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A Real-Time Approach for Chance-Constrained
Motion Planning with Dynamic Obstacles.
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Abstract—Uncertain dynamic obstacles, such as pedestrians or
vehicles, pose a major challenge for optimal robot navigation with
safety guarantees. Previous work on optimal motion planning
has employed two main strategies to define a safe bound on an
obstacle’s space: using a polyhedron or a nonlinear differentiable
surface. The former approach relies on disjunctive programming,
which has a relatively high computational cost that grows
exponentially with the number of obstacles. The latter approach
needs to be linearized locally to find a tractable evaluation of the
chance constraints, which dramatically reduces the remaining
free space and leads to over-conservative trajectories or even
unfeasibility. In this work, we present a hybrid approach that
eludes the pitfalls of both strategies while maintaining the
original safety guarantees. The key idea consists in obtaining
a safe differentiable approximation for the disjunctive chance
constraints bounding the obstacles. The resulting nonlinear opti-
mization problem can be efficiently solved to meet fast real-time
requirements with multiple obstacles. We validate our approach
through mathematical proof, simulation and real experiments
with an aerial robot using nonlinear model predictive control to
avoid pedestrians.

Index Terms—Motion and Path Planning, Collision Avoidance,
Optimization and Optimal Control, Autonomous Vehicle Naviga-
tion

I. INTRODUCTION

AUTONOMOUS robots, such as self-driving cars or
drones, are expected to revolutionize transportation, in-

spection and many other applications to come [1]. To fully
exploit their capabilities, we need to enable their safe operation
among humans and other robots while pursuing high-level
objectives such as safety [2] or energy consumption [3].
However, planning trajectories with obstacles whose present
and future location is highly uncertain is still a difficult and
computationally expensive problem [4]. Strong assumptions
need to be made to find tractable solutions for fast real-time
applications. This leads to over-conservative obstacle models
that ensure collision-free operation but drastically reduce the
remaining free space [5], [6], compromising the problem’s
feasiblity when multiple obstacles arise. As a result, reducing
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Figure 1: An instant of the proposed approach running on an
aerial vehicle to avoid pedestrians in a cluttered environment.
The planned trajectory has been rendered into the image
plane as red balls. The predicted bounding ellipsoids of one
pedestrian are projected into the ground as degraded-green
ellipses. Video: http://rebrand.ly/castillo RAL2020

conservatism in motion planning algorithms while providing
safety guarantees has become a major problem and the subject
of active research [4], [6]–[11].

In this paper, we present a new approach to model uncertain
dynamic obstacles for fast real-time motion planning applica-
tions. This method eludes the over-conservatism of existing
real-time approaches while providing safety guarantees at a
low computational cost. The resulting problem is modeled
within the framework of disjunctive chance-constrained op-
timization and casted into non-linear programming, for which
efficient solvers exist [12]. Thus, the main contributions of this
paper are listed as follows:
• Theoretical results on disjunctive chance constraints, pro-

viding tighter bounds on the probability of collision.
• A new real-time approach for chance-constrained motion

planning in dynamic environments.
• Empirical validation through simulation and real experi-

ments on an aerial robot to avoid pedestrians.
The rest of the paper is organized as follows: Section II
presents an overview of existing approaches for chance-
constrained motion planning. We formalize the motion plan-
ning problem in Section III, and present a set of preliminary
results in Section IV from which we build our theoretical
results in Section V. Finally, our approach is evaluated through
a benchmark, software-in-the-loop simulations and real exper-
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iments in Section VI, drawing the resulting conclusions and
future lines of work in Section VII.

II. RELATED WORK

Optimal motion planning has been the subject of active
research during the last decade, as surveyed in [13], [14].
Generally, the space occupied by obstacles is represented as a
set of constraints on the free space which, in general, disrupts
its convexity. The choice on the type of constraints determines
the nature of the resulting optimization problem and therefore,
its performance. There are two main strategies in the literature
to encapsulate an obstacle’s space: Using a convex polyhedron
[4], [10] (e.g. a cuboid), or a single differentiable surface [5],
[6], [15] (e.g. an ellipsoid).

