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Abstract

This paper investigates a new form of delegation for multiparty session calculi. Usually, delegation allows a
session participant to appoint a participant in another session to act on her behalf. This means that delegation
is inherently an inter-session mechanism, which requires session interleaving. Hence delegation falls outside
the descriptive power of global types, which specify single sessions. As a consequence, properties such
as deadlock-freedom or lock-freedom are difficult to ensure in the presence of delegation. Here we adopt
a different view of delegation, by allowing participants to delegate tasks to each other within the same
multiparty session. This way, delegation occurs within a single session (internal delegation) and may be
captured by its global type. To increase flexibility in the use of delegation, our calculus uses connecting
communications, which allow optional participants in the branches of choices. By these means, we are able
to express conditional delegation. We present a session type system based on global types with internal
delegation, and show that it ensures the usual safety properties of multiparty sessions, together with a
progress property.

Keywords: Communication-centric Systems, Process Calculi, Multiparty Session Types.

1. Introduction

Multiparty session types model the sequence and types of messages exchanged between two or more
parties interacting according to a predefined protocol. Session types are typically used to ensure safety
properties such as communication safety (absence of communication errors) and session fidelity (conformance
to the protocol), which in turn entail (internal) deadlock-freedom (absence of mutual blocking between session
participants). Often a stronger property than deadlock-freedom is targeted for multiparty sessions, called
progress, stating that in addition to being able to proceed as a whole, a session should leave no participant
behind. Note that for binary sessions, namely sessions involving only two parties, progress reduces to
deadlock-freedom. Similarly, in the binary case, the type of the whole session is entirely determined by
the type of anyone of its participants. In the multiparty case, on the other hand, a global type is required to
specify the overall choreography of the session. From this global type, one can determine – via an operation
of projection – the contribution of each individual party to the protocol, which is described by a (local) session
type. Then, if all participants in a session behave according to their session type, we have guarantees about
the overall behaviour of the session.
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In early work [20], session type theory was enhanced with the ability to delegate interactions from
one participant in a session to another participant in a different session. Thereby, by using delegation, a
participant involved in a session can at any point request that some participant in a different session conducts
part of the interaction in the first session on her behalf. By construction, the delegation mechanism proposed
in [20], which is also the one generally adopted in later work, cannot take place within a single session.

Delegation is typically modelled by sending a channel, on which the session is conducted, over another
channel. For example, suppose two participants — a client and a seller — are initially engaged in a session
on a channel, say cs. During the session, the seller would like another participant, — a bank —, which does
not belong to the current session, to process a payment on her behalf. For a seamless experience for the
client, the seller opens a new session with the bank, say on channel sb, and sends the initial session channel
cs over the new channel sb to the bank, who is then able to complete the session with the client on behalf of
the seller. This avoids the client directly opening a new session with the bank; it also avoids any need for the
seller to act as an intermediary, forwarding messages back and forth between the client and the bank. After
delegation, all interactions occur directly between the client and the bank. The client does not know that
the seller has subcontracted part of its interaction to the bank. Such subcontracting may be useful both for
abstraction purposes, to hide useless details from some participant (the client does not need to know how
the transaction is implemented) or to provide additional guarantees on sensitive parts of the interaction (the
credit card should only be processed by a trusted entity like the bank).

The idea of delegation originates in early research into concurrent object-oriented programming [40, 2].
Hence, delegation via channels, as described above, has been natural to implement in object-oriented
languages [15], such as Java [24], F# [11] and Scala [37]. With regards to session calculi, delegation for binary
sessions was introduced in [20]. The first paper with global types for multiparty sessions [21] also considers
delegation. Delegation increases the expressiveness of a session calculus regardless of whether the sessions
are binary or multiparty. In fact, channel-based delegation allows communications between participants
which operate in different sessions and are unknown to each other. This behaviour cannot be obtained in
session calculi without delegation.

This work takes a slightly more abstract approach to delegation than the channel-passing approach
described above. In our calculus, there are no channels representing sessions, and hence delegation cannot
be explicitly modelled by passing channels over channels. Instead, delegation is modelled by enabling one
participant in a given multiparty session (the principal) to temporarily “lend” her behaviour to another
participant in the same session (the deputy). The approach adopted has two advantages:

• Firstly, by being more abstract, we are less explicit about how delegation is implemented; thereby
permitting a wide range of delegation mechanisms to be modelled. For example, delegation to a
bank may be implemented as a browser redirection secured by a delegation certificate [1], which
is quite different from the object-oriented approach. Thus the global types in this work are largely
language-independent.

• Secondly, by “localising” delegation within a single multiparty session, we get around two well-known
issues of multiparty sessions types, both of which may prevent progress: session interleaving (which
is required to model delegation in the channel-based approach), and the “non-local” character of
channel-based delegation, which is inherently shared between two sessions, and hence cannot be
captured by standard global types.

Global types provide a view of the behaviour of all participants partaking in a session [22, 32]. They are
a required feature of all multiparty session frameworks. Without global types, using standard techniques,
deadlock cannot be prevented even within a single multiparty session: one can easily program a 3-philosopher
deadlock by assuming three participants in the same session, which are all waiting to receive from their left
neighbour before sending to their right neighbour. These participants are all pairwise dual but the session is
stuck. The problem can be solved by using global types, and requiring the session types of all participants to
be projections of the same global type.

Global types are closely related to message sequence charts [26, 29], widely understood by engineers as a
tool for describing the flow of messages in a protocol. This work explores how global types can be enhanced
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with mechanisms for describing internal delegation (i.e., delegation within the same session), thus going
beyond the expressiveness of message sequence charts.

Although early work on multiparty session types [21] features delegation, the progress result in that
work holds only for a single session, which therefore excludes delegation since delegation requires multiple
sessions in that framework. Existing approaches to progress for global types with delegation include the
interleaving approach where several sessions are described separately and their actions may be interleaved [6].
A problem with having several separate global types is that it is not immediately clear how the actions in one
session are related to the actions in another session. Worse still, without a view of how all interactions are
related, interleaving between different sessions may cause deadlock, preventing progress of typed sessions.
Proposals for ensuring progress in the presence of session interleaving have been put forward in [10, 34],
but they require sophisticated additional machinery. The approach presented in the current paper has
the advantage that there is a single global type expressing the relationships between the behaviours of all
participants in a session.

To increase flexibility in the use of delegation, our calculus accommodates connecting communications, a
notion introduced in [23] to describe protocols with optional participants. Here we adopt the variant of
this notion proposed in [9]. The intuition behind connecting communications is that in some parts of the
protocol, delimited by a choice construct, some participants may be optional, namely they are “invited” to
join the interaction only in some branches of the choice, by means of connecting communications. As argued
in [23] and [9], this feature allows for a more natural description of typical communication protocols. In the
present setting, connecting communications also enable us to express conditional delegation: this will be
obtained by writing a choice where the delegation appears only in some branches of the choice, following a
connecting communication.

Outline. Section 2 provides a motivating example describing a global type with internal delegation and
its end-point projections. Section 3 introduces a core process calculus with delegation actions. Section 4
introduces global types and session types reflecting our notion of internal delegation. Section 5 formalises the
type system which assures progress for networks with internal delegation and connecting communications.
Section 6 establishes the main properties of our typed calculus: subject reduction, session fidelity and
progress. Section 7 sketches future work on multiparty compatibility and on various extensions of the
present calculus. Section 8 discusses related work, followed by concluding remarks in Section 9. Most of
the proofs are included in the body of the paper. The proofs of projection correctness, subject reduction
and session fidelity are given in Appendix Appendix A, Appendix Appendix B and Appendix Appendix C,
respectively.

2. A Motivating Example of a Global Type with Internal Delegation

Here we revisit a typical example of delegation involving three participants: Client, Seller, and Bank. In
the protocol, the client and seller engage in a session in which they present each other with the terms of a
purchase (the title and price of a book). At this point the client is faced with a choice, depending on whether
the proposed price is within her intended budget or not. If the client decides to purchase, she notifies the
seller, who connects with the bank, sending the agreed price, and then delegates the processing of the client’s
credit card to the bank. Otherwise, the client indicates to the seller that she is not interested in proceeding
with the purchase and the session ends without contacting the bank.

A global type for such a client-seller-bank protocol is presented in Figure 1. In this figure, an exchange
of a message, say price , from a participant sending the message, say S, to another participant receiving

the message, say C, is denoted S
price
−−−−→ C. Communications are assumed to be synchronous, meaning that

any communication on the left of a sequential composition (;) must be fully completed before we begin any
communication on the right of the sequential composition, unless the two communications involve disjoint
sets of participants. A choice (�) indicates that the sending party decides which branch of the choice she
takes. Note that sequential composition binds tighter than choice; hence, in this figure, the client named C, at
runtime, chooses either the branch beginning with an exchange of message ok or the branch beginning with
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C
title
−−−−→ S;

S
price
−−−−→ C;

( C ok
−−→ S;

S
price
↔
−−−→ B;
S◦〈〈•B;

C
card
−−−−→ S;
B•〉〉◦S;

S
date
−−−−→ C; End
�

C
ko
−−→ S; End )

Figure 1: A global type for the client-seller-bank protocol.

an exchange of message ko. The new constructs for internal delegation S◦〈〈•B and B•〉〉◦S are explained at the
appropriate point in the following message sequence:

• Firstly, Client sends a title to Seller, indicated by C title
−−−−→ S;

• Seller responds by sending a price to Client, indicated by S
price
−−−−→ C;

• Depending on the price received at runtime, Client will decide whether the book is within her budget
or not. This is an internal runtime decision made by Client. The two options are detailed separately
below.

• If the price is within Client’s budget, then the following occurs:

– Client sends a message ok to Seller;

– Seller sends the price to Bank. The annotation on the message
price
↔ indicates that the receiver

Bank connects to the session at that point.

– After the above connecting communication, Seller delegates her interaction to Bank, indicated
by S◦〈〈•B.

– Client sends her credit card number apparently to the participant Seller but actually — thanks to
delegation — to the participant Bank.

– Bank delegates back the interaction to Seller, indicated by B•〉〉◦S;

– Seller sends a date to Client. Since the delegation has ended, this is a communication between
the actual seller and the client;

• Otherwise, Client sends message ko to Seller, terminating the session.

Notice, in the above protocol, it is possible that the bank is never contacted, in the case the client
terminates the protocol by giving up the purchase. In other words, the bank is an optional participant. For
this reason, it receives its first message via a connecting communication. The local view of the bank in this
protocol can be described by the following session type.

Participant Bank: S?
price
↔ ; S◦〈〈• ; C? card ; •〉〉◦S ; End

In the above session type for the bank, the first action S?
price
↔ indicates the bank is ready to receive a message

containing a price from the seller via a connecting communication. The construct S◦〈〈•, pronounced passive
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forward delegation, indicates that the bank is delegated to act as a deputy for the seller. On behalf of the seller
it receives a card number from the client, indicated by C? card . Finally, the bank returns control to the seller,
as indicated by the construct •〉〉◦S, pronounced active backward delegation.

The session type of the bank, presented above, is obtained automatically by projection from the global
type. This projection always succeeds under some mild constraints removing ambiguity and ensuring that
delegations begin and end correctly. For the other two participants — Client and Seller — we obtain the
following session types:

Participant Client:

S! title ;
S? price ;

( S! ok ;
S! card ;
S? date ; End
∨

S! ko ; End )

Participant Seller:

C? title ;
C! price ;

( C? ok ;

B!
price
↔ ;

◦〈〈•B; B•〉〉◦;
C! date ; End
∧

C? ko ; End )

In the above two types, observe that the client always thinks she is interacting with the seller. Also observe
that the seller does not perform any actions between delegating her behaviour to the bank (indicated by
◦〈〈•B, pronounced active forward delegation) and receiving it back (indicated by B•〉〉◦, pronounced passive
backward delegation).

As standard for session types, since the client decides whether to purchase or not by sending the message
ok or ko respectively, the branches for the client are composed using the union operator (∨). The union
indicates that at compile-time we do not know what decision the client will make. In contrast, we know that
the seller will react in response to the decision the client makes — by either receiving ok or ko — and hence
the branches of the seller are composed using intersection (∧).

2.1. Comparison to the approach with session interleaving
In previous work [21], a quite different approach to global types involving delegation is adopted. To

model the scenario defined above, two global types are employed. The first describes the session involving
interactions between the client and the seller. The second describes the session between the seller and the
bank, in which some actions of the seller from the former session are delegated to the bank. As discussed
in Section 1, this delegation is implemented via channel passing and it appears in the global type of the
deputy’s session as a communication labelled by a channel type. The two separate global types are presented
in Figure 2.

All communications in Figure 1 are also accounted for in Figure 2. However, there is information missing
in Figure 2, regarding how the communications in the two global types are related to each other. Moreover,
it is not clear whether the delegation in the first session is enforced, since Gcs describes a binary session that
can complete independently of Gsb.

To infer the connection between the two global types in Figure 2 it is required to know that the transmitted
type C? card ; C! date ; End is the type of the seller in Gcs after having received the message ok . This however
is still ambiguous. For example, we may wonder whether the message price is sent from the seller to the
bank before or after receiving the message ok . In order to guarantee that the bank does not get stuck once it
engages in the session, the seller must send the price after ok is received from the client. Unfortunately,
this is not provided by the types in Figure 2. In contrast, there is no such ambiguity in interpreting the global
type in Figure 1.

3. A Core Calculus Modelling Processes with Internal Delegation

We begin the formal development by introducing untyped networks of processes. Each process in a
network is a single, possibly infinite, thread that can communicate by message passing with the other
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Gcs Gsb

C
title
−−−−→ S;

S
price
−−−−→ C;

( ( C ok
−−→ S; S

price
−−−−→ B;

S
T
−→ B;

C
card
−−−−→ S; B

T′
−→ S; End

S
date
−−−−→ C )
�

C
ko
−−→ S; End

)

T = C? card ; T′ T′ = C! date ; End

Figure 2: Two global types for the client-seller-bank protocol in the channel-based approach.

processes. In session calculi, we typically have two types of choice indicating whether, at runtime, the
process makes a choice (by sending one among a possible set of messages) or reacts to a choice (by receiving
one among a possible set of messages). Beyond these standard choice constructs, our session calculus
features primitives for beginning and ending internal delegations and for connecting to a new party that
would otherwise not participate in the session.

