minimality results in the loss of property
P8 (Strict Entailment), while using PT-minimality results in the loss of the
uniqueness of the minimal model (P6) and the rationality of our conditional
reasoning (P5). To summarise, on the one hand LM-minimality, failing to
satisfy P8, can potentially enforce classical propositional information that is
not a necessary consequence of the knowledge base. On the other hand, PT-
minimality can be inferentially too weak. In this section we consider a third
possibility, aimed at strenghtening the inferential power while still preserving
the satisfaction of P8. This third proposal is based on using the same approach
as in PT-minimality, but among the PT-minimal models we consider only the
“biggest” ones, that is, the ones with the maximal sets of possible valuations
(w.r.t. ⊆). This should allow us to augment the inferential power (we define the
entailment relation using fewer models), while still preserving P8 (we consider
all the biggest models, that is, the models that assume as little propositional
knowledge as possible). We now analyse this option.
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We let min⊇
EPT

Mod(KB) := {R ∈ minEPT
Mod(KB) | there is no R′ ∈

minEPT
Mod(KB) s.t. UR

′

⊃ UR}.

The corresponding entailment relation |≈PT′ can be defined as follows.

Definition 7.1 (PT’-entailment) Let KB ⊆ L• and α ∈ L•. We say KB

PT’-entails α, denoted KB |≈PT′ α, if and only if min⊇
EPT

Mod(KB) ⊆ Mod(α).

For example, in Example 6.1 we would consider only R2 and R3.
Note that if KB is unsatisfiable then min⊇EPT

Mod(KB) is a singleton set

containing the ranked interpretation R for which UR = ∅. Also, recall from
Section 6 that for every satisfiable conditional knowledge base KB there is a
single PT-minimal model [30, Theorem 1], that characterises the rational closure
of KB [30, Theorem 2]. Such a single PT-minimal model is by definition also
the only PT’-minimal model of KB, and consequently, in case of conditional
knowledge bases, PT’-entailment also characterises the rational closure.

Our first result regarding PT’-entailment is that it is inferentially stronger
than PT-entailment.

Proposition 7.1 (i) For every KB ⊆ L• and every α ∈ L•, if KB |≈PT α
then KB |≈PT′ α. (ii) There exists some KB′ ⊆ L• and β ∈ L• such that
KB′ |≈PT′ β and KB′ 6|≈PT β.

Proof:
(i). Note that, since min⊇EPT

Mod(KB) ⊆ minEPT
Mod(KB) for every KB,

|≈PT⊆|≈PT′ . (ii). Observe from Example 7.1, here below, that KB′ |≈PT′

•⊤ → ¬f but KB′ 6|≈PT •⊤ → ¬f. �

Example 7.1 Consider the knowledge base KB′ := {•⊤ → (¬p ∧ ¬r), •p →
¬f, •r → •f, p → ¬r}, which is a modified version of the knowledge KB from
Example 5.1. The only difference is that now we state that typical penguins are
non-flying birds, not that they are typical non-flying birds.

Then, one can check that minEPT
Mod(KB′) = {R1,R2}, where:

R1 :

2 {f, p,¬r}
1 {¬f, p,¬r}
0 {¬f,¬p,¬r}, {f,¬p,¬r},

R2 :

2 {¬f,¬p, r}, {f, p,¬r}
1 {f,¬p, r}, {f,¬p,¬r}, {¬f, p,¬r}
0 {¬f,¬p,¬r}

while min⊇EPT
Mod(KB′) = {R2}, since UR2 ⊃ UR1 .

Unfortunately, while PT’-entailment is an improvement over PT-entailment
in terms of inferential strength, it is weaker than PT-entailment when it comes
to the satisfaction of the list of desirable properties. That is, it satisfies, and fails
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to satisfy, the same properties as PT-entailment, except for Typical Entailment
(P10), which PT-entailment satisfies, but PT’-entailment does not.

Proposition 7.2 CnPT′(·) satisfies P1–P4 and P7–P9, but does not satify
P5, P6, and P10.

Proof:
Regarding P1, P2, P3, P4, and P9 the proof for CnPT ′(·) is the same as for
CnPT (·) (Proposition 6.3 above).
Regarding the failure of P5, consider Example 6.1. In this example, while
minEPT

Mod(KB) = {R1,R2,R3}, we have that min⊇EPT
Mod(KB) = {R2,R3}.

We can use the same case used in the proof of Theorem 6.1: we have KB |≈PT′

•(¬p) → ¬r, but neither KB |≈PT′ •(¬p) → ¬f, nor KB |≈PT′ •(¬p ∧ f) → ¬r
hold.
The failure of P5 immediately implies the failure of P6.
P7. As pointed out in Proposition 6.3, in case we are dealing with a conditional
KB, deciding PT -minimality over a satisfiable conditional KB gives back a single
minimal model, characterising Rational Closure. It follows immediately that
such a model is also the only PT’ -minimal one.
P8. Again, it follows from the satisfaction of P8 for PT -entailment (see Propo-
sition 6.3). Let KB be a knowledge base and α be a propositional formula. If
there is a PT -minimal model R s.t. R(v) ≤ ∞ for some v 6
 α, then, by defini-

tion, there must be also in min⊇EPT
Mod(KB) a model R′ of KB s.t. R′(v) ≤ ∞.