A polyhedral obstacle is encoded as a disjunction of linear
inequality constraints. This represents logical OR relations
between the infinite planes that define each face of the polyhe-
dron. The resulting disjunctive problem can be solved to global
optimality using existing branch-and-bound techniques [16].
This problem has a relatively high computational cost that
grows exponentially with the number of obstacles [8], [16].
Even though recent efforts show promising improvements on
computational efficiency, over-conservatism and probabilistic
guarantees [4], [7], [8], [10], their computational cost is still
too elevated to meet fast real-time requirements.

Alternatively, an obstacle can be bounded by a single
differentiable surface (sphere, cylinder, ellipsoid, etc.) to be
included as a nonlinear constraint of the optimization problem
[15]. This results in a comparatively low-dimension nonlinear
program (NLP), which can be solved efficiently by gradient-
based solvers [12]. Even though this solution cannot guarantee
global optimality, its reduced computational cost makes this
strategy to be widely adopted in most time-critical motion
planning tasks, such as model predictive control for aerial
robots [5], [6], [15].

Accounting for uncertainty through a probabilistic frame-
work has shown to overcome the inherent over-conservatism
of set-bounded uncertainty models [7], [17], which is essential
to avoid unfeasibility in cluttered environments. However, the
chosen strategy to bound the obstacles critically impacts the
evaluation of the resulting chance constraints. For instance,
the linear chance constraints that compose polyhedral obsta-
cles have a closed-form deterministic equivalent for Gaussian
systems [4]. On the other hand, nonlinear chance constraints
need to be linearized [6] or approximated by sampling methods
[18], which leads to over-conservatism and high computational
cost respectively.

This paper proposes a hybrid solution that benefits from
both strategies. First, a polyhedral obstacle formulation is
exploited to provide a closed-form approximation of the
disjunctive chance constraints. Then, a differential surface
provides a safe bound on polyhedral obstacle regions. To
meet fast real-time requirements, we restrict each polyhedral
obstacle to be a cuboid (i.e. bounding box), and then obtain
a tight quadratic bound analytically. As a result, we land on
a nonlinear formulation that can be solved efficiently with the
guarantee that the original chance constraints will be satisfied
with the specified confidence level.

III. PROBLEM STATEMENT

In this work, we consider the problem of motion plan-
ning with non-cooperative moving obstacles with uncertain
localization, model and disturbances in the form of additive
Gaussian noise. Thus, the dynamics of a given robot and a
set of No obstacles are described as the following stochastic,
discrete-time model:

xt+1 = f(xt, ut) + wt (1a)

yit+1 = gi(yit) + vit i ∈ {1, . . . , No} (1b)

where xt ∈ Rnx , yit ∈ Rny and ut ∈ Rnu are the robot state,
i-th obstacle state and robot inputs respectively at time t ∈
N. wt ∈ Rnw and vit ∈ Rnv are unknown disturbances with
Gaussian probability distributions; and f and gi are (possibly
nonlinear) Borel-measurable functions that describe the robot
and the i-th obstacle dynamics respectively.

Let pt ⊂ xt ∈ R3 and qit ⊂ yit ∈ R3 be subspaces describing
the position of their respective center of mass. Then, bounding
boxes centered at qit with semi-sizes di ∈ R3 can be placed
such that the free configuration space Ft is defined as follows:

Ft :=

xt ∈ Rnx :

No∧
i=1

3∨
j=1

|pjt − q
ij
t | ≥ dij

 (2)

where j iterates over the Cartesian coordinates of each R3

element. | · |,
∨

and
∧

denote the absolute value, the logical
OR and AND respectively. Given the stochastic nature of the
agents, we can define the chance constraint over the horizon
length N as follows:

P

(
N∧
t=1

xt ∈ Ft

)
≥ 1− α (3)

which enforces the robot to stay within the free configuration
space in a probabilistic sense with the confidence level 1 −
α. As a result, the probabilistic motion planning problem is
defined as follows:

min.
u0,...,uN−1

J(u0, . . . , uN−1, x0, . . . , xN ) (4a)

subject to:
xt+1 = f(xt, ut) + wt (4b)

yit+1 = gi(yit) + vit (4c)

wt ∼ N (0,Wt) vit ∼ N (0, V it ) (4d)

x0 ∼ N (x̂0,Σx,0) y0 ∼ N (ŷi0,Σy,0) (4e)
xt+1 ∈ X, ut ∈ U (4f)

