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ABSTRACT
The concept of Internet of Things (IoT) has led to the development
of many complex and critical systems such as smart emergency
management systems. IoT-enabled applications typically depend
on a communication network for transmitting large volumes of
data in unpredictable and changing environments. These networks
are prone to congestion when there is a burst in demand, e.g., as
an emergency situation is unfolding, and therefore rely on config-
urable software-defined networks (SDN). In this paper, we propose
a dynamic adaptive SDN configuration approach for IoT systems.
The approach enables resolving congestion in real time while mini-
mizing network utilization, data transmission delays and adaptation
costs. Our approach builds on existing work in dynamic adaptive
search-based software engineering (SBSE) to reconfigure an SDN
while simultaneously ensuring multiple quality of service criteria.
We evaluate our approach on an industrial national emergency
management system, which is aimed at detecting disasters and
emergencies, and facilitating recovery and rescue operations by
providing first responders with a reliable communication infrastruc-
ture. Our results indicate that (1) our approach is able to efficiently
and effectively adapt an SDN to dynamically resolve congestion, and
(2) compared to two baseline data forwarding algorithms that are
static and non-adaptive, our approach increases data transmission
rate by a factor of at least 3 and decreases data loss by at least 70%.
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1 INTRODUCTION
The recent proliferation of sensors, actuators and inexpensive
network-enabled devices in homes, workplaces, public spaces and
nature provides several opportunities to build intelligent systems
that can improve our lives in many different ways. These devices,
when used in combination with wired and wireless connectivity,
have created a surge of interest in the concept of Internet of Things
(IoT). Systems enabled by IoT perform a task by connecting sensors
and actuators and many previously unconnected things through the
Internet [3, 10]. A notable example of an IoT-enabled system is an
emergency management system that monitors a large geographical
area through a network of sensors to detect potential disasters (e.g.,
fire, floods, hurricanes, earthquakes) as early as possible and to
provide a communication platform between the responsible orga-
nizations and people to enable quick action and minimize loss of
life and damages.

Successful IoT systems necessarily depend on an underlying com-
munication system that can transmit large volumes of data in an
efficient, effective and flexible way. Such a communication system
should, in particular, be able to adapt to changes in the environment
and maintain a reasonable quality of service when, for example, the
traffic for a particular network route increases dramatically due to a
massive demand from system users. Recently, software-defined net-
works (SDN) [33] have started to enable such flexible and effective
communication systems. The idea behind SDN is to transfer the
control of networks from localized fixed-behavior controllers dis-
tributed over a set of switches to a centralized and programmable
software controller that can react to environment changes in a
timely fashion by efficiently reconfiguring the entire network. With
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Figure 1: An overview of our Dynamic adaptIve CongEstion
control algorithm for SDN (DICES).

software being an integral part of SDN, developing network con-
trollers needs interdisciplinary considerations which include not
only network engineering, but also software engineering [49].

For an IoT system that builds on SDN, the controller is respon-
sible for ensuring that the network is configured in such a way
as to maintain the quality of service at a desired level. In this pa-
per, we focus on developing effective reconfiguration techniques
for SDN to improve the quality of service in IoT systems. Such
techniques should be able to continuously monitor environment
changes and dynamically reconfigure the system accordingly in
order to optimize multiple quality of service criteria such as mini-
mizing data loss, communication delays and reconfiguration costs.
There are a number of existing research threads on ensuring the
quality of service for traditional networks [4, 14, 30, 36, 51]. Some
more recent approaches study dynamic reconfiguration of SDN
to maximize quality of service [24, 32, 39]. None of these lines of
work, however, consider or optimize the configuration of an SDN
for multiple quality of service criteria simultaneously. The problem
of configuration for the purpose of optimizing multiple criteria has
been studied in prior research threads for design-time software
development [8, 61, 71]. These studies, however, are geared toward
offline optimization of system design or architecture, and cannot
address the challenge of online and dynamic SDN reconfiguration.

In this paper, we propose a dynamic adaptive configuration tech-
nique to resolve congestion in SDN in an online manner, while
minimizing data transmission delays and reconfiguration costs.
We refer to our approach as Dynamic adaptIve CongEstion control
algorithm for SDN (DICES). Inspired by feedback-loop control sys-
tems [43], DICES realizes the control loop shown in Fig. 1 and
consisting of the following steps: (1)monitor the SDN to collect net-
work information, (2) analyze the network to determine whether it
is congested, (3) compute a reconfiguration if congestion is detected,
and (4) apply the new configuration to the actual SDN. The control
loop is executed periodically and may reconfigure the SDN at each
period if congestion is detected. The “compute” step of DICES uses
a tailored multi-objective search algorithm to optimize multiple
quality of service criteria simultaneously. Specifically, the algorithm
minimizes the following three objectives: network-link utilization,
transmission delay and reconfiguration cost. In order to be executed
in a real-time manner, DICES has to be efficient. Hence, instead of
searching for the very best reconfiguration option, the approach
aims to find good-enough solutions sufficiently quickly. Consistent
with this goal, we build on the research field of dynamic adaptive
search-based software engineering (SBSE) [34] to enable the com-
putation component in charge of the reconfiguration of an SDN.

DICES has to be integrated and executed together with an actual
SDN control platform. We develop DICES as an application within
ONOS [13] – a widely used open-source SDN control platform.
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Figure 2: A conceptual view of an emergency management
system (EMS).

To evaluate DICES, we rely on an open-source network emula-
tor, Mininet [47]. Mininet enables us to create and emulate realis-
tic virtual networks with different topologies and characteristics.
Alongside Mininet, we employ an open-source network traffic flow
generator, D-ITG [18], to generate IoT traffic scenarios by combin-
ing sensor, video, audio and data streams. Our implementation of
DICES can be integrated in a straightforward way into an actual
network system. Nevertheless, we elect to evaluate our approach
based on emulation through Mininet. This choice, which follows
standard engineering practice, is motivated by two main factors:
First, the large-scale and systematic experiments that we perform
would be prohibitively expensive to set up using real hardware.
Second, we need to evaluate our approach on varying networks
with different sizes and properties. With real hardware, we would
not have the required flexibility.

We assess the performance of DICES on ten synthetic and one
industrial SDN. The industrial SDN is a national emergencymanage-
ment system in Luxembourg. The information about the topology
and the IoT traffic scenarios for this SDN is provided by SES, a
leading satellite operator, which is in charge of assessing the in-
frastructure for the national emergency management system. Our
results show that: (1) DICES efficiently and effectively adapts an
SDN to resolve congestion, (2) the execution time of DICES scales
linearly with the network size and the number of traffic flows, and
(3) compared to two baseline solutions commonly used in prac-
tice [1, 5, 16, 17, 21, 58, 62], DICES leads to data transmissions that
are at least 3 times faster while reducing data loss by at least 70%.
Our case study data is available online [64].

