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Abstract—This paper addresses the optimization problem of symbol-
level precoding (SLP) in the downlink of a multiuser multiple-input
multiple-output (MU-MIMO) wireless system while the precoder’s output
is subject to partially-known distortions. In particular, we assume a linear
distortion model with bounded additive noise. The original signal-to-
interference-plus-noise ratio (SINR) -constrained SLP problem minimizing
the total transmit power is first reformulated as a penalized unconstrained
problem, which is referred to as the relaxed robust formulation. We
then adopt a worst-case design approach to protect the users’ intended
symbols and the targeted constructive interference with a desired level of
confidence. Due to the non-convexity of the relaxed robust formulation,
we propose an iterative algorithm based on the block coordinate ascent-
descent method. We show through simulation results that the proposed
robust design is flexible in the sense that the CI constraints can be
relaxed so as to keep a desirable balance between achievable rate and
power consumption. Remarkably, the new formulation yields more energy-
efficient solutions for appropriate choices of the penalty parameter,
compared to the original SLP problem.

Index Terms—Downlink MU-MIMO, robust design, SINR-constrained
power minimization, symbol-level precoding, worst-case design.

I. INTRODUCTION

Multiuser precoding is well known to be an effective way of
handling multiuser interference which is a limiting factor while simul-
taneously serving multiple user equipments in the same time/frequency
resource block. Beyond the wide variety of block-level precoding tech-
niques proposed in the literature (see e.g., [1]-[4] and the references
therein), processing the transmit signal in a symbol-by-symbol fashion
can lead to improvements in spectral/energy efficiency, at the price of
increased transmitter complexity [5], [6]. In this (non-linear) design
approach, which is commonly referred to as symbol-level precoding
(SLP), the precoded transmit signal is optimized with respect to the
instantaneous channel as well as the instantaneous users’ data symbols.

A key consideration in designing the symbol-level precoder is to
properly define the constructive interference (CI) regions based on
the received signal constellation, typically with the aim of preserving
(or enhancing) the detection accuracy [5]-[7]. The precoding scheme
then allows a (noise-free) received symbol to be observed anywhere
within the correct CI region. This type of design, however, is highly
sensitive to inaccuracies in several parameters, such as the available
channel state information at the transmitter (CSIT), the receive noise
power, and any succeeding operation on the transmit signal which is
not perfectly known to the precoder. More specifically, considering
(non)linear distortions of the precoded signal, which falls within the
third category, is the main focus of this paper. The distorted transmit
signal may reflect the effects of non-ideal elements either in the digital
domain, e.g., low-resolution digital-to-analog converters (DAC), or in
the RF chain, e.g., power amplifiers [8]. Furthermore, it could be an
adequate model for the source-relay link over a relay channel, e.g.,
non-ideal feeder link in a satellite communication system [9].
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There has been some recent effort addressing the SLP deign problem
in the presence of system uncertainties. The earliest work in [10]
considers the noisy received signal and proposes a stochastic robust
approach with probabilistic (rate) outage constraints. Robust symbol-
level precoders under imperfect CSIT are presented in [S] and [11]. In
[5], a worst-case robust SLP scheme is proposed under bounded CSIT
errors for quality-of-service (QoS) -constrained power mininization
and max-min fairness design criteria. In addition to bounded channel
uncertainty modeling, the SLP problem with statistically-known CSIT
is addressed in [11], where deterministic convex approximations are
derived for the probabilistic CI constraints. To the best of authors’
knowledge, the SLP design problem under linear distortion of the
precoded signal has not been addressed in the literature. In this paper,
by assuming a linearly distorted signal model with bounded additive
distortion, we aim to design an SLP scheme such that the performance
gain offered by the Cl-based design is preserved. In particular, we
reformulate a version of the original problem with penalized objective
function and use this reformulation in a worst-case design approach.
The penalty coefficient in the new formulation allows us to keep a
balance between the desired level of spectral efficiency/users’ symbol
error probability and the consumed power.

It is worth mentioning that the problem of robust design has been
widely studied in the literature for scenarios where our knowledge
about the environment is subject to uncertainty [12]-[19]. In this paper,
we assume that our design process is subject to uncertainty, e.g.,
due to finite precision of the underlying design and implementation
technology. This work can point the research community to address
new practical challenges in robust design when the design parameters
are subject to uncertainty.

