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1 Introduction

Automation, i. e., the use of machines to replace human beings in the performance of tasks,
has been a key driver of economic growth since the beginning of the industrial revolution
(Landes (1969), Mokyr (1990), Allen (2009)). At least since the early 1960ies, this tendency
has become more pronounced as technological advances in areas like robotics, informa-
tion technology, digital technology, and artificial intelligence substantially widened the
scale and scope of automation (Brynjolfsson and McAfee (2014), Ford (2015), Ross (2016),
Goldfarb and Tucker (2017)).

In this paper I argue that the intensified implementation of automation technologies since
the 1960ies reflects two main developments in the global macroeconomic environment
in which firms have been operating: population aging and the decline in the relative
price of investment goods. These developments are also shown to account for the widely
observed decline in the labor share over this period (Piketty (2014), Karabarbounis and
Neiman (2014)).

Population aging is the process by which older individuals become a proportionally larger
fraction of the total population. Its two main causes, an increase in longevity and a de-
cline in fertility (Weil (2008)), play a central role in my analysis. Figure 1.1 documents the
substantial increase in the survival probability for males to age 65, a proxy for longevity,
in 14 industrialized countries from 1960 - 2016.1 Figure 1.2 shows the decline in the total
fertility rate from 1969 - 2016.2 Hence, for many industrialized countries the period from
1960 to today has been an era of population aging. This era is predicted to extend further
into the 21st century (Lutz, Sanderson, and Scherbov (2008), United Nations (2015)). The
effects of population aging on automation, factor shares, and economic growth identified
in this paper will therefore remain of relevance.

1 The survival probability for males to age 65 is defined as the percentage of a cohort of newborn male
infants that would survive to age 65, if subject to age specific mortality rates of the specified year. It has a
natural counterpart in my theoretical analysis below. This motivates the choice of this variable as a proxy
for longevity.

Figure 1.1 shows a sample of 14 countries: Australia, Belgium, Canada, Denmark, France, Germany, Ire-
land, Italy, Netherlands, Spain, Sweden, Switzerland, UK, US. The data are from United Nations (2017)
accessed through https : //data.worldbank.org/indicator/SP.DYN.TO65.MA.ZS?end = 2016. The time
horizon is 1960-2016. Regressing the survival probability on a country fixed effect and years gives a slope
coefficient of roughly 0.37%. Hence, over 30 years the increase in the average survival probability is 11.1%.
Qualitatively similar evolutions obtain for women.

2The sample includes the same 14 countries as shown in Figure 1.1. The data are taken from https :
//data.worldbank.org/indicator/SP.DYN.TFRT.IN?end = 2016&locations = AU&start = 1960&view =

chart&year = 2015. The total fertility rate is the number of children that would be born to a woman if she
were to live to the end of her childbearing years and bear children in accordance with age-specific fertility
rates of the specified year. Regressing the total fertility rate on a country fixed effect and years gives a slope
coefficient of roughly −0.215. Hence, over 30 years the decline in the average total fertility rate is equal to
−0.645.
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Figure 1.1: The Increase in the Survival Probability for Males to Age 65 in 14 Industri-
alized Countries from 1960 - 2016.
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The second development that characterizes the macroeconomic environment since the
1960ies is the global decline in the relative price of investment goods. This decline was mod-
erate until 1980, and then accelerated until today (Gordon (1990), Greenwood, Hercovitz,
and Krusell (1997), Fisher (2006), Karabarbounis and Neiman (2014)).

I incorporate these features into a novel one-sector endogenous growth model to study
their implications for automation, factor shares and economic growth. Competitive firms
engage in automation investments that substitute new machines for workers in the per-
formance of tasks. The production sector builds on and extends ideas of the so-called
induced innovations literature (Hicks (1932), Drandakis and Phelps (1966), Funk (2002)).
The household sector features two-period lived overlapping generations. Individuals
face a survival probability when they enter the second period of their lives. Population
aging corresponds to an increase in this probability and/or to a decline in fertility. These
changes capture the tendencies shown in Figure 1.1 and 1.2. The per-period utility func-
tion of individuals is of the generalized log-log type recently proposed by Boppart and
Krusell (2018). Hence, the labor supply is endogenous and declines at a constant rate in
response to a constant wage growth (Irmen (2018)).

My key findings pertain to the long run. The economy’s steady-state path is consistent
with Kaldor’s famous facts (Kaldor (1961)). Moreover, in line with recent empirical ev-
idence, the supply of hours worked declines at a constant rate (Huberman and Minns
(2007), Boppart and Krusell (2018)). Periodic automation investments generate sustained
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Figure 1.2: The Decline in the Total Fertility Rate in 14 Industrialized Countries from
1960 - 2016.
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productivity growth that supports the growth of per-capita variables in the long run.
Population aging as well as a permanent decline in the price of investment goods are
shown to imply more automation, a lower labor share, and faster economic growth.

The intuition behind these findings may be sketched as follows. When people expect
to get older they want to work longer hours and to save a larger fraction of their earn-
ings. Both behavioral adjustments are meant to increase consumption possibilities in old
age and increase savings. This stimulates the process of capital accumulation and allows
for higher wages. As labor becomes more expensive, firms respond with more automa-
tion. This reduces the labor share as automation drives a wedge between the marginal
product of labor and the real wage. Accordingly, in steady state the labor share will
be lower, however, the productivity of labor grows faster. A decline in the fertility rate
mimics these findings though the channel is somewhat different. Savings per worker and
wages will be higher in all periods following a permanent fertility decline, hence, also in
steady state. As a consequence, the long run has more automation, a lower labor share,
and faster economic growth. A lower real price of automation investments reduces in-
vestment costs and induces a general equilibrium effect which arises since the price of
automation investments also affects the demand for labor. As the former dominates the
latter, firms automate more so that labor productivity grows faster. Hence, in the long
run, a lower real price of automation investments reduces the labor share and speeds up
economic growth.
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The derivation of the role of population aging and the decline in the relative price of
automation investments for the long run requires several intermediate steps. Some of
these are original and deliver novel and interesting insights in their own right. They
include the following. First, a central conceptual innovation of this paper concerns the
production sector which builds on and extends the one devised in Irmen (2017) and Ir-
men and Tabakovic (2017). Here, competitive firms undertake automation investments in
new machines. These machines embody new technological knowledge that improves the
productivity of labor in the performance of tasks. The incentives to automate are more
pronounced the higher the wage and the lower the price of automation investments. At
the level of the individual task, automation gives rise to a rationalization effect as fewer
working hours are needed to perform a task and to a productivity effect as the cost per task
falls. These effects imply that automating firms will expand the number of performed
tasks and produce more output. It is in this sense that automation is associated with a
task expansion effect and an output expansion effect.

Second, important macroeconomic implications derive directly from the behavior of the
production sector. First, I establish that automation implies a higher aggregate demand
for labor if and only if the real wage is sufficiently high. In other words, strong incentives
to automate boost the aggregate demand for labor. Similarly, a decline in the price of
automation investments boosts the aggregate demand for labor if the incentives to au-
tomate are strong. Simple back-of-the envelope calculations suggest that, irrespective of
whether automation incentives are strengthened via a higher real wage or via a lower
price of investments, the aggregate demand for labor will be higher if automation in-
vestments are undertaken. Second, I show that automation unequivocally reduces the
labor share. As mentioned above, this obtains since automation drives a wedge between
the marginal product of labor and the real wage. In a sense, workers pay for the au-
tomation investment that raises their productivity. Finally, I highlight that automation is
labor-augmenting in the reduced form of the aggregate production function.

Third, I analyze the behavior of the household sector that has two-period lived overlap-
ping generations facing a survival probability at the beginning of second period of their
lives. Cohorts are endowed with a per-period utility function of the log-log type recently
proposed by Boppart and Krusell (2018). I show that cohorts expand their labor supply
and save more in response to an increase in the survival probability. To the best of my
knowledge, the present paper is the first that incorporates preferences of the Boppart-
Krusell class into a full-fledged endogenous growth model.

The fourth set of results relates to the role of automation for the equilibrium wage and the
equilibrium labor share in the short run. Population aging due to a higher life expectancy
increases the labor supply and, therefore, unequivocally reduces the equilibrium wage.
This weakens the incentives to automate, and shifts the labor share upwards. Hence,
the short-run and the long-run implications of population aging through a higher life
expectancy on automation incentives are of opposite sign. As a decline in the price of
automation investments increases the aggregate demand for labor, it will also increase
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the equilibrium wage. As a consequence, there are two reinforcing channels through
which a lower price of automation investments boosts the incentives to automate in the
short run: a direct effect on firms’ incentives and an indirect effect through the labor
market equilibrium.

The fifth set of results concerns the transitional dynamics. I show that the steady state
is unique and stable over the range of parameter values that guarantee endogenous au-
tomation investments.

Finally, I present a simple calibration exercise. It highlights that the model is consistent
with the orders of magnitude for long-run growth rates of per-capita variables and hours
worked, the labor share, and the rental rate of capital that are found in the data.

The present paper is related to several strands of the literature. First, it contributes
to the recent literature on endogenous economic growth and automation (Acemoglu
and Restrepo (2018a), Acemoglu and Restrepo (2018c), Acemoglu and Restrepo (2018d),
Hémous and Olsen (2018), Krenz, Prettner, and Strulik (2018)). Contrary to a commonly
held opinion, I show that automation can be modelled as endogenous labor-augmenting
technical change resulting from investments in new machines that substitute for human
labor in a widening range of tasks.3 This analytical strategy is consistent with well re-
ceived predictions. For instance, automation increases the demand for labor if and only
if the induced productivity gains are sufficiently large (see Proposition 4 below). Intu-
itively, this finding can be traced back to an induced (aggregate) rationalization and an
induced (aggregate) task expansion effect.4 Moreover, automation unequivocally reduces
the labor share (see Proposition 6 below).

An alternative approach to modelling the distinction between “robot capital goods” and
“ordinary physical capital” in a one-sector growth model was proposed by Steigum
(2011). This author shows that endogenous long-run growth is possible if the elastic-
ity of substitution between robot capital and labor is high. In contrast to this approach,
the choice of using robots and their quality is endogenous in my model. Moreover, sus-
tained growth is due to the accumulation of technological knowledge embodied in new
machines rather than to a mechanism that mimics the AK-model.

3In view of recent studies by Sachs and Kotlikoff (2012), Nordhaus (2015), Bessen (2017), or Graetz and
Michaels (2018), Acemoglu and Restrepo (2018c), p. 1, argue that common approaches of modelling technical
change as factor-augmenting ” ... miss a distinctive feature of automation: the use of machines to substitute
for human labor in a widening range of tasks. (...) Partly as a result, factor-augmenting technologies have
a limited scope to reduce the demand for labor. (...) In addition, these approaches relate the impact of
technology on the labor share to the elasticity between capital and labor....”. I show in Section 2.2 that
technical change is labor-augmenting in my analytical framework and does not suffer from any of these
potential drawbacks.

4Acemoglu and Restrepo (2018a) identify a displacement effect that reduces the labor demand in response
to automation at the extensive margin. My results suggest that similar qualitative implications of automation
obtain even in the absence of an extensive margin.
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Second, the present paper complements the literature on endogenous economic growth
and demographic change (Abeliansky and Prettner (2017), Acemoglu and Restrepo (2018b),
Bloom, McKenna, and Prettner (2018), Irmen (2017), Prettner and Trimborn (2017)). In
contrast to these contributions, the focus of my research is on the link between popula-
tion aging, the individual labor supply, individual savings, and the equilibrium incen-
tives to automate. This leads to the insight that the qualitative effects of population aging
on automation incentives in the short and in the long run are of opposite sign.

Finally, my research is related to the literature that aims to explain the global decline in
the labor share. Unlike the theory proposed in Piketty (2014), here, the steady-state sav-
ings rate and the economy’s growth rate are endogenous (Irmen and Tabakovic (2016)).
I concur with Karabarbounis and Neiman (2014) that a decline in the relative price of
automation investments is a key explanatory variable. However, the mechanics these au-
thors propose is quite different from mine. Moreover, I maintain that the decline in the
labor share is a long-run consequence of population aging. Higher savings for old age
foster the accumulation of capital, lead to higher wages, more automation, and a decline
in the labor share. The implications of my model also differ from those derived in Zeira
(1998) and Prettner (2016). In contrast to the latter, in my framework the steady-state la-
bor share remains bounded away from zero even if if the incentives to automate are very
high (see Corollary 3 below).

The remainder of this paper is organized as follows. Section 2 presents the model. Sec-
tion 2.1 has a detailed discussion of the production sector. Here, the notions of tasks
and of automation are introduced. Moreover, I show that the profit-maximizing pro-
duction plan associates automation with a rationalization effect, a productivity effect, a
task-expansion, and an output expansion effect. Section 2.2 studies important macroe-
conomic implications that directly derive from the behavior of firms. In particular, I
characterize the relationship between automation and the aggregate demand for labor
(Section 2.2.1), its role for factor shares (Section 2.2.2), and show that technical change is
labor-augmenting in the reduced-form production function (Section 2.2.3). Section 2.3 in-
troduces the household sector. Section 3 studies the inter-temporal general equilibrium.
Following its definition (Section 3.1), I focus on the labor market in Section 3.2. Here, I
show that the labor market equilibrium is unique and establish the short-run effects of
population aging and a declining price of automation investments on the equilibrium
wage and automation incentives. The dynamical system is presented in Section 3.3. Sec-
tion 4 studies the steady state and the transitional dynamics. Here, I derive the long-run
implications of population aging and a declining price of automation investments for au-
tomation, factor shares, and economic growth. Section 4.3 presents a simple calibration
exercise. Section 5 concludes. All proof are relegated to Appendix A. Appendix B is an
“online appendix.” It contains additional results and generalizations referred to in the
main part of the paper.
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2 The Model

The economy comprises a production, a household, and an insurance sector in an infinite
sequence of periods t = 1, 2, ..., ∞. The production sector has competitive firms that
manufacture a single good. Building on Irmen (2017) and Irmen and Tabakovic (2017)
the production of this good requires tasks to be performed. The manufactured good may
be consumed or invested. If invested, it either serves as contemporaneous automation
investments or as future fixed capital.

The household sector has overlapping generations of individuals who potentially live
for two periods, youth and old age. Survival into old age is stochastic. The individual
lifetime utility function features a Boppart-Krusell generalized log-log utility function
(Boppart and Krusell (2018)). Hence, the labor supply is endogenous. I follow, e. g., Yaari
(1965) or Blanchard (1985), and assume a perfect annuity market for insurance against
survival risk.

There are four objects of exchange, the manufactured good, fixed capital, labor, and an-
nuities. Each period has markets for these objects. Firms rent fixed capital, undertake
automation investments, demand labor, and supply the manufactured good. House-
holds demand the manufactured good for consumption and savings, supply labor, and
exchange savings for annuity policies. Insurance companies sell these policies and rent
the savings as fixed capital to firms producing in the next period. Without loss of gener-
ality, fixed capital fully depreciates after one period. The manufactured good serves as
numéraire.

Throughout, I denote the time-invariant growth rate of some variable xt between two
adjacent periods by gx. Moreover, I often use subscripts to write first- and second-order
derivatives. For instance, the notation for the derivatives of some function G(x, y) would
be G2(x, y) ≡ ∂G(x, y)/∂y or G21(x, y) ≡ ∂2G(x, y)/∂y∂x. I shall also write G instead of
G(x, y) or G(·) whenever this does not cause confusion.