We assume the following base sets: simple messages, ranged over by λ, λ′, . . . and forming the set Msg;

connecting messages, ranged over by λ
↔,

λ′
↔, . . . and forming the set CMsg; and session participants, ranged

over by p,q, r and forming the set Part. We use Λ to range over both messages and connecting messages.
Let π ∈ {p?Λ, p!Λ | p ∈ Part,Λ ∈ Msg ∪ CMsg} denote an I/O action, namely a simple input/output action

or an input/output action establishing a connection. An input action p?Λ whose message Λ is connecting is
called a connecting input (and similarly for output actions). The choice between using simple or connecting
inputs gives us additional freedom, as in [23, 9]. Using a simple input indicates that we expect the input
action is capable of participating in a communication; whereas connecting inputs may never be capable of
participating in a communication. For example, in the client-seller-bank protocol described in Figure 1, the
seller (which uses only simple inputs) participates in all sessions, but the bank is incapable of performing its
connecting input when the client chooses the ko branch.

In addition to exchanging messages, processes may perform delegation actions. Delegation involves two
participants: the principal, say p in what follows, and the deputy, say q. The principal p suspends execution
between two matching delegation actions ◦〈〈•q and q•〉〉◦. Dually, the deputy q acts on behalf of the principal
p in the piece of code delimited by two matching delegation actions p◦〈〈• and •〉〉◦p.

Definition 3.1 (Processes). Processes are defined by:

P ::= Σi∈Iπi; Pi | ⊕i∈I πi; Pi | p◦〈〈•; P | •〉〉◦p; P
| ◦〈〈•q; P | q•〉〉◦; P | µX.P | X | 0

External choice (
∑

) and internal choice (⊕) are assumed to be associative, commutative, and non-empty.
A process prefixed by an I/O action may be either an input process or an output process. We require recursion to
be guarded, and we assume its scope to extend as far right as possible. Processes are treated equirecursively,
i.e., they are identified with their generated tree [35] (Chapter 21). Sequential composition (;) is assumed
to have higher precedence than both choice constructs (

∑
and ⊕). We omit choice symbols in one-branch

choices, as well as trailing 0 processes.
The prefixes p◦〈〈•, •〉〉◦p, ◦〈〈•q, q•〉〉◦ are used for delegation and should be read as follows: the open/closed

parentheses mean forward/backward delegation, while the white/black circle next to the participant indicates
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whether she is the principal/deputy in the delegation (as a rule of thumb, the colour of the principal is white
since she plays first, as in a chess game).

The construct ◦〈〈•q; P is active forward delegation: it represents the behaviour of a principal who delegates
deputy q to act on her behalf, and freezes her continuation P until q returns the delegation. The construct
q•〉〉◦; P is passive backward delegation: it represents the behaviour of a principal who gets back the delegation
from the deputy q and resumes executing her continuation P. An active forward delegation followed by a
passive backward delegation in the code for some participant p, as in ◦〈〈•q; q•〉〉◦; P, indicates that p remains
inactive while her behaviour is being delegated to q (see participant Seller at page 5).

Dually, the construct p ◦〈〈•; P is passive forward delegation: it represents the behaviour of a deputy who
will execute the continuation P as if she were the principal p until the end of the delegation. The construct
•〉〉◦p; P is active backward delegation: it represents the behaviour of a deputy who returns the delegation to the
principal p and resumes executing P under her own identity. For example, if a participant q is modelled as
process r?λ1; p ◦〈〈•; r!λ2; •〉〉◦p; r?λ3, then messages λ1 and λ3 at the beginning and end are received under the
participant’s own identity q; however, for sending message λ2, the participant acts as a deputy for p. See for
example participant Bank in Section 2.

An atomic action is either an I/O action or an active/passive forward/backward delegation action.
In a full-fledged calculus, messages would carry values or data types, namely they would be of the form

Λ(v). For simplicity, we consider only pure messages.

Networks are comprised of pairs p[[ P ]] or
B
p[[ P ]] composed in parallel. The pair p[[ P ]] indicates participant

p is active and has behaviour P; while in
B
p[[ P ]] the participant p is frozen and is ready to resume P after

unfreezing.

Definition 3.2 (Networks). Networks are defined by:

N ::= p[[ P ]] |
B
p[[ P ]] | N ‖ N

The operator ‖ is associative and commutative, with neutral elements p[[ 0 ]] for each p. These laws give rise
to the structural equivalence on networks.

To keep track of whom is involved in a communication, it is convenient to record the overall behaviour
of a communication on labels whenever a sender and receiver interact. For this purpose, we define
communications, ranged over by α, to be of the form α = pΛq, where p,q ∈ Part and Λ ∈ Msg ∪ CMsg.

A communication pλq is simple, while a communication p λ
↔ q is connecting. Given a communication

α = pΛq, we define the sender and receiver of α as sender(α) = p and rec(α) = q. Moreover, we denote by
part(α) = {rec(α), sender(α)} the participants of the communication α.

We also wish to record when a principal and a deputy are engaged in a delegation. We let atomic
interactions, ranged over by φ, be defined by

φ ∈ {pΛq,p◦〈〈•q,q•〉〉◦p | p,q ∈ Part,p , q,Λ ∈ Msg ∪ CMsg}

An atomic interaction is either a communication from a participant p to a participant q, or the start of a
delegation from a principal p to a deputy q, or the end of a delegation from a deputy q to a principal p. In
the delegation interactions, the participant to the left is the one who triggers the interaction, while the white
and black colours denote respectively the principal and the deputy.

The operational semantics is given by two labelled transition systems, one for processes and one for
networks. The transitions for processes are labelled by I/O actions, while those for networks are labelled by
atomic interactions. As a convention, when we want to discuss sequences of multiple interactions, we write

N
φ1···φn
−−−−→ N

′ for the transitive closure of
φ
−→. Formally, for n ≥ 1 we let N

φ1···φn
−−−−→ N

′ if there are Ni, 0 ≤ i ≤ n,

such that N0 = N and Nn = N′ and Ni
φi+1
−−→ Ni+1 for 0 ≤ i < n.

The LTSs for processes and networks are given in Figure 3. Rules [ExtCh] and [IntCh] allow an I/O
action to be extracted from one of the summands, as usual. Rule [BDel] describes delegation start: when the
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Σi∈Iπi; Pi
π j
−→ P j j ∈ I [ExtCh] ⊕i∈Iπi; Pi

π j
−→ P j j ∈ I [IntCh]

P
q!Λ
−−→ P′ Q

p?Λ
−−→ Q′

[Com]
p[[ P ]] ‖ q[[ Q ]]

pΛq
−−−→ p[[ P′ ]] ‖ q[[ Q′ ]]

p[[ ◦〈〈•q; P ]] ‖ q[[ p ◦〈〈•; Q ]]
p◦〈〈•q
−−−−→

B
p[[ P ]] ‖ p[[ Q ]] [BDel]

B
p[[ q •〉〉◦; P ]] ‖ p[[ •〉〉◦p; Q ]]

q•〉〉◦p
−−−−→ p[[ P ]] ‖ q[[ Q ]] [EDel]

N
φ
−→ N

′

[Ct]
N ‖ N

′′
φ
−→ N

′
‖ N

′′

Figure 3: LTS for processes and networks.

delegation from p to q begins, p becomes frozen and q becomes p. Rule [EDel] describes delegation end:
when the delegation from p to q ends, the active p becomes q again and the frozen p becomes active. Notice
that the deputy “forgets” her identity when acting on behalf of the principal; her identity is only remembered
by the principal. Hence it is crucial that the principal does not perform any other delegation while being
personified by the deputy: otherwise the principal could mix up the identities of her different deputies, who
would then resume executing with the wrong continuation (see Example 4.3 in Section 4). Our type system
will make sure that this does not happen. Rule [Ct] is the standard contextual rule for networks.

4. Global Types and Session Types

The untyped networks in the previous section offer few guarantees regarding their behaviours. It is
trivial to construct networks where progress is not guaranteed, or which exhibit wild delegation behaviours,
where we lose track of which participants are the principals and which are the deputies. In this section we
present such examples.

Example 4.1 (Deadlock due to delegation to another principal’s deputy). The use of nested delegations may
lead to deadlock, at least when they are not well nested. Consider the following protocol, described using the same
notation as in Figure 1:

p◦〈〈•q; r◦〈〈•p; r
λ1
−→ s; q•〉〉◦p; r

λ2
−→ s; p•〉〉◦r; End

Note that the delegation from r to p is actually a delegation from r to q acting as p, namely it is a delegation to someone
else’s deputy. Note also that the two delegations are not well nested (the corresponding blocks are not contained one in
the other), since the first delegation is closed before the second.

Any network implementing this protocol will get stuck when trying to close the delegation from r to p, as shown by
the following maximal computation:

p[[ ◦〈〈•q; q•〉〉◦; s!λ2; •〉〉◦r ]] ‖ q[[ p◦〈〈•; r◦〈〈•; s!λ1; •〉〉◦p ]] ‖ r[[ ◦〈〈•p; p•〉〉◦ ]] ‖ s[[ r?λ1; r?λ2 ]]
p◦〈〈•q
−−−−−→

B
p[[ q•〉〉◦; s!λ2; •〉〉◦r ]] ‖ p[[ r◦〈〈•; s!λ1; •〉〉◦p ]] ‖ r[[ ◦〈〈•p; p•〉〉◦ ]] ‖ s[[ r?λ1; r?λ2 ]]

r◦〈〈•p
−−−−→

B
p[[ q•〉〉◦; s!λ2; •〉〉◦r ]] ‖ r[[ s!λ1; •〉〉◦p ]] ‖

B
r [[ p•〉〉◦ ]] ‖ s[[ r?λ1; r?λ2 ]]

rλ1s
−−−→

B
p[[ q•〉〉◦; s!λ2; •〉〉◦r ]] ‖ r[[ •〉〉◦p ]] ‖

B
r [[ p•〉〉◦ ]] ‖ s[[ r?λ2 ]]

The last network is stuck because the code of the deputy r does not start with •〉〉◦r and hence it is not of the required
form for Rule [EDel] to be applied.
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The deadlock of Example 4.1 could be avoided by requiring delegations to be well nested.

Example 4.2 (Variant of Example 4.1 with well nested delegation). Consider now a variant of the protocol of
Example 4.1 where the two backward delegations are swapped:

p◦〈〈•q; r◦〈〈•p; r
λ1
−→ s; p•〉〉◦r; r

λ2
−→ s; q•〉〉◦p; End

In a network implementing the protocol, the two backward delegations will be similarly swapped in the code of
participant q. Moreover, the backward delegation to r is now in participant q rather than in participant p. This network
has the transition sequence:

p[[ ◦〈〈•q; q•〉〉◦ ]] ‖ q[[ p◦〈〈•; r◦〈〈•; s!λ1; •〉〉◦r; •〉〉◦p ]] ‖ r[[ ◦〈〈•p; p•〉〉◦; s!λ2 ]] ‖ s[[ r?λ1; r?λ2 ]]
p◦〈〈•q
−−−−−→

B
p[[ q•〉〉◦ ]] ‖ p[[ r◦〈〈•; s!λ1; •〉〉◦r; •〉〉◦p ]] ‖ r[[ ◦〈〈•p; p•〉〉◦; s!λ2 ]] ‖ s[[ r?λ1; r?λ2 ]]

r◦〈〈•p
−−−−→

B
p[[ q•〉〉◦ ]] ‖ r[[ s!λ1; •〉〉◦r; •〉〉◦p ]] ‖

B
r [[ p•〉〉◦; s!λ2 ]] ‖ s[[ r?λ1; r?λ2 ]]

rλ1s
−−−→

B
p[[ q•〉〉◦ ]] ‖ r[[ •〉〉◦r; •〉〉◦p ]] ‖

B
r [[ p•〉〉◦; s!λ2 ]] ‖ s[[ r?λ2 ]]

p•〉〉◦r
−−−−→

B
p[[ q•〉〉◦ ]] ‖ p[[ •〉〉◦p ]] ‖ r[[ s!λ2 ]] ‖ s[[ r?λ2 ]]

rλ2s
−−−→

B
p[[ q•〉〉◦ ]] ‖ p[[ •〉〉◦p ]] ‖ r[[ 0 ]] ‖ s[[ 0 ]]

q•〉〉◦p
−−−−−→

p[[ 0 ]] ‖ q[[ 0 ]] ‖ r[[ 0 ]] ‖ s[[ 0 ]]

In this case, delegation is well nested, hence the nested delegations are closed in the right order and the
session terminates successfully.

However, well-nestedness does not suffice to prevent deadlock in case of a chain of delegations originating
from the same principal.

Example 4.3 (Deadlock due to delegation from a deputy). Consider now a protocol where a principal p dele-
gates to a participant q who in turn delegates to a participant r (while acting on behalf of p):

p◦〈〈•q; p◦〈〈•r; p λ
−→ s; r•〉〉◦p; q•〉〉◦p; End

A network implementing this protocol is truly nondeterministic: it has two possible non-confluent maximal computations,
one of which leads to deadlock, while the other one terminates successfully. The deadlocked computation is the following:

p[[ ◦〈〈•q; q•〉〉◦ ]] ‖ q[[ p◦〈〈•; ◦〈〈•r; r•〉〉◦; •〉〉◦p ]] ‖ r[[ p◦〈〈•; s!λ; •〉〉◦p ]] ‖ s[[ p?λ ]]
p◦〈〈•q
−−−−−→

B
p[[ q•〉〉◦ ]] ‖ p[[ ◦〈〈•r; r•〉〉◦; •〉〉◦p ]] ‖ r[[ p◦〈〈•; s!λ; •〉〉◦p ]] ‖ s[[ p?λ ]]

p◦〈〈•r
−−−−→

B
p[[ q•〉〉◦ ]] ‖

B
p[[ r•〉〉◦; •〉〉◦p ]] ‖ p[[ s!λ; •〉〉◦p ]] ‖ s[[ p?λ ]]

p
λ
−→s
−−−→

B
p[[ q•〉〉◦ ]] ‖

B
p[[ r•〉〉◦; •〉〉◦p ]] ‖ p[[ •〉〉◦p ]] ‖ s[[ 0 ]]

q•〉〉◦p
−−−−−→

p[[ 0 ]] ‖
B
p[[ r•〉〉◦; •〉〉◦p ]] ‖ q[[ 0 ]] ‖ s[[ 0 ]]

The last network is stuck, although delegation is well nested in this case. The problem arises from the fact that the

second forward delegation creates a second avatar of
B
p[[ P ]] in the network, and this introduces an ambiguity for

backward delegation. In the above computation, the backward delegation swaps the identities of q and r, assigning the
wrong continuation to q. In this way, the second delegation from p to r cannot be closed anymore, since the code of p
does not have the right form. So this network is deadlocked.

