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ABSTRACT 

The ability of the robots to imitate human movements has been an 

active research study since the dawn of the robotics. Obtaining a 

realistic imitation is essential in terms of perceived quality in 

human-robot interaction, but it is still a challenge due to the lack of 

effective mapping between human movements and the degrees of 

freedom of robotics systems. If high-level programming interfaces, 

software and simulation tools simplified robot programming, there 

is still a strong gap between robot control and natural user 

interfaces. In this paper, a system to reproduce on a robot the head 

movements of a user in the field of view of a consumer camera is 

presented. The system recognizes the presence of a user and its 

head pose in real-time by using a deep neural network, in order to 

extract head position angles and to command the robot head 

movements consequently, obtaining a realistic imitation. At the 

same time, the system represents a natural user interface to control 

the Aldebaran NAO and Pepper humanoid robots with the head 

movements, with applications in human-robot interaction. 

CCS Concepts 

• Human-centered Computing ➝ Human computer interaction 

(HCI) • Computer systems organization → Embedded and 

cyber-physical systems → Robotics 
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1. INTRODUCTION 
The possibility to have robots imitating human behaviour is a key 

topic and an active research field. Applications range from affective 

robotics to gaming, from autism spectrum disorder to realistic 

character modelling in simulation scenarios, from socially assistive 

robotics to entertainment [24, 25, 26]. A robot able to imitate 

emotions and/or basic movements also presents advantages in 

affective human-robot interaction (HRI), not only in terms of 

acceptance level but also since the robot can become more 

expressive, eliciting responses and actively modifying the user’s 

emotional state [2]. Moreover, a precise human imitation can 

automatically represent a natural user interface (NUI) to control the 

robot, a very active topic in the state of the art [1, 23]. In light of 

this, it is not surprising that many works focused on making human-

robot interactions more natural and the robot more socially and 

contextually aware [4]. 

Marker-based capture systems are typically employed to observe 

human motion because of their reliability. They work by attaching 

to the human operator reflective patches that are precisely tracked 

over time, usually by a multi-camera system. At this aim, the work 

of [1] presents a robot that imitates a human dancer whose 

movements have been extracted from a motion capture system. A 

method to reproduce realistic motions by mapping their three-

dimensional appearance from a human performer to the android has 

been proposed in [7], again by employing a motion capture system 

for the perception. Other works that use the same technology to 

animate an Aldebaran NAO robot can be found in [5, 6]. If they can 

provide a very precise and reliable solution, such systems are very 

costly. Moreover, many systems limit their usage to indoor setups 

or require a tedious calibration procedure thus, in many specific 

application contexts, a computer vision based system could be more 

desirable [8]. 

Stereo-vision system for the ARMAR-IIIb robot has been 

employed in [11]. A real-time human imitation system based on 

non-invasive image processing techniques has been proposed in 

[3], but authors use input coming from RGBD images. A Microsoft 

Kinect has been used as optical motion capture sensor for arm 

control in [22,27]. Head pose angles have been estimated using the 

Kinect for a teleoperation scenario for the Furhat robot head in [28], 

while a learning scenarios for people with autism spectrum disorder 

has been proposed in [29]. Similarly, a Kinect has been employed 

to extract user facial expression and 3D head pose in order to 

reproduce both of them on a robotic head (Muecas) [9], to estimate 

hand shape and orientation for object grasping (with two additional 

force sensors), or to replicate a full body control (on the DARwIn-

OP robot) [10]. Apart than robotics applications, this RGBD sensor 

has been massively used for face analysis and human-machine 

interaction studies [30, 31, 32, 33], but a constraint in terms of 

hardware could be removed if a simple RGB sensor is employed.  



This work represents an attempt to fill the gap between the wide 

literature on robot control for human imitation and recent advances 

in pose detection with deep neural networks operating by 

processing only RGB images [12]. In particular, a real-time human 

head imitation system for the Aldebaran NAO and Pepper robots is 

proposed. The system processes images coming from a consumer 

webcam in order to extract the user 3D head pose. Yaw and pitch 

angles are the input for an imitation module that can directly move 

the head of the robots. The system has been implemented in both 

simulation and real scenario, showing reliable and real-time 

performance. At the same time, the system represents a NUI to 

control the two robots with the head movements, opening to several 

HRI scenarios. The rest of the manuscript is organized as follows: 

in Section 2, the system is described. In Section 3 experiments 

obtained in both simulation and real environment are shown and 

discussed, while Section 4 has the conclusion. 

