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Highlights

• Extending a finite strain phase-field damage model to accurately predict

fatigue failure

• Using the degradation and crack density function acc. Wu et al. 2018 to

present length scale independent global reaction forces

• Predicting crack nucleation and crack growth in 2D

• Validating the model with experimental data for fracture and fatigue
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Abstract

By regularizing sharp cracks within a pure continuum setting, phase-damage

models offer the ability to capture crack nucleation as well as crack propagation.

Crack branching and coalescence can furthermore be described without any ad-

ditional efforts, as geometrical descriptions of the cracks are not required. In

this contribution, we extend our previous phase-field model for rate-dependent

fracture of rubbers in a finite strain setting (Loew et al. 2019) to describe

damage under cyclic loading. The model is derived from the balance of me-

chanical energy and introduces a fatigue damage source as a function of the

accumulated viscous dissipation under cyclic loading. We use uniaxial cyclic

tension to present the influence of the fatigue material parameters and to con-

firm the model’s energy balance. The parameters are subsequently identified

using monotonic and cyclic experiments of a plane stress nature. Finally, the

model is validated by separate experiments, which demonstrate that the model

accurately predicts (fatigue) crack nucleation as well as propagation.
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1. Introduction

Virtual prototypes can be used to reduce the financial burden of physical pro-

totypes in design processes. They also allow more designs to be evaluated but

require accurate mechanical models to describe the three stages of (fatigue) fail-

ure: crack initiation, crack propagation and final fracture.

The lifetime of rubber parts is affected by many factors ([19], [20]), which can be

subdivided into four classes: mechanical load history, environmental conditions

(such as temperature), rubber formulation and constitutive behavior [20]. This

contribution focuses on the mechanical load history and constitutive behavior.

Hence, we test one rubber compound and ignore temperature differences and

chemical aging.

Several fatigue damage models for rubber have been published: [31] presented

a continuum damage model and defined the fatigue life as a function of the

strain amplitude. Multi-axial loading was considered by [4], who used the

cracking energy density criterion of [18]. [11] and [25] extended the theory

to thermo-viscoelastic solids to describe self-heating under cycling loading. All

these continuum damage models show a mesh sensitivity [27]. Therefore, [26]

presented a gradient-enhanced fatigue damage model for rubber which is mesh

independent. A disadvantage of traditional gradient enhanced damage models

is spurious damage growth caused by large deformation in damaged elements.

This results in a large diffused process zone at complete failure [28]1.

Similar to gradient enhanced damage models, phase-field damage models for

fracture ([6], [21], [23]) treat the sharp discontinuities of cracks in a continuous

manner by introducing a finite damage zone, governed by a length scale param-

eter. Consequently, they are able to handle crack propagation, branching and

coalescence. The extension to finite strains and rubber was first published in

[22], while [16] presented a rate-dependent phase-field damage model for rub-

bers.

Gradient-enhanced and phase-field damage models are similar [9], as they both

rely on a length scale parameter to produce mesh insensitive results. However,
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only phase-field damage models do not show the mentioned spurious damage

growth, since the damage driving force vanishes for a complete loss of the stiff-

ness [9].

To the best of the authors’ knowledge, [3] was the first to consider fatigue

damage in a phase-field model by introducing a fatigue history variable in the

Ginzburg-Landau equation. [7] additionally introduced damage caused by ag-

ing, while [5] defined the internal fatigue history variable with a differential

constitutive law to be found. [2] used a different approach and reduced the

fracture toughness with cyclic loading. All these contributions show promising

results for small strains in one-dimensional settings. Our model is similar to the

fatigue model of [3] as we also introduce a fatigue history variable. The differ-

ences are, however, that we start the derivation from the balance of mechanical

energy, define a fatigue history variable based on the viscous dissipation and

allow for finite strains.

The length scale can be interpreted as a material parameter that controls the

process zone in which damage occurs. It also affects the material strength in

practice, i.e. the stress required to nucleate a crack [30]. [16] has shown that

incorrect length scale parameters are identified if the identification is only based

on the global mechanical response. To overcome this issue, local strain measure-

ments should be included in the identification process. Recently, [33] proposed

a phase-field damage model for linear elastic materials in which the length scale

does not affect the global mechanical response, but merely the process zone.

Although the main objective of this work is the presentation of a fatigue phase-

field damage model for rubber, this contribution combines the following novel-

ties:

• We use the degradation function and crack density function of [33] and

show that this extension also leads for finite strains and a visco-hyperelastic

material to a global force response, which is not affected by the length scale

parameter.

• Applying a cyclic load to the rate-dependent phase-field damage model of
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[16], we show that this model describes fatigue damage but yields poor

accuracy.

• Therefore, we propose an extension of our previous constitutive model [16]

so that fatigue damage under cyclic loading can accurately be described.

This framework also works with rate-independent materials.

• We experimentally identify all material parameters: the bulk parameters,

the fracture parameters for monotonic loading and the fatigue fracture

parameters for cyclic loading.

• Crack nucleation as well as crack propagation can be accurately predicted,

which is presented using independent validation experiments. This is, to

the best of the authors’ knowledge, the first time a phase-field damage

model for rubber matches uniaxial tensile test data.

• The fatigue damage model is able to predict Woehler lines and the Paris

fatigue crack growth law.

