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We show that the entropy production in small open systems coupled to environments made of extended
baths is predominantly caused by the displacement of the environment from equilibrium rather than, as
often assumed, the mutual information between the system and the environment. The latter contribution is
strongly bounded from above by the Araki-Lieb inequality and therefore is not time extensive, in contrast to
the entropy production itself. We confirm our results with exact numerical calculations of the system-

environment dynamics.
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The emergence of thermodynamic irreversibility from the
reversible dynamics is one of the most important issues of
thermodynamics and statistical physics. In the context of
quantum (classical) systems, the problem arises from the fact
that the natural candidate for the definition of the thermo-
dynamic entropy, namely, the von Neumann (Shannon)
entropy, is invariant under the unitary dynamics. In
Ref. [1] this problem has been addressed by considering
the joint unitary evolution of the system and the environment
(which may consist of one or several baths) starting from the
initially uncorrelated state pgz(0) = ps(0) ® pi'; the den-
sity matrices pg and pgg represent here the state of the system
and the joint state of the system and the environment,
respectively, whereas p}' represents the Gibbs state of the
environment. It was shown that the entropy production can
be expressed as 6 = D[pgx(t)|ps(t)ps ], where D(p|lo) =
Tr[p(Inp — Ino)] is the relative entropy (here and from here
onwetake ky = A = 1). The second law of thermodynamics
o > Oresults then from non-negativity of the relative entropy.

A closer look shows that the entropy production can be
further decomposed into two terms [1-3],

o = Igp + Dpp ()|, (1)

where [ gg=>S¢+Sg—Sgr is the mutual information between
the system and the environment and Dlpg(t)|[p%] is
the relative entropy between the original and the final
state of the environment; here S; = —Tr(p;Inp;), with
i € {S,E,SE}, is the von Neumann entropy. The first
term describes the system-environment correlation,
whereas the second one corresponds to the displacement
of the environment from equilibrium.

The natural question arising is how these terms contribute
to the entropy production. It was often held [4—12] that the
relative entropy D|pg(1)||p5] is negligible for large thermal
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reservoirs. Based on this assumption, some recent papers
even directly identified the entropy production with the
mutual information between the system and the environment
[6,10]. In this Letter we show, however, that in small open
systems driven out of equilibrium the opposite is the case.
This is because the system-environment mutual information
is strongly bounded from above by the inequality [13]

ISE < 2 min{SS, SE}, (2)

which is a corollary of the Araki-Lieb inequality (Theorem 2
in Ref. [14]). The maximum entropy of the system is equal to
In N, where N is the dimension of the Hilbert space of the
system, which implies /g < 2In N. This bound is particu-
larly strong in systems consisting of a few discrete energy
levels, which are often studied in the context of quantum and
stochastic thermodynamics [ 15—18]. The mutual information
IgE, therefore, is not a time-extensive quantity but rather
saturates after a certain time, as already demonstrated
numerically in Ref. [19]. In contrast, the entropy production
is time extensive in systems with a continuous current
flow between the baths or systems driven by some external
force. We conclude, therefore, that in such a case the
entropy production is related mainly to the relative entropy
contribution Dlpg(?)||p%]. This observation is further
demonstrated by exact numerical calculations of the sys-
tem-environment dynamics. We also provide a physical
interpretation of the relative entropy contribution by showing
that, for environments made of large baths, it may be
attributed to generation of the mutual information between
initially uncorrelated degrees of freedom in the environment.

General considerations.—To support our claims, let us
first briefly rederive the main results of Refs. [1-3]. We
consider the open quantum system described by the
Hamiltonian
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Hp(r) = Hy(t) + Hp + V (1), 3)

where H(t), Hp, V(t) are the Hamiltonians of the system,
environment, and the interaction between the system and
the environment, respectively. The Hamiltonian of the
environment is assumed to be time independent. For
environments made of several baths, the Hamiltonian H
can be further decomposed as A = > o H,, where H, is
the Hamiltonian of the bath a.

