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Topologically protected qubits based on nanostructures hosting Majorana bound states (MBSs) hold great
promise for fault-tolerant quantum computing. We study the transport properties of nanowire networks hosting
MBSs with a focus on the effects of the charging energy and the overlap between neighboring MBSs in short
mesoscopic samples. In particular, we investigate structures hosting four MBSs such as T junctions and Majorana
boxes. Using a master equation in the Markovian approximation, we discuss the leading transport processes
mediated by the MBSs. Single-electron tunneling and processes involving creation and annihilation of Cooper
pairs dominate in the sequential-tunneling limit. In the cotunneling regime the charge in the MBSs is fixed
and transport is governed by transitions via virtual intermediate states. Our results show that four-terminal
measurements in the T junction and Majorana box geometries can be useful tools for the characterization of
the properties of MBSs with finite overlaps and charging energy.
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I. INTRODUCTION

The transport properties of Majorana bound states (MBSs)
in condensed-matter systems have been a flourishing research
area in recent years [1–3]. This activity is partially motivated
by several recent proposals for topologically protected qubits
based on MBSs as building blocks, which according to theory
could allow for more fault-tolerant quantum computation
architectures [4–7]. One of the most important of such host
systems for MBSs is a nanowire with strong spin-orbit cou-
pling, in proximity to a superconductor and subjected to a
magnetic field in the direction of the wire [1,8,9]. Recent
experiments have indeed shown transport signatures consis-
tent with theoretical expectations for transport through MBSs
[10–14].

As MBSs owe their topological protection to the conser-
vation of fermion parity, a single MBS-based qubit typically
involves at least four MBSs. Potential structures for such
nanowire-based qubits are the T junction [5,15–17] and the
Majorana box [18–23]. Both systems consist of nanowires
placed on top of a mesoscopic superconductor and can be
controllably connected to metallic leads. The T junction and
the Majorana box have been suggested for different purposes.
The T junction is one of the simplest geometries where MBSs
can be braided and their non-Abelian exchange statistics can
be detected [5,16,17,24]. The Majorana box, on the other
hand, has been proposed as part of a two-dimensional lattice
for implementing Majorana surface codes [3,25,26].

The manipulation of such qubits also requires readout pro-
cesses to be able to keep track of the state of the qubit [26–28].
It is therefore crucial to understand the transport properties of
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these structures. Single wires hosting a pair of MBSs have
already been studied in detail, both when connected to leads
[29–36], setups that include quantum dots [28,37–39], and
setups where the Josephson coupling between the island and
the superconductor is treated in greater detail [40,41]. It was
recognized that the mesoscopic size of the superconductor,
and the associated charging energy of a “floating,” as opposed
to a grounded, superconductor can lead to interesting effects
such as quantum teleportation [30]. Moreover, it was shown
that the unavoidable hybridization of MBSs in finite-size
systems also yields distinct signatures [42]. Much effort has
also been made to discriminate between the signatures of
MBSs and those from Andreev bound states [43–45].

In contrast to single wires, both the Majorana box and the
T junction hold four MBSs and thus allow for new types
of transport processes. For instance, it was shown that a T
junction placed on a grounded superconductor can exhibit
double crossed Andreev reflection [15]. This transport process
is due to concurring resonant Andreev reflections on the outer
leads and a nonresonant process on the central lead.

The Majorana box has been investigated in greater detail
than the T junction. When there is no overlap between the
MBSs the system can be mapped to a degenerate spin-1/2
system, which leads to a “topological Kondo effect” at tem-
peratures below a Kondo temperature [18,19,21,46–49]. Gau
et al. have recently presented a very detailed analysis on
the transport properties in systems with multiple Majorana
boxes [22].

In this paper we consider the T junction and the Majorana
box and set out to improve the understanding of their transport
properties when both the charging energy of the mesoscopic
floating superconductor and their mutual overlaps are impor-
tant. We begin by writing down a general theory, applicable
to nanowire networks, based on the master equation and rate
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FIG. 1. Charging energy of the superconducting island as a func-
tion of the total number of electrons N = 2NC + n. By tuning the gate
voltage the system can reach the two different regimes depicted in the
figure. (a) For ng = −1/2 + k with k ∈ Z there are two degenerate
charge states at the bottom of the parabola. In this regime sequential
tunneling is the dominant transport mechanism. (b) In contrast, when
ng = −1 + k a single charge state is at the bottom of the parabola.
The leading transport process is then cotunneling due to transitions
via virtual states.

equations in the weak-tunneling limit. We then apply it to the
T junction and the Majorana box. For resonant transport, i.e.,
in the sequential-tunneling limit, we find transport features
which can be interpreted as a generalization of the quantum
teleportation process proposed for single Majorana wires [30].
Other features can be regarded as a form of nonlocal transport
between two Majorana wires, via the Cooper pairs of the
superconductor. Away from the resonances, we study the
cotunneling regime, where fluctuations of the particle number
are suppressed due to the charging energy and transport occurs
solely via virtual states.

This paper is organized as follows: First, we present the
general model for a nanowire network hosting MBSs; see
Sec. II. Afterward, we will discuss the specific details of the
T junction and the Majorana box. In Sec. III A, we present
the theory and the results of the transport in the sequential-
tunneling limit. In Sec. III B, the transport in the cotunneling
limit is explored. We conclude in Sec. IV. Throughout this
paper we let h̄ = e = kB = 1.

II. MODEL

We begin this section by describing a general system
consisting of a network of nanowires hosting MBSs, placed
on top of a floating mesoscopic superconductor. The system
is coupled to a gate electrode which allows for control over
the electrostatic energy of the superconducting island. This
charging energy is given by EC (2NC + n + ng)2, where EC is
related to the electrostatic capacity of the island, NC is the
number of Cooper pairs in the superconductor, and n is the
number of electrons in the MBSs of the nanowire network.

The parameter ng can be adjusted via the gate voltage, and
can be used to tune the system into two distinct transport
regimes, as depicted in Fig. 1. For values ng = −1/2 + k with
k ∈ Z, degenerate charge states are obtained and sequential
tunneling via the degenerate ground state is the dominant
process. A different regime is reached for ng = −1 + k. A
single charge state sits at the bottom of the parabola depicted
in Fig. 1(b), so the ground state is nondegenerate. In this

regime cotunneling is the leading process for transport, and
involves transport via virtual states.