The paper is organized as follows: In Section 2, we derive the generalized fatigue

phase-field damage model. Section 3 presents the numerical and experimental

results for monotonic loading, while the results for cyclic loading are shown in

Section 4. We conclude the contribution in Section 5.

In this work, we denote scalars by lowercase and capital letters (a and A),

vectors by bold, lowercase letters (a) and second-order tensors by bold capitals

(A).

1Recent gradient enhanced damage approaches are able to describe sharp damage profiles

[28].
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2. Fatigue phase-field damage model

In this section, we derive our fatigue phase-field damage model for a body Ω0

in the reference configuration with its external boundary denoted by ∂Ω0. We

start by defining a scalar damage variable d ∈ [0, 1] so that d = 1 on an internal

discontinuity Γ0 and d = 0 on Ω0 \ Γ0 (Fig. 1 a)).

0

0

Г0
0

0

𝑙0

𝑑 = 0

𝑑 = 1

Г𝑙

𝑑 = 0

𝑑 = 1

𝑑 = [0 .. 1]

a) b)

Figure 1: In a phase-field damage model, a sharp crack Γ0 (a) is approximated with a crack

surface Γl (b), the size of which is controlled by the length scale l0.

The motion and deformation of the body are described by displacement u,

deformation gradient F = I+∇0u and Green’s strain tensor E = 1/2(FT ·F−I).

I denotes the unit tensor and spatial derivatives associated with the reference

configuration are denoted by ∂ ·/∂X = ∇0(·). The balance of mechanical energy

requires:

Ė + Ḋ = Ṗ ext, (1)

where Ė, Ḋ and Ṗ ext denote the internally stored and dissipated energy and

the externally supplied energy per time unit, respectively.

The internally stored energy in the bulk reads:

E =

∫

Ω0\Γ0

ψbulkdV =

∫

Ω0

gdψ
bulkdV, (2)

where we have introduced the degradation function gd = gd(d) and the strain

energy density ψbulk. The degradation function controls the mechanical re-
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sponse with respect to the virgin (i.e. undamaged) state. We use a generalized

degradation function, which was recently proposed in [32] and [33]:

gd =
(1− d)2

(1− d)2 + ad(1− 1
2d)

. (3)

The advantage of this generalized degradation function is that the global me-

chanical response can be made independent of the length scale. For this, the

material parameter a must be related to the selected length scale l0 [33].

Rate-dependent effects are, as in [16], incorporated by splitting the strain energy

density ψbulk into an elastic and viscous contribution:

ψbulk = ψelas(F) + ψvisc(F,Φα). (4)

Φα denotes an internal strain-like tensor, measuring the dissipation in the bulk.

Assuming a material model based on m Maxwell elements, Φα can be considered

as the 3D extension of the 1D strain γα in a dashpot (see Fig. 2).

𝐸0

𝐸1 𝜖1

𝜇1 𝛾1

𝐸2 𝜖2

𝜇2 𝛾2

𝐸𝛼 𝜖𝛼

𝜇𝛼 𝛾𝛼

𝜖0

𝐸𝑚 𝜖𝑚

𝜇𝑚 𝛾𝑚

Figure 2: Schematic of a generalized Maxwell model with m spring-dashpot elements. Eα

and εα denote the stiffness and strain in the spring, while µα and γα denote the viscosity and

the strain in the dashpot.

The first Piola-Kirchhoff stress can consequently be expressed as follows:
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P =
∂ψ

∂F
= gd

∂ψbulk

∂F
(5)

= gd

(
∂ψelas

∂F
+

m∑

α=1

∂ψvisα
∂F

)

= gd

(
P∞ +

m∑

α=1

Qα

)
.

P∞ denotes the time-infinity stress and Qα denote the non-equilibrium stresses.

The rate of dissipation is attributed to three dissipative phenomena and can

therefore be expressed as2:

Ḋ = Ḋvisc + Ḋcrack + Ḋcrack,visc, (6)

where Ḋvisc, Ḋcrack and Ḋcrack,visc denote the rate of dissipation due to the

viscosity of the bulk, the rate of dissipation due to crack growth and rate-

dependent crack growth dissipation, respectively.

The energy dissipated by crack growth reads:

Dcrack =

∫

Γ0

Gc dA, (7)

where Gc denotes the energy dissipated by the formation of a unit crack area.

To avoid integrating over the fractured surface Γ0 and a sharp discontinuity, we

approximate Γ0 ≈ Γl =
∫

Ω0
γl dV , with the crack density function γl = γl(d, l0)

[6]. The width of the damage zone is controlled by the length scale l0 (see Fig.

1 b)). Thus, multiplying Eq. (7) with γl, we can change the integration to a

volume integral over the domain Ω0:

Dcrack =

∫

Ω0

Gcγl dV. (8)

2For the definition of Ḋvisc and Ḋcrack,visc, we refer to Appendix A or our previous

publication [16].
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We furthermore use the following crack density function [32]:

γl =
1

c0

[
1

l0
w + l0 (∇0d · ∇0d)

]
, (9)

where w denotes a geometric crack function characterizing the homogeneous

evolution of the phase-field d and c0 denotes a scaling parameter to ensure

Γ0 = Γl for l0 → 0. The geometric crack function w = w(d) ∈ [0, 1] must satisfy

w(d = 0) = 0 and w(d = 1) = 1. As in [33], we set w = 2d − d2, which yields

c0 = 4
∫ 1

0

√
w(δ)dδ = π.