If instead we had closed first the delegation r•〉〉◦p, the computation from the fourth line would have been:

B
p[[ q•〉〉◦ ]] ‖

B
p[[ r•〉〉◦; •〉〉◦p ]] ‖ p[[ •〉〉◦p ]] ‖ s[[ 0 ]]

r•〉〉◦p
−−−−→

B
p[[ q•〉〉◦ ]] ‖ p[[ •〉〉◦p ]] ‖ r[[ 0 ]] ‖ s[[ 0 ]]

q•〉〉◦p
−−−−−→

p[[ 0 ]] ‖ q[[ 0 ]] ‖ r[[ 0 ]] ‖ s[[ 0 ]]
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leading to a successful termination. Note that we could get around the ambiguity problem by numbering the different

avatars of
B
p[[ P ]] according to their order of creation, but this would make our calculus considerably more complex.

Even in situations where deadlock is avoided, it can be desirable to enforce the guarantee that a principal
knows what her deputy will do, e.g., she should not make choices on behalf of the principal. Such problems
with deadlock can be avoided and trust assumptions enforced by the types in this section, which constrain
networks.

4.1. Unambiguous global types and session pre-types
A multiparty session is a series of atomic interactions among participants [21, 22], which follows a

predefined protocol specified by a global type. Global types are built from choices among communications
with the same sender (the choice leader) and from forward/backward delegations, possibly using recursion.
We write αp when sender(α) = p: this is useful to denote the choice leader in global types.

Definition 4.4 (Global types). Global types G are defined by:

G ::= �i∈I α
p
i ; Gi | p◦〈〈•q; G | q•〉〉◦p; G | µt.G | t | End

Sequential composition (;) has higher precedence than choice (�). Recursion must be guarded and it is treated
equi-recursively.

In the figures of Section 2, as well as in the examples given earlier in this section, we used a more verbose

syntax for global types, rendering pΛq as p Λ
−→ q, as this seemed easier to understand in an informal

description of the protocol.
Note that our syntax for global types is more liberal than that typically used in the literature, since we

permit global choices among communications with distinct receiving participants.
To avoid non-determinism, we require all atomic communications in choices to be different, a condition

formalised by the following definition.

Definition 4.5 (Non-ambiguous global type). A choice �i∈I α
p
i ; Gi is ambiguous if αp

h = αp
k for some h, k ∈ I. A

global type is non-ambiguous if it does not contain ambiguous choices.

In standard global types [22], where choices are among communications with the same receiver,
non-ambiguity amounts to requiring that all labels be distinct.

Session types (also called local types, as opposed to global types) describe conversations from the viewpoint
of session participants. They are used to type the processes implementing session participants [22]. We start
by defining session pre-types, which are a superset of session types. Session types will be session pre-types
which are projections of non-ambiguous global types. Session pre-types are obtained from the syntax of
processes by replacing external and internal choices with intersections and unions, X with t and 0 with End,
with similar conventions.

Definition 4.6 (Session pre-types). Session pre-types are defined by:

T ::=
∧

i∈I πi; Ti |
∨

i∈I πi; Ti | p◦〈〈•; T | •〉〉◦p; T
| ◦〈〈•q; T | q•〉〉◦; T | µt.T | t | End

As with global types and processes, session type recursion must be guarded and treated equi-recursively.
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part(�i∈I αi; Gi) =
⋃

i∈I(part(αi) ∪ part(Gi))
part(p◦〈〈•q; G) = part(q•〉〉◦p; G) = part(G) ∪ {p,q}
part(µt.G) = part(G)
part(t) = part(End) = ∅

Figure 4: Participants of global types.

4.2. Projection of a global type onto participants
Session types are defined as projections of unambiguous global types onto their participants (when such a

projection is well defined), where the set of participants of G, denoted part(G), is defined in Figure 4. Each
session type represents the contribution of an individual participant to the session. The projection of a choice
yields a union for the choice leader and intersections for all other participants.

The projection of global types is defined in terms of two projection operators, the direct projection “� ”,
which projects a global type on participants when no delegation is underway, and the delegation projection
“�i” with i = 1, 2, which projects a global type after a delegation has started. The latter is parameterised by a
pair of participants: the pair identifies the principal and the deputy of the delegation, while the subscript 1
or 2 identifies the participant on which the projection is performed. The delegation projection can only be
performed on the two participants involved in the delegation. Both projection operators are partial and they
have higher precedence than “ ; ”.

Projection employs a partial operator
�

, ensuring that, in a projection from a global choice, the choice
leader makes the decision and all the other participants act accordingly. This is achieved by requiring
that, for any participant except for the choice leader, the set of projections of the choice branches on that
participant, say {Ti | i ∈ I}, be consistent in the sense that the following partial operator, the meet of a set of types�

i∈I Ti, is defined.

Definition 4.7 (Non-ambiguous input intersection). An intersection of inputs
∧

i∈I pi?Λi; Ti is non-ambiguous
if its initial inputs are either all simple inputs or all connecting inputs, and moreover all such inputs are distinct,
namely h, k ∈ I and h , k imply either ph , pk or Λh , Λk.

Definition 4.8 (Meet of types). To define the meet of intersection types, we firstly define the meet between a non-
ambiguous input intersection and an input type or an End type, as well as the meet between two End types:

1. (
∧

i∈I pi?Λi; Ti)
�

p?Λ; T =
∧

i∈I pi?Λi; Ti ∧ p?Λ; T
if the resulting intersection is not ambiguous

2. (
∧

i∈I pi?Λi; Ti)
�

p?Λ; T =
∧

i∈I pi?Λi; Ti
if p = p j and Λ = Λ j and T = T j for some j ∈ I

3. (
∧

i∈I pi?
λi
↔; Ti)

�
End =

∧
i∈I pi?

λi
↔; Ti

4. End
�

End = End

To define the meet of two intersection types, we simply iterate the above definition on the members of one of the
intersections. Thereby, meet can be extended to a set of types.

The above meet
�

i∈I Ti checks that the Ti’s are consistent behaviours and then combines them into a single
session type. Intuitively,

�
i∈I Ti is defined if the concerned participant receives a message that “notifies” her

about the chosen Ti. If one of the Ti’s is an intersection of simple inputs, then so must be all the other Ti’s.
Intersections of connecting inputs are also allowed to be combined with End. In this way, branches of a
choice where a participant never acts can be merged with branches in which the participant performs a
connecting input.

Note that we do not need to define the meet when the arguments are recursive types, since we consider
recursion equi-recursively; hence we can unfold a recursion one step in order to expose actions guarded by
the recursion. In other cases, meet is not defined, i.e., when unions or delegations are involved.
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( pΛq; G )� r =


q!Λ; G�p if r = p
p?Λ; G�q if r = q
G� r if r < {p,q}

( �i∈I α
p
i ; Gi )� r =


∨

i∈I ( αp
i ; Gi )� r if r = p�

i∈I( α
p
i ; Gi )� r otherwise

where |I| > 1

(µt.G)� r =


G� r if t does not occur in G
µt.G� r if r ∈ part(G)
End otherwise

t� r = t End� r = End

(p◦〈〈•q; G)� r =


◦〈〈•q; G�1(p,q) if r = p
p◦〈〈•; G�2(p,q) if r = q
G� r otherwise

(q•〉〉◦p; G)� r = G� r if r < {p,q}

Figure 5: Direct projection of global types onto participants.

In the literature there are many definitions of the meet operator [22, 12, 8]. For example, in [12, 8] Clause
2 of Definition 4.8 is replaced by:

(
∧

i∈I pi?Λi; Ti)
�

p?Λ; T =
∧

i∈I\{ j} pi?Λi; Ti ∧ p?Λ; (T j
�

T)
if p = p j and Λ = Λ j and T j

�
T is defined for some j ∈ I

Our definition of meet is a trade-off between expressiveness and simplicity. We believe that intra-session
delegation could be easily adapted to other definitions of meet.

The direct projection, given in Figure 5, where |I| denotes the cardinality of I, can be defined for all
kinds of global types. The projection of a choice (with more than one branch) is a union of outputs for
the choice leader, and it is otherwise computed as the meet of the projections of the branches. From the
definition of meet we can see that the branches of a choice can differ for the presence of participants whose
first communication is a connecting input.

The projection of a forward delegation from principal p to deputy q is an active forward delegation on p
and a passive forward delegation on q, followed in both cases by the delegation projection of the remaining
global type until the corresponding backward delegation is reached (the forward delegation is where the
direct projection turns into the delegation projection). In the case that the projected participant is neither the
principal nor the deputy, the forward delegation is ignored. Similarly, the backward delegation from deputy
q to principal p is ignored when projected on participants different from p and q. Notice that the direct
projection of backward delegation is not defined for p and q, since this case is handled by the delegation
projection.

The delegation projection, given in Figure 6, comes into play when a delegation is encountered. It is
not defined for (proper) choices, nor for End, µt.G and t. Therefore, the portion of computation between a
forward delegation from p to q and a backward delegation from q to p must consist of a sequence of atomic
interactions. Moreover, these interactions should not involve q, since q is supposed to perform exclusively
p′s actions in this portion of computation. Furthermore, in the scope of her delegation the principal p
should only be involved in communications, and not in further delegations. As hinted above, the delegation
projections G�1(p,q) and G�2(p,q) represent the projections of G on p and on q respectively, within the
scope of a delegation from p to q.

The first two clauses of Figure 6 concern the delegation projection of communications. A communication
involving the principal p (and not involving the deputy q, as just argued) projects to no action for the
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( rΛs; G )�1(p,q) = G�1(p,q) if r , q and s , q

( rΛs; G )�2(p,q) =


s!Λ; G�2(p,q) if r = p and s , q
r?Λ; G�2(p,q) if s = p and r , q
G�2(p,q) if {r, s} ∩ {p,q} = ∅

(q•〉〉◦p; G)�1(p,q) = q•〉〉◦; G�p (q•〉〉◦p; G)�2(p,q) = •〉〉◦p; G�q

(r◦〈〈•s; G)�i (p,q) = (r•〉〉◦s; G)�i (p,q) = G�i (p,q) i = 1, 2 if {r, s} ∩ {p,q} = ∅

Figure 6: Delegation projection of global types onto participants.

principal p and to an I/O action for the deputy q. A communication not involving the principal p nor
the deputy q projects to no action for either p or q. The clauses on the third line in Figure 6 define the
projection of backward delegation on one of the two involved participants. Notice that, as soon as the
delegation ends, one gets back to the direct projection. The last line says that the projections on p and q
ignore any forward/backward delegation between other participants. Notice that (r◦〈〈•s; G) �i (p,q) and
(r•〉〉◦s; G)�i (p, q) are undefined for i = 1, 2 when {r, s} ∩ {p, q} , ∅, since we want to forbid a participant to be
involved in more than one delegation at a time.

Example 4.9. Let us see our notion of projection at work on a few examples.

1. Let G = pλ1q � p
λ2
↔ q. Then G�q is not defined, since the intersection p?λ1 ∧ p?

λ2
↔ between a simple and a

connecting input is ambiguous.

2. Let G = µt.(pλ1q; t � pλ2q) and G′ = pλ1q; G � pλ2q. Then G � q = µt.(p?λ1; t ∧ p?λ2) and G′ � q =
p?λ1; G�q ∧ p?λ2. Notice that G′ is the unfolding of G.

3. Let G = µt.pλq; t and G′ = µt.pλq; pλq; t. Then G�q = µt.p?λ; t and G′ �q = µt.p?λ; p?λ; t. Notice that G
and G′ generate the same tree.

4. Let G = p◦〈〈•q; pλ1r; sλ2p; q•〉〉◦p; qλ3p. Then

• G�q = p◦〈〈•; r!λ1; s?λ2; •〉〉◦p; p!λ3, where q communicates with r, s as deputy of p,

• G�p = ◦〈〈•q; q•〉〉◦; q?λ3, where p is inactive during delegation,

• G� r = p?λ1 and G�s = p!λ2, where r and s believe they are communicating with p.

The soundness of the direct projection requires that global types generating the same tree are projected into
session types generating the same tree. Notice that the syntactic differences between global types generating
the same tree can be:

• fold/unfold of recursion, like in Example 4.9(2);

• different occurrences of µ bindings and bound variables, like in Example 4.9(3).

The projection of global types with the same tree yields session types with the same tree, since it preserves
the occurrences of µ bindings and bound variables. The formal proof is given in Appendix Appendix A.

Definition 4.10 (Projectable global type). A global type G is projectable if for all r ∈ part(G) either the direct
projection G� r is defined, or there exists s ∈ part(G) such that either G�1(r, s) or G�2(s, r) is defined.

In the following we will consider only non-ambiguous and projectable global types. Projectability assures the
property of well-delegation, defined as follows.
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Definition 4.11 (Well-delegated global type). A global type is well delegated if:

1. each occurrence of p◦〈〈•q is followed by an occurrence of q•〉〉◦p;

2. no atomic interaction involving q occurs between p◦〈〈•q and q•〉〉◦p;

3. no choice occurs between p◦〈〈•q and q•〉〉◦p;

4. no delegation involving p occurs between p◦〈〈•q and q•〉〉◦p.