We will consider the parameter regime � � EC, |μl |,
where � is the superconducting gap and μl is the chemical
potential of lead l measured from the center of the super-
conducting gap. In this regime quasiparticle excitations in the
superconductor can be neglected and only the MBSs need to
be taken into account to describe the low-energy physics of
the system. The Hamiltonian describing the 2M MBSs in the
network is

HMBS = −i
2M∑
k=1

2M∑
l=k+1

εklγkγl , (1)

where εkl is the coupling energy due to the overlap of the wave
functions of the MBSs γk and γl . They fulfill the anticom-
mutation relations {γl , γk} = 2δlk . The network is connected
to 2M metallic leads which are described by effective one-
dimensional Hamiltonians,

Hleads = −ivF

2M∑
l=1

∫
dxψ†

l (x)∂xψl (x), (2)

where ψ
(†)
l (x) is the annihilation (creation) operator in lead l

and vF is the Fermi velocity. As we assume electron tunneling
to be local and focus on low energies, the leads can be
approximated as one-dimensional systems with a constant
density of states. Moreover, the leads can be considered as
spinless electron reservoirs because only one spin orientation
will couple to the MBS [29]. Tunneling between metallic
leads and a grounded superconducting island is commonly
described by the tunneling Hamiltonian [29]

Htun =
2M∑
l=1

tlψ
†
l (x = 0)γl + H.c., (3)

where tl is the tunneling amplitude between lead l and the
MBS γl which it is connected to. Next, we transform from
the Majorana basis to a Dirac basis. For every pair of MBSs
in the system we construct a Dirac fermion c j such that (for
j = 1, . . . , M),

γ2 j−1 = c j + c†
j ,

(4)
γ2 j = i(c†

j − c j ).

We insert Eq. (4) into Eq. (1) and diagonalize the result-
ing Hamiltonian using a Bogoliubov transformation (see
Appendix A). Hence, one obtains the representation

HMBS =
M∑

j=1

ξ jd
†
j d j, (5)

where d j are Dirac fermionic operators and ξ j are the corre-
sponding eigenenergies. The MBSs can be expressed in terms
of these as

γl =
M∑

j=1

(αl jd j + α∗
l jd

†
j ), (6)

where αl j are the elements of a 2M × M matrix obtained
from the Bogoliubov transformation. By inserting Eq. (6) into
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Eq. (3) we obtain the tunneling Hamiltonian in terms of Dirac
operators,

Htun =
2M∑
l=1

M∑
j=1

tlψ
†
l (x = 0)(αl jd j + α∗

l jd
†
j ) + H.c. (7)

However, the model above is only valid for a grounded
superconductor. To describe systems where the superconduc-
tor is floating modifications are necessary because we have
to account for the electrostatic energy and thus keep track of
the number of Cooper pairs on the island. When the system
Hamiltonian is expressed in terms of Dirac operators the
electrostatic energy can easily be taken into account. It is
described by [31,37]

Hcharging = EC (n̂ + ng + 2N̂C )2. (8)

Here, n̂ = ∑
j d†

j d j is the number operator for the Dirac
fermions in the MBSs and N̂C is the number operator for the
Cooper pairs. Note that since the Bogoliubov transformation
is unitary, n̂ is basis-independent.

To study electron transport, it is convenient to rewrite
the tunneling Hamiltonian in a charge-conserving way. This
can be achieved by inserting the operators e±iφ , where φ

denotes the operator for the superconducting phase. Since N̂C

is conjugate to the superconducting phase φ, [φ, N̂C] = i, its
exponentials e±iφ increase or decrease, respectively, the num-
ber of Cooper pairs on the superconducting island by 1 [30].
As the operators ψ

†
l and d†

j both create one unit of charge,
we make the tunneling Hamiltonian charge-conserving by
using [31]

H ′
tun =

2M∑
l=1

M∑
j=1

tlψ
†
l (x = 0)(αl jd j + α∗

l jd
†
j e−iφ ) + H.c. (9)

H ′
tun contains two terms and their Hermitian conjugates. The

first one describes normal single-electron tunneling where an
electron is annihilated on the island while another electron is
created in the lead. The second term describes an Andreev
process where two electrons are created, one in the lead and
one in the wire, while a Cooper pair is annihilated in the
superconductor.

The total Hamiltonian is given by

H = Hleads + HMBS + Hcharging + H ′
tun. (10)

In the following, we will consider H ′
tun as a perturbation. The

Hilbert space of the island Hamiltonian HMBS + Hcharging is
spanned by the states |n; NC〉, where n = (n1, . . . , nM ) and
n j ∈ {0, 1} denotes whether the Dirac state dj of the island is
empty or occupied. The leads are considered to be Fermi seas
at chemical potential μl . We have now presented the general
setup and will, in the next two subsections give the specific
descriptions of the Majorana box and the T junction.

1. Majorana box

A schematic picture of the Majorana box is shown in
Fig. 2(a). Two wires are placed on the same superconducting
island and only the MBSs on the same wire overlap with each
other. The Hamiltonian describing the MBSs in the Majorana
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FIG. 2. Schematic picture of (a) the Majorana box and (b) the
T junction. The blue area represents the superconductor on which
the nanowire network (in red) is placed. Yellow circles represent the
MBSs γl and the wiggly lines the overlap between them. Due to the
exponential decay of the MBS wave functions only overlap between
nearest neighbors is considered. Gray regions represent the metallic
leads at chemical potentials μl . Each Majorana is tunnel-coupled to
the corresponding lead.

box is therefore

HBox = −iε12γ1γ2 − iε34γ3γ4. (11)

The MBSs on different wires interact with each other via
the charging energy. By using Eq. (4), the Majorana box
Hamiltonian already becomes diagonal in terms of fermionic
operators. Therefore, the Bogoliubov transformation is trivial
(ci ≡ di) and one finds

HBox = ξ1d†
1 d1 + ξ2d†

2 d2, (12)

with ξ1 = ε12 and ξ2 = ε34. The coupling coefficients αl j for
the Majorana box read as follows:

αl j j = 1 j = 2
l = 1 1 0
l = 2 i 0
l = 3 0 1
l = 4 0 i

(13)

As expected one finds that leads 1 and 2 only couple to the d1

mode, whereas leads 3 and 4 only couple to the d2 mode.

2. T junction

The T junction consists of two crossed nanowires that form
a T -shaped structure; see Fig. 2(b) [50]. The MBS wave
functions decay exponentially into the nanowires, so assuming
the nanowires to be long enough, only the overlap between
nearest-neighbor MBSs needs to be considered [42]. This
results in the following Hamiltonian:

HT junction = −iεγ1γ4 − iεγ2γ4 − iεγ3γ4. (14)

Diagonalizing this Hamiltonian leads to two linear combina-
tions of MBSs at a finite energy ξT = 2

√
3ε and two linear

combinations that remain at zero energy. Using a Bogoliubov
transformation (see Appendix A for details), the diagonalized
Hamiltonian becomes

HT junction = 0d†
1 d1 + ξT d†

2 d2, (15)
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with the two mutually anticommuting fermionic operators

d1 = 1

4
√

3
[(1 +

√
3) + (1 −

√
3)i]γ1

+ 1

4
√

3
[(1 −

√
3) + (1 +

√
3)i]γ2

− 1

2
√

3
(1 + i)γ3, (16)

d2 = 1

2
√

3
[γ1 + γ2 + γ3 −

√
3iγ4]. (17)

By inverting these expressions we obtain the coefficients αl j

describing the coupling between the Dirac states and the leads
used in Eq. (7). Explicitly, they are given by

αl j j = 1 j = 2

l = 1
√

2
3 eiπ/12 1√

3

l = 2
√

2
3 e−7iπ/12 1√

3

l = 3
√

2
3 e3iπ/4 1√

3

l = 4 0 i

(18)

The Hamiltonian of the T junction thus has a Dirac state d2

at energy ξT and a twofold-degenerate state d1 at zero energy.
The d2 mode is a linear combination of all four MBSs of the
system, whereas the d1 mode is a nonlocal state involving only
the three outer MBSs. The table shown in Eq. (18) also reveals
that the central lead does not couple to the d1 mode as α41 = 0.
Note that the fact that α41 = 0 is not an artifact of the assumed
symmetry between the overlaps of the outer MBSs with the
central one. Indeed, a nonzero α41 would only arise if next-
nearest-neighbor overlaps were considered in Eq. (14).