Let us now consider the unitary evolution of the joint
system starting from the initially uncorrelated state

pse(0) = ps(0) ® pif = ps(O) @ [ (4)

Here
P2l = 771 e Pallampala) (5)

is the grand canonical Gibbs state of the bath @, where f,
and p, are the inverse temperature and the chemical
potential of the bath, respectively. N, is the particle number
operator and Z, = Tr{exp[—f,(H, — u.N,)]} is the par-
tition function. Since the unitary dynamics does not
change the von Neumann entropy of the joint system,
i.e., Sgg (1) = Ss£(0), the mutual information between the
system and the environment in the moment ¢ can be
expressed as

ISE:ASS+ASEZO7 (6)

where AS = S(7) — S(0). The entropy change of the
environment can be further decomposed as

ASg = =Trlpg(t) Inpg(1)] + Tr(pg' Inpi')
== BuQu = Dlpx(1)[p5). (7)

Here the term

_ZﬁaQa = _Tr[pE(Z) ]npzq] + Tr(p%q In p2Q) (8)

is the heat-related contribution to the change of ASg, with

A

Qa = —TI’{ [pa(t) - pgq](Ha - /’laer)} (9)

being the heat delivered to the system from the reservoir
within the time interval [0, 7]. The second term

Dlpp(D)lpg'] = Trlpg(t) Inpg(1)] = Tr[pg(t) Inpl] - (10)

is the aforementioned relative entropy between the original
and the final state of the environment.

Inserting Eq. (7) into Eq. (6) and rearranging terms, one
obtains the second law of thermodynamics

0=ASs— > Qo = Ise + Dlpe(t)llpF] 2 0. (11)

This equation relates the standard thermodynamic defini-
tion of the entropy production to the information-theoreti-
cal quantities Isz and D[pg(1)||p5]. As discussed before,
when the entropy production significantly exceeds 2 In N it
has to be related mainly to the relative entropy contribution:
6~ . —Ba0u ~ Dlpp(1)|lp5]. This conclusion may be
surprising because it was often held [4—12] that the term
Dlpg(1)||p5] is of second order to the change of the density
matrix of the environment Apy = pp(t) — pi' and therefore
can be neglected for large thermal reservoirs. However,
whereas such order-of-magnitude arguments are valid for
numbers, they should be applied with care when consid-
ering complex multielement structures, such as density
matrices; this is because a sum of many small contributions
can still be significant. As a matter of fact, a non-negligible
value of the relative entropy contribution for an extended
bath has been already numerically demonstrated in
Refs. [20,21], however, without noting the generality of
this result; see also a similar observation of a nonvanishing
contribution to ASy not related to heat in Ref. [22].
Furthermore, the Araki-Lieb inequality can be easily
rewritten as ASy + Sg(7) — Sg(0) < 2S5(7); thus ASg <
Ss(0) 4+ Sg(r) < 21In N. This implies that the change of the
von Neumann entropy of the environment is also strongly
bounded from above and possibly much smaller than the
heat-related contribution — ", $,0,, which we later dem-
onstrate numerically. Therefore, the change of the von
Neumann entropy of the isothermal environment cannot be
identified with the heat taken from the environment by the
relation AS; = —Q/T, as done in equilibrium thermo-
dynamics. Instead, as follows from Eq. (7), the identity
—Q/T = ASg + Dpg(1)||p%] holds, which clearly shows
that the reservoir has been pushed away from equilibrium.
Relative entropy and interenvironment correlations.—
This raises the question of the physical meaning of the
relative entropy. Here we show that it can be, at least
partially, attributed to generation of the correlation between
initially uncorrelated degrees of freedom in the environ-
ment. For simplicity, let us focus on environments made of
noninteracting baths described by Hamiltonians of the form

ﬁl(l = Zeakclkcak’ ( 1 2)
k

where clk (cq) 1s the creation (annihilation) of the particle
(boson or fermion) with the energy €. The thermal state of
the environment can be then written as
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i = [Tt = [zatetmaicn, (13
ak ak

where pS = Z-1 exp[—f(€ar — Ha)CopCar) is the equilib-
rium density matrix of a single level with Z, =
Tr{exp[—ﬁa(eak—ya)clkcak]}. The relative entropy of
the environment can be further decomposed into two
non-negative contributions as