For the failure of P10, we consider Example 7.1 and the case used in the proof
of Proposition 7.1: KB′ |≈PT′ •⊤ → ¬f but, since KB′ 6|≈PT •⊤ → ¬f and |≈PT

satisfies Ampliativeness (P3), •⊤ → ¬f is not in Cn0(KB′).
�

8 Making sense of the impossibility result

Theorem 4.1 in Section 4 shows that there is no PTL consequence operator sat-
isfying all of our postulates—more specifically, none satisfying P1, P2, P3, P5,
P8, and P10. This raises the important question of which of these postulates
ought to be foregone in the search for an appropriate form of PTL entailment.
In trying to find an answer to this question, it is useful to consider the three
forms of entailment we proposed in the previous sections. The answer seems
to be that it makes sense to consider (at least) two forms of entailment for
PTL, represented here by LM-entailment and PT-entailment. PT’-entailment
is not viewed as a viable option, given that it satisfies fewer properties than
PT-entailment. In essence then, it comes down to a choice between having a
form of entailment that satisfies Strict Entailment (PT-entailment), and one
that satisfies the Single Model postulate and Conditional Rationality, i.e., is
based on a rational conditional (LM-entailment).

The advantage of LM-entailment is that it satisfies all postulates except
for Strict Entailment, which includes not only Single Model and Conditional
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Rationality, but also Conditional Strict Entailment and Classical Entailment,
the weakened versions of Strict Entailment. On the other hand, the argument for
PT-entailment is that the Single Model property is too restrictive in the context
of full PTL, and ought to be dropped. That is, in a logic as expressive as PTL
in which there are not any restrictions on the typicality operator, any form of
entailment based on minimality, and adhering to the presumption of typicality,
as outlined in Section 6, is likely to violate the Single Model property.

The point of view that different forms of entailment can be appropriate in
enriched versions of propositional logic, particularly enriched versions dealing
with aspects of typicality, is not surprising, nor new. Lehmann [33] makes the
case for two forms of entailment for the conditional logic discussed in Section 2.1
on which PTL is based. He draws a distinction between prototypical reasoning,
corresponding to rational closure as discussed in Section 2.2, and presumptive
reasoning.

The intuition underlying prototypical reasoning is that conclusions to be
drawn are constrained by the typicality of the objects under consideration. To
make matters more concrete, suppose we know that birds typically fly, that birds
typically have wings, that robins are birds, that penguins are birds, and that
penguins typically don’t fly. Robins can be regarded as typical birds and there-
fore inherit the properties of typical birds, such as having wings. Penguins, on
the other hand, should be regarded as atypical birds since they typically cannot
fly, and therefore do not inherit the properties of a typical bird, such as having
wings. This is to be contrasted with presumptive reasoning, a more permissive
form of reasoning for which the intuition is to draw conclusions unless we have
specific information to the contrary. In our example above presumptive reason-
ing would allow us to conclude that penguins typically have wings (since we
do not have explicit information contradicting that conclusion), thereby distin-
guishing it from prototypical reasoning.

Our argument here is not that the relationship between PT-entailment and
LM-entailment is analogous to the relationship between prototypical reason-
ing and presumptive reasoning, although it is true that LM-entailment can be
viewed as a refinement of PT-entailment (yielding more conclusions), just as
presumptive reasoning is a refinement of prototypical reasoning. Rather, the
important point is that differences in context will determine which form of en-
tailment is appropriate. It is our contention that the same principle applies to
the differences between LM-entailment and PT-entailment. Below we discuss
the technical differences between the two forms of entailment and then provide
an example to illustrate the principle.

As we have seen above, the difference between these two forms of entailment
comes down to a choice between Strict Entailment on the one hand, Conditional
Rationality (and Single Model) on the other hand. Employing LM-entailment
ensures that we remain rational (i.e., satisfying all the KLM properties), but at
the cost of going beyond Tarskian monotonicity for typicality-free sentences.
Conversely, making use of PT-entailment allows us to remain Tarskian for
typicality-free sentences, but forces us to forego rationality, and in particular,
the rational monotonicity property RM. Intuitively then, LM-entailment is the
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more permissive form of entailment here. Not only do we remain rational, un-
like PT-entailment, but we do so at the cost of allowing the entailment of more
typicality-free sentences than permitted by PT-entailment. The example below
is indicative of the factors to take into account when deciding, in a specific con-
text, which of LM-entailment or PT-entailment is the more appropriate form of
reasoning.