An extension to a generalized fatigue phase-field damage model is achieved by

introducing Ṙ3:

Ė + Ḋ = Ṗ ext + Ṙ. (10)

Ṙ can be interpreted as the energetic contribution of an extrinsic volumetric

micro-force triggering the fatigue damage growth. Processes on a smaller scale

feed this extrinsic micro-force. The relations for Ė, Ḋ and Ṗ ext are discussed

in more detail in Appendix A, while Ṙ is presented in the following subsection.

By inserting the relations for Ė, Ḋ, Ṗ ext and Ṙ in Eq. (10), we can extract the

governing equations.

2.1. Fatigue damage source

Fatigue damage is assumed to be equivalent to the formation of micro-cracks,

which occur for small cyclic loads. These micro-cracks coalesce under cyclic

loading and appear as damage d at the macroscale (see Fig. 3). We describe

this micro-crack growth with a history variable H, so that the micro-crack

formation and coalescence with each cycle is equal to the increase of H. The

more micro-cracks have been formed (or the higher the value of H), the more

likely macro-crack growth.

Ṙ = Ṙ(H) is the energetic fatigue contribution to the macroscopic mechanical

3The fatigue framework could alternatively be derived with a balance law for micro-forces

as the basis, first introduced by [12] and later used for phase-field damage models by [5].
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energy balance (Eq. 10), linking the micro-cracks growth (H) to the macro-

crack growth (d). We assume that micro-cracks only influence the macroscale

when they have coalesced to a macro-crack. Therefore, Ṙ only contributes to

the energy balance in case of damage growth (ḋ ≥ 0) and we define:

Ṙ =

∫

Ω0

Hḋ dV. (11)

ሶ𝑭, 𝑁 ሶ𝑅

𝐻

Figure 3: Schematic of micro-crack growth due to fatigue: Applying a cyclic load (charac-

terized by N cycles and rate of deformation gradient tensor Ḟ) results in the formation and

growth of micro-cracks (quantified by H) in regions with high stress concentrations. The

coupling between micro-crack evolution and macroscale damage is established via Ṙ.

The amount of micro-cracks H = f(h) depends on a load history-dependent

variable h, which has to be specified. Further, we introduce two fatigue damage

material parameters ζd and ζe, and a fatigue degradation function gf = gf (d)

so that:

H = gfζdh
ζe . (12)

The fatigue degradation function gf = gf (d) ensures that micro-cracks only

form in regions without a macro-crack and therefore must fulfill4:

gf (d = 0) = 1

gf (d = 1) = 0.
(13)
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In the gradient enhanced damage model of [26], the load history-dependent

variable is a function of the strain energy density, i.e. h = f(ψelas). The fatigue

phase-field damage models of [3] and [5] use h = h(ψbulk =
∫

P : Ḟdt, ), while [2]

sets h = f(ε, ε̇). We see micro-crack formation as a dissipative mechanism and

therefore propose a load history variable depending on the energy dissipated

under cyclic loading in the bulk:

h = ψvisc =

m∑

α=1

∫
Qα : Ḟdt, (14)

i.e. the hysteresis. The advantage of an energetic fatigue failure criterion for

rubbers over a maximum stress or strain criterion was shown by several studies

([1], [17]). For simplicity, we set gf = −∂gd/∂d so that:

Ṙ =

∫

Ω0

−∂gd
∂d

ζd(h)ζe ḋ dV. (15)

The specific choice of gf has the advantage that h and ψbulk are equally reduced

with growing damage (see Eq. 19). This leads to the most straightforward im-

plementation. Another choice could be proposed to further improve the results

but it is not the subject of the current work.

2.2. Balance of mechanical energy

Inserting Eq. (6), (15), (A.2) and (A.11) into Eq. (10), we obtain:

−
∫

Ω0

(
∇0 ·

(
gd
∂ψbulk

∂F

)
+ b0

)
· u̇ dV +

∫

∂Ω0

(
gd
∂ψbulk

∂F
· n0 − t0

)
· u̇ dA

+

∫

Ω0

(
∂gd
∂d

(
ψbulk + ζd(h)ζe

)
+

Gc
l0c0

∂w

∂d
−Gcl0

2

c0
∇2

0d+ κḋ

)
ḋ dV

+

∫

∂Ω0

Gcl0
2

c0
∇0d · n0ḋ dA+

∫

Ω0

m∑

α=1

gd

(
Qα +

∂ψbulk

∂Φα

)
: Φ̇α dV = 0.

(16)

4In other words, the fatigue degradation function gf is required to prohibit spurious damage

growth after d = 1 is reached (see Eq. 19).
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With Eq. (A.7) and the Neumann boundary conditions:

gdP · n0 = t0 and ∇0d · n0 = 0, (17)

we extract the governing equation for the displacement field u5:

∇0 ·
(
gd
∂ψbulk

∂F

)
+ b0 = 0, (18)

and for the phase-field damage field d:

∂gd
∂d

(
ψbulk + ζd(h)ζe

)
+

Gc
l0c0

∂w

∂d
−Gcl0

2

c0
∇2

0d+ κḋ = 0. (19)

We want to point out that Eq. (19) contains, in addition to load history h, a

rate-dependent driving force:

ψbulk = ψelas + ψvisc (20)

=

∫
P∞ : Ḟdt +

∑

α=1

∫
Qα : Ḟdt.

