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Abstract—The reliability of aircraft inspection is of paramount
importance to safety of flights. Continuing airworthiness of air-
craft structures is largely based upon the visual detection of small
defects made by trained inspection personnel with expensive,
critical and time consuming tasks. At this aim, Unmanned Aerial
Vehicles (UAVs) can be used for autonomous inspections, as
long as it is possible to localize the target while flying around
it and correct the position. This work proposes a solution to
detect the airplane pose with regards to the UAVs position while
flying autonomously around the airframe at close range for
visual inspection tasks. The system works by processing images
coming from an RGB camera mounted on board, comparing
incoming frames with a database of natural landmarks whose
position on the airframe surface is known. The solution has been
tested in real UAV flight scenarios, showing its effectiveness in
localizing the pose with high precision. The advantages of the
proposed methods are of industrial interest since we remove many
constraint that are present in the state of the art solutions.

Index Terms—visual inspection, self-positioning, 3D pose, land-
mark detection

I. INTRODUCTION

Airframe inspection is a very sensitive area in aircraft

maintenance. Continuing airworthiness of aircraft structures

is largely based upon the visual detection of small defects

made by trained inspection personnel. Roughly 90% of all

aviation maintenance inspection is visual [1], coming with

some concerns. First of all, many parts of the surface are

difficult to reach, making the use of auxiliary tools (e.g.

scaffolding, temporary platforms, etc.) necessary. This raises

a safety issue for the human operators and implies a longer

time for the inspection. In fact, even if maintenance is an

extremely delicate procedure, time represents an important

resource. Each hour the aircraft is on the ground it produces

costs instead of incomes (for example the average time in the

air for a 747 cargo liner at Cargolux Airlines S.A. is 19h/day).

Moreover, the human inspectors play a critical role, therefore

fatigue issues of the involved personnel must be taken into

account [2].

Thus, it is not surprising that many researches have been

done in order to optimize visual inspection procedures in in-

dustrial applications. In the last decades, many works focused

on the search for efficient training strategies for improving

industrial inspection performance [3]. From the other side,

recent advances in technologies have led to Unmanned Aerial

Vehicles (UAVs) based inspections, not only for the aircraft

industry but also for wind turbines, power lines, buildings,

bridges, and so on. In fact, UAVs can provide visual as-

sessments being remotely controlled, eliminating all of the

disadvantages and costs of a physical displacement on site.

Moreover, the maneuverability of UAV technology allows

flying in areas that are extremely difficult to access as well

as indoors.

However, the implementation of UAV inspection includes

several difficulties such as flight stability, safety, control ac-

curacy and piloting skills [4]. A major problem in the remote

operations with UAVs is the loss of pilot visibility and the lack

of the signal of the Global Positioning System (GPS). Recent

achievements in robot perception and control, also thanks to

the development and integration of sensors on board, as well

as the recent advances in terms of onboard computational

power, have led to significant improvements to autonomous

flight systems [5].

From the state of the art, it emerges that very few works

try to use monocular images to reconstruct the object pose in

the absence of fiducial markers and when only a tiny fraction

of the object is visible. Moreover, works that detect single

obstacles tends to provide a hit/miss rate, without a full shape

pose error estimation. In this work, a method to detect the six

degree of freedom (6-DoF) pose (3D translation and rotation)

of the airplane w.r.t. the UAVs position while flying around the

airframe for visual inspection tasks is proposed. The solution

processes input images coming from a camera mounted on

board of the UAV and looks for a set of stored patches of

planar parts of the airframe, outputting the relative 3D pose

in terms of rotation and translation of the airplane. Tests have

been conducted in real scenarios during UAV flights and in

case of occlusions and partial view, in a laboratory and with

a reproduced airframe, showing the effectiveness in detecting

the airplane pose with high precision. An error propagation

scenario has been reproduced, showing the feasibility of a

vision-based self-positioning when the visible portion of the

image is one or two orders of magnitude smaller than the

whole object to be detected, and this feature, to the best of

our knowledge, is completely missing in the state of the art.

The manuscript is organized as follows. In Sec. II, related

work is reported. Sec. III describes the proposed method to lo-

calize the airplane and to obtain its 3D pose. The experimental

setup is explained in Sec. IV-A, while results are shown and

discussed in Sec. IV-B. Sec. V has the conclusion.



