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Abstract

We establish explicit bounds on the convex distance between the distribution of a vector
of smooth functionals of a Gaussian field, and that of a normal vector with a positive definite
covariance matrix. Our bounds are commensurate to the ones obtained by Nourdin, Peccati
and Réveillac (2010) for the (smoother) 1-Wasserstein distance, and do not involve any addi-
tional logarithmic factor. One of the main tools exploited in our work is a recursive estimate
on the convex distance recently obtained by Schulte and Yukich (2019). We illustrate our
abstract results in two different situations: (i) we prove a quantitative multivariate fourth
moment theorem for vectors of multiple Wiener-1t6 integrals, and (ii) we characterise the
rate of convergence for the finite-dimensional distributions in the functional Breuer-Major
theorem.
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1 Introduction

Fix m > 1, and consider random vectors F and G with values in R™. The convex distance
between the distributions of F and G is defined as

d.(F,G) := hseuzp |ER(F) — ER(G)], (1)

where the supremum runs over the class Z,, of indicator functions of the measurable convex
subsets of R™. For m > 2, the distance d. represents a natural counterpart to the well-known
Kolmogorov distance on the class of probability distributions on the real line, and enjoys a
number of desirable invariance properties that make it well-adapted to application

The aim of the present note is to establish explicit bounds on the quantity d.(F, G), in the
special case where F is a vector of smooth functionals of an infinite-dimensional Gaussian field,
and G = Ny is a m-dimensional centered Gaussian vector with covariance ¥ > 0. Our main
tool is the so-called Malliavin-Stein method for probabilistic approximations [17], that we
will combine with some powerful recursive estimates on d., recently derived in [29] in the context
of multidimensional second-order Poincaré inequalities on the Poisson space — see Lemma [2.1
below.

'For instance, one has that d.(TF,TG) = d.(F,G), whenever the mapping T : R™ — R™ is an invertible
affine mapping — see e.g. [4} 28] for more details.



Multidimensional normal approximations in the convex distance have been the object of
an intense study since several decades, mostly in connection with multivariate central limit
theorems (CLTs) for sums of independent random vectors — see e.g. [4, [10) I3} [14] for some
classical references, as well as [28] for recent advances and for a discussion of further relevant
literature. The specific challenge we are setting ourselves in the present work is to establish
bounds on the quantity d.(F, Nx) that coincide (up to an absolute multiplicative constant) with
the bounds deduced in [I9] on the 1-Wasserstein distance

dw(F,Nx):= sup |Eh(F)—Eh(Ny)l, (2)
heLip(1)

where Lip(1) denotes the class of C* mappings h : R™ — R with Lipschitz constant not exceeding
1. We will see that our estimates systematically improve the bounds that one can infer from the

general inequality
dc(FyNZ) < K \/ dW(F>NE)7 (3)

where K is an absolute constant uniquely depending on Y. For the sake of completeness, a full
proof of is presented in Appendix , where one can also find more details on the constant
K.

Remark 1.1. In order for the quantity dy (F, Nx) to be well-defined, one needs that E||F|gm <
o0. In Appendix [A] we will also implicitly use the well-known representation

dw (F,Ns) = inf E|U = V|zm,
w (F, Ny) anf | IR

where the infimum runs over all couplings (U, V) of F and Nx. See [30, Ch. I-6] for a proof of
this fact, and for further relevant properties of Wasserstein distances.

The main contributions of our paper are described in full detail in Section[I.4]and Section [L.5
Section [I.1] contains some elements of Malliavin calculus that are necessary in order to state our
findings. Section discusses some estimates on the smooth distance da (to be defined therein)
that can be obtained by interpolation techniques, whereas Section [1.3| provides an overview of
the main results of [19].

Remark on notation. From now on, every random element is assumed to be defined on a common
probability space (€2, .%#,P), with E denoting expectation with respect to P. For p > 1, we write
LP(Q) := LP(Q, F,P).

1.1 Elements of Malliavin calculus

The reader is referred e.g. to the monographs [17, 23| 24] for a detailed discussion of the concepts
and results presented in this subsection.