P

(∧
t

xt+1 ∈ Ft+1

)
≥ 1− α (4g)

where t ∈ {0, . . . , N − 1} and i ∈ {1, . . . , No}. The cost
function (4a) determines the objective to pursue such as energy
consumption or a reference state. The stochastic model of
the robot and the obstacles are included in equations (4b) to
(4d). The initial states in (4e) are assumed to be Gaussian
distributions given by a state estimation algorithm such as
Kalman filtering. The equations in (4f) provide additional state
and control constraints to be defined for a given application.
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Finally, the collision chance constraint is included in (4g) with
confidence level 1− α.

The key difficulty of this problem lies on the evaluation
of the non-convex chance constraint (4g). It requires the
integration of a multivariate Gaussian distribution and the
convexification of the disjunctive constraints, which is, in
general, intractable [4]. To overcome these difficulties, we
safely approximate the problem as a deterministic disjunctive
program, which is then casted into a nonlinear program to be
solved efficiently by existing solvers [12].

IV. PRELIMINARY RESULTS

For the sake of clarity, this section introduces preliminary
results to support further developments in Section V.

A. Minimum volume enclosing ellipsoid of a bounding box

Consider the space outside the bounding box B as

B(d) :=

{
x ∈ R3 :

3∨
i=1

|xi| > di

}
(5)

where d ∈ R3
+ and the Cartesian coordenates are iterated

through the index i. This set can be safely approximated
by its minimum volume enclosing ellipsoid E , which can be
computed in closed form as [19]:

E(d) :=

{
x ∈ R3 :

3∑
i=1

(
xi
di

)2

> 3

}
(6)

B. Chance constraints for linear-Gaussian systems

Consider a multivariate Gaussian random variable X ∼
N (µ,Σ). Then, the chance constraint

P(aTX + b ≤ 0) ≥ 1− α, a, b ∈ Rnx (7)

has a deterministic equivalent of the form:

aTµ+ b+ Ψ−1(1− α)
√
aTΣa ≤ 0 (8)

where Ψ is the standard Gaussian cumulative distribution
function defined as:

Ψ(x) =
1√
2π

∫ x

−∞
exp

{
− t

2

2

}
dt (9)

C. Bounds on disjunctive chance constraints

As proven by [8], for any number of events Ai, we have:

P

(
N∨
i=1

Ai

)
≥ 1− α⇐

N∨
i=1

P (Ai) ≥ 1− α (10)

Similarly, as proven by [8], new variables αi ∈ R can be
defined such that:

P

(
N∧
i=1

Ai

)
≥ 1− α⇐

(
N∧
i=1

P (Ai) ≥ 1− αi

)

∧ (0 ≤ αi ≤ 1) ∧

(
N∑
i=1

αi ≤ α

)
(11)

Thus, we have an immediate result on polyhedral obstacle
regions described by chance constraints of the type:

P

 N∧
t=1

No∧
i=1

Nf∨
j=1

Aijt

 ≥ 1− α⇐

N∧
t=1

No∧
i=1

Nf∨
j=1

P
(
Aijt

)
≥ 1− αit

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(12)

where Nf is the number of faces of the i-th obstacle. By
direct comparison with recent results in [9], [10] we can see
a considerable improvement on the chance constraint bounds,
increasing the risk allocation parameters αit by Nf times for
uniform risk allocation. Thus, less conservative bounds are
obtained for the same confidence level, reducing the risk of
posing unfeasible problems when multiple obstacles arise.

