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We report two results complementing the second law of thermodynamics for Markovian open quantum
systems coupled to multiple reservoirs with different temperatures and chemical potentials. First, we derive
a nonequilibrium free energy inequality providing an upper bound for a maximum power output, which for
systems with inhomogeneous temperature is not equivalent to the Clausius inequality. Second, we derive
local Clausius and free energy inequalities for subsystems of a composite system. These inequalities
differ from the total system one by the presence of an information-related contribution and build the ground
for thermodynamics of quantum information processing. Our theory is used to study an autonomous
Maxwell demon.
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The second law of thermodynamics is one of the main
principles of physics. Within equilibrium thermodynamics
there exist two equivalent formulations of this law. The
first, referred to as the Clausius inequality, states that
the sum of the entropy change of the system ΔS and the
entropy exchanged with the environment ΔSenv during the
transition between two equilibrium states is non-negative:
ΔSþ ΔSenv ≥ 0. The exchanged entropy can be further
expressed as ΔSenv ¼ −Q=T, where Q is the heat delivered
to the system. An alternative formulation, referred to as the
free energy inequality, states that during the transition
between two equilibrium states W − ΔF ≥ 0, where W is
the work performed on the system and F ¼ E − TS is the
free energy (here E denotes the internal energy). The latter
formulation can be obtained from the former by using the
first law of thermodynamics, ΔE ¼ W þQ.
Whereas these standard definitions of the second law

apply when considering transitions between equilibrium
states, the last few decades have brought significant progress
towards generalizing them to both classical [1–7] and
quantum [8–10] systems far from equilibrium. The most
common formulation generalizes the Clausius inequality by
stating that the average entropy production σ is non-negative.
For a large class of systems [4–6,9] the entropy production
can be defined as σ ≡ ΔS −

P
αQαβα, where ΔS is the

change of the Shannon or the von Neumann entropy of the
system (which iswell defined also out of equilibrium) andQα

is the heat delivered to the system from the reservoir α with
the inverse temperature βα; additionally, in Markovian
systems the entropy production rate _σ is always non-negative
[7,10]. Formulations generalizing the free energy inequality
[11–14] aremuch less common andhave been so far confined
mainly to systems coupled to an environment with a
homogeneous temperature; for an exception, see Ref. [14].

These developments have also brought a deeper under-
standing of the relation between thermodynamics and the
information theory [12,15]. One of the most important
achievements is related to the field of thermodynamics of
feedback-controlled systems [16]. Following the ground-
breaking ideas of the Maxwell demon [17] and the Szilard
engine [18], it was verified both theoretically [19–23] and
experimentally [24–29] that by employing feedback one can
reduce entropy of the system without exchanging heat. In
such a case, modified Clausius inequalities, which relate the
entropy change to the information flow, have to be applied
[11–14,30–42]. It was also realized that the feedback control
does not require the presence of any intelligent being (as in
the original idea of Maxwell) but may be performed by an
autonomous stochastic system coupled to the controlled one
[43]. A consistent mathematical description of thermody-
namics of autonomous information flow has been, however,
so far confined mainly to classical stochastic systems with a
special topology of network of jumpprocesses, referred to as
bipartite [38,39] or, in general, multipartite [41] systems.
Our work adds two new contributions to the field. First,

we generalize the free energy inequality to Markovian open
quantum systems coupled to reservoirs with different
temperatures and show that this formulation of the second
law is, in general, not equivalent to the Clausius inequality.
Second, we formulate a consistent thermodynamic formal-
ism describing thermodynamics of continuous information
flow in a generic composite open quantum system and
demonstrate the relation between the information and the
nonequilibrium free energy. The applicability of our results
is demonstrated on a quantum autonomous Maxwell
demon based on quantum dots.
Nonequilibrium Clausius inequality.—We consider a

generic open quantum system weakly coupled to N
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equilibrated reservoirs α with temperatures Tα (inverse
temperatures βα ≡ 1=Tα) and chemical potentials μα,
described by the time-independent Hamiltonian