2.1 The Production Sector

The production sector has many small firms operating under perfect competition. Their
behavior may be studied through the lens of a competitive representative firm. At all t,
this firm has access to the production function

Yt = ΓKγ
t N1−γ

t , 0 < γ < 1. (2.1)

Here, Yt denotes the total output of the manufactured good, Kt the amount of fixed cap-
ital, and Nt the amount of performed tasks. The parameter Γ > 0 reflects cross-country
differences in geography, technical and social infrastructure that affect the “transforma-
tion” of fixed capital and tasks into the manufactured good.

7



The performance of tasks requires man-hours and machines.5 These inputs are strong
substitutes with an elasticity of substitution strictly greater than unity. Machines embody
technological knowledge. Automation results from investments in new machines that
embody improved technological knowledge and increase the productivity of labor in the
performance of tasks.

2.1.1 Tasks and Technology

Let n ∈ R+ index these tasks. At t, each task is performed once. The production function
of task n is

1 = at(n)ht(n), (2.2)

where ht(n) is man-hours, and at(n) is the productivity per man-hour in the performance
of task n. The latter is given by

at(n) = At−1 (1 + qt(n)) , qt(n) ≥ 0. (2.3)

Here, At−1 > 0 is an aggregate indicator of the level of technological knowledge at t− 1
to which the firm has free access at t. To fix ideas, one may think of At−1 as representing
the level of technological knowledge embodied in the last vintage of installed machines
that may still be activated. The variable qt(n) is the growth rate of productivity per man-
hour in task n at t. A growth rate qt(n) > 0 requires an automation investment in a new
machine at t. This machine partially replaces labor in the performance of task n. The
degree to which this substitution occurs is endogenous.6

The invention, construction, installation, and running of a new machine for task n gives
rise to investment outlays of

it(n) = αqt(n), α > 0, (2.4)

units of the contemporaneous manufactured good.7 Here, I interpret α as the real price
of an automation investment generating a productivity growth rate in hours worked per

5I use the term “man-hour” without any gender-specific connotation.

6Allowing for imperfect substitution of labor with machines suggests that task n comprises a set of sub-
tasks. Following the substitution, more of these subtasks are performed by machines.

Imperfect substitution of machines for people is in line with recent evidence, e. g., on the effect of machine
learning on occupations presented in Brynjolfsson, Mitchell, and Rock (2018). These authors suggest that
the focus of modelling technology should not be on full automation.

7If task n was performed in t− 1 then it(n) would also include the scrap costs of the old machine that is
replaced. To avoid the asymmetry this would introduce for the investment outlays of tasks n ∈ [0, Nt−1] and
n ∈ (Nt−1, Nt] if Nt > Nt−1 we neglect such expenses. This comes down to assuming that the firm can get
rid of old machines without incurring a cost. In other word, the firm’s production set satisfies the property
of free disposal (see, Mas-Colell, Whinston, and Green (1995), p. 131). Observe further that my qualitative
results extend to more general functions i as long as these are increasing and convex.
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task of qt(n).8 Investment outlays increase in the growth rate of productivity, qt(n). This
reflects a higher cost associated with improved technological knowledge that the new
machine embodies.

The technology described by equations (2.2) - (2.4) incorporates the notion of automa-
tion as the substitution of man-hours per task with technological knowledge. Indeed, in
(at(n), ht(n)) - space equation (2.2) has an interpretation of a unit isoquant. It states the
set of necessary input combinations of man-hours and technological knowledge as

ht(n) =
1

at(n)
, at(n) ≥ At−1. (2.5)

This is illustrated in Figure 2.1. At t = 1, the relevant isoquant is the blue curve h1(n)
starting at point (A0, 1/A0). Since A0 > 0 is given, task n requires at most 1/A0 man-
hours. The use of more technological knowledge shifts a1(n) further to the right of A0.
Accordingly, the amount of man-hours shrinks along the isoquant. At t = 2, the relevant
isoquant, h2(n), starts at (A1, 1/A1). As depicted, A1 > A0 so that h2(n) begins to the
right of A1. Again, if more technological knowledge than A1 is used in the performance of
task n then a2(n) moves further to the right of A1, and the amount of man-hours shrinks.

Since technological knowledge is embodied in machines the substitution of man-hours
per task with technological knowledge has to occur through a substitution of man-hours
with machines. Using qt(n) = it(n)/α ≥ 0 from (2.4) in (2.5) delivers the unit isoquant
describing the set of necessary input combinations of man-hours and investment outlays
as

ht(n) =
1

At−1

(
1 + it(n)

α

) , it(n) ≥ 0. (2.6)

Figure 2.2 shows this isoquant in the (it(n), ht(n)) - space. Hence, automation invest-
ments substitute for man-hours. In fact, ht(n) and it(n) are strong substitutes in the sense
that the elasticity of substitution, ESt(n), between both inputs is9

ESt(n) = 2 +
α

it(n)
= 2 +

1
qt(n)

. (2.7)

Hence, ESt(n) ≥ 2 and declines in the investment volume.

Finally, observe that void of an automation investment at t task n may be performed with
a machine of the past vintage that embodies the technological knowledge represented by
At−1, hence ht(n) = 1/At−1 if it(n) = 0.

8In a somewhat broader sense, α parameterizes the efficiency of the activities that eventually bring the
new machine into use.

9From (2.6) the technical rate of substitution, TRSt(n), between an automation investment and man-hours
obtains as TRSt(n) ≡ dht(n)/dit(n) = −ht(n)/(α + it(n)). Then, ESt(n) ≡ (TRSt(n)/ (ht(n)/it(n))) ·
(dTRSt(n)/d (ht(n)/it(n)))

−1. A detailed derivation of equation (2.7) can be found in Appendix B.1. There,
I also prove that the ES exceeds unity for general functions it(n) = ι(qt(n)), where ι : R+ → R+ is increasing
and convex (see Proposition 17). However, ES may be smaller than 2.
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Figure 2.1: Automation as the Substitution of Man-Hours per Task with Technological
Knowledge. The blue curve starting at (A0, 1/A0) is h1(n). Hence, at t = 1 automation,
i. e., the substitution of man-hours per task with technological knowledge, occurs along
the blue curve to the right of A0. At t = 1, the blue curve starting at (A1, 1/A1) is h2(n).
Automation occurs along the blue curve to the right of A1.
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1
A1
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A0 A1

h1(n) h2(n)

2.1.2 Aggregate Technological Knowledge Growth

Technological knowledge embodied in a new machine is proprietary knowledge of an
investing firm only in t, i. e., in the period when the investment is made. Subsequently,
this knowledge becomes embodied in the indicator At, At+1,..., with no further scope for
proprietary exploitation.

The evolution of this indicator is given by

At = max
n∈[0,Nt]

{at(n)} = At−1 max
n∈[0,Nt]

{1 + qt(n)} . (2.8)

Accordingly, the stock of technological knowledge to which all firms have access at the
beginning of period t + 1 reflects the highest level of technological knowledge attained
for any of the n ∈ [0, Nt] tasks performed at t. As suggested by Figures 2.1 and 2.2,
automation investments at the level of individual firms in conjunction with knowledge
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Figure 2.2: Automation as the Substitution of Man-Hours per Task with New Ma-
chines. At t = 1, A0 is given, and h1(n) is the unit isoquant of (2.6). Automation means
i1(n) > 0. The greater the investment outlays the fewer man-hours are needed to per-
form task n. At t = 2, A1 is given, and h2(n) is the relevant unit isoquant. Automation
means i2(n) > 0. Since A1 > A0 the unit isoquant shifts downwards.
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accumulation at the level of the economy as a whole will be the source of technological
progress and sustained economic growth.

2.1.3 The Profit-Maximizing Production Plan

The representative firm takes the sequence {wt, Rt, At−1}∞
t=1 of real wages, real rental

rates of capital, and the aggregate productivity indicators as given and chooses a produc-
tion plan

(
Yt, Kt, It, Nt, Hd

t , qt(n), ht(n), i (qt(n))
)

for all n ∈ [0, Nt] and all t. Here, Kt is the
aggregate demand for fixed capital, It the aggregate demand for automation investments,
and Hd

t the aggregate demand for hours worked, i. e.,

It =
∫ Nt

0
i (qt(n)) dn and Hd

t =
∫ Nt

0
ht(n)dn.

The optimal production plan maximizes the sum of the present discounted values of

11



profits in all periods. Since an automation investment generates proprietary technologi-
cal knowledge only in the period when it is made, the inter-temporal maximization boils
down to the maximization of per-period profits denoted by Πt. Accordingly, for each
period t, the optimal plan solves

max(
Kt,Nt,[qt(n)]

n=Nt
n=0

) Πt = ΓKγ
t N1−γ

t − RtKt −
∫ Nt

0

[
wt

At−1 (1 + qt(n))
+ i (qt(n))

]
dn.

Here, the last term is the sum of the costs of all performed tasks. In view of (2.2) and (2.3)
the time spent on the performance of task n is

ht(n) =
1

At−1 (1 + qt(n))
. (2.9)

Hence, task n gives rise to a wage cost wtht(n) and an investment cost i(qt(n)). For
further reference, let ct(n) denote these costs, i. e.,

ct(n) = wtht(n) + i(qt(n)). (2.10)

At all t, the firm’s maximization problem may be split up into two parts. First, for each
n ∈ R+ the firm chooses the value qt(n) ∈ R+ that minimizes the cost of task n, i. e., it
solves

min
[qt(n)]

∞
n=0

ct(n). (2.11)

Second, at minimized costs per task, the firm determines the profit-maximizing number
of tasks, Nt, and the desired amount of fixed capital, Kt.

Cost-Minimization per Task

Let ωt ≡ wt/At−1 denote the real wage per man-hour in efficiency units before any
investment is being undertaken. Then, for all n ∈ R+ the respective first-order (sufficient)
condition to problem (2.11) is

−ωt

(1 + qt(n))2 + α ≥ 0, with strict inequality only if qt(n) = 0. (2.12)

This condition relates the marginal reduction of task n’s wage costs to the marginal
increase in its investment costs. Since this trade-off is the same for all tasks we have
qt(n) = qt where

qt = q (ωt, α) ≡


−1 +

√
ωt
α if ωt ≥ α,

0 if ωt ≤ α.

(2.13)
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Hence, if ωt > α then qt > 0 with ∂q (ωt, α) /∂ωt > 0 and ∂q (ωt, α) /∂α < 0. In other
words, the more expensive the man-hour under the old technology is expected to be,
i. e., the higher ωt, the higher is qt.10 Similarly, the lower the real price of automation
investments, i. e., the lower α, the higher is qt. However, if ωt ≤ α then no automation
investments are undertaken and the performance of tasks occurs with old machines that
embody the technology represented by At−1. Intuitively, this corner solution arises if at
qt(n) = 0 the marginal reduction of the wage cost is too small compared to the marginal
investment costs, α > 0. Then, labor is so cheap that it retains its comparative advantage
over new machines.

Using (2.13) in (2.4), (2.9), and (2.10) delivers the cost-minimizing choices per task of
hours worked, investment outlays, and costs that I denote by ht, it, and ct.

Proposition 1 (Cost-Minimization per Task)

The minimization of costs per task delivers continuous, piecewise defined functions

qt = q (ωt, α) , ht =
h (ωt, α)

At−1
, where h (ωt, α) ≡ 1

1 + q (ωt, α)
,

it = αq (ωt, α) ≡ i (ωt, α) , and ct = ωth (ωt, α) + i (ωt, α) ≡ c (ωt, α) .

For (2.2) - (2.4) the following closed-form solutions obtain in addition to (2.13):

• if ωt ≥ α then

ht =
1

At−1

√
α

ωt
, it =

√
αωt − α, and ct = 2

√
αωt − α,

• if ωt ≤ α then

ht =
1

At−1
, it = 0, and ct = ωt.

10This intuition mimics a key finding of the so-called induced innovations literature of the 1960s: higher
anticipated wages induce faster labor-saving technical change (see, Hicks (1932), von Weizsäcker (1962),
Kennedy (1964), Samuelson (1965), Drandakis and Phelps (1966), or Funk (2002)).
One way to bring my analysis even closer to this literature is to assume that automation investments, like
fixed capital investments, are undertaken in the period before they are used. Then, the investment outlays
(2.4) occur at t− 1 and lead to a cost in units of period-t output of Rti (qt(n)). Accordingly, the cost mini-
mization per task gives rise to results that mimic Proposition 1 where ωt is to be replaced by ω̃t ≡ ωt/Rt
and ct by c̃t = Rt

[
2
√

αω̃t − α
]
. Hence, in line with the literature of the 1960s the incentive to engage in

an automation investment hinges now on the (anticipated) relative price of labor with respect to machines
before the investment is undertaken.
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Observe that the notation h (ωt, α) is a shortcut for h (q (ωt, α)) which makes the effect of
induced productivity growth through automation on man-hours per task explicit. Simi-
larly, i (ωt, α) and c (ωt, α) are abbreviations for i (α, q (ωt, α)) and c (q (ωt, α) , ωt, α). The
latter notation highlights the presence of direct and indirect effects when ωt and α change.
Throughout this paper I shall stick to simpler notation introduced in Proposition 1.

The following corollary to Proposition 1 highlights that cost-minimizing automation in-
vestments give rise to a rationalization effect and to a productivity effect.

Corollary 1 (Rationalization and Productivity Effect)

If ωt > α then

ht <
1

At−1
(rationalization effect)

and

ct < ωt (productivity effect).

Hence, if automation is profitable then it means rationalization, i. e., fewer man-hours
per task. The productivity effect results since in spite of investment outlays, a cost-
minimizing automation investment reduces the overall cost per task as it reduces the
wage costs.

A higher wage strengthens the rationalization and the productivity effect. For the former,
this holds since ∂q/∂ωt > 0 implies dht/dωt = (∂h/∂ωt) /At−1 < 0. For the latter, this is
true since the impact of ωt on ct is less than proportionate. Indeed, Proposition 1 and the
envelope theorem imply

dct

dωt
= h (ωt, α) +

ωt
∂ht

∂qt
+

∂it

∂qt︸ ︷︷ ︸
=0

 ∂q(ωt, α)

∂ωt
= h (ωt, α) ∈ (0, 1) (2.14)

so that

dct

dωt

ωt

ct
=

ωth(ωt, α)

ωth(ωt, α) + i (ωt, α)
< 1.

Accordingly, the productivity effect becomes more pronounced in response to a wage
hike as both the difference ωt − ct and the ratio ωt/ct increase in ωt.

A lower real price of automation investments, i. e., a lower α, implies a higher qt since
∂q/∂α < 0. This strengthens the rationalization effect as dht/dα = (∂h/∂α) /At−1 > 0,
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and the productivity effect as

dct

dα
=

ωt
∂ht

∂qt
+

∂it

∂qt︸ ︷︷ ︸
=0

 ∂q(ωt, α)

∂α
+

∂i (ωt, α)

∂α
= qt > 0. (2.15)

Profit-Maximization at Minimized Costs

At minimized costs per task profits become

Πt = ΓKγ
t N1−γ

t − RtKt − ctNt,

and the maximization with respect to Nt and Kt delivers the first-order conditions

Nt : Γ (1− γ)Kγ
t N−γ

t − ct = 0,

(2.16)

Kt : ΓγKγ−1
t N1−γ

t − Rt = 0.

Both conditions require the respective value product to equal marginal cost. The marginal
cost of task Nt is ct. This leads to the following proposition.

Proposition 2 (Profit-Maximizing Tasks, Output, Profits, and the Factor-Price Frontier)

Given Kt, the profit-maximizing amounts of tasks and output at t are

Nt = Kt

(
Γ(1− γ)

ct

) 1
γ

≡ KtN (ct) and Yt = KtΓ
(

Γ(1− γ)

ct

) 1−γ
γ

≡ KtY (ct) .

Moreover,

Rt = Γ
1
γ γ

(
1− γ

ct

) 1−γ
γ

,

and Πt = 0.