III. TRANSPORT

In this section, we present the theory used to calculate
the transport processes in the sequential-tunneling regime
and the cotunneling regime. The starting point is a master
equation from which we then obtain the average current and
the differential conductance. We consider the weak-coupling
limit, where the tunneling rate �l from lead l to the island
is small compared to either the temperature or the chemi-
cal potentials of the leads. To observe Coulomb blockade
we further assume that T 	 EC , where EC is the charging
energy [51].

A. Sequential tunneling

To calculate the current we first introduce counting oper-
ators in the tunneling Hamiltonian. This is a necessary step
since the Born-Markov approximation involves tracing out the
lead degrees of freedom. For this purpose, we define for each
lead a number operator N̂l , which is considered to be part of
the reduced system, and which counts the number of particles
that have tunneled to lead l . It is canonically conjugate to a
unitary lowering operator Yl (raising operator Y †

l ) that counts
the decrease (increase) of electrons in lead l [52,53],

[N̂l ,Yl ] = −Yl , (19)

[N̂l ,Y †
l ] = Y †

l . (20)

Including the counting operators, the tunneling Hamiltonian
can now be written as

H ′′
tun =

2M∑
l=1

M∑
j=1

tlψ
†
l (x = 0)Y †

l (αl jd j + α∗
l jd

†
j e−iφ ) + H.c.

(21)
To calculate the current and conductance in the sequential-
tunneling regime we can use the following master equation in
the Born-Markov approximation [54],

d

dt
ρS (t ) =

∫ ∞

0
dsTrB{[H ′′

tun(t ), [ρS (t ) ⊗ ρB, H ′′
tun(t − s)]]},

(22)

which describes the time evolution in the interaction
picture of the reduced density matrix ρS (t ) of the system
consisting of the superconducting island and the MBSs. The
lead degrees of freedom, in contrast, form a fermionic bath
and have been traced over.

We are interested in the current in the stationary limit. Be-
cause fast-oscillating terms average out in the stationary limit,
we make a secular approximation and neglect them. Under the
assumption that ξT > 0 and the specified coupling between
the Dirac states and leads, this leads to a set of equations
for the populations P(n; NC ) = 〈n; NC |TrN̂l

ρS|n; NC〉, which
are decoupled from the off-diagonal elements of the density
matrix. We look for stationary solutions, i.e., d

dt P(n; NC ) = 0,
with the condition that the sum of occupation probabilities is
1. The resulting coupled equations for the corresponding oc-
cupation probabilities can thus easily be solved numerically.

From this the average current in lead l can then be calcu-
lated from

〈Il〉 = Tr

{
N̂l

d

dt
ρS

}

=
∑
n,NC

(
�1,+

l − �1,−
l

)
P(n, NC ), (23)

where �
1,+(−)
l denote transition probabilities resulting from

processes that increase (decrease) the number of electrons in
lead l by 1. Explicitly, they are given by

�1,+
l = �l |αli|2[2 − nF (−ξ (n) − EC (1 − 2ng − 4NC ) − μl )

− nF (ξ (n) + EC (1 − 2ng − 4NC ) − μl )], (24)

�1,−
l = �l |αli|2{nF (−ξ (n) − EC[1 − 2ng − 4(NC + 1)]− μl )

+ nF (ξ (n) + EC (1 − 2ng − 4NC ) − μl )}. (25)

Here, �l = |tl |2/vF , nF (ω) = 1/(eβω + 1) is the Fermi func-
tion with β = 1/T , and

ξ (n) =
∑

j

ξ jn j (26)

is the energy of the state |n〉. The local or nonlocal differential
conductances can be calculated from d〈Il〉/dμk . Due to the
finite charging energy, only a small number of states are
accessible in the bias window and thus contribute to transport.
In particular, whether or not tunneling is possible in the
sequential-tunneling regime depends on degeneracies of the
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FIG. 3. Differential conductance as functions of the bias voltage
μ and gate voltage ng for the Majorana box. A chemical potential
μ1 = μ is applied on lead 1 whereas identical chemical potential
μ2 = μ3 = μ4 = −μ are applied on leads 2–4. (a) dI1/dμ, (b)
dI2/dμ, (c) dI3/dμ, and (d) dI4/dμ. In (d), the left box marks a
value of ng for which no peak in the differential conductance is
observed. The right box marks a value of ng for which a peak in the
differential conductance is observed. The parameters are ξ1 = 0.1,
ξ2 = 0.3, �i = 10−4, EC = 1, and β = 25.

energy of the reduced system,

E (n, NC ) = ξ (n) + EC

⎛
⎝∑

j

n j + ng + 2NC

⎞
⎠

2

. (27)

Without loss of generality, we will use NC = 0 and −1 <

ng < 0 in the ensuing discussion. Moreover, to illustrate the
transport regimes, we will assume ξ j � 0.

1. Majorana box

We obtain the stability diagrams for the Majorana box by
plotting the differential conductances and varying the chemi-
cal potential and gate voltage. To be specific, we focus on the
current in lead 1 and apply a symmetric bias such that lead 1 is
held at chemical potential μ1 = μ while leads 2–4 are held at
the same chemical potentials μ2 = μ3 = μ4 = −μ. Varying
the gate voltage corresponds to changing ng. The stability
diagrams are shown in Fig. 3.

The MBSs on both wires are at a finite distance which
implies that they are overlapping. For the plot, we choose
the overlaps as ξ1 = 0.1 and ξ2 = 0.3. For small bias volt-
ages |μ| transport occurs on the first wire but not on the
second one. Transport on the first wire is due to sequential
tunneling between the states |00; NC〉 and |10; NC〉, occurring
when the gate voltage is tuned such that two charge states
are degenerate. This parameter constellation corresponds to
n0

g = −(ξ1 + EC )/2EC = −0.55.
Increasing the bias leads to a current also in leads 3 and

4 [see Figs. 3(c) and 3(d)]. However, we only observe a
conductance peak to the right of n0

g. For instance, if we fix the

Wire 1

μ1

μ2

0

ξ1

1

3

3

Wire 2

μ3 μ4

0

ξ2

2

2

4

FIG. 4. Illustration of electron transport from the first to the
second wire via the superconductor. Step 1: An electron from lead
1 tunnels into an MBS on the first wire, |00; NC〉 → |10; NC〉. Step
2: A Cooper pair is broken up into one electron which is transferred
to an MBS on the second wire, and another one going into lead 3,
|10; NC〉 → |11; NC − 1〉. Step 3: The electron occupying the MBS
on the first wire forms a Cooper pair with an electron from lead
1, |11, NC − 1〉 → |01, NC〉. Step 4: Finally, the electron occupying
the MBS on the second wire is transferred to lead 4, |01, NC〉 →
|00, NC〉.