The remainder of this paper is organized as follows. In Section

I, we describe the system and signal distortion models along with
the original SLP problem formulation. In Section III, we reformulate
and discuss the worst-case design problem and present our proposed
algorithm. Simulation results are presented in Section IV. Finally,
Section V concludes the paper.
Notations: We use uppercase and lowercase bold-faced letters to
denote matrices and vectors, respectively. For a matrix A, rank(A)
denotes the column rank of A. For matrices and vectors, || - ||
respectively denotes the spectral norm and the Euclidean norm. Op-
erators diag(-) and blkdiag(-) represent diagonal and block-diagonal
matrices, respectively. We use I and O to represent, respectively, the
identity matrix and the zero matrix (or the zero vector, depending on
the context) of appropriate dimensions. The operator ® stands for the
Kronecker product. Statistical expectation is denoted as IE{-}.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider the downlink of a multiuser multiple-input multiple-
output (MU-MIMO) system in which a common transmitter, equipped
with an array of m¢ antennas, communicates with n, single-antenna
user equipments (UE) through sending (independent) data streams.
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Fig. 1. The considered system model: the output of the symbol-level precoder,
u, is subject to linear distortion before being transmitted to the UEs, while the
additive distortion w is not perfectly known to the precoder.

Number of simultaneously-served UEs is limited by ng, i.e., n, < ng.
A quasi-static frequency-flat fading channel is considered between
any transmitter/receiver antenna pair. The discrete-time data symbols
{si};=, are assumed to be drawn from a finite-alphabet equiprobable
constellation set with unit average power, where s; denotes the
symbol intended for the ith UE. The transmitter employs a multiuser
precoder to spatially multiplex the users’ data streams in the downlink
transmission. We adopt a symbol-level (non-linear) precoding scheme
[5], [6], [20], in which the n X 1 precoded signal @ = [&1, ..., am}T
is redesigned every symbol period by solving an optimization problem.
It is further assumed that the precoded signal is subject to linear
distortion before transmission, i.e., the actual ny X 1 transmitted signal
X is given by

x=Gu+w, (1)
where G € C™*™ is a known distortion matrix and W € C™*!
represents an additive white noise which is uncorrelated with the
precoder’s output . Such a model is particularly suitable for a relayed
transmission scheme. For example, interference mitigation techniques
in the forward link of a satellite communication system may take the
form of on-ground precoding, i.e., the UEs’ data streams are pre-
processed at the gateway and then sent to the satellite through the
feeder link [21], [22]. The received signal by the satellite (to be trans-
mitted towards the UEs) can be modeled as (1), where G represents
signal attenuation generated by either the atmospheric fading and/or
the feed antenna radiation, and W models the additive noise at the
satellite’s array-fed reflector. Another possible application of (1) could
be in a massive MU-MIMO scenario where the (continuous-valued)
precoding coefficients {;}7*, are passed through low-resolution
DACs to be quantized in the digital domain before up-conversion
via the RF chains. The non-linear quantization operation can then be
approximated by the additive quantization noise (AQN) model, [23],
[24], which coincides with the linear distortion model in (1). Under the
above assumptions, the baseband representation of the signal observed
by the ith UE is given as

ri=h%+z=hl (Ga+w)+2z,i=1,..n, ®)

where the vector h; € C™*' contains the instantaneous fading
coefficients of the channel between the transmit antennas and the ith
UE, and z; ~ CN(0,0?) models the additive thermal noise at the
ith receive front-end. Note that, unlike conventional linear precoding
techniques, the precoded signal t may not explicitly be decomposed in
terms of distinct users’ signatures (i.e., precoding vectors); therefore,
received SINR is no longer an applicable measure. Instead, we use
the received SNRs {)‘cThq;hiTi/ 02-2}:;“1 as the QoS measure.

We define equivalent real-valued notations: u£ [Re(@)”,Im(@)”]%,
x 2 [Re(x)”, Im(x)7]", w2 [Re(w)”,Im(w)"]”, and for all i =
1,...,n., we denote s; 2 [Re(s:), Im(s;)]*, H; £ T(hY), and G £
[GT,..,G]]" with G; £ T(g]) and g; denoting the jth column

of GT for j =1, ..., n, where

02 [0 R

for any complex input vector v. Using these new notations, it is easy
to verify that x = Gu + w holds true, and thus, the ith real-valued
noise-free received signal can be represented as a 2 X 1 vector given
by H;x = H;(Gu + w). It is worth mentioning that the additive
distortion vector w, without any restriction on its distribution, is
assumed to be norm-bounded, i.e., ||w|| < e.