Organization. The rest of this paper is organized as follows. Sec-
tion 2 motivates the paper. Section 3 describes DICES. Section 4
evaluates DICES. Section 5 compares with related work. Section 6
concludes this paper.

2 MOTIVATING CASE STUDY
We motivate our work with an IoT-enabled national emergency
management system, currently under study by SES, for public pro-
tection and disaster relief. We refer to this system as EMS in the
rest of the paper. EMS is responsible for generating early warnings
about potential disasters, detecting natural or man-made emergen-
cies, and facilitating response/recovery operations by providing
emergency workers or governmental bodies with a reliable and
efficient communication and data transfer infrastructure.

Fig. 2 shows a conceptual view of EMS for an example topology
suggested by SES. EMS employs SDN to interconnect four types
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of sites, namely remote monitoring site, emergency monitoring cen-
ter, satellite ground station, and mobile communication facility site.
The interconnections are realized using SDN switches (s1–s7), ter-
restrial links (e.g., optical fiber links) and satellite links. The key
characteristics of the four EMS sites are described below.
• Remote monitoring sites (RM) continuously monitor and gather
environment data using sensor networks. In Fig. 2, switches s1–s5
are connected to remote monitoring sites.
• Emergencymonitoring centers (MC) control andmonitor the entire
EMS by aggregating data from the remote sites. They further facil-
itate decision making for emergency handling by controlling the
entire network and by processing the aggregated data. EMS has one
emergency monitoring center attached to s6, as depicted in Fig. 2.
• Satellite ground stations (GS) are responsible for routing data
streams transmitted by satellites. All satellite connections need
to pass through a satellite ground station. EMS has one satellite
ground station attached to s7, as shown in Fig. 2.
• Mobile communication facility sites (CS) are used by emergency
workers and first responders for communication during an actual
emergency. Unlike the other EMS sites that are operational at all
times, the mobile communication facility comes into play only
during or after an emergency. The mobile facility site is primarily
used as a communication hotspot for audio and video transmission
between a remote monitoring site and the emergency monitoring
center. In our case study, we assume that an emergency situation,
e.g., a natural disaster, occurs in the area close to s1. Hence, in Fig. 2,
the mobile communication facility site is located at s1.

Finally, as shown in Fig. 2, the EMS network can further be
connected to external (legacy) networks (EN) to allow access to
remote monitoring sites.

During an emergency, the EMS data traffic volume increases
by many folds. The remote monitoring sites transmit monitored
data streams to the emergency monitoring center. The mobile com-
munication facility site and the emergency monitoring center ex-
change high-bandwidth demanding streams such as high definition
video and audio for real-time updates. The emergency monitoring
center sends earth-observation images (i.e., maps) to the mobile
communication facility site in order to help plan an appropriate
recovery strategy.

EMS is highly prone to congestion during emergencies due to the
increased volume of demand. Such congestion leads to increased
latency, information loss and inability to communicate with one
or more sites. While such congested networks are common during
emergencies, critical systems such as EMS are expected to be re-
silient and find ways to avoid or mitigate congestion. Failing to do
so can have dire consequences. EMS is thus subject to strict quality
of service requirements so that it will operate through network is-
sues without intolerable delays or information loss. To this end, SES
is interested in DICES as a way to ensure that EMS can sustain emer-
gency situations and satisfy its quality of service requirements.

3 APPROACH
The separation between software-defined data control and the phys-
ical aspects of network systems is a key feature of SDN [33]. The
SDN architecture is composed of three layers: infrastructure, control,
and application. The infrastructure layer is comprised of physical
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(a) An example network

bandwidth c(e1) c(e2) c(e3) c(e4) c(e5) c(e6) c(e7) c(e8)
Mbps 20 20 10 10 20 20 10 20
delay l (e1) l (e2) l (e3) l (e4) l (e5) l (e6) l (e7) l (e8)
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Figure 3: An example network: (a) network topology and
(b) c(e) bandwidth and l(e) delay values for each link in the
network topology.

entities such as links and switches that enable data flows based
on forwarding rules instructed by the control layer. The control
layer hosts one or multiple SDN controllers distributed across the
network. This layer is responsible for managing infrastructure en-
tities, e.g., switches and links, based on algorithms provided by
the application layer. In Section 3.1, we provide an abstract formal-
ization of SDN concepts and use them to define the problem of
network congestion.

The behavior of the control layer can be modified and extended
by the application layer. Users can develop their own applications to
apply domain-specific data forwarding, security or failure manage-
ment algorithms. Specifically, the SDN application layer includes
a data-forwarding algorithm that directs data flows between any
pair of switches through the weighted shortest path between the
switches. This default data-forwarding algorithm is described in
Section 3.2. Since SDN controller behavior is programmable through
applications, we can enhance the data-forwarding function of SDN
using DICES as described in Section 3.3.

3.1 Problem Description
In this section, we describe SDN topologies using directed graphs
and formalize SDN traffic concepts. We then define the problem
of network congestion. We define an SDN network as a tuple G =
(V ,E, c, l), whereV is a set of switches, E ⊆ V ×V is a set of directed
links between switches, c is a bandwidth function c : E → N
assigning a positive integer value c(e) to every link e ∈ E, and l is a
delay function l : E → N assigning a positive integer value l(e) to
every link e ∈ E. For example, Fig. 3(a) presents an example SDN
topology with six switches, v1,v2, ...,v6, and eight directed links
e1, e2, ..., e8; and, Fig. 3(b) shows the bandwidth and delay values
of each link in Fig. 3(a). The network of EMS in Fig 2 could be
represented using a graph similar to that in Fig. 3(a) where every
node in Fig. 3(a) corresponds to a switch in EMS and every link in
Fig. 3(a) corresponds to a terrestrial or satellite link in EMS. Note
that EMS terrestrial and satellite links are bidirectional and thus
have to be represented as two directed graph links.

A network request q specifies a data stream that should be sent
by a source switch s to a terminal switch t . Each network request q
has a source switch q.s , a terminal switch q.t and a data stream of
size (or bandwidth) q.d . Note that q.d may vary over time, but, for
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notational simplicity, we capture q.d as a constant. We produce a
different request if q.d changes and remove the old one. To process
each request q, a flow f is created. A flow describes a directed path,
i.e., a sequence of links, inG that is used to transmit the data stream
of q. We denote by f .q the request q related to a flow f , and by f .p
the directed path that is used to carry the data of q from q.s to q.t .
Let F be a set of flows. We denote by links(f ) the set of links on
the directed path f .p and by links(F ) = ∪f ∈F links(f ) the set of all
the links of the flows in F . Finally, we denote the subset of flows in
F going through link e by flows(e, F ).