Let $) be a real separable Hilbert space, and write (-, -)g for the corresponding inner product.
In what follows, we will denote by X = {X(h) : h € } an isonormal Gaussian process
over ), that is, X is a centered Gaussian family indexed by the elements of £ and such that
E[X (h)X(g)] = (h,g)g for every h,g € $). For the rest of the paper, we will assume without loss
of generality that .# coincides with the o-field generated by X.

Every F € L?(f2) admits a Wiener-Itd chaos expansion of the form

F=EF+)_ I4(fy).
q=1



where f, belongs to the symmetric gth tensor product 7 (and is uniquely determined by F'),
and I,(fy) is the ¢g-th multiple Wiener-It6 integral of f, with respect to X. One writes
F € DM2(Q) if

qu! qu”%oaq < 0.
g1

For F € DY2(Q), we denote by DF the Malliavin derivative of F, and recall that DF is by
definition a random element with values in ). The operator D satisfies a fundamental chain
rule: if ¢ : R™ — R is C! and has bounded derivatives and if Fy,...,F,, € DY2(Q), then
o(F, ..., Fy) € DM2(Q) and

m
i=1
For general p > 2, one writes ' € D'?(Q) if F € LP(Q) N D"?(Q2) and E[|| DF|[{] < oc.
The adjoint of D, customarily called the divergence operator or the Skorohod integral,
is denoted by § and satisfies the duality formula,

E[0(u)F] = E[(u, DF)s)] (5)

for all F € D%2(Q), whenever u : 2 — § is in the domain Dom(§) of 4.

The generator of the Ornstein-Uhlenbeck semigroup, written L, is defined by the rela-
tion LF = =3~ qI4(fy) for every F such that Y5, ¢*¢! quH%Q@q < 00. The pseudo-inverse
of L, denoted by L~!, is the operator defined for any F € L?(Q2) as L™'F = — > g1 %Iq(fq).
The crucial relation that links the objects introduced above is the identity

F=EF - §(DL™'F), (6)

which is valid for any F' € L?(Q) (in particular, one has that, for every F € L?*(Q), DL™'F ¢
Dom(9)).

1.2 Bounds on the smooth distance ds

Fix m > 1 and assume that F = (F7, ..., F};,) is a centered random vector in R™ whose compo-
nents belong to D%2(Q). Without loss of generality, we can assume that each F; is of the form
F; = 6(u;) for some u; € Dom(d); indeed, by virtue of @ one can always set u; = —DL'F;
(although this is by no means the only possible choice). Let also Ny, = (Ny,...,Np,) be a
centered Gaussian vector with invertible m X m covariance matrix ¥ = {X(i,5)} = {3(7,5) :
i,7 =1,...,m}. Finally, consider the so-called dy distance (between the distributions of F and
Ny) defined by
dy(F, Ny) = s%p |ER(F) — ER(Ny)|,

where the supremum is taken over all C? functions h : R™ — R that are 1-Lipschitz and such
that supycpm ||(Hessh)(x)||n.s. < 1; here, Hess h stands for the Hessian matrix of h, whereas
| - s, denotes the Hilbert-Schmidt norm, that is, [|A]|% g = Tr(AAT) = S 1<ij<m Ali, j)? for
any m x m matrix A = {A(,5)}.

For a given h : R™ — R € C? with bounded partial derivatives, let us introduce its mollifi-
cation at level v/¢, defined by

hi(x) := E[h(VtNs + V1 —tx)], x € R™. (7)



Supposing in addition (and without loss of generality) that F and Ny, are independent, one can
write

Ns) ~ BA(F) = [ SB[ ()i

(

m 1

;/ { B{OA(ViNy + V= TF)N] — S IO (ViNs + VT = tF)Fi]}dt
> [

1
2
s h(VINg + VT = TF)(E[N;N;] — (DF;, uj)0)ldt.

Combining the duality formula with the chain rule implies

1 1
EA(Ns) — EA(F) = 5 / E[{(Hess h) (VN5 + VI —F), S — Mp)ys dt,
0
where M is the random m X m matrix given by
Mp(i,j) = (DFj,uj)s. (8)

It is then immediate that 1
dz(F, Nx) < S E[Mp — Xus.- 9)

Inequalities in the spirit of (9) were derived e.g. in [I8] (in the context of limit theorems for
homogeneous sums) and [27] (in the framework of multivariate normal approximations on the
Poisson space) — see also [29] and the references therein.