(a) A simulated pose error of 2◦ degrees in yaw with the
rotation axes centred at half of the airplane size.

(b) Detail of error propagation in the tail.

Fig. 1: A simulated error on a Boeing 747-8F model shows how continuous localization is a critical issue in inspection tasks.

II. RELATED WORK

One of the fundamental tasks in full autonomous inspec-

tion system design is to precisely localize the object of the

inspection. In the case of autonomous flights, this has a two-

fold scope. From one side, it detects and estimates volumes

that can be then avoided with a specific control law. Secondly,

localizing with accuracy the airplane is crucial for the correct

behaviour of the UAVs in the case of path planning schemes

[6], usually aimed at obtaining images of the parts of interest

to be visually inspected. A survey about different hardware

technologies in indoor self-positioning has been proposed in

[7]. It emerges that each technology adds a constraint in

terms of working conditions, additional hardware and costs.

In the case of the UAV, this implies additional payload. At

this aim, vision-based pose estimation requires only image

sensing. Many works in the state of the art focus on airplane

detection and localization, but they mainly process images

where the whole shape is visible [8]. In particular, the work

of [9] adapts the airplane localization for the specific case of

unmanned aircraft systems, but still the target is always visible.

A solution can be efficiently provided if a map of the system

is known [10], [11]. The advantage is that these solutions

can work in situations where GPS signal is denied; anyway,

extra sensors and data fusion schemes are often necessary.

Moreover, the case of monocular Simultaneous Localization

and Mapping (SLAM) cannot be applied in many practical

inspection scenarios, since the UAV must fly close enough

to the airplane in order to efficiently let visual inspections,

implying that many repetitive patterns can be in the scene,

or texture could not be present at all. Other works focus on

detecting the obstacle represented by fiducial markers [12],

e.g. ArUco [13], or integrate a well-known disposition of

fiducial markers with a shape reconstruction algorithm [14]

to produce a full 3D model of the object. Anyway, in the

context under consideration, markers cannot be fixed to the

airframe surface, thus a new map should be generated each

time, representing a time-consuming solution with the need for

external infrastructures. The work in [15] proposes to extract

features and analyze their changes in size, combined with the

expansion ratios of the convex hull constructed around the

detected feature points from consecutive frames. The method

is effective, but cannot reconstruct the pose of obstacles, nor

detect them if part of a bigger object. Again, in [16], SURF

features are employed to detect the obstacle pose, but its

boundaries still lie in the field of view of the camera. Other

works uses extra sensors like stereo camera [17], [18], laser

scanning systems [19] or RGBD [20], implying extra payload

and consuming more energy.

III. PROPOSED SOLUTION

In the proposed solution, the scenario is the following one.

From one side, there is an airplane parked in an indoor envi-

ronment (typically a hangar), and whose 3D model is known.

This is a realistic situation in the field of vehicle inspections,

where a mesh from CAD software or civil engineering data

for a specific airplane is available [21]. From the other side,

there is a flying UAV with a static pre-planned trajectory w.r.t.

the airplane for the autonomous flight around the airframe (or

a section), expressed in a reference system with origin in a

point attached to the airplane. UAV self-positioning becomes

fundamental since, this way, the UAV must not start the flight

from a static and calibrated position; moreover, in vision-based

control systems, the pose can be continuously integrated with

each new detection during the trajectory execution [22].

An example of pose error propagation in a Boeing 747-8F

is showed in Fig. 1. In particular, the green volume represents

the ground truth position of the airplane. The red volume

illustrates the estimated position with an error of 2◦ degrees in

yaw with the rotation axes centred at half of the airplane size.

The translation error is assumed to be zero. Even if locally

the error is minimal and does not compromises the inspection

task, once propagated to peripheral areas like wings or the tail

(Fig. 1b), it becomes massive, leading to possible collisions

and/or grabbing images for the inspection from unexpected

positions.