The bandwidth c(e) of a network link e is a (limited) resource
shared by different flows. A flow f going through a link e con-
sumes the link’s bandwidth c(e) by the flow size f .q.d . Hence,
the total size of flows going though e , i.e., the throughput of
e , should be less than or equal to the bandwidth c(e). Given a
set F of flows, we define the throughput of e for F as follows:
throughput(e, F ) =

∑
f ∈flows(e,F )

f .q.d .

We say a network G is congested by a given set F of flows if
there is some link e such that throughput(e, F ) > c(e). Given a
networkG congested by the set F of flows, we address the problem
of network congestion by finding a new set Fa = { f a1 , f

a
2 , ..., f

a
n }

of flows where (1) each f aj processes the same request as that of
the flow fj ∈ F , i.e., f aj .q = fj .q, and thus Fa and F have the
same cardinality, i.e., |Fa | = |F |, and (2) G is not congested by Fa ,
i.e., throughput(e, Fa ) ≤ c(e) for all e ∈ links(Fa ). The problem of
resolving network congestion is NP-hard [6, 19]. Note that Fa may
not exist when, for example, all the links in G are overutilized by
network requests. In this case, we aim to compute Fa such that the
maximum link throughput is minimized even if it is still congested
(see Section 3.3).

3.2 SDN Data Forwarding
We assume that an SDN data forwarding algorithm is executed
whenever a new request q arrives, i.e., the data forwarding is an
event-driven (aperiodic) process. In order to handle the continuous
stream of requests from network users, which are not a-priori-
known, a network system must continuously respond to new re-
quests arriving at any time – even in the middle of addressing a
congestion problem. Our data forwarding algorithm, which is simi-
lar to existing baselines [17], uses weight parameters assigned to
network links and computes the weighted shortest path between a
pair of switches to determine the route for carrying a data stream of
q between the switches. Specifically, we denote byw(e) the weight
value of a link e . The default weights are one (i.e.,w(e) = 1 for all
the links e inG). The weights are configurable and can be modified
by application layer algorithms. In Section 3.3.2, we discuss how
DICES modifies the weight parameters after detecting congestion
so that the data forwarding algorithm does not send new requests
through the overutilized links.

3.3 Dynamic Adaptive Congestion Control
DICES runs in parallel with the SDN data forwarding algorithm
described in Section 3.2. In contrast to the SDN data forwarding
algorithm, DICES is designed to execute periodically with a time
period ∆. To detect congestion, DICES has to poll the network state

periodically as the state is always changing due to the unpredictable
environment. In addition, DICES has to ensure, when congestion
happens, that the subsequent steps for congestion resolution are
always deterministically executed. Therefore, we chose to design
DICES as a periodic process instead of an event-driven (aperiodic)
one. The period ∆ should be chosen such that it is small enough to
allow DICES to detect and handle congestion as quickly as possible,
and at the same time, large enough for executions of DICES not to
cause too much overhead and interfere with other SDN operations,
e.g., the execution of the SDN data forwarding algorithm.

Let T = [0,T ] be the time duration during which we observe
the network traffic. We assume the network G is fixed over time,
but the network traffic, i.e., the set Q of requests and the set F
of flows handling Q , vary over time. We denote by Qi the set of
network requests received at the beginning of the time step i ·∆,
and by Fi the set of flows corresponding to Qi . At each time step
i ·∆, DICES starts running by executing its “monitor” step (Fig. 1).
It receives Qi and Fi and uses these two sets in its subsequent
steps, i.e., “analyze”, “compute”, and “apply”. Requests that arrive
within the interval of [i ·∆, (i+1)·∆) or the flows generated within
this interval are included in Qi+1 and Fi+1, but not in Qi and Fi .

The “analyze” step is in charge of determining whether, or not,
the network is congested. In practice, a link e is considered con-
gested if it is utilized above a certain threshold (e.g., 80% of the
link bandwidth) [2, 48]. We denote by util(e, Fi ) the utilization
of link e by the flow set Fi and define it as follows: util(e, Fi ) =
throughput(e, Fi )/c(e). The “analyze” step deems e to be congested
if util(e, Fi ) > u, where 0 < u ≤ 1 is the utilization threshold.

If the networkG is congested as determined by the “analyze” step,
the “compute” step addresses the congestion problem by performing
the following two tasks: First, it resolves the congestion by com-
puting a new set Fai of Fi that can handle the requests Qi without
congestion (see the congestion problem definition in Section 3.1).
If congestion cannot be resolved, it ensures that Fai minimizes
the maximum link utilization by Qi . Second, it computes a set of
weights for network links based on their utilization. These weights
are passed to the SDN data forwarding algorithm (Section 3.2) so
that the algorithm does not send new requests arriving after i ·∆
through the overutilized links. The “apply” step reconfigures flows
and applies the new weights computed by the “compute” step.

In the remainder of this section, we present two algorithms
addressing the two tasks of the “compute” step: A search-based
congestion control algorithm for the first task, and a utilization-aware
weight control algorithm for the second task.

3.3.1 Search-based Congestion Control Algorithm. Our search-
based congestion control algorithm attempts to resolve an identified
congestion, and if the congestion cannot be resolved, the algorithm
minimizes the maximum link utilization. Specifically, given a net-
work G congested by the set Fi of flows addressing the set Qi of
requests, our aim is to generate the set Fai of flows to resolve or
minimize the congestion while addressing the requests in Qi . To
do so, we minimize the maximum link utilization across all the
links in G (objective O1 or Utilization). In addition to minimizing
utilization, we aim to optimize two more objectives that are im-
portant for quality of service in network systems: We minimize
the number of link updates, i.e., insertions and deletions, required
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to reconfigure the network flows (objective O2 or Cost) and the
overall data transmission delays induced by the new set Fai of flows
(objective O3 or Delay). By minimizing the cost, we ensure that we
manipulate a small number of elements at the infrastructure layer
and require a small amount of time to apply Fai . Minimizing the
network delay is critical for emergency systems to ensure that data
streams are transmitted on time. Note that we have to optimize
these three objectives explicitly and simultaneously since optimiz-
ing the utilization objective, O1, is likely to negatively impact the
cost of flow reconfiguration, O2, or the overall delay, O3. This is
because if the new flow paths of Fai are very different from those
of Fi or if Fai uses longer but less utilized paths than those of Fi ,
the reconfiguration cost and the overall delay may increase. In ad-
dition, the reconfiguration cost, O2, and the overall delay, O3, are
independent objectives.

