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Abstract. Precise and robust localization is of fundamental importance
for robots required to carry out autonomous tasks. Above all, in the case
of Unmanned Aerial Vehicles (UAVs), efficiency and reliability are crit-
ical aspects in developing solutions for localization due to the limited
computational capabilities, payload and power constraints. In this work,
we leverage novel research in efficient deep neural architectures for the
problem of 6 Degrees of Freedom (6-DoF) pose estimation from single
RGB camera images. In particular, we introduce an efficient neural net-
work to jointly regress the position and orientation of the camera with
respect to the navigation environment. Experimental results show that
the proposed network is capable of retaining similar results with respect
to the most popular state of the art methods while being smaller and
with lower latency, which are fundamental aspects for real-time robotics
applications.
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1 Introduction

At the present time, the popularity of Unmanned Aerial Vehicles (UAVs) is
rapidly increasing due to their peculiar characteristics. In fact, they are fre-
quently adopted in a broad range of research projects and commercial applica-
tions, such as building inspections, rescue operations, and surveillance, which
require high mobility and flexible adaptation to complex situations [24]. The
ability of a drone to localize itself inside the surrounding environment is crucial
for enabling higher degrees of autonomy in the assigned tasks. Global Navigation
Satellite System (GNSS) is a common solution to the problem of retrieving a
global position, but it often fails due to signal loss in cluttered environments like
urban canyons or natural valleys. Moreover, its precision in the localization is
correlated with the number of satellites in direct line of sight [3], and the accu-
racy requirements are often not meet by GPS-like technology since the provided
localization comes with an uncertainty up-to some meters.

As an alternative to GPS, Visual-Based Localization (VBL) [25] refers to
the set of methods that estimate the 6-Degrees of Freedom (6-DoF) pose of a
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camera, that is, its translation and rotation with respect to the map of the navi-
gation environment, solely relying on the information enclosed in the images. In
robotics, VBL is commonly used to solve the kidnapped robot problem, whereas
in a SLAM pipeline is part of a re-localization module which allows recovering
the global position in the map after the tracking is lost or for loop-closing [37].
Visual localization methods can be categorized either as indirect methods, also
called topological or appearance-based, or direct methods, sometimes referred to
as metric [25]. On the one hand, indirect methods formulate localization as an
image-retrieval problem, providing a coarse estimate of the position depending
on the granularity of the locations with an image saved in the database [4,40].
On the other hand, direct methods cast localization as a pose regression prob-
lem and try to deliver an exact estimate of both position and orientation for
each new view [18,31,34]. Thus, direct localization is more appropriate for robot
navigation where the operating environment is confined to a well-defined area
and we expect to obtain a pose as precise as possible when the tracking is lost.

In this paper, we address the problem of metric localization using as a feature
extractor a neural network proposed by the recent research on efficient architec-
tures. In particular, we adopt MobileNetV2 [29] previously trained for the image
classification task, as a starting point to build a model for regressing the pose.
This choice permits to achieve a trade-off between competitive performance and
computation speed. As follows, our contribution is two-fold: from one side, as
the best of our knowledge, this is the first attempt to use MobileNetV2 archi-
tecture for the localization problem. Moreover, the proposed approach is faster
than main state-of-the-art works, while preserving the localization performance.
The rest of the manuscript is organized as follows. In Sec. 2, a short review
of methods proposed in the recent literature for visual localization is proposed.
The methodology, the loss function and the overall structure of the deep learn-
ing model are described in Sec. 3. Subsequently, the experimental setup and the
obtained results are shown in Sec. 4. Ultimately, Sec. 5 presents the conclusion
and future research directions.

2 Related Work

In this section, we review the methods that have been proposed in the recent lit-
erature of visual localization techniques. Currently, the approaches to the direct
localization problem go into three distinct directions: one is to rely on matching
2D image features with 3D points of a structured model of the environment; an-
other is to use classic machine learning algorithms to learn the 3D coordinates
of each the pixels in order to establish the matches; lastly, we can provide an
end-to-end differentiable solution to regress the 6-DoF pose using Convolutional
Neural Networks (CNNs). Then, we briefly summarize the most efficient neural
network architectures for image processing, and the main applications of CNNs
to the field of UAVs navigation.