1.3 Bounds on the 1-Wasserstein distance

For random vectors F and Ny, as in the previous section, we will now discuss a suitable method
for assessing the quantity dyy (F, Ny) defined in , that is, for uniformly bounding the absolute
difference |ER(F) — Eh(Nx)| over all 1-Lipschitz functions h of class C?.

Since we do not assume h to be twice differentiable, the method presented in Section
no longer works. A preferable approach is consequently the so-called ‘Malliavin-Stein method’,
introduced in [16] in dimension 1, and later extended to the multivariate setting in [19]. Let us
briefly recall how this works (see [I7, Chapter 4 and Chapter 6] for a full discussion, and [I] for
a constantly updated list of references).

Start by considering the following Stein’s equation, with i : R"™ — R given and f : R™ —
R unknown:

i S(i, 4)05 f (x) — ixi@-f(x) = h(x) — Eh(Ns), x€R™. (10)
i,j=1 i=1

When h € C! has bounded partial derivatives, it turns out that admits a solution f = fp
of class C? and whose second partial derivatives are bounded — see e.g. [I7, Proposition 4.3.2]
for a precise statement. Taking expectation with respect to the distribution of F in gives

m

BA(E) B (V) = 3 5 0% ()] — 3 E[F:0, ()]
=1



We can apply again the duality formula together with the chain rule , to deduce that
Eh(F) — Eh(Nx;) = E[((Hess f,)(F), Mp — Z)n.s ],

where My is defined in . Taking the supremum over the set of all 1-Lipschitz functions
h:R™ — R of class C*, we infer

dw(F,Ny) < a1 E||Mp — X|us., (11)

with

cr= sup sup [|(Hess fu)(x)llms. < v [|S lop 2[5, (12)
heLip(1) x€R™

and |||, is the operator norm for m x m matrices. The estimate is the main result of
[19] (see also [I7, Theorem 6.1.1]), whereas a self-contained proof of can be found in [I7,
Proposition 4.3.2].

1.4 Main results: bounds on the convex distance

The principal aim of the present paper is to address the following natural question: can one
obtain a bound similar to for distances based on non-smooth test functions h : R™ — R,
such as e.g. indicator functions of measurable convexr subsets of R™?

If h is such an indicator function, then we recall e.g. from [29, Lemma 2.2] that, for all
te (0,1),
4 20m /1
Eh(F) —Eh(Ny)| < =|Eh(F) — Ehy (N —_——,
[ER(F) (E)|—3| +(F) ( E)H_\/il—t
where h; stands for the mollification at level v/t of h, as defined in . Let fi = fn, be the
solution of the Stein’s equation associated with h = h;. In [6] (see also [29]), it is shown
that
2
2. <
| Jpax sup. |05 [t (x)| < c2|log ],
with ¢y = co(m, X)) a constant depending only on m and ¥. Combining such an estimate with
yields the existence of a constant c3 = c3(m, X) > 0 such that

From ([13), it is straightforward to deduce the existence of ¢4 = c4(m, X) > 0 such that
de(F,Nx) < c4 E[|Mp — S|lus. [ log{E||Mp — Elus.}- (14)
Comparing with @ and shows that such a strategy yields a bound on d.(F, Ny,) differ-

ing from those deduced above for the distances do and dy by an additional logarithmic factor.
See also [IT], 20] for more inequalities analogous to (14)) — that is, displaying a multiplicative
logarithmic factor — related respectively to the (multivariate) Kolmogorov and total variation
distances.

In this paper, we will show that one can actually remove the redundant logarithmic factor
on the right-hand side of , thus yielding a bound on d.(F, Ny) that is commensurate to @
and (with moreover an explicit multiplicative constant). Our main result is the following:



Theorem 1.2. Let F = (Fi,...,Fp,) = (0(u1),...,0(um)) be a vector in R™ of centered random
variables such that u; € Dom(d), for i = 1,....,m. Let also Ny, = (Ni,...,Ny,) be a centered
Gaussian vector with invertible m x m covariance matriz ¥ = {3(i,j)}. Then

de(F, Ny) < 402( HZ*lH‘:’f +1)m*H B Mp - Dlus.

with Mg defined in .

As anticipated, to prove Theorem [I.2] we shall combine the somewhat classical smoothing
estimate with a remarkable bound by Schulte and Yukich [29].