D[pE(t)HpeEq] = Depy + Lenys (14)
where
Dew = > _Dlpu(1)I03] (15)
ak

is the sum of relative entropies of the levels, and

Ienv = Zsak - SE (16)

ak

is the mutual information describing the intraenvironment
correlations, with Sy, = —Tr(py Inpy) being the von
Neumann entropy of the level ak [for derivation of
Eq. (14), see the Supplemental Material [23]]. We later
show numerically that the second contribution may become
dominant for large baths. Furthermore, in the Supplemental
Material [23] we demonstrate that, at least for noninteract-
ing systems, the relative entropy of a single level
D(pu(1)||p51] is of second order in the change of the level
occupancy. Thus, the contribution D.,, should vanish in
the thermodynamic limit in which the population of each
level is only weakly perturbed. However, since the order-
of-magnitude analysis can be sometimes misleading (as
shown before), this latter statement should be taken
with care.

Example: Noninteracting resonant level.—We demon-
strate our results on the example of a single fermionic level
(denoted as d) coupled to two fermionic baths @ € {L, R},
each containing K discrete energy levels ak with
ke {1,...,K}. Generation of the mutual information in
such a system has been already analyzed in Ref. [19],
however, without connection to thermodynamics. The
Hamiltonian of the system reads

I:I:edcjicd+Z€akczkcak—|—Z(takc:;cak—l—H.C.), (17)
ak ak

where i,j € {d,L1,...,LK,RI1,...,RK} denote the sites,
clT (c;) is the creation (annihilation) operator of the particle
on the site i, and 7, is the tunnel coupling between
the central level and the site ak. We further take the
energy levels of the baths to be equally spaced, with
€qisr1 = €qr + Ac, where Ae = W/(K — 1), with W being
the bandwidth of the reservoirs. We also express the

tunneling elements as 7, = \/I[,A¢/(27), where T, is
the coupling strength to the bath a.

The exact description of many-body systems is usually
not possible since the rank of the density matrix, and thus
the computational complexity, increases exponentially with
the size of the system. However, since the Hamiltonian (17)
is quadratic, the state of the system can be fully described
by the two-point correlation matrix C, with the matrix
elements defined as [31]

Cij(1) = Trle] c;pse(n)]. (18)

The rank of the correlation matrix 2K + 1 increases only
linearly with the size of the system, which makes the exact
description of the system numerically tractable.

The evolution of the correlation matrix is described by
the equation [24]

C(t) = e™MC(0)e~ M, (19)

where C(0) is the initial state and H is the matrix containing
the Hamiltonian elements H,;;, with H;; = €; and Hy g =
M, o = tax (we rederive this equation in the Supplemental
Material [23]). The initial correlation matrix can be
expressed as

C(O) = diag[nd(()), Nrpqyeees Mg NRTS oo 1y nRK], (20)
where n,(0) is the initial occupancy of the central level and
Nk = flPa(€ax — Ho)] are the thermal occupancies of the
sites ak, with f(x) being the Fermi distribution.

The von Neumann entropy of the subsystem G can be
calculated as [19]

S¢g==Y [CoInC,+(1-C,)In(1-C,)],  (21)

o

where C, are the eigenvalues of the reduced correlation
matrix Cg defined within the subspace G; for example, Cf is
the submatrix of the correlation matrix containing all the
elements C;; with i, j # d. In particular, the von Neumann
entropy of a single level i equals just S; = —C;InC;; —
(1 =C;)In(l —=Cy;) and Sg = S,. The heat taken from the
bath « is expressed as

>

Qa - = Z [Ckaka(t) - Cka,ka(o)](eka - /’ta)’ (22)

k=1

which is equivalent to Eq. (9). Using Eq. (7), one may
further calculate the relative entropy of the environment
as Dlpp(1)||pE'] = =BLQ1 — PrOr — ASE.