Local feature-based localization is a family of methods usually supported by a
3D reconstruction of the environment created through a Structure-from-Motion
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(SfM) pipeline [33]. Hence, they establish correspondences between 2D features
extracted from a query image, such as SIFT [23] or ORB [28], and those as-
sociated with the 3D points in the model. Finally, the pose of the camera is
recovered providing the set of putative matches to a Perspective-n-Point (PnP)
algorithm [14] inside a Random Sample Consensus (RANSAC) loop [27].Irschara
et al. [13] use methods of image retrieval in conjunction with a compressed scene
representation composed of real and synthetic views. Li et al. [22] propose to
invert the search direction using a prioritization scheme. Sattler et al. [30] en-
hance the 2D-3D matching with a Vocabulary-based Prioritized Search (VPS)
that estimates the matching cost for each feature to improve the performances,
and combine the two opposite search directions [31]. Despite being very precise
when correct correspondences are found, the main drawbacks are the computa-
tional costs, which does not scale with the extent of the area to cover, and the
need to store a 3D model [25].

Scene Coordinates Regression methods use machine learning to speed up the
matching phase by directly regressing the scene coordinates of the image pixels.
Shotton et al. [34] train a random forest on RGB-D images, and formulate the
localization problem as an energy function minimization over the possible camera
location hypothesis. Hence, they use the Kabsch algorithm [15] inside a RANSAC
loop to iteratively refine the hypothesis selection. The downside of these methods
is the need for depth maps and of high-resolution images to work well.

Deep Learning has been adopted only recently to solve the direct localization
problem. Following the success of neural networks in many computer vision
tasks ranging from image classification to object detection [21], PoseNet [18] is
the first work in which CNNs are applied to the pose regression task. In par-
ticular, they reuse a pre-trained GoogLeNet [36] architecture on the ImageNet
dataset [5], demonstrating the ability of the network to generalize to a com-
pletely different task thanks to transfer learning [6]. In later works, Walch et
al. [39] extend PoseNet with LSTM [9] to encode contextual information, and
Wu et al. [41] generates synthetic pose to augment the training dataset. Subse-
quently, Kendall et al. [16] introduce a novel formulation to remove any weighting
hyperparameter from the loss function. Though these single CNN methods for
pose regression were not able to surpass the average performance of classical
approaches [32,34], they demonstrate themselves capable of handling the most
visually difficult frames, being more robust to illumination variance, cluttered
areas, and textureless surfaces [39].

Recently, Multi-Task networks [38,26] demonstrate that by leveraging aux-
iliary task learning, such as Visual Odometry or Semantic Segmentation, the
neural network improves on the main task of global localization. As a result,
they were able to outperform the state-of-the-art of feature-based and scene
coordinate regression methods.

Since the current approaches rely on very deep network architectures, e.g.
GoogLeNet, our proposal is to replace them with a more efficient architecture
in order to produce a more appealing solution for the deployment on a UAV.
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Improving on the previous generation of “mobile” networks [10], MobileNetV2
[29] combine the depthwise separable convolution with a linear bottleneck layer
drastically decreasing the number of operation and weights involved in the com-
putation of the output. In this work, we show that this shallower network is able
to run faster than other single CNN solutions without sacrificing the localization
accuracy.

3 Methodology

Inspired by previous works on direct visual localization exploiting CNNs [16,41],
our aim is to estimate the camera pose from a single RGB image by adding a
regressor fed by the output of the network chosen as a base feature extractor.
In the following subsections, we describe the representation of the pose vector,
the loss function used to learn the task of pose estimation, and the architectural
details of the deep learning model.