Let us briefly comment on the above definition. Condition 1 simply requires that every forward delegation
be matched by the corresponding backward delegation. Conditions 2–4 impose some restrictions on the
behaviour that can be delegated: while it should be clear why this behaviour should not involve the deputy
q (Condition 2), the fact that the principal p should not be involved in further delegations while being
personificated by q, whether actively or passively (Condition 4), is required for deadlock-freedom, as shown
by Example 4.1 and Example 4.3. Finally, the absence of choices in the delegated behaviour (Condition 3)
simplifies the technical treatment and may be justified by the intention of the principal to retain some control
on the deputy.

Lemma 4.12. Each projectable global type is well delegated.

Proof Let G be a projectable global type. We show that G satisfies conditions 1 ÷ 4 of well-delegation. Let
G′ follow an open delegation p◦〈〈•q in G, i.e., p◦〈〈•q; G′ is a subtype of G.

(1). By definition of delegation projection, End�i (p,q) and t�i (p,q) are undefined with i = 1, 2. Note
that the rightmost operands of a sequential composition can only be t and End. If the delegation projections
G′ �i (p, q) with i = 1, 2 are defined, then before reaching the rightmost operands of sequential compositions
in G′ we have to find a backward delegation q•〉〉◦p so that we go back to the direct projections on p and q,
which are defined for End and t.

(2). Since the delegation projections�i (p, q) with i = 1, 2 are not defined for atomic interactions involving
q (see side conditions of the clauses in Figure 6), atomic interactions involving q in G′ cannot be before the
backward delegation q•〉〉◦p.

(3). Delegation projections�i (p, q) with i = 1, 2 are not defined for choices. So, as for the previous cases, a
(non trivial) choice in G′ cannot be before the backward delegation q•〉〉◦p.

(4). We conclude as in the previous cases, noticing that the delegation projections�i (p, q) with i = 1, 2 are
not defined for p or q (see last line of Figure 6).

Notice that well-delegation only concerns delegation projection, so it does not assure projectability as shown
by Example 4.9(1). Projectability does not assure non-ambiguity, since for example pΛq � pΛq is ambiguous
and projectable.

We end this section by defining session types.

Definition 4.13 (Session types). A session pre-type T is a session type if T = G � p or T = G �1 (p,q) or
T = G�2(p,q) for some non-ambiguous and projectable global type G and some participants p,q ∈ part(G).

When typing networks we consider only non-ambiguous and projectable global types.

5. Guaranteeing Progress for Networks with Internal Delegation

In this section, we define our type system and state the main strong progress result that the type system
guarantees. As usual, we assume an environment Γ that associates process variables with session types:
Γ ::= ∅ | Γ,X : T. Typing judgements assign session types to processes and global types to networks,
respectively. Then they have the form Γ ` P : T and ` N : G. The empty environment in the typing of
networks assures that all processes are closed.
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[Sub-In]
∀i ∈ I : Ti ≤ T′i∧

i∈I∪I′ πi; Ti ≤
∧

i∈I πi; T′i

==============================

[Sub-Out]
∀i ∈ I : Ti ≤ T′i∨

i∈I πi; Ti ≤
∨

i∈I∪I′ πi; T′i

==============================

[Sub-In-Skip]∧
i∈I pi?

λi
↔; Ti ≤ End

[Sub-Del]
T ≤ T′

δ; T ≤ δ; T′
=============

[Sub-Skip]
End ≤ End

Figure 7: Subtyping rules.

In order to define our type system, we require the subtyping rules in Figure 7, where the double line
indicates that the rules are interpreted coinductively [35] (Chapter 21). Subtyping takes into account the rules
for intersection and union. Rule [Sub-In-Skip] reflects the fact that unused connecting inputs can be present
in the processes without causing problems. In rule [Sub-Del], we denote by δ a delegation action.

Process typing exploits the correspondence between external choices and intersections, internal choices
and unions. The typing rules for processes and networks are given in Figure 8. Since πh , πk with h, k ∈ I for
intersections/unions in session types, this is true also for choices in processes. The typing rules for external
choice and internal choice, together with the subtyping rules for intersections and unions, assure that choice
leaders can freely select both receivers and messages.

Rule [t-Net] is the only rule for typing networks: it requires that the types of all processes be subtypes of
the projections of a unique global type. The condition part(G) ⊆ {pi | i ∈ I} ∪ {qi | i ∈ I} ∪ {r j | j ∈ J} ensures all
participants of G appear in the network. Note that this condition permits additional participants that do not
appear in the global type, allowing the typing of sessions containing p[[ 0 ]] for fresh p, which may appear
when a participant has already completed her actions in a session. This property is required to guarantee
invariance of types under structural equivalence of networks. Furthermore, we require all participants in
the network to be distinct, to avoid multiple processes assuming the same role in a network (this is essential
for linearity of sessions). The rule [t-Net] assures that:

• the principals partaking in a delegation (i.e. the participants pi with i ∈ I) are frozen and their first
interaction is the end of the delegation;

• the deputies partaking in a delegation (i.e. the participants qi with i ∈ I) have the behaviours required
by the global type for the corresponding principals (recall that, in the labelled transition system, the
deputy takes on the name of the principal);

• all other participants (i.e. the participants r j with j ∈ J) follow the prescription of the global type.

Notably, in the conclusion of rule [t-Net] the deputies’ original names do not appear, but they must appear
in the initial backward delegation action of the corresponding frozen principals. This is assured by the
condition ` Pi : qi•〉〉◦; Ti, where Pi is the process of the frozen principal pi with deputy qi for i ∈ I.

Example 5.1. The following are examples of typed networks with different delegation patterns. The first does not
require connecting inputs but the third does. The only difference between these examples is to whom a message is sent
during the delegated part of the session. Recall that sequential composition has precedence over choices.

1. Global type G = pλ1q; p◦〈〈•q; pλ2r; q•〉〉◦p�pλ1r; p◦〈〈•r; pλ2q; r•〉〉◦p can be used to type the following network.

p[[ q!λ1; ◦〈〈•q; q•〉〉◦ ⊕ r!λ1; ◦〈〈•r; r•〉〉◦ ]]
‖ q[[ p?λ1; p◦〈〈•; r!λ2; •〉〉◦p + p?λ2 ]]
‖ r[[ p?λ1; p◦〈〈•; q!λ2; •〉〉◦p + p?λ2 ]]

Notice in the above network, one of the branches of each participant will trigger in every execution.
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Γ ` Pi : Ti (i ∈ I)
[t-ExtCh]

Γ ` Σi∈Iπi; Pi :
∧

i∈I πi; Ti

Γ ` Pi : Ti (i ∈ I)
[t-IntCh]

Γ ` ⊕i∈Iπi; Pi :
∨

i∈I πi; Ti

Γ,X : t ` X : t [t-Var]
Γ,X : t ` P : T

[t-Rec]
Γ ` µX.P : µt.T

Γ ` P : T
[t-Del]

Γ ` δ; P : δ; T
Γ ` 0 : End [t-0]

` Pi : qi•〉〉◦; Ti qi•〉〉◦; Ti ≤ G�1(pi,qi) (i ∈ I)
` Qi : Si Si ≤ G�2(pi,qi) (i ∈ I)
` R j : U j U j ≤ G� r j ( j ∈ J)

part(G) ⊆ {pi | i ∈ I} ∪ {qi | i ∈ I} ∪ {r j | j ∈ J} all participants distinct
[t-Net]

` Πi∈I
B
pi[[ Pi ]] ‖ Πi∈I pi[[ Qi ]] ‖ Π j∈J r j[[ R j ]] : G

Figure 8: Typing rules for processes and networks.

2. The type G in the example above can be used to type also the above network modified such that participant p has
process P = q!λ1; ◦〈〈•q; q•〉〉◦ since ` P : T, where T = q!λ1; ◦〈〈•q; q•〉〉◦ ≤ q!λ1; ◦〈〈•q; q•〉〉◦∨ r!λ1; ◦〈〈•r; r•〉〉◦ =
G�p .

3. In contrast to the above, connecting inputs are necessary for the existence of a network with type G = p
λ1
↔

q; p◦〈〈•q; pλ2s; q•〉〉◦p � p
λ1
↔ r; p◦〈〈•r; pλ2s; r•〉〉◦p. Observe the use of connecting inputs, which allows one of

the roles q or r to hang forever, without causing deadlock. Thus the following network is typable.

p[[ q!
λ1
↔; ◦〈〈•q; q•〉〉◦ ⊕ r!

λ1
↔; ◦〈〈•r; r•〉〉◦ ]] ‖ q[[ p?

λ1
↔; p◦〈〈•; s!λ2; •〉〉◦p ]]

‖ r[[ p?
λ1
↔; p◦〈〈•; s!λ2; •〉〉◦p ]] ‖ s[[ p?λ2 ]]

When typing the above observe G�q = p?
λ1
↔; p◦〈〈•s!λ2; •〉〉◦p

�
End, which, by Definition 4.8 Clause 3, is

p?
λ1
↔; p◦〈〈•s!λ2; •〉〉◦p.

4. A principal may delegate to a deputy infinitely often, as long as each delegation is opened and closed within a
different unfolding of a recursion. For example G = µt.p◦〈〈•q; rλp; q•〉〉◦p; t is a type for the following network.

p[[µX.◦〈〈•q; q•〉〉◦; X ]] ‖ q[[µY.p◦〈〈•; r?λ; •〉〉◦p; Y ]] ‖ r[[µZ.p!λ; Z ]]

5.1. Main result: progress
We are now in a position to state the main result of the paper. Well-typed networks are guaranteed to

satisfy a strong notion of progress, where there are no stuck actions — inputs, outputs, or delegations —
except when an input is connecting. Specifically we have the following:

• Every participant offering a choice of outputs may be able to choose to perform any of those outputs;

• Every participant offering a choice of simple inputs may be asked to perform one of those inputs;

• Every principal may find the deputy and get back the delegation;

• Every deputy may find the principal and return back the delegation.

The progress theorem can be stated as follows.

Theorem 5.2 (Progress). The following hold for well-typed networks N:
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1. If N = p[[⊕i∈Iqi!Λi; Pi ]] ‖ N0, then N
−→
φ pΛiqi
−−−−−→ N

′ for some
−→
φ and for all i ∈ I.

2. If N = p[[ Σi∈Iqi?λi; Pi ]] ‖ N0, then N
−→
φ qiλip
−−−−−→ N

′ for some
−→
φ and for some i ∈ I.

3. If N = p[[ ◦〈〈•q; P ]] ‖ N0, then N
−→
φ p◦〈〈•q

−→
φ′ q•〉〉◦p

−−−−−−−−−−−→ N
′ for some

−→
φ and

−→
φ′.

4. If N = q[[ p◦〈〈•; Q ]] ‖ N0, then N
−→
φ p◦〈〈•q

−→
φ′ q•〉〉◦p

−−−−−−−−−−−→ N
′ for some

−→
φ and

−→
φ′.

Notice that, in the above theorem, the labels are sequences of atomic interactions, each of which results either
from a pair of matching I/O actions, or from a pair of matching delegation actions. The first two clauses
in the theorem above state that any participant in a typed network with a choice of actions available may
perform one of those actions as a communication with the corresponding party. Notice that in the internal
choice of outputs in Clause 1 above, the choice leader can freely choose any of its branches; as formalised by
the universal quantification over branches. In contrast, in the external choice of inputs in Clause 2 above, the
receiver responds to the decision made by the choice leader, hence cannot freely choose which branch is
taken; as formalised by the existential quantification over branches. Observe that these guarantees, which
distinguish internal and external choice, are enforced by the type system, rather than by the operational
rules for external and internal choice.

Clause 3 of the progress theorem above states that, if a principal in a typed network is ready to send a
forward delegation, then the forward delegation may happen and subsequently the corresponding backward
delegation may also happen. Similarly, Clause 4 states that, if a deputy in a typed network is ready to
receive a forward delegation, then the forward delegation may happen and subsequently the corresponding
backward delegation may also happen.

Observe that the analogous of Clause 2 does not hold for connecting inputs, since there are well-typed

networks N = p[[ Σi∈Iqi?
λi
↔; Pi ]] ‖ N0 such that N

−→
φ
−→ N

′ implies N′ = p[[ Σi∈Iqi?
λi
↔; Pi ]] ‖ N′0. Indeed, if no qi

for i ∈ I sends messages to p in N, then N has the same global type as p[[ 0 ]] ‖ N0 using the subtyping rule

[Sub-In-Skip]. Take for example the network of Example 5.1.3. After the connecting communication p
λ1
↔ q

we would have

p[[ ◦〈〈•q; q•〉〉◦ ]] ‖ q[[ p◦〈〈•; s!λ2; •〉〉◦p ]] ‖ r[[ p?
λ1
↔; p◦〈〈•; s!λ2; •〉〉◦p ]] ‖ s[[ p?λ2 ]]

where neither p nor her deputy q can send the message
λ1
↔ to r.

The notion of progress established in Theorem 5.2 is closely related to the formulation of lock freedom
in [34], which does not rely on additional fairness assumptions. To get a stronger progress property in
which the communications/delegations must happen rather than may happen, we would require additional
assumptions. For example the network

N = p[[ q!Λ ]] ‖ q[[ p?Λ ]] ‖ r[[µX.s!Λ′; X ]] ‖ s[[µY.r?Λ′; Y ]]

typed by the global type pΛq;µt.rΛ′s; t has the infinite computation

N
rΛ′s
−−−→ N

rΛ′s
−−−→ N

rΛ′s
−−−→ · · ·

in which p and q never communicate. In contrast, if we assume fairness of interactions in networks, then p
and q must communicate in all infinite computations.

The next section provides the key lemmas for establishing Theorem 5.2.

6. Technical Results Required to Establish Progress

We present intermediate results required to establish progress. We employ lemmas for inferring the
structure of a type from the structure of a well-typed network (Lemma 6.1), for inferring the structure of a
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network from its type (Lemma 6.2), and the structure of a network from labelled transitions (Lemma 6.3). Such
lemmas are employed to discover the forms in each case of the key theorems subject reduction (Theorem 6.6)
and session fidelity (Theorem 6.7).