Proposition 2 states that, given Kt, the first-order conditions (2.16) imply that Nt, Yt, and
Rt may be expressed as functions of ct. In particular, the functions N (ct) and Y (ct)

show, respectively, how the amount of tasks per unit of fixed capital, Nt/Kt, and the
productivity of fixed capital, Yt/Kt, hinges on the minimized costs per task, ct. At the
same time, Rt and ct are linked through the factor-price frontier.11 One readily verifies

11The input demand and output supply functions of a competitive firm under constant returns to scale
are not well defined. Hence, given Kt, a change in ct requires an adjustment in the rental rate of capital, Rt,
along the factor-price frontier.
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that a decline in ct increases the profit-maximizing amount of tasks since the marginal
value product of tasks is equal to a lower cost per task at a greater amount of tasks.
Hence, N′ (ct) < 0. As Y(ct) = N (ct)

1−γ this implies Y′ (ct) < 0. Finally, the factor-price
frontier dictates that Rt will fall in ct, too. Finally, constant returns to scale of F imply
Πt = 0.

The following corollary to Proposition 2 establishes that automation gives rise to a task
expansion effect and an output expansion effect.

Corollary 2 (Task and Output Expansion Effect)

If ωt > α then

N (ct) > N (ωt) (task expansion effect)

and

Y (ct) > Y (ωt) (output expansion effect).

The intuition behind Corollary 2 is straightforward. If ωt > α then firms undertake
automation investments and the productivity effect of Corollary 1 implies ct < ωt. Then,
the task expansion effect and the output expansion effect of automation follow since N′ (ct) <

0 and Y′ (ct) < 0.

To complete the discussion of the profit-maximizing production plan let me note that,
given Kt, Proposition 1 and 2 give rise to aggregate demands for automation investments
and for hours worked that may be expressed as

It = itNt = Kti(ωt, α)N(c(ωt, α)) and Hd
t = htNt =

(
Kt

At−1

)
h(ωt, α)N(c(ωt, α)). (2.17)

The following proposition takes stock of the findings of this section.

Proposition 3 (Unique Profit-Maximizing Production Plan)

For a given sequence {wt, Rt, At−1}∞
t=1 there is a unique profit-maximizing production plan of

the representative firm. It satisfies Proposition 1, 2 and equation (2.17).
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2.2 Macroeconomic Implications of Automation - A Static View

In this section I establish and discuss three key macroeconomic consequences of automa-
tion that result directly from the aggregate behavior of firms in a given period t where Kt

and At−1 are given. In particular, I show that12

i) automation reduces the aggregate demand for hours worked if and only if the in-
duced labor productivity growth is small (Section 2.2.1),

ii) automation unequivocally reduces the labor share (Section 2.2.2), and

iii) automation is labor-augmenting for the economy as a whole (Section 2.2.3).

2.2.1 Automation and the Aggregate Demand for Hours Worked

Does automation increase or decrease the aggregate demand for hours worked? To ad-
dress this question I consider some period t and assume ωt > α. Then, I compare the
aggregate demand for hours worked resulting under profit-maximizing automation in-
vestments to the demand obtained without automation. I denote the former demand by
Hd1

t (ωt, α) and the latter by Hd2
t (ωt).

Using Proposition 1, 2, and (2.17), the aggregate demand for hours worked under profit-
maximizing automation investments is

Hd1
t (ωt, α) =

(
Kt

At−1

)
h (ωt, α) N (c (ωt, α)) =

(
Kt

At−1

)√
α

ωt

(
Γ (1− γ)

2
√

αωt − α

) 1
γ

. (2.18)

Without automation investments h (ωt, α) = 1 and c (ωt, α) = ωt such that N (c (ωt, α)) =

N (ωt). Hence, the aggregate demand for hours worked becomes

Hd2
t (ωt) =

(
Kt

At−1

)
N (ωt) =

(
Kt

At−1

)(
Γ (1− γ)

ωt

) 1
γ

. (2.19)

12These three propositions are difficult to reconcile with a representation of automation as exogenous,
factor-augmenting technical change in a neoclassical aggregate production function F (BK, AL). On the one
hand, if automation is labor-augmenting, i. e., for a higher A, the demand for labor falls only if the capital
share exceeds the elasticity of substitution between capital and labor. Moreover, the labor share falls only if
the elasticity of substitution exceeds unity. With a range for the capital share of about 0.3− 0.4 and for the
elasticity of substitution of about 0.5− 1 (see Oberfield and Raval (2014)) both predictions seem unreason-
able. On the other hand, if automation is capital-augmenting, i. e., for a higher B, then the demand for labor
increases as both arguments in F are complements, whereas, for an elasticity of substitution smaller than
unity, the labor share falls (Irmen (2014), Acemoglu and Restrepo (2018c)).
See, e. g., Sachs and Kotlikoff (2012) or Nordhaus (2015) for recent attempts to model automation as exoge-
nous, capital-augmenting technical change.
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Both demands decline in the real wage. However, their slopes differ. The slope of
Hd1

t (ωt, α) reflects an induced aggregate rationalization effect as well as an induced aggre-
gate task expansion effect. Both effects are negative. As wt, respectively ωt, increases, the
former effect means that fewer man-hours per task will be demanded for all performed
tasks. The latter effect reflects the increase in the cost per task and the concomitant decline
in the total number of performed tasks.

Analytically, these effects appear as

dHd1(ωt, α)

dωt
=

(
Kt

At−1

)
N (ct)

∂h (ωt, α)

∂ωt︸ ︷︷ ︸
(−)︸ ︷︷ ︸

Induced Aggregate Rationalization Effect

+

(
Kt

At−1

)
h (ωt, α)

∂N (ct)

∂ct︸ ︷︷ ︸
(−)

dc (ωt, α)

dωt︸ ︷︷ ︸
(+)︸ ︷︷ ︸

Induced Aggregate Task Expansion Effect

=

(
Kt

At−1

) [
N (ct)

∂h (ωt, α)

∂ωt
+ [h (ωt, α)]2

∂N (ct)

∂ct

]
< 0,

where the second line follows from (2.14).

Void of automation, a higher real wage affects Hd2
t (ωt) only through the task expansion

effect, i. e.,

dHd2(ωt)

dωt
=

(
Kt

At−1

)
∂N (ωt)

∂ωt
< 0.

The following proposition collects the relevant economic implications of the comparison
between Hd1

t (ωt, α) and Hd2
t (ωt).13 Figure 2.3 provides an illustration.

Proposition 4 (Automation and the Aggregate Demand for Hours Worked)

Consider Hd1
t (ωt, α) and Hd2

t (ωt) for ωt ≥ α. Then, the following holds:

1. Hd1
t (α, α) = Hd2

t (α),

2. the slopes of Hd1(ωt, α) and Hd2(ωt) satisfy

lim
ωt→α

∂Hd1
t (ωt, α)

∂ωt
< lim

ωt→α

∂Hd2
t (ωt)

∂ωt
,

13This comparison is meaningful if one admits that even without automation investments at t the firm
owns at least N(α) machines that embody a level of technological knowledge represented by At−1. More-
over, observe that, irrespective of whether there is automation or not, any change in ωt requires an adjust-
ment of Rt along the factor-price frontier.
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Figure 2.3: Automation and the Aggregate Demand for Hours Worked. If ωt ≥ α and
automation investments are undertaken then the aggregate demand for hours worked is
H1d

t , H2d
t is the aggregate demand for ωt ≥ α without automation investments. It holds

that H2d
t ≥ H1d

t for ωt ∈ [α, ω̄] and H1d
t > H2d

t for ωt > ω̄t.

0

H2d
t

H1d
t

H2d
t ≥ H1d

t H1d
t ≥ H2d

t

α ω̄

H1d
t , H2d

t

ωt

3. there is ω̄ ∈ (α, ∞), such that

Hd2
t (ωt) ≥ Hd1

t (ωt, α) if α ≤ ωt ≤ ω̄,

Hd1
t (ωt, α) ≥ Hd2

t (ωt) if ωt ≥ ω̄.

Claim 1 recalls that there are no automation investments if ωt = α. Then, Hd1
t and Hd2

t
coincide. However, according to Claim 2, Hd1

t declines faster than Hd2
t if ωt exceeds α by

a triffle. Interestingly, in the limit ωt → α one finds ct = α and

dHd1
t (α, α)

dωt
=

(
Kt

At−1

) [
−N (α)

2α
− N (α)

γα

]
<

dHd2
t (α)

dωt
=

(
Kt

At−1

) [−N (α)

γα

]
.

Here, −N (α) /(γα) represents the aggregate task expansion effect identified above. It
appears in both demands. However, in the presence of automation investments the in-
duced aggregate rationalization effect does not vanish and is responsible for the stronger
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Table 1: Changing ωt: Aggregate Demand for Hours Worked and the Critical Induced
Productivity Growth Rate. The table shows the critical induced productivity growth rate
per man-hour, q(ω̄), and its annualized counterpart, q̃ (ω̄), computed for a period length
of 30 years, for varying values of γ. If qt > q(ω̄) then automation will increase Hd1

t (ω).

γ 1/3 1/4 1/5 1/6 1/7 1/8
q(ω̄) 0.64 0.39 0.28 0.22 0.18 0.15
q̃ (ω̄) 0.017 0.0111 0.008 0.0067 0.0056 0.0048

decline of Hd1.14 This view gives support to the often encountered public opinion accord-
ing to which automation will reduce the demand for labor due to rationalization. Indeed,
this is why Hd1

t (ωt, α) < Hd2
t (ωt) for values of ωt greater than but close to α. Here, wages

are not expected to be too high, qt is small but positive, and automation investments are
fairly small-seized.

The above logic no longer holds if wt, respectively, ωt is sufficiently high so that induced
automation investments per task become large. This is the essence of Claim 3. If ωt >

ω̄ then automation investments boost the aggregate demand for hours worked to an
extent that Hd1

t (ωt, α) > Hd2
t (ωt). Hence, if profit-maximizing automation investments

generate a high growth rate of labor productivity then the aggregate demand for hours
worked will be higher with automation than without.

What is the predicted order of magnitude of the critical induced productivity growth rate
per man-hour, q (ω̄), and its annualized counterpart, q̃ (ω̄), above which the aggregate
demand for hours worked with automation is greater than without? Table 1 shows that
this critical growth rate, computed for a period length of 30 years, is quite small and
varies with γ. However, for all considered values of this parameter actual automation in-
vestments that bring about an annual productivity growth of roughly 2% would increase
the aggregate demand for hours worked.15

Finally, let me turn to the effect of a change in the price of automation investments, α, on
the aggregate demand for hours worked, Hd1

t (ωt, α). From the first expression of (2.18)

14This result obtains since ∂h(ωt, α)/∂ωt = − [h(ωt, α)]2 · ∂q(ωt, α)/∂ωt with limωt→α ∂h(ωt, α)/∂ωt =

(−1) · ∂q(α, α)/∂ωt and ∂q(α, α)/∂ωt > 0. It does not hinge on the linear specification of investment outlays
but extends to any increasing and convex function it = αι(qt) where limqt→0 ι′(qt) = 0. See Appendix B.2
for a proof of this claim.

15The computations underlying Table 1 are explained in the Proof of Proposition 4.
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one readily verifies that

dHd1
t (ωt, α)

dα
=

(
Kt

At−1

)
N (ct)

∂h (ωt, α)

∂α︸ ︷︷ ︸
(+)︸ ︷︷ ︸

Induced Aggregate Rationalization Effect

+

(
Kt

At−1

)
h (ωt, α)

∂N (ct)

∂ct︸ ︷︷ ︸
(−)

∂c (ωt, α)

∂α︸ ︷︷ ︸
(+)︸ ︷︷ ︸

Induced Aggregate Task Expansion Effect

=

(
Kt

At−1

) [
N (ct)

∂h (ωt, α)

∂α
+ h (ωt, α)

∂N (ct)

∂ct
q (ωt, α)

]
R 0, (2.20)

where the second line uses (2.15).

Hence, a decline in α has two opposing effects on Hd1
t . On the one hand, the incentive to

automate become more pronounced. Accordingly, there will be more rationalization, and
Hd1

t falls. This is captured by the induced aggregate rationalization effect. On the other
hand, the cost per task falls so that more tasks will be performed and Hd1

t increases. This
is captured by the aggregate task expansion effect. The following proposition makes this
more precise.

Proposition 5 (Real Price of Automation Investments and the Aggregate Demand for Hours
Worked)

Consider Hd1
t (ωt, α) for ωt ≥ α. Then, it holds that

dHd1
t (ωt, α)

dα
Q 0 ⇔ ωt

α
R
(

2− γ

2(1− γ)

)2

.

Hence, a lower α increases the aggregate demand for hours worked if ωt/α is sufficiently
large. The reason is that the induced aggregate rationalization effect in (2.20) dominates
the induced aggregate task expansion effect only for small values of ωt.16

To gauge the sign of dHd1
t /dα observe that Proposition 1 allows to write

dHd1
t (ωt, α)

dα
Q 0 ⇔ γ Q

2
(√

ωt
α − 1

)
2
√

ωt
α − 1

⇔ qt R
γ

2(1− γ)
≡ q(γ).

Hence, a lower α increases the aggregate demand for hours worked if qt > q(γ). Table 2
shows that the latter condition is already satisfied for very small annual productivity
growth rates, q̃(γ), computed for a period of 30 years. For instance, if γ = 1/4, then a
decline in α boosts Hd1

t (ωt, α) for annual productivity growth rates exceeding 0.5%.

16In the limit ωt → α, it holds that

lim
ωt→α

dHd1(ωt, α)

dα
=

(
Kt

At−1

)
N (α)

∂h (α, α)

∂α
> 0,
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Table 2: Changing α: Aggregate Demand for Hours Worked and the Critical Induced
Productivity Growth Rate. The table shows the critical growth rate of productivity per
man-hour, q(γ), and its annualized counterpart, q̃ (γ), computed for a period length of
30 years. If qt > q(γ) then a small decline in α increases Hd1

t (ωt, α).

γ 1/3 1/4 1/5 1/6 1/7 1/8
q(γ) 0.25 0.167 0.125 0.1 0.083 0.071
q̃ (γ) 0.007 0.005 0.004 0.003 0.0026 0.002

2.2.2 Automation and the Labor Share

Does automation reduce the labor share? Since Πt = 0, the economy satisfies Yt− RtKt−
ctNt = Yt − RtKt − wthtNt − itNt = 0. Accordingly, total income is equal to net output,
i. e., wtHt + RtKt = Yt − It, and the labor share is defined as

LSt ≡
wtHt

Yt − It
. (2.21)

In what follows, I compare the labor share under profit-maximizing automation invest-
ments, LS1

t , to the one obtained without automation, LS2
t .

Proposition 6 (Automation and the Labor Share)

If ωt > α then

LS2
t = 1− γ > LS1

t = (1− γ)

(
wtht

wtht + γit

)
.

Hence, automation unequivocally reduces the labor share because it involves investment
outlays, it > 0. Since the labor and the capital share add up to one, automation will
increase the capital share.17

The intuition for Proposition 6 is a follows. First, observe that irrespective of whether
there is automation or not the first-order condition for Nt in (2.16) implies

∂Yt

∂Nt
= ct and

∂Yt

∂Nt

Nt

Yt
=

ctNt

Yt
= 1− γ. (2.22)

i. e., the induced aggregate task expansion effect vanishes whereas the induced aggregate rationalization
effect does not.

17Since investment outlays are treated here as an ordinary flow input, no income accrues to machines.
However, the qualitative result of Proposition 6 and Corollary 3 below remain unchanged if new machines
are treated as a stock and deliver rental income to their capitalist owners. See Footnote 18 for more details.
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Figure 2.4: Automation and the Functional Income Distribution. Profit-Maximization
with respect to Nt implies a wedge between the real wage, wt, and the marginal product
of man-hours, ∂Yt/∂Ht. The wedge is equal to it/ht and is just enough to cover aggregate
investment outlays as itHt/ht = ithtNt/ht = itNt = It.