The proposed system works as follows: first of all, images

of planar 3D surfaces with patches and their sizes in physical

units are stored offline, like in [16]. Correspondences between

these images and each coming frame are found. In particu-

lar, the Features from accelerated segment test (FAST) and

Oriented Rotated Brief (ORB) descriptors [23] are employed



to find features, then matched in order to detect if one of

the stored landmarks is in the scene. A match that shows to

be robust and reliable and that outputs the highest similarity

indicates an object detection. Homography between the two

views is found in order to reproject the four corners in the

new view and Perspective-n-Point (PnP) algorithm [24] is

employed to estimate the 3D camera pose. Finally, the pose

is combined with the known position of a detected landmark

w.r.t. the airframe surface, outputting the airplane orientation

w.r.t. the UAV. Next subsections will describe the system in

details.

A. Model Acquisition

A planar and textured part of the airplane can be easily

added to the database by providing its image and the position

of the four corners of the bounding box w.r.t. the airplane

reference system, in both pixels and physical units. This way,

a list of N landmarks Mi, i ∈ N is created. Note that many

methods use a full registration, requiring manual annotation

of all features position, or a real-scale 3D reconstruction of

the object in exam [25]. Instead, in the proposed system, only

one image and the 3D position of bounding box corners in the

airplane reference system are required, while the full model is

required only by autonomous navigation / trajectory planning

schemes.

B. Object Detection

First of all, images are converted in greyscale. In order to

detect one object in the scene, the ORB features are computed

for each coming frame and matched with the pre-computed

ORB features of the landmarks on the database.

ORB operates by finding FAST [26] features on the image.

Since FAST does not produce multi-scale features, a scale

pyramid of the image is employed. With the ORB detector,

the Intensity Centroid is used to sort corner values [27].

Fig. 2: The used landmark coordinate system; z-axis is per-

pendicular to the image.

Matches are searched with the fast K-Nearest Neighbor

(KNN) search relying on a multi-probe Locality-Sensitive

Hashing (LSH) [28]. Multi-probe LSH matcher is built on the

classic LSH technique, but probing multiple buckets that are

likely to contain query results in a hash table, increasing over-

all performance. Given a set of n points P = {p1, p2, . . . , pn}
and a query point q in a metric space M , the goal is to

find the K closest points with respect to a metric distance

d : M ×M → IR, i.e.

KNN(q, P,K) = A, (1)

where A denotes a set that satisfies:

|A| = K,A ⊂ P, ∀x ∈ A, y ∈ P −A, d(q, x) ≤ d(q, y), (2)

denoting with d(q, x) the distance of q and x [29].

In our implementation, K = 2. As in [30], a ratio and

a symmetry test are performed to minimize wrong matches.

Denoting with S and T the source and target sets of features,

each feature si ∈ S will be mapped with tj , tk ∈ T (since

K = 2) with distances dij and dik respectively. A point is

discarded if:

ratioi =
dij

dik
≤ threshold (3)

The threshold has been set to 0.8 like in [30]. Matching and

ratio filters are executed in a bidirectional way, i.e., in a first

run the source is represented by the stored images while the

target is the coming frame; in a second run, roles are inverted.

If the selected matching is confirmed in both directions, the

match is accepted, otherwise, it is discarded. Valid features

are stored for the two views and a homography is computed

through RANSAC [31].

C. Airframe Pose Estimation

The four known corners (c1i, c2i, c3i, c4i) of a detected

natural landmark Mi and expressed in pixel coordinates can

then be reprojected to the current view by:

c′ji = Hcji, j = {1, . . . , 4}, i = {1, . . . , N} (4)

For each landmark, a local 3D reference system has been

defined: in particular, the coordinate system origin is set to

the physical centre of the patch, and the axes are oriented like

in Fig. 2. The correspondence between the four corners 2D

and 3D points information and the calibration matrix K are

used to solve the 3D pose by the iterative PnP algorithm based

on Levenberg-Marquardt optimization [24]. At this stage, the

rotation matrix (RC
Mi

) and the translation vector (TC) between

a detected landmark Mi and the camera are known. We denote

with PC
Mi

∈ IR4×4 the roto-translation matrix, i.e.

PC
Mi

=
[

RC
Mi

|TC
]

. (5)

Since the poses PMi

A of all landmarks in the airframe are

a priori known, the pose of the airplane w.r.t. the camera can

be expressed as:

PC
A = PC

Mi
PMi

A (6)



Fig. 3: The five natural landmarks used in the implementation.