Example 8.1 Consider again the knowledge base KB := {•⊤ → (¬p∧¬r), •p →
•¬f, •r → •f, p → ¬r} introduced in Example 5.1. From Examples 5.1 and 6.1
it is not hard to verify that both LM-entailment and PT-entailment sanction
the conclusion that typical non-robins are not penguins (KB |≈LM •(¬r) → ¬p
and KB |≈PT •(¬r) → ¬p), and do not allow for the entailment that typical
non-robins can fly (KB 6|≈LM •(¬r) → f and KB 6|≈PT •(¬r) → f). This leaves
us with a choice. On the one hand it is reasonable to conclude from this that
typical non-flying non-robins are not penguins (that is, •(¬r ∧ ¬f) → ¬p). In
fact, rational monotonicity requires of us to be able to draw this conclusion. But
in order to do so, we need to be able to conclude that there are no penguins,
which violates Strict Entailment. This is the route followed by LM-entailment.
The other option would be to insist that we do not have enough information to
conclude that there are no penguins, but in the process of doing so, also forego
the conclusion that typical non-flying non-robins are not penguins. That is, we
insist on Strict Entailment at the expense of rational monotonicity. This is the
path followed by PT-entailment. �

9 Related work

To the best of our knowledge, the first attempt to formalise an explicit notion of
typicality in defeasible reasoning was that by Delgrande [23]. Given the strong
links between our constructions and the KLM approach, most of the remarks in
the comparison made by Lehmann and Magidor [34, Section 3.7] are applicable
in comparing Delgrande’s approach to ours and therefore we shall not repeat
them here.

Crocco and Lamarre [22] as well as Boutilier [5] have explored the links
between conditionals and notions of normality similar to the one we investigate
here. In particular, Boutilier defines a family of conditional logics of normality
in which a statement of the form “if α, then normally β” is formalised via a
binary modality ⇒ as a conditional α ⇒ β. Here we achieve the same with a
unary operator.

Roughly speaking, Boutilier’s semantic intuition is the same as that of KLM
(and therefore the same as ours). The main difference is that Boutilier defines
a conditional connective ⇒ in the language, whereas Kraus et al. define |∼ at a
meta-level to the language. In this respect, Boutilier’s approach is more general
in that it allows for nested conditionals. If these are omitted, i.e., if one works
in the ‘flat’ conditional logic in which ⇒ is the main connective and no nesting
is allowed, then one gets the same results for preferential entailment with both
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systems. So Boutilier achieves with modalities (he works in a bi-modal language)
what Kraus and colleagues achieve with a (meta-level) preference order.

It turns out that in Boutilier’s approach one cannot always capture the
notion of “most typical α’s”. In Boutilier’s modal logic, such a set (of most
normal α-worlds) need not exist in general. This is because Boutilier drops the
smoothness condition [5, p. 103] and therefore at any point in a ranked model
one can have infinitely descending chains of increasingly more normal α-worlds.
If one imposes smoothness in Boutilier’s approach, which can be done by e.g.
requiring the ordering determined by Boutilier’s � also to be Noetherian, one
could then define his conditional ⇒ more elegantly as follows:

α ⇒ β := •α→ β (1)

where, in Boutilier’s notation, •α would be given by

•α := α ∧�¬α (2)

(Of course negated conditionals of the form α 6⇒ β can then be expressed
as ¬(•α → β).) In adopting smoothness and defining conditionals in this way,
one would expect both approaches to become equivalent modulo the underlying
language — ours is propositional, whereas Boutilier’s is modal. However, our
statement •α → β differs from Boutilier’s α ⇒ β in a significant way. In
Boutilier’s approach, a statement of the form α ⇒ β is true at some world (in a
ranked model) if and only if it is true at all worlds in that ranked model [5, p.
114]. On the other hand, it is not hard to find a ranked model in which •α →
β holds at a world without being true in the whole model. This establishes
Boutilier’s conditional as a ‘global’ statement, while ours has the (more general)
‘local flavour’. We can easily simulate Boutilier’s notion of acceptance [5, p. 115]
by stating ⊤ → (•α→ β).

It is also worth mentioning that our interpretation of the conditional ⇒
in (1) above and Boutilier’s differ in another subtle way, which also relates
to whether one adopts smoothness or not. In (1), α ⇒ β is defined as “the
normal α’s are β’s”, whereas, strictly speaking, Boutilier’s definition of α ⇒ β
reads as “there is a point from which α→ β is not violated”. Such a ‘frontier’ for
normality, implicitly referred to in Boutilier’s definition of α⇒ β, is not as crisp
as ours in the sense that the point where one draws the normality line might
be too ‘far away’ (in the ordering) from the more and more normal α-worlds.
One can definitely make a case for dropping the smoothness condition, but
requiring it is a small price to pay given the much simpler account of typicality
one obtains.

When it comes to entailment from a defeasible knowledge base, all ap-
proaches discussed above adopt a Tarskian-style notion of consequence and
therefore do not go beyond ranked entailment. The move towards a non-
monotonic notion of entailment and an investigation of its different facets in
the context of PTL was precisely our motivation in the present work.

Giordano et al. [31] proposed the system Pmin which is based on a language
that is as expressive as the one we propose in this paper. However, they end
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up using a constrained form of such a language that goes only slightly beyond
the expressivity of the language of KLM-style conditionals (their well-behaved
knowledge bases). More importantly, their approach differs from ours since they
build Pmin on a semantic approach that relies on preferential models and a
notion of minimality that is more akin to circumscription [37].