1.5 Applications
We illustrate the use of Theorem by developing two examples in full detail.

Quantitative fourth moment theorems. A fourth moment theorem (FMT) is a mathemat-
ical statement implying that a given sequence of centered and normalized random variables
converges in distribution to a Gaussian limit, as soon as the corresponding sequence of fourth
moments converges to 3 (that is, to the fourth moment of the standard Gaussian distribution).
Distinguished examples of FMTs are e.g. de Jong’s theorem for degenerate U-statistics (see
[8, ©]) as well as the CLTs for multiple Wiener-Ité integrals proved in [25] 26]; the reader is
referred to the webpage [I] for a list (composed of several hundreds of papers) of applications
and extensions of such results, as well as to the lecture notes [31I] for a modern discussion of
their relevance in mathematical physics. Our first application of Theorem [1.2] is a quantitative
multivariate fourth moment theorem for a vector of multiple Wiener-It6 integrals, considerably
extending the qualitative multivariate results proved in [26]. Note that such a result was already
obtained by Nourdin and Rosifiski [22] Theorem 4.3] for the 1-Wasserstein distance dy. Thanks
to Theorem [1.2] it is not difficult to generalize their result to the d. metric.

Corollary 1.3. Fizr m > 1 as well as q1,...,¢n > 1. Let ¥ = (Fy,...,Fy,,) where F; =
I, (fq) with fo, € H®%. Let Ny, be a centered Gaussian vector with covariance matriz ¥ =

(EFZEj)Z,]E[m] . Then

3/2
+1)m!"V2E|F|! B[ Ny

op

do(F, Ny) < 402( Hz—l

In particular, for a vector F of multiple Wiener-It6 integrals to be close in the convex
distance to a centered Gaussian vector Ny with matching covariance matrix, it is enough that
E|F|* ~ E|Ns|*

The multivariate Breuer-Major theorem. The second example concerns the convergence towards
a Brownian motion occurring in the Breuer-Major theorem proved in [5]. Let us briefly recall
this fundamental result (see [I7, Chapter 7] for an introduction to the subject, as well as [15, [7]
for recent advances in a functional setting). Let {Gy : k € Z} be a centered Gaussian stationary
sequence with p(j — k) = E[G;G}] and p(0) = 1; in particular, G, ~ N(0,1) for all k. Let
¢ € L%(R,~) where v(dz) = (2r)~'/2¢7**/2dz denotes the standard Gaussian measure on R.
Since the Hermite polynomials {H}, : k > 0} form an orthonormal basis of L?(RR,+), one has

Y = Z akaa
k>d




with d € N and ag # 0. The index d is known as the Hermite rank of ¢ € L?(R,~). Suppose
in addition that [p ¢dy = E[p(Go)] = 0, that is, suppose d > 1. The Breuer-Major theorem [5]
states the following: if 3",z [p(k)|¢ < oo, then

[nt]
{%Z@(Gk)it O}fd—d>{0W t):t >0} (15)
k=1
d.

. . . d.
where W is a standard Brownian motion, “— indicates convergence in the sense of finite-

dimensional distributions, and

~

=>"afk!y " p(j)* € [0,00),

k>d jez

(That o2 is a well-defined positive real number is part of the conclusion.) We refer to our note
[21] and references therein for results on the rate of convergence in the total variation distance for
one-dimensional marginal distributions (that is, in dimension 1). We intend to apply Theorem
to address the rate of convergence for the following multivariate CLT implied by : for
every 0 =19 <t1 < ... <ty =T < o0,

[nt1] Ntm
1 d
— — N(0,X N
(\/ﬁkz::lsﬁGk Z@sz) (0,5(t1, - tm))

where —% indicates converges in distribution, and N (0, X(¢1, ..., t,)) is a m-dimensional centred
Gaussian vector with covariance X(¢1, ..., t,,) having entries o2t; A tj, 1,7 = 1,...,m. Notice that
for any m x m invertible matrix A,

d.(F,G) = d.(AF, AG).
Therefore, choosing A appropriately, it suffices to consider the vector F,, = (Fj, 1, ..., F, ) with

1 [nt; ]

Foi=— Y. Gy, i € [m]
\/ﬁ kztnti_lJ—‘rl

and obtain the rate of convergence for
F, -5 N(0,0%Diag(t; — to, ...t — tm—1)) =: Ny (16)

The following result provides a quantitative version of this CLT with respect to the distance d,.
Recall from [21] that the minimal regularity assumption over ¢ for obtaining rates of convergence
via the Malliavin-Stein method is that ¢ € D'*(R,v), meaning that ¢ is absolutely continuous
and both ¢ and its derivative ¢’ belong to L*(R, ). We say that ¢ is 2-sparse if its expansion
in Hermite polynomials does not have consecutive non-zero coefficients. In particular, even
functions are 2-sparse.