Let us now analyze the entropy production resulting
from the current flow induced by the difference of chemical
potentials (voltage) V = u; — up. In Fig. 1(a) we present
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the time evolution of the analyzed quantities for a given
number of sites K = 256. One may observe that the mutual
information is saturated after a time 7~ 1 and does not
exceed 2 In2, in agreement with the Araki-Lieb inequality.
As shown in Ref. [19], the bound I¢z < 2In2 becomes
tight for high voltages V. Furthermore, the change of the
von Neumann entropy of the environment ASy saturates in
a similar way. In contrast, the entropy production o
significantly exceeds 2In2 and consists mostly of the
relative entropy contribution D[pg(1)||p%']. For t~2 the
system reaches the asymptotic long-time state in which
the entropy production, heat, and relative entropy increase
monotonically. This long-time state is approximately
equivalent to the steady state calculated in the thermody-
namic limit; due to the finite size of the baths, the entropy
production is, however, finally saturated for ¢ ~ 80 (see the
Supplemental Material [23]).

In Fig. 1(b) we display different contributions to the
relative entropy D|[pg(1)||p%]. For a given size of the bath,
the dominant contribution to the relative entropy, and thus
the entropy production, is the mutual information between
degrees of freedom of the environment /., ; the term D,

@,

6 F

[&)]

0
(b) 6}

FIG. 1. (a) The entropy production o, the heat-related contri-
bution to the entropy production —fQ = —f(Q; + Qr), the
relative entropy of the environment D[pg(1)||p%], the system-
environment mutual information /g, and the change of the von
Neumann entropy of the environment AS as a function of time for
ng(0)=0,T, =Tr=1/2, pp =—pug =1, fp =P = =3,
€= (k=1)Ae=W/2,Ae = W/(K — 1), W = 20, and K = 256.
(b) Contributions to the relative entropy D[pg(1)]|pg] for param-
eters as in (a).

is, however, also non-negligible and time extensive. As
shown in the Supplemental Material [23], the contribution
I, is related both to the correlation between the baths and
the intrabath correlations.

In Fig. 2, we present the dependence of the analyzed
quantities on the size of the bath for a fixed time r = 5. One
can observe a sharp transition at K =~ 18, which results from
a crossover in the dynamics of the system: for Kz 18 the
entropy production grows monotonically at t = 5, whereas
for K S 18 it has already saturated due to the finite size of
the bath (see the Supplemental Material [23] for details). In
particular, for K18 the entropy production, the relative
entropy of the environment, and the system-environment
mutual information become independent of the number of
sites. This shows that the importance of the contribution
Dlpg(1)||p%] to the entropy production is not related to the
size of the bath. However, the contributions of the terms
D.,, and I, to the relative entropy of the environment
change with the size of the bath. For KX 18 the term D,
decreases with the number of sites; this may be described
by a power law D, o« K™ with x ~ 0.38. One may expect,
therefore, that in the thermodynamic limit the term D,
vanishes and the mutual information of the intraenviron-
ment correlations /,, becomes the predominant contribu-
tion to the entropy production. This can be explained in the
following way: The term Dy, is related to the deviation of
the level occupancies (diagonal elements of the correlation
matrix C) from the equilibrium ones, which becomes
negligible when the baths become large (i.e., the occupan-
cies stay thermalized during the system evolution). On the
other hand, the mutual information /,, is associated with
the creation of two-point correlations (c| ¢ ;) (off-diagonal
elements of the correlation matrix) that are not present in
the thermal state; these correlations are responsible for the
entropy production.

Final remarks.—We reemphasize that our Letter focuses
on the situation when the entropy production is time

10
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FIG. 2. The thermodynamic quantities as a function of the
number of sites K for + = 5 and other parameters as in Fig. 1.
Results denoted by points. Lines shown for eye guidance.
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extensive, such that it significantly exceeds 2InN it the
long-time limit. Whenever this assumption holds, the result
relating the entropy production to the displacement of the
environment from equilibrium D[pg(7)||p%], rather than the
system-environment mutual information /g, is general and
solid (since the Araki-Lieb inequality is universally valid).
Therefore, although our numerical analysis focuses on
the system with a time-independent Hamiltonian, this
result holds also for externally driven systems, as well
as setups described within the repeated interaction frame-
work [4,32-36] (in which the environment is made of
independently prepared units interacting sequentially with
the system). When, on the other hand, the entropy pro-
duction is saturated at a value smaller or comparable to
2In N (which may be true, e.g., for systems undergoing
thermalization [36] or short interaction quench [21]), the
relative importance of the terms D{pz()||p%'] and Iz may
be not given by any general rule; instead, it may depend on
details of the system-environment dynamics. This will be
the topic of future study.