In a description logic setting, Giordano et al. [24] also study notions of typ-
icality. Semantically, they do so by placing an (absolute) ordering on objects in
first-order domains in order to define versions of defeasible subsumption rela-
tions in the description logic ALC. The authors moreover extend the language
of ALC with an explicit typicality operator T(·) of which the intended meaning
is to single out instances of a concept that are deemed as ‘typical’. That is,
given an ALC concept C, T(C) denotes the most typical individuals having the
property of being C in a particular DL interpretation. It is worth pointing out,
though, that most of the analysis in the work of Giordano et al. is dedicated to
a constrained use of the typicality operator T(·), that is allowed to occur only
in the left-hand side of GCIs and not in the scope of other concept construc-
tors. Not having such a syntactic constraint is a feature of our approach that
we have put forward in the present work. Still in the framework of Description
Logics, also Bonatti et al. [1] introduce a typicality operator N(·), with a mean-
ing that mirrors the operator T(·); also the use of the N operator is generally
constrained, and their semantic framework is differs from the present one, not
being preferential.

Giordano et al.’s approach has been extended in a series of papers [25, 26, 29,
30], in particular also to deal with the computation of non-monotonic entailment
from defeasible knowledge bases. In the latter case, the authors define a hyper-
tableau calculus to compute the rational closure of a defeasible ontology via a
minimal-model construction [28, 30] that, as mentioned before, is closely related
to our notion of PT-entailment. Nevertheless, that remains the only notion of
non-monotonic entailment investigated by the authors. We conjecture the more
expressive DL setting has the potential to give rise to a much broader spectrum
of consequence relations when enriched with typicality operators, in particular
when these apply not only to concepts but also to roles [43]. Nevertheless,
that remains the only notion of non-monotonic entailment investigated by the
authors. We conjecture the more expressive DL setting has the potential to give
rise to a much broader spectrum of consequence relations when enriched with
typicality operators, in particular when these apply not only to concepts but
also to roles [43].

Finally, Britz and Varzinczak [16, 17] investigate another, complementary
aspect of defeasibility to the one here presented by introducing (non-standard)
modal operators allowing us to talk about relative normality in accessible worlds.
With their defeasible versions of modalities, namely p∼∼p and p∼∼

p , formalising re-
spectively the notions of defeasible necessity and distinct possibility, it becomes
possible to make statements of the form “α holds in all of the normal (typical)
accessible worlds”, thereby capturing defeasibility of what is ‘expected’ in tar-
get worlds. (Note that this is different from stating something like � •α, which
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says that all accessible worlds are typical α-worlds.) Such preferential versions
of modalities allow for the definition of a family of modal logics in which defea-
sible modes of inference such as defeasible actions, knowledge and obligations
can be expressed. These can be integrated either with existing |∼-based modal
logics [9, 11] or with a modal extension of our typicality operator in striving
towards a comprehensive theory of defeasible reasoning in more expressive lan-
guages.

10 Conclusion

The focus of this paper is an investigation into the entailment problem for the
logic PTL. We approached the problem from two angles: an abstract formal per-
spective, in which a set of appropriate postulates was presented and discussed,
and a constructive perspective, in which three specific entailment relations were
defined and studied. The primary conclusion to be drawn from this investi-
gation is that a logic as expressive as PTL supports more than one form of
entailment. This conclusion is supported from the abstract perspective via an
impossibility result, as well as through the constructive approach via the def-
inition of two of the three distinct types of PTL entailment: LM-entailment
and PT-entailment. While both forms of entailment are generalisations of ra-
tional closure, only one, LM-entailment, retains all the rationality properties
associated with rational closure, formalised as the Conditional Rationality pos-
tulate (P5). However, it does not satisfy Strict Entailment (P8), a postulate
which requires an entailment relation to remain Tarskian for conclusions not
involving typicality, although it satisfies weakened versions of Strict Entailment
(P9 and P9′). On the other hand, the other form of entailment we studied,
PT-entailment, satisfies P8, but not Conditional Rationality (P5).

The framework of Booth et al. [2, 3] is, to the best of our knowledge, the first
attempt to introduce a full-fledged typicality operator into propositional logic.
In terms of other related work, the closest we are aware of is the restricted form of
typicality for description logics by Giordano et al. [27]. However, a consequence
of their restricted use of typicality is that a propositional version of their logic
would correspond to a KLM-style conditional logic in which rational closure
behaves well, and which is much less expressive than PTL.

Britz et al. [8] and Giordano et al. [27] have investigated the connection
between the KLM approach and Gödel-Löb modal logic, which is closely re-
lated to PTL. Exploiting this connection should deliver an axiomatisation of
an inference relation corresponding to ranked entailment, but it does not seem
useful for modelling entailment relations based on minimisation as LM- and
PT-entailment.

For future work, an obvious open question is whether our conjecture, that
the subsets of postulates satisfied by LM-entailment and PT-entailment respec-
tively provide appropriate abstract formalisations of two distinct forms of PTL
entailment, can be formalised through representation theorems. From a compu-
tational perspective, it is worth investigating whether, as is the case for rational
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closure for conditional logics, the computation of (the different forms of) PTL
entailment can be reduced to a series of classical entailment checks.

Our results in the propositional setting pave the way for an investigation
of appropriate forms of entailment in other, more expressive, preferential ap-
proaches, such as preferential description logics [10, 29, 6, 13, 15, 21, 7] and
modal logics of defeasibility [9, 12, 14, 17]. The move to logics with more struc-
ture is of a challenging nature, and a simple rephrasing of our approach to these
logics may not deliver the expected results. We are currently investigating these
issues.