To exploit the instantaneous data information in a symbol-level
precoded transmission, the precoder is typically designed such that
each noise-free received signal H;x,7 = 1, ..., n,, is observed within
a pre-defined region corresponding to the intended symbol s;, called
constructive interference (CI) region. The CI regions have been defined
in several ways in the literature; see, e.g., [S]-[7]. We focus on the so-
called distance-preserving CI regions [7], in which any point belonging
to the CI region of s; is closer to s; than any other constellation point.
Such a definition implicitly assumes that the ¢th UE uses off-the-shelf
optimal single-user detectors, e.g., single-user maximum likelihood
(ML) receiver.

Given the set of target SNRs {~;};*; to be achieved for all UEs,
a well-known design criterion is to minimize the instantaneous (per-
symbol) total transmit power while satisfying the CI constraint for
every single UE. Denoting the distance-preserving CI region associated
with s; by D;(si, i, 03), the optimal transmit signal x is then obtained
by solving the following optimization problem:

. T
min x X s.t.
xX

HiXED(Si,’yi,O'i), 1=1,...,n. 3)

It has been shown in [20] that problem (3) can be formulated, in a
compact form, as a linearly-constrained quadratic program (QP):

min x'x st. Hx=Ds+ A71Wt, 4)
x,t>0
where we use the following definitions: H £ [Hf,...,HZr}T;
A 2 blkdiag(Ai,...,An); A; = [ai1,a:02]7 € R**? con-
tains the normal vectors of the ML decision boundaries; D £
diag(o1 'yl,...,anr\/ﬁ) RI, s 2 [s1,...,snr]T; and W is a
diagonal binary weighting matrix with a diagonal element being one
if the corresponding symbol is an outer constellation point and zero
otherwise, and t € ]Rianl is a slack variable with a geometrical
interpretation behind. Indeed, the entries of t specify the (orthogonal)
distances between the received symbols and their corresponding CI
boundaries. The larger the elements of t, the deeper the received
symbol is pushed into the correct decision region. Note also that A can

always be formed as a full-rank square, and hence invertible, matrix.

ITI. WORST-CASE DESIGN FORMULATION

We start off by casting a new optimization problem other than (4)
by introducing the linear equality CI constraints as an £2-norm penalty
into the objective function, i.e.,

. 2 —12
min - [x|*+ 5 |Hx — Ds - A~¢|%, )
where 3 denotes the penalty coefficient. It is worth noting that unlike
(4), this new formulation does not strictly impose the CI constraints.
Instead, the ¢2-norm term in the objective function penalizes any feasi-
ble solution for which the received symbols will not exactly be located
within the intended CI regions. For this reason, we refer to problem (5)
as the relaxed SLP design. Intuitively speaking, setting larger values
for 8 puts more emphasis on the satisfaction of CI constraints (i.e.,
more severely penalizes any deviation of the received symbols from the



correct CI regions), but may lead to higher transmission powers. This
introduces a tradeoff in choosing the penalty parameter (3, where its
effect on the performance will be investigated via simulation results in
Section IV. It is also worth noting that problem (5) becomes equivalent
to (4) as f — oco.

By replacing x with Gu + w in (5), we are ready to define the
worst-case design formulation of our interest:

. 2 2
min |Gu+wl? + 5 H(Gu+w) - )%, ()

max
Iwll<e
where ®(t) £ Ds + A~'t. The optimization problem (6) is non-
convex, and thus, may not be amenable to a computationally efficient
solution. To tackle the optimization problem (6), we propose a three-
step iterative block coordinate ascent-descent algorithm: in the first
step, the inner maximization is solved for given u and t > 0, thereby
obtaining a new value for w in a semi-closed form in terms of u and t.
In the second step, the value of t is updated by solving a non-negative
least squares (NNLS) problem, for fixed w and u. In the third step,
the value of u is updated by solving a non-constrained QP, thereby
obtaining the new value of u in a closed form in terms of w and t.
In the sequel, we present the details of these three steps.