As usual, subject reduction ensures that a well-typed network always reduces to a well-typed network.
The novel cases in this work are those that involve interactions where at least one participant is a deputy
acting on behalf of a principal, in which case Lemma 6.4 ensures the form of types reflects the restrictions on
what actions a deputy can perform. Session fidelity refines subject reduction, by allowing us to be more
precise about the form of the global types before and after a specific atomic interaction. The proof of progress
employs session fidelity. A novelty of the proof of progress is that, in the case of simple inputs, we must
check that the receiving participant appears on every control flow path and the first action encountered
for that participant is a simple input (Lemma 6.8). Note this subtlety arises due to the style of definition of
session projection using the meet operator for combining consistent inputs (Definition 4.8).

6.1. Standard technical lemmas about the type system
We start by proving the classical lemmas for inversion and canonical forms.

Lemma 6.1 (Inversion Lemma). The following hold:

1. If Γ ` Σi∈Iπi; Pi : T, then T =
∧

i∈I πi; Ti and Γ ` Pi : Ti for i ∈ I.

2. If Γ ` ⊕i∈Iπi; Pi : T, then T =
∨

i∈I πi; Ti and Γ ` Pi : Ti for i ∈ I.

3. If Γ ` δ; P : T, then T = δ; T′ and Γ ` P : T′.

4. If Γ ` µX.P : T, then T = µt.T′ and Γ,X : t ` P : T′.

5. If Γ ` X : T, then T = t and Γ = Γ′,X : t.

6. If Γ ` 0 : T, then T = End.

7. If ` Πi∈I
B
pi[[ Pi ]] ‖ Πi∈I pi[[ Qi ]] ‖ Π j∈J r j[[ R j ]] : G, then

part(G) ⊆ {pi | i ∈ I} ∪ {qi | i ∈ I} ∪ {r j | j ∈ J} and

(a) ` Pi : qi•〉〉◦; Ti where qi•〉〉◦; Ti ≤ G�1(pi,qi) for i ∈ I;

(b) ` Qi : Si where Si ≤ G�2(pi,qi) for i ∈ I;

(c) ` R j : U j where U j ≤ G� r j for j ∈ J.

Lemma 6.2 (Canonical Form Lemma). The following hold:

1. If Γ ` P :
∧

i∈I πi; Ti then P = Σi∈Iπi; Pi with Γ ` Pi : Ti for i ∈ I.

2. If Γ ` P :
∨

i∈I πi; Ti then P = ⊕i∈Iπi; Pi with Γ ` Pi : Ti for i ∈ I.

3. If Γ ` P : δ; T then P = δ; Q with Γ ` Q : T .

4. If Γ ` P : µt.T, then P = µX.Q and Γ,X : t ` Q : T.

5. If Γ ` P : t, then P = X and Γ = Γ′,X : t.

6. If Γ ` P : End, then P = 0.

7. If ` N : G and part(G) = {pi | i ∈ I} ∪ {qi | i ∈ I} ∪ {r j | j ∈ J} and G�1(pi, qi) , G�2(pi, qi) , G� r j are defined for
i ∈ I and j ∈ J, then

N = Πi∈I
B
pi[[ Pi ]] ‖ Πi∈I pi[[ Qi ]] ‖ Π j∈J r j[[ R j ]] and
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(a) ` Pi : qi•〉〉◦; Ti where qi•〉〉◦; Ti ≤ G�1(pi,qi) for i ∈ I;
(b) ` Qi : Si where Si ≤ G�2(pi,qi) for i ∈ I;
(c) ` R j : U j where U j ≤ G� r j for j ∈ J.

The following lemma allows us to recover the shapes of processes and networks from their labelled
transitions.

Lemma 6.3 (Synthesis Lemma). The following hold:

1. If P
p?Λ
−−→ P′, then P = Σi∈Iπi; Pi, where π j = p?Λ and P j = P′ for some j ∈ I.

2. If P
p!Λ
−−→ P′, then P = ⊕i∈Iπi; Pi, where π j = p!Λ and P j = P′ for some j ∈ I.

3. If N
pΛq
−−−→ N

′, then N = p[[ P ]] ‖ q[[ Q ]] ‖ N0 and P
q!Λ
−−→ P′ and Q

p?Λ
−−→ Q′ and N′ = p[[ P′ ]] ‖ q[[ Q′ ]] ‖ N0.

4. If N
p◦〈〈•q
−−−−→ N

′, then N = p[[ ◦〈〈•q; P ]] ‖ q[[ p ◦〈〈•; Q ]] ‖ N0 and

N
′ =

B
p[[ P ]] ‖ p[[ Q ]] ‖ N0

5. If N
q•〉〉◦p
−−−−→ N

′, then N =
B
p[[ q •〉〉◦; P ]] ‖ p[[ •〉〉◦p; Q ]] ‖ N0 and

N
′ = p[[ P ]] ‖ q[[ Q ]] ‖ N0

We end this section with a lemma which allows us to guess the shape of a global type from the shapes of
its projections. In the proof of this lemma we use global type contexts G defined by:

G ::= �i∈I α
p
i ; Gi � αp;G | p◦〈〈•q;G | p•〉〉◦q;G | [ ]

where I could be empty.
A context G that does not contain any proper choices (i.e., choices with more than one branch) will be

called flat global type context, since in this case G[G] can be flattened to a sequence of atomic interactions
followed by G, i.e., G[G] = φ1; . . . ;φn; G. We convene that the sequence is empty if n = 0. Such contexts arise
in the scope of a delegation.

Notice that global types describe the whole interaction scenario, while projections of global types, i.e.,
session types, see the interactions only from the viewpoints of single participants. For this reason, some
immediate actions of processes may not correspond to immediate interactions in the global type. A simple
example is the network

p[[ q!Λ ]] ‖ q[[ p?Λ ]] ‖ r[[ s!Λ′ ]] ‖ s[[ r?Λ′ ]]

which can be typed by the global type pΛq; rΛ′s.
The forthcoming lemma consists of four statements which may be summarised as follows:

• Statement (1) says that, if the direct projection on p is a union type, then the global type is a (possibly
empty) sequence of atomic interactions not involving p followed by a choice with leader p;

• Statement (2) says that, if the direct projection on the principal or on the deputy is a forward delegation
action, then the global type is a (possibly empty) sequence of atomic interactions not involving that
participant followed by the forward delegation;

• Statement (3) says that if the delegation projection on the principal is defined, then the global type is a
(possibly empty) sequence of atomic interactions not involving the deputy, followed by the backward
delegation from the deputy to the principal. In this sequence the atomic interactions involving the
principal must be all communications. Namely, when a well-typed process sends a delegation, then it
cannot do anything else than wait for the delegation to return.

19



• Statement (4) says that, if the delegation projection on the deputy is defined, then the global type is a
(possibly empty) sequence of atomic interactions not involving the deputy, followed by the backward
delegation from the deputy to the principal. In this sequence the atomic interactions involving the
principal must be all communications.

Lemma 6.4 (Key Lemma). The following hold:

1. If G�p =
∨

i∈I πi; Ti, then
G = φ1; . . . ;φn;�i∈I α

p
i ; Gi

where φ j for 1 ≤ j ≤ n is an atomic interaction not involving p and (αp
i ; Gi)�p = πi; Ti for i ∈ I.

2. If either G�p = ◦〈〈•q; T or G�q = p◦〈〈•; S, then G = φ1; . . . ;φn; p◦〈〈•q; G′, where φi for 1 ≤ i ≤ n is an
atomic interaction not involving p in the first case and q in the second case.

3. If G�1(p,q) is defined, then G = φ1; . . . ;φn; q•〉〉◦p; G′, where, for 1 ≤ i ≤ n, each φi is an atomic interaction
that never involves q, and may only involve p if it is a communication. Moreover

G�1(p,q) = q•〉〉◦; G′ �p

4. If G�2(p,q) is defined, then G = φ1; . . . ;φn; q•〉〉◦p; G′, where, for 1 ≤ i ≤ n, each φi is an atomic interaction
that never involves q, and may only involve p if it is a communication. Moreover

G�2(p,q) = π1; . . . ;πm; •〉〉◦p; G′ �q

with m ≤ n.

Proof (1). By definition of direct projection, see Figure 5, G = G[�i∈I α
p
i ; Gi] and G is a flat global context,

since otherwise the projection on p would start with an intersection of inputs. Moreover, G cannot contain
interactions involving p, since otherwise the projection on p would start with an atomic action different from∨

i∈I πi; Ti.
(2). By definition of direct projection, G = G[p◦〈〈•q] where G is a flat context, since the direct projection of

choices must be either a union of outputs or an intersection of inputs. If G�p = ◦〈〈•q; T, then p cannot occur
in φ1; . . . ;φn, since φ1; . . . ;φn are skipped in the projection. For the same reason q cannot occur in φ1; . . . ;φn
when G�q = p◦〈〈•; S.

(3). By definition of delegation projection, see Figure 6, G�1(p,q) skips all communications (including
those involving p), as well as all delegations not involving p or q. Moreover, by Definition 4.11(2), and
Lemma 4.12 we know that no delegation involving p may occur before the backward delegation. Notice that
the presence of a backward delegation is ensured by the condition of well-delegation, which in turn follows
from projectability (Lemma 4.12). Hence G and G�1(p,q) must have the forms shown.

(4). By definition of delegation projection, see Figure 6, if G�2(p, q) is defined, then before •〉〉◦p only I/O
actions generated by the projections of communications involving p (first two lines of the figure) can occur.
Hence G and G�2(p,q) must have the forms shown, where the πi, for i ∈ {1, . . . ,m}, correspond to those
among the communications φ j, for j ∈ {1, . . . ,n}, that involve p.

6.2. Subject reduction, with respect to global types
The subject reduction proof requires some ingenuity, since the definition of projection is quite tricky. The

following lemma connects the projections of a global type plugged into a flat context to its projections after a
communication.

Lemma 6.5.

1. Let G = φ1; . . . ;φn;φ; G′′ and let G′ = φ1; . . . ;φn; G′′.

• If p and q are such that {p,q} ∩ part(φ) = ∅ and G �1(p,q) is defined, then G �1(p,q) = G′ �1(p,q) .
Similarly for G�2(p,q) .

20



• If p is such that p < part(φ) and G�p is defined, then G�p = G′ �p .

2. Let G = φ1; . . . ;φn;�i∈I αi; Gi where |I| > 1 and let G′ = φ1; . . . ;φn; G j, j ∈ I.

• If p and q are such that {p,q} ∩ part(α j) = ∅ and G �1(p,q) is defined, then G �1(p,q) ≤ G′ �1(p,q) .
Similarly for G�2(p,q) .

• If p is such that p < part(α j) and G�p is defined, then G�p ≤ G′ �p .

Proof (1). Let G = φ1; . . . ;φn;φ; G′′ and p and q be such that {p,q} ∩ part(φ) = ∅. From the definition of
delegation projection, Figure 6, we can see that φ is ignored both in G �1(p,q) and G �2(p,q) . From the
definition of direct projection, Figure 5, we can see thatφ is ignored in G�p . Therefore G�1(p, q) = G′ �1(p, q) ,
G�2(p,q) = G′ �2(p,q) and G�p = G′ �p .

(2). Let G = φ1; . . . ;φn;�i∈I αi; Gi where |I| > 1 and p and q be such that {p,q} ∩ part(α j) = ∅. If G�1(p,q)
is defined, by Lemma 6.4(3) we get φm = q•〉〉◦p for some m (1 ≤ m ≤ n). This implies G �1 (p,q) =
q•〉〉◦;γ1; . . . ;γh; (�i∈I αi; Gi) � p , where 0 ≤ h ≤ n − m (by convention γ1; . . . ;γh is the empty sequence if
h = 0) and the γk with 1 ≤ k ≤ h are either I/O actions or delegation actions. Since {p,q} ∩ part(α j) = ∅,
then (�i∈I αi; Gi) � p = (G j � p ) ∧ T for some T. Therefore by definition of ≤, see Figure 7, we get
(�i∈I αi; Gi)�p ≤ G j �p and thus also

G�1(p,q) ≤ q•〉〉◦;γ1; . . . ;γh; G j �p = G′ �1(p,q)

If G�2(p,q) is defined, by Lemma 6.4(4) with a similar argument we get

G�2(p,q) = π1; . . . ;πh1 ; •〉〉◦p;γ′1; . . . ;γ′h2
; (�i∈I αi; Gi)�q

where 0 ≤ h1 + h2 < n (here the first sequence is empty if h1 = 0 and the second sequence is empty if h2 = 0)
and the γ′k are either I/O actions or delegation actions. We can then conclude as in the previous case.
The proof for the case where G�p is defined is easier.

As standard, as a step towards establishing progress, we need to prove a subject reduction result. Here
we show only the most interesting case.

Theorem 6.6 (Subject Reduction). If ` N : G and N
φ
−→ N

′, then ` N′ : G′ for some G′.

Proof (One case only) For rule [Com], we consider here only the case where the sending participant p is not
involved in any delegation and the receiving participant q is the principal in an ongoing delegation. Further
cases, completing the proof, appear in Appendix Appendix B. Since q is a principal in a delegation, she must
have a deputy r, who has now taken the name q, and there must be a frozen participant q; hence, in this case,
the network is of the form

N = p[[ P ]] ‖ q[[ R ]] ‖
B
q[[ Q ]] ‖ N0

and
P

q!Λ
−−→ P′ R

p?Λ
−−→ R′

p[[ P ]] ‖ q[[ R ]]
pΛq
−−−→ p[[ P′ ]] ‖ q[[ R′ ]]

and N′ = p[[ P′ ]] ‖ q[[ R′ ]] ‖
B
q[[ Q ]] ‖ N0.