This driving force grows with each load cycle, thanks to its viscoelastic contri-

bution (see Fig. 13). Therefore, fatigue damage can also occur without h (see

Fig. 14 and 17 for ζd = 0). Although our original model [16] is able to describe

fatigue damage due to the viscosity, we incorporate the history variable h to

improve the model’s agreement with experimental measurements (compare e.g.

the red and blue lines in Fig. 17) and to generalize the framework so that it is

applicable to rate-independent models.

Eq. (18) and Eq. (19) are transformed into their respective weak form using the

standard Galerkin procedure. We discretize the problem in space with linear,

plane stress, isoparametric, quadrilateral elements. Details on the numerical

implementation can be found in [16].

5Since we focus for now on examples that are only exposed to tension loading, we avoid

the problem of crack surface contacts and crack growth originating from compressive loading.

Therefore, we do not need to split the bulk energy into a positive (tensile) and negative

(compression) part, as for example done in [23].

12

                  



3. Results: Monotonic loading

In this section, we focus on monotonic loading. After presenting our experi-

mental set-ups, we present the identification of the visco-hyperelastic material

parameters. Subsequently, we study the influence of the length scale l0 on the

global mechanical response, as well as on the formed damage profile. The fol-

lowing fracture parameter identification considers test configurations in both

crack nucleation and propagation. We close the section with the presentation

of validation cases.

3.1. Experiments

All experiments are performed on an EPDM rubber with a constant temperature

of 20◦C. The displacements are measured using a laser extensometer and we

use digital image correlation (DIC) to measure local strain fields.

3.2. Identification of visco-hyperelastic material parameters

The bulk material parameters are identified using uniaxial tensile tests accord-

ing to ISO 37 with dumbbell specimens and three clamp velocities (see Tab. 1

for the parameters according to Eq. (A.3) and (A.5) and Fig. 9 for the fit).6

Table 1: Identified material parameters for the visco-hyperelastic model.

C1 [MPa] C2 [MPa] C3 [MPa]

0.8766 0.0705 1.0763 · 10−06

β1 [−] β2 [−] τ1 [s] τ2 [s]

0.1016 0.0071 4.978 449.3
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3.3. Influence of the length scale

[33] showed that the combination of the degradation function and crack den-

sity function according to Eq. (3) and (9) results in a length scale independent

global mechanical response. Since the results in [32] are limited to small strains

and linear-elastic materials, we investigate the behavior for large strains and

visco-hyperelasticity.

3.3.1. Influence length scale: Uniaxial tension

We perform uniaxial tensile tests (specimen length 20mm and width 4mm,

loading rate ε̇ = 0.05 1/s) with 2D plane stress finite elements (element size

hel = l0/8). To enforce damage nucleation in the center, we apply a Dirich-

let boundary condition d = 0 at the left and right edge of the sample (see

Fig. 4). The fracture material parameters are set to Gc = 4.5N/mm and

κ = 8 · 10−4Ns/mm3, while the fatigue damage parameters are set to zero

(ζd = 0, ζe = 0). We compare the results for length scale l0 = 1mm and

l0 = 2mm. The material parameter a is set to a = 5.0 for l0 = 1mm and a = 2.5

for l0 = 2mm.7

Length scale l0 = 2mm results in a wider damage zone (see Fig. 4), but the

global force to stretch ratio response is nearly identical (see Fig. 5). We conclude

that the model of [33] produces also for finite strains and non-linear material

models length scale insensitive global mechanical results.

6Cyclically loading rubber, the load on reloading is less than when loading for the first

time [24]. This so-called Mullins effect must be especially considered when modeling fracture

and fatigue experiments. The used material parameters (Tab. 1) are a compromise between

the response for the first loading and the softened response after multiple load cycles. By

using the phenomenological model of [24] to incorporate the Mullins effect, the accuracy of

our predictions could be increased.
7The length scale l0 is selected large enough (relative to the specimen size) to avoid snap-

back behavior. Smaller length scales, for the same specimen dimensions, require path-following

methods to solve the model. Possible implementation strategies in the context of phase-field

damage models can be found in [29].
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𝑙0 = 1mm

𝑙0 = 2mm

20mm

4mm

d=1

d=0

a)

b)

Figure 4: Uniaxial tensile test: Final damage field for a length scale l0 = 1.0mm (a) and

l0 = 2.0mm (b). The displacements are applied with a strain rate ε̇ = 0.05 1/s.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Stretch ratio  [-]

0

5

10

15

20

F
or

ce
 F

 [N
]

l
0

=2mm

l
0

=1mm

Figure 5: Uniaxial tensile test: Force versus stretch-ratio for a length scale l0 = 1.0mm and

l0 = 2.0mm.
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3.3.2. Influence length scale: Single edge notched tensile test

In this subsection, we present the results for the SENT tests with an initial

crack length of 5mm. The dimensions are depicted in Fig. 6 a), while the frac-

ture material parameters are set to Gc = 2.0N/mm and κ = 8 · 10−4Ns/mm3

and the fatigue damage parameters are set to zero (ζd = 0 and ζe = 0). We

compare the results for two length scales (l0 = 0.25mm and l0 = 0.5mm). As

in Section 3.3, the material parameter a is adapted to ensure that global forces

are independent of the length scale parameter. We set a = 4.0 for l0 = 0.5mm

and a = 8.0 for l0 = 0.25mm.