∂Y
∂H

∂Yt
∂Ht

0

wt +
it
ht

H
Ht

wt

wtHt

It = itNt

Hence, tasks earn their marginal product, and, since the aggregate production function is
Cobb-Douglas, the share of total output that accrues to tasks is equal to 1− γ. Moreover,
since the choice of ht does not depend on Nt, the expression for the total amount of hours
worked, Ht = htNt, implies dHt = htdNt. Using this property in (2.22) gives

∂Yt

∂Ht
=

ct

ht
and

∂Yt

∂Ht

Ht

Yt
=

ct

ht

Ht

Yt
= 1− γ. (2.23)

The latter reveals that the cost per hour worked, ct/ht, is equal to the marginal product
of total hours, and, since (∂Yt/∂Nt) Nt = (∂Yt/∂Ht) Ht the share of hours worked in total
output is 1− γ.

The implications of (2.22) and (2.23) for the labor share with and without automation are
as follows. Without automation, costs per task are equal to ct = wtht and (2.23) delivers

∂Yt

∂Ht
= wt and

wtHt

Yt
= 1− γ. (2.24)

Hence, hours worked earn their marginal product and LS2
t = 1− γ.
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In the presence of automation investments it holds that ct = wtht + it. Using this in (2.23)
reveals that

∂Yt

∂Ht
= wt +

it

ht
⇔ wt =

∂Yt

∂Ht
− it

ht
. (2.25)

The latter highlights that automation investments drive a wedge between the wage per
hour worked and the marginal product of total hours worked. This wedge is equal to the
investment outlays per hour worked, it/ht. Upon multiplication of (2.25) by Ht one finds

wtHt =
∂Yt

∂Ht
Ht − itNt. (2.26)

Hence, instead of earning (∂Yt/∂Ht) Ht workers pay the price for all automation invest-
ments (see Figure 2.4 for an illustration). As a consequence, the labor share falls in the
presence of automation. To derive this formally use (∂Yt/∂Ht) Ht = (1− γ)Yt from (2.23)
in (2.26) to express net output as Yt − It = (wtHt + γIt) /(1− γ). Then, LS1

t as stated in
the proposition is obtained with the definition of the labor share (2.21). Since it > 0, it
holds that LS2

t > LS1
t .

Finally, let me note that the labor share, LS1
t , declines the stronger the incentives to au-

tomate are, i. e., the higher the anticipated wage or the cheaper automation investments
become. However, LS1

t is bounded from below.

Corollary 3 (Automation Incentives and the Lower Bound of the Labor Share)

If ωt > α then it holds that

∂LS1
t

∂ωt
< 0 and

∂LS1
t

∂α
> 0.

Moreover,

lim
ωt→∞

LSt = lim
α→0

LSt =
1− γ

1 + γ
.

Hence, a higher anticipated wage induces more automation and reduces the labor share.
Moreover, in line with the findings of Karabarbounis and Neiman (2014) a decline in the
price of automation investments, i. e., a lower α, reduces the labor share. However, the la-
bor share remains strictly positive even if the incentives to automate become very strong.
This follows since in both limits the fraction wtht/ (wtht + γit) converges to 1/(1 + γ) as
it/(wtht) converges to 1. Hence, in the limit investment outlays per task are equal to the
wage costs per task. If γ = 1/4 then the lower bound of the labor share is .6, for γ = 1/3
it falls to 1/2.18

18As a follow-up to Footnote 10 and 17 one may wonder whether the qualitative results of Section 2.2.2
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2.2.3 Labor-Augmenting Automation

What type of technical change does automation imply? According to the rationalization
effect identified above automation is labor-saving in the sense that fewer hours of labor
are needed in the performance of a task. However, in the aggregate production func-
tion (2.1) automation is labor-augmenting, i. e., it increases the productivity of all hours
worked. This follows since cost minimization implies qt = q(nt) so that the production
function of each task is 1 = At−1 (1 + qt) ht (see equation (2.2)). Accordingly, if Nt tasks
are performed then

Nt = Nt At−1 (1 + qt) ht = At−1 (1 + qt) Hd
t

since Hd
t = htNt. Using this in (2.1) gives

Yt = ΓKγ
t

(
At−1 (1 + qt) Hd

t

)1−γ
. (2.27)

Hence, technical change augments the total amount of employed hours worked.

Interestingly, this finding does not hinge on the Cobb-Douglas form of the aggregate
production function. Since it only reflects the minimization of costs per task and the def-
inition of the firm’s demand for hours worked it generalizes to any production function
F (Kt, Nt). For these functions, the counterpart to (2.27) is

Yt = F
(

Kt, At−1 (1 + qt) Hd
t

)
.

Accordingly, the term labor-augmenting technical change is meaningful here.

2.3 The Household Sector

Individuals live for possibly two periods, young and old age. When young, they supply
labor, earn wage income, enjoy leisure and consumption, and save. At the onset of old

survive if automation investments, like fixed capital investments, are undertaken in the period before they
are used. The answer is in the affirmative. With this modification zero profits imply Yt = Rt (Kt + It) +wt Ht
and the labor share becomes L̃St ≡ wt Ht/Yt. Using the first-order condition for profit-maximization c̃t Nt =

(1− γ)Yt one readily verifies that

L̃St = (1− γ)

(
wt h̃t

wt h̃t + Rt ĩt

)
= (1− γ)

( √
ω̃t

2
√

ω̃t −
√

α

)
,

where h̃t =
√

α/ω̃t/At−1 and ĩt =
√

αω̃t − α. Hence, automation reduces L̃St since ĩt > 0. Moreover, L̃St
falls in ω̃t, increases in α, and is bounded from below as limωt→∞ L̃St = limα→0 L̃St = (1− γ) /2 ∈ (0, ∞).
With γ = 1/4 (γ = 1/3) this bound is equal to 0.375 (1/3).
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age, they face a survival probability µ ∈ (0, 1). Surviving old individuals retire and
consume their wealth.19

The population at t consists of Lt young (cohort t) and µLt−1 old individuals (survivors
of cohort t− 1). Due to birth and other demographic factors the number of young indi-
viduals between two adjacent periods grows at rate gL > (−1). For short, I shall refer to
gL as the fertility rate.

My measure of population aging is the old-age dependency ratio at t defined as

OADRt ≡
µLt−1

Lt
=

µ

1 + gL
. (2.28)

Hence, OADRt is determined by the survival probability and the fertility rate of cohort
t − 1. There is population aging between period t − 1 and t if OADRt > OADRt−1.
Accordingly, an increase in the survival probability of cohort t − 1 and/or a decline in
the fertility rate of this cohort implies population aging.

For cohort t, denote consumption when young and old by cy
t and co

t+1, and leisure time
enjoyed when young by lt. The per-period time endowment is normalized to unity. Then,
lt = 1− hs

t , where hs
t ∈ [0, 1] is man-hours supplied by cohort t when young.

Individuals of all cohorts assess bundles
(
cy

t , lt, co
t+1

)
according to an expected lifetime

utility function, U, featuring a periodic utility function of the generalized log-log type
proposed by Boppart and Krusell (2018). The utility after death is set equal to zero. Ac-
counting for retirement when old, i. e., lt+1 = 1, cohort t’s expected utility is

U
(
cy

t , lt, co
t+1
)
= ln cy

t + ln
(

1− φ (1− lt)
(
cy

t
) ν

1−ν

)
+ µβ ln co

t+1, (2.29)

where 0 < β < 1 is the discount factor, φ > 0 and ν ∈ (0, 1). For ease of notation, I use

henceforth xt ≡ (1− lt)
(
cy

t
) ν

1−ν .

The term ln (1− φxt) reflects the disutility of labor when young. The parameter φ cap-
tures characteristics of the labor market that affect the disutility of labor in the population
irrespective of the amount of hours worked and the level of consumption. These include,
e. g., the level of occupational safety regulations and the climatic conditions under which

19Hence, by assumption aging may affect the endogenous labor supply when young but not the timing of
retirement. To a first approximation, this does not seem too far from reality. For instance, Bloom, Canning,
and Fink (2010), p. 5-6, report for a sample of 43 mostly developed countries that the average male life
expectancy increased between 1965 and 2005 by 8.8 years whereas the average legal male retirement age
increased by less than half a year. More strikingly, the correlation between the change in male life expectancy
and the change in the retirement age over this time-span is small and negative. While recent years have seen
political initiatives to increase the statutory retirement age, e. g., in the EU-27, there is often substantial
political resistance (see, e. g., New York Times (2011) on France). Whether and how such changes impact on
the effective retirement age that people choose is likely to depend on the future evolution of life expectancy
and on institutional details of the retirement scheme (Gruber and Wise (2004)). I shall get back to this issue
in Section 5.
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labor is done (Landes (1998)). As shown in Irmen (2018), ν ∈ (0, 1) assures that consump-
tion and leisure are complements in the sense that ∂2U/∂cy

t ∂lt > 0.

Expected utility, U, is strictly monotone and strictly concave if

1− 2ν− (1− ν)φxt > 0. (2.30)

This condition requires ν < 1/2. Henceforth, I refer to the set of bundles
(
cy

t , lt, co
t+1

)
∈

R++ × [0, 1]×R++ that satisfy (2.30) as the set of permissible bundles and denote it by
P .

At the end of their young age, individuals of cohort t deposit their entire savings with
life insurers in exchange for annuity policies. These insurers rent the savings out as fixed
capital to the firms producing in t + 1. In return, the latter pay a (perfect foresight) real
rental rate Rt+1 per unit of savings. Perfect competition among risk-neutral life insurers
guarantees a gross return to a surviving old at t + 1 of Rt+1/µ. This rate exceeds the
rental rate of capital and compensates individuals for the risk of dying before having
their savings withdrawn. Hence, cohort t faces the per-period budget constraints

cy
t + st ≤ wt(1− lt) and co

t+1 ≤
Rt+1

µ
st. (2.31)

I refer to
(
cy

t , lt, co
t+1, st, hs

t
)

as a plan of cohort t. The optimal plan solves

max
(cy

t ,lt,co
t+1,st)∈P×R

U
(
cy

t , lt, co
t+1
)

subject to (2.31) (2.32)

and includes the utility maximizing supply of man-hours as hs
t = 1− lt. Before I fully

characterize the solution to this problem the following assumption must be introduced.

Assumption 1 For all t it holds that

wt > wc ≡
(

(1 + µβ) (1− ν)

(φ (1 + (1 + µβ) (1− ν)))1−ν (1− ν (1 + µβ))ν

) 1
ν

and

0 < ν < ν̄ (µβ) ≡ 3 + µβ−
√

5 + µβ(2 + µβ)

2(1 + µβ)
.

As will become clear in the Proof of Proposition 7, Assumption 1 assures two things.
First, if the real wage exceeds the critical level wc then cohort t’s demand for leisure is
strictly positive. Second, the unique bundle identified by the Lagrangian associated with
problem (2.32) satisfies condition (2.30).20 Hence, it is a global maximum on the choice
set P ×R.

20The function ν̄ (µβ) is strictly positive and declining in µβ with ν̄(0) ≈ 0.382 and ν̄(1) ≈ 0.293. Hence,
Assumption 1 imposes a tighter constraint on ν than just ν < 1/2 which is necessary for (2.30) to hold.
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Proposition 7 (Optimal Plan of Cohort t)

Suppose Assumption 1 holds. Then, the optimal plan of cohort t = 1, 2, ..., ∞ is

hs
t = wν

c w−ν
t ,

cy
t =

1− ν (1 + µβ)

(1 + µβ) (1− ν)
wν

c w1−ν
t ,

co
t+1 =

βRt+1

(1 + µβ) (1− ν)
wν

c w1−ν
t ,

st =
µβ

(1 + µβ) (1− ν)
wν

c w1−ν
t .

For surviving members of cohort 0, consumption when old is co
1 = R1s0/µ > 0 where s0 > 0 is

given.

According to Proposition 7 cohort t’s supply of hours worked declines in the wage with
an elasticity equal to ν. As a consequence, the positive response of cy

t , st, and co
t+1 to a

wage hike is less than proportionate. Observe that cy
t and st may be expressed, respec-

tively, as the product of a marginal (and average) propensity to consume or to save and
the wage income, i. e.,

cy
t =

1− ν(1 + µβ)

(1 + µβ)(1− ν)
wths

t and st =
µβ

(1 + µβ) (1− ν)
wths

t . (2.33)

This helps to understand how a change in the life expectancy affects the optimal plan.

Proposition 8 (Life-Expectancy and the Optimal Plan of Cohort t)

If wt > wc then it holds that

∂hs
t

∂µ
> 0,

∂cy
t

∂µ
< 0,

∂st

∂µ
> 0,

∂co
t+1

∂µ
< 0.

Hence, a higher life expectancy increases the supply of hours worked. This reflects the
appreciation of the utility when old relative to the utility when young. Through this
channel the demand for leisure declines and hs

t increases.21

21A higher µ also reduces the gross rate of return to a surviving old, Rt+1/µ. However, for U of (2.29) the
substitution and the income effect associated with such a reduction on hs

t , cy
t , and st cancel out. See Irmen

(2018) for details.
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The effect of a higher life expectancy on consumption when young is the result of two
opposing channels. On the one hand, for a given wage income, the propensity to con-
sume in (2.33) falls. This reflects the desire to shift resources into the second period of
life which now has more weight. On the other hand, there will be more income since
the supply of hours worked increases. Then, consumption smoothing requires more con-
sumption when young. Overall, the former effect dominates so that cy

t falls in µ.

The same two channels determine the effect of a higher life expectancy on savings. How-
ever, now they are reinforcing. Indeed, for a given wage income, the propensity to save
in (2.33) increases. Moreover, a higher wage income and consumption smoothing imply
more savings, too. Hence, st increases in µ.

Finally, consumption when old declines with a higher life expectancy. Again, two chan-
nels of opposite sign are at work. On the one hand, savings increase pushing co

t+1 up-
wards. On the other hand, the rate of return on savings for a surviving old, Rt+1/µ, falls.
As the latter dominates, co

t+1 declines in µ.

3 Inter-temporal General Equilibrium

3.1 Definition

A price system corresponds to a sequence {wt, Rt}∞
t=1. An allocation is a sequence

{cy
t , lt, co

t , st, hs
t , Yt, Kt, Nt, Hd

t , It, qt(n), at(n), ht(n), i (qt(n))}∞
t=1

for all tasks n ∈ [0, Nt]. It comprises a plan {cy
t , lt, co

t , st, hs
t}∞

t=1 for all cohorts, consump-
tion of the old at t = 1, co

1, and a plan {Yt, Kt, Nt, Hd
t , It, qt(n), at(n), ht(n), i (qt(n))}∞

t=1 for
the production sector.

For an exogenous evolution of the labor force, Lt = L1 (1 + gL)
t−1 with L1 > 0 and

gL > (−1), and initial levels of fixed capital, K1 > 0, and technological knowledge,
A0 > 0, an inter-temporal general equilibrium with perfect foresight corresponds to a price
system, an allocation, and a sequence {At}∞

t=1 of the aggregate technological knowledge
indicator that comply with the following conditions for all t = 1, 2, ..., ∞:

(E1) The production sector satisfies Proposition 3.

(E2) The indicator At evolves according to (2.8).

(E3) The plan of each cohort satisfies Proposition 7.