 

2. SYSTEM DESCRIPTION 
In Fig. 1, a block diagram of the proposed system is shown. In 

particular, our system is composed of two modules opportunely 

coupled: the first one is the head pose estimation system that 

processes images coming from a consumer webcam and output the 

3D user head pose. The second component is the imitation module 

that is responsible to transfer the command movements to a 

physical or simulated robot. In order to simplify the 

communication, this block directly dialogues with the NAOqi. Next 

subsections will describe the components in details. 

 

Figure 1. A block diagram of the proposed system. 

Head Pose Estimation 
Head pose estimation is the problem of estimating the three degrees 

of freedom of a human head, referred in the literature as yaw, pitch 

and roll [18] (see Fig. 2). In the proposed system, the presence of 

the face in each input image is detected by using a pre-trained deep 

learning module with reduced ResNet-10 SSD, a deep residual 

network [13]. 

 

Figure 2. Head pose angles representation. 

Introducing this preliminary step gave a double advantage in terms 

of less false detection and misdetections at the same time. The 

image is cropped in correspondence of the face position and the 

patch is processed by OpenFace [15], an open source tool designed 

for a complete facial behavior analysis that provides not only facial 

landmark detection and head pose estimation, but also facial action 

unit recognition and gaze estimation. OpenFace works by 

computing, first of all, the 2D position of 68 facial landmarks that 

are detected and tracked by using Conditional Local Neural Fields 

(CLNF) [17], a probabilistic model that can learn non-linear and 

spatial relationships between the input pixels and the probability of 

a landmark being aligned, furtherly optimised with a Non-uniform 

Regularised Landmark Mean-Shift technique. Refer to [16] for 

more details. The 3D position of the head with regards to the 

camera reference system is estimated by employing the iterative 

Perspective-n-Point algorithm based on Levenberg-Marquardt 

optimization [14]. In particular, knowing the 2D-3D 

correspondences and the camera intrinsic calibration matrix K, 

defined as: 

𝐾 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] 

for each correspondence between image plane points (subscript IP) 

and 3D points (subscript 3D) we have: 

𝑠 [
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𝑦𝐼𝑃

1
] = 𝐾 [

𝑟11
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Knowing different correspondences led to the overdetermined 

system whose least square solution represents the 6-DOF pose 

under consideration.  

 

Figure 3. An output of the Head Pose Estimation module. 

An output of the head pose estimation on a user image is shown in 

Fig. 3, where a cube orientated with yaw, pitch and roll angles as 

the user head pose has been drawn. 

Imitation Module and NAOqi 
This component is responsible for converting the user head pose 

angles in a command that properly moves the robot head. It has 

been implemented as a ROS node [19] to ease the communication 

with the NAOqi, a distributed object framework that encapsulates 

robot functionalities, giving a programming interface to 

communicate with different sensors and actuators. In particular, a 

proxy to ALMotion module that provides methods that facilitate 

moving the robot has been employed. For each published ROS 

message, interpolation of yaw and pitch head joints are moved to a 

target angles. In fact, the imitation module directly interfaces with 



the actuator, i.e. the physical NAO, a Pepper robot, or their version 

in a simulation environment. About the latter, the complete models 

(URDF) for the robots and the NAOqi have been used to represent 

a full and realistic body control in the Rviz environment. Finally, 

in both simulation and real scenarios, a smoothing on the robot head 

movements can be obtained by reducing maximum motors speed. 

Aldebaran-Robotics NAO and Pepper 
Aldebaran-Robotics NAO is a humanoid robot with 5 DOF joints  

[20], while Pepper has 20 DOF joints. In both cases, the head is 

able to rotate on both yaw and pitch axes. NAO has multiple sensors 

and controllers, in particular, head and jaw cameras, chest sonar 

sensors, movement motors on neck, hands and feet, color LEDs on 

the eyes and the tactile sensors on the head and feet [21]. In the case 

of the Pepper, also a tablet on the chest, 3D depth sensors behind 

the eyes and six laser sensors on the legs (that end on a moving 

platform) are present. 

 

3. EXPERIMENTAL SETUP AND 

RESULTS 
 

First of all, as an additional motivation for adopting the chosen head 

pose estimator, an analysis of errors in the yaw and pitch angles of 

various state of the art methods on the publicly available Biwi 

Kinect [33] and BU [36] datasets is reported in Tab. 1. The first 

dataset contains RGBD data, while the second one only RGB. For 

RGB data, the methods proposed in [34] and [35] have also been 

reported. It can be observed that OpenFace [15] can even 

outperforms methods based on RGBD data. Note that only yaw and 

pitch angles are compared, since they represent the angle of interest 

for controlling the robot head. 

