

Conventional EO Satellites vs. CubeSats

FLD, AI flood detection onboard NanoSATs

Dietmar Backes, Guy Schumann, Felix Norman Teferle

-

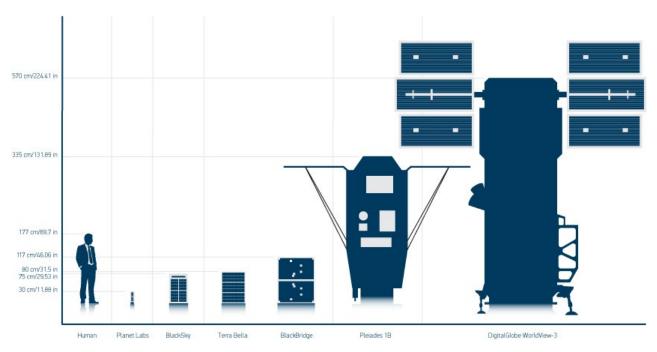
FDL: Josh Veitch-Michaelis, Gonzalo Mateo-García, Lewis Smith, Silviu Oprea, Yarin Gal, Guy Schumann, Atılım Güneş Baydin, Dietmar Backes

Content:

Part 1: Conventional EO Satellites vs. CubeSats

- a light hearted Overview
- Optical EO from LEO
- Basic Principles of Optical Spaceborne Imaging

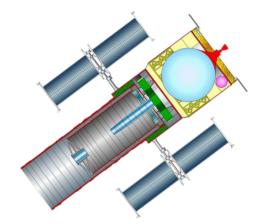
Part 2: FDL-Europe - Disaster Prevention, Progress and Response (Floods)


- Flood Detection On Low Cost Orbital Hardware Story and approach
- World Floods data set
- End to End machine learning approach
- Optimisation for deployment onboard the Satellite

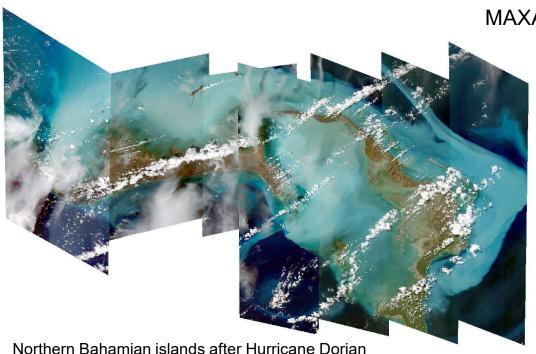
Summary and Outlook

Conventional EO Satellites vs. CubeSats

Credit: Digital Globe 12/2016


...so where are the differences?

Pictures from Space



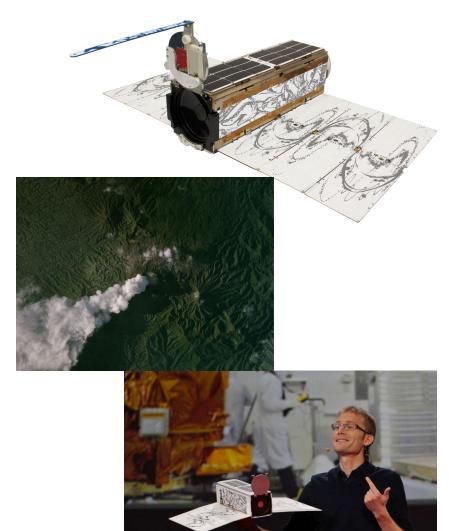
Spaceflight now 30/08/2019, Images of Semnan launch site Credit: Planet, Maxar and @realDonaldTrump

- Left: captured by Planet approx. 3m resolution (Dove, RapidEye or Skysat)
- Centre: Maxar/Digital Globe WorldView2 Satellite approx. 0.3m resolution
- Right: US intelligence image https://twitter.com/realDonaldTrump/status/1167493371973255170
 suspected KH11 type satellite (USA-244)

Very High-resolution Images by WorldView

WorldView 2 Satellite

- Multispectral images captured from a single orbit
- 29,900 km2 in 7 separate scenes
- Highly agile: body-pointing range of $\pm 40^{\circ}$ correspondent to 1355km FOR cross-track
- Pointing accuracy <500 m at image start and stop
- Large 2.2 TB on-board storage;
- Imagery is downlinked in X-band at 800 Mbit/s
- Theoretical 1.1 day revisit time



High-resolution Optical Images from CubeSats

Table 2
Preliminary assessment of the feasibility of Cubesat-based missions carrying different remote sensing technologies.