Following standard practice [31], we describe our algorithm
by defining the representation, the initial population, the fitness
functions, and the computational search algorithm. We then discuss
the output flow set Fai that we report as the optimal solution to be
used in the “apply” step of DICES.
Representation. Given a network G and a set Q of requests, a
feasible solution is a set F = { f1, f2, ..., fl } of flows where for every
f ∈ F we have f .q ∈ Q , for every q′ ∈ Q there is some f ∈ F such
that f .q = q′, and |F | = |Q |.
Initial population. Recall that the input to our search algorithm is
a set Fi of flows at time i ·∆ and its corresponding setQi of requests.
We create an initial population by randomly modifying individual
flows in Fi while ensuring that the generated flow sets are able to
handle the requests in Qi .
Fitness. For the three objectives O1, O2, and O3 described
above, we formulate three quantitative fitness functions fitUtil(Fai ),
fitCost(Fi , Fai ), and fitDelay(Fai ), respectively, where Fi is the set
of flows given as input and Fai is a candidate flow set generated
during the search.

The fitUtil(Fai ) fitness function is defined by equation (1) as
the maximum link utilization across all the links used in Fai . Our
approach aims to minimize equation (1).

fitUtil(F ai ) = max
e∈links(Fai )

util(e, F ai ) (1)

The fitCost(Fi , Fai ) fitness function is defined by equation (2). In
this paper, we compute the distance between a pair f and f ′ of
flows, denoted by dist(f , f ′), as the edit distance between the path
of f (f .p) and the path of f ′ (f ′.p). Our notion of edit distance
is the same as computing the longest common subsequence (LCS)
distance of two paths [27] and counts the number of link insertions
and link deletions required to transform f .p into f ′.p. This metric
matches our definition of the cost objective described earlier in this
section. Our approach minimizes equation (2).

fitCost(Fi , F ai ) =
∑

(f , f ′)∈Fi×Fai :f .q=f ′ .q
dist(f , f ′) (2)

The fitDelay(Fai ) fitness function is defined by equation (3) which
sums the delay values l(e) of all the links e used in a candidate
solution Fai . Note that the delay objective can be estimated for a
flow set Fai only if Fai does not give rise to congestion, i.e., only
when fitUtil(Fai ) ≤ u, where u is a utilization threshold. This is
because, when a network is congested, actual delay values depend

1 Algorithm Search-based congestion control
2 Input G: Network
3 Input Qi : Set of requests at time i ·∆
4 Input Fi : Set of flows at time i ·∆
5 Input u: Upper threshold of link utilization
6 Input psize: population and archive size
7 Input cprob: Crossover probability
8 Input mprob: Mutation probability
9 Input neval: Maximum number of evaluations

10 Output Fbi : Best solution
11
12 // initial population
13 P ← {Fi } // P is a set of sets
14 while |P | < psize do
15 F ai ← mutate(G, Fi )
16 P ← P ∪ {F ai }
17 A ← {} // initial archive
18 for neval times do
19 // fitness evaluation
20 for each F aik ∈ P do
21 fitUtil(F aik ) = max

e∈links(Faik )
util(e, F aik )

22 fitCost(Fi , F aik ) =
∑

(f , f ′)∈Fi ×F
a
ik :f .q=f ′ .q

dist(f , f ′)

23 if fitUtil(F aik ) ≤ u then
24 fitDelay(F aik ) =

∑
e∈links(Faik )

l (e)

25 else
26 fitDelay(F aik ) = UNDEF
27 P ← P ∪ A

28 B ← paretoFront(P)

29
#»
R ← sortNonDominatedFronts(P)

30 A ← {}

31 for each front Rk in
#»
R do

32 assignCrowdingDistance(Rk )
33 // union() returns |A | ≤ psize
34 A ← union(A, Rk , psize)
35 if |A | = psize then break
36 P ← breed(A, cprob, mprob)

37 Fbi ← selectOne(B)

38 return Fbi

Figure 4: An NSGAII-based congestion control algorithm.

on various factors such as the underlying network protocol (e.g.,
TCP or UDP) that are not studied here. Hence, when Fai leads to
congestion, we assign an undefined value (i.e., a large number) to
fitDelay(Fai ). Our approach minimizes equation (3).

fitDelay(F ai ) =


∑
e∈links(Fai )

l (e) if fitUtil(F ai ) ≤ u

UNDEF otherwise
(3)

Recall from Section 3.1, that congestion may not be resolved by
our approach which is based on reassigning the flows. In this case,
the objective fitDelay() is excluded since it is undefined and returns
a large number for all the congested solutions. But the search still
minimizes fitUtil() and fitCost() and returns a solution Fai that is
minimally congested and its implementation incurs minimal cost.
Computational search.We use the Non-dominated Sorting Ge-
netic Algorithm version 2 (NSGAII) algorithm [28] to find a near-
optimal solution. NSGAII outputs a set (Pareto front) of non-
dominated solutions which are equally viable and the best tradeoffs
found among the given fitness functions. The dominance relation
over solutions is defined as follows [44]: “A solution Fbi dominates
another solution Fai if Fbi is not worse than Fai in all fitness values,
and Fbi is strictly better than Fai in at least one fitness.”
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1 Algorithm Flow mutation
2 Input G: Network
3 Input F ai : Set of flows
4 Input mprob: Mutation probability
5 Output Fmi : Set of flows
6
7 Fmi ← F ai
8 for each fk ∈ F ai do
9 if mprob ≥ random(0,1) then
10 f ak ← alternativeFlow(G, fk )
11 Fmi ← (Fmi \ {fk }) ∪ {f

a
k }

12 return Fmi

Figure 5: A flow mutation algorithm.

Fig. 4 presents our NSGAII-based congestion control algorithm.
As shown in lines 12–16, we first create an initial population based
on the input Fi . Lines 19–26 of the algorithm compute the fitness
functions. Lines 27–36 describe how NSGAII selects best solutions
(lines 27–28), sorts non-dominated fronts (line 29), and assigns
crowding distance (line 32) to introduce diversity among non-
dominated solutions [28].