Ĥ ¼ ĤS þ ĤB þ ĤI; ð1Þ

where ĤS, ĤB, ĤI are, correspondingly, the Hamiltonian of
the system, reservoirs, and interaction of the system with
the reservoirs. Within the Markov approximation the
(reduced) density matrix of the system evolves according
to the master equation [44]

dtρ ¼ −i½Ĥeff ; ρ� þDρ; ð2Þ

where ρ is the density matrix, dt denotes the total derivative
of the function, Ĥeff is the effective Hamiltonian of the
system (it may differ from ĤS due to coupling to the
environment [44]), and D is the superoperator describing
the dissipative dynamics. Here and from here on we take
ℏ ¼ kB ¼ 1. We further assume that the dissipator D is of
Lindblad form, thus ensuring a completely positive trace-
preserving dynamics [45,46], and that Ĥeff commutes with
ĤS, which is justified by the perturbation theory (see the
Supplemental Material [47]). Furthermore, within the
Markov approximation the dissipation is additive; i.e.,
the superoperator D can be represented as a sum of
dissipators associated with each reservoir, denoted as
Dα:D ¼ P

αD
α [10,54]. For violation of additivity beyond

the weak coupling regime, see Refs. [57–60].
We also assume that the grand canonical equilibrium

state (Gibbs state) with respect to the reservoir α,

ραeq ¼ Z−1
βα;μα

e−βαðĤS−μαN̂Þ; ð3Þ

is a stationary state of Dα, i.e., Dαραeq ¼ 0 [10]; here
Zβα;μα ¼ Trfexp½−βαðĤS − μαN̂Þ�g is the partition function
and N̂ is the particle number operator. This assumption
guarantees that for an arbitrary form of dissipator the Gibbs
state is a stationary state at equilibrium (i.e., for equal
temperatures and chemical potentials of the reservoirs),
which is true for systems weakly coupled to the environ-
ment [44]. Let us then apply Spohn’s inequality [8],

−Tr½ðDαρÞðln ρ − ln ραeqÞ� ≥ 0; ð4Þ

which is valid for any superoperator Dα of Lindblad form
with a steady state ραeq (not necessarily a unique steady
state). As a result, one obtains the partial Clausius
inequality for entropy production associated with each
dissipator [10],

_σα ¼ _Sα − βα _Qα ≥ 0; ð5Þ

where

_Sα ¼ −Tr½ðDαρÞ ln ρ� ð6Þ

is the rate of change of the von Neumann entropy of the
system S ¼ −Trðρ ln ρÞ due to the dissipator Dα, and

_Qα ¼ Tr½ðDαρÞðĤS − μαN̂Þ� ð7Þ

is the heat current from the reservoir α. Summing all the
rates _Sα, one gets the total derivative of the von Neumann
entropy: dtS ¼ P

α
_Sα. Therefore, summing up Eq. (5) over

the reservoirs α, one recovers the standard Clausius
inequality [10]

_σ ≡X

α

_σα ¼ dtS −
X

α

βα _Qα ≥ 0; ð8Þ

where _σ is the total entropy production rate. We note that
the rates _Sα can be nonzero also at the steady state, when
dtS ¼ 0 and the total entropy production is fully deter-
mined by the heat flows.
Nonequilibrium free energy inequality.—Let us now

define energy and work currents to the lead α as

_Eα ¼ Tr½ðDαρÞĤS�; ð9Þ

_Wα ¼ μαTr½ðDαρÞN̂�; ð10Þ

such that _Eα ¼ _Qα þ _Wα and
P

α
_Eα ¼ dtE, where E ¼

TrðρĤSÞ is the internal energy. Since we assume the
Hamiltonian to be time independent, we consider only
chemical and not mechanical work. Multiplying Eq. (5) by
Tα and replacing _Qα → _Eα − _Wα, one gets