(E4) The market for the manufactured good clears, i. e.,

µLt−1co
t + Ltc

y
t + It + IK

t = Yt, (3.1)

where IK
t is aggregate investment in fixed capital.
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(E5) There is full employment of labor, i. e.,

htNt = hs
t Lt. (3.2)

(E1) assures the optimal behavior of the production sector and zero profits. In conjunction
with (E2) the evolution of technological knowledge for the economy as a whole boils
down to

At = at = At−1 (1 + qt) , for all t given A0 > 0. (3.3)

(E3) guarantees the optimal behavior of the household sector under perfect foresight.
Since the old own the capital stock, their consumption at t = 1 is µL0co

1 = R1K1 and
s0 = K1/L0. (E4) states that the aggregate demand for the manufactured good produced
at t is equal to its supply. Aggregate demand at t comprises aggregate consumption,
µLt−1co

t + Ltc
y
t , aggregate automation investments, It, and aggregate investment in fixed

capital, IK
t . On the supply side, (3.1) reflects the (innocuous) assumption that fixed capital

fully depreciates after one period. According to (E5) the aggregate demand for hours
worked must be equal to its supply. Here, use is made of (E1) in that ht(n) = ht for all n.

3.2 The Labor Market

The labor market requires a special treatment for two reasons. First, I need to make sure
that the labor market equilibrium is unique. This is not obvious since both the aggregate
demand for and the aggregate supply of labor fall in the real wage. Accordingly, there
may be none, one, or multiple wage levels at which demand is equal to supply. Second,
since the supply of hours worked is endogenous, the equilibrium wage, hence, the incen-
tive to engage in automation investments, will depend on demographic, technological,
and preference parameters.

To focus the discussion on the role of automation and leisure for growth I henceforth
restrict attention to constellations that satisfy

Assumption 2 For all t it holds that

wt > αAt−1 > wc.

The inequality wt > αAt−1 is equivalent to ωt > α. Hence, it assures that automation in-
vestments are profit-maximizing and Proposition 1 and 2 apply. The requirement wt > wc

means that the optimal plan of all cohorts involves a strictly positive demand for leisure
(see Proposition 7). Finally, assuming αAt−1 > wc simplifies the analysis of the transi-
tional dynamics since, in a typical scenario, At−1 grows over time. Hence, if αAt−1 > wc

for all t then the distinction between the three regimes αAt−1 < wc, αAt−1 = wc, and
αAt−1 > wc can be neglected.
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Before I characterize the labor market equilibrium it proves useful to introduce the fol-
lowing notation:

kt ≡
Kt

A1−ν
t−1 Lt

, kc ≡
α

1−2ν
2

Λ
, and Λ ≡

(
Γ(1− γ)

α
2−γ

2 wνγ
c

) 1
γ

.

From now on, I shall refer to kt as the efficient capital intensity. Below, it will serve as
the state variable of the dynamical system. The parameter kc denotes a critical level of
the efficient capital intensity ensuring that wt > αAt−1 holds in equilibrium whenever
kt > kc. Finally, the parameter Λ summarizes technological and preference parameters
that affect the relationship between kt and ωt defined by the labor-market equilibrium
(see equation (3.4) below).

Proposition 9 (Labor Market Equilibrium)

Suppose αAt−1 > wc holds. Then, a unique labor market equilibrium,
(
ŵt, Ĥt

)
, with ŵt >

αAt−1 exists for all t = 1, 2, ..., ∞ if and only if

kt > kc.

Moreover, the labor market equilibrium defines a function ω̂ : (kc, ∞)→ (α, ∞) such that

ω̂t = ω (kt) with ω′ (kt) > 0.

Proposition 9 makes two important points. First, it establishes the conditions for the
existence and the uniqueness of the labor market equilibrium consistent with Assump-
tion 2. As shown in Figure 3.1, existence and uniqueness follow since the aggregate
supply of hours worked, Hs

t , is sufficiently flatter than the aggregate demand for hours
worked, Hd

t . Moreover, kt > kc assures that Hd
t is sufficiently large relative to Hs

t so that
at wt = αAt−1 it holds that Hd

t > Hs
t . Accordingly, ω̂t > α and the equilibrium wage

satisfies ŵt > αAt−1.

Second, it lays open that the labor market equilibrium can be expressed as a function of
kt. This obtains since Hd

t = Hs
t may be stated as

kt =
ω̂

1−2ν
2

t
Λ

(
2

√
ω̂t

α
− 1

) 1
γ

. (3.4)

This condition delivers a unique ω̂t > α if and only if kt > kc and implicitly defines the
function ω (kt). Hence, ŵt = At−1ω (kt). In Figure 3.1, a greater Kt shifts Hd

t upwards,
a lower Lt shifts Hs

t downwards. Both changes imply a higher level of ŵt, ω̂t, and of kt.
This is captured by the derivative ω′ (kt) > 0.

The following proposition shows the short-run responses of the labor market equilibrium
to changes in the survival probability, µ, and in the real price of automation investments,
α.
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Figure 3.1: The Labor-Market Equilibrium
(
ŵt, Ĥt

)
. By Assumption 2 it holds that

αAt−1 > wc. The unique labor market equilibrium satisfies ŵt > αAt−1. Intuitively,
existence follows since i) at wt = αAt−1, Hd

t > Hs
t , and ii), for wt > αAt−1, Hs

t is flatter
than Hd

t so that for large values of wt, Hs
t > Hd

t .
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Proposition 10 (Short-Run Determinants of the Labor Market Equilibrium)

Consider the labor market equilibrium of Proposition 9. Given kt, it holds that

∂ω̂t

∂µ
< 0, and

∂ω̂t

∂α
Q 0 ⇔ γ Q

2
(√

ω̂t
α − 1

)
2
√

ω̂t
α − 1

.

Hence, if cohort t expects to live longer, then ω̂t and the equilibrium wage fall while the
equilibrium amount of hours worked, Ĥt, increases (see Figure 3.2 for an illustration).
This follows since, in accordance with Proposition 8, an expected increase in longevity
increases the individual supply of hours worked so that Hs

t increases, too. In conjunction
with Proposition 1, this has the important implication that a higher µ reduces the incen-
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tive to automate in the short-run.22 Recall that a higher µ at t means that more members
of cohort t survive into period t + 1, and that the old-age dependency ratio in t + 1 in-
creases. Hence, the conclusion is that the short-run effect of (expected) population aging
between period t and t + 1 reduces the incentives to automate in period t.

A lower α reduces the cost of automation, affects the aggregate demand for hours worked,
and the equilibrium wage. From Proposition 5 it is evident that the condition for the sign
of ∂ω̂t/∂α is the one that determines the sign of ∂Hd

t (ωt, α)/∂α. Hence, a lower α shifts
the equilibrium wage up if and only if it increases Hd

t (ωt, α). According to Table 2 this is
already the case for fairly small annual productivity growth rates, q̃(γ).

To assess the short-run effect of a decline in α on equilibrium automation incentives let
me denote the cost-minimizing productivity growth rate of (2.13) evaluated at the labor-
market equilibrium as q̂t = q (ω̂t, α). Then,

dq̂t

dα
=

∂q (ω̂t, α)

∂ωt︸ ︷︷ ︸
(+)

∂ω̂t

∂α︸︷︷︸
(+/−)

+
∂q (ω̂t, α)

∂α︸ ︷︷ ︸
(−)

. (3.5)

Here, the first term reflects the short-run general equilibrium effect of α on the automation
incentives induced through the labor market. The last term reflects the negative direct ef-
fect of α on the cost-minimizing level of qt. Proposition 10 implies that these effects are
reinforcing if ω̂t is sufficiently larger than α and of opposite sign otherwise. However,
some tedious but straightforward algebra reveals that dq̂t/dα < 0 holds unequivocally
for all permissible parameter constellations. Hence, in the short-run, a decline in α in-
creases the incentives to automate and implies faster growth technological knowledge.23

Finally, observe that Proposition 9 and 10 allow for the analysis of the short-run deter-
minants of the labor share. Denote by L̂St the labor share evaluated at the labor-market
equilibrium. Then, the following holds.

22A similar logic applies to the comparative statics ∂ω̂t/∂φ > 0 and ∂ω̂t/∂Γ > 0, which are not mentioned
in Proposition 10. Intuitively, for a higher φ the disutility of labor increases and, accordingly, the individual
and the aggregate supply of hours worked falls. In Figure 3.2 this would correspond to a leftward shift of
Hs

t as wc falls. It implies a higher ω̂t, a higher equilibrium wage, ŵt, and a lower equilibrium amount of
hours worked, Ĥt. A higher Γ increases the marginal product of tasks which boosts the aggregate demand
for hours worked, i. e., Hd

t would shift upwards in Figure 3.2. Accordingly, in equilibrium fewer hours of
work will be demanded at a higher wage. In line with Proposition 1 this means that an increase in φ and Γ
strengthens the incentive to automate.

23Implicit differentiation of (3.4) delivers

∂ω̂t
∂α

=
ω̂t
αγ
·


√

ω̂
2
√

ω̂−√α
− 1 + γ

2

1
γ

√
ω̂

2
√

ω̂−√α
+ 1

2 − ν

 . (3.6)

Computing the direct effects in (3.5) from (2.13) delivers dq̂t/dα Q 0 ⇔ γ Q 1/ν. Then, dq̂t/dα < 0 follows
since 0 < ν < 1/2 and 0 < γ < 1.

33



Figure 3.2: Population Aging and the Labor-Market Equilibrium. A higher life-
expectancy, µ′ > µ, shifts the aggregate supply of hours worked to the right as w′c > wc.
Accordingly, the equilibrium wage falls and the equilibrium amount of hours worked
increases, i. e., ŵ′t < ŵt and Ĥ′t > Ĥt.
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Corollary 4 (Short-Run Determinants of the Labor Share)

Consider the short-run labor share L̂St. It holds that

dL̂St

dµ
> 0 and

dL̂St

dα
> 0.

Hence, in the short run, population aging associated with a higher life expectancy of co-
hort t increases the labor share. Intuitively, a higher µ boosts the supply of hours worked,
reduces the equilibrium wage and, hence, the incentives to automate.

The effect of a decline in α is somewhat more involved as

dL̂St

dα
=

∂L̂St

∂ωt︸ ︷︷ ︸
(−)

∂ω̂t

∂α︸︷︷︸
(+/−)

+
∂L̂St

∂α︸ ︷︷ ︸
(+)

> 0, (3.7)
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where the signs of the effects are from Corollary 3 and Proposition 10. Hence, even
though the indirect effect through the labor market may be negative the overall effect
remains positive. As a consequence, a decline in the real price of automation investments
reduces the labor share in the short run.

3.3 The Dynamical System

The transitional dynamics of the inter-temporal general equilibrium can be analyzed
through the evolution of a single state variable, kt. To derive the equilibrium sequence
{kt}∞

t=1 observe that conditions (E3) and (E4) require investments in fixed capital to equal
savings, i. e., IK

t = stLt = Kt+1, or

µβ

(1 + µβ) (1− ν)
wths

t Lt = Kt+1, for all t = 1, 2, ..., ∞. (3.8)

Using Proposition 1 and 7 the latter equation may be expressed as

Ωω
1−ν

2
t = kt+1, for t = 1, 2, ..., ∞, (3.9)

where,

Ω ≡ α
1−ν

2 µβwν
c

(1 + µβ) (1− ν) (1 + gL)

summarizes technological, preference, and demographic parameters that affect the rela-
tionship between ωt and kt+1. Henceforth, I shall refer to equation (3.9) as the capital
market equilibrium condition. The equilibrium difference equation results from replac-
ing ωt of (3.9) with the labor market clearing condition ω̂t = ω (kt) of Proposition 9. This
gives

kt+1 = Ω [ω (kt)]
1−ν

2 . (3.10)

A difficulty arises since the labor market equilibrium has to be such that ω̂t > α. From
Proposition 9 this requires kt > kc for all t. Hence, (3.9) is to deliver a value kt+1 > kc. A
necessary and sufficient condition for this is Ωα

1−ν
2 > kc. Hence, if the latter inequality is

satisfied then for any kt > kc it also holds that kt+1 > kc and the labor market equilibrium
at t + 1 satisfies ω̂t+1 > α. For notational simplicity define

kc ≡ Ωα
1−ν

2 .

Then, the following proposition holds.

Proposition 11 (Dynamical System)

Consider initial values (K1, L1, A0) > 0 such that k1 > kc. Then, the transitional dynamics
of the inter-temporal general equilibrium is governed by the autonomous first-order, non-linear
difference equation (3.10). If kc > kc it gives rise to a unique equilibrium sequence {kt}∞

t=1 with
kt > kc for all t.
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Figure 3.3: The Dynamical System, Steady State, and Transitional Dynamics. For any
k1 > kc the labor market at t = 1 delivers ω1 = ω̂1 > α. Since kc > kc, using ω̂1 in the
capital market equilibrium condition for t = 1 delivers k2 > kc and so forth.

0

kc

kc

ω̂∗

k∗

Labor Market Equilibrium

Capital Market Equilibrium

kt+1, kt

ωt

k1

α

kt

kt+1

ω̂1

Figure 3.3 illustrates the intuition behind Proposition 11. It depicts the labor market
equilibrium at t of equation (3.4) and the capital market equilibrium at t of equation (3.9)
for kc > kc. Then, for any k1 > kc the labor market at t = 1 delivers ω1 = ω̂1 > α. Using
ω̂1 in the capital market equilibrium condition at t = 1 delivers k2 > kc. Clearly, these
steps apply to any pair (kt, kt+1) > kc.

4 Steady-State and Transitional Dynamics

4.1 Existence, Uniqueness, and Stability of the Steady State

Figure 3.3 suggests that the steady state is unique and stable. The following proposition
confirms this impression.

Proposition 12 (Steady State - Existence, Uniqueness, Stability)
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If kc > kc then the dynamical system of Proposition 11 has a unique steady state

k∗ > kc.

Moreover, for any k1 > kc the equilibrium sequence {kt}∞
t=1 is monotonous with limt→∞ kt = k∗.

Hence, for k1 > kc the steady state is unique and asymptotically stable with k∗ > kc. Intu-
itively, these properties follow since kc > kc and the right-hand side of (3.10) is increasing
and sufficiently concave in kt.

4.2 Structural Properties and Comparative Statics of the Steady State

The following proposition states the steady-state evolution of all endogenous variables.

Proposition 13 (Dynamic Properties of the Steady State)

Consider the steady state of Proposition 12. Then, it holds that aggregate technological knowledge
grows at rate q∗ > 0. Moreover,

a)
at+1

at
= 1 + q∗,

ht+1

ht
=

1
1 + q∗

, it = i∗ > 0, ct = c∗,

b)
wt+1

wt
=

ŵt+1

ŵt
= 1 + q∗, Rt = R∗ > 0,

c)
hs

t+1

hs
t

=
1

(1 + q∗)ν ,
cy

t+1

cy
t

=
co

t+1

co
t

=
st+1

st
= (1 + q∗)1−ν ,

d)
Ĥt+1

Ĥt
= (1 + q∗)−ν (1 + gL) ,

Yt+1

Yt
=

Kt+1

Kt
=

It+1

It
=

Nt+1

Nt
= (1 + q∗)1−ν (1 + gL) .

The intuition is as follows. Since ω∗ > α firms undertake automation investments that
support a strictly positive growth rate of aggregate technological knowledge, q∗ > 0.
On the production side, this means that the productivity of labor in the performance of
tasks increases at that rate. Accordingly, there will be rationalization, i. e., ht+1/ht < 1.
Automation investments per task remain constant over time. The real wage inherits the
growth rate of aggregate technological knowledge since by definition ŵt = At−1ω̂∗. As
wages and productivity per man-hour grow at the same rate and it = i∗ the costs per task
are time-invariant, i. e., ct = c∗.

On the household side, wage growth implies a declining individual supply of hours
worked. The key implication is that wage income, wths

t , grows at a factor (1 + q∗)1−ν,
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which is also the growth factor of consumption in both periods of life and of individual
savings.