In Fig. 6, we compare the finale damage pattern for the two length scales. The

damage process zone is wider for an increasing length scale. In contrast, the

maximum tensile strength, as depicted in Fig. 7, remains effectively the same.

5mm20mm

10mm

a) b)

d=1

d=0

Figure 6: SENT test: Final damage field for a length scale l0 = 0.25mm (a) and l0 = 0.5mm

(b). The displacements are applied with a strain rate ε̇ = 0.05 1/s.
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1 1.05 1.1 1.15 1.2 1.25 1.3
Stretch ratio  [-]
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14
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F
or

ce
 F

 [N
]

l
0

=0.5mm

l
0

=0.25mm

Figure 7: SENT test: Force versus stretch-ratio for a length scale l0 = 0.5mm and l0 =

0.25mm.

3.4. Identification of fracture material parameters

Single edge notch tensile tests (SENT) (see Fig. 8 a) for the dimensions) are

performed to identify, together with the uniaxial tensile test, the phase-field

fracture parameters. We measure local strains near the crack tip using DIC, but

only for a clamp velocity of 25mm/min due to the specifications of the camera.

The local strain fields are computed with GOM Correlate software. Fig. 8 b)

presents the yy-component of Green’s strain tensor at a clamp displacement

of 10.5mm (clamp velocity 25mm/min). At this clamp displacement, the crack

starts to propagate in our experiments. The phase-field fracture parameters Gc,

κ, l0 and a are identified by minimizing a least squares objective function with
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a genetic algorithm:

RES = w

( nmes25∑

k=1

(
yk,25mes − yk,25

yk,25mes

)2

+

nmes200∑

k=1

(
yk,200mes − yk,200

yk,200mes

)2

+

nuni,mes∑

k=1

(
yk,uni,mes − yk,uni

yk,uni,mes

)2)

+ (1− w)

nmes25DIC∑

k=1

(
yk,25mesDIC − yk,25DIC

yk,25mesDIC

)2

,

(21)

where w = 0.25 is a scalar that controls the influence of the force-displacement

data relative to the measured strain fields. Subscript mes denotes experimen-

tally measured values. The objective function incorporates the force-displacement

data of uniaxial tensile tests yk,uni,mes (strain rate ε̇ = 0.05 1/s), the force-

displacement measurements of the SENT test (yk,25mes and yk,200mes for clamp

velocity 25mm/min and 200mm/min) and the local strain field of the SENT

test yk,25mesDIC (clamp velocity 25mm/min).

20mm75mm

30mm

a) b) 100%

50%

0%
x

y

x1

y1

Figure 8: SENT test: a) Specimen dimensions, b) Numerically predicted yy-component of the

Green-Lagrange strain tensor at a clamp displacement of 10.5mm. Lines x1 and y1 indicate

two paths along which we plot strains in Fig. B.22.
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This approach diverges from the one presented in [16], since the measurements

of double edge notch tensile tests are omitted, and uniaxial tensile tests are

included. Tab. 2 presents the identified values, which are used for the following

computations. The numerical results for uniaxial tension are presented in the

next subsection, while the results for crack propagation are shown in Appendix

B. For a more detailed investigation of the rate-dependent fracture of rubbery

polymers, we refer to our previous publication [16].

Table 2: Identified phase-field fracture parameters.

Gc [N/mm] l0 [mm] κ [Ns/mm3] a [−]

6.0 0.25 0.0192 1.88

3.4.1. Uniaxial tensile test

In this subsection, we show the fitted results of the uniaxial tensile test. The

numerically predicted stress-stretch ratio response for the uniaxial tensile test

at loading rate ε̇ = 0.05 1/s is compared to the experimental ones in Fig. 9. The

fit between the numerical and experimental results is satisfactory, including the

maximum tearing stress and the maximum stretch ratio.
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Figure 9: Uniaxial tensile test: Numerically predicted and experimentally observed stress

versus stretch-ratio for strain rate ε̇ = 0.05 1/s.

3.4.2. Single edge notched tensile test

We validate the identified fracture material parameters (Tab. 2) with simula-

tions of a SENT test according to ISO 34-1 type C. The geometry and the final

damage field is presented in Fig. 10, while Fig. 11 presents the match between

the experimental and numerical force response. We simulate the test with a fa-

tigue damage source (ζd = 0.009 and ζe = 3) and without (ζd = 0 and ζe = 0).

The model extension (Section 2.1) for fatigue damage does not influence the

results for monotonic loading.
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Figure 10: SENT test according to ISO 34-1, type C: Specimen dimensions, boundary condi-

tions (grey) and the damage field for loading rate 200mm/min.
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Figure 11: SENT test according to ISO 34-1, type C: Force versus stretch-ratio for loading

rate 200mm/min.
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4. Results: Cyclic loading

In this section, we shift the focus from monotonic loading to cyclic loading.