It is also not entirely clear whether in the thermodynamic
limit the relative entropy of the environment can be always
identified with the mutual information between degrees of
freedom in the environment. Whereas it appears to be true
for noninteracting baths composed of many levels contin-
uously coupled to the system, the situation can be different
for interacting environments or setups described within the
repeated interaction framework. Therefore, our Letter may
motivate further studies to better understand the mecha-
nisms controlling the different contributions to the dis-
placement of the environment from equilibrium. These
issues, beside their fundamental importance, may also
have implications for engineering environments to control
dissipation.
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SUPPLEMENTAL MATERIAL

This appendix contains in the following order:
e Derivation of Eq. (14) from the main text [Sec. 1]

e Order-of-magnitude analysis of the term Dgyy
[Sec. 2]

e Derivation of Eq. (19) from the main text [Sec. 3]

e Comparison with the results obtained in the ther-
modynamic limit for the steady state [Sec. 4]

e Analysis of the scale dependence of the transient
dynamics [Sec. 5]

e Analysis of the mutual information between the
baths [Sec. 6]

1. Derivation of Eq. (14)

Here we derive the splitting of the relative entropy into
contributions Depy and Ie,y. Let us first rewrite Eq. (10)
from the main text as

Dlpet)llpE] = Tr [pp(t) npp(t)] — Tr [pp(t) In o]
+ Z Tr [pak (t) In Pak (t)} - Z Tr [pak (t) In pak(t)] )
ak ak
(S1)

where we just added and subtracted
Yok T [pak(t) In par(t)]; here, as in the main text,
Pak 1s the reduced density matrix of a single level. Then,
Eq. (14) from the main text can be readily obtained by
splitting the relative entropy as

D[pE(t)Hp?] = Deny + Lenv, (82)
with

Lony = = D Tr [par(t) In par (8)] + Tt o5 (t) In pi (1))
ak

> Sak — Sk, (S3)
ak

* krzysztof.ptaszynski@Qifmpan.poznan.pl

and
Deny = Y Tr [par(t) In pa ()] — Tr [pp(t) In p35]
ak
= " T [pak(t) In pak ()] = D Tr [par(t) In p3]
ak ak

=" Dlpar(t)lpZL]- (S4)
ak

One can verify the validity of the second step in Eq. (S4)
step by noting

Tr [pp(t) In p3]
= - Z ﬂaTr [pE(t) (ga - ,erNa>:| - IHH Za
= —Ba Y nak(t)(€ar — o) = 0 [ | Zax

ak ak

= —Fa Z(Eak = pa)Tr [Cchakl)ak(t)} - Z In Za,
ak

ak
=S T () 3. (55)

ak

where n,g(t) is the occupancy of the level ak in the mo-
ment ¢.

2. Order-of-magnitude analysis of the term Deny

Here we analyze the magnitude of the term Dy, for
small changes of the bath level populations. Let us first
notice that [in analogy to Eq. (7) from the main text] the
change of the von Neumann entropy of a single level can
be written as

ASak = _BaQak - D[pak(t)szch (SG)

where Qur = —Angk(€ak — fto) is the heat taken from
the site ak, with Angg, = nak(t) — nh, being the change
of the level occupancy nq(t) with respect to the equilib-
rium occupancy ng . For fermionic levels without coher-
ences between the Fock states the von Neumann entropy
of the level ak clearly depends only on the level occu-

pancy:

Sak = Mok InNar — (1 — ngr) In (1 — ngg) - (ST)


mailto:krzysztof.ptaszynski@ifmpan.poznan.pl

The change of the von Neumann entropy can be then
written as

ASar == (Angk + nos ) In (Angy +nit) (S8)
— (1= Angr —nig)In (1 — Angr — niyp)
+nogInntg + (1 —nip)In(1—nih)

e
nq

1—
=Ang In (5’“) +0(An2,)
n

ak
= — BaQar + O(AR2,),

where in the second step we applied the Taylor expan-
sion around Ang,; = 0 and in the third step we inserted
the Fermi distribution ni} = f[Ba(€ak — pta)]. Compar-
ing Eq. (S6) with Eq. (S8) one finds that D[pak(t)|pos]
is in the second order in the change of the level popu-
lation, and thus becomes negligible for small An,. For
baths consisting of many levels coupled to the system the
change of the level population will be indeed small. This
explains why the contribution De,, decreases when the
size of the bath increases (Fig. 2 in the main text).

For bosonic systems the situation is less clear. How-
ever, it was proved [1] that for initially thermal nonin-
teracting bosonic systems the von Neumann entropy of a
single level is also fully given by its population and reads

Sock = (1 =+ nak) h’l(l + nak) — Nak lnnak:' (Sg)

Repeating the same procedure as for fermionic systems
and applying no: = np[Ba(€ak — fta)], Where np(z) is
the Bose-Einstein distribution, one arrives at the same
conclusion.

One should be aware that the change of the level popu-
lation Ang does not have to be always small. For exam-
ple, for systems described within the repeated interaction
framework [2] the change of state of the unit interacting
with the system can be significant when the interaction
between the system and the unit is strong; in such a case
the contribution De,, may be important.

3. Derivation of Eq. (19)

Here we rederive the equation of motion for the correla-
tion matrix [Eq. (19) from the main text], which was pre-
viously applied in Ref. [3]. Let us consider the evolution
of the correlation matrix induced by a generic fermionic
quadratic Hamiltonian of the form

I:I = ZIHJ‘Z'CEC]'. (S].O)

ij

The dynamics of a single matrix element can be described
as

dC;; = Tr (c;rcjdtpSE) = —iTr (c;fcj [ﬁ,pSED
= —1 ZHlkTr (cjcj [clcl,pSED
ki
= iZHlkTr [(c,tclc;rcj — cjcjczco psE}
ki
= iZ’HlkTr |:((SZ‘ICLC]' — ijcjcl) pSE}
ki

= iZHikckj — iZCilHlj =1 [H7C]ij . (S11)
k l

Here in the fourth step we used the cyclic property of the
trace, in the fifth step — the commutation properties of
the creation and annihilation operators, and in the last
step we applied the definition of the matrix product. As
a result, the evolution of the correlation matrix is given
by the formula resembling the equation of motion for
operators in the Heisenberg picture

d,C =i [H,C). (S12)

Using this analogy, for a time-independent Hamiltonian
Eq. (S12) can be solved as

C(t) = etC(0)e (S13)

which is Eq. (19) from the main text.

4. Comparison with the thermodynamic limit for
the steady state

The correlation matrix formalism considered in the
main text is confined to systems with finite baths. Here
we demonstrate, however, that the asymptotic long time
heat currents calculated using this method converge to
the steady state currents calculated in the thermody-
namic limit by means of the Landauer-Biittiker trans-
mission formalism. Within the latter approach the heat
current flowing to the lead « for a noninteracing system
attached to two fermionic leads is expressed as [4, 5]

. * dw
Gorn= [ G20 elw) - fal@),  (514)
where T(w) is  the  transmission  function,

fa(w) = f[Ba(w — pa)] is the Fermi distribution of
the lead o, A, =w — py, and Ag = pr — w [the differ-
ence of signs in Ay and Apg follows from the fact that
Eq. (S14) is formulated for the current flowing from the
left to the right]; here the subscript “TR” refers to the
transmission formalism. The transmission function of
the nointeracting resonant level reads [6]

I (w)lr(w)
(w = ea)? + [Tr(w) + Tr(W))* /4

T(w) = . (S15)
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FIG. S1. Heat current calculated within the transmis-
sion matrix formalism (solid lines) and the correlation ma-
trix formalism (dots) as a function of pgr for nq(0) =0,

t=25, o0t=0.05, FL:FRZI/Q, pur =1, Br = pPr =3,
€ak = (k—1)Ae —W/2, Ae=W/(K—-1), W =20 and
K = 256.