As per line 36 of the listing in Fig. 4, the algorithm breeds the next
population by using the following genetic operators: (1) Selection.
We use the binary tournament selection based on non-domination
ranking and crowding distance as typically used by NSGAII [28].
(2) Crossover.We use the standard single-point crossover which has
been applied in many problems [8, 28, 37]. (3)Mutation.We use the
mutation algorithm in Fig. 5. It replaces a randomly selected flow
fk in Fai (lines 8–9) with an alternative flow f ak for fk such that
f ak .q = fk .q (lines 10–11).
Choosing an optimal solution. The output of NSGAII is a set
of equally viable solutions (line 28 in Fig. 4). But we have to se-
lect only one solution to be used for reconfiguring the network
(lines 37–38). Researchers have proposed various alternatives for
selecting an optimal solution among all the solutions on an op-
timal Pareto front, such as a knee solution [20] or the corner so-
lution [56] for an objective. In our work, we use a knee solution.

fitA()

fit
B(
)

0
0

1

1

corner 

knee 

ideal 

corner 

Pareto front

solution 

Figure 6: The concept
of a knee point solu-
tion on a two-objective
Pareto front.

Fig. 6 illustrates the knee point on
a two-objective Pareto front. Specifi-
cally, a knee point is the closest point
on a Pareto front to the ideal point, a
hypothetical solution with the best
values for all the objectives. A knee
solution is often preferred in SBSE
studies [20, 23] because a small im-
provement in one objective by se-
lecting other solutions on the front
would lead to a large deterioration in
at least one other objective [20]. In
our work, we choose a knee solution
because we do not want the selected
flow set to be biased toward any objective; instead, we prefer a flow
set that is equally optimized for all the objectives.

3.3.2 Utilization-awareWeight Control. As described in Section 3.2,
the SDN data forwarding algorithm constructs a flow that always
routes a data stream along the weighted shortest path. A network
system that uses static link weights, e.g.,w(e) = 1 for all the links e
inG, may remain congested even after applying our search-based
solution in Section 3.3.1. This occurs when a highly utilized link

1 Algorithm Link weight adjustment

2 Input Fbi : Solution of the algorithm in Fig. 4
3 Input #»w i : Vector of link weights at time i ·∆
4 Input u: Upper threshold of link utilization
5 Output #»w o: Vector of adjusted link weights
6
7 #»w o ← #»w i
8 for each e ∈ links(Fbi ) do
9 w (e) = l (e)·u/(u − util(e, Fbi ))
10 #»w o ← replaceWeight(#»w o,e,w (e))
11 return #»w o

Figure 7: A link weight adjustment algorithm.

keeps being used by the SDN data forwarding algorithm to carry
new data requests because the link is located on a weighted shortest
path. Note that, in general, links located on the shortest paths are
more likely to be highly utilized or congested when we use the SDN
data forwarding algorithm with fixed weight values. To avoid this
problem, we update link weights in a way that forces the SDN data
forwarding algorithm to prioritize less utilized links over highly
utilized ones.

Fig. 7 describes our utilization-aware link weight adjustment
algorithm. The algorithm modifies the link weights based on the
statement on line 9. Specifically, it adjusts the weights such that
w(e) of a link e is proportional to link delay l(e), but is inversely pro-
portional to the remaining (available) bandwidth of the link e , i.e.,
u/(u−util(e, Fbi )). Note that the bandwidth is computed after apply-
ing the new optimized flows Fbi generated by the search-based algo-
rithm in Fig. 4. The weight computation thus assigns a large value
to a highly utilized but lower-speed link (i.e., a link with large delay).
The SDN data forwarding algorithm (see Section 3.2) then selects
less utilized and higher-speed links when it creates flows to address
new requests arriving after the weight adjustment, i.e., after i ·∆.

4 EMPIRICAL EVALUATION
In this section, we present an evaluation of DICES. Our full evalua-
tion package is available online [64].

4.1 Research Questions (RQs)
RQ1 (efficiency and effectiveness): Can our approach resolve con-
gestion caused by changes in network requests over time? In RQ1, we
examine the efficiency and effectiveness of DICES by investigat-
ing whether it is able to detect congestion as we increase network
requests, and whether it can compute and apply an adequate recon-
figuration in a timely manner.
RQ2 (scalability): Can our approach resolve congestion promptly
for large-scale networks? In RQ2, we investigate the scalability of
DICES by studying the relation between its execution time and the
network size and number of requests.
RQ3 (comparison with baselines): How does our approach per-
form compared with baseline approaches? With RQ3, we investigate
whether our approach can outperform two existing packet forward-
ing algorithms: a reactive forwarding algorithm (RFWD) [17] and
an open shortest path first algorithm (OSPF) [26]. RFWD and OSPF,
discussed in Section 4.5, are commonly used for optimal data for-
warding and congestion avoidance, respectively, and as baselines
in recent SDN research strands [1, 5, 16, 17, 21, 58, 62].
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4.2 Simulation Platform
We implemented DICES as an application for an SDN testbed at SES.
Specifically, we use an open-source SDN control platform known
as ONOS (Open Network Operating System) [13]. ONOS has been
used extensively in research and practice [11, 17], in particular
for large-scale network systems. To simulate networks, we use
Mininet [47] and D-ITG [18]. Mininet is a network emulator that
creates a virtual network, running real SDN-switch and application
programs, on a single machine to ease prototyping and testing. D-
ITG (Distributed Internet Traffic Generator) is a traffic generation
and monitoring tool that supports various network protocols and
traffic distributions for replicating realistic network traffic. We ran
all our experiments on a computer equipped with an Intel i7 CPU
with 8GB of memory.

4.3 Study Subjects
We use two types of study subjects: (1) some synthetic networks,
and (2) EMS – a large-scale industrial system under study by SES
(see Section 2). The synthetic networks are used to evaluate effi-
ciency, effectiveness and scalability since, in these networks, we
can freely change the size and traffic, while EMS is used to evaluate
the execution time of DICES and to compare it with baselines in a
realistic setting.

Our synthetic networks are characterized by two parameters:
the number of network switches and the number of network re-
quests. We assume complete graph topologies, i.e., all the switches
are connected to one another using links with 100Mbps bandwidth
and 25ms delay. Hence, the number of links is not an open param-
eter for our synthetic networks. This choice was made to reduce
unnecessary complexity in our analysis. The network bandwidth
and delay values and network-request profiles were suggested by
SES based on the typical characteristics of terrestrial links and their
data streams. We use UDP and TCP – typical protocols for Internet
applications – for transmitting data. Note that graph topologies,
which contain only one path from a sender to receiver, e.g., star
and line topologies, are not considered in our experiments. Con-
gestion for such topologies can only be handled by decreasing the
network traffic. In contrast, DICES requires multiple flow paths
from a sender to a receiver for rerouting. A partially complete graph
topology is considered in the EMS network (Fig. 2).