By Lemma 6.3(2) P = ⊕i∈Iπi; Pi, where π j = q!Λ and P j = P′ for some j ∈ I. By Lemma 6.3(1) R = Σh∈Hπ′h; Rh,
where π′k = p?Λ and Rk = R′ for some k ∈ H. Since ` N : G, by Lemma 6.1(7) we have ` P : T and ` R : S
and ` Q : U for some T,S and U such that T ≤ G�p and S ≤ G�2(q, r) and U ≤ G�1(q, r) . By Lemma 6.1(2)
T =

∨
i∈I πi; Ti and ` Pi : Ti for i ∈ I and by Lemma 6.1(1) S =

∧
h∈H π

′

h; Sh and ` Rh : Sh for h ∈ H.
By the definition of ≤ and Lemma 6.4(1) and (4), T ≤ G � p and S ≤ G �2 (q, r) imply that the first

interaction in G involving p and q must be pΛq. Again by Lemma 6.4(4), G = φ1; . . . ;φn; pΛq; G0, where φl
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for 1 ≤ l ≤ n is an atomic interaction not involving p,q and r. Then G�p = q!Λ; T′ and T = q!Λ; T′′ with
T′′ ≤ T′. Moreover G�2(q, r) = p?Λ; S′ and S = p?Λ; S′′ ∧ S0 for some S′′ with S′′ ≤ S′. We can then choose
G′ = φ1; . . . ;φn; G0. By construction ` P′ : T′′ and ` R′ : S′′. By definition of projection G′ � p = T′ and
G�1(q, r) = G′ �1(q, r) and G′ �2(q, r) = S′. Then T′′ ≤ G′ �p , U = G′ �1(q, r) and S′′ ≤ G′ �2(q, r) . Moreover
by Lemma 6.5(1) G � s = G′ � s , G �1(s, s′) = G′ �1(s, s′) , G �2(s, s′) = G′ �2(s, s′) for all s, s′ such that

{p,q, r} ∩ {s, s′} = ∅. Therefore applying rule [t-Net] we can derive ` p[[ P′ ]] ‖ q[[ R′ ]] ‖
B
q[[ Q ]] ‖ N0 : G′.

6.3. Session fidelity with internal delegation
In our setting, session fidelity means that the communications and the delegations between participants

are performed as prescribed by the global type. This can be stated by deriving the shapes of global types
from the transitions of the networks and vice versa by deriving the transitions of the networks from the
shapes of global types.

Theorem 6.7 (Session Fidelity). The following hold:

1. If ` N : G andN
pΛq
−−−→ N

′, then G = φ1; . . . ;φn;�i∈I α
p
i ; Gi, where αp

j = pΛq for some j ∈ I and φh for 1 ≤ h ≤ n
is an atomic interaction not involving p and q. Moreover ` N′ : φ1; . . . ;φn; G j.

2. If ` N : G and N
p◦〈〈•q
−−−−→ N

′, then G = φ1; . . . ;φn; p◦〈〈•q; G′, where φi for 1 ≤ i ≤ n is an atomic interaction not
involving p and q. Moreover ` N′ : φ1; . . . ;φn; G′.

3. If ` N : G and N
q•〉〉◦p
−−−−→ N

′, then G = φ1; . . . ;φn; q•〉〉◦p; G′, where φi for 1 ≤ i ≤ n is an atomic interaction not
involving p and q. Moreover ` N′ : φ1; . . . ;φn; G′.

4. If ` N : �i∈IpΛiqi; Gi, then N = p[[⊕i∈I′qi!Λi; Pi ]] ‖ N0 with I′ ⊆ I and N
pΛiqi
−−−→ Ni and ` Ni : Gi for all i ∈ I′.

5. If ` N : φ; G, then N
φ
−→ N

′ and ` N′ : G.

The proof of this theorem, which expands on the proof of Theorem 6.6, is in Appendix Appendix C.

6.4. Proof of progress
To prove the progress property it is handy to represent global types as trees. In these trees the internal

nodes are decorated by � or nothing, the branches are decorated by atomic interactions, and the leaves are
decorated by End. In case the global type has some recursive subtype, the tree is an infinite (regular) tree.

Lemma 6.8. If G�p =
∧

i∈I qi?λi; Ti, then p occurs on each path from the root of G and the first atomic interaction
involving p is qiλip for some i ∈ I.

Proof First we show that p occurs on each path from the root of G. Assume there is a path without
occurrences of p, then the projection of the corresponding global type on p would be either End or t. This is
impossible, since the meet between an intersection of simple inputs and End or t is undefined.

We show now that on each path from the root of G the first atomic interaction involving p is qiλip for
some i ∈ I. The proof is by induction on the maximal length of the paths from the root of G to the first atomic
interaction involving p.
Let G = � j∈J αr

j; G j: by definition of projection p , r and G�p =
�

j∈J( αr
j; G j )�p . Consider h ∈ J, then either

αr
h = rλhp or p < part(αr

h). In the first case r?λh = qi?λi for some i ∈ I. In the second case from the definition of
meet Gh �p =

∧
k∈K q′k?λ′k; T′k and for all k ∈ K we have q′k?λ′k = qi?λi for some i ∈ I. By induction hypothesis

on each path from the root of Gh the first atomic interaction involving p is q′kλ
′

kp for some k ∈ K.
Let G = δ; G0. By definition of projection δ cannot involve p. By induction hypothesis on each path from the
root of G0 the first atomic interaction involving p is qiλip for some i ∈ I.
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Note that previous lemma does not hold if simple inputs are replaced by connecting inputs, since the meet
between connecting inputs and End is defined.

By employing the above lemma and Theorem 6.7 we can establish the main result of this paper: progress
— Theorem 5.2. To this end, we prove the following four lemmas, whose conjunction amounts to Theorem 5.2.

Lemma 6.9 (Progress scenario 1). If N = p[[⊕i∈Iqi!Λi; Pi ]] ‖ N0 is a well typed network, then N
−→
φpΛiqi
−−−−−→ N

′ for
some

−→
φ and for all i ∈ I.

Proof By Lemma 6.1(7b) or (7c) and the definition of projection ` ⊕i∈Iqi!Λi; Pi : T with either T ≤ G � p
or T ≤ G �2 (p, r) when |I| = 1. By Lemma 6.1(2) T =

∨
i∈I qi!Λi; Ti. Then either G � p =

∨
i∈I′ qi!Λi; Ti

with I ⊆ I′ or G �2(p, r) = q!Λ; T′ by definition of ≤ and projection. In the first case Lemma 6.4(1) gives
G = φ1; . . . ;φn;�i∈I′pΛiqi; Gi, where φ j for 1 ≤ j ≤ n is an atomic interaction not involving p. In the second
case Lemma 6.4(4) gives G = φ1; . . . ;φn; pΛq; G′, where φ j for 1 ≤ j ≤ n is an atomic interaction not involving
p. In both cases we obtain the desired computation by repeated applications of Theorem 6.7(5) and in the
first case by one application of Theorem 6.7(4) for the last transition.

Lemma 6.10 (Progress scenario 2). If N = p[[ Σi∈Iqi?λi; Pi ]] ‖ N0 is a well typed network, then N
−→
φqiλip
−−−−−→ N

′ for
some

−→
φ and for some i ∈ I.

Proof By Lemma 6.1(7b) or (7c) and the definition of projection ` Σi∈Iqi?λi; Pi : T with either T ≤ G�p or
T ≤ G�2(p, r) . By Lemma 6.1(2) T =

∧
i∈I qi?λi; Ti. By definition of≤ and projection either G�p =

∧
i∈I′ qi?λi; Ti

with I ⊇ I′ or G�2(p, r) = q?λ; T′. In the first case Lemma 6.8 assures that p occurs on each path from the root
of G and the first atomic interaction involving p is qiλip for some i ∈ I. In the second case Lemma 6.4(4)
gives G = φ1; . . . ;φn; qλp; G′, where φ j for 1 ≤ j ≤ n is an atomic interaction not involving p. In both cases
we obtain the desired computation by repeated applications of Theorem 6.7(4) and (5).

Lemma 6.11 (Progress scenario 3). If N = p[[ ◦〈〈•q; P ]] ‖ N0 is a well typed network, then N
−→
φp◦〈〈•q

−→
φ′q•〉〉◦p

−−−−−−−−−−→ N
′ for

some
−→
φ and

−→
φ′.

Proof By Lemma 6.1(7b) or (7c) ` ◦〈〈•q; P : T with either T ≤ G � p or T ≤ G�2(p, r) for some r. By
Lemma 6.1(3) T = ◦〈〈•q; T′. From definition of ≤ and Lemma 6.4(4) we have that T ≤ G�2(p, r) is not possible.
Therefore T ≤ G�p . The definition of ≤ gives G�p = ◦〈〈•q; S. By Lemma 6.4(2) G = φ1; . . . ;φn; p◦〈〈•q; G′,
where φi for 1 ≤ i ≤ n is an atomic interaction not involving p. The definition of projection implies
S = G′ �1 (p,q) . By Lemma 6.4(3) G′ = φ′1; . . . ;φ′m; q•〉〉◦p; G′′ and G′ �1 (p,q) = q•〉〉◦; G′′ � p , where φ′j
for 1 ≤ j ≤ m is an atomic interaction not involving q. We obtain the desired computation by repeated
applications of Theorem 6.7(5).

Lemma 6.12 (Progress scenario 4). If N = q[[ p◦〈〈•; Q ]] ‖ N0, is a well typed network, then N
−→
φp◦〈〈•q

−→
φ′q•〉〉◦p

−−−−−−−−−−→ N
′

for some
−→
φ and

−→
φ′.

Proof The proof is similar to that of the previous lemma.

The above four lemmas cover all cases in Theorem 5.2.

7. Future Work: Multiparty Compatibility and Extensions

Multiparty compatibility. The standard notion of duality, ensuring two session types are compatible, does not
guarantee progress or the existence of a global type in the multiparty setting. An example mentioned in the
introduction is the classic 3-philosopher problem, where each party is waiting for an input from another
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p[[ End ]]

T

p[[ End ]] , T

p[[ T ]] , q[[ U ]] , T

p[[ q!Λ; T ]] , q[[ p?Λ; U ]] , T

p[[π j; T j ]] , T for all j ∈ I

p[[
∨
i∈I

πi; Ti ]] , T

p[[π j; T j ]] , T for some j ∈ I

p[[
∧
i∈I

πi; Ti ]] , T

T

p[[ q? λ
↔; T ]] , T

B
p[[ q•〉〉◦; T ]] , p[[ U ]] , T

p[[ ◦〈〈•q; q•〉〉◦; T ]] , q[[ p◦〈〈•; U ]] , T

p[[ T ]] , q[[ U ]] , T
B
p[[ q•〉〉◦; T ]] , p[[ •〉〉◦p; U ]] , T

Figure 9: Rules determining whether located types are multiparty compatible.

party. The 3 philosophers are pairwise dual but the network is deadlocked. Global types, as investigated
throughout this work, offer one approach to addressing this problem. Here we briefly discuss a notion of
multiparty compatibility [13, 14] as an alternative to global types where networks are typed based on the
(local) session types of each participant. Selecting an appropriate notion of multiparty compatibility avoids
the above mentioned problem with pair-wise compatibility.

In the following definition, we propose an extended notion of multiparty compatibility that is sensitive
to delegation. In the presence of fixed points, there are additional subtleties if we wish to capture a notion
of progress guaranteeing more than just deadlock freedom, such as the notion of progress captured in
Theorem 5.2. Hence we push infinite sessions to future work and restrict ourselves to finite processes in
what follows.

Located types are defined similarly to networks, by the syntax:

T ::= p[[ T ]] |
B
p[[ T ]] | T , T

where the comma is an associative, commutative operator. Multiparty compatibility of located types is
defined according to the rules and axiom in Fig. 9. Observe that only the rule for union types has multiple
premises.

We say that a global type is initial if all backward delegations have corresponding forward delegations.
For finite and initial global types the following holds by induction over the structure of the global type.

Proposition 7.1. Let G be a finite and initial global type and {p1, . . . ,pn} = part(G), then p1[[ G�p1 ]], . . . ,pn[[ G�
pn ]] are multiparty compatible.

The condition of being initial is needed in the previous proposition, since after some delegation started
we need to use the delegation projection.

The converse direction would establish that, for multiparty-compatible located types, there exists a global
type such that the projection for each participant of the global type is a super type of the session type of
each participant. This property is sometimes referred to as checking whether types are coherent [32, 28] with
respect to a global type. However, care must be taken to establish the assumptions under which this holds;
for example, we must ensure that deputies neither make choices nor engage in further (nested) delegation
actions before returning back the delegation to the principal. A detailed study of such conditions is pushed
to future work. It is not clear if global type synthesis can be satisfactory, since there exist realistic multiparty
compatible networks with no global type, some examples of which are given in [38]. Hence future work
would likely focus on what conditions are required to ensure that multiparty-compatible networks directly
guarantee progress.
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Reversible sessions. A separate line of future work is to study the hypothesis that internal delegation facilitates
a theory of reversible sessions. In the literature, there are various proposals for formalising reversibility in
sessions, but few [39, 30] consider session interleaving and delegation, since these features highly complicate
the matter. Thanks to its simplicity, internal delegation could be more easily amenable to a smooth integration
with reversibility, leading to a flexible and expressive calculus of reversible multiparty sessions.

Choice under recursion. Type systems are not expected to be complete for properties they guarantee. However,
a major limitation to address in future work is that we cannot type networks where a choice with branches
involving distinct sets of participants occurs inside a recursion. For example, we cannot type an extension
of our motivating example in Section 2, where the client and seller negotiate forever, perhaps sometimes
contacting the bank to make payments. For a minimal example illustrating the source of this challenge,
consider the following two projections involving connecting inputs.(

p
λ1
↔ q; End � p

λ2
↔ r; End

)
�q

(
µt.p

λ1
↔ q; t � p

λ2
↔ r; t

)
�q

Observe the first projection is defined since a connecting input will be merged with End. The second is
undefined since we would attempt to merge a connecting input with t (or end up in an infinite loop unfolding
the recursion).

The fact the latter projection is undefined may be considered to be restrictive with respect to the intuition
that a connecting input can be merged with branches in which the participant performing the input never
acts. The above problem, which limits the use of choice under recursion, may be addressed by considering a
more general merge operator (or perhaps otherwise modifying the notion of projection), allowing connecting
inputs to be merged with an infinite branch in which the participant awaiting the connecting inputs never
acts.