Technology	Feasibility assessment (feasible/problematic/ infeasible)	Justification
Atmospheric chemistry instruments	Problematic	Low sensitivity in SWIR-MIR because of limited cooling capability
Atmospheric temperature and humidity sounders	Feasible	e.g., GNSS radio occultation, hyperspectral millimeter-wave sounding
Cloud profile and rain radars	Infeasible	Dimensions, power
Earth radiation budget radiometers	Feasible	[63]
Gravity instruments	Feasible	[64]
High resolution optical imagers	Infeasible	Not enough resolution-swath, because limited
		space for optics and detectors
Imaging microwave radars	Infeasible	Limited power
Imaging multi-spectral radiometers (vis/IR)	Problematic	Limited imaging capability
Imaging multi-spectral radiometers (passive microwave)	Problematic	Limited imaging capability
Lidars	Infeasible	Limited power
Lightning imagers	Feasible	[30]
Magnetic field instruments	Feasible	[65]
Multiple direction/polarization radiometers	Problematic	Limited dimensions for receiver electronics
Ocean color instruments	Feasible	[4]
Precision orbit	Feasible	[66]
Radar altimeters	Infeasible	Dimensions
Scatterometers	Infeasible	Dimensions

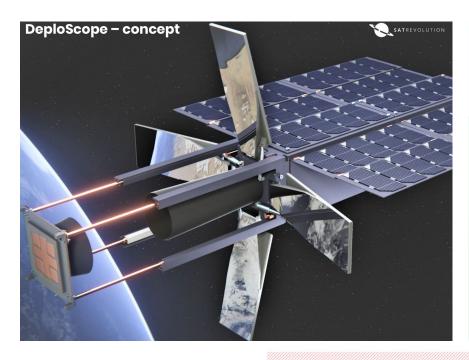
Selva, D., Krejci, D., 2012. A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronaut. 74, 50–68. https://doi.org/10.1016/j.actaastro.2011.12.014

Comparison

Planet, Planetscope 3.6m GSD, MS

WorldView 2, approx. 2m, MS

Satellite Revolution (?!)


Reference: https://satrevolution.com/rec/

Poźniak, Tomasz, 2019. Earth observation by utilizing nanosatellite constellation. Presented at the 11th European CubeSat Symposium, Luxembourg. https://www.cubesatsymposium.eu/

LUXEMBOURG

Satellite Revolution (?!)

No	Parameter	Value
1	Spectral range	VNIR – achromat
2	GSD (Ground Sample Distance)	1,1 m @350 km
3	Sensor size	8,5x7,1 mm
4	Pixel size	3,45x3,45 um
5	Focal length	1100 mm
6	f#	f/6,1
7	FoV (Field of View)	±0,288°
8	MTF (Modulation Transfer Function)	7% - 15,6% @93 lp/mm
9	Strehl ratio	0,8
10	Mass	>360 g (optics only)
11	Dimensions – stowed position	100x100x175 mm
12	Dimensions – deployed position	180x180x175 mm
13	Optical surface tolerances	P-V<1 µm; RMS: 1 fringe @632,8 nm; focal length tolerance: 0,02%
14	Acceptable deployment error	7 μm
15	Thickness of optical elements	3,5-6 mm
16	Materials TBD	Aluminium, SiC, Zerodur, Invar

Current stage

Phase 1 *Q3 2019*

DeploScope's early design & NanoBus in orbit demonstration (as Światowid's base in mid July)

Phase 2Q3 2021

ScopeSat prototype in orbit demonstration

Phase 3 Q4 2022

 16 ScopeSats in orbit – 16 h revisit time

First constellation's iteration

 Starting the satellite factory project

Phase 4 Q4 2023

 66 ScopeSats in orbit – 4 h revisit time

 Second constellation's iteration

Phase 5 Q2 2026

• 1024 ScopeSats in orbit – 30 min revisit

• Final constellation's iteration

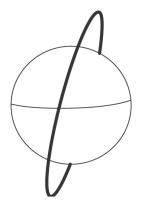
Earth observation from LEO

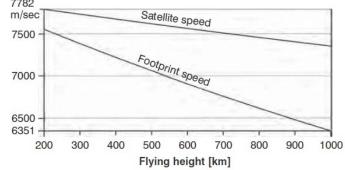
'The Risky Rush for Mega Constellations'

Experts are alarmed by plans to launch tens of thousands of revolutionary satellites in coming years

The European Space Agency recently was forced to maneuver its Aeolus satellite to avoid a potential collision with one of SpaceX's Starlink satellites. Credit: ESA and ATG medialab

O'Callaghan, Jonathan, 2019. The Risky Rush for Mega Constellations. Scientific American


https://www.scientificamerican.com/article/the-risky-rush-for-mega-constellations/



Earth observation from LEO

- Sun-synchronous, near-polar orbit with 98° inclination
 - most common orbit for optical EO satellites
 - orbit period approx. 90 min at 700-800km

- Satellite Speed as a function of flying height in a 'circular' orbit: m/sec
 - Approx. 7 km/s for EO satellites
 - t_{dwell} (1m GSD) ~ 0.14msec
 - t_{int} < t_{dwell}

- Example Ikonos2 (typical for EO satellites)
 - Inclination:

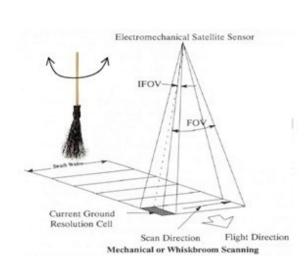
98 1°

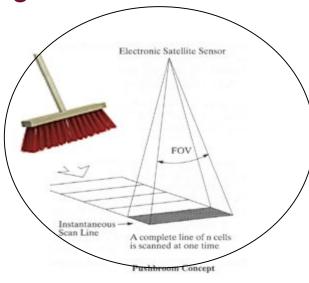
Period:

97 min

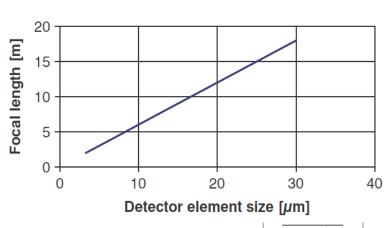
Equatorial crossing: 10:30 am solar time

Altitude:


681km


Satellite speed: 7.613 km/s Footprint speed: 6.878 km/s

Principles of Imaging Sensors



Relationship between detector element, focal length, orbit height and GSD:

$$f = \frac{H_{Orbit}}{GSD} \cdot x$$

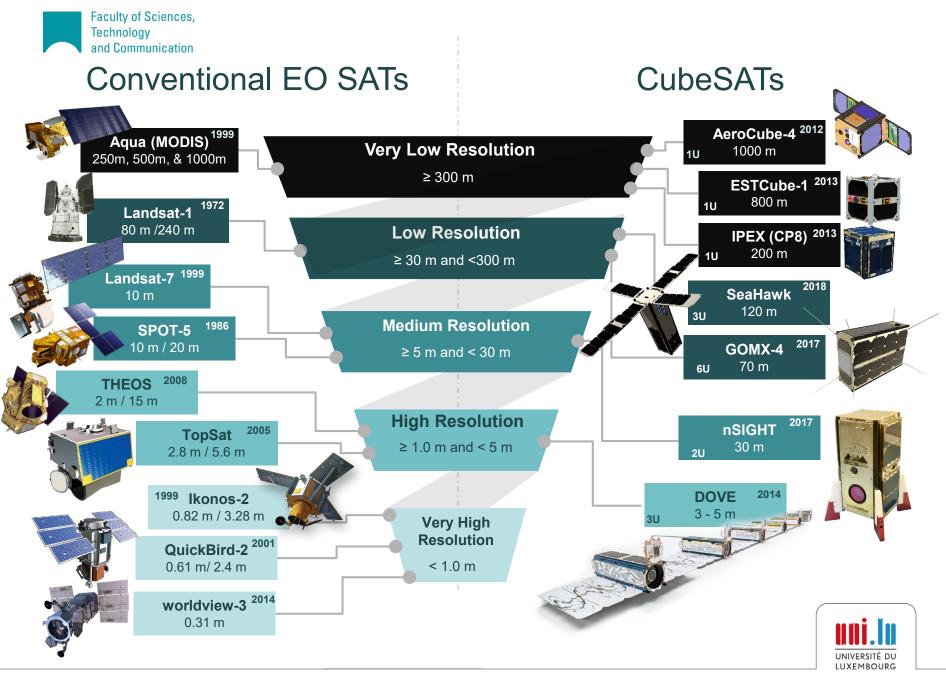
The figure shows the relationship between required focal length and detector size for a orbit altitude of 600km at 1m GSD.

Staring, frame Geometry

detectors RED

Requirements for Spaceborne Imaging Systems:

Spatial resolutions and quality:


$$MTF_{SR} = MTF_{Optics} \cdot MTF_D \cdot MTF_{PS}$$

- Radiometric aspects:
 - Higher resolution means smaller amounts of energy from smaller ground pixels
 - Time related factor: dwell time (t_{dwell}) and geometry related factor (IFOV)
 - E.g. the reduction of 10m to 1m GSD reduce the amount of energy at the detector by approx.
 1000.
- Pointing accuracy:
 - Start and stop pointing: < 500m
 - Geolocation accuracy: 6.5m

Common specification for high-resolutions EO systems

Platform stability:

$$MTF_{PS} = MTF_{LM} \cdot MTF_{J} \cdot MTF_{sin}$$

Evolution of Optical EO Satellites:

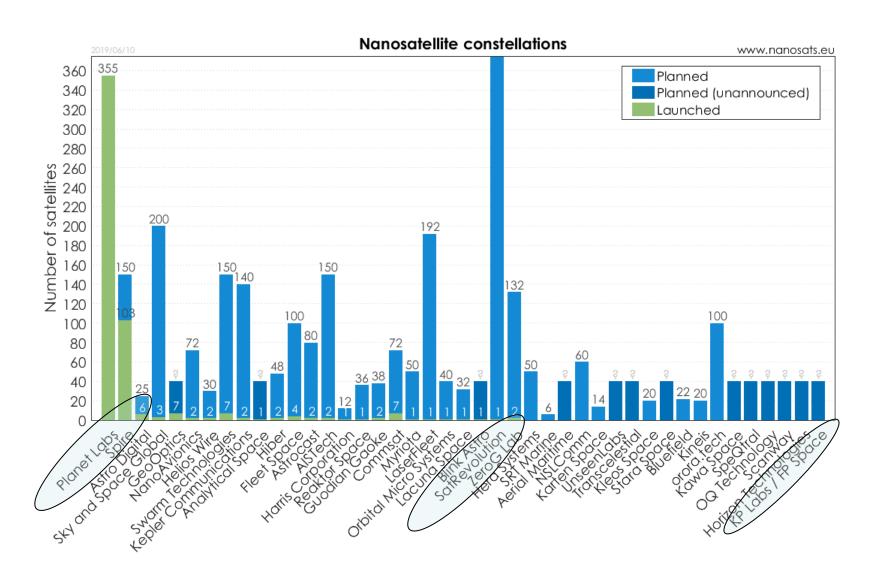
WorldView-4

Pleiades Launch Mass 970kg

Planetscope (Dove) Launch Mass 4kg

Sentinel-2

Landsat-8 Launch Mass 2,780kg


Aqua (MODIS) Launch Mass 2,934kg

Launch Date	Organisation	Mission		Mission Orbit		Sensor(s)	Pointing capability/Agilit v	
			Landsat 1-3	907 to 915 km, 99°	80m	Multi spectral Scanner (MSS)	Up to 10.3° off nadi	
			Landsat 4-5		30m	Thematic Mapper (TM)		
1972 - 2013	NASA	Landsat	Landsat 7	705 km, 98.2°	30m	Enhanced Thematic Mapper Plus (ETM+) 8-band whiskbroom scanning radiometer	Up to 7.5° off nadir	
			Landsat 8		30m	Operational Land Imager (OLI) similar spectral bands to the ETM+	Up to 7.5° off nadir	
1998-03-24	CNES (Centre national d'études spatiales)	Spot 1- 4		832 km, 98.8°	10 PAN / 20 MS	High-Resolution Visible and Infrared sensor (HRV IR)	± 27°	
1999-09-24	Space Imaging/ GeoEye Inc.		Ikonos-2	681 to 709 km, 98.1°	1 m PAN (0.82 m at nadir), 4 m MS (3.2 m at nadir)	Kodak Optical Sensor Assembly (OSA) Pushbroom detector	±30°	
1999-12-18	NASA To			ASTER	705 km	15 m VNIR 30 m SWIR 90 m TIR 15 m Stereo	Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 14 bands	0° /27°
2002-05-04		Terra	MODIS	705 km	250 m (bands 1–2) 500 m (bands 3–7) 1000 m (bands 8–36)	Moderate Resolution Imaging Spectroradiometer (MODIS) Medium-resolution, multi-spectral, cross-track scanning radiometer 36 spectral bands		
2001-10-18	DigitalGlobe Inc		QuickBird-2	450 km, 97.2°	0.61 m (PAN) and at 2.4 m (MS)	Ball Global Imaging System 2000 (BGIS 2000) Pushbroom array	±30°	
2002-05-04	CNES (Centre national d'études spatiales)		Spot-5	832 km, 98.7°	5m (single) 3.5m (double) PAN / 10m MS	High Resolution Geometric (HRG) High Resolution Stereo (HRS)	± 27° HRG ± 20° HRS	
2008-08-29	RapidEye/Planet		RapidEye	630 km, 98°	6.5 m	Jena-Optronik RapidEye Earth Imaging System (REIS) Multispectral pushbroom sensor 5 spectral bands	±20°	
2013-11-21	Skybox/Terra Bella/Planet	SkySat		600 km, 97.8°	90 cm PAN / 2.0 m MS	CMOS frame detectors (30f/s video from space)		
2014-08-13	DigitalGlobe Inc/MAXAR	WorldView-3		617 km	0.31 m PAN 1.24 m MS 3.7 m SWIR	Panchromatic, 8 Multispectral and 8 SWIR bands	±40° (nominal in any direction)	
2015-06-23	ESA and EU (European Commission - Copernicus)	Sentinel-2 (a, b)		786 km, 98.5°	10 m: (VNIR) B2, B3, B4, B8 (4 bands) 20 m: B5, B6, B7, B8a, B11, B12 (6 bands) 60 m: B1, B9, B10 (3 bands)	Multispectral Imager (MSI) 13 bands VNIR + SWIR		

information: eo Portal Directory 16

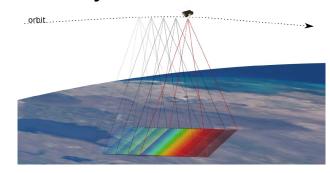
Some Planned and Launched CubeSat Missions