As discussed in Section 2, the EMS network contains seven SDN
switches, four site types (denoted RM,MC, CS, and GS in Fig. 2). The
network further contains both terrestrial and satellite links and is
connected to external (legacy) networks (EN). The characteristics of
the terrestrial and satellite links are as follows: 100Mbps bandwidth,
25ms delay for terrestrial links, and 10 Mbps bandwidth, 275ms
delay for satellite links.

4.4 Evaluation Metrics
To answer the RQs, we measure the following network performance
metrics: link utilization, packet loss, and packet delay. In addition, we
measure the execution time of DICES. The link utilization metric is
the maximum link utilization across all the links in a network since
a single overutilized link can create congestion. Specifically, given a
set F of flows, we compute this metric as the maximum of util(e, F )
for every link e (see Section 3.3 for the definition of util(e, F )).

Table 1: A traffic profile for a disaster situation.

EMS entity Request characteristics
Sender Receiver Type Protocol Throughput # requests
RM MC Sensor TCP 100 Kbps 5
CS MC Audio UDP 64 Kbps 4
CS MC Video UDP 10 Mbps 2
MC CS Audio UDP 64 Kbps 4
MC CS Video UDP 10 Mbps 2
MC CS Map TCP 30 Mbps 1
ENN END External UDP 20 Mbps 5
END ENN External UDP 20 Mbps 5

The EMS entities are: RM (remote monitoring site), MC (emergency monitor-
ing center), CS (mobile communication facility site), ENN (external networks
in normal areas), and END (external network in a disaster area). The disaster
area (D) is assumed to be close to s1 in the network of Fig. 2. Other than s1,
all switches in this network are in normal areas (N).

To measure the packet loss and delay metrics, we rely on an
existing network monitoring tool, D-ITG, described in Section 4.2.
Briefly, the packet loss metric for a flow measures the number of
packets dropped associated with the flow over a time period, e.g.,
time interval ∆. The delay metric for a flow measures each individ-
ual packet delivery time from the sender to the receiver of the flow.

Due to random variation in DICES and the traffic generator (D-
ITG), we repeat our experiments 50 times. To statistically compare
our results, we use Mann-Whitney U-test [50] which determines
whether two independent samples are likely or not to belong to the
same distribution. We set the level of significance, α , to 0.05.

To determine correlations between the execution time of DICES
and the network parameters in our study, i.e., network size and
the number of requests, we use regression analysis [54]. We use
R2 [70] to evaluate the goodness of fit for our regression analysis,
providing the proportion of the variance in execution time that can
be explained by a regression model.

4.5 Experimental Setup
EXP1. To answer RQ1, we create a synthetic network with five
switches and generate two network requests between a fixed pair of
switches every 10s. Each request transmits 30Mbps of data. Hence,
the volume of data that the network transmits increases over time,
i.e., 60Mbps initially, 120Mbps after 10s, 180Mbps after the next 10s,
and so on.

EXP2. To answer RQ2, we perform two analyses: (1) To study
the correlation between the execution time of DICES and the net-
work size, we create ten synthetic networks with 5, 10, . . . , 50 SDN
switches, and for each network, we generate five requests simul-
taneously to transmit a total of 150Mbps data. (2) To study the
correlation between the execution time of DICES and the number
of requests, we use a network with five switches, and perform ten
different experiments by issuing 5, 10, . . . , 50 requests simultane-
ously to transmit, each time, a total of 150Mbps. We also compute
the execution time of DICES over the EMS network.

EXP3. To answer RQ3, we use the data traffic profile shown
in Table 1 and defined by SES for the EMS network of Fig. 2. The
profile characterizes anticipated traffic at the time of a disaster. It
includes 28 requests which transmit sensor, audio, video, map, and
external data where TCP is used for sensor and map data and UDP
for the rest. In this experiment, we assume a disaster occurs in the
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Figure 8: Network utilization values over time when DICES is used to resolve congestion for a synthetic network with five
switches andwhen newUDP requests arrive around 10s, 20s, 30s and 40s. The boxplots (25%-50%-75%) shownetwork utilization
values obtained based on 50 executions of DICES.

area near the s1 switch in Fig. 2. Thus, the mobile communication
facility site is connected to s1.

We compare DICES with a reactive forwarding algorithm
(RFWD) [17] and an open shortest path first forwarding algorithm
(OSPF) [26]. RFWD, which is the only predefined reactive data for-
warding application in ONOS, routes requests through the shortest
paths between the requests’ ending points. It is the same as the
SDN data forwarding algorithm in Section 3.2 when link weights
are all equal to one and are fixed all the time. OSPF is commonly
used as a baseline for SDN-based network solutions [1, 5, 21, 58, 62].
It is a prevalent protocol in legacy (non-SDN) networks while SDN
is still an emerging area in both research and practice. OSPF com-
putes weighted shortest paths to route network requests, but it
does not provide the flexibility to update the link weights dynam-
ically. We compare DICES with OSPF when the link weights for
OSPF are inversely proportional to the bandwidths of the links.
This is a typical use case of OSPF and can reduce the possibility
of congestion since high-bandwidth links tend to be more used to
carry data. To our knowledge, DICES is the first SDN application
available online which addresses a congestion problem while ac-
counting for minimizing multiple objectives: transmission delays
and reconfiguration costs [64].

4.6 Parameter Tuning and Setting
We set ∆, i.e., the time period for executing DICES, to 1s since this is
the minimum monitoring time period allowed by ONOS. Following
the guidelines in the literature [9], we set the NSGAII parameters
as follows: the population size = 100, the crossover probability = 0.8,
and the mutation probability = 1/|Fi |. We set the utilization thresh-
old to 0.8, as instructed by SES. We set the total number of fitness
evaluations to 10,000 because our initial experiments, performed
on EMS, showed that, after 10,000 fitness evaluations, there is no
notable improvement in the optimal solution.

4.7 Experiment Results
RQ1. Fig. 8 shows the network utilization over time when DICES
is used to resolve congestion for the synthetic network described in
EXP1 (see Section 4.5). As shown in the figure, network requests
cause congestion after 20s, 30s and 40s. Note that the requests
arriving around 10s do not lead to any congestion and they can be
handled by the network. DICES is able to resolve every congestion
since utilization always comes back down to around 65% after the
sudden increase caused by each congestion. DICES is further able to
resolve congestion in a timely manner. Specifically, it takes DICES,
on average, 439ms to execute all the four steps in its control loop.
We note that it takes, on average, 2.68s for the network utilization

to settle back to a desired value below the utilization threshold
(i.e., 0.8) after congestion. This is due to the additional internal
processing time required by ONOS to monitor the network and
reconfigure the SDN control and infrastructure layers.