3.1 Pose Representation

The output for each input image consists of a 7-dimensional vector p, represent-
ing both translation and rotation of the camera w.r.t. the navigation environ-
ment:

p = [x,q] (1)

where x ∈ R3, represents the position in the 3D space, and the orientation
q ∈ R4 is expressed as a quaternion.

Our choice of using a quaternion over other representations for the orientation
is motivated by the fact that any 4-dimensional vector can be mapped to a
valid rotation by scaling its norm to unit length. Instead, opting for rotation
matrices would require to enforce the orthonormality constraint, since the set of
rotation matrices belongs to the special orthogonal Lie group, SO(3) [16]. Other
representations, such as Euler angles and axis-angle, suffer from the problem of
periodic repetition of the angle values around 2π.

However, Wu et al. [41] proposed a variant of the Euler angles, named Eu-
ler6, to overcome the issue of periodicity in which they regress a 6-dimensional
vector e = [sinφ, cosφ, sinθ, cosθ, sinψ, cosψ]. Notwithstanding in [41] the au-
thors showed empirically an improvement over quaternions, we decided not to
express the rotation as Euler6 for a closer comparison with the majority of the
state-of-the-art approaches. Anyway, in Section 4 we also compare our solution
with the aforementioned work.

3.2 Loss Function

In order to train the network for the task of pose estimation, we minimize the
difference between the ground truth pose, [x,q], associated with an image I
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in the training dataset, and the pose predicted by the deep learning model,
[x̂, q̂]. Hence, the loss function aims to optimize the two components of the pose,
translation and orientation, denoted by Lx and Lq respectively:

Lx(I) = ‖x− x̂‖p (2)

Lq(I) =

∥∥∥∥q− q̂

‖q̂‖

∥∥∥∥
p

(3)

where with the notation ‖·‖p we refer to the p-norm. In our experiments, we
apply p = 2, which corresponds to the Euclidean norm. Besides, the predicted
quaternion is normalized to unit length to ensure a valid rotation representation.

Even though the Euclidean norm is a valid metric for 3D translation vectors,
in the case of quaternions it does not take in consideration that the valid rotations
lie on the unit 3-sphere, and that mapping from unit quaternion to the SO(3)
group is 2-to-1 [11]. However, Kendall et al. [18] argue that, as the difference
between the predicted and ground truth quaternions decreases, the Euclidean
distance converges to the spherical distance.

Since the two components, Lx and Lq of the loss function that we want to
minimize is on a different scale, a weight β is added to the quaternion error in
order to balance the backpropagated gradient magnitude [18]. In light of this,
the loss function is defined as:

L(I) = Lx(I) + β · Lq(I) (4)

In order to remove any hyperparameter from the loss function, [16] replaced
β with two learnable variables, ŝx and ŝq, in the formulation of the loss with
homoscedastic uncertainty :

L(I) = Lx(I) · exp(−ŝx) + ŝx + Lq(I) · exp(−ŝq) + ŝq (5)

Homoscedastic uncertainty captures the uncertainty of the model relative to
a single task, for example, treating the regression of translation and rotation as
two separated tasks, while learning multiple objectives at the same time. For
this reason, is useful in multitask settings to weight the loss components based
on the different measurement units relative to the particular task [17]. In our
experiments, we initialized ŝx and ŝq to 0.5 and 0.1 respectively.

3.3 Deep Learning Model

In order to build a small network for localization, we decided to adapt the novel
MobileNetV2 [29] by adding fulling connected layers to regress the pose; for this
reason, we refer to our proposed network as Mobile-PoseNet. MobileNetV2 is
an architectural design for neural networks that leverages efficient convolution
operations, namely the depthwise separable convolution, and a novel layer, the
linear bottleneck with inverted residual block, to produce a light weight network
with optimized computation time.
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(a) Branching of the fully connected
layers.

(b) Architecture of MobileNetV2. For more details
on its structure refer to the original paper [29].

Fig. 1: Mobile-PoseNet’s architecture.