V. NONLINEAR BOUND FOR COLLISION
CHANCE CONSTRAINTS

This section develops the main theoretical contribution of
this paper: a safe deterministic approximation of the chance
constraint (3) given by

N∧
t=1

No∧
i=1

3∑
j=1

 p̂jt − q̂
ij
t

dijt + Ψ−1(1− αi
t)
√
σ2(pijt ) + σ2(qijt )

2

≥ 3

∧
(

0 ≤ αi
t ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αi
t ≤ α

)
(13)

where pit ∼ N (p̂it, σ
2(pit)) and qijt ∼ N (q̂ijt , σ

2(qijt )).

Proof. Let the equation (3) be rewritten as the disjunction:

P

 N∧
t=1

No∧
i=1

3∨
j=1

1∨
k=0

(−1)k(pjt − q
ij
t ) + dijt ≤ 0

 ≥ 1− α

(14)
By application of (12), we get:

N∧
t=1

No∧
i=1

3∨
j=1

1∨
k=0

P
(

(−1)k(pjt − q
ij
t ) + dijt ≤ 0

)
≥ 1− αit

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(15)

Since we now have linear combinations of Gaussian vari-
ables we can apply equation (8) to obtain:(

N∧
t=1

No∧
i=1

3∨
j=1

1∨
k=0

(−1)j(p̂jt − q̂
ij
t ) + dijt

+ Ψ−1(1− αit)
√
σ2(pjt ) + σ2(qijt ) < 0

)

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(16)
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which is equivalent to(
N∧
t=1

No∧
i=1

3∨
j=1

|p̂jt − q̂
ij
t | ≥ d

ij
t

+ Ψ−1(1− αit)
√
σ2(pjt ) + σ2(qijt )

)

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(17)

The equation (17) defines a bounding box to which (6) can be
applied to obtain (13) and complete the proof. �

This methodology allows the problem (4) to be addressed
through nonlinear programming, which critically impacts its
tractability and the scalability. For instance, each polyhedral
obstacle requires 7N mixed-integer constraints and 6N binary
variables [10], while our method can be implemented with N
quadratic constraints and zero additional variables. In addition,
the disjunctive program has a relatively high computational
cost that grows exponentially with the number of obstacles [8],
[16]. In contrast, our nonlinear program can be solved with
polynomial complexity [12], being computationally efficient
for large-scale problems [20].

VI. CASE STUDY: ROBOT COLLISION AVOIDANCE

In this section we implement our motion planning approach
(4) in a Model Predictive Control (MPC) fashion to pro-
vide collision-free navigation on a DJI-M1001 quadrotor. The
results of the experiments are complemented by the video
demonstration https://rebrand.ly/castillo RAL2020.

A. Robot Model
Based on the DJI SDK, the control inputs given to the

quadrotor are defined as u = [ux uy uz uψ]T , which
correspond to forward, sideward, upward, and heading velocity
references, respectively based on a local frame L parallel to
the ground (see [15] for details). Thus, the nominal system
dynamics are modeled as follows:

ṗ = R(ψ)v (18a)

v̇i =
1

τi
(−vi + kiui), i ∈ {x, y, z} (18b)

ψ̈ =
1

τψ
(−ψ̇ + kψuψ) (18c)

where v = [vx vy vz]
T is the linear velocity of the center of

mass in the local frame and R(ψ) the rotation matrix for the
yaw angle ψ. ki, kψ and τi, τψ are the gain and time constants
relative to each component of u respectively. Thus, the robot
state is defined as xt = [pt vt ψt ψ̇t] and the nominal discrete
dynamics f(xt, ut) are obtained through 4-th order Runge-
Kutta integration of (18). The nominal state prediction x̂t and
its covariance matrix Σxt are approximated with a first-order
Taylor expansion [21]:

x̂t+1 = f(x̂t, ut) (19a)

Σxt+1 = (∇xf(x̂t, ut)) Σxt (∇xf(x̂t, ut))
T

+Wt (19b)

1DJI Matrice 100: https://www.dji.com/matrice100

where ut is obtained from the predicted inputs of the MPC
algorithm. Even though there exists more precise uncertainty
propagation methods [21], we use Taylor expansion for the
sake of computational efficiency.