Table 1. Comparison of head pose estimation errors (in degrees 

and for yaw and pitch angles). 

Method Biwi Kinect 

(Yaw/Pitch) 

BU 

(Yaw/Pitch) 

Fanelli et al. [33] 9.2/8.5 -/- 

Saragih et al. [34] 8.2/8/2 3.0/3.5 

Asthana et al. [35] 13.9/14.7 3.8/4.6 

Baltrušaitis et al. [15] 7.9./5.6 2.8/3.3 

 

For the experimental assessment, two qualitative scenarios have 

been prepared. In the first one, a Rviz simulation environment with 

a NAO robot has been designed; afterward, a Pepper has been used 

to test the system in real scenarios. Seven different human users 

were asked to sit in front of a consumer webcam with a distance 

between 50-70 cm from the sensor. Users were different in 

appearance and in terms of hairstyle, beard, eyeglasses, etc., 

without any given constraint. Fig. 4 reports the employed 

experimental setup, where is visible one of the seven participants 

sitting down in front of a PC with a webcam on the top of the screen 

and a Pepper robot few meters ahead. During this experimental 

session, a free robot imitation scenario has been created placing the 

robot sit in front of the user while facing at the same direction. An 

evaluation of the interaction quality has been asked to the users, in 

terms of realism of the robot simulation. The feedback shows that 

the overall results are very encouraging, and provide realistic and 

precise head movements from the robots.  

Two examples of interaction during the experiments with both 

simulated and real robot are shown in Fig. 5 and Fig. 6: at the left, 

the output of the head pose estimation, while at the right, the 

simulated or the real robot imitating the human head pose. A video 

with a summary of the experiments is available at 

https://youtu.be/HJnpwOnZcJA. 

 

Figure 4. The employed experimental setup. 

As it can be observed, the interaction is in general very fluid and 

the robot can imitate the user head position in real-time. Only in 

some case, when the yaw angle approaches ±90° degrees or the 

head is completely facing up or down, the estimation is less precise 

so that the robot cannot precisely follow the user. 

 

Figure 5. An output of the experiments: result of the head pose 

estimation (left), and the simulated NAO robot imitating the human 

head pose (right). 

 

Figure 6. An output of the experiments: result of the head pose 

estimation (left), and the Pepper robot imitating the human head 

pose (right). 

https://youtu.be/HJnpwOnZcJA


About implementation details, a ROS [19] node has been created to 

ease the communication between the head pose estimation 

algorithm and the robot imitation system respectively. These nodes 

have been programmed in Python programming language. Head 

pose estimation has been executed on a PC with Intel Xeon CPU 

E3-1505M v6 3.00GHz processor, with 32GB of RAM and 

NVIDIA Quadro M1200 GPU. In the case of simulation, all the 

system has been executed on the same machine. For the 

experiments with the real robot, the head pose estimation and the 

imitation modules have been executed in the aforementioned 

machine. Thus, the imitation module directly communicates with 

the NAOqi in order to move the physical robot.  

The head pose estimation module represents our potential 

bottleneck, but it can produce an estimate at more than 33 fps with 

input images of resolution of 640X480. In the light of this, during 

the simulation scenario, the delay between an estimated head pose 

and the robot movement was negligible. Operating in the same 

LAN, also working with a physical robot led to robot movements 

without any perceivable delay. Instead, robots engines have been 

slowed down of 70% in order to provide a smooth interaction. 

 

4. CONCLUSION 
In this work, a system to reproduce the head movements of a user 

in the field of view of a consumer camera has been presented. The 

proposed work tried to fill the gap between methods for human 

imitation from robots and state of the art deep neural networks. The 

latter is used to estimate the user head pose in real-time, and the 

proposed system can directly transmit the head pose angles to lead 

the robot head movements. Obtained results show that the system 

represents a potential natural user interface to control the NAO and 

Pepper robots with the head movements, as well as a human head 

imitation system for the two humanoids robot. Future work will 

investigate the possibility of employing the obtained results to 

realize an assistive application, thanks to the possibility to remote 

control the robot and accessing to his cameras. Moreover, 

integration of a human skeleton tracker from RGB images in order 

to realize a full humanoid body control interface and a complete 

imitation system. 
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