The depthwise separable convolution reduces the number of parameters and
of Multiply-Adds (MAdds) operations by decomposing the standard convolution
operation with N filters of size DK ×DK ×N into two steps: depthwise convolu-
tion and pointwise convolution. Having an input with M channels, the depthwise
convolution is composed of M filters of size DK × DK × 1, operating on each
mth input channel separately. Then, the pointwise convolution applies N filters
of size 1 × 1 ×M to combine the channels into new features [10]. In addition,
MobileNetV2’s authors reformulate the original residual block [8], which is used
to support the propagation of the gradient through deep stacked layer. On the
one hand, they remove the non-linearity at the shortcut connected layers, where
the residual function is computed, so that more information is preserved. On
the other hand, they apply the shortcut connections directly at the bottleneck
instead of the expansion layer; in this way, the authors assert, the memory foot-
print can be drastically reduced. Ultimately, MobileNetV2 allows tuning a width
multiplier α in order to choose the preferred trade-off between accuracy and size
of the network. We set α = 1 to obtain a network with 3.4M parameters and
300M MAdds, resulting in a sensible shrinking compared to GoogLeNet with
6.8M parameters and 1500M MAdds.

Thus, we perform an average pooling on the output of MobileNetV2 last
convolutional layer, deriving a vector of 1x1280 dimension that contains an high-
dimensional feature representation of the input image. Therefore, we connect a
fully connected layer of 2048 neurons followed by a ReLu6 [20] non-linearity,
which maps the features to the desired 7-dimensional pose vector. ReLu6, as
stated by the authors, helps to learn a sparse feature representation earlier in
the training. More importantly, it can be exploited to optimize fixed-point low-
precision calculations [10].

Furthermore, to improve the generalization capability of the network, we
add a Batch Normalization layer [12] before the non-linearity. Hence, this layer
learns how to shift the mean and variance of the input batches after normalizing
them. In addition, we adopt Dropout [35], which is an alternative form of acti-
vation regularization that reduces overfitting and indirectly induces sparsity by
dropping random neurons at training time.
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Ultimately, we test the branching technique proposed in [41] to regress the
translation and rotation vectors separately (see Figure 1a). Hence, we symmet-
rically split the neurons into two groups of 1024, so that we maintain the same
total number intact. Additionally, we experiment with a third version of the net-
work that keeps a common fully connected layer for translation and rotation of
1024 neurons and splits in half the rest forming two groups of 512. Our purpose
is to compare the benefits of jointly learning position and orientation, that is,
sharing the information enclosed in the common weights, against training two
individual branches for each task. Therefore, we distinguish these design choices
by referring to the first as symmetric layer split (SLS), and to the latter as half
layer split (HLS).

4 Experiments and Results

In this section, we evaluate our proposed solutions on two datasets, 7-Scenes [34]
and Cambridge Landmarks [18]. The first includes indoor images, whereas the
second one contains pictures captured in an outdoor urban environment. They
have been chosen to demonstrate how the proposed method behaves in scenarios
showing opposite characteristics.

4.1 Datasets

(a) Chess (b) Fire (c) Heads (d) Old Hospital (e) Street

Fig. 2: 7-Scenes and Cambridge Landmarks sample images

7-Scenes [34] is a dataset for RGB-D designed to benchmark relocalization
methods. Thus, it was collected through a Microsoft Kinect camera in seven in-
door scenarios, which contains in total more than 40k frames with 640x480 reso-
lution and an associated depth map. The challenging aspects of this dataset are
its high variations in the camera pose in a small area generating motion blur, per-
ceptual aliasing, and light reflections. These unique characteristics make the pose
estimation particularly difficult for methods relying on handcrafted features, es-
pecially in views where textured areas are not clearly distinguishable [39].

Cambridge Landmarks was introduced in [18], and currently provides six
outdoor scenarios. It contains more than 10k images, sampled from a high-
resolution video captured by a smartphone. The ground truth labels were gen-
erated through an SfM reconstruction of the environment. Visual clutter caused
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by the presence of pedestrians and vehicle plus a substantial variance in the
lighting conditions are the main challenges posed by this dataset.