Tα _σα ¼ _Wα − _F α ≥ 0; ð11Þ

where _F α ≡ _Eα − Tα
_Sα is the partial nonequilibrium free

energy rate. Summing over α one obtains the nonequili-
brium free energy inequality

X

α

Tα _σα ¼ _W − _F ≥ 0; ð12Þ

where _W ≡P
α
_Wα is the total work rate, and

_F ≡X

α

_F α ¼ dtE −
X

α

Tα
_Sα ð13Þ

is the total nonequilibrium free energy rate. Equation (12)
is a complementary formulation of the second law of
thermodynamics. From a practical point of view, it provides
an upper bound for the maximum work output. At the
steady state dtE ¼ 0, and thus the system can perform work
( _W < 0) only when a temperature difference between the
reservoirs is present.
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Let us emphasize that Eqs. (8) and (12) are, in general,
not equivalent; the former corresponds to the sum of partial
Clausius inequalities [Eq. (5)], whereas the latter corre-
sponds to the weighted sum, in which Eq. (5) is multiplied
by a local temperature Tα. They become equivalent only
when the system is attached to an isothermal environment,
i.e., Tα ¼ T. Then the rate _F can be identified as the total
derivative of the state function F: _F ¼ dtF ¼ dtðE − TSÞ.
At the steady state dtF ¼ 0, and thus _W > 0. This
corresponds to the Kelvin-Planck statement of the second
law, according to which one cannot continuously generate
work by cooling an isothermal environment.
Local Clausius inequality.—Let us now consider a

system made of two coupled subsystems described by
the Hamiltonian

ĤS ¼ Ĥ1 þ Ĥ2 þ Ĥ12; ð14Þ

where Ĥi is the Hamiltonian of the subsystem i ¼ 1, 2 and
Ĥ12 is the interaction Hamiltonian. We also assume that
each subsystem is attached to a separate set of reservoirs;
baths coupled to the subsystem i will be then denoted as αi.
By summing Eq. (5) over the reservoirs αi, one obtains

_σi ≡
X

αi

_σαi ¼
X

αi

_Sαi −
X

αi

βαi
_Qαi ≥ 0: ð15Þ

Here _σi ¼
P

αi
_σαi denotes the local entropy production; it

is an extensive quantity, i.e., _σ ¼ _σ1 þ _σ2. We will now
transform Eq. (15) to a form illustrating the relation
between entropy and information. Let us remind the reader
that the quantum mutual information is defined as
I12 ¼ S1 þ S2 − S, where Si ¼ −Trðρi ln ρiÞ is the von
Neumann entropy of the subsystem i [55] (here ρi is the
reduced density matrix of the subsystem i). We can then
separate the total derivative of the mutual information into
two contributions, dtI12 ¼ _I1 þ _I2, where

_Ii ≡ dtSi −
X

αi

_Sαi : ð16Þ

Here we have applied the identity
P

α
_Sα ¼ dtS. The rate _Ii

can be calculated as

_Ii ¼ −Trðdtρi ln ρiÞ þ Tr½ðDiρÞ ln ρ�; ð17Þ

where Di ¼
P

αi
Dαi is the dissipator associated with the

subsystem i. The rate _Ii can be further decomposed into
contributions related to the unitary and the dissipative
dynamics; see the Supplemental Material [47] for details.
Replacing

P
αi
_Sαi → dtSi − _Ii in Eq. (15), one obtains

the local Clausius inequlity relating the entropy balance of
the subsystem i to the information flow:

_σi ¼ dtSi −
X

αi

βαi
_Qαi − _Ii ≥ 0: ð18Þ

This inequality is identical in form to the one previously
derived in Ref. [39]. However, our result is much more
general. First, it enables one to describe systems under-
going a quantum dynamics formulated in terms of a density
matrix, whereas the former approach was purely classical
and formulated in terms of probabilities. Second, our result
has a much wider range of applicability even in the classical
limit. Indeed, the approach from Ref. [39] was restricted to
so-called bipartite systems, which exclude stochastic tran-
sitions generating a simultaneous change of states of both
subsystems. However, two-component open quantum sys-
tems are, in general, not bipartite, even when their
populations obey a classical master equation. Instead,
our only requirement is that the dissipation is additive;
i.e., one can split the dissipator D into contributions Di in a
physically meaningful way. The system can become
bipartite when the total Hamiltonian ĤS commutes with
the subsystem Hamiltonian Ĥi and one applies the effec-
tively classical description by means of the secular (rotating
wave) approximation; in such a case our approach reduces
to that from Ref. [39]. We discuss these issues is detail in
the Supplemental Material [47].
Let us finally emphasize that all of the previous discussion

can be easily generalized to the multicomponent systems
consisting of M subsystems. Then

P
i
_Ii ¼ dtI1;…;M,

where I1;…;M ≡P
iSi − S is the multipartite mutual infor-

mation [61].
Local free energy inequality.—Analogously, summing

up Eq. (11) over reservoirs αi, we derive an inequality
describing the nonequilibrium free energy balance for a
single subsystem:

X

αi

Tαi _σαi ¼ _Wi − _F i ≥ 0; ð19Þ

where _Wi ≡P
αi
_Wαi and

_F i ≡P
αi
_F αi .

As in the case of the total system, Eqs. (18) and (19) are
nonequivalent and complementary formulations of the
local second law of thermodynamics. They become equiv-
alent when the subsystem i is coupled to an isothermal
environment with a single temperature Ti. Then Ti

_Ii ¼
−Ti

P
αi
_Sαi , and therefore

_F i ¼ _Ei þ Ti
_Ii: ð20Þ

The local nonequilibrium free energy rate consists therefore
of the energy-related and the information-related contribu-
tion. At the steady state the internal energy of the system is
constant (dtE ¼ 0), and thus Ei can be interpreted as
the energy flow to the subsystem j ≠ i. The subsystem
attached to an isothermal environment may therefore
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perform work either due to the energy flow from the other
subsystem or due to the information flow; the latter case
corresponds to the operation of information-powered
devices.
Example.—The applicability of our approach will now

be demonstrated on a recently proposed [62] model of an
autonomous quantum Maxwell demon. Here we describe
the device only briefly; for more details we refer the reader
to the original paper.
The analyzed setup [Fig. 1(a)] is composed of two

quantum dots coupled by the XY exchange interaction,
each attached to two electrodes with equal temperatures T.
The Hamiltonian of the system is defined as

ĤS ¼
X

iσ

ϵid
†
iσdiσ þ

X

i

Uini↑ni↓

þ J
2
ðd†1↑d1↓d†2↓d2↑ þ d†1↓d1↑d

†
2↑d2↓Þ; ð21Þ

where d†iσ (diσ) is the creation (annihilation) operator of an
electron with spin σ ∈ f↑;↓g in the dot i ∈ f1; 2g, niσ ¼
d†iσdiσ is the particle number operator, ϵi is the orbital
energy, Ui is the intradot Coulomb interaction in the dot i,
and J is the exchange coupling. The bath Hamiltonian reads
ĤB ¼ P

αikσϵαikσc
†
αikσ

cαikσ, where c†αikσ (c†αikσ) is the crea-
tion (annihilation) operator of an electron with spin σ, wave
number k, and energy ϵαikσ in the reservoir αi; here αi ¼ Li

(Ri) denotes the left (right) reservoir attached to the dot i.
Finally, the system bath-interaction Hamiltonian is
expressed as ĤI ¼

P
iαikσtαic

†
αikσ

diσ þ H:c:, where tαi is
the tunnel coupling of the dot i to the reservoir αi. We also
define the coupling strength Γσ