Acknowledgements

The work of Giovanni Casini and of Thomas Meyer has received funding from the
European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No. 690974 (MIREL project). The
work of Thomas Meyer has been supported in part by the National Research
Foundation of South Africa (grant No. UID 98019).

References

[1] P. Bonatti, M. Faella, I. Petrova, and L. Sauro. A new semantics for
overriding in description logics. Artificial Intelligence, 222:1–48, 2015.

[2] R. Booth, T. Meyer, and I. Varzinczak. PTL: A propositional typicality
logic. In L. Fariñas del Cerro, A. Herzig, and J. Mengin, editors, Proceed-
ings of the 13th European Conference on Logics in Artificial Intelligence
(JELIA), number 7519 in LNCS, pages 107–119. Springer, 2012.

[3] R. Booth, T. Meyer, and I. Varzinczak. A propositional typicality logic for
extending rational consequence. In E. Fermé, D. Gabbay, and G. Simari,
editors, Trends in Belief Revision and Argumentation Dynamics, volume 48
of Studies in Logic – Logic and Cognitive Systems, pages 123–154. King’s
College Publications, 2013.

[4] R. Booth and J. Paris. A note on the rational closure of knowledge bases
with both positive and negative knowledge. Journal of Logic, Language
and Information, 7(2):165–190, 1998.

[5] C. Boutilier. Conditional logics of normality: A modal approach. Artificial
Intelligence, 68(1):87–154, 1994.

[6] K. Britz, G. Casini, T. Meyer, K. Moodley, U. Sattler, and I. Varzinczak.
Theoretical foundations of defeasible description logics. Technical report,
2019.

[7] K. Britz, G. Casini, T. Meyer, and I. Varzinczak. A KLM perspective on
defeasible reasoning for description logics. In Description Logic, Theory

30



Combination, and All That - Essays Dedicated to Franz Baader on the
Occasion of His 60th Birthday, pages 147–173, 2019.

[8] K. Britz, J. Heidema, and T. Meyer. Modelling object typicality in de-
scription logics. In A. Nicholson and X. Li, editors, Proceedings of the 22nd
Australasian Joint Conference on Artificial Intelligence, number 5866 in
LNAI, pages 506–516. Springer, 2009.

[9] K. Britz, T. Meyer, and I. Varzinczak. Preferential reasoning for modal
logics. Electronic Notes in Theoretical Computer Science, 278:55–69, 2011.
Proceedings of the 7th Workshop on Methods for Modalities (M4M’2011).

[10] K. Britz, T. Meyer, and I. Varzinczak. Semantic foundation for preferential
description logics. In D. Wang and M. Reynolds, editors, Proceedings of
the 24th Australasian Joint Conference on Artificial Intelligence, number
7106 in LNAI, pages 491–500. Springer, 2011.

[11] K. Britz, T. Meyer, and I. Varzinczak. Normal modal preferential conse-
quence. In M. Thielscher and D. Zhang, editors, Proceedings of the 25th
Australasian Joint Conference on Artificial Intelligence, number 7691 in
LNAI, pages 505–516. Springer, 2012.

[12] K. Britz and I. Varzinczak. Defeasible modalities. In Proceedings of the 14th
Conference on Theoretical Aspects of Rationality and Knowledge (TARK),
pages 49–60, 2013.

[13] K. Britz and I. Varzinczak. Introducing role defeasibility in description log-
ics. In L. Michael and A. Kakas, editors, Proceedings of the 15th European
Conference on Logics in Artificial Intelligence (JELIA), number 10021 in
LNCS, pages 174–189. Springer, 2016.

[14] K. Britz and I. Varzinczak. From KLM-style conditionals to defeasible
modalities, and back. Journal of Applied Non-Classical Logics (JANCL),
2017.

[15] K. Britz and I. Varzinczak. Toward defeasible SROIQ. In Proceedings of
the 30th International Workshop on Description Logics, 2017.

[16] K. Britz and I. Varzinczak. From KLM-style conditionals to defeasible
modalities, and back. Journal of Applied Non-Classical Logics (JANCL),
28(1):92–121, 2018.

[17] K. Britz and I. Varzinczak. Preferential accessibility and preferred worlds.
Journal of Logic, Language and Information (JoLLI), 27(2):133–155, 2018.

[18] G. Casini and U. Straccia. Rational closure for defeasible description logics.
In T. Janhunen and I. Niemelä, editors, Proceedings of the 12th European
Conference on Logics in Artificial Intelligence (JELIA), number 6341 in
LNCS, pages 77–90. Springer-Verlag, 2010.

31



[19] G. Casini and U. Straccia. Defeasible inheritance-based description logics.
In IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages
813–818, 2011.

[20] G. Casini and U. Straccia. Defeasible inheritance-based description logics.
Journal of Artificial Intelligence Research (JAIR), 48:415–473, 2013.

[21] G. Casini, U. Straccia, and T. Meyer. A polynomial time subsumption algo-
rithm for nominal safe ELO⊥ under rational closure. Information Sciences,
2018.