CubeSat Missions

	Launch Date	Organisation	Mission	Orbit	GSD	Sensor(s)	Resolution	Agility and Positioning
	2014 - 20XX	Planet Labs	Dove (Flock-xx xx)	400, 500, 600 (most are 500km)	3 - 5m	?		
30	2015-12-16	Microspace Rapid Pte Ltd.	Athenoxat-1	540 km, 15 deg	Global view resolution: 1km Wide Angle resolution: 50m to 300m Narrow Beam Resolution: 1m to 20m	?	f/2 to f/10 Optics speed 2.5 deg narrow beam aperture Visible/IR, multiband, hyperspectral Spectrum up to 30Hz Video Refresh	ACS air-coil magnetorquers primarily for stabilization ADS sensors: coarse sun sensors, magnetometer & gyroscopes CDH & ADCS software including Nadir vector determination & payloads drivers
	2016-09-26	UK Space Agency	ALSAT-Nano	680 km, 98.2 deg, SSO		XCAM C3D2 (CMOS)	1200 x 1080 pixels Focal length: 45 cm	
	2018-12-03	University of North Carolina Wilmington	SeaHawk	580 km, 97.8 deg	120 m	push-broom design, with 4 linear array CCDs, each containing 3 rows of detectors	1800x 6000 pixels 8 bands deep	
	2017-08-14	NASA Jet Propulsion Laboratory	ASTERIA	400 km, 51.6 deg, ISS	30 m	Fairchild CIS2521 (CMOS)	2592 pixels x 2192 pixels Focal length: 85 mm Aperture diameter: 60.7 mm (f/1.4) Pixel size 6.5 µm x 6.5 µm Plate scale: 15.8 arcseconds per pixel Field of view: 11.2° x 9.6°	
n9	2018-02-02	GomSpace	GOMX-4	500 km	70 m	HyperScout camera from Cosine for hyperspectral images	4096 x 1850 pixels Spectral range: 400 - 1000 nm Spectral resolution: 15 nm Dynamic range: 12 bit SNR: 50-100	
	2019-09-05	ESA	Phi-Sat-1	450-550 km	VNIR 75 / TIR 390 (590km)		FoV: VNIR 31 x 16 / TIR 31 x 16 Swath: VNIR 310 x 150 / TIR 310 x 150 Spectral bands: VNIR 45 / TIR 4 Spectral range [µm]VNIR 0.4 – 1.0 TIR 8.0 - 14	
	2022-12-31	KP Labs (FP Space)	intuition-1	?	?	hyperspectral instrument	Spectral resolution in the range of visible and near- infrared light The band is divided into 150 channels	

UNIVERSITÉ DU LUXEMBOURG

Example: GomX4 - Technology Demonstrator


GOMX-4A camera (GomSpaceNanoCam):

Sjælland(DK)

Credit: GomSpace and Cosine; MarcoEsposito

GOMX-4B Hyperspectral Imager Hyperscout I by Cosine:

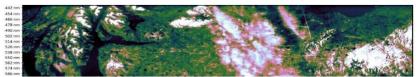


Figure 6: First light of HyperScout. False colour single image of the Scottish landscape between Glasgow and Edinburgh. Image acquired on the 20th of March 2018

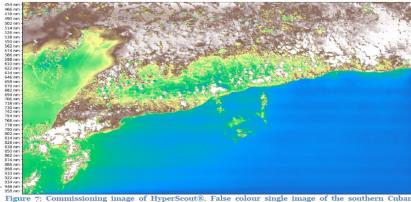
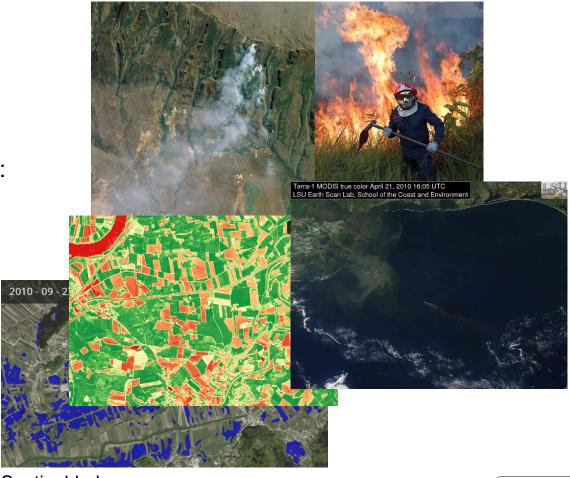


Figure 7: Commissioning image of HyperScout®. False colour single image of the southern Cuban coastline. Image acquired on the 26th of March 2018

Hyperscout applications

Disasters:

- Volcano and wild fire
- Flooding
- Monitoring geo hazards


Environmental Monitoring:

- Water quality
- Pollution, oil spills etc.