At the level of economic aggregates, the evolution of the equilibrium amount of hours
worked reflects a decline at the intensive margin, (1 + q∗)−ν, and an expansion at the
extensive margin, 1 + gL. From the accumulation equation (3.8) it is obvious that fixed
capital grows with a factor (1 + q∗)1−ν (1 + gL). Total output, Yt, the aggregate demand
for automation investments, It, and the number of tasks, Nt, inherit this trend.24

Finally, observe that the steady state is a balanced growth path as the labor share, the ra-
tios Kt/Yt, It/Yt, and

(
µLt−1co

t + Ltc
y
t
)

/Yt as well as the real rental rate of capital remain
constant over time.

How does population aging and the price of automation investments affect the growth
rate of technological knowledge and the functional income distribution in the long run?
To address this question let me denote the steady state growth rate of aggregate techno-
logical knowledge by q∗ = q (ω̂∗, α) = q (ω (k∗) , α). Then, the following holds.

Proposition 14 (Determinants of the Steady-State Growth Rate of Technological Knowledge)

Consider the steady state of Proposition 12. It holds that

dq∗

dµ
> 0,

dq∗

dgL
< 0, and

dq∗

dα
< 0.

Proposition 14 makes two important points. The first concerns the relationship between
population aging and long-run growth. Of two otherwise identical economies the one
with a higher life expectancy and/or a lower fertility rate enjoys faster steady-state growth
of technological knowledge and more rationalization through automation. As µ and gL

determine the OADR the prediction is that in the long run, the older economy grows
faster. The second point concerns the price of automation investments: a decline in this
price shifts q∗ up.

To develop the intuition behind these findings recall that the steady state, hence q∗, is
determined by the interaction between the labor and the capital market as shown in Fig-
ure 3.3.

The effect of a permanent increase in µ on q∗ reflects three channels. They are illustrated
in Figure 4.1. Initially the economy has a life expectancy equal to µ and starts in the steady

24Growth factors may be classified according to the following rule. The growth factor of per-capita vari-
ables is the one of efficient individual hours worked, Aths

t . It is equal to (1 + q∗)1−ν and reflects the atten-
uating effect of a declining labor supply. The growth factor of aggregate variables is the one of aggregate
efficient hours worked, Aths

t Lt and equal to (1 + q∗)1−ν(1 + gL).
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Figure 4.1: The Effect of a Higher Life Expectancy on the Steady State. In response
to a permanent increase in life expectancy from µ to µ′ the steady state of the economy
switches from (ω∗, k∗) to (ω∗′, k∗′). The labor market equilibrium condition (3.4) denoted,
respectively, by kt and k′t shifts upwards as a higher life expectancy increases the supply
of hours worked (see Proposition 8 and 10). The capital market equilibrium locus of (3.9)
denoted, respectively, by kt+1 and k′t+1 shifts upwards for two reasons (see Proposition 8).
First, individual wage income increases as individuals work more hours, and, second, the
propensity to save increases. The dashed blue line shows the upward shift of the capital
market equilibrium locus that reflects only the increase in the supply of hours worked.
This shift leaves ω∗ unchanged.
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kt+1, kt
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state (ω∗, k∗). The new steady state corresponding to µ′ > µ is (ω∗′, k∗′). The first channel
concerns the labor market. According to Proposition 8 a higher µ increases the individual
supply of hours worked, hence, Hs

t increases. This puts pressure on the equilibrium
wage, and, given kt the labor market equilibrium locus shifts leftwards. The second
and third channel concern the capital market. Here, a greater µ increases savings for two
reasons. On the one hand, the wage income increases with the individual supply of hours
worked (see Proposition 3.9). Given ωt, this shifts the capital market equilibrium locus
in Figure 4.1 upwards (second channel). On the other hand, the individual propensity
to save increases (again, see Proposition 8). In Figure 4.1, this effect shifts the capital
market equilibrium locus even further upwards (third channel). As a result, the new
steady state has k∗′ > k∗, ω̂∗′ > ω̂∗, and, q∗′ > q∗. Hence, population aging through
increased longevity induces faster steady-state growth of technological knowledge and
more automation.25

A decline in the fertility rate, gL, means higher savings per unit of next period’s workers,
i. e., Ω increases in (3.9). This shifts the capital market equilibrium locus in Figure 3.3
upwards while leaving the labor market equilibrium locus unaffected. Accordingly the
new steady has k∗′ > k∗, ω̂∗′ > ω̂∗, and, q∗′ > q∗. Hence, in the long run population aging
through a decline in fertility leads to faster growth of technological knowledge and more
automation.

25The underlying computations reveal that, as shown in Figure 4.1, the first and the second channel shift
k∗ upwards while leaving ω̂∗ unaffected. To see this analytically, consider a small increase in life expectancy
from µ to µ′ where µ′ > µ at the steady state (ω∗, k∗). First, I show that, given ω∗, this change shifts the
labor market equilibrium locus upwards. Second, I show that, given ω∗, the capital market equilibrium locus
shifts upwards through an expansion of the labor supply and the associated increase in the wage income.
Finally, I show that these two effects coincide.

At (ω∗, k∗), the labor market equilibrium of (3.4) satisfies

k∗ =
(ω̂∗)

1−2ν
2

Λ

(
2

√
ω̂∗

α
− 1

) 1
γ

.

Then, given ω∗ the effect of dµ = µ′ − µ > 0 on k∗ is

dk∗ =
(ω̂∗)

1−2ν
2

Λ

(
2

√
ω̂∗

α
− 1

) 1
γ ( ∂wc

∂µ

ν

wc

)
dµ = k∗

(
∂wc

∂µ

ν

wc

)
dµ > 0 (4.1)

as ∂wc/∂µ > 0. At (ω∗, k∗), the capital market equilibrium of (3.9) satisfies

k∗ = (ω∗)
1−ν

2 Ω.

Then, given ω∗, and keeping the savings rate, µβ/ ((1 + µβ)(1− ν)), constant I have

dk∗ = (ω∗)
1−ν

2
∂Ω
∂wν

c

∂wν
c

∂µ
= (ω∗)

1−ν
2 Ω

(
∂wc

∂µ

ν

wc

)
dµ = k∗

(
∂wc

∂µ

ν

wc

)
dµ. (4.2)

From (4.1) and (4.2) it is obvious that at ω∗ a small change, dµ > 0, shifts the loci of the labor and the capital
market upwards by the same amount.
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The impact of a change in α on q∗ is given by

dq∗

dα
=

∂q (ω̂∗, α)

∂ω︸ ︷︷ ︸
+

dω̂∗

dα︸︷︷︸
(+/−)

+
∂q (ω̂∗, α)

∂α︸ ︷︷ ︸
−

. (4.3)

Hence, in addition to the general equilibrium effect, (∂q (ω̂∗, α) /∂ω) (dω̂∗/dα), there is a
negative direct effect as ∂q (ω̂∗, α) /∂α < 0. The general equilibrium effect is not unequiv-
ocal.26 However, whatever its sign, the total effect is negative. Hence, a lower price of
automation investments means faster steady-state growth of technological knowledge.

Finally, I turn to the long-run determinants of the functional income distribution. Let LS∗

denote the steady-state labor share.

Proposition 15 (Determinants of the Steady-State Functional Income Distribution)

Consider the steady state of Proposition 12. It holds that

dLS∗

dµ
< 0,

dLS∗

dgL
> 0, and

dLS∗

dα
> 0.

Hence, population aging reduces the steady-state labor share irrespective of whether it is
due to a higher life expectancy or a decline in the fertility rate. Moreover, a permanent
decline in the price of automation investments diminishes the steady-state labor share. In
light of Proposition 14, one may correctly argue that a parameter change that speeds up
q∗ also lowers LS∗. A deeper intuition can be gained from writing the steady-state labor
share as (see Proposition 6)

LS∗ = (1− γ)

(
1

1 + γ it
wtht

)
.

Hence, what matters is how the respective parameter change affects the ratio of invest-
ment outlays and wage costs per task in steady state. A higher µ, a lower gL as well as a
lower α increase this ratio. Accordingly, LS∗ declines.

26To see this consider the capital market equilibrium locus. Here, α appears on the left-hand side of
the capital market equilibrium condition (3.9) as savings at t are expressed in units of A1−ν

t Lt+1 and
A1−ν

t = A1−ν
t−1 (1 + qt)

1−ν = A1−ν
t−1 (ωt/α)(1−ν)/2 where the last step uses Proposition 1. Hence, as a lower α

induces a higher qt, savings per unit of A1−ν
t Lt+1 and Ω fall. Accordingly, a lower α shifts the capital market

equilibrium locus in Figure 3.3 downwards. At the same time, a change in α also affects the labor market
through its effect on the aggregate demand for hours worked. Proposition 5 implies for reasonable parame-
ter values that a decline in α will increase the aggregate demand for hours worked. In Figure 3.3, this shifts
the labor market equilibrium locus rightwards. As a consequence, dω̂∗/dα may be positive or negative.
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4.3 A Simple Calibration

The purpose of this section is to show that the model and its steady state lend themselves
to a reasonable calibration. Throughout, a period corresponds to 30 years. The calibration
delivers an annual steady-state growth rate of per-capita output, per-capita consumption
and savings of 2%, an annual rate of decline in the individual supply of hours worked
of 0.658%, an annual real rental rate of capital of 4.21%, and a labor share of slightly less
than 2/3.

On the production side I set

Γ = 6.15, γ =
1
4

, and α = 1.

For the household sector preferences and demographics are characterized by the following
parameter values:

µ = 70%, β =
10
21

, ν =
1
4

, φ =
1
2

(
3
2

) 1
3

, and gL = 35%.

I proxy µ with the probability at birth for males of reaching the age of 65 as shown in
Figure 1.1. In line with the literature, the chosen value for β corresponds to an annual
discount factor of roughly 0.976 (see, e. g., Prescott (1986), Blanchard and Fischer (1989),
p. 147, or Barro and Sala-ı́-Martin (2004), p. 197). The wage elasticity of hours worked,
ν, is in line with the value suggested by Boppart and Krusell (2018). The preference
parameter φ is chosen such that wc = 1. Then, Assumption 1 holds for wt > 1 as ν =

1/4 < ν̄(µβ) = 0.348612. Finally, the fertility rate, gL, implies that cohorts grow at an
annual rate of 1%.

Proposition 16 (Steady State of the Calibrated Economy)

Let A0 > 1 and suppose that the calibrated economy embarks on a steady state in t = 1. Then,
the steady state satisfies wt > αAt−1 > wc for all t = 1, 2, ..., ∞. Moreover, it holds that

k∗ = 0.447278, ω∗ = 4.8762623457,

and

q∗ = 1.20823, g∗hs = −0.170669, LS∗ = 0.659754, R∗ = 3.78354.

Proposition 16 shows that the calibration of the model of Section 2 delivers reasonable
results. To confirm this impression observe that q∗ = 1.20823 means that technological
knowledge and of the real wage grow at an annual rate of 2.67581%. Moreover, from
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Proposition 13, the growth factor of per-capita output, per-capita consumption and sav-
ings satisfies (1 + q∗)1−ν = 2.208233/4 which implies an annual growth rate of 2%. The
order of magnitude of the labor share is also in line with the empirical evidence.

From Proposition 13 the growth rate of the individual supply of hours worked is g∗hs =

1/(1+ q∗)ν− 1 = −0.170669. This corresponds to an annual growth rate of−0.657984%.27

Finally, the real rental rate R∗ corresponds to an annual rate of 5.35577%. Considering
an annual depreciation rate of fixed capital equal to 5% gives an annual net rental rate of
4.85577%.

5 Concluding Remarks

People who recognize that they are likely to get older adapt their behavior. As aging
affects the population as a whole the resulting behavioral changes have macroeconomic
implications. Hence, population aging alters the environment, in which firms operate,
and will have an effect on investment, hiring, and output supply decisions. The present
paper disentangles the repercussions between these behavioral changes and derives the
consequences for automation, factor shares, and economic growth in a novel dynamic
competitive endogenous growth model where technical change is labor-augmenting.

In the short run, the expectation of getting older induces people to expand their labor
supply. This puts pressure on the equilibrium wage and reduces the incentive to engage
in automation investments. As a consequence, the labor share increases. However, these
effects may be offset if, at the same time, the real price of automation investments falls.
For reasonable parameter values, I find that such a decline boosts the aggregate demand
for hours worked, increases the equilibrium wage, and strengthens the incentives to un-
dertake automation investments. Hence, in the short run, the effect of population aging
on automation, factor shares, and economic growth may be neutralized by a decline in
the real price of automation investments. These finding contrast with the long run.

In the long run, population aging, i. e., a higher life-expectancy and/or a decline in fer-
tility, and the decline in the real price of automation investment are reinforcing: each

27For the US the PWT 9.0 estimates average annual hours per person engaged in 1960 to equal 1863.
In 2010 the corresponding number is 1695 ( Feenstra, Inklaar, and Timmer (2015)). This corresponds to an
average annual growth rate of−0.19%. The estimates for the annual hours worked per worker of Huberman
and Minns (2007) for the US are much higher than the numbers in the PWT 9.0. According to Huberman
and Minns (2007) annual hours worked per worker in 1960 were 2033 whereas this number plunges to 1878
for the year 2000. However, the average annual growth rate of roughly −0.1845% is in line with the one
found for the PWT data. The chosen calibration implies an average annual growth rate of hours worked of
−0.657984% which is closer to the estimate that Boppart and Krusell (2018) derive for the sample of countries
included in Figure 1.1 over the time span 1870-2000. This confirms the view that the US evolution of hours
worked per worker is an outlier.

43



change induces more automation, a lower labor share, and faster growth of per-capita
variables. A higher life-expectancy encourages savings and capital accumulation as i)
the expansion of the individual labor supply increases earnings and ii) the propensity to
save increases. In the long run, this leads to a higher efficient capital intensity, higher real
wages, more automation, a smaller labor share, and faster economic growth. A decline
in the fertility rate mimics these findings as savings per worker and the efficient capital
intensity will be higher is all periods following the fertility decline. A lower real price
of automation investments induces more automation since automating firms face lower
investment costs. Hence, in the long run, a lower real price of automation investments
reduces the labor share and speeds up economic growth.

The present paper gives rise to several interesting questions that a comprehensive under-
standing of the determinants of automation, factor shares, and economic growth in the
era of population aging needs to address. For instance, one may take into account that
labor markets are not competitive. The historical experience suggests that workers do not
freely choose their amount of working hours. Rather, the average work week is fixed by
law or by negotiations between employers and employee representatives such as trade-
unions (Huberman and Minns (2007)). This raises the question of whether a growing
franchise or the behavior of unions can have a macroeconomic effect on the incentive to
automate. Related is the question about the possible effect of a binding minimum wage
on automation investments (Hellwig and Irmen (2001)).

Another characteristic of the era of population aging is the increase in individual educa-
tional attainments (Goldin and Katz (2008)). Intuition suggests that the expectation of a
longer work-life increases the rate of return of an educational investment. Hence, educa-
tional attainments may increase in response to population aging. However, the potential
effect of this tendency on the incentive to automate remains elusive.