[22] G. Crocco and P. Lamarre. On the connections between nonmonotonic
inference systems and conditional logics. In R. Nebel, C. Rich, and
W. Swartout, editors, Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning (KR), pages 565–
571. Morgan Kaufmann Publishers, 1992.

[23] J. Delgrande. A first-order logic for prototypical properties. Artificial
Intelligence, 33:105–130, 1987.

[24] L. Giordano, V. Gliozzi, N. Olivetti, and G. Pozzato. Preferential descrip-
tion logics. In N. Dershowitz and A. Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR), number 4790 in
LNAI, pages 257–272. Springer, 2007.

[25] L. Giordano, V. Gliozzi, N. Olivetti, and G. Pozzato. Reasoning about
typicality in preferential description logics. In S. Hölldobler, C. Lutz, and
H. Wansing, editors, Proceedings of the 11th European Conference on Logics
in Artificial Intelligence (JELIA), number 5293 in LNAI, pages 192–205.
Springer, 2008.

[26] L. Giordano, V. Gliozzi, N. Olivetti, and G. Pozzato. Analytic tableaux
calculi for KLM logics of nonmonotonic reasoning. ACM Transactions on
Computational Logic, 10(3):18:1–18:47, 2009.

[27] L. Giordano, V. Gliozzi, N. Olivetti, and G. Pozzato. ALC+T : a preferen-
tial extension of description logics. Fundamenta Informaticae, 96(3):341–
372, 2009.

[28] L. Giordano, V. Gliozzi, N. Olivetti, and G. Pozzato. A minimal model
semantics for nonmonotonic reasoning. In L. Fariñas del Cerro, A. Herzig,
and J. Mengin, editors, Proceedings of the 13th European Conference on
Logics in Artificial Intelligence (JELIA), number 7519 in LNCS, pages 228–
241. Springer, 2012.

[29] L. Giordano, V. Gliozzi, N. Olivetti, and G. Pozzato. A non-monotonic
description logic for reasoning about typicality. Artificial Intelligence,
195:165–202, 2013.

32



[30] L. Giordano, V. Gliozzi, N. Olivetti, and G. Pozzato. Semantic character-
ization of rational closure: From propositional logic to description logics.
Artificial Intelligence, 226:1–33, 2015.

[31] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. A nonmonotonic
extension of KLM preferential logic P. In Logic for Programming, Artifi-
cial Intelligence, and Reasoning - 17th International Conference, LPAR-17,
Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, pages 317–332,
2010.

[32] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, pref-
erential models and cumulative logics. Artificial Intelligence, 44:167–207,
1990.

[33] D. Lehmann. Another perspective on default reasoning. Annals of Mathe-
matics and Artificial Intelligence, 15(1):61–82, 1995.

[34] D. Lehmann and M. Magidor. What does a conditional knowledge base
entail? Artificial Intelligence, 55:1–60, 1992.

[35] D. Makinson. General patterns in nonmonotonic reasoning. In Handbook
of Logic in Artificial Intelligence Nad Logic Programming, Vol. Iii, pages
35–110. Oxford: Clarendon Press, 1994.

[36] D. Makinson. Bridges from Classical to Nonmonotonic Logic, volume 5 of
Texts in Computing. King’s College Publications, 2005.

[37] J. McCarthy. Circumscription, a form of nonmonotonic reasoning. Artificial
Intelligence, 13(1-2):27–39, 1980.

[38] J. Pearl. System Z: a natural ordering of defaults with tractable applica-
tions to nonmonotonic reasoning. In Proceedings of the 3rd Conference on
Theoretical Aspects of Rationality and Knowledge (TARK), 1990.

[39] J. Pearl and M. Goldszmidt. On the relation between rational closure
and system-z. In Proceedings of the 3rd International Workshop on Non-
Monotonic Reasoning, 1990.

[40] J. Quantz and V. Royer. A preference semantics for defaults in terminolog-
ical logics. In Proceedings of the 3rd International Conference on Principles
of Knowledge Representation and Reasoning (KR), pages 294–305, 1992.

[41] Y. Shoham. Reasoning about Change: Time and Causation from the Stand-
point of Artificial Intelligence. MIT Press, 1988.

[42] A. Tarski. On some fundamental concepts of metamathematics. [1930]
Logic, Semantics, Metamathematics. Papers from 1923 to 1938, translated
by J.H. Woodger. Pages 30–36. Clarendon Press, 1956.

[43] I. Varzinczak. A note on a description logic of concept and role typicality for
defeasible reasoning over ontologies. Logica Universalis, 12(3-4):297–325,
2018.

33



Appendix

A Proofs for Section 2

We give here a proof of Proposition 2.1. In order to do that, we need to in-
troduce some extra notions and prove some extra propositions. First of all,
analogously to the definitions for PTL introduced in Section 2.3, we say that a
set of conditionals C is satisfiable iff there is a ranked interpretation R for which
UR 6= ∅ satisfying all the conditionals in it, and let Mod(C) be the set of all the
ranked models of C.

We are going to use a notion of merging ranked interpretations.

Definition A.1 (Ranked Union) Given a set of ranked interpretations R =
{R1, . . . ,Rn}, its ranked union RR is defined as follows:

• for every v, v′ ∈ U , v ≺RR v′ iff min{Ri(v) | Ri ∈ R} < min{Rj(v
′) |

Rj ∈ R}.