chemical potential to μ = ξ2 − ξ1 = 0.2, we observe a peak
for ng = −(ξ1 − ξ2 + 2EC )/4EC = −0.45, whereas no peak
is present for ng = −0.65; see boxes in Fig. 3(d). The presence
or absence of a peak in the differential conductance is due to
the states available for the given chemical potential and gate
voltage, which depends on ξ1 and ξ2. For ng = −0.65, only
|00; NC〉 and |10; NC〉 are occupied, so no current flows in lead
3 or lead 4 because they do not couple to the d1 mode. On the
contrary, when ng = −0.45, the states |11; NC − 1〉, |00; NC〉,
|10; NC〉, and |01; NC〉 all have a finite occupation probability,
so transport is enabled in all leads.

To better understand the contributing processes for ng =
−0.45, consider Fig. 4. Initially, an electron tunnels from lead
1 into the d1 mode, i.e., it occupies the |10; NC〉 state. For low
enough chemical potential of leads 3 and 4, a Cooper pair
can be split into one electron occupying the d2 mode, and
another one tunneling into lead 3 or 4. The island is then in the
|11; NC − 1〉 state. Next, the electron occupying the d1 mode
and an electron from, say, lead 2 can form a new Cooper pair.
In total, an electron has been transferred from the first wire
to the second wire. This is a signature of nonlocal transport
between the two wires, mediated by the Cooper pairs.

In Fig. 3(a) we observe, in certain regions of bias and gate
voltage, a positive differential conductance, in stark contrast
to the negative differential conductance observed throughout
the rest of the stability diagram. To highlight this feature, let
us consider the parameters ξ1 = 0.3 and ξ2 = 0.5, and the
system is tuned on resonance for the first wire, i.e., ng = n0

g.
The current and the differential conductance are plotted in
Fig. 5. One finds that the current as a function of bias voltage
is nonmonotonic, and even vanishes in a range of negative bias
voltages. This can be regarded as a nonlocal Coulomb block-
ade phenomenon and can be explained as follows: For bias
voltages μ3,4 > ξ2 − ξ1, the state |01; NC〉 will be occupied.
Hence, for transport to occur in the first wire the system would
need to make a transition from the |01; NC〉 to the |11; NC〉
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FIG. 5. (a) Currents and (b) differential conductances as func-
tions of μ for the Majorana box. A chemical potential μ1 =
μ is applied on lead 1 whereas identical chemical potential
μ2 = μ3 = μ4 = −μ are applied on leads 2–4. The parameters
are ξ1 = 0.3, ξ2 = 0.5, �i = 10−4, EC = 1, and β = 50. Nonlocal
Coulomb blockade causes all currents to vanish in the bias region
−0.6 < μ/EC < −0.2.

state. However, this transition is impossible because the state
|11; NC〉 has a larger charging energy. Physically, when μ3,4 >

ξ2 − ξ1, an electron is trapped in the Dirac state of the second
wire. Electrons tunneling through the first wire now have to
overcome the large charging energy of the island and will
thus only tunnel once sufficient bias is applied between leads
1 and 2.

2. T junction

Next we investigate the sequential-tunneling regime for
the T junction. As a point of reference, let us briefly review
the noninteracting limit EC = 0. Assuming that |μl |, T 	 ξT ,
the current is

〈Il〉 = �l |αl1|2[1 − 2nF (−μl )]. (28)

Up to linear order in �l , this reproduces the result found in
Ref. [15], where an exact solution for the noninteracting limit
was derived. Moreover, we confirm that up to order �l , no
current flows in lead 4 because α41 = 0; see the table given in
Eq. (18). The leading-order process at the central lead would
be a double crossed Andreev process of higher order in �l

[15].
For a nonzero charging energy EC , we obtain the stability

diagrams; see Fig. 6. As for the Majorana box we apply a sym-
metric bias such that lead 1 is held at chemical potential μ1 =
μ while leads 2–4 are held at the same chemical potentials
μ2 = μ3 = μ4 = −μ. At the degeneracy points ng = −1/2,
a zero-bias conductance peak is observed in the outer leads,
whereas transport on the central lead is blocked. In this param-
eter range, sequential tunneling of electrons is possible due to
switching between the island states |00; NC〉 � |10; NC〉, as
depicted in Fig. 7. This indicates a strong nonlocality in the
transport features of the T junction: electrons tunneling from
the outer leads ignore the presence of the central lead at small
biases. The transport is mediated by the bridge created by the

FIG. 6. Differential conductances as functions of bias voltage
μ and gate voltage ng for the T junction at a symmetric bias
configuration. Here, the chemical potential μ1 = μ is applied to lead
1, whereas the other leads have equal chemical potentials μ2 = μ3 =
μ4 = −μ. The subplots show (a) dI1/dμ, (b) dI2/dμ, (c) dI3/dμ,
and (d) dI4/dμ. The parameters are ξT = 0.5, �l = 10−4, EC = 1,
and β = 25.

central Majorana, connecting the Majoranas at the outer leads
to each other.

Increasing the bias window to values |μ| > ξT allows
for a current in the central lead as well and provides ad-
ditional transport processes at the outer leads, visible as
sidebands in Fig. 6. The transport between the different
leads is carried both by single electrons being transported
through the MBSs as well as by a process involving the ad-
ditional creation and annihilation of Cooper pairs. The island
state correspondingly changes between the states |00; NC〉 �
|10; NC〉, |10; NC〉 � |11; NC − 1〉, |01; NC〉 � |11; NC − 1〉,
and |00; NC〉 � |01; NC〉, as seen in Fig. 7.

N

E

|11; NC − 1〉

|00; NC〉 |10; NC〉

|01; NC〉

ξT

FIG. 7. Charge states contributing to sequential tunneling for
ng = −1/2 in the T junction. For small applied biases the only
allowed transitions are between |00; 0〉 � |10; 0〉. Increasing the bias
window above the energies of the lowest excited states allows for the
island to cycle between the states |00; NC〉 � |10; NC〉, |10; NC〉 �
|11; NC − 1〉, |01; NC〉 � |11; NC − 1〉, and |00; NC〉 � |01; NC〉.
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FIG. 8. The nonlocal conductance dIl/dμ1 in a system with four
MBSs. A bias voltage μ1 is applied on lead 1, whereas the other
leads are grounded. The overlap between the MBSs is zero. The other
parameters are �1 = 10−4, �2 = �1/2, �3 = �1/3, �4 = �1/4, EC =
1, and β = 25.

