
Automated Fault Tolerance Augmentation in Model-Driven Engineering for CPS

Tingting Hua,∗, Ivan Cibrario Bertolottib, Nicolas Naveta, Lionel Havetc

aUniversity of Luxembourg – Faculty of Science, Technology and Communication, 6 Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
bCNR – National Research Council of Italy, IEIIT, c.so Duca degli Abruzzi 24, I-10129 Torino, Italy

cRealTime-at-Work (RTaW), 4 Rue Piroux, 54000 Nancy, France

Abstract

Cyber-Physical