Farming and agriculture:

- Crop monitoring
- Forest monitoring

Mapping

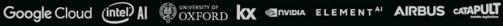
Sentinel-hub

Part 2: FDL-Europe Flood detection

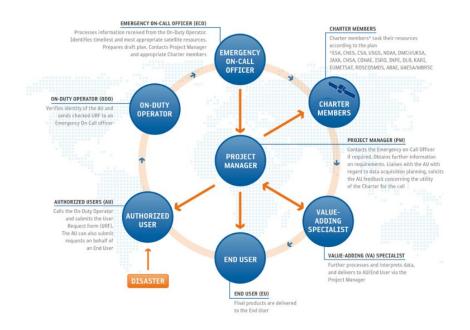
DISASTER PREVENTION, PROGRESS & RESPONSE (FLOODS)

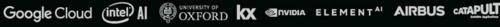
Flood Detection on Low-Cost Orbital Hardware

Team: Josh Veitch-Michaelis, Gonzalo Mateo-García, Lewis Smith, Silviu Oprea

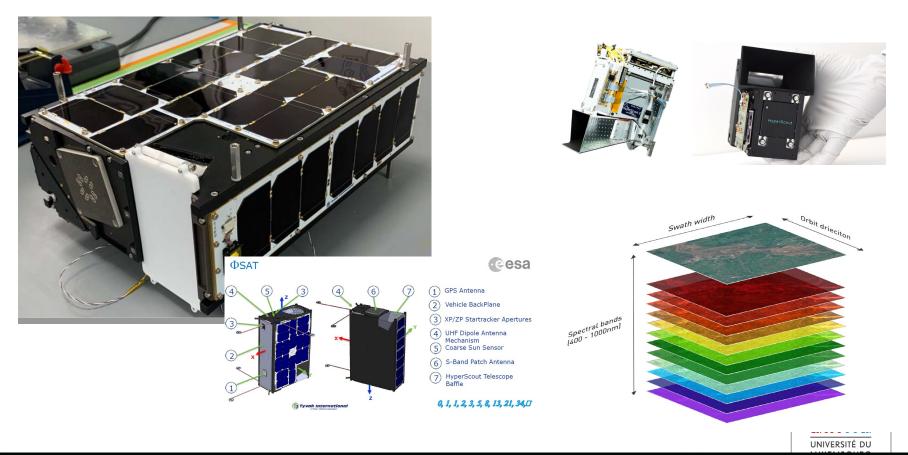

Mentors: Dietmar Backes, Atılım Güneş Baydin, Guy Schumann, Yarin Gal, Steve Reece

Flood detection and monitoring from Orbit




How can we reduce the time from disaster to data?

- Time for supply of data can be hours, on average 2 days: International "Space and Major Disasters" Charter
- How do we get data to the ground more quickly?
- How can we accelerate/automate the image analysis process?



PhiSAT-1 On-board Processing

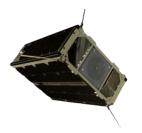
- FSSCat/PhiSat-1 technology demonstrator twin sat mission;
- Hyperspectral Sensor: Cosine Hyperscout II

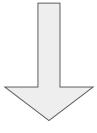


Example: PhiSAT-1

- Limited downlink capabilities
- Al processing on-board

ESA Maspalomas, Spain

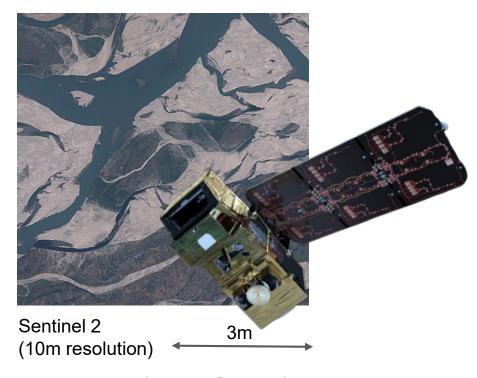






COTS ground station (ISIS)

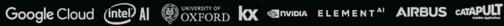
UNIVERSITÉ DU



Example: PhiSAT-1

Difference in Image Quality

- Geometric, spectral, radiometric resolution,
- S/N ratio, motion blur etc.



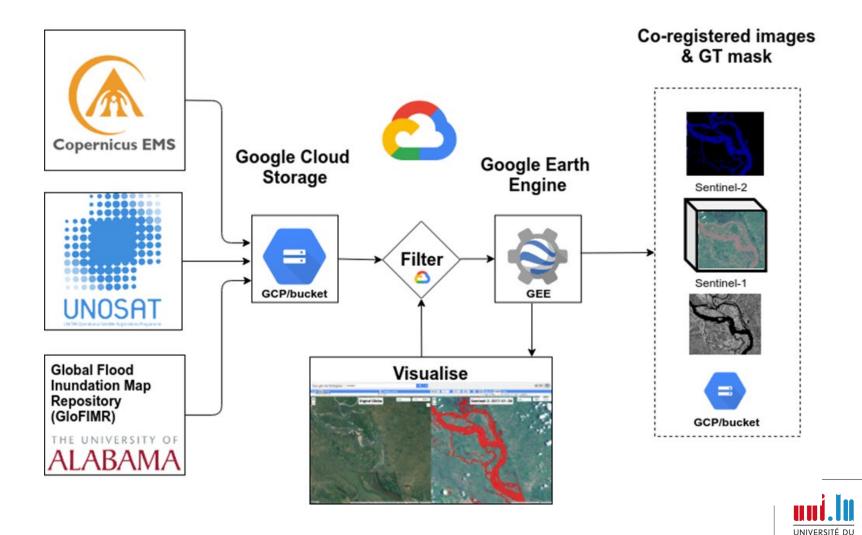
HyperScout 2 0.3m (70m resolution, simulated)