3. Nonlocal transport and teleportation

The nonlocal transport between the two wires of the Ma-
jorana box (see Fig. 3) as well as the transport between the
outer leads of the T junction can be interpreted along the
lines of the “teleportation” processes found in Ref. [30]. In
this context, electron teleportation is defined as a nonlocal
current which is independent of the length of the wires, and
thus independent of the overlap of the MBSs. Hence, to isolate
the teleportation contribution, let us briefly discuss structures
where the wires are infinitely long, corresponding to the limit
where ξ1 = ξ2 = ξT = 0. In this limit, the Majorana box and
T junction structures we investigate become indistinguishable
from each other.

We apply a bias voltage μ1 to lead 1, and assume all other
leads to be grounded. This allows us to calculate the nonlocal
differential conductance dIl/dμ1 for l ∈ {1, . . . , 4}. The re-
sults are plotted in Fig. 8. A zero-bias differential conductance
peak is observed in all leads. This is a signature of nonlocal
currents in leads 2–4 due to an applied bias on lead 1. While
our sequential-tunneling approximation does not allow us to
study phase coherence, the analogy between our Hamiltonian
(9) and the one of Ref. [30] suggests an interpretation of these
features as teleportation: phase-coherent electron tunneling
via the MBSs independently of the length of the wire [31].

It is important to notice that the fact that the Majorana
box and the T junction show different or similar charac-
teristics depends on whether the overlap is of importance
or not. If the overlap becomes insignificant all structure is
lost and the system becomes a multiterminal junction where
each lead couples to a single Majorana. On the contrary, as
demonstrated above, taking the overlap into account makes
the different junctions distinct from each other as is clearly
visible in the different transport properties.

B. Cotunneling

In the cotunneling regime, see Fig. 1(b), the island ground
state has no degeneracies between different charge states,

N

E

2NC 2NC + 1 2NC + 2

ξ2 − ξ1

ξ2 + ξ1

FIG. 9. Typical charge state distribution in the cotunneling
regime. The plot shows the energies of the six charge states with
the lowest energies for ng = −1. For this figure we have assumed
ξ2 > ξ1.

so transport can only occur via the virtual occupation of
an intermediate state at higher energies. The starting point
for the calculation is the rate equation for the occupation
probabilities. In general we have, schematically,

Ṗα = −
∑

α

W α
β Pα +

∑
β

W β
α Pβ. (29)

The equation describes the rate of change in the occupation
probability Pα of the island state |α〉 = |n; NC〉. The first term
on the right-hand side describes the decrease of occupancy of
this state, while the second term describes its increase. The
parameters W α

β denote the transition rates between a given
initial state |α〉 and a final state |β〉. Assuming that |μl | 	 EC ,
it is sufficient to take into account the six charge states lowest
in energy; see Fig. 9. Since either d1 or d2 can be occupied,
there are two possibilities for each charge state. For instance,
for ng = −1, the states under consideration are |11; NC − 1〉,
|00; NC〉, |10; NC〉, |01; NC〉, |00; NC + 1〉, and |11; NC〉. As
seen in Fig. 9, the low-energy states are |10; NC〉 and |01; NC〉.
The virtual states are |00; NC〉, |11; NC − 1〉, |00; NC + 1〉, and
|11; NC〉. For simplicity, we will use NC = 0 in the following.
As before, this can be done without any loss of generality
because of the periodicity of the conductance as a function
of the charge on the island. The occupation probabilities for
the states are then denoted by P11;−1, P00;0, P10;0, P01;0, P00;1,
and P11;0. We require that

∑
α Pα = 1.

The transition rates can be calculated from Fermi’s golden
rule in the T -matrix representation,

W α
β = 2π

∑
i, f

|〈ψ f , β|T̂ |ψi, α〉|2δ(E f ,β − Ei,α ), (30)

where |ψi, f 〉 denotes the initial (final) state of the leads, and
Ei,α and E f ,β are the initial and final energy, respectively, for
a transition from initial state |ψi, α〉 to final state |ψ f , β〉. The
T matrix reads

T̂ = H ′
tun + H ′

tun
1

H0 − Ei,α
T̂ , (31)

where the unperturbed Hamiltonian is given by

H0 = Hleads + HMBS + Hcharging. (32)
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Expanding Eq. (31) to second order in H ′
tun, we obtain the

second-order transition rates from Eq. (30). The full expres-
sions are given in Appendix B.

By considering that in the steady state Ṗα = 0,
Eq. (29) can be written as W P = 0, where W is
a matrix containing the transition rates W α

β and
P = (P11;−1, P00;0, P10;0, P01;0, P00;1, P11;0 ). We solve for P
numerically and obtain, for ng ≈ −1 and when the applied
bias is smaller than EC , that P11;−1 ≈ P00;0 ≈ P00;1 ≈ P11;0 ∝
e−EC/T ≈ 0, whereas P10;0 and P01;0 remain finite and depend
on the bias configuration. This is to be expected since if we
do not apply a sufficient bias there is not enough energy for
electrons to perform a real transition from the two lowest
states to the states higher in energy. Still, a current is possible
by transitions via virtual states.

As in Eq. (23) the current in lead l is given by

〈Il〉 =
∑
n,NC

(
W 1,+

l − W 1,−
l

)
P(n, NC )

+ 2
∑
n,NC

(
W 2,+

l − W 2,−
l

)
P(n, NC ), (33)

where W 1,+(−)
l are the transition rates for those processes, in

Eq. (30), which increase (decrease) the number of particles
in lead l by 1, whereas W 2,+(−)

l correspond to processes that
increase (decrease) the number of particles in lead l by 2.
Since only P10;0 and P01;0 are nonzero, the only contributions
to the current are proportional to W 10;0

10;0 , W 01;0
01;0 , W 10;0

01;0 , and

W 01;0
10;0 . This means that the current is due to transitions where

either the initial and final state of the island are identical
(elastic cotunneling, ECT) or where the initial and final state
of the island are different (inelastic cotunneling, ICT). In both
cases the total charge on the island is conserved.

The expression for the current, Eq. (33), can now be
reduced to

〈Il〉 = IECT
l + I ICT

l , (34)

where

IECT
l =

∑
k

{[
W 10;0

10;0 (l, k) − W 10;0
10;0 (k, l )

]
P10;0

+ [
W 01;0

01;0 (l, k) − W 01;0
01;0 (k, l )

]
P01;0

}
, (35)

and

I ICT
l =

∑
k

{[
W 01;0

10;0 (l, k) − W 01;0
10;0 (k, l )

]
P01;0

+ [
W 10;0

01;0 (l, k) − W 10;0
01;0 (k, l )

]
P10;0

}
. (36)

Here, W α
β (l, k) denotes the second-order transition rate from

the initial island state |α〉 to final state |β〉 due to electron
tunneling between leads l and k.