Finally, one may want to allow for alternative ways to expand the supply of hours worked
in response to aging. They include an endogenous retirement age and/or an extensive
margin. The results of the present paper suggest that individuals will want to retire later
and expand the extensive margin in response to a higher life-expectancy. For the short
and the long run, one may conjecture that these tendencies are likely to have similar qual-
itative effects as those derived in the analysis above. I leave the detailed analysis of these
issues for future research.
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A Proofs

A.1 Proofs of Propositions

A.1.1 Proof of Proposition 1

Given q (ωt, α) of (2.13), equation (2.9) delivers ht = 1/ (At−1 (1 + q (ωt, α))) ≡ h (ωt, α) /At−1, where
h (ωt, α) ≡ 1/ (1 + q (ωt, α)). From (2.4) it = i (q (ωt) , α) ≡ i (ωt, α). Since the wage cost per task is wtht =

ωth (ωt, α), we have ct = ωth (ωt, α) + i (ωt, α) ≡ c (ωt, α). Continuity of these functions follows since
limωt↓α q (ωt, α) = 0. The remaining arguments that complete the proof are straightforward or given in the
main text. �

A.1.2 Proof of Proposition 2

Given in the main text.

A.1.3 Proof of Proposition 3

Given in the main text.

A.1.4 Proof of Proposition 4

I consider each claim in turn.

1. This follows immediately from (2.18) and (2.19) evaluated at ωt = α.

2. Given in the main text.

3. From (2.18) and (2.19) Hd2
t (wt) ≥ Hd1

t (wt, α) holds if and only if(
1

ωt

) 1
γ

≥
√

α

ωt

(
1

2
√

αωt − α

) 1
γ

. (A.1)

Rearranging using z ≡ ωt/α ≥ 1 reveals that the latter condition boils down to

0 ≥ z
2−γ

2 − 2z
1
2 + 1 ≡ RHS(z). (A.2)

One readily verifies that RHS(1) = 0 and RHS′(1) < 0. Hence, there are values z > 1 so that (A.1)
holds with strict inequality. Observe further that RHS(z) attains a minimum at

zmin =

(
2

2− γ

) 2
1−γ

> 1

since γ > 0. Moreover, for z > zmin, RHS(z) monotonically increases with limz→∞ RHS(z) = ∞. The
latter follows as RHS(z) may be written as

RHS(z) = z
1
2

(
z

1−γ
2 − 2 + z

−1
2

)
and γ < 1. Accordingly, there is a unique ω̄ ∈ (α, ∞) such that (A.2), hence, (A.1), is violated for
ωt > ω̄.
The values of q(ω̄) and q̃(ω̄) in Table 1 are derived as follows. From (A.2) I compute the critical
zc > 1 that satisfies RHS(zc) = 0. The latter is then used to compute q(ω̄) using Proposition 1.
Finally, q̃(ω̄) = (1 + q(ω̄))1/30 − 1. �
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A.1.5 Proof of Proposition 5

Follows directly from the second expression of (2.18) and (2.20). �

A.1.6 Proof of Proposition 6

Given in the main text. �

A.1.7 Proof of Proposition 7

For ease of notation I shall most often suppress the time argument. Consider problem (2.32). Since pref-
erences are increasing in co both per-period budget constraints will hold as equalities and can be merged.
Accordingly, the Lagrangian of this problem is

L = ln cy + ln
(

1− φ (1− l) (cy)
ν

1−ν

)
+ µβ ln co + λ

[
w (1− l)− cy − µco

R

]
. (A.3)

Corner solutions involving cy = co = 0 and l = 1 can be excluded since U satisfies the Inada conditions and
l = 1 implies no income. Hence, with x ≡ (1− l) (cy)

ν
1−ν the respective first-order Kuhn-Tucker conditions

read as follows:

∂L
∂cy =

1− ν− φx
cy(1− ν)(1− φx)

− λ = 0, (A.4)

∂L
∂l

=
φ (cy)

ν
1−ν

1− φx
− λw ≤ 0, with strict inequality if lt = 0, (A.5)

∂L
∂co =

β

co −
λ

R
= 0, (A.6)

∂L
∂λ

= w (1− l)− cy − µco

R
= 0. (A.7)

Suppose l > 0. Then, upon multiplication by (1− l), condition (A.5) may be written as

φx
(1− φx)w (1− l)

= λ. (A.8)

Using the latter to replace λ in (A.4) and (A.6) delivers, respectively,

cy =

(
1

φx
− 1

1− ν

)
w(1− l) (A.9)

and

co = βR
(

1
φx
− 1
)

w(1− l). (A.10)

With (A.9) and (A.10) in the budget constraint (A.7) I obtain

φxt = φx =
(1 + µβ)(1− ν)

1 + (1 + µβ) (1− ν)
∈ (0, 1). (A.11)

Using (A.11) in (A.9), (A.10), and (2.31) delivers (2.33). Since the optimal plan satisfies Assumption 1 I have
1 > ν(1 + µβ), hence, cy > 0.
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From the definition of x with hs = 1− l it holds that cy =
(

x (hs)−1
) 1−ν

ν . Replacing cy with this expression
in (2.33) and solving for hs delivers hs

t . Using the latter in (2.33) delivers ct and st. Then, co
t+1 is obtained

from the budget when old. Clearly, hs
t ≤ 1 as long as wt ≥ wc. In accordance with this, w < wc implies a

strict inequality in (A.5).

To see that the solution identified by the Lagrangian (A.3) is indeed a global maximum if ν < ν̄ (µβ) consider
first the leading principal minors of the Hessian matrix of U (cy, l, co), i. e.,

D1 (cy, l, co) = − (1− ν− φx)2 + νφx (1− φx)

(cy(1− ν) (1− φx))2 ,

D2 (cy, l, co) =
φ2 (1− 2ν− (1− ν)φx)

(cy)
2(1−2ν)

1−ν (1− ν)2 (1− φx)3
,

D3

(
cy

t , lt, co
t+1

)
= − µβ

(co)2 D2

(
cy

t , lt, co
t+1

)
.

First, we have −D1 (cy, l, co) > 0. Second, observe that D2 (cy, l, co) > 0 and −D3 (cy, l, co) > 0 hold if and
only if condition (2.30) holds. Hence, U is strictly concave for all (cy, l, co) ∈ P .

What remains to be shown is that the solution identified by the Lagrangian satisfies condition (2.30). With
φx of (A.11) this is the case if and only if

1− 2ν

1− ν
>

(1 + µβ)(1− ν)

1 + (1 + µβ)(1− ν)

or

ν2(1 + µβ)− ν(3 + µβ) + 1 > 0.

It is not difficult to show that the latter condition is satisfied if and only if ν < ν̄ (µβ) as stated in Assump-
tion 1.

Finally, observe that surviving members of cohort 0 satisfy their budget constraint when old as equality, i. e.,
we have co

1 = R1s0/µ > 0. �

A.1.8 Proof of Proposition 8

Some straightforward algebra reveals that

∂wc

∂µ
=

βwc

ν(1 + µβ)(1 + (1− ν)(1 + µβ))(1− ν(1 + µβ)
> 0.

It follows that ∂hs
t /∂µ > 0. From the definition of wc and Proposition 7 cy

t may be written as

cy
t =

(
1− ν (1 + µβ)

φ (1 + (1 + µβ) (1− ν))

)1−ν

w1−ν
t .

Hence,

∂cy
t

∂µ
=

− (1− ν) βw1−ν
t

φ1−ν(1 + (1− ν)(1 + µβ))2−ν(1− ν(1 + µβ))ν
< 0.

The sign of ∂st/∂µ > 0 follows since the marginal propensity to save in (2.33) increases in µ and ∂hs
t /∂µ > 0.

Finally, using st in the budget constraint of a surviving old delivers

co
t+1 =

βRt+1w1−ν
t

φ1−ν(1 + (1− ν)(1 + µ))1−ν(1− ν(1 + µ))ν
.

Hence, by Assumption 1

∂co
t+1

∂µ
= −

(
ν2(1 + µβ)− ν(3 + µβ) + 1

)
β2Rt+1w1−ν

t
φ1−ν(1 + (1 + ν)(1 + µβ))2−ν(1− ν(1 + µβ))1+ν

< 0.

�
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A.1.9 Proof of Proposition 9

Under Assumption 2 the aggregate demand for hours worked is Hd
t = H1d

t (ωt, α) of (2.18). The aggregate
supply of hours worked, Hs

t = hs
t Lt, follows with Proposition 7. Hence, the labor market equilibrium

requires Hd
t = Hs

t or

Kt
At−1

√
α

ωt

(
Γ (1− γ)

2
√

αωt − α

) 1
γ

= Ltwν
c w−ν

t .

Rearranging and using kt ≡ Kt/
(

A1−ν
t−1 Lt

)
delivers equation (3.4) which I restate here for convenience,

kt =
ω̂

1−2ν
2

t
Λ

(
2

√
ω̂t
α
− 1

) 1
γ

.

Denote the right-hand side of this equation by RHS(ωt) where RHS : [α, ∞) → [kc, ∞). Then, RHS(α) =

kc > 0. Moreover, since ν < 1/2 we have RHS′(ωt) > 0 for ωt > α and limωt→∞ RHS(ωt) = ∞. The left-
hand side of (3.4) is strictly positive for any permissible parameter constellation. Hence, for equation (3.4)
to be satisfied for any value ωt > α it is necessary and sufficient to have RHS(α) < kt or kt > kc. Then, the
properties of RHS(ωt) assure that there is indeed a unique ω̂t > α that satisfies (3.4). The unique equilibrium
wage is then ŵt = ω̂t At−1 > αAt−1, the equilibrium amount of hours worked is Ĥt = H1d

t (ω̂t, α) < Lt.

From (3.4) it is also obvious that there is a function ω (kt) with the indicated properties. �

A.1.10 Proof of Proposition 10

Consider equation (3.4). Since ∂wc/∂µ > 0 I have ∂Λ/∂µ < 0. Hence, ∂ω̂t/∂µ < 0. Since Hd
t does not

depend on µ, Ĥt increases in µ.

Total differentiation of (3.4) with respect to α and ω̂t delivers

∂ω̂t
∂α

=

∂Λ
∂α kt + Λkt

√
ω̂t

αγ(2
√

ω̂t−
√

α)

Z
,

where Z > 0 stems from the derivative of the right-hand side of (3.4) with respect to ω̂t. Taking the derivative
∂Λ/∂α reveals the condition for ω̂t (and Ĥt) as stated in the Proposition. �

A.1.11 Proof of Proposition 11

First, observe that kt is a state variable of the inter-temporal general equilibrium. Indeed, given kt, the labor
market determines ω̂t = At−1wt > α. Hence, Proposition 1 delivers qt, at, it, and ct. Proposition 2 and (2.17)
determine Nt, Yt, It, and Hd

t . Hence, (2.16) delivers Rt. On the household side, Proposition 7 gives hs
t , lt, cy

t ,
co

t , st. Finally, Kt+1 follows from (3.8).

Second, consider (3.4) and replace ωt by ωt = (kt+1/Ω)2/(1−ν) from (3.9). This gives the equilibrium differ-
ence equation (3.10) as (see Figure A.1 for an illustration)

kt =
1
Λ

(
kt+1

Ω

) 1−2ν
1−ν

(
2√
α

(
kt+1

Ω

) 1
1−ν

− 1

) 1
γ

. (A.12)

Denote the right-hand side of the latter equation by RHS(k). Since, k > kc and limk↓kc
RHS(k) = kc I have

RHS :
(

kc, ∞
)
→ (kc, ∞).
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Figure A.1: The Equilibrium Difference Equation (A.12). Since kc > kc, there is for any
kt > kc a unique kt+1 > kc such that ω̂t > α for all t. Moreover, kc > kc implies a unique
steady state k∗ ∈ (kc, ∞) and, for any k1 > kc, there is monotonic convergence to the
steady state, k∗.

0

kt

kt+1
kc

kt = kt+1

k∗

kc

kc

One readily verifies that RHS′(k) > 0. To see that RHS′′(k) > 0 define ζ ≡ k/Ω. Then, RHS(k) = RHS(ζ)
and RHS′(k) = RHS′(ζ) · (dζ/dk). Moreover,

RHS′′(k) = RHS′(ζ)
d2ζ

dk2 + RHS′′(ζ)
(

dζ

dk

)2
= RHS′′(ζ)

(
dζ

dk

)2

since d2ζ/dk2 = 0. Hence, RHS′′(k) > 0 follows if RHS′′(ζ) > 0. To see that the latter holds define

z ≡ 2√
α

ζ
1

1−ν − 1.

Then, RHS′(ζ) becomes

RHS′(ζ) =
RHS(ζ)
(1− ν)ζ

1− 2ν +

2
γ
√

α
ζ

1
1−ν

z

 .

Hence, the sign of RHS′′(ζ) is given by the sign of

∂
(

RHS(ζ)
ζ

)
∂ζ

1− 2ν +

2
γ
√

α
ζ

1
1−ν

z

+
RHS(ζ)

ζ

(
2

γ
√

α

) ∂

(
ζ

1
1−ν

z

)
∂ζ

. (A.13)
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Since

RHS(ζ)
ζ

=
z

1
γ

Λζ
ν

1−ν

I have

∂
RHS(ζ)

ζ

∂ζ
=

z
1
γ

Λγζ
1

1−ν

(
∂z
∂ζ

ζ

z
− γν

1− ν

)
.

The term in parenthesis is strictly positive since

2√
α

ζ
1

1−ν (1− νγ) > −νγ.

Hence, ∂ (RHS(ζ)/ζ) /∂ζ > 0. Since ν < 1/2, equation (A.13) is strictly positive if

∂
(

RHS(ζ)
ζ

)
∂ζ

[
ζ

1
1−ν

z

]
+

RHS(ζ)
ζ

∂

(
ζ

1
1−ν

z

)
∂ζ

> 0. (A.14)

To see that this is indeed the case observe that

∂
(

RHS(ζ)
ζ

)
∂ζ

[
ζ

1
1−ν

z

]
=

z
1−γ

γ

Λγ

(
∂z
∂ζ

ζ

z
− νγ

1− ν

)
,

RHS(ζ)
ζ

∂

(
ζ

1
1−ν

z

)
∂ζ

=
z

1−γ
γ

Λ

(
1

1− ν
− ∂z

∂ζ

ζ

z

)
.

The sum of these terms delivers inequality (A.14) as

z
1−γ

γ

Λ

(
∂z
∂ζ

ζ

z

(
1
γ
− 1
)
+ 1
)
> 0.

The latter holds since ∂z/∂ζ > 0 and 0 < γ < 1.

Strict convexity of RHS(k) also implies that limk→∞ RHS(k) = ∞. Hence, for any kt ∈ (kc, ∞) (A.12) delivers
a unique value kt+1 ∈ (kc, ∞). �

A.1.12 Proof of Proposition 12

Consider the function RHS(k) defined in the proof of Proposition 11. Since this function is monotonically
increasing with limk→∞ RHS(k) = ∞, a sufficient condition for the existence of a unique steady state k∗ > kc
is kc > kc. A simple graphical argument using Figure A.1 reveals that the strict convexity of RHS(k) delivers
k∗ > kc as well as the stability of k∗ in the indicated sense. Then, k∗is a fixed point of the difference equation
(A.12) and given by

k∗ =


(

2√
α

(
k∗
Ω

) 1
1−ν − 1

) 1−ν
γ

Λ1−νΩ1−2ν


1
ν

.

�
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A.1.13 Proof of Proposition 13

From Proposition 12 the steady state has kt = k∗ > kc > kc so that Proposition 9 implies ωt = ω̂∗ =

ω (k∗) > α. Then, from (2.13) I have qt = q∗ = q(ω̂∗, α) > 0, and the results listed under a) - d) follow from
Proposition 1, Proposition 2, Proposition 7, Proposition 9, and equations (2.16), (2.17) and (3.8). �

A.1.14 Proof of Proposition 14

First, consider a change in µ and gL. I show how such a change affects ω̂∗. Then, the statements in the
proposition follow since ∂q(ω̂∗, α)/∂alpha > 0 (see Proposition 1).