As suggested by its low utilization average in Fig. 8, the second
occurrence of congestion around 30s is observed only in 17 out
of 50 runs of DICES. More precisely, in the other 33 runs, the link
weight adjustment performed by DICES at 20s is able to handle
the requests at 30s without leading to any congestion. This is be-
cause the link weights adjusted by DICES at 20s can sometimes,
due to luck, help the SDN data forwarding algorithm (Section 3.2)
handle the requests arriving at 30s using less utilized links, hence
preempting congestion. Note that Fig. 8 shows the results for UDP
packet transmission. The results for TCP packet transmission are
consistent with those in Fig. 8 and not shown due to space.

The answer to RQ1 is that DICES efficiently and effectively re-
solves congestion. In particular, experiments performed on a
realistic network transmitting large and increasing volumes of
data over time show that DICES is able to maintain, most of the
time, the network utilization at 65%, which is well below the
utilization threshold of 80%. Further, DICES takes, on average,
439ms to execute and resolve congestion.

RQ2. Fig. 9 reports the results obtained by EXP2. Specifically,
Fig. 9(a) shows the relation between the execution time of DICES
versus network size specified as the number of links (i.e., the first
study of EXP2), and Fig. 9(b) shows the relation between the execu-
tion time of DICES versus the number of requests (i.e., the second
study of EXP2). Note that the x-axis of Fig. 9(a) shows the number
of links instead of the number of switches since DICES mainly
manipulates links, and its execution time depends on the number
of links and not the number of switches (see the algorithm in Fig. 4).
The linear regression lines in both Fig. 9(a) and Fig. 9(b) fit well
the actual execution time of DICES with high goodness of fit (i.e.,
R2=0.98 for Fig. 9(a) and R2=0.89 for Fig. 9(b)). Hence, the execu-
tion time of DICES is linear both in the number of links and in the
number of requests. Therefore, we expect DICES to scale well as
the numbers of network links and requests increase. Finally, for
our industrial EMS, which contains seven switches and 30 links,
and has to handle 28 requests (see Section 4.5), DICES, on average,
takes 1.74s to resolve congestion. This shows that DICES is able to
scale to real-world systems and can resolve congestion caused by
high network demands due to an emergency.

We note that our analysis above is concerned with the relation
between the execution time of DICES and the number of requests,
rather than the data size of network requests. Since DICES resolves
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Table 2: Comparison of the average delay and packet loss of DICES against RFWDandOSPF based on 50 runs of each algorithm.

RFWD OSPF DICES
Receiver Type Delay (s) [p] Packet loss (%) [p] Delay (s) [p] Packet loss (%) [p] Delay (s) Packet loss (%)

Emergency monitoring
center

Sensor 0.10 [0.00] 0.00 [1.00] 0.09 [0.00] 0.00 [1.00] 0.13 0.00
Audio 0.03 [0.00] 0.17 [0.00] 0.03 [0.49] 0.20 [0.02] 0.07 0.23
Video 0.03 [0.00] 0.02 [0.03] 0.03 [0.30] 0.02 [0.02] 0.04 0.08

Mobile communication
facility site

Audio 0.03 [0.00] 0.17 [0.01] 0.06 [0.02] 0.38 [0.00] 0.08 0.18
Video 0.03 [0.00] 0.06 [0.53] 0.06 [0.00] 0.32 [0.00] 0.04 0.27
Map 0.23 [0.00] 0.00 [1.00] 1.13 [0.00] 0.00 [1.00] 0.10 0.00

External network External 0.35 [0.00] 29.55 [0.00] 0.05 [0.00] 0.14 [0.00] 0.06 0.02

Weighted average Overall 0.29 21.81 0.17 0.13 0.06 0.04
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Figure 9: Graphs showing DICES execution time versus
(a) the number of network links, and (b) the number of net-
work requests together with regression lines showing linear
correlation between DICES execution time and (a) the num-
ber of links (exec.time=2.391e-01+4.635e-03×|links |), and (b) the
number of requests (exec.time=0.455+0.017×|requests |).

congestion by rerouting requests and never modifies the data size
of a request, the execution time of DICES is not impacted by data
size. We have confirmed this through experiments that we cannot
report due to space.

The answer toRQ2 is that the execution time of DICES is linear in
the network size and in the number of requests. Further, DICES
scales to real-world systems: it takes an average of 1.74s to resolve
congestion caused by an emergency situation in our industrial
case study.

RQ3. Table 2 shows the average delay and packet loss values
for EMS when one uses DICES, RFWD and OSPF for handling the
requests described in Table 1. As discussed in Section 4.5, each
experiment was repeated 50 times. The table statistically compares
DICES against RFWD and OSPF with respect to delay and packet
loss by reporting p-values.

In the table, we have highlighted in gray two specific delay values
of DICES and OSPF, and two specific packet loss values of DICES
and RFWD. These two pairs are particularly interesting because
they show significant differences between DICES and OSPF in terms
of delay and between DICES and RFWD in terms of packet loss
(p-value < 0.05 in both cases). These differences are significant, not
just statistically but also practically. Specifically, the difference in
delay values shows that the EMS network with OSPF transmits
map data with a 1.13s delay on average. In contrast, with DICES,
the network transmits the map data with a 0.1s delay on average. In
other words, for map-data transmission, the network with DICES
is 11 times faster than the network with OSPF. The difference in
packet loss values shows that the EMS network with RFWD drops,
on average, 29.55% packets while exchanging data between external
networks (see Table. 1). When DICES is used, the network drops
only 0.02% of those packets on average. This shows that DICES is
considerably more effective than RFWD in transmitting external
data through the EMS network during an emergency situation. We
note that the behavior of DICES is independent of traffic types –
sensor, audio, video, map, and external. As shown in Table 2, DICES
maintains a practically acceptable level of delay and packet loss
for all types of traffic even when the EMS network is congested. In
contrast, the two baselines, i.e., RFWD and OSPF, fail to maintain
the level of delay and packet loss at an acceptable level.

To compare the overall performance of RFWD and OSPF with
DICES, we compute weighted averages of delay and packet loss.
Specifically, the weighted average delay (resp., packet loss) for each
algorithm is computed by multiplying the average delay (resp.,
packet loss) of that algorithm for each network request type with
the total throughput of that request type (see the request types
and throughputs in Table. 1). The weighted averages, given in the
last row of Table 2, show that DICES yields lower overall delay
and packet loss compared to both RFWD and OSPF. That is, the
overall delay of DICES is almost five and three times better than
the overall delays of RFWD and OSPF, respectively. Further, DICES
loses almost 99% and 70% less packets compared to RFWD and
OSPF, respectively.