In the limit ξ j, |μ| 	 EC and T = 0 we find analytical
expressions for these rates. For the Majorana box they are
given by

W 10;0
10;0 (l, k) =2WlWk

πE2
C

(μl − μk )θ (μl − μk ), (37)

W 10;0
01;0 (l, k) =2WlWk

πE2
C

(μl − μk + ξ1 − ξ2)

× θ (μl − μk + ξ1 − ξ2), (38)

0 0.05 0.1
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FIG. 10. Differential conductance in the cotunneling limit as
a function of μ, for the Majorana box setup. A bias μ1 = μ is
applied on lead 1, whereas a bias μ2 = −μ is applied on leads
2–4. (a) Differential conductance due to elastic cotunneling and
(b) differential conductance due to inelastic cotunneling. Note that
in both plots dI3/dμ = I4/dμ. The parameters are EC = 1, Wi =
1 × 10−4, ξ1 = 0.01, ξ2 = 0.03, β = 900, and ng = −1.

where k, l ∈ {1, 2} in the first line, and k, l ∈ {3, 4} in the
second line. For the calculations we have assumed a constant
density of states, Dl = 1/(2πvF ), in the leads and defined
Wl = 2π |tl |2Dl . For the T junction we obtain

W 10;0
10;0 (l, k) = 2WlWk

πE2
C

(μl − μk )θ (μl − μk ), (39)

W 10;0
01;0 (l, k) = 2WlWk

πE2
C

(μl − μk − ξT )θ (μl − μk − ξT ), (40)

with k, l ∈ {1, . . . , 4}. We note that if there is no overlap be-
tween the MBSs of the systems, W 10;0

10;0 (l, k) = W 01;0
01;0 (l, k) =

W 10;0
01;0 (l, k) = W 01;0

10;0 (l, k) with k, l ∈ {1, 2, 3, 4}. Thus, if the
overlap is zero, the strengths of elastic and inelastic cotunnel-
ing become equal to each other.

1. Majorana box

We proceed by calculating the differential conductance of
the Majorana box. For the plots, we assume again a symmetric
bias configuration where μ1 = μ and μ2 = μ3 = μ4 = −μ.
The results are plotted in Fig. 10. We observe a current
between leads 1 and 2 due to elastic cotunneling. Comparing
the analytical results (37) with the numerical ones, we note
that these are in close agreement. The numerical results show
a constant differential conductance which is also obtained
analytically (differentiating the transition rates with respect to
the bias gives a constant). Since the d1 mode does not couple
to lead 3 or lead 4, it is not possible to have any current due to
elastic cotunneling between lead 1 and the leads 3 and 4.

When the bias is larger than the difference between the
overlaps of the MBSs, a current in leads 3 and 4 is observed.
This is solely due to inelastic cotunneling. This is also seen
in the analytical results (38), which explains why there is no
current when μ < |ξ2 − ξ1|.

Figure 11 explains the physical mechanisms behind these
transport processes. To be specific, we start in the initial state
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μ1 μ2 μ3 μ4

|10; NC〉

μ1 μ2 μ3 μ4

|00; NC〉

μ1 μ2 μ3 μ4

|10; NC〉
(a)

μ1 μ2 μ3 μ4

|10; NC〉

μ1 μ2 μ3 μ4

|11; NC − 1〉

μ1 μ2 μ3 μ4

|01; NC〉
(b)

FIG. 11. Examples of cotunneling processes through a Majorana
box. Dashed boxes mark virtual states. (a) Elastic cotunneling: An
electron occupying the MBSs is transferred to lead 2, whereafter
an electron from lead 1 is transferred into the MBSs. The MBS
goes from being occupied to empty and once again occupied, while
allowing an electron to be transferred from lead 1 to lead 2. The
process of the island is |10; NC〉 → |00; NC〉 → |10; NC〉. (b) Inelastic
cotunneling: A Cooper pair is broken up whereupon one of the
electrons forming the Cooper pair is transferred into lead 3 or 4,
whereas the other one is left to occupy the MBSs in the second
wire. The electron in lead 1 and the one that occupies the MBSs
of wire 1 are deposited into the superconductor where they form a
Cooper pair. The state of the island changes as follows: |10; NC〉 →
|11; NC − 1〉 → |01; NC〉. An electron has been transferred from lead
1 to lead 3 or 4.

|10; 0〉. Next, the electron occupying the d1 mode is trans-
ferred to lead 2, leaving the dot in the virtual state |00; NC〉. An
electron is then transferred from lead 1 onto the island and the
system returns to the |10; NC〉 state. The process is depicted in
Fig. 11(a), and allows an electron to be transferred from lead
1 to lead 2.

As in the sequential-tunneling regime the Cooper pairs
enables tunneling between lead 1 and leads 3 and 4. Consider
Fig. 11(b). If μ3,4 < −(ξ2 − ξ1) a Cooper pair can be split and
one of the electrons will be transferred to lead 3 or 4 and the
other one to the d2 mode. Thereafter an electron from lead
1 or 2 can, with the electron occupying the d1 mode, form a
Cooper pair. Thus an electron has been transferred from either
lead 1 or 2 to either lead 3 or 4.

2. T junction

The differential conductance of the T junction due to
cotunneling processes is shown in Fig. 12. In most respects the
results are very similar to what is observed for the Majorana
box. However, in contrast to the Majorana box, one finds a
current due to both elastic and inelastic cotunneling in all
leads. When |μ| < ξT , only elastic cotunneling contributes to
the current, whereas for |μ| > ξT , currents due to inelastic
cotunneling are also observed.

Compared to the sequential-tunneling limit a current be-
tween the outer and central leads is possible even for bias
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FIG. 12. Differential conductance in the cotunneling limit for
the T junction and a symmetric bias configuration, μ1 = μ and
μ2,3,4 = −μ. (a) Differential conductance due to elastic cotunneling.
(b) Differential conductance due to inelastic cotunneling. In both
plots dI2/dμ = dI3/dμ. The parameters are EC = 1, Wi = 10−4,
ξT = 0.05, β = 900, and ng = −1.

voltages smaller than ξT . This is a consequence of the fact
that tunneling via virtual states is possible in the cotunneling
limit. Suppose the island is in the |10; 0〉 state. An electron
tunnels onto the island which is now in the |11; 0〉 state. Since
both the central lead and the outer leads couple to the d2 mode,
an electron can now leave the island in any of the leads. The
island then returns to the |10; 0〉 state. This is essentially also
the reason for why one finds a current in all the leads for the T
junction but not in the Majorana box: if all leads are connected
to the same Dirac state d2, a current will flow between all the
leads, regardless of the magnitude of the applied bias.

IV. CONCLUSIONS

In summary we have studied the transport properties of
networks of Majorana bound states, in particular the T -
junction and the Majorana box geometries. Assuming that
the coupling to the leads is weak, we have investigated the
sequential-tunneling and the cotunneling limit, and have taken
into account both the charging energy and the overlap between
the Majorana bound states. We have found that the combina-
tion of the latter with the former gives rise to novel transport
features.

In the sequential-tunneling regime we found currents due
to resonant tunneling for both the T junction and the Majo-
rana box. Using a bias configuration where one lead has a
positive chemical potential whereas the three other leads have
equal negative biases, we found that for small bias voltages,
transport is blocked in the central lead of the T junction or,
respectively, the unbiased wire of the Majorana box. Only
once a bias exceeding the overlap energy is applied, a current
can flow. The observed current in the unbiased wire of the
Majorana box is then due to nonlocal charge transport via the
Cooper pairs.