The thermodynamical consistency of the proposed model is first verified. We

perform a parametric study on the influence of the fatigue material parameters,

showing the flexibility of the new model to predict fatigue failure independent

of the fracture parameters. Subsequently, we study damage growth under cyclic

loading for plane stress settings. Fatigue crack growth experiments are con-

ducted with specimens according to ISO 34-1 type C (see Fig. 16). Identifying

the fatigue material parameters based on this test, an improved fit with the

new model is observed. Finally, we validate our (new) model by extracting the

power-law coefficient for fatigue crack growth form pure-shear simulations.

4.1. Uniaxial cyclic tension

4.1.1. Balance of mechanical energy and dissipation during crack growth

Applying uniaxial cyclic tension to a slender bar (length 4mm, width 1mm and

thickness 0.25mm), we observe hysteresis in the calculated force versus stretch

ratio plot (Fig. 12). If we furthermore visualize the development of the energy

of the various model components (with parameters a = 50, ζd = 5 and ζe = 1),

it can be observed that the visco-elastically stored and dissipated energy:

ψvisc = Evisc +Dvisc = gd

m∑

α=1

∫

Ω0

Qα : Ḟdt, (22)

increases with every load cycle (Fig. 13). We can deduce from Fig. 13 that the

model is thermodynamically consistent since the balance of mechanical energy

(Eq. 10) is fulfilled at any given time.
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Figure 12: Uniaxial cyclic tension: Stress versus stretch-ratio for strain rate ε̇ = 0.05 1/s.
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Figure 13: Uniaxial cyclic tension: Energy versus time for the different components of the

model. The balance of mechanical energy (Eq. 10) is satisfied for the entire time.
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4.1.2. Parametric study: Fatigue damage

Now, we vary the maximum clamp displacement for uniaxial cyclic tension and

measure the cycles until failure. The results are presented in Fig. 14 and 15 and

so-called Woehler lines are produced. Unloading takes place until 20% of the

maximum clamp displacement. Fig. 14 and 15 show that the multiplier (fatigue

material parameter ζd, Eq. (12)) yields a shift of the response, whilst the ex-

ponent (fatigue material parameter ζe, Eq. (12)) also yields a slope difference.

We conclude from the results that the introduction of the history term with two

additional fatigue damage material parameters, leads to a general framework

which can be used to fit a desired experimental response (see chapter 4.2).

The parameters ζd and ζe only affect the result for monotonic loading if both

parameters are relatively large (see the response for ζd = 5 and ζe = 1 at

N = 1 in Fig. 14). Fig. 14 also shows that if the fatigue damage source is

not incorporated (ζd = 0), the viscous dissipation in the bulk still yields fatigue

damage. The combination of a purely elastic material and a fatigue damage

source, for example a load history variable depending on the accumulated strain

helas =
∫

(sign(ε1)ε̇1)dt where ε̇1 denotes the first principle strain, would also

lead to fatigue damage. A purely elastic bulk description without a fatigue

damage source would however result in an infinite lifetime (assuming failure

does not occur in the first cycle).
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Figure 14: Uniaxial cyclic tension: Strain amplitude versus number of load cycles to failure

for different values of multiplier ζd.
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Figure 15: Uniaxial cyclic tension: Strain amplitude versus number of load cycles to failure

for different values of exponent ζe.
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4.2. Single edge notched tensile fatigue test

In this subsection, we focus on single edge notched tensile fatigue tests with

specimens according to ISO 34-1 type C (see Fig. 16). We apply a cyclic,

displacement controlled load until the sample is totally fractured. During each

load cycle, maximum stretch ratio λmax is reached and unloading takes place

until λ = 1.075. The numerically predicted crack is shown in Fig. 16 for

λmax = 1.2667. We use the experimental results of this test to identify the

fatigue damage parameters (yielding ζd = 0.009 and ζe = 3), and compare

in Fig. 17 the experimental and numerically predicted lifetime. The match

between the measurements and the prediction is adequate. For ζd = 0, i.e. no

fatigue damage source, the match with the experimental data is inferior, albeit

of the same order of magnitude. Since the gap between the experimental lifetime

and the calculated lifetime for ζd = 0 is constantly increasing for smaller loading

amplitudes, the improvement with the new model is visible. 8

N=0 N=400 N=800 N=1000 N=1244

d=1

d=0

Figure 16: Fatigue SENT test according to ISO 34-1, type C: Numerically predicted damage

field (λmax = 1.2667).
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Figure 17: Fatigue SENT test according to ISO 34-1, type C: Numerically predicted and

experimentally measured lifetime.

8In this contribution we do not consider rate-dependent effects on fatigue damage and

perform all cyclic load cases with strain rate ε̇ = 0.05 1/s. High loading frequencies can lead

to generation of heat, resulting in a change of the material properties and thermal degradation

of rubbers [10]. Therefore, experiments are normally conducted so that the temperature

rise is only a few degrees and negligible. Nevertheless, [35] found that even for a constant

temperature, the loading frequency affects the lifetime of non-crystallizing rubbers like EPDM.