Alternative notations for internal delegation. Our proposal for internal delegation is by no means the only
possible approach. Our solution uses block constructs for both principals and deputies, and enables
delegation from a principal to a unique deputy at a time, while suspending the principal for the whole
duration of the delegation. An interesting suggestion for an alternative - and arguably more powerful
- internal delegation mechanism was put forward by our reviewer: the idea was to refine the message
exchange construct by introducing appropriate role annotations in the messages. For example, we could
stipulate that the seller delegates the reception of the credit card to the bank by using a construct of the form

C
card
−−−−→ S(B), meaning that C asks B to handle the reception of the card on behalf of S. This construct would

allow the principal to remain active and engage in other interactions during the delegation (since messages
may have distinguishing sender/receiver). Note that this solution would require a substantial change in
the operational semantics, since the freezing/unfreezing mechanism is suitable only when delegation is
disciplined by blocks. Another issue is that delegation would no longer be transparent for participants
different from the principal and the deputy. The rightfulness of this transparency principle is debatable,
however. Almost all papers in the literature claim that delegation should be transparent. To the best of our
knowledge, explicit delegation was only used in [5] to send sensitive data to trusted participants. We plan to
further investigate this question.

Alternative process syntax. Clearly, a process implementing a participant who is ready to delegate starts with
two matching delegation actions (an active forward delegation followed by a passive backward delegation
with the same participant). As observed by our reviewer, the second action could be initially omitted and
then replaced for the first action with rule [BDel]. Accordingly, the projection of forward delegations on
principals should contain both matching delegation actions, while the projection of backward delegations
on principals should be empty. A feature of the current design choice is the isomorphism between processes
and session types which results in very simple typing rules. This design decision has a small impact on the
semantics, hence can be accommodated mainly by exposing an alternative concrete syntax for delegation in
processes.
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8. Related Work

Session types to govern communication protocols have been first proposed for dyadic communications [19].
Delegation for binary sessions was introduced as early as the end of the 90’s, in [20], as a means of appointing
part of the conversation in a session to a participant acting in another session. In a binary session framework,
delegation is also the only way to allow more than two participants to communicate in order to achieve a
common task.

The first papers on multiparty sessions are [4, 21]. In their foundational work [21], Honda et al. introduced
the keystone notion of global type, from which the session types of participants could be retrieved by means
of a projection operation. The calculus of [21] included delegation, which was a simple generalisation of that
of [20] to the multiparty case. In the last ten years the literature on this subject has grown with very high
speed. In the majority of papers session calculi are channel based, as in [21] or in the simplified setting of [3],
and delegation is implemented by means of channel passing, thus exploiting an essential feature of the
pi-calculus. Here instead we consider multiparty conversations confined to a single session, and delegation
takes place within the session itself (delegation is an intra-session rather than a inter-session mechanism),
hence we can omit channels, as done for example in [33, 16].

The paper [25] is a recent overview on the genesis and evolution of session types, produced by the
IC Cost Action Betty (http://www.dcs.gla.ac.uk/research/betty/www.behavioural-types.eu/index.
html). An account of several implementations of session types, both as languages with native session
types or as extensions of mainstream languages, may be found at http://groups.inf.ed.ac.uk/abcd/
session-implementations.html.

The papers that are most closely related to our work are [12, 23, 9, 36]. Our notion of progress coincides
with that of [12], when restricted to the intersection of the two calculi. The same paper also uses a notion of
meet for defining projection, which however is incomparable with ours since it is based on a different syntax
for global types.

Connecting communications have been first discussed in [23]. Here we take the simplified and more
flexible version proposed in [9]. The introductory example of [36] was our inspiration for defining delegation
within a single global type. Notably, delegation in [36] is realised by sending channels as usual, while we
avoid channels. The drawback is that our delegation is less expressive than usual, because some behaviours
cannot be delegated (as specified by our well-delegation conditions). For example in our intra-session
delegation the deputy cannot make choices or behave recursively, while in inter-session delegation the
transmitted channel has an arbitrary session type [22]. On the positive side, we are able to achieve both
deadlock-freedom and lock-freedom without additional machinery.

Deadlock-freedom ensures there are no states where there are hanging actions and yet no atomic
interactions can be performed. Lock-freedom [34] strengthens deadlock-freedom by guaranteeing that
certain atomic interactions may succeed. Some definitions of lock-freedom [27] are subject to assumptions
guaranteeing fairness of schedulers. In the current work, the type system is sufficiently restrictive for
recursive processes with choices that we are not required to make fairness assumptions. However, it would
be interesting to investigate in future work whether, by introducing explicit fairness assumptions, the type
system can be liberated to permit more processes to be typed while maintaining lock-freedom. Recent
work [18, 17] suggests that weak notions of fairness are sufficient assumptions to ensure lock-freedom. In
particular, it appears that justness is sufficient; where justness assumes that one party cannot prevent another
party from eventually acting; thereby avoiding scenarios where one party schedules her actions in such a
way that an action critical for another party to progress cannot occur.

Another approach to multiparty sessions that yields deadlock-freedom “for free” in the presence of
session interleaving and delegation is that of Choreographic Programming [7, 31]. A choreography is a global
description of a network engaged in one or more sessions, possibly interleaved with each other. In fact, a
choreography may be viewed as the “abstract skeleton” of a concrete network execution. Another way to
put it is that a choreography is an interleaving of global types. Therefore, although it adopts channel-based
delegation which requires session interleaving, the choreographic approach guarantees progress because
it provides complete information about the interleaving of different sessions and about the points where
delegation actions are performed.
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9. Conclusion

In this paper we have provided an approach to delegation that alleviates the challenging problem of
finding conditions on session types guaranteeing progress in the presence of delegation. The approach we
adopt does guarantee progress for (non-ambiguous and projectable) global types (Theorem 5.2), ensuring
participants connected to the session do not have hanging actions that are never triggered. Progress is
established from session fidelity (Theorem 6.7), which ensures the processes adhere to their global type. In
turn, session fidelity follows from subject reduction (Theorem 6.6), which requires some ingenuity in cases
where at least one of the principals involved in an atomic interaction is acting as a deputy in an internal
delegation.

As expected of a type system, not all networks exhibiting strong progress can be typed. However, we
argue that we cover a sufficiently large class of networks. Notably, by including connecting inputs, we are
able to increase the class of networks we can type that feature internal delegation. For example, without
connecting inputs there would be no type for the network in Example 5.1(3) and it would not be possible
to express the motivating example in Section 2. We note that with additional effort the expressive power
could still be increased, for example, to allow the deputy in a delegation to make choices or to permit nested
delegations. However, we argue that the current constraints on the considered fragment are desirable, since
they ensure that all choices are made by the principal, including the choice of whom is the current deputy.
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Appendix A. Projection respects Equirecursion

Θ `g End ∼ End Θ, (G,G′) `g G ∼ G′
Θ `g G ∼ G′

Θ `g G′ ∼ G
Θ `g G ∼ G′

Θ `g φ; G ∼ φ; G′
Θ `g Gi ∼ G′i ∀i ∈ I

Θ `g �i∈I αi; Gi ∼ �i∈I αi; G′i
Θ, (µt.G,G′) `g G{µt.G/t} ∼ G′

Θ `g µt.G ∼ G′

Figure A.10: Equirecursive global types.

∆ `s End ∼ End ∆, (T,T′) `s T ∼ T′
∆ `s T ∼ T′

∆ `s T′ ∼ T

∆ `s T ∼ T′

∆ `s δ; T ∼ δ; T′

∆ `s Ti ∼ T′i ∀i ∈ I

∆ `s
∧
i∈I

πi; Ti ∼
∧
i∈I

πi; T′i

∆ `s Ti ∼ T′i ∀i ∈ I

∆ `s
∨
i∈I

πi; Ti ∼
∨
i∈I

πi; T′i
∆, (µt.T,T′) `s T{µt.T/t} ∼ T′

∆ `s µt.T ∼ T′

Figure A.11: Equirecursive session types.

Let Θ denote a set of closed global type pairs. Figure A.10 gives a proof system for showing that two
global types generate the same tree. Let ∆ denote a set of closed session type pairs. Figure A.11 gives a proof
system for showing that two session types generate the same tree.

Lemma Appendix A.1 (Inversion Lemma). 1. If ∆ `s ∧
i∈I πi; Ti ∼

∧
i∈I′ π

′

i ; T′i , then I = I′, πi = π′i and
∆ `s Ti ∼ T′i for all i ∈ I.

2. If ∆ `s ∨
i∈I πi; Ti ∼

∨
i∈I′ π

′

i ; T′i , then I = I′, πi = π′i and ∆ `s Ti ∼ T′i for all i ∈ I.

Lemma Appendix A.2. If G{G′/t} is a projectable global type and t′ occurs in G, then part(G) = part(G{G′/t}).

Proof If t does not occur in G this is obvious. So we can assume that both t and t′ occur in G. Since all type
variables can only occur as rightmost operands of sequential compositions, there must be a subtype G′′ of G,
such that all the following conditions hold:

• G′′ = �i∈I αi; Gi,

• t occurs in G j and t′ does not occur in G j for some j ∈ I,

• t′ occurs in Gk and t does not occur in Gk for some k ∈ I.

Assume ad absurdum that there is q ∈ part(G{G′/t}) such that q < part(G). Then by construction q ∈
part(G j{G′/t}) and q < part(Gk{G′/t}), which gives Gk{G′/t} � q = t′. This implies that (G{G′/t}) � q is
undefined, since the meet between a session type and t′ is undefined. This contradicts our hypothesis.

Lemma Appendix A.3 (Projection commutes with substitution). If G{G′/t} is a projectable global type, then
(G{G′/t})�p = G�p {G′ �p /t}.
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Proof By structural induction on G.
Let G = t′, by definition of projection G�p = t′. The result is immediate in both cases t′ = t or t′ , t.
Let G = �i∈I αi; Gi. We get G{G′/t} = �i∈I αi; Gi{G′/t}. By induction hypothesis

(Gi{G′/t})�p = Gi �p {G′ �p /t} for all i ∈ I

If (�i∈I αi; Gi)�p =
�

i∈I( αi; Gi )�p let q be the choice leader of �i∈I αi; Gi and J = {i ∈ I | αi = qΛip}, then�
i∈I( αi; Gi{G′/t} )�p = (

�
i∈J q?Λi; Gi{G′/t}�p )

�
(
�

i∈I\J Gi{G′/t}�p )
= (

�
i∈J q?Λi; Gi �p {G′ �p /t})

�
(
�

i∈I\J Gi �p {G′ �p /t})
=
�

i∈I(αi; Gi)�p {G′ �p /t}
The proof in the case�i∈I αi; Gi �

p =
∨

i∈I ( αi; Gi )�p is similar and simpler.
Let G = φ; G1. If φ is a communication, then it is a particular case of choice with |I|=1. If φ = r◦〈〈•s and

neither r = p nor s = p the result follows easily by induction on G1.
Ifφ = p◦〈〈•s, since by Lemma 4.12, G is well delegated, we have that G = p◦〈〈•s;φ1; . . . ;φn; s•〉〉◦p; G2 for some
G2 and s does not occur in φ1; . . . ;φn. By definition of projection (G{G′/t})�p = ◦〈〈•s; s•〉〉◦; (G2{G′/t})�p . By
induction hypothesis ◦〈〈•s; s•〉〉◦; (G2{G′/t})�p = ◦〈〈•s; s•〉〉◦; (G2 �p ){G′ �p /t} and ◦〈〈•s; s•〉〉◦; (G2 �p ){G′ �
p /t} = G�p {G′ �p /t}.
If φ = r◦〈〈•p, as before G = r◦〈〈•p;φ1; . . . ;φn; p•〉〉◦r; G2 for some G2. By definition of projection (G{G′/t})�
p = r◦〈〈•;π1; . . . ;πm; •〉〉◦r; (G2{G′/t})�p . As before the result follows by induction hypothesis on G2.

Let G = µt′.G1. We may assume that t , t′ and t′ does not occur in G′.

(µt′.G1{G′/t})�p =


(G1{G′/t})�p if t′ does not occur in G1{G′/t}
µt′.(G1{G′/t})�p if p ∈ part(G1{G′/t})
End otherwise

By induction hypothesis we have that (G1{G′/t})�p = G1 �p {G′ �p /t}. Moreover, t′ occurs in G1{G′/t} if and
only if t′ occurs in G1. So the result is immediate if t′ does not occur in G1. Otherwise by Lemma Appendix
A.2 part(G1) = part(G1{G′/t}). This implies

(µt′.G1{G′/t})�p = µt′.(G1{G′/t})�p = µt′.G1 �p {G′ �p /t} = (µt′.G1)�p {G′ �p /t}

if p ∈ part(G1) and (µt′.G1{G′/t})�p = (µt′.G1)�p = End otherwise.

Lemma Appendix A.4 (Projection is preserved under folding and unfolding).

1. If G is closed and p < part(G), then G�p = End.

2. If µt.G is a closed and projectable global type, then G{µt.G/t} is projectable too and they have the same projections
modulo fold/unfold.

Proof (1). By induction on the definition of projection.
(2). By cases on the definition of µt.G � p . If t does not occur in G, then G{µt.G/t} = G. If p ∈ part(G),
then (µt.G)�p = µt.G�p and by Lemma Appendix A.3 (G{µt.G/t})�p = G�p {(µt.G)�p /t} . If t occurs
in G and p < part(G), then p < part(µt.G) and p < part(G{µt.G/t}), so by Point (1) (µt.G) � p = End and
(G{µt.G/t})�p = End.

Theorem Appendix A.5. Let all global types in Θ be closed and projectable and define

Θ�p = {(G1 �p ,G2 �p ) | (G1,G2) ∈ Θ}

If G and G′ are closed and projectable and Θ `g G ∼ G′, then Θ�p `s G�p ∼ G′ �p .