In the cotunneling regime transport is due to elastic and
inelastic cotunneling. Contrary to the sequential-tunneling
regime, transport is possible for small bias voltage in the
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central lead of the T junction. However, in the case of the
Majorana box, current is still only possible if the applied bias
exceeds the overlap of the Majoranas on the unbiased wire.
As in the sequential-tunneling regime, the Cooper pairs of
the superconductor allow for a nonlocal transfer of charge
between the two wires. The conductance in the cotunneling
regime shows bias voltage features only due to inelastic
processes directly related to the finite wave function overlaps
between MBSs.

Importantly, our results show that the two structures are
rather distinct in their transport properties as soon as the over-
lap between the Majoranas and the Coulomb charging energy
are taken into account. We have provided an understanding
for these differences and the mechanisms for the different
transport processes that were observed. Our results show that
the interplay of charging energy and wave function overlap in
Majorana bound state systems gives rise to interesting novel
transport phenomena.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

To express the T junction Hamiltonian in terms of Dirac
operators and in diagonal form, we first write the Majorana
operators in terms of Dirac operators after which we perform
a Bogoliubov transform. We define [see Eq. (4)]

γ1 = c1 + c†
1, γ2 = i(c†

1 − c1), (A1)

γ3 = c2 + c†
2, γ4 = i(c†

2 − c2). (A2)

By inserting these expressions into Eq. (14), the Hamiltonian
can be written in Nambu form, HTjunction = 1

2 C†HC, where

C† = (c†
1, c†

2, c1, c2) and

H = ε

⎛
⎜⎝

0 −(1 + i) 0 (1 + i)
−(1 − i) −2 −(1 + i) 0

0 −(1 − i) 0 (1 − i)
(1 − i) 0 (1 + i) 2

⎞
⎟⎠. (A3)

We now search for a transformation Tn,

C = TnD, (A4)

which diagonalizes the Hamiltonian. The eigenmodes of the
system are combined to D† = (d†

2 , d†
1 , d2, d1). The first step is

to find the eigenvalues of H and their respective eigenvectors.
For every positive eigenvalue ω of Eq. (A3) with eigenvector
vi(ω), one can find a corresponding negative eigenvalue for
which the eigenvector satisfies [55]

vi(−ω) = �xv
∗
i (ω),

(A5)

�x =
(

0 I
I 0

)
,

where I is the identity matrix. Once the eigenvectors are found
Tn can be constructed:

Tn = [v(ω1), v(ω2), v(−ω1), v(−ω2)]. (A6)

The Hamiltonian matrix H in Eq. (A3) has two nondegen-
erate nonzero eigenvalues ±2

√
3ε = ±ξT and a twofold-

degenerate zero eigenvalue. The corresponding eigenvectors
gives us the basis transformation matrix

Tn =

⎛
⎜⎜⎜⎝

x1 x0 ix∗
1 (−ix∗

0 − α∗y∗
0 )

1
2αβx1 y0

1
2α∗β̃x∗

1 y∗
0

−ix1 (ix0 − αy0) x∗
1 x∗

0
1
2αβ̃x1 y0

1
2α∗βx∗

1 y∗
0

⎞
⎟⎟⎟⎠.

(A7)
Orthonormality of the eigenvectors corresponds to the follow-
ing conditions:

2|x0|2 + 4|y0|2 + i(1 − i)x∗
0y0 − i(1 + i)y∗

0x0 = 1,

y2
0 + ix2

0 = (1 − i)x0y0,

|x1| = 1√
6
. (A8)

By solving these equations and transforming from the diag-
onal d1 and d2 basis back to the Majorana basis we obtain
the following representation of the MBSs in terms of the
eigenstates of HT junction,

γ1 = 1√
3

d1 +
√

2

3
eiπ/12d2 + H.c., (A9)

γ2 = 1√
3

d1 +
√

2

3
e−7iπ/12d2 + H.c., (A10)

γ3 = 1√
3

d1 +
√

2

3
e3iπ/4d2 + H.c., (A11)

γ4 = i(d1 − d†
1 ). (A12)

This leads to the coefficients αl j listed in the table shown in
Eq. (18).

APPENDIX B: SECOND-ORDER TRANSITION RATES

We apply Fermi’s golden rule to calculate the cotunneling
transition rates. Fermi’s golden rule reads

W α
β = 2π

∑
i, f

|〈ψ f , β|T̂ |ψi, α〉|2δ(E f ,β − Ei,α ), (B1)

with

T̂ = H ′
tun + H ′

tun
1

H0 − Ei,α
T̂ . (B2)

The second-order term becomes

W α
β = 2π

∑
i, f

∣∣∣∣〈ψ f , β|H ′
tun

1

H0 − Ei,α
H ′

tun|ψi, α〉
∣∣∣∣
2

× δ(E f ,β − Ei,α ). (B3)

Here, Ei,α and E f ,β are the initial and final energy, respec-
tively, for a transition from initial state |ψi, α〉 to final state
|ψ f , β〉. The unperturbed Hamiltonian is given by

H0 = Hleads + HMBS + Hcharging. (B4)
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Taking the leads to follow a Fermi distribution and writing
out the tunneling Hamiltonian we obtain all the different
processes allowed in second-order perturbation theory. We

have furthermore assumed a constant density of states, Dl =
1/(2πvF ), in the leads and defined Wl = 2π |tl |2Dl . We obtain

W 11;−1
11;0 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)
nF

( − E + EC (4 + 4ng) − μl2

)

×
∣∣∣∣ α∗

l11αl21

ξ1 + EC (3 + 2ng) − E
− α∗

l21αl11

ξ1 − EC (1 + 2ng) + E
+ α∗

l12αl22

ξ2 + EC (3 + 2ng) − E
− α∗

l22αl12

ξ2 − EC (1 + 2ng) + E

∣∣∣∣
2

,

W 11;0
11;−1(l1, l2) = Wl1Wl2

2π

∫
dE

[
1 − nF

(
E − μl1

)][
1 − nF

( − E + EC (4 + 4ng) − μl2

)]

×
∣∣∣∣ α∗

l11αl21

ξ1 − EC (1 + 2ng) + E
− α∗

l21αl11

ξ1 + EC (3 + 2ng) − E
+ α∗

l12αl22

ξ2 − EC (1 + 2ng) + E
− α∗

l22αl12

ξ2 + EC (3 + 2ng) − E

∣∣∣∣
2

,

W 00;0
00;1 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)
nF

( − E + EC (4 + 4ng) − μl2

)

×
∣∣∣∣ αl11α

∗
l21

−ξ1 + EC (3 + 2ng) − E
− αl21α

∗
l11

−ξ1− EC (1 + 2ng) + E
+ αl12α

∗
l22

−ξ2 + EC (3 + 2ng) − E
− αl22α

∗
l12

−ξ2 − EC (1 + 2ng) + E

∣∣∣∣
2

,

W 00;1
00;0 (l1, l2) = Wl1Wl2

2π

∫
dE

[
1 − nF

(
E − μl1

)][
1 − nF

( − E + EC (4 + 4ng) − μl2

)]