First step — updating w: We focus on the inner maximization in
(6), i.e.,

max
llwll<e

|Gu+w|® + 8[H(Gu+w) - 2®)[*. @
Denoting the maximizer of (7) by w”*, it is routine to check, by
contradiction, that the norm constraint on w is active at the optimum,

ie., ||[w*|| = e. Thus, the maximization problem (7) is equivalent to

[Gu+w|® + B [[H(Gu+w) —@(t)|>.  ®

max
lwll=e

In case rank(H) > 1, no closed-form solution is known for (8). To
tackle this problem, we start from its Lagrangian which is given by
Lw,7) =u"G"Gu+w'w+ 2w’ Gu
+B8(Gu+w) " H' H(Gu +w) + 82" (t)®(t) (9)
— 238" (t)H(Gu + w) — 7 (wTw - 52) ,
where 7 is the Lagrange multiplier associated with the norm constraint
|l[w|]| = e. Note that since the maximization (8) is a non-convex
problem, the method of Lagrange multipliers yields only necessary
conditions for optimality which may not be sufficient. Differentiating
L(w,7) with respect to w and equating it to zero yield
w +Gu+SH Hw* +SH HGu—SH & (t)—p*w* =0, (10)
and therefore,
w'=—(P—u'I)"'H" (GHu — &(t)), (11)

where P 2 HTH + %I and p* £ 7* /3. The maximizer given in (11)
must satisfy the norm constraint ||w*||? = €2, i.e.,

—2
(PGu - H'®(t))" (HTH - u*I) (PGu - H'®(t)) = &,
from which one can obtain p*. Let us denote

f(w)2 (PGu-H"®(t))"(H"H - pu1) (PGu-H"®(t)) <,

13)
then p* is a root of f(u). Unfortunately, no closed-form solution is
known in general for f(u) = 0. Nonetheless, it can be shown that
function f(u) has a finite number of roots according to the following
lemma.

Lemma 1. Let z denote the number of roots of f(u), then z is always
an even number bounded as

2 < z < 2rank(H).
Proof. See [25]. O

Clearly, among all the roots of f(u), the one that maximizes the
objective function of (8) corresponds to the worst-case w, for given
u and t. The next theorem specifies the interval within which there
exists a unique p* yielding the maximizer of (8).

Theorem 2. The value of u* is equal the largest positive root of f (1)
and is bounded as

- L1 -
Az < " < < HPGu - HT<I>(t)H F A (14)

With Amax 2 [HIP + L.

Proof. See [25]. O

The above theorem facilitates the possibility of searching for the
intended root of f(u)in the interval specified by (14) via numerical
methods, e.g., a simple bisection search. Using such a numeric solution
for p* in (11) yields the optimal value of w, for given u and t > O,
in a semi-closed form

For rather small values of €, one can also use quite an accurate
approximation for p* with a closed-form expression given below.

Lemma 3. For small g, the value of ™ can be well approximated by

s 2§/HP (PGu —HT®(t)) ||?

= (1)

Proof. See [25]. O

The approximation provided by Lemma 3 is very accurate for ¢ <
0.1 based on our numerical observations.

Second step — updating t: For given w and u, the value of t is
updated as the solution to the following optimization problem:

min ||H (Gu+w) - ®(t)|”, (16)
which is a standard NNLS problem. Note, however, that using the exact
solution to (16) in order to update t may result in slow convergence
rate of the iterative method [26]. One can instead update t by using the
accelerated projected gradient descent (APGD) algorithm [27], which
provides the update by taking only one step in the steepest descent
direction at the current point.

Third step — updating u: For given w and t > 0, the minimization
over u is an unconstrained QP and hence is amenable to the following
closed-form solution:

u=G 'P'H"®(t) - G 'w. a7

The pseudo-code of the explained block coordinate ascent-descent
algorithm, including the APGD-based updating step of t, is provided
in Algorithm 1.

To provide an intuition of the structure of the optimal transmit
signal, let (w*,u”,t") denote the solution to (6). It then follows from
(17) that

-1
Gu' +w" = (HTH + %I) H" (Ds+A7't"), (18)

i.e., the optimal worst-case robust transmit signal can simply be viewed
as applying a (regularized) channel inversion to the constructively-
interfered symbols, with the interference components being aligned
such that the received symbols are pushed (as deep as possible) into



Algorithm 1: Block coordinate ascent-descent algorithm solving (6)

input: A H, D, s, ¢
output: u
initialize: t(©) = 2(0) € R7" ", u(® € R?"x1 k=0

set: o= L-VE o — Imax B=T—02 x (AAT)"!, where

1+vr’ O min min
Omax and omyin respectively denote the maximum and the

minimum singular value of matrix A.