• RR := (LR
R

0 , . . . , LR
R

n−1, L
R

R

∞ ) is defined as

– LR
R

∞ :=
⋂
{LRi

∞ | Ri ∈ R}.

– LR
R

0 := min≺
RR

(U \ LR
R

∞ ); LR
R

1 := min≺
RR

(U \ LR
R

0 ∪ LR
R

∞ ); and

so on until LR
R

n = ∅.

Proposition A.1 Let C be a satisfiable set of conditionals, and let R := {R1, . . . ,Rn}
be a set of models of C. Then their ranked union RR is a model of C, and
RR ⊳LM Ri for every Ri ∈ (R \ RR).

Proof:
We first prove that RR := (LR

R

0 , . . . , LR
R

n−1, L
R

R

∞ ) is a model of C. For every

v ∈ LR
R

0 , it must be the case, by Definition A.1, that v ∈ LRi

0 for some Ri ∈ R;

since such Ri is a model of C and v ∈ LRi

0 , v 
 ¬α ∨ β for every α |∼ β ∈ C.

Now, let v ∈ LR
R

i , with 0 < i < n, s.t. v 
 α ∧ ¬β for some α |∼ β ∈ C
(if there is no such v, RR is necessarily a model of C). Being every Rj ∈ R

a model of C, it must be the case, again by Definition A.1, that hRj
(v) ≥ i

and hRj
(v′) < hRj

(v) for some v′ satisfying α ∧ β. Hence, it must be that
min{Ri(v

′) | Ri ∈ R} < min{Rj(v) | Rj ∈ R} for some v′ satisfying α ∧ β,

that is, v′ ≺RR v, that implies v′ ∈ LR
R

j , with j < i.

To summarise, for every α |∼ β ∈ C, if there is a valuation v ∈ RR s.t. v 


α ∧ ¬β, then there is a valuation v′ ∈ RR s.t. v′ 
 α ∧ β and v′ ≺RR v; hence
RR is a model of C.

Now we prove that RR ELM Ri for every Ri ∈ R.

Let Ri := (L0, . . . , Ln−1, L
R

R

∞ ) s.t. Ri ∈ R and RR 6ELM Ri. That is, there

is an i s.t. LR
R

i 6⊆ Li, while LR
R

j = Lj for every j < i. That is, there is a

v ∈ Li s.t. v /∈ LR
R

i . By definition of RR, that implies that v ∈ LR
R

j for some
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j < i, but that cannot be the case, since LR
R

j = Lj for every j < i. Hence

R
R ELM Ri for every Ri ∈ R.
We finish by proving that Ri 6ELM RR for every Ri ∈ (R \ RR).

Let Ri be a model in C s.t. Ri ELM RR. Since RR ELM Ri, we must conclude

that for every i, for every cell LRi

i composing Ri and every cell LR
R

i composing

RR, LRi

i = LR
R

i ; that is, Ri and RR are exactly the same model. Hence
RR ⊳LM Ri for every Ri ∈ (R \ RR). �

Proposition A.2 Let C be a satisfiable set of conditionals. Then the ranked
union of the elements of Mod(C) is the only ELM-minimum element in Mod(C).

Proof:
It is an immediate consequence of Definition A.1 and Proposition A.1. �

Proposition 2.1 Given a set of conditionals C and a conditional α |∼ β. α |∼ β
is in the rational closure of C iff:

1. C is unsatisfiable; or

2. R
rc(C) 
 α |∼ β.

Proof:
It has been proved by Booth and Paris [4, Theorem 2] that the rational closure
of a KB is determined by a model that is equivalent to the ranked union of
Mod(C). According to Proposition A.2, the ranked union of Mod(C) is the only
ELM-minimum element in Mod(C), that is, the model Rrc(C). �

B Proofs of Lemmas 5.1, 5.2 and 5.3

B.1 Proof of Lemma 5.1

Lemma 5.1 The following hold for each i ≥ 0:

1. Si ⊆ Si+1, i.e., [S0 ⊆ S1 and, for all i ≥ 0, JKBKRi ⊆ JKBKRi+1 ];

2. For all v1, v2 ∈ U , if Ri(v1) < Ri(v2), then v1 ∈ JKBKRi ;

3. Ri is a ranked interpretation.

Proof:
We show all three simultaneously by complete induction on i. So, assume all
of Items 1, 2 and 3 hold for all m < i. We will show this implies all three hold
also for i. We assume each α ∈ KB is in normal form.
1. JKBKRi ⊆ JKBKRi+1 .

Let v ∈ JKBKRi and let α ∈ KB with α =
∧

i≤t •θi → (φ ∨
∨

i≤s •ψi) (for some

s, t ≥ 0). We must show v ∈ JαKRi+1 . Since v ∈ JKBKRi we know v ∈ JαKRi .
Hence we know that one of the following must hold:

35



• v 6∈ J•θkKRi for some k: This means (since θk is propositional) v is not
≺Ri-minimal in JθkK

Ri = JθkK
Ri+1 . But then it is also not ≺Ri+1-minimal

since, by construction, if Ri(v) ≤ Ri(w) then Ri+1(v) ≤ Ri+1(w). Hence
in this case v 6∈ J•θkKRi+1 .