We note that the improvements brought about by DICES come
at the expense of reconfiguring some flows to resolve congestion,
while RFWD and OSPF do not require any reconfiguration. SES
found the minimized reconfiguration cost of DICES to be an ac-
ceptable tradeoff for the substantial benefits of the approach over
RFWD and OSPF in terms of delay and packet loss.
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The answer to RQ3 is that DICES significantly outperforms the
baseline algorithms: RFWD and OSPF. Specifically, results ob-
tained by simulating emergency traffics over the EMS network
show that the overall network delay of DICES is almost five and
three times better than those of RFWD and OSPF, respectively.
Further, DICES loses almost 99% and 70% less packets compared
to RFWD and OSPF, respectively.

4.8 Threats to Validity
We evaluated DICES using both synthetic networks and an indus-
trial IoT system. Since our current evaluation uses a network emu-
lator (Mininet), future case studies and experiments on physical net-
works remain necessary for a more conclusive evaluation of DICES.
In particular, there is the possibility that the physical network in our
industrial case study systemmay sustain damage during natural dis-
asters. DICES can operate properly as long as the underlying SDN
provides accurate topology and traffic data. How accurate this data
would be in the presence of network damage, and how one can coun-
teract potential inaccuracies need to be further investigated. In addi-
tion, while motivated by IoT-enabled emergency management sys-
tems, DICES is a general congestion-control approach for SDN. Case
studies in other domains, e.g., SDN-based data centers, are required
in order to assess the usefulness of DICES in a broader context.

5 RELATEDWORK
This section compares DICES with related work in the areas of com-
munication protocols, SDN, IoT, self-adaptive systems and dynamic
adaptive SBSE.

Standard communication protocols have been widely stud-
ied for resolving network congestion [4, 14, 30, 36, 51]. For ex-
ample, the TCP congestion control algorithm is prevalently used
over the Internet and has been addressed by many prior research
threads [4, 30, 36, 51]. More recent work in this direction includes
new application-layer protocols such as CoAP [63] and its con-
gestion control algorithm, CoCoA [14]. These congestion control
algorithms, in general, work by adjusting data transmission rates in
an interconnected set of network hosts. In contrast, DICES works
by controlling the data flow paths and link weights in a network.

SDN has received considerable attention in the recent litera-
ture on networks. The problem of flow reconfiguration has been
already studied for SDN with the objective of exploiting the addi-
tional flexibility offered by software [1, 19, 24, 32, 38, 39, 42, 68].
Chiang et al. [24] formulate a new optimization problem to find
optimal routing paths for group communication traffic. Gay et
al. [32] propose a local search-based segment routing method for
networks with unexpected failures. Huang et al. [39] present a
dynamic routing algorithm to maximize network throughput un-
der link-capacity and user-demand constraints. Agarwal et al. [1]
present a single-objective linear programming method for improv-
ing network utilization. None of the above work strands account for
the tradeoffs among the three objectives that DICES minimizes, i.e.,
maximum link utilization, number of link configurations, and delay.
Further, unlike the above, DICES supports simultaneous dynamic
control of data flow paths and link weights to both deal with the
current congestion and also plan for handling future requests in a

congestion-free manner. Finally, DICES is evaluated through a real
case study on an emergency management system.

IoT may be realized through a variety of technologies and ap-
plied in many application domains [3, 66]. The research topics
related to IoT are numerous, e.g., data models to capture highly
volatile IoT data [53], model-based code generation for heteroge-
neous things [35], model-based testing of IoT communications [67],
IoT architectures [45, 57], and self-adaptive IoT systems [12, 22, 29,
40, 55, 69]. Among these, an architecture-based adaptation frame-
work byWeyns et al. [69] is the most related to our work. This prior
work accounts for multiple quality of service criteria and represents
them as quality constraints using state machines. In contrast, we
formulate quality objectives as quantitative functions, thus enabling
Pareto (tradeoff) analysis. Further, we use a multi-objective search
algorithm to find practically acceptable solutions for dynamically
reconfiguring an IoT system.

Self-adaptive systems have been studied in many domains [25,
46]. DICES relates to work on self-adaptation in the network do-
main, e.g., adaptive network anomaly detection [41], adaptive net-
work monitoring [7, 15], self-adaptive multiplex networking [59],
and network topology adaptation [65]. Among these, the most per-
tinent thread is by Stein et al. [65], where the authors propose
a topology adaptation model alongside a language to specify the
adaptation logic of a set of network applications. This prior work
aims to adapt a topology to a set of network applications, e.g., a
video streaming source and a peer. In contrast, DICES adapts the
network upon which the applications rely. Further, DICES uses
multi-objective search to account for optimization tradeoffs.

Dynamic adaptive SBSE [34], as noted in Section 1, is the main
research field upon whose principles we build. Prior research in
this field has employed search for various purposes, e.g., improving
the design and architecture of self-adaptive systems [8, 52, 60] and
configuring such systems [61, 71]. To our knowledge, we are the
first to have addressed the problem of congestion control in the
context of dynamic adaptive SBSE.

6 CONCLUSIONS
We developed a search-based approach, named DICES, to dynami-
cally mitigate network congestion in IoT systems via network re-
configuration. Our approach is realized through a control feedback
loop, whereby the traffic on an IoT network is periodically moni-
tored and corrective action is taken at run-time when congestion
is detected. The corrective action to take (i.e., the reconfiguration)
is computed using a multi-objective search algorithm that simulta-
neously minimizes: (1) the maximum link utilization across all the
links in the network, (2) the number of link updates for reconfigu-
ration, and (3) the overall data transmission delays. We evaluated
DICES on a number of synthetic networks as well as an industrial
IoT-enabled emergency management system. The results indicate
that DICES is able to efficiently and effectively adapt an IoT network
to resolve congestion. Further, compared to two common data for-
warding algorithms which we use as baselines, DICES yields data
transmission rates that are at least 3 times faster while reducing
data loss by at least 70%.
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For future work, we plan to extend DICES by accounting
for: (1) link and switch failures and (2) the policies (e.g., cost-
containment policies) that govern the use of terrestrial and satellite
telecommunication networks. When dealing with fast-changing
network loads (i.e., when Qi+1 is drastically different from Qi ), the
flows computed by DICES to optimize network usage based on Qi
may not be optimized for Qi+1. We intend to address this issue in
future by using prediction models to anticipateQi+1 earlier and use
it in the computation of the optimized flows for the next step. In
the longer term, we would like to further validate DICES by deploy-
ing it as an integrated component of the emergency management
system in our industrial case study (in-situ deployment).
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