All the scenes in both datasets are subdivided in sequences, depending on
the trajectories from which they were generated. In fact, each of the sequences
shows a different perspective of the surrounding environment. Hence, for training
and testing our model, we use the same partitioning of the datasets as provided
by the respective authors. Thus, we create a separate “dev” set for evaluating
the models during the training phase by taking a random sample of 10% of the
frames from all the sequences in the training set. Anyway, we prefer to form the
“dev” set from trajectories that are unseen in the training set in case we found
a number of sequences high enough for a specific dataset scene; the purpose is
to estimate more accurately the performance on the test set and choose wisely
the parameters and stopping criteria for training.

4.2 Experimental Setup

The network is implemented using the TensorFlow-Slim open-source library [1,2].
We initialized MobileNet with weights pre-trained on the ImageNet dataset, and
the fully connected layers using the method proposed by He et al. [7]. Before
training, we normalize the images by computing an RGB image that represents
the standard deviation and the mean of a particular dataset scene. Then, for
each image, we remove the mean and divide by the standard deviation in order
to center the data and uniformly scale the pixel intensities. Dropout rate is set to
0.1, which means only 10% of the neurons are turned off during training, whereas
Batch Normalization momentum is set to 0.99. We optimized the models using
Adam [19] with a learning rate α = 1e−4, β1 = 0.9, and β2 = 0.999, on batches
of size 128 shuffled at each new epoch, using an NVIDIA Tesla V100 16GB.
Thus, we let the training last until the convergence of the loss is reached on the
“dev” set.

4.3 Discussion of the results

In Table 1, we compare the results with three other CNN-based localization
methods: PoseNet [18], PoseNet2 [16] with learned σ2 weights in the loss, and
BranchNet [41], which represents rotations with Euler6 and splits the network
in two branches in order to regress the position and the orientation separately.
Whereas we benchmark our result against PoseNet [18] because it pioneered the
approach to the direct localization problem using CNNs, we share with the other
methods some architectural choices. On the one hand, we adopt the homoscedas-
tic uncertainty introduced by [16] to balance different loss components; on the
other hand, we split the network layers following the work of [41], who showed
significant improvements.

In general, it is evident that Mobile-PoseNet is able to outperform PoseNet
and BranchNet in most of the scenarios. Interestingly, the more complex loss
function is the main factor that gives us an advantage over these methods and
is able to fill the initial gap between the two base networks. In fact, we noted
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Table 1: Median localization error on the 7-Scenes and Cambridge Landamarks
datasets. The large error reported in the Street dataset is possibly due to the
repeated structure of the buildings and to the wide covered area.

Area or
Volume

BranchNet[41]
Euler6

PoseNet[18]
β Weight

PoseNet2[16]
Learn σ2 Weights

Mobile-PoseNet
(proposed)

Mobile-PoseNet
HLS

(proposed)

Mobile-Posenet
SLS

(proposed)

7-Scenes

Chess 6m3 0.20m, 6.55◦ 0.32m, 8.12◦ 0.14m, 4.50◦ 0.17m, 6.78◦ 0.18m, 7.27◦ 0.19m, 8.22◦

Fire 2.5m3 0.35m, 11.7◦ 0.47m, 14.4◦ 0.27m, 11.8◦ 0.36m, 13.0◦ 0.36m, 13.6◦ 0.37m, 13.2◦

Heads 1m3 0.21m, 15.5◦ 0.29m, 12.0◦ 0.18m, 12.1◦ 0.19m, 15.3◦ 0.18m, 14.3◦ 0.18m, 15.5◦

Office 7.5m3 0.31m, 8.43◦ 0.48m, 7.68◦ 0.20m, 5.77◦ 0.26m, 8.50◦ 0.28m, 8.98◦ 0.27m, 8.54◦