Fig. 4: The experimental setup with a DJI Matrice 100 and an

OptiTrack system to generate ground truth information.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The solution has been tested in three different situations.

First of all, a qualitative test has been performed with the

landmarks showed in Fig. 3 and in different challenging

conditions, processing images from a low-cost webcam at a

resolution of 640× 480 (Experiment 1).

Afterwards, two scenarios have been prepared in order

to provide quantitative results of the ability to estimate the

airplane 3D pose. In the first scenario (Experiment 2), two

natural landmarks are located on a small reproduced airframe

surface while a quadcopter DJI Matrice 100 is flying with

visual inspection tasks. Two landmarks, i.e. the third and the

second landmark from the left in Fig. 3, respectively named

Landmark 1 and Landmark 2, have been stick at the airframe

surface, evaluating their localization. The airframe localization

has been tested on a video sequence of 65 seconds length

grabbed with Zenmuse X4S Series with images at a resolution

of 1280 × 720 at 10fps, and the ground truth data collected

with an OptiTrack motion capture system. The trajectory is

voluntarily varying from a frontal view to lateral positions in

which the view is considerably distorted by the perspective.

Natural markers have been centred at the center of the logos

with the same axes orientation as for the 3D pose estimation

(see Sect.III-B). Fig. 4 shows the experimental setup for this

phase.

The second scenario (Experiment 3) aims at evaluating the

feasibility of airframe inspection of Boeing 747-8F. The errors

reported in the Experiment 2 have been reproduced on a

simulated environment with a Boeing 747-8F, where natural

landmarks are placed in different parts of the airplane in

order to test the feasibility of inspection tasks. The simulation

environment has been realized with the platform V-REP PRO

EDU v3.5.0 [32].

B. Experimental Results

Results and discussion for each experiment are reported

in the following subsections. Computational details have also

been reported.

1) Experiment 1: Fig. 5 reports the obtained results with

the four corners that delimit the patch boundaries selected as in

Fig. 6. Obtained qualitative results show great accuracy when

the object is full visible (Fig. 5a), but also in case of partial

view (Fig. 5b), occlusions (Fig. 5c) and in the most challenging

case of the natural landmark at far distance, with blur in the

image and in the presence of other textured objects (Fig. 5d).

Note also that the system performs stable detection even when

the natural landmark has not a rectangular shape and the four

corners lies in no textured area, like in Fig. 7.

2) Experiment 2: Results of the second experiment are

reported in Tab. I and Tab. II. At this aim, also considering that

the precision evaluation of the 3D pose is separately evaluated,

the following definitions have been used:

• A landmark correctly detected in the scene and whose

area is overlapping at least 85% with the ground truth

2D area is considered as a true positive (TP);

• A landmark correctly labeled as not present in the scene

is considered as a true negative (TN);

• A landmark with an overlapping area smaller than 15%

of the ground truth area or wrongly classified as present

in the scene is considered as a false positive (FP);

• A landmark not detected in the scene is considered as a

false negative (FN).

TABLE I: Confusion matrix for the two landmarks used in the

experimental phase; subscripts P and T stand for predicted

and true.

PositiveP NegativeP
PositiveT 295/287/582 36/35/71

NegativeT 54/59/113 268/272/540

The confusion matrix is reported in Tab.I, where subscripts

P and T stand for Predicted and True. The tree numbers in

each cell represent the results for the first landmark, the second



(a) Detection between two views. (b) Detection in case of partial view.

(c) Detection in case of occlusion.
(d) Detection in case of far distance, other textured
objects and blur.

Fig. 5: A landmark detected with different test conditions.

Fig. 6: One landmark used in the qualitative tests. Red spots

at the extremes shows the registered corners.

Fig. 7: Example of detection in case of non-rectangular

patches. On the left, the original patch with the four 2D corners

registered by the user once.

TABLE II: Evaluation metrics and results.

Precision 0.891

Recall 0.837

Specificity 0.883

Accuracy 0.859

F1-Score 0.863

one, and the sum. The total sample size is the same above the

two landmarks because we are considering also true negatives

in the video. From the overall data in the confusion matrix,

Precision, Recall, Specificity, Accuracy and F-score (F1) have

been computed (see Tab. II). Results show that the proposed

approach can detect landmarks from images obtained while

flying with an UAV. False positive can destabilize the correct

trajectory execution, but heuristics like reducing speed or the

flying distance in case of ambiguous sudden airplane pose

change can provide a solution. About false negatives, Fig. 8

shows two example of misdetection for both landmarks, due

to blur or a strong perspective variation.