Corollary 1.4. Let F,, and Ny, be given in . Suppose that ¢ € DY4(R, ) with Hermite
rank d > 1. Then,

i) There exists a constant C' depending only on @, m,> such that for each n € N,

3

m 2

de(Fp,Ng) < C ) | FF\+an(Z\p ) .
a] 1 |k|<n



it) If d = 2, ¢ is 2-sparse and b € [1,2], then there exists a constant C depending only on
p, m, Y such that for each n € N,

3 5
de(Fy Ng) € C Y [S(0.5) - FFH+Cn@9(§:m%W) (Ejm@w).
1,5=1 |k|<n
i) If d =2, ¢ is 2-sparse, and Y ez |p(k)|? < 0o, then as n — oo,
d.(Fy, Ny) — 0.
The rest of the note is organized as follows. The proof of Theorem [I.2]is given in Section

Corollary in Section Corollary in Section We use C to denote a generic

constant whose value may change from line to line.
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2 Proofs

2.1 Proof of Theorem [1.2]

We divide the proof into several steps.

Step 1 (smoothing). For any bounded and measurable h and ¢ € (0, 1), recall its mollification at

level v/t from . Then it is plain that h; is C*° with bounded derivatives of all orders and the
solution to (10 with A = h; is given by

500 1= =3 [ - (Elhe(v/oNs + VI=5%)] ~ Elha(Ns)ds,

see [29, p.12]. Finally, recall from e.g. [29, Lemma 2.2] that, for any ¢ € (0, 1),

4 20m 't
de(F,Nx) < = sup |Eh(F) — Eh(Ny)| + —=——

3 heZm V21—t

Step 2 (integration by parts). An integration by parts by and (see [17, Chapter 4] for
more details), together with Cauchy-Schwarz’s inequality, implies,

|Eh¢(F) — Ehy(Ng)| = |E Z (i, )05 fr(F EZFkakft (17)

,j=1
d

= |E — (DF;,u )0 f (F)
INES 1
d d

< | Y E[(2(i,4) — (DF,u))?] | D [0 f(F)?]
2,j=1 i,j=1

The following remarkable estimate is due to M. Schulte and J. Yukich.



Lemma 2.1 (Proposition 2.3 in [29]). Let Y be an R™-valued random wvector and ¥ be an
invertible m X m covariance matriz. Then,

up E Y 2L < |57 (m?(ogh)de(Y, Nx) + 530m!7/°).
1

2
helm 52 op

where the left-hand side depends on h through the function f; solving Stein’s equation with test
function hy given by .

Remark 2.2. Lemma improves upon the uniform bound (see [6] or [29])
0% f:(x)] < C(m, 3) |[A|, |logt],

when some a priori estimate on d.(Y, Ny) is available.

As consequence,

[Ehy(F) — Ehy(Ns)|

d
< HZ‘IHOp (mllog t]de(F, N5)'/? 4 24m'™/12) | 57 E[(3(3, §) — (D, uj))?).
ij=1
Letting
k = d.(F, Ny),
d
v= | 2 El(Z(,j) — (DF;, u;))%,
ij=1

we have thus established
20m 1
V21—t

Step 3 (exploiting the recursive inequality). Suppose that v < 1/e, otherwise the bound we

k< % [=71], (mltog /A + 24m!7/12)y + (18)
op

intend to prove holds already (although not being informative). Let t = 4. Using the fact that
k < 1 for the k on the right-hand side of the , one has

k< 1 HZle (2m|log~y| 4 24m712)y + 20v/2myy.
3 op

Therefore,

1/2

| log y|v/k < HZ‘lH \/Tvl/zl log 7%/ + (HZ‘lHop 32m17/12 4 20\/§m> 1/271/2| log /-

op

Since sup,e(o,1/¢] x/?|1log z|?/? < 4, one has

1/2 1/2
g1 < 300 512 /2 4 16vE 2172 724+ 8/ Toml
op op
1/2
< 58 <H2—1 7, 1) ml7/24
op