×
∣∣∣∣ αl11α

∗
l21

−ξ1 − EC (1 + 2ng) + E
− αl21α

∗
l11

−ξ1 + EC (3 + 2ng) − E
+ αl12α

∗
l22

−ξ2 − EC (1 + 2ng) + E
− αl22α

∗
l12

−ξ2 + EC (3 + 2ng) − E

∣∣∣∣
2

,

W 01;0
10;0 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)[
1 − nF

(
E + ξ2 − ξ1 − μl2

)]

×
∣∣∣∣ αl22α

∗
l11

−ξ1 − EC (3 + 2ng) + E
− αl12α

∗
l21

−ξ2+ EC (1 + 2ng)− E
+ α∗

l11αl22

2ξ2 − ξ1 − EC (3+ 2ng)+ E
− α∗

l21αl12

ξ2+ EC (1 + 2ng)− E

∣∣∣∣
2

,

W 10;0
01;0 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)[
1 − nF

(
E + ξ1 − ξ2 − μl2

)]

×
∣∣∣∣ αl21α

∗
l12

−ξ2− EC (3 + 2ng)+ E
− αl11α

∗
l22

−ξ1+ EC (1 + 2ng)− E
+ α∗

l12αl21

2ξ1 − ξ2− EC (3 + 2ng)+ E
− α∗

l22αl11

ξ1 + EC (1 + 2ng) −E

∣∣∣∣
2

,

W 11;0
00;1 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)[
1 − nF

(
E + ξ1 + ξ2 − μl2

)]

×
∣∣∣∣ αl21αl12

ξ2 − EC (5 + 2ng) + E
− αl11αl22

−ξ1 + EC (3 + 2ng) − E
+ αl22αl11

ξ1 − EC (5 + 2ng) + E
− αl12αl21

−ξ2 + EC (3 + 2ng) − E

∣∣∣∣
2

,

W 00;1
11;0 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)[
1 − nF

(
E − ξ1 − ξ2 − μl2

)]

×
∣∣∣∣ α∗

l11α
∗
l22

ξ1 + EC (3 + 2ng) − E
− α∗

l21α
∗
l12

−ξ2 − EC (5 + 2ng) + E
+ α∗

l12α
∗
l21

ξ2 + EC (3 + 2ng) − E
− α∗

l22α
∗
l11

−ξ1 − EC (5 + 2ng) + E

∣∣∣∣
2

,

W 11;−1
00;0 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)[
1 − nF (E + ξ1 + ξ2 − μl2 )

]

×
∣∣∣∣ αl21αl12

ξ2 − EC (1 + 2ng) + E
− αl11αl22

−ξ1 − EC (1 − 2ng) − E
+ αl22αl11

ξ1 − EC (1 + 2ng) + E
− αl12αl21

−ξ2 − EC (1 − 2ng) − E

∣∣∣∣
2

,
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W 00;0
11;−1(l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)[
1 − nF

(
E − ξ1 − ξ2 − μl2

)]

×
∣∣∣∣ α∗

l11α
∗
l22

ξ1 − EC (1 − 2ng) − E
− α∗

l21α
∗
l12

−ξ2 − EC (1 + 2ng) + E
+ α∗

l12α
∗
l21

ξ2 − EC (1 − 2ng) − E
− α∗

l22α
∗
l11

−ξ1 − EC (1 + 2ng) + E

∣∣∣∣
2

,

W 11;−1
00;1 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)
nF

(−E − ξ1 − ξ2 + EC (4 + 4ng) − μl2

)

×
∣∣∣∣ αl21αl12

ξ2 − EC (1 + 2ng) + E
− αl11αl22

−ξ1 + EC (3 + 2ng) − E
+ αl22αl11

ξ1 − EC (1 + 2ng) + E
− αl12αl21

−ξ2 + EC (3 + 2ng) − E

∣∣∣∣
2

,

W 00;1
11;−1(l1, l2) = Wl1Wl2

2π

∫
dE

[
1 − nF

(
E − μl1

)][
1 − nF

(−E − ξ1 − ξ2 + EC (4 + 4ng) − μl2

)]

×
∣∣∣∣ α∗

l21α
∗
l12

−ξ2 + EC (3 + 2ng) − E
− α∗

l11α
∗
l22

ξ1 − EC (1 + 2ng) + E
+ α∗

l22α
∗
l11

−ξ1 + EC (3 + 2ng) − E
− α∗

l12α
∗
l21

ξ2 − EC (1 + 2ng) + E

∣∣∣∣
2

,

W 00;0
11;0 (l1, l2) = Wl1Wl2

2π

∫
dEnF

(
E − μl1

)
nF

(−E + ξ1 + ξ2 + EC (4 + 4ng) − μl2

)

×
∣∣∣∣ α∗

l21α
∗
l12

−ξ2 − EC (1 + 2ng) + E
− α∗

l11α
∗
l22

ξ1 + EC (3 + 2ng) − E
+ α∗

l22α
∗
l11

−ξ1 − EC (1 + 2ng) + E
− α∗

l12α
∗
l21

ξ2 + EC (3 + 2ng) − E

∣∣∣∣
2

,

W 11;0
00;0 (l1, l2) = Wl1Wl2

2π

∫
dE

[
1 − nF

(
E − μl1

)][
1 − nF

(−E + ξ1 + ξ2 + EC (4 + 4ng) − μl2

)]

×
∣∣∣∣ αl21αl12

ξ2 + EC (3 + 2ng) − E
− αl11αl22

−ξ1 − EC (1 + 2ng) + E
+ αl22αl11

ξ1 + EC (3 + 2ng) − E
− αl12αl21

−ξ2 − EC (1 + 2ng) + E

∣∣∣∣
2

.

The tunneling rates diverge for finite temperature. To tackle this divergence we follow Refs. [56,57]. A finite broadening,
γ ∼ Wi, is introduced in the energy denominators. The finite broadening shifts the poles away from the real line. After expanding
the absolute values we expand each term in powers of γ . Subtracting the leading-order term 1/γ finishes the regularization
procedure. Two types of integrals are obtained:

I (E1, E2, ε1, ε2) = lim
γ→0

Re
∫

dE nF (E − E1)[1 − nF (E − E2)]
1

E − ε1 − iγ

1

E − ε2 + iγ

= nB(E2 − E1)

ε1 − ε2
Re{ψ (1/2 + iβ[E2 − ε1]/2π ) − ψ (1/2 − iβ[E2 − ε2]/2π )

−ψ (1/2 + iβ[E1 − ε1]/2π ) + ψ (1/2 − iβ[E1 − ε2]/2π )}, (B5)

J (E1, E2, ε) = lim
γ→0

[∫
dE nF (E − E1)[1 − nF (E − E2)]

1

(E − ε)2 + γ 2
− O(1/γ )

]

= β

2π
nB(E2 − E1)Im{ψ ′(1/2 + iβ[E2 − ε]/2π ) − ψ ′(1/2 + iβ[E1 − ε]/2π )}, (B6)

where nB(x) = 1
ex−1 and ψ (n) denotes the polygamma function.
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