Consider the labor market equilibrium condition (3.4) and the capital market condition (3.9) in steady state.
Solving both equations for k∗ and substitution delivers

ΛΩ = (ω̂∗)
−ν
2

(
2

√
ω̂∗

α
− 1

) 1
γ

, (A.15)

where

ΛΩ =

(
Γ(1− γ)

α1−γ+ γν
2

) 1
γ µβ

(1 + µβ)(1− ν)(1 + gL)
.

The right-hand side of equation (A.15) defines a continuous function RHS(ω) with the following properties:

RHS(α) = α
−ν
2 ,

RHS′(ω) = ΛΩ

(
2ω(1− γν) + γν

√
αω

2γω
3
2
(
2
√

ω−√α
) ) > 0,

lim
ω→∞

RHS(ω) = lim
ω→∞

(
2ω

1−γν
2√

α
−ω

−γν
2

) 1
γ

= ∞.

Hence, for any ΛΩ > α−ν/2, which is equivalent to kc > kc, there is a unique ω̂∗ > α, hence, a unique
q∗ = q(ω̂∗, α) > 0.

Then, straightforward implicit differentiation of (A.15) delivers dω̂∗/dµ > 0 and dω̂∗/dgL < 0.

Second, consider a change in α as stated in (4.3). Here, Proposition 1 delivers the partial effects. Evaluated
at the steady state, these are

∂q (ω̂∗, α)

∂ω
=

1
2
√

ω̂∗α
and

∂q (ω̂∗, α)

∂α
=
−
√

ω̂∗

2α3/2 .

It follows that

dq∗

dα
R 0 ⇔ dω̂∗

dα

α

ω̂∗
R 1.

To derive dω̂∗/dα, consider conditions (3.4) and (3.9) in steady state. Solving for k∗ and substitution delivers

ΓΩ (ω̂∗)
ν
2 −

(√
ω̂∗

α
− 1

) 1
γ

= 0.

Total differentiation of the latter gives

dω̂∗

dα
=

ω̂∗
(
(2γ− 1− νγ)

(√
ω̂∗ −√α

)
+
√

α
)

α
(√

ω̂∗ − νγ
(√

ω̂∗ −√α
)) .
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Here, the denominator is strictly positive whereas the numerator may be positive or negative. It follows that

dω̂∗

dα

α

ω̂∗
R 1 ⇔

(2γ− 1− νγ)
(√

ω̂∗ −√α
)
+
√

α
√

ω̂∗ − νγ
(√

ω̂∗ −√α
) R 1.

One readily derives that (dω̂∗/dα) (α/ω̂∗) < 1 must hold since γ < 1. Hence, dq∗/dα < 0. �

A.1.15 Proof of Proposition 15

From equation (A.19) the steady state labor share is

LS∗ = (1− γ)

 √
ω̂∗

√
ω̂∗ + γ

(√
ω̂∗ −√α

)
 .

Then, one readily verifies that

∂LS∗

∂ω
= − (1− γ)γ

√
α

2
√

ω̂∗
(
(1 + γ)

√
ω̂∗ − γ

√
α
)2 < 0, and

∂LS∗

∂α
=

(1− γ)γ
√

ω̂∗

2
√

α
(
(1 + γ)

√
ω̂∗ − γ

√
α
)2 > 0.

From the proof of Proposition 14 I know that ∂ω̂∗/∂µ > 0 and ∂ω̂∗/∂gL < 0. Hence,

dLS∗

dµ
=

∂LS∗

∂ω

∂ω̂∗

∂µ
< 0 and

dLS∗

dgL
=

∂LS∗

∂ω

∂ω̂∗

∂gL
> 0

which are the stated effects for µ and gL.

The case of α is more intricate since changing α gives rise to a direct effect on LS∗. Hence, the total effect may
be written as

dLS∗

dα
=

∂LS∗

∂ω

dω̂∗

dα
+

∂LS∗

∂α
.

Using the partial effects above delivers the total effect as

dLS∗

dα
=

(1− γ)γ

2
(
(1 + γ)

√
ω̂∗ − γ

√
α
)2

[
−
√

α√
ω̂∗

dω̂∗

dα
+

√
ω̂∗√
α

]
.

It follows that

dLS∗

dα
R 0 ⇔ 1 R

dω̂∗

dα

α

ω̂∗
.

From the proof of Proposition 14 I know that (dω̂∗/dα) (α/ω̂∗) < 1 must hold. Hence, dLS∗/dα > 0. �

A.1.16 Proof of Proposition 16

Consider the labor and the capital market.28 For the chosen parameter constellation Λ = 452.632 and kc =

0.0022093. Moreover, the labor-market equilibrium condition (3.4) reads

kt = 0.0022093 (2
√

ωt − 1)4
ω

1
4
t . (A.16)

28All computations were executed in Mathematica. The relevant notebooks are available upon request.
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At the same time, Ω = 0.246914 = kc. Hence, it holds that kc = 0.246914 > kc = 0.0022093, and the capital
market equilibrium condition (3.9) becomes

kt+1 = 0.246914 ·ω
3
8
t . (A.17)

Equations (A.16) and (A.17) determine the equilibrium difference equation (3.10) as

kt = 0.00561338 · k2/3
t+1

(
12.9113 · k4/3

t+1 − 1
)4

. (A.18)

The evaluation of (A.16) and (A.17) at kt = kt+1 = k∗ and ωt = ω∗ delivers k∗ and ω∗ as stated in the
proposition. Since ω∗ > 1 and α = 1, the steady state satisfies wt > At−1 for all t = 1, 2, ..., ∞. Since wc = 1
it also satisfies αAt−1 > wc if At−1 > 1.

Using ω∗ in Proposition 1 delivers the indicated value of q∗, using ω∗ in (A.19) gives the stated labor share,
LS∗. With ω∗ in Proposition 1 one also finds

i∗ = 1.20823 and c∗ = 3.41645.

With the latter in Proposition 2 one obtains

Nt
Kt

=

(
Γ(1− γ)

c∗

) 1
γ

= 3.32234.

For Nt/Kt = 3.32234 the first-order condition for Kt in (2.16) gives R∗.

Finally, from Proposition 1 the growth factor of the supply of hours worked is 1/(1 + q∗)ν = 0.820331. �

A.2 Proofs of Corollaries

A.2.1 Proof of Corollary 1

If ωt > α then qt > 0 and the rationalization effect follows since

1
At−1 (1 + qt)

<
1

At−1
.

The productivity effect follows since ct is the solution to (2.11) and c (ωt, α) |ωt=α = ωt. �

A.2.2 Proof of Corollary 2

Follows from Proposition 2 and Corollary 1. �

A.2.3 Proof of Corollary 3

With Proposition 1 one readily verifies that the labor share may be expressed as

LS1
t = (1− γ)

( √
ωt√

ωt + γ
(√

ωt −
√

α
)) . (A.19)

Then, the corollary follows from straightforward derivations and from an application of l’Hôpital’s rule to

lim
ωt→∞

( √
ωt√

ωt + γ
(√

ωt −
√

α
)) = lim

α→0

( √
ωt√

ωt + γ
(√

ωt −
√

α
)) =

1
1 + γ

.

�
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A.2.4 Proof of Corollary 4

From (A.19) in the proof of Corollary 3 I have

L̂St = (1− γ)

( √
ω̂t√

ω̂t + γ
(√

ω̂t −
√

α
)) .

Then, dL̂St/dµ = (∂LSt/∂ωt) (∂ω̂t/∂µ) where ∂LSt/∂ωt < 0. Then dL̂St/dµ > 0 follows with Proposi-
tion 10.

From Corollary 3 I also have

∂LSt
∂ωt

= − LSt
2ωt
· 1√

ω
α + γ

(√
ω
α − 1

) < 0,

∂LSt
∂αt

=
LSt
2α
· γ√

ω
α + γ

(√
ω
α − 1

) > 0.

Then, using the above and (3.6) in (3.7) delivers

dL̂St
dα
R 0 ⇔ γ(1− γ) + 2(1− νγ2)

2(1− γ)
R

√
ω̂t
α

2
√

ω̂t
α − 1

. (A.20)

Denote the left-hand side of this inequality by LHS(γ, ν). One finds LHS(0, ν) = 1, limγ→1 LHS(γ, ν) = ∞,
and

∂LHS(γ, ν)

∂γ
=

γ2(2ν + 1)− 2γ(2ν + 1) + 3
2(1− γ)2 > 0.

Hence, LHS(γ, ν) > 1 for all 0 < γ < 1. At the same time the right-hand side of (A.20) is strictly smaller
than unity. Hence, dL̂St/dα > 0. �
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B Additional Results

B.1 The Elasticity of Substitution between Automation Investments and Hours
Worked per Task

This section derives the elasticity of substitution between automation investments and hours worked by
task. Section B.1.1 has the case it(n) = αqt(n) that is used in the main text (see equation (2.4)). Section B.1.2
studies the general case it(n) = ι(qt(n)) where ι : R+ → R+ is increasing and convex. Henceforth, I shall
drop the argument n and the time index t. Then, the two cases boil down to i = αq and i = ι(q), respectively.

B.1.1 The Linear Case, i = αq

Consider the isoquant defined by equation (2.6). Dropping the argument n and the time index t this can be
written as

A
(

1 +
i
α

)
h = 1.

Then, the technical rate of substitution, TRS, between h and i is

TRS ≡ dh
di

= − h
α + i

. (B.1)

The elasticity of substitution, ES, between h and i is defined as

ES ≡
(

TRS
h/i

)(
dTRS
d(h/i)

)−1
. (B.2)

With (B.1) the first factor is −i/(i + α). To obtain the second factor observe that the differential d(h/i) is

d
(

h
i

)
=

h
i

(
dh
h
− di

i

)
. (B.3)

From (B.1), I have

dTRS =
−dh
α + i

or
dh
h

= −α + i
h

dTRS,

dTRS =
h

(α + i)2 di or
di
i
= − (α + i)2

hi
dTRS.

Using the latter in (B.3) delivers (
dTRS
d(h/i)

)−1
= − (2i + α)(i + α)

i2
.

It follows that,

ES =

(
− i

α + i

)(
− (2i + α)(i + α)

i2

)

= 2 +
α

i
,

= 2 +
1
q

,

where the last step uses (2.4).
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B.1.2 The General Case i = ι(q)

Consider the general case i = ι(q) where ι : R+ → R+ satisfies

lim
q→0

ι(q) = 0, ι′(q) > 0 for all q > 0, lim
q→0

ι′(q) ≥ 0, ι′′(q) ≥ 0. (B.4)

Hence, ι is one-to-one with range R+. Then, the inverse of ι, q = ι−1(i), where ι−1 : R+ → R+, exists and
satisfies

lim
i→0

ι(i) = 0,
(

ι−1
)′

(i) =
1

ι′(q)
> 0 for all q > 0, lim

i→0

(
ι−1
)′

(i) ≤ ∞,
(

ι−1
)′′

(i) = − ι′′
(
ι−1(i)

)[
ι′
(
ι−1(i)

)]3 ≤ 0. (B.5)

Proposition 17 (ES for General Functional Forms of ι(q))

Suppose automation investments are given by i = ι(q) that satisfies condition (B.4). Then, for q > 0 it holds that

ES > 1.

Proof of Proposition 17

The isoquant corresponding to equation (2.6) becomes

A
(

1 + ι−1(i)
)

h = 1.

Accordingly, the technical rate of substitution, TRS, between h and i is

TRS ≡ dh
di

= − h
(
ι−1)′ (i)

1 + ι−1(i)
. (B.6)

The elasticity of substitution, ES, between h and i is defined as in (B.2). The first factor of ES is equal to

TRS
h/i

= − i
(
ι−1)′ (i)

1 + ι−1(i)
. (B.7)

To obtain the second factor, (dTRS/d(h/i))−1, use (B.6) to derive the differentials

dTRS = −
(
ι−1)′ (i)

1 + ι−1(i)
dh,

dTRS = − h
1 + ι−1(i)

(ι−1
)′′

(i)−

((
ι−1)′ (i))2

1 + ι−1(i)

 di,

or

dh
h

= − 1 + ι−1(i)

h
(
ι−1
)′
(i)

dTRS,

di
i

= −1 + ι−1(i)
hi

(ι−1
)′′

(i)−

((
ι−1)′ (i))2

1 + ι−1(i)


−1

dTRS.
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Using these expressions in (B.3) delivers

d
(

h
i

)
=

h
i

− 1 + ι−1(i)

h
(
ι−1
)′
(i)

dTRS +
1 + ι−1(i)

hi

(ι−1
)′′

(i)−

((
ι−1)′ (i))2

1 + ι−1(i)


−1

dTRS



=
1 + ι−1(i)

i

− 1(
ι−1
)′
(i)

+
1
i

(ι−1
)′′

(i)−

((
ι−1)′ (i))2

1 + ι−1(i)


−1
 dTRS.

Hence,

(
dTRS
d(h/i)

)−1
=

1 + ι−1(i)
i

− 1(
ι−1
)′
(i)

+
1
i

(ι−1
)′′

(i)−

((
ι−1)′ (i))2

1 + ι−1(i)


−1
 . (B.8)

It follows from (B.7) and (B.8) that

ES =

(
TRS
h/i

)(
dTRS
d(h/i)

)−1

= − i
(
ι−1)′ (i)

1 + ι−1(i)

1 + ι−1(i)
i

− 1(
ι−1
)′
(i)

+
1
i

(ι−1
)′′

(i)−

((
ι−1)′ (i))2

1 + ι−1(i)


−1



= 1 +

(
ι−1)′ (i)

i
(
((ι−1)

′(i))
2

1+ι−1(i) −
(
ι−1
)′′

(i)
) .

Then, the proposition follows from (B.5). �

Examples

In addition to the linear case of the previous section, examples of functions ι(q) that satisfy (B.4) include:

• ι(q) = αq2, α > 0. Then, ES = 2 + 1/(1 + q) ≥ 2.

• ι(q) = α
(
eqz − 1

)
, α > 0, z > 1. Then,

ES = 1 +
z(α + i) ln

(
α+i

α

)(
z

√
ln
(

α+i
α

)
+ 1
)

(1 + z) ln
(

α+i
α

)
+ (i + z− 1) z

√
ln
(

α+i
α

)
+ z ln

(
α+i

α

)
+ z− 1

with

lim
i→0

ES(i) = 1.

B.2 The Induced Aggregate Rationalization Effect for i = ι(q)

Consider i = ι(q) characterized in (B.4). The following result can be stated and proved.

Proposition 18 (Induced Aggregate Rationalization Effect for i = ι(q))

If limq→0 ι′(q) = 0, then the aggregate rationalization effect is strictly positive.
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Proof of Proposition 18

Recall that cost minimization requires

qt = argminq≥0
ω

1 + q
+ ι(q).

If limq→0 ι′(q) = 0 then the first-order condition

−ω

(1 + q)2 + ι′ (q) ≥ 0

delivers an interior solution qt = q (ω) for all ω > 0. Moreover, limω→0 q (ω) = 0 and

q′ (ω) ≡ dqt
dω

=
1 + q (ω)

2ω + (1 + q (ω))3 ι′′ (q (ω))
> 0. (B.9)

From the discussion of Proposition 4 in Footnote 14 I know that the induced aggregate rationalization effect
is strictly positive if dh(ω)/dω = − [h(ω)]2 · q′(ω) > 0. For ω > 0 it holds that h(ω) < 1 and q′ (ω) > 0.
Since limω→0 h(ω) = 1 it is sufficient for the proposition to hold that limω→0 q′ (ω) > 0. From (B.9) it is
immediate that

lim
ω→0

q′ (ω) =
1

limω→0 ι′′ (q (ω))
.

Hence, the proposition holds if limω→0 ι′′ (q (ω)) ≥ 0. The latter is satisfied as ι(q) is convex for q ≥ 0. �
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