αi ¼ 2πjtαi j2ρσαi , where ρσαi is
the density of states of electrons with spin σ in the bath αi.
To describe the dynamics of the device, we apply a

microscopically derived Lindblad equation which couples
populations to coherences and is thermodynamically con-
sistent in the weak coupling limit (it is equivalent to the

phenomenological approach proposed in Ref. [56]). Details
of the method, a discussion of its limits of validity, and a
comparison with the secular Lindblad equation (which is
by construction thermodynamically consistent but neglects
genuine quantum coherent effects) are presented in the
Supplemental Material [47].
The device works as follows: The baths are taken to be

fully spin polarized; i.e., either Γ↑
αi or Γ

↓
αi is equal to 0. As a

result, the electrodes act as spin filters which forbid the
tunneling of electrons with a spin opposite to the polari-
zation [63,64]. Additionally, the polarizations of reservoirs
attached to a single dot are arranged in an antiparallel way
such that the electron may be transferred between the
electrodes only when it changes its spin. This is enabled by
the XY interaction which exchanges spins between the dots
[Fig. 1(b)]. Since this interaction conserves the total spin,
the spin flips occur simultaneously in both subsystems,
and thus the steady-state currents through both dots have to
be equal. Let us now apply a high positive bias V1 ¼
μL1

− μR1
> 0 to the first dot, and a smaller opposite bias

V2 ¼ μL2
− μR2

< 0 (jV2j < jV1j) to the other one. Then
the voltage-driven current through the first dot will pump
electrons in the second dot against the bias, which is due to
a nonequilibrium spin population induced by spin flips.
This can be interpreted as the operation of a Maxwell
demon: The high positive voltage in the first dot tends to
reset the upper dot to the state ↑ (i.e., the singly occupied
state with a spin up). As a result, the spin dynamics
generated by the XY interaction (equivalent to the operation
of the quantum iSWAP gate [65]) flips the spin in the second
dot if it is in the state ↓, and leaves it unchanged when it is
in the state ↑ [cf. Fig. 1(b)], thus creating an excess
population of spins ↑. This feedback mechanism induces
the information flow between the dots, thus enabling a
conversion of heat into work.
Our local Clausius and free energy inequalities

[Eqs. (18) and (19)] for this system are demonstrated in
Fig. 2. As one can see, for J ⪅ 500Γ the dot 2 cools its
isothermal environment, which is enabled by the informa-
tion flow (T _I2 < − _Q2 < 0); at the same time it performs
work (i.e., pumps the current against the voltage), which
is possible due to the negative free energy rate
( _F 2 < _W2 < 0). This is compensated for by the dissipation
of work into heat in the first dot. We emphasize that for
J ⪅ 50Γ the work is performed in the second dot only due
to feedback-induced information flow ( _F 2 ≈ T _I2) and not
due to energy flow, which is negligible (E2 ≈ 0); this
justifies the interpretation of the device as a Maxwell
demon. As shown in the Supplemental Material [47], in this
regime the information flow is generated by the unitary spin
dynamics rather than the dissipative tunneling dynamics, in
contrast to the classical Maxwell demon studied in
Ref. [43]. On the other hand, for J ⪆ 50Γ one can observe
a noticeable energy flow from the first to the second dot
which results from the splitting of energy levels. As a

(a) (b)

J

ε1,U1

ε2,U2

μL μR

μL μR

1 1

2 2

ΓL ΓR1 1

ΓL2
ΓR2

FIG. 1. (a) Scheme of the autonomous quantum Maxwell
demon described in the text. (b) Schematic representation of
the spin exchange induced by the XY interaction.
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consequence, for J ⪆ 500Γ the dot 2 starts to heat its
environment (− _Q2 > 0), and the setup ceases to work as a
Maxwell demon. However, the dot 2 still performs work
thanks to the negativity of the nonequilibrium free energy
rate _F 2, which now includes a significant energy-related
contribution _E2.
Conclusions.—Our inequality (12), by providing a com-

plement to the second law, may have novel implications for
the design of quantum heat engines [66] which need to be
explored. In turn, our inequalities (18) and (19) provide the
basis for thermodynamics of quantum information process-
ing. We hope that, as has happened with the classical
counterpart of Eq. (18), numerous applications and experi-
ments [25] will also ensure it in the quantum realm.
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