Hence, putting the estimate back into (I8 with ¢ = 42 gives
1/2 17/24 17/12
+1)m! 72 + 24m v + 20v/2my

2
/ +1>m41/24+20\/§m>7

op

ﬁ:SgHZ*

< <§ x 140 x 2(”2—1

< 402(H2

+ 1) 41/247'
The proof is complete.

2.2 Proof of Corollary

We will obtain the desired conclusion as a direct application of Theorem With u; = —DLF},
see @ Indeed, recall that by Step 2 of [22, Proof of Theorem 4.3], for any i,j € [m],

E[(B[F.F;] — (DF,, —~DL™'F))?] < Cov(F2, F?) — B[R
On the other hand, Step 3 of [22, Proof of Theorem 4.3| shows that
m
3" Cov(F2, F?) — B[R] = E[F|* — B [Ny *.
ij=1
Plugging these estimates into Theorem [I.2] gives the result.

2.3 Proof of Corollary

We follow closely the arguments of [2I] and assume without loss of generality that 7' = 1.
First, one can embed the Gaussian sequence in the statement in an isonormal Gaussian process
{X(h) : h € 9}, in such a way that

(Gr:keZ} L {X(e) : keZ},

for some appropriate family {e,} C $ verifying (e;,ex)y = p(k — j) for all j,k. For ¢ =
>rsaaHy € L?(R, ), we define the shift mapping ¢; := >oe>1 a1 and set

LntiJ
1
Upi = —= E 01(Gm)em, 1€ [m).
\/ﬁ m:[nti,1J+l

Then, standard computations using @ leads to
5(um) = Fn,i- (19)

Applying Theorem [I.2] and the triangle inequality implies that

de(F, Nx) C’Z\Ez] FFH+C\JZVar (DFyi,un ) =: I + L.
i,j=1 1,j=1

10



Note that, by the chain rule and the relation D(Gy) = ey,

(DFpi, tni)s Z Y ¢ (Gre1(Goplk — 1),

" jty bt

where k ~ t; means that the sum is taken over k € {|nt;_1] + 1, ..., [nt;]}, and similarly for the
symbol ¢ ~ t;. Hence,

Var((DFni,unj>5)
== LY S S S Covl (X (Xo), ¢ (Xe ) (Xe))plk — £)p(k — )

kot bty k' oty Ut

= % i Cov (@' (Xk)e1(Xe), & (X )o1(Xe))p(k — £)p(K' = 1'). (20)
Kok 001

The variance is bounded because of the assumption that ¢ € DY, Once is in place, one
can apply Gebelein’s inequality as in [2I]. In particular, one infers that (see [2I, Proposition
3.4])

1 & o
dlFaNs) < C\ =5 3 |oli = Wypti =)ol — )]
e k=0
If, in addition, ¢ is 2-sparse, then
1 n—1
GlFaNe) < C\ =5 30 |oli = Bp(i = ol — )]
4,5,k ,0=0

Items i)-ii) now follow from these inequalities, as shown in [2I]; we include a proof for complete-
ness. Applying twice Young’s inequality for convolutions, one has

n—1

pli — j)p <k—e>\ < S (o purpa)(i—0)
i,0=0

3
< 0 lpn * pn* pallezy < nllpnlle g

Z

yielding Item i). Rewrite the sum of products as a sum of the product of convolutions by
introducing the function 1, (k) := 13<,,. We have

n—1
> 1o = k)i — §)p(k — 0)]
1,7,k £=0
n—1
= > 1p(G = k)i = §)p(k = £)1n(€ )]
.5,k £=0

n—1
= Z (pn * 1n) (€ — 3)(pn * pi)(ﬁ—j) < n{py * 1n, pn *P?@)P(Z)'
7,6=0

H=

11



For b € [1, 2], we have

(o s % 02y < lom s Wl oy lon % 22 (21)
2
< lpnllo 1l iy o ol 195
2b—2 2
=n v Pn )HPanb(z)»

yielding Item ii). Now we move to the proof of Item iii). Notice that taking b = 2 for the
right-hand side of , together with an application of Young’s inequality, yields that

(Pn * 1, pp * Pn>€2 < llpn * 15 ||1z2 () HPnHe?