Pumpkin 5m3 0.24m, 6.03◦ 0.47m, 8.42◦ 0.25m, 4.82◦ 0.31m, 7.53◦ 0.38m, 9.30◦ 0.34m, 8.46◦

Red Kitchen 18m3 0.35m, 9.50◦ 0.59m, 8.64◦ 0.24m, 5.52◦ 0.33m, 7.72◦ 0.33m, 9.19◦ 0.31m, 8.05◦

Stairs 7.5m3 0.45m, 10.9◦ 0.47m, 13.8◦ 0.37m, 10.6◦ 0.41m, 13.6◦ 0.48m, 14.4◦ 0.45m, 13.6◦

Cambridge Landmarks

Great Court 8000m2 — — 7.00m, 3.65◦ 8.68m, 6.03◦ 8.12m, 5.60◦ 8.60m, 5.58◦

King’s College 5600m2 — 1.92m, 5.40◦ 0.99m, 1.06◦ 1.13m, 1.57◦ 1.20m, 1.79◦ 1.14m, 1.53◦

Old Hospital 2000m2 — 2.31m, 5.38◦ 2.17m, 2.94◦ 3.11m, 4.11◦ 2.13m, 3.73◦ 2.62m, 4.21◦

Shop Façade 875m2 — 1.46m, 8.08◦ 1.05m, 3.97◦ 1.39m, 6.37◦ 1.55m, 5.64◦ 1.73m, 6.19◦

St. Mary’s Church 4800m2 — 2.65m, 8.48◦ 1.49m, 3.43◦ 2.34m, 6.23◦ 2.16m, 5.97◦ 2.18m, 6.01◦

Street 50000m2 — — 20.7m, 25.7◦ 22.9m, 36.3◦ 22.6m, 32.6◦ 22.9m, 36.2◦

poor performances applying the β weighted loss to MobileNet during experi-
ments. Instead, PoseNet2 obtains the best results in all the benchmark scenes
apart from Old Hospital in which Mobile-PoseNet HLS is able to surpass the
translation error by a small margin. However, we note that PoseNet2 uses frames
with a resolution of 256x256, whereas our models require an input of 224x224
pixel images. Moreover, we do not augment the dataset trough random crops of
the original images as in the competing approaches. Performing such operation
would add an additional regularization effect, thus helping the generalization ca-
pabilities of the model and resulting in better performances overall. Besides, we
observe that Mobile-PoseNet perform better on scenes spread on smaller areas
overall. In contrast, Mobile-PoseNet HLS competitively gains higher scores in
the scenarios of Cambridge Landmarks with an elevated spatial extent.

Finally, we run the network on a TegraTX2 to test the latency, that is,
the time interleaving from the submission of one frame into the network to the
moment of receiving the estimated pose. Hence, using the integrated TensorFlow
tool for run-time statistics, we note that MobileNet-PoseNet takes on average
17.5ms of run time, while the classic PoseNet 24ms.

At last, we want to remark that the proposed solution employs a base fea-
ture extractor that carries half the number of parameters, in contrast to the
aforementioned state-of-the-art methods with which we compare. This factor
contributes to the lower accuracy of the output.

5 Conclusion

In this paper, we introduce an efficient Convolutional Neural Network to solve
the localization problem. In particular, we adapt MobileNetV2 with regressor
layers to estimate the 6-DoF pose and propose a double modification of the
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Fig. 3: Cumulative probability distribution of the localization error.

architectural design by symmetrically splitting the neurons in the fully connected
layer for learning independently the orientation and rotation. Comparison with
state-of-the-art methods using a single CNN for direct pose regression shows that
our method achieves competitive results, in spite of using a shallower network
for feature extraction. In fact, contrary to the other approaches that make use of
GoogLeNet, we employ MobileNetV2, which results in a faster and more suitable
localization solution for being deployed on-board of a UAV.

Notwithstanding the empirical results in favor of using the Euclidean norm
to compute the quaternion error, for future works, we will investigate the com-
bination of quaternion with a different metric in the loss function or to adopt a
totally different representation for the rotation.
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