Proof By induction on the derivation of Θ `g G ∼ G′. If the last applied rule is Θ, (G,G′) `g G ∼ G′ we can
derive Θ�p , (G�p ,G′ �p ) `s G�p ∼ G′ �p .
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Let the last applied rule be
Θ `g Gi ∼ G′i ∀i ∈ I

Θ `g �i∈I αi; Gi ∼ �i∈I αi; G′i
Projectability of G,G′ imply projectability of

Gi,G′i for i ∈ I. By induction hypothesis

Θ�p `s Gi �p ∼ G′i �p

for all i ∈ I. Let (�i∈I αi; Gi) � p =
�

i∈I( αi; Gi ) � p , then (�i∈I αi; G′i ) � p =
�

i∈I( αi; G′i ) � p . We define
J = {i ∈ I | αi = qΛip}

H = {i ∈ I \ J | Gi �p = G′i �p = End} and K = I \ (J ∪H)

Notice that H includes all Gi �p and G′i �p which are End, since

Θ�p `s Gi �p ∼ G′i �p

and ∆ `s End ∼ T implies T = End. Let Gi � p =
∧
`∈Li

π(i)
` ; T(i)

` for i ∈ K, then Θ � p `s Gi � p ∼ G′i � p
and Lemma Appendix A.1(1) imply G′i � p =

∧
`∈Li

π(i)
` ; S(i)

` and Θ � p `s T(i)
` ∼ S(i)

` for ` ∈ Li and
i ∈ K. Then by definition of projection �i∈I αi; Gi � p = (

∧
i∈J q?Λi; Gi � p ) ∧ (

∧
i∈K

∧
`∈Li

π(i)
` ; T(i)

` ) and
�i∈I αi; G′i �p = (

∧
i∈J q?Λi; G′i �p ) ∧ (

∧
i∈K

∧
`∈Li

π(i)
` ; S(i)

` ). We can then derive:

Θ�p `s Gi �p ∼ G′i �p ∀i ∈ J Θ�p `s T(i)
` ∼ S(i)

` ∀` ∈ Li ∀i ∈ K

Θ�p `s (
∧
i∈J

q?Λi; Gi �p ) ∧ (
∧
i∈K

∧
`∈Li

π(i)
` ; T(i)

` ) ∼ (
∧
i∈J

q?Λi; G′i �p ) ∧ (
∧
i∈K

∧
`∈Li

π(i)
` ; S(i)

` )

The proof in the case �i∈I αi; Gi �p =
∨

i∈I ( αi; Gi )�p is similar and simpler.

Let the last applied rule be
Θ, (µt.G,G′) `g G{µt.G/t} ∼ G′

Θ `g µt.G ∼ G′
Projectability of µt.G implies projectability

of G{µt.G/t} by Lemma Appendix A.4(2). By induction hypothesis Θ�p , ((µt.G)�p ,G′ �p ) `s (G{µt.G/t})�
p ∼ G′ � p . If p < part(µt.G) = part(G{µt.G/t}), then by Lemma Appendix A.4(1) (µt.G) � p = End
and (G{µt.G/t}) � p = End. Then G′ � p = End and we are done. Otherwise it is easy to check that
(µt.G)�p = µt.G�p . By Lemma Appendix A.3

(G{µt.G/t})�p = G�p {(µt.G)�p /t}

We can then derive:
Θ�p , (µt.G�p ,G′ �p ) `s G�p {µt.G�p /t} ∼ G′ �p

Θ�p `s µt.G�p ∼ G′ �p

Appendix B. Proof of Theorem 6.6

Proof Structurally equivalent networks can be typed by global types generating the same tree, since
the projection of global types with the same tree yields session types with the same tree (as shown
in Appendix Appendix A).

The rest of the proof is done by case analysis on the reduction rules for networks. There are three rules to
consider, Rule [Com], Rule [BDel] and Rule [EDel]. Notice each of these rules are applied after zero or more
applications of the Rule [Ct].

First we complete the proof for the rule [Com]. As in the proof given after the statement of the theorem
N = p[[ P ]] ‖ q[[ Q ]] ‖ N0 and

P
q!Λ
−−→ P′ Q

p?Λ
−−→ Q′

p[[ P ]] ‖ q[[ Q ]]
pΛq
−−−→ p[[ P′ ]] ‖ q[[ Q′ ]]

and N′ = p[[ P′ ]] ‖ q[[ Q′ ]] ‖ N0. Moreover:
-P = ⊕i∈Iπi; Pi, where π j = q!Λ and P′ = P j for some j ∈ I;
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- Q = Σh∈Hπ′h; Qh, where π′k = p?Λ and Q′ = Qk for some k ∈ H;
- ` P : T and ` Q : S for some T and S;
- T =

∨
i∈I πi; Ti and ` Pi : Ti for i ∈ I and S =

∧
h∈H π

′

h; Sh and ` Qh : Sh for h ∈ H.
Neither p nor q may be the deputy of some open delegation, since, by Rule [BDel] of Figure 3, a deputy
takes the name of the principal associated to its process during delegation (and no process is associated to its
name). By Lemma 6.1(7) and the definition of projection there are four cases:

1. T ≤ G�p and S ≤ G�q , i.e. both p and q are not principals;

2. T ≤ G�p and S ≤ G�2(q, r) , i.e. p is not a principal but q is the principal of r;

3. T ≤ G�2(p, s) and S ≤ G�q , i.e. p is the principal of s and q is not a principal;

4. T ≤ G�2(p, s) and S ≤ G�2(q, r) , i.e. both p and q are principals, of s and r, respectively.

In the first case, by definition of ≤, G � p =
∨

i∈I′ πi; T′i with I ⊆ I′ and Ti ≤ T′i for i ∈ I. By Lemma
6.4(1) G = φ1; . . . ;φn;�i∈I′ α

p
i ; Gi, where φl for 1 ≤ l ≤ n is an atomic interaction not involving p and

(αp
i ; Gi)�p = πi; T′i for i ∈ I′. From π j = q!Λ we get αp

j = pΛq. By definition of ≤, G�q =
∧

h∈H′ π
′

h; S′h with

H′ ⊆ H and Sh ≤ S′h for h ∈ H′. From π′k = p?Λ and αp
j = pΛq it follows that (αp

j ; G j)�q = π′k; S′k and that φl

for 1 ≤ l ≤ n is an atomic interaction not involving q. We can then choose G′ = φ1; . . . ;φn; G j.
We prove that ` p[[ P ]] ‖ q[[ Q ]] ‖ N0 : G implies ` p[[ P′ ]] ‖ q[[ Q′ ]] ‖ N0 : G′.
By definition of projection G′ �p = T′j and G′ �q = S′k. So ` P′ : T j and ` Q′ : Sk, where T j ≤ G′ �p and
Sk ≤ G′ �q . From Lemma 6.5(2) we get that for all r, s such that {r, s} ∩ {p, q} = ∅, if G�1(r, s) is defined then
G�1(r, s) ≤ G′ �1(r, s) . So, letting R be the process associated with participant r, if ` R : Tr and Tr ≤ G�1(r, s) ,
then Tr ≤ G′ �1(r, s) . A similar argument may be used for G�2(r, s) and G� r . Therefore applying rule [t-Net]
we can derive ` p[[ P′ ]] ‖ q[[ Q′ ]] ‖ N0 : G′.

The proof of the second case is given after the statement of the theorem. The proofs of remaining two
cases are similar to that of the second case.

Consider now rule [BDel]. Then N = p[[ ◦〈〈•q; P ]] ‖ q[[ p ◦〈〈•; Q ]] ‖ N0 and

p[[ ◦〈〈•q; P ]] ‖ q[[ p ◦〈〈•; Q ]]
p◦〈〈•q
−−−−→

B
p[[ P ]] ‖ p[[ Q ]]

and N′ =
B
p[[ P ]] ‖ p[[ Q ]] ‖ N0.

By Lemma 6.1(7c) we have ` ◦〈〈•q; P : T and ` p ◦〈〈•; Q : S for some T and S such that T ≤ G�p and S ≤ G�q .
Then by Lemma 6.1(3) we get T = ◦〈〈•q; T′ where ` P : T′ and S = p ◦〈〈•; S′ where ` Q : S′. By definition
of ≤ it must be G � p = ◦〈〈•q; T′′ and G � q = p◦〈〈•; S′′ where T′ ≤ T′′ and S′ ≤ S′′. By Lemma 6.4(2)
G = φ1; . . . ;φn; p◦〈〈•q; G0, where φl for 1 ≤ l ≤ n is an atomic interaction not involving p and q. Note that
T′′ = G0 �1(p,q) and S′′ = G0 �2(p,q) . We can then choose G′ = φ1; . . . ;φn; G0. In fact we get by definition
of projection G′ �1(p,q) = T′′ and G′ �2(p,q) = S′′. Moreover, by Lemma 6.5(1) we have G � r = G′ � r ,
G�1(r, s) = G′ �1(r, s) , G�2(r, s) = G′ �2(r, s) for all r, s such that {p,q} ∩ {r, s} = ∅. Therefore we may apply

rule [t-Net] to derive `
B
p[[ P ]] ‖ p[[ Q ]] ‖ N0 : G′.

Let us consider rule [EDel], then N =
B
p[[ q•〉〉◦; P ]] ‖ p[[ •〉〉◦p; Q ]] ‖ N0 and

B
p[[ q•〉〉◦; P ]] ‖ p[[ •〉〉◦p; Q ]]

q•〉〉◦p
−−−−→ p[[ P ]] ‖ q[[ Q ]]

and N′ = p[[ P ]] ‖ q[[ Q ]] ‖ N0.
By Lemma 6.1(7) ` q•〉〉◦; P : T and ` •〉〉◦p; Q : S for some T and S.
By Lemma 6.1(3) T = q•〉〉◦; T′ and ` P : T′ and S = •〉〉◦p; S′ and ` Q : S′. By Lemma 6.1(7b) and the fact that
only delegation projection G�1(p, q) and G�2(p, q) generate types starting with q•〉〉◦ and •〉〉◦p, respectively,
we derive that T ≤ G�1(p, q) and S ≤ G�2(p, q) . This implies G�1(p, q) = q•〉〉◦; T′′ and G�2(p, q) = •〉〉◦p; S′′,
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where T′ ≤ T′′ and S′ ≤ S′′, by definition of ≤. By Lemma 6.4(3) G = φ1; . . . ;φn; q•〉〉◦p; G0, where φl for
1 ≤ l ≤ n is an atomic interaction not involving p and q. We can then choose G′ = φ1; . . . ;φn; G0. In fact
we get by definition of projection G′ �p = T′′ and G′ �q = S′′. Moreover, by Lemma 6.5(1) G� r = G′ � r ,
G�1(r, s) = G′ �1(r, s) , G�2(r, s) = G′ �2(r, s) for all r, s such that {p,q} ∩ {r, s} = ∅. Therefore applying rule
[t-Net] we can derive ` p[[ P ]] ‖ q[[ Q ]] ‖ N0 : G′.

Appendix C. Proof of Theorem 6.7

Proof (1). By Lemma 6.3(3) N
pΛq
−−−→ N

′ implies N = p[[ P ]] ‖ q[[ Q ]] ‖ N0 and P
q!Λ
−−→ P′ and Q

p?Λ
−−→ Q′ and

N
′ = p[[ P′ ]] ‖ q[[ Q′ ]] ‖ N0. As in the proof of Theorem 6.6 we obtain G = φ1; . . . ;φn;�i∈I α

p
i ; Gi, where

αp
j = pΛq for some j ∈ I and ` N′ : φ1; . . . ;φn; G j and φh for 1 ≤ h ≤ n is an atomic interaction involving

neither p nor q.

(2). By Lemma 6.3(4)N
p◦〈〈•q
−−−−→ N

′ impliesN = p[[ ◦〈〈•q; P ]] ‖ q[[ p ◦〈〈•; Q ]] ‖ N0 andN′ =
B
p[[ P ]] ‖ p[[ Q ]] ‖ N0.

As in the proof of Theorem 6.6 we obtain G = φ1; . . . ;φn; p◦〈〈•q; G′and ` N′ : φ1; . . . ;φn; G′, where φi for
1 ≤ i ≤ n is an atomic interaction involving neither p nor q.

(3). By Lemma 6.3(5)N
q•〉〉◦p
−−−−→ N

′ impliesN =
B
p[[ q •〉〉◦; P ]] ‖ p[[ •〉〉◦p; Q ]] ‖ N0 andN′ = p[[ P ]] ‖ q[[ Q ]] ‖ N0.

As in the proof of Theorem 6.6 we obtain G = φ1; . . . ;φn; q•〉〉◦p; G′ and ` N′ : φ1; . . . ;φn; G′, where φi for
1 ≤ i ≤ n is an atomic interaction involving neither p nor q.

(4). Let G = �i∈IpΛiqi; Gi. By Lemma 6.2(7b) or (7c)

N = p[[ P ]] ‖ Πi∈Iqi[[ Qi ]] ‖ N0

and ` P : T with either T ≤ G�p or T ≤ G�2(p, r) and ` Qi : Si with either Si ≤ G�qi or Si ≤ G�2(qi, si) for
i ∈ I. In both cases by definition of ≤ and projection T =

∨
i∈I′ qi!Λi; Ti with I′ ⊆ I and Si = p?Λi; S′i ∧ S′′i for

i ∈ I. Lemma 6.2(2) gives P = ⊕i∈I′qi!Λi; Pi. Lemma 6.2(1) gives Qi = p?Λi; Q′i + Q′′i for i ∈ I. By the reduction

rules [Com] and [Ct] N
pΛiqi
−−−→ p[[ Pi ]] ‖ qi[[ Q′i ]] ‖ Π j∈I\{i}q j[[ Q j ]] ‖ N0 for all i ∈ I′. As in the proof of Subject

Reduction we can show that

` p[[ Pi ]] ‖ qi[[ Q′i ]] ‖ Π j∈I\{i}q j[[ Q j ]] ‖ N0 : Gi

for all i ∈ I′.
(5). If φ is a communication the statement is a particular case of the previous point.

Let φ = p◦〈〈•q. By Lemma 6.2(7c) and the definition of projection

N = p[[ P ]] ‖ q[[ Q ]] ‖ N0

and ` P : T with T ≤ G �p and ` Q : S with S ≤ G �q by definition of projection. By definition of ≤ we
get T = ◦〈〈•q; T′ and S = p◦〈〈•; S′. Lemma 6.2(3) implies P = ◦〈〈•q; P′ and Q = p◦〈〈•; Q′. By applying the

reduction rules [BDel] and [Ct] N
p◦〈〈•q
−−−−→

B
p[[ P′ ]] ‖ p[[ Q′ ]] ‖ N0. As in the proof of Subject Reduction we can

show that `
B
p[[ P′ ]] ‖ p[[ Q′ ]] ‖ N0 : G.

If φ = p•〉〉◦q the proof is similar.
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