where I', (w) is the energy-dependent coupling strength
to the lead a. Here, as in the main text, we apply the
boxcar-shaped coupling strength of the form

Ty —W/2<w<W/2
Pa(w) = { 0 otherwise :

Within the correlation matrix formalism the heat cur-
rent can be calculated as

2 o Qoz(t + 5t) — Qa(t)
Qa,CM - 5t )

(S16)

(S17)

where Q,(t) is the integrated heat calculated using
Eq. (22) from the main text and 0t is some small time
interval (we choose 0t = 0.05); here the subscript “CM”
refers to the correlation matrix formalism.

Comparison of the results is presented in Fig. S1. As
one can clearly observe, both formalism agree well which
confirms the relevance of the results from the main text
for the thermodynamic limit.

5. Scale-dependence of the transient dynamics

Here we analyze how the finite size of the baths af-
fects the transient dynamics of the system. As Fig. S2
shows, for a short time the heat delivered to the baths
follows the same track independently of the number of
sites; the same is true for the occupancy of the central
level. However, after a certain time, which depends on
the number of sites, the heat saturates and exhibits ir-
regular oscillations; this is a consequence of the finite size
of the bath. Also the level occupancy diverges from the
“regular” trajectory. This explains the sharp transition
of the calculated thermodynamic quantities as a function
of the number of sites in Fig. 2 in the main text: at t =5

t

FIG. S2. The heat-related contribution to the entropy
production baths —8Q = —B(QL + Qr) (a) and the occu-
pancy of the central level ng (b) as a function of time
for different number of sites K, nq(0) =0, 'y =T'r =1/2,
/-LL:_MR:17 /BLZ/BR:/B:37 eak:(k_l)Ae_W/27
Ae=W/(K —1) and W = 20.

80F

60

40F

-BQ

201

FIG. S3. The heat-related contribution to the entropy pro-
duction baths —8Q = —B(Qr + Qr) as a function of time for
different number of sites K and other parameters as in Fig. S2.

the dynamics has already reached the saturation thresh-
old for K 5 18, whereas for K g 18 the dynamics still
follows the regular behavior corresponding to the steady
state. Asshown in Fig. S3, for a sufficiently large number
of sites in the bath the monotonous, linear increase of the
heat is observed for times much longer than the duration
of the initial transient state. This further demonstrates
that the applied method, although confined to systems
with finite baths, is well applicable to describe the steady
state behavior of the system.



FIG. S4. Contributions to the mutual information Ie,, as
a function of time for K = 256 and other parameters as in
Fig. S2.
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FIG. S5. Contributions to the mutual information Ie,. as a
function of the number of sites K for ¢ = 5 and other param-
eters as in Fig. S2. Results denoted by points, lines shown for
eye guidance.

6. Correlation between the baths

Here we show that the mutual information of the intra-
environment correlations is the result of both the corre-
lation between the different baths and the intra-bath cor-
relations. To demonstrate this, let us add and subtract
Yo Sa to Eq. (S3), where S, = —Tr(pq Inp,) is the von
Neumann entropy of the bath a. As a result one obtains

Ienv = lres + ZIO“ (818)

where

Ircs = Z Sa - SE» (819)

is the mutual information between the baths, whereas

I, = Zsak - Sou
k

is the mutual information between degrees of freedom in
the bath a.

Figure S4 shows different contributions to the mutual
information I, as a function of time for a given number
of sites K = 256. As one can see, the correlation between
the baths and the intra-bath correlations are of similar
order of magnitude and grow monotonously with time.
Figure S5 demonstrates, on the other hand, the depen-
dence of these contributions on the size of the bath for a
fixed time ¢t = 5. As one can observe, the mutual infor-
mation between the baths I..s becomes scaling invariant
for K Z 18. In contrast, contributions due to the intra-
bath correlations, as the mutual information I, itself,
grow with the number of sites, which is due to decrease of
the contribution Dgyy (see Fig. 2 in the main text). We
finally note that the correlations between the baths have
been previously studied in Refs. [7-9], however, without
connection to thermodynamics.
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