• v ∈ JφKRi : In this case also v ∈ JφKRi+1 , since JφKRi = JφKRi+1 (because
φ is purely propositional).

• v ∈ J•ψkK
Ri for some k: This means v is ≺Ri-minimal in JψkK

Ri . But
then it is also ≺Ri+1-minimal, since we assumed v ∈ JKBKRi = Si+1, and
so by construction of Ri+1 we have that Ri+1(w) < Ri+1(v) if and only
if Ri(w) < Ri(v) for all w ∈ U . Since JψkKRi = JψkKRi+1 (since ψk is
purely propositional) we obtain that v is ≺Ri+1-minimal in JψkK

Ri+1 , i.e.,
v ∈ J•ψkK

Ri+1 .

Thus in all three possible cases we obtain v ∈ JαKRi+1 as required.
2. Ri(v1) < Ri(v2) implies v1 ∈ JKBKRi .
Suppose Ri(v1) < Ri(v2). Observe that, by construction, this can only be the
case if i > 0. Then either Ri−1(v1) < Ri−1(v2) or v2 /∈ Si. If Ri−1(v1) <
Ri−1(v2) then, by the inductive hypothesis, v1 ∈ JKBKRi−1 , while if v2 /∈ Si,
then v1 ∈ Si = JKBKRi−1 . So either way we get v1 ∈ JKBKRi−1 and so we get
the desired conclusion by applying JKBKRi−1 ⊆ JKBKRi which was just proved
in Item 1 above.
3. Ri is a ranked interpretation.
By construction it immediately follows that Ri is a function from U to N∪{∞}.
We need to show the convexity property: if Ri(u) = j then, for every k such
that 0 ≤ k < j, there is a v ∈ U for which Ri(v) = k. If i = 0, this follows
immediately (since R0(u) = 0 for all u ∈ U). Otherwise we have by the inductive
hypothesis that Ri−1 is a ranked interpretation. We have two cases. (1) Si =
Si−1: Then Ri = (Ri−1)

∞
Si

from which convexity follows immediately. (2)
Si 6= Si−1: Then Ri = (Ri−1)

1
Si

from which convexity also follows immediately.
�

B.2 Proof of Lemma 5.2

Lemma 5.2 For every i > 0, (Ri)
∞
Si

is a ranked model of KB.

Proof:
Let R denote (Ri)

∞
Si

. We need to show that for every valuation v ∈ UR,

i.e., every v ∈ Si = JKBKRi−1 , and for every α ∈ KB, we have v ∈ JαKR .
Since v ∈ JαKRi−1 we know one of the following must hold (recalling that α is
expressed in normal form

∧
i≤t •θi → (φ ∨

∨
i≤s •ψi).):

• v 6∈ J•θkKRi−1 for some k: This means v is not ≺Ri−1-minimal in JθkK
Ri−1 .

But then it is also not ≺R-minimal in JθkKR = JθkK
Ri−1 ∩ Si, since if

w ≺Ri−1 v and w ∈ JθkK
Ri−1 , then from the former we know w ∈ Si by

Item 2 of the previous lemma. Hence in this case v 6∈ J•θkKR.
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• v ∈ JφKRi−1 : In this case also v ∈ JφKR, since JφKR = JφKRi−1∩Si (because
φ is purely propositional).

• v ∈ J•ψkK
Ri−1 for some k: This means v is ≺Ri−1-minimal in JψkK

Ri−1 .
But then it is also ≺R-minimal in JψkK

R = JψkKRi−1∩Si, since ≺Ri−1⊆≺R.
Hence v ∈ J•ψkK

R.

Thus in all three possible cases we obtain v ∈ JαKR as required. �

B.3 Proof of Lemma 5.3

Lemma 5.3 Let R
∗
KB := (L0, . . . , Ln−1, L∞) and let R := (M0, . . . ,Mn−1,M∞)

be any other ranked model of KB. Let i ∈ {0, . . . , n − 1}. If Lj = Mj for all
j < i, then Mi ⊆ Li.

Proof:
Let v ∈Mi. By construction, Si = JKBKRi−1 where Ri−1 = (L0, . . . , Li−1, (U \⋃

j<i Lj , ∅). Let α ∈ KB, with α =
∧

i≤t •θi → (φ ∨
∨

i≤s •ψi) (for some
s, t ≥ 0). We must show v satisfies α in Ri−1, so assume v satisfies ¬φ and
is a minimal θk-state in Ri−1 for all k. We must show v is a minimal ψk-
state in Ri−1 for at least one k. Since we assume Mj = Lj for all j < i, we
have Ri−1 = (M0, . . . ,Mi−1, (U \

⋃
j<iMj), ∅). Since v ∈ Mi, we can show

that, for any propositional sentence λ, we have that v is a minimal λ-state
in (M0, . . . ,Mi−1, (U \

⋃
j<iMj), ∅) if and only if it is a minimal λ-state in

(M0, . . . ,Mi, ∅). Thus, from the fact that (M0, . . . ,Mi, ∅) is a ranked model of
KB, we obtain our conclusion. �
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