[35] observed a decreasing lifetime with a decrease of the frequency and explains this effect

with continuous crack growth under static loading. As presented in [16], our model describes

this phenomenon and if we increase the frequency of the cyclic loading, we indeed observe a

longer lifetime. However, the effect is of a much higher magnitude in our calculations as in [35],

which is mainly attributed to a reduced hysteresis of the bulk viscosity. Experiments show a

nearly rate-independent hysteresis and [15] proposed to describe this with elasto-plasticity. An

extension of the model in terms of plasticity would increase the accuracy of our predictions,

but is out of the scope of this publication.
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4.3. Pure shear fatigue crack growth

Finally, we present predictions for fatigue crack growth in a pure shear setting.

The pure shear specimen is depicted in Fig. 18 and follows ISO 27727. This

set-up is characterized by a large width relative to its height. Consequently, the

tearing energy G can be calculated independent of the crack length:

G = hoψ
elas. (23)

h0 = 3mm

36mm

Figure 18: Fatigue pure shear test: Specimen dimensions and boundary conditions. The

initial crack length is 9mm.

The simulations are displacement controlled with a minimum strain of 20% of

the maximum applied strain.9 By tracking finite elements with d > 0.95, we

measure the crack length. In Fig. 19, we plot the current crack length c as a

function of the load cycle N for a tearing energy G = 1.283N/mm. As expected

from the literature (see for example ISO 27727 or [10]) the initial crack growth

rate dc/dN is linear.

Performing the simulation for several tearing energies, we can plot the crack

growth rate dc/dN as a function of the tearing energy G (Fig. 20). The crack

growth of rubber can be described with a power-law relationship between the

crack growth rate and the tearing energy:

dc

dN
= a1G

a2 , (24)

where a1 and a2 denote material parameters.

9The minimum elongation of 20% of the maximum applied strain ensures that the simpli-

fication of disregarding a stress-compression split is valid.
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Figure 19: Fatigue pure shear test: Crack length c versus load cycles N for tearing energy

G = 1.283N/mm (ζd = 0.009 and ζe = 3).

We find a1 = 0.0026 and a2 = 1.7188, which is of the same order of mag-

nitude as reported by other studies (see ISO 27727 (a2 = 2 − 6), [8] (a1 =

1.7400 · 10−05 − 0.00104 and a2 = 3.19− 6.05) or [10] (a2 = 2− 6)).

4.4. Computational cost

One disadvantage of phase-field damage models is the high computational cost.

The model was implemented in MATLAB. Because the code is not parallelized,

computing on an Intel Xeon processor at 2.4GHz for a pure-shear test case data-

point (17000 nodes) takes about 24h.

The main reason for the high computational costs is the necessity to calculate

each load cycle explicitly. We do not apply a cycle jump technique, but we will

examine the acceleration of the computations in the future.
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Figure 20: Fatigue pure shear test: Crack growth rate versus tearing energy (ζd = 0.009 and

ζe = 3).
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5. Concluding remarks

A rate-dependent fatigue phase-field model for finite strains is proposed based

on a load-history dependent fatigue damage source. The general framework al-

lows a flexible choice of the source term and the history variable according to

the material being examined. For our rubber, we define the history variable as

a function of the dissipation due to the bulk viscosity and introduce two addi-

tional fatigue damage material parameters. A reduced polynomial hyperelastic

model [34] is used to describe the bulk response, while the rate-dependency of

the bulk is incorporated with the well-known material model of [13]. Applying

the degradation function and crack density function according to [33], we show

global force-displacement results, which are independent of the length scale pa-

rameter. All phase-field fracture parameters can be identified from uniaxial

tensile tests and single edge notched tensile tests with different clamp veloci-

ties. Comparing the results of our predictions with the experimental results,

we observe that the model accurately predicts crack nucleation as well as crack

growth. The predicted load cycles to failure for a single edge notched tensile

test are in good agreement with the experimental ones and the model produces

the main characteristic features of fatigue damage, i.e. the Woehler line and

the rate of crack growth curve. Future work will focus on the experimental

validation for more complex specimens (multiaxial loading) and on accelerating

the computations for cyclic loading.
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Appendix A. Rate-dependent phase-field damage model

In this appendix, more details on the model components Ė, Ḋ and Ṗ ext are

given.

Appendix A.1. Rate of internally stored energy

The internally stored energy is defined in Eq. 2 with the degradation function

gd = gd(d) and the strain energy density ψbulk. The degradation function

controls the stiffness of the bulk and requires:

gd(d = 0) = 1

gd(d = 1) = 0

∂gd
∂d

∣∣∣∣
d=1

= 0.

(A.1)

Most phase-field damage models (e.g. [6], [21] and [22]) use a quadratic degra-

dation function gd = (1−d)2. In the work of [16] multiple degradation functions

are assessed in their performance to match experimental crack propagation data

of rubber and the quadratic one performs best. We use the generalized degra-

dation function (Eq. 3) from [32] and [33]. Note that for a = 2 the quadratic

degradation function is recovered.