Thus,

- 1
Z 2p(i — j)p(k — )| < — llon * 1all 2 z) lpnllZ2 )

J,k =

To proceed, we handle the convolution involving 1,, a bit differently. Set

pn(k) = p(k)1N<k|<n
pn(k) = p(k) Lk <n

so that p, = pn + pn. One has

1 1, - 1.
- lon * Inll2(zy < - 1Pnlle2zy Nnller zy + -~ 1Pnllerz) nlle2z)
1/2
<( X p)?) TN+
N<|k|<n

from which Ttem iii) follows. The proof is complete.

A Proof and discussion of relation (3))

Inequality is a direct consequence of the following statement, whose proof exploits a strategy
already adopted in [2, Proof of Theorem 3.1].

Proposition A.1. Fiz m > 1, and let Ny, denote a m-dimensional centered Gaussian vector
with tnvertible covariance matriz 3. Then, for any m-dimensional random vector F one has
that

do(F, Nx) < 2v2T(2)Y2 dyy (F, Nx)) /2, (22)

where T'(X) is the isoperimetric constant defined by

F(E) = sup ]P)(NE € Qe) B P(NE € Q),
Q,e>0 €

where Q ranges over all Borel measurable convexr subsets of R™, and Q€ indicates the set of all
elements of R™ whose Euclidean distance from ) does not exceed €.
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Remark A.2. In [14] it is proved that, for some absolute constants 0 < ¢ < C' < o0,

o/ IZlus. <T(X) < O[],

where || - ||ms. stands as above for the Hilbert-Schmidt norm. When ¥ = I,,, (identity matrix),
one has also the well-known estimate I'(I,,,) < 4m!/* (see [3]), as well as Nazarov’s upper and
lower bounds

675/4 r (Im)

< T
_hmmlnf Y7,

I'(Im _
< lim sup (1/4) < (2n)"Y* < 0.64,
m m

see [14, p. 170]. In [28, Theorem 1.2], it is proved that Nazarov’s upper bound can be reduced
from 0.64 to 0.59; see also [4] for related computations in the framework of the multivariate
CLT.

Proof of Proposition[A.1. We can assume that F and Ny, are defined on a common probability
space, and that E||F — Ny ||gm = dw (F, Ny). Fix a convex set @, as well as € > 0. We have that

P[F € Q] - P[Ny € Q) P[F € Q,||F — Nxlgm < €] = P[N5 € Q] + ¢ 'E[||F — Ng||gn]
P[Ny; € Q°] — P[Nx, € Q] + ¢ ‘dy (F, Ny)

T(S)e + ¢ dw (F, Ny).

VAN VAR VAN

On the other hand, defining Q¢ as the set of those y € @ such that the closed ball with radius
€ centered at y is contained in Q,

P[Ns € Q] - P[F € Q] P[Ns € Q.||F — Ns|rn < ¢] - P[F € Q"]+ ¢ 'E[|F — Nx||

<
< T(%)2e+ e ldw (F, Ny),

where we have used the inequality
P[Ny € Q,||F — Nszn < ] = P[F € Q"] < P[Nx € Q] - P[Ny € Q7.

The conclusion follows from a standard optimisation in e.

O]

Remark A.3. Fix m > 1, and let %, be the collection of all hyper-rectangles of the type
R = (—o0,t1] X -+ X (=00, tm]. In [2, Theorem 3.1] it is proved that, if N is a m-dimensional
centered Gaussian vector with identity covariance matrix and F is any m-dimensional random
vector, then
su}? |P[F € R] — P|N € R]| < 3(log m)Ydy (F, N2, (23)
REHAm
The left-hand side of the previous inequality is usually referred to as the Kolmogorov distance
between the distributions of F and N. The presence of the factor (logm)'/* is consistent with
the fact that, for the standard Gaussian measure on R", the isoperimetric constant associated
with all hyper-rectangles of R™ is bounded from above by \/logm, see [3, [14]. An estimate
analogous to is established by different methods in [12, Corollary 3.1].
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