Antti Lipponen (Twitter @anttilip)

Approach

- Dataset of global flood events and Sentinel 2 images
- 2. End to End machine learning models based on simulated imagery (degraded Sentinel 2 images)
- 3. Convert and test models on simulated images from ΦSat-1 representative hardware (Intel Neural Compute Stick) prior to launch and deployment

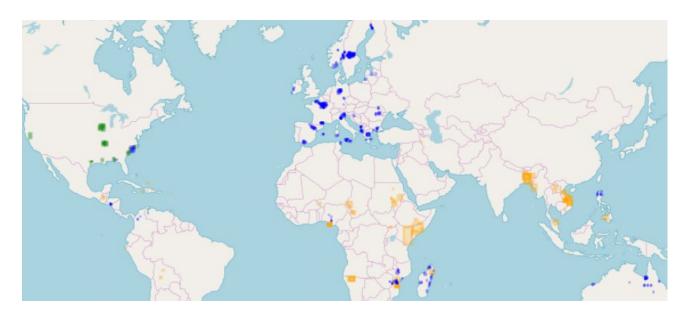




WORLDFLOODS Dataset

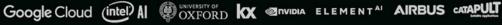
WORLDFLOODS Dataset

150 floods


618 flood maps

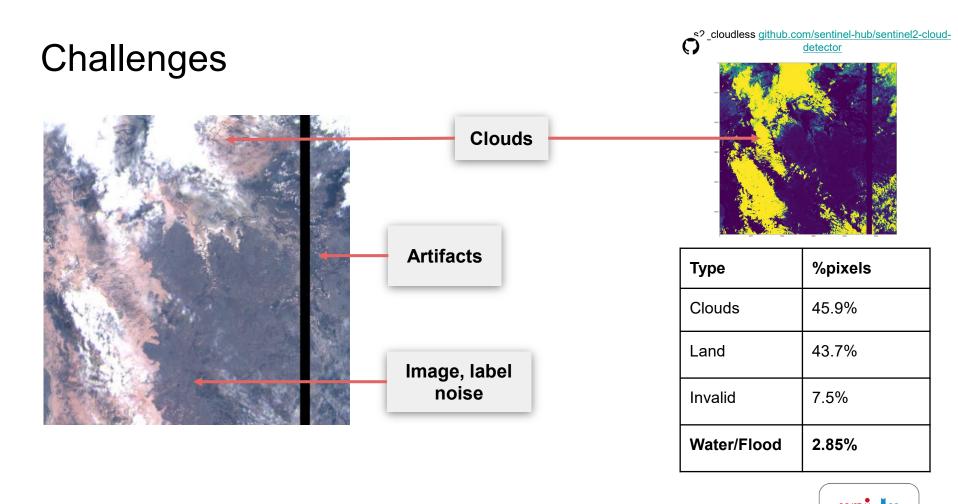
235,000 patches (256x256 px)

303 GB

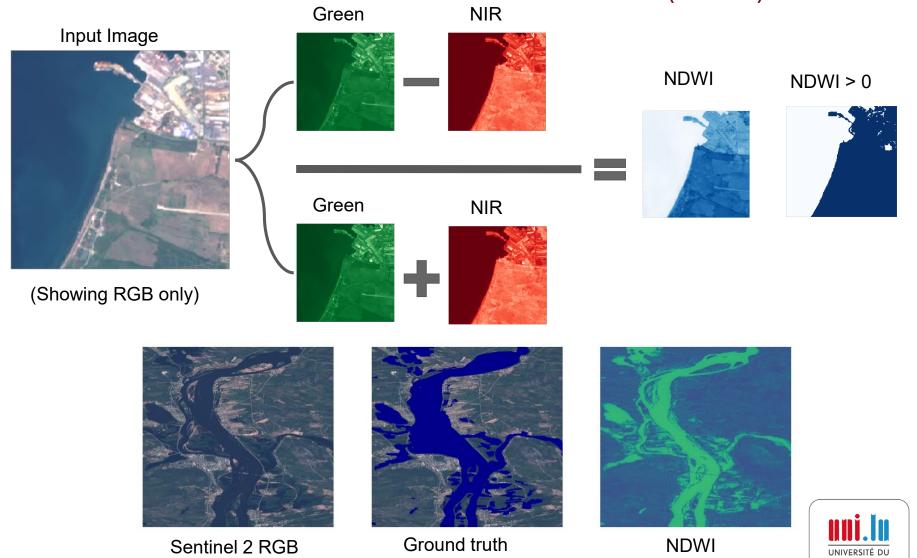


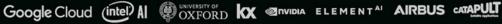
■ Unosat (127) ■ GloFIMR (37)