The rate of the internally stored energy then reads:

Ė =

∫

Ω0

(
gd
∂ψbulk

∂F
: Ḟ (A.2)

+ gd

m∑

α=1

∂ψbulk

∂Φα
: Φ̇α +

∂gd
∂d

ψbulkḋ

)
dV,

Defining the elastic energy according to [34] :

ψelas =
3∑

i=1

Ci(tr(F
T · F)− 3)i, (A.3)

where Ci are the material parameters, the time-infinity stress reads:

P∞ =
∂ψelas

∂F
= 2

3∑

i=1

i Ci(I1 − 3)(i−1) F. (A.4)
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The non-equilibrium stresses are calculated according to [13]:

Qα = e
−∆t
τα Qα,n + e

−∆t
2τα βα (P∞ −P∞n ) , (A.5)

where the relaxation times τα and scalar free energy factors βα are the vis-

coelastic material parameters. Subscript n denotes converged solutions of the

previous time step tn and ∆t is the temporal step size. Further details on the

viscoelastic material model and its numerical implementation can be found in

[13], [14] and [16].

Appendix A.2. Rate of dissipation

The rate of dissipation is attributed to three dissipative phenomena (Eq. 6).

According to [13], the rate of dissipation due to the bulk viscosity reads:

Ḋvisc = −gd
m∑

α=1

∂ψvisα
∂Φα

: Φ̇α = gd

m∑

α=1

Qα : Φ̇α, (A.6)

where we have introduced:

∂ψvisα
∂Φα

= −Qα. (A.7)

The energy dissipated by crack growth is defined in Eq. (8). Note that w = d2

yields c0 = 2, so that the crack density function as defined in [6], [16] and [21]

is recovered. By differentiating with respect to time, the dissipation rate due to

crack formation can be written as:

Ḋcrack =

∫

Ω0

Gc
1

c0

(
1

l0

∂w

∂d
ḋ+ 2l0∇0d · ∇0ḋ

)
dV. (A.8)

The dissipation rate due to the rate-dependency of the crack growth is defined

as:

Ḋcrack,visc =

∫

Ω0

κḋ2 dV, (A.9)

where scalar κ denotes a viscosity parameter [16].

The second law of thermodynamics requires:

Ḋ = Ḋvisc + Ḋcrack + Ḋcrack,visc ≥ 0. (A.10)
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Ḋvisc ≥ 0 is ensured by selecting an appropriate viscoelastic material model

[13] (see [14] and [16] for more details). Imposing constraint ḋ ≥ 0 makes

the dissipation due to crack growth non-negative (Ḋcrack ≥ 0) as well as the

dissipation rate due to the rate-dependency of the crack growth (Ḋcrack,visc ≥
0), if κ ≥ 0.

Appendix A.3. Rate of externally applied energy

We denote the surface traction and volumetric body force vector by t0 and b0,

respectively, so that the rate of externally applied energy reads:

Ṗ ext =

∫

∂Ω0

t0 · u̇ dA+

∫

Ω0

b0 · u̇ dV. (A.11)
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Appendix B. Monotonic loading: Results parameter calibration

In this appendix, we present results of the fracture parameter identification tests.

The maximum tearing force for clamp velocities of 25mm/min to 200mm/min

is successfully predicted (Fig. B.21), as well as the local strain field near the

crack tip along paths x1 and y1 (see Fig. B.22 and Fig. 8 b) for the definitions

of the paths). The correlation between the measured and predicted local strains

indicates that the length scale parameter is sufficiently accurately identified.

Note that the calibration is only done with the measurements at 25mm/min

and 200mm/min, so that the results at 50− 100mm/min are true prediction.

0 50 100 150 200 250
Clamp velocity [mm/min]

30

35

40

45

50

F
or

ce
 F

 [N
]

Measurements
FEM

Figure B.21: SENT test: Numerically predicted and experimentally observed maximum tear-

ing force versus clamp velocity.
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Figure B.22: SENT test: Numerically predicted and experimentally measured yy-component

of the Green-Lagrange strain tensor along paths x1 (a) and y1 (b) in Fig. 8 b).
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[30] Tanné, E., Li, T., Bourdin, B., Marigo, J. J., and Maurini, C. (2018). Crack

nucleation in variational phase-field models of brittle fracture. Journal of the

Mechanics and Physics of Solids, 110:80–99.

[31] Wang, B., Lu, H., and Kim, G. H. (2002). A damage model for the fatigue

life of elastomeric materials. Mechanics of Materials, 34(8):475–483.

[32] Wu, J. Y. (2017). A unified phase-field theory for the mechanics of damage

and quasi-brittle failure. Journal of the Mechanics and Physics of Solids,

103:72–99.

[33] Wu, J.-Y. and Nguyen, P. V. (2018). A length scale insensitive phase-field

damage model for brittle fracture. Journal of the Mechanics and Physics of

Solids, 119(l):20–42.

[34] Yeoh, O. H. (2011). Some Forms of the Strain Energy Function for Rubber.

Rubber Chemistry and Technology, 66(5):754–771.

[35] Young, D. G. (1985). Dynamic Property and Fatigue Crack Propagation

Researchon Tire Sidewall and Model Compounds. Rubber Chemistry and

Technology, 58(4):785–805.

Author Contribution Statement

Pascal Loew: Conceptualization, Methodology, Software, Validation,

Investigation, Writing - Original Draft, Visualization, Project administration,

Funding acquisition

43

                  



Bernhard Peters: Resources, Writing - Review & Editing, Supervision

Lars Beex: Conceptualization, Writing - Review & Editing, Supervi-

sion

44

                  