B. Obstacle Model

Obstacles are modeled with constant velocity nominal dy-
namics:

q̇i = R(ψi)vi, v̇i = ψ̈i = 0 (20)

where vi and ψi are the linear velocity in the body frame
and yaw angle of the i-th obstacle respectively. Thus, obstacle
states are defined as yit = [qit v

i
t ψ

i
t ψ̇

i
t] where the nomi-

nal discrete dynamics gi(yit) are determined through Euler
integration of (20). Similarly, the nominal state ŷit and its
covariance matrix Σy

i

t are approximated with a first-order
Taylor expansion

ŷit+1 = gi(ŷit) (21a)

Σy
i

t+1 = ∇gi(ŷit)Σ
yi

t

(
∇gi(ŷit)

)T
+ V it (21b)

C. Objective Function

We define the cost function in (4a) as:

J =

N∑
t=1

(
‖xt − xrt‖2P + ‖ut−1‖2Q

)
(22)

where xrt is the user-defined goal state. ‖ · ‖P and ‖ · ‖Q are
the norms induced by the P and Q weighting matrices.

D. One-Horizon Benchmark

In this section, our method is compared against three state-
of-the-art approaches [4]–[6] on stochastic optimal collision
avoidance for real-time systems. We design a two-dimensional
experiment where the robot and the obstacle are placed at p0 =
[0 0] and q0 = [5 − 0.01] respectively. Uncertain obstacle’s
location is considered with covariance Σq = diag(0.4 0.1).
The bounding box size is d = [1 0.5] as shown in Fig. 2.
We have selected a prediction horizon of 8 seconds with
N = 40 steps and a confidence level 1 − α = 0.99
with uniform risk allocation αit = α/N . For the sake of a
purely chance-constrained benchmark, we have dropped the
additional potential fields implemented in [5], [6] that would
have made these implementations even more conservative.

As shown in Fig. 2, our approach avoids the tendency of
linearized chance constraints [6] to fall into local minima
while providing a level of conservatism between the robust
constraint from [5] and the disjunctive chance constraint
from [4]. As presented in Table I, our approach solves a
conservative approximation of [4] over 142 times faster at
the price 4% of optimality. Our computation time falls in the
range of [5], [6], which have been widely used for fast real-
time motion planning. The one-horizon benchmark has been
executed from the optimization framework CasADi [22], being
publicly available on-line to be reproduced2.

2 Benchmark code: https://rebrand.ly/castillo RAL2020benchmark
3The solver converges faster when falling into local minima.

https://rebrand.ly/castillo_RAL2020
https://www.dji.com/matrice100
https://rebrand.ly/castillo_RAL2020benchmark
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Figure 2: One horizon benchmark of our approach against
the linearized chance constraint from [6], the robust constraint
from [5] and the disjunctive chance constraint from [4].

Table I: Relative results from the one horizon benchmark.

Ours Kamel [5] Zhu [6] Blackmore [4]
Objective 1.0 1.0925 2.6166 0.9614
CPU time (s) 1.0 1.3198 0.4555 3 142.08

E. Real experiment: Pedestrian collision avoidance.

The experiment consists in two pedestrians who naturally
walk inside a closed area where the robot is operating. As
shown in Fig. 1 and the complementary video, when the
pedestrians intend to occupy the robot’s safe space, evasive
trajectories are planned and executed while tracking a refer-
ence position given by prt = [0 0 1.5] m.

The experiment is conducted in a flying arena of [4 3 3] m
equipped with an Optitrack4 motion capture system, which
provides raw pose measurements of the robot and the obsta-
cles. These poses are processed by Extended Kalman Filter
(EKF) algorithms [23] according to the robot (19) and the
obstacle (21) models. Gaussian model disturbances in linear
and angular velocities have been considered as σ2(vt) =
0.03 m2/s2 and σ2(ψ̇t) = 0.03 rad2/s2 for the robot
and the obstacles. The measurement noise on position has
been identified to be σ2(pt) = σ2(qit) = 2.5 · 10−3m2.
The bounding boxes around the pedestrians are defined by
dit = [2 2 4] m with confidence level 1−α = 0.99 and uniform
risk allocation αit = α/NNo. The real-time implementation
of the problem (4) with N = 20 steps over 4s of prediction
horizon is based on ACADO Toolkit [12] and ROS Kinetic
[24] C++ framework running on a on an Intel i7-6820HQ
CPU@2.70GHz.