In Tab. III errors in the pose (for the TPs) have been

evaluated as difference between the ground truth and estimated

pose, and the averages over all the observations are reported

for each component. As can be observed, errors are in general

TABLE III: Averaged pose errors for each single component.

Translation (meters) Rotation (degrees)

Tx Ty Tz Yaw Pitch Roll

Landmark 1 0.058 0.022 0.057 3.944 2.858 9.290

Landmark 2 0.056 0.022 0.049 2.314 1.562 7.417

Average 0.057 0.022 0.053 2.209 3.129 8.35

low and the method is able to localize the landmark with

precision. Errors are higher in roll angles, but they can be

managed by the system if more landmark are stored and the

trajectory can be corrected, as for the case of Experiment 3.

3) Experiment 3: In order to show the feasibility of an

autonomous navigation, localization errors of Experiment 2

have been reproduced on the simulation environment: the

errors of Tab. III have been applied to the localization of a

landmark 2/3 of the airplane length, with origin at the yellow

sphere, as can be observed in Fig. 9. The UAV is moved

following towards the tail of the airplane, following a pre-

defined path (green trajectory), but with a noisy localization

of the airplane equivalent to the errors of the first row of Tab.



Fig. 8: Two examples of misdetection due to blur (left) and perspective (right).

(a) The reconstructed scenario (lateral view).

(b) The reconstructed scenario (top view).

(c) Detail of the trajectories.
(d) Detail of the error propagation at the tail.

Fig. 9: A simulated autonomous navigation scenario. In green, the ground truth trajectory; in red, the estimated trajectory with

one landmark (yellow sphere); in purple, the estimated trajectory with two landmarks (blue sphere). It can be observed how

the integration of a second landmark drastically reduce the errors.

III (red trajectory). After ∼15 meters, another landmark (the

blue sphere) is detected with an error as the second row of

Tab. III, and the pose of the airplane is corrected with the new

(noisy) information as in Eq. 6 (purple trajectory).

The correction produced by the second landmark is evident;

moreover, real sizes experiments show that few landmarks for

side can allow a safe navigation over a specific trajectory. For

illustration purpose, the same error has been reprojected to the

airplane surface (Fig. 9d), showing the difference in the final

estimation between the ground truth (green), uncorrected (red)

and corrected trajectories (purple). The figure shows how the

second landmark corrected the trajectory (the airplane in red

is positioned with the error in the pose of one landmark, while

the purple one is the result of the pose correction).

4) Computational Details: About computational details,

the execution time depends on the number of pre-defined

landmarks. For one single landmark the system can work at

10fps with images at resolution of 1280 × 720, i.e. the same

frame rate of the camera acquisition, on a PC with Intel Xeon

CPU E3-1505M v6 3.00GHz processor, with 32GB of RAM.



A trade-off between the number of pre-defined landmarks

and the fast execution time can be adapted to the specific

application. In our simulation, we were able to search for 5

different landmarks at 2.2fps.

V. CONCLUSION

In this work, a solution to detect the position and orientation

of the airplane w.r.t. the UAVs pose while flying autonomously

around the airframe has been proposed. Input images extracted

from a camera mounted on board of the UAV are processed

by a computer vision pipeline that estimates the six degree

of freedom (6-DoF) pose (3D translation and rotation) of the

airplane w.r.t. the UAV by identifying the pose of a set of

stored patches of planar parts of the airframe. The solution has

been tested with three different experiments; obtained results

shows that a proper choice of the landmarks can let a self-

positioning of the UAV w.r.t. the airplane, where classic SLAM

methods could fail due to repetitive patterns or no texture.

Future works will investigate optimization schemes in case of

multiple landmarks detected in the same frame or in case of

multi-agent systems, as well as tracking methods in absence

of pose information.
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W. Flores-Fuentes, J. C. Rodrı́guez-Quiñonez, F. N. Murrieta-Rico,
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