■ Copernicus EMS (454)



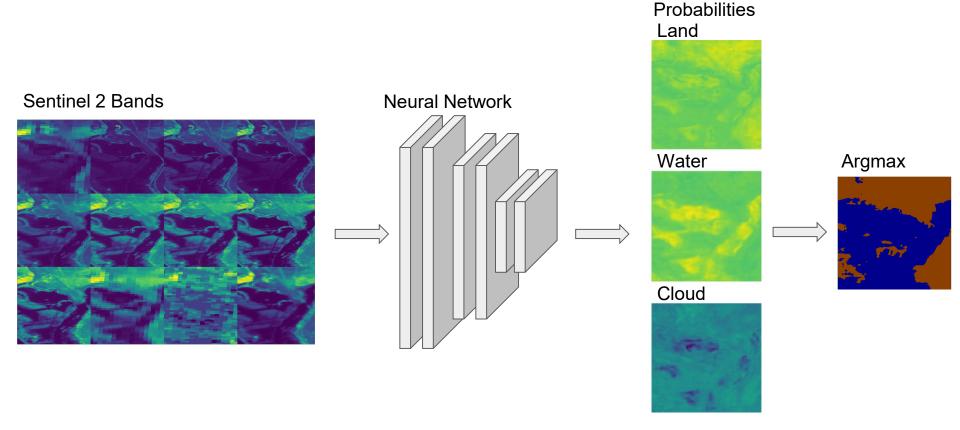
WORLDFLOODS Dataset

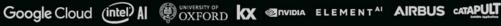




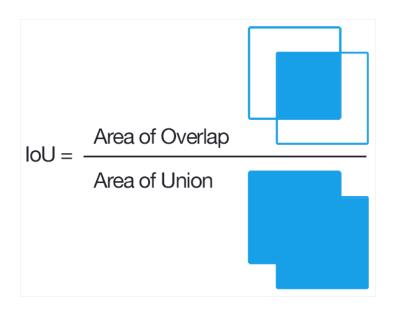
Baseline: Normalised Difference Water Index (NDWI)

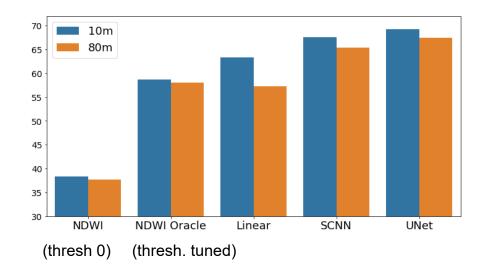




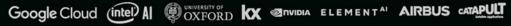

Model architecture: fully convolutional neural networks

End to End machine learning approach



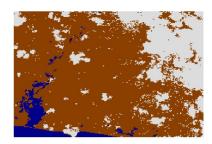


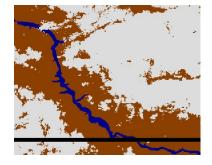
Evaluation

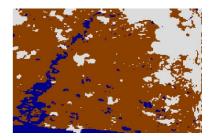


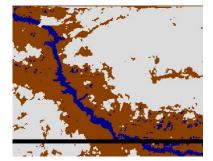
We experiment with training on both raw (10m/pixel) and degraded (80m/pixel) images

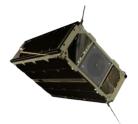
	lc	υU	Recall		
	10m	80m	10m	80m	
NDWI (thresh 0)	38.37	37.47	43.7	43.13	
NDWI (thresh. tuned)	58.63	58.09	93.26	97.72	
Linear	63.34	57.25	96.24	95.24	
SCNN	67.54	65.42	97.43	97.03	
UNet	69.25	67.51	97.34		
				UNIVERSIT	É

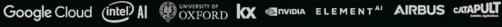

Simulation on Satellite hardware

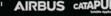

Optimisation: 'lean' deep learning algorithm to be deployed directly on the satellite


- Performance drop < 1%
- Deep learning NN: Model size < 0.5 MB
- 12MP image mapped in < 1 minute





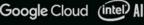


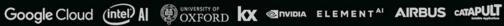


Outlook

- Image resolution quality of conventional EO Satellites will remain superior for the foreseeable future
- CubeSat technology will mature rapidly; technology demonstrators will soon become operational systems
- Al on small CubeSats satellites is expected to be a game changer (for some applications)
 - We hope that our Flood detector will be tested onboard Small or Nano satellites in the future

Thanks for listening!





Low Earth Orbits (LEO)

Revisit time:

- is a function of swath width, spacecraft agility/pointability and the number of space crafts
- Often called 'temporal resolution'