2 k=k+1

3 compute 11(F) by solving f(u) =0

i | W) = (P—pu®1) 7 (PGu-1) — Ds — A-1¢(k-1)
s | tW=max{Bz*"V+02, A-T(H(Gu*~D+w(H)-Ds),0}
6 z(F) = ¢(k) 4 o (t(k) — t(kfl))

7 | u® =G 1P 1HT (Ds+ A1) — G-lwk)

8 until the terminating condition is met;

AGA
A‘A & A'A. —©— Undistorted SLP (4)
0.18 ¢~ A <A WCSLP, f= 1 -
- -+ WC-SLP, =5
0.16 ‘A |- WCSLP, s=10 | |
A |- ¥ WC-SLP, 3 =100

Per-user energy efficiency (bit/channel use/J)

Fig. 2. Performance comparison of distorted and undistorted SLP schemes as
a function of target SNR.

the CI regions. Furthermore, considering the limiting case 8 — oo, in
which P~'H” = HT, implies that for extremely large values of £,
the received symbol of each UE is guaranteed to be observed within
the correct CI region, even for the worst possible error realization.
Note, however, that this limiting case § may cause an unaffordable
transmission power.

IV. SIMULATION RESULTS

The simulation setup is as follows. We consider a downlink MU-
MIMO system with ny =n, =38, in which unit noise variances a? =1
and equal target SNRs ~y; 2+ are assumed for all i = 1,...,n,. As-
suming a Rayleigh block fading channel, the channel vectors {h;}}*,
are independently generated for each coherence block following the

standard circularly symmetric complex Gaussian (CSCG) distribution,

i.e., h; ~CN(0,I). All our simulation results are averaged over 500
channel coherence blocks each with 500 symbols. We refer to our
proposed worst-case SLP design as WC-SLP.

The additive distortion vector w is randomly generated as an i.i.d.
CSCG vector with variance 0.1. The distortion ball radius is set to
be ¢ = 0.56, which corresponds to a confidence level of 0.99, i.e.,
Pr{||w]| > e} = 0.01. We further assume G = I. In our simulations,
we have defined energy efficiency as the ratio of the product of the
average UEs’ bit error rate (BER) and the per-user achievable rate
divided by the total consumed power (i.e., u”u). The achievable rate
I(si; ;) for the ith UE can be obtained as

Pri\si,H(rilsiv H) }

Pri|H(T¢|H)
The conditional probability mass functions in (19) are not amenable
to closed-form expressions. To tackle this difficulty, inspired by [28],
we resort to empirical probability distributions obtained by generating
sufficiently many channel and symbol realizations, and then compute
an approximation (in fact, a lower bound) for the mutual information
in (19).

The energy efficiency of the WC-SLP scheme is plotted in Fig. 2 as
a function of the UEs’ target SNR, for different values of 3. To have a
benchmark for comparison, the results for the SLP problem (4) in the
absence of any distortion are also presented. Among all the values of 8
shown in Fig. 2, choosing 3 = 1 results in a higher energy efficiency,
even compared to the ideal undistorted SLP. This is a consequence of
relaxing the CI constraints in the SLP problem, leading to a lower
transmit power in exchange for a slightly higher BER. Increasing (3,
on the other hand, reduces the energy efficiency of the proposed WC-
SLP scheme. This can simply be justified by considering the limiting
case f — oo, in which the design formulation (5) aims to strictly
impose the CI constraints, regardless of the required transmit power.
In general, a proper choice of /3 is application-dependent and relies on
the corresponding system/user requirements. For instance, in wireless
systems with strict target BERs, a larger £ is more preferred. On the
other hand, in scenarios where transmit power is strictly limited, one
may choose smaller values for 5. Moreover, the value of S can be
adjusted in a more sophisticated way, e.g., letting 3 vary as a function
of the target SNR ~, which is the topic of an ongoing research.

I(si;ri) = By oy 1 {IOgg (19)

V. CONCLUSIONS

In this paper, we proposed a worst-case design formulation for the
QoS-constrained SLP problem minimizing the total transmit power
in a scenario where the precoder’s output undergoes linear distortion
with bounded additive noise. A new problem formulation was first
proposed, which led us to cast the worst-case design of the distorted
SLP as a min-max problem by introducing relaxed CI constraints.
We then solved this problem using an iterative coordinate ascent-
descent algorithm to obtain the robust precoded signal. This algorithm
iterates between finding the optimal precoded signal and the worst-
case additive distortion vector. Finding the precoded signal involves
solving a non-negative least squares problem, while obtaining the
worst-case distortion vector leads to a semi-closed form solution with
only one scalar parameter which has to be calculated numerically. Our
simulation results show that the proposed worst-case approach can
outperform the undistorted SLP method in terms of energy efficiency.
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