In this work, we include the results over 5 minutes of
experiment. The outcome of this experiment in terms of safety
are evaluated statistically through the distance to the closest
obstacle d and its inverse time-to-collision TTC−1 = ḋ/d
[25]. Large negative values of TTC−1 indicate high risk of
collision, while values near zero correspond to safe situations
[25]. As shown in Fig. 3, the robot presented a low risk of
collision, since the distance to the closest obstacle lies in the
range [1, 3] m with median 1.7 m and the TTC−1 values

4Optitrack motion capture system https://optitrack.com/

are concentrated around −0.09s−1 with a minimum value of
−0.4 s−1. In addition, our approach presents fast real-time
capabilities with a median control delay of 2.4 ms.

Figure 3: Pedestrian Collision Avoidance: Box plots for the
distance to the closest obstacle, the inverse time to collision
TTC−1, and the control delay. The median is represented in
red and the 25-75th percentiles in blue. The black whiskers
represent 1.5 times the interquartile range. Outliers are plotted
as blue circles

F. Simulation: Crowd Collision Avoidance

This experiment consists in a software-in-the-loop simu-
lation where the robot navigates in a crowded scenario. 30
pedestrians, driven by the social force model [26]5, follow
a squared path of 14 m length with a reference velocity of
1 m/s. The robot, simulated according to (18), is tracking the
same path in opposite direction at 1.5m/s while avoiding the
pedestrians, as shown in Fig. 4 and the complementary video.
The simulation runs at 100 Hz with the same setup as the
experiment conducted in Section VI-E.

In this simulation we include the results over 20 minutes
of experiment. Analogously to Section VI-E, the outcome of
this experiment is evaluated statistically through the inverse
time to collision (TTC−1), the distance to the closest obstacle
and the control delay, as shown in Fig. 5. The nature of
the experiment and the higher number of obstacles involves
a greater risk than the previous experiment, with a median
TTC−1 of −0.84 s−1. Consequently, our algorithm shows
a more conservative behavior, with a median distance to
the closest obstacle of 3.22 m. Finally, the higher number
of obstacles moderately increases the computation time to
4.2 ms, leaving room to scale up to more complex scenarios.

VII. CONCLUSIONS

We presented a new real-time approach to address chance-
constrained motion planning with dynamic obstacles. The
obstacles are considered to have uncertain localization, model
and disturbances in the form of additive Gaussian noise.

5Pedestrian simulator code: https://github.com/srl-freiburg/pedsim ros

https://optitrack.com/
https://github.com/srl-freiburg/pedsim_ros
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Figure 4: Crowd collision avoidance simulation with 30 pedes-
trians. The orange arrow represents the moving reference
position. The robot pose and predicted trajectory are indicated
by the frame and the purple arrows respectively.

Figure 5: Crowd Collision Avoidance: Box plots for the
distance to the closest obstacle, the inverse time to collision
TTC−1, and the control delay. The median is represented in
red and the 25-75th percentiles in blue. The black whiskers
represent 1.5 times the interquartile range. Outliers are plotted
as blue circles

We developed a closed-form differentiable bound on the
probability of collision to safely approximate the disjunc-
tive chance-constrained optimization problem as a nonlinear
program. Consequently, the computational cost was reduced
dramatically while maintaining the original safety guarantees,
allowing its implementation in fast real-time applications.
Through mathematical proof and simulations, our method has
shown to reduce conservatism with respect to recent real-
time approaches, remaining tractable when accounting for
multiple obstacles. Finally, real-time experiments validated
the presented approach using nonlinear model predictive con-
trol on an aerial robot to avoid pedestrians. Future work
will consider closed-loop constraint satisfaction techniques
[7] and alternative risk-allocation methods [8] to further re-

duce conservativeness while maintaining the required safety
guarantees. In addition, new practical applications will be
targeted, including other robotic platforms, perception and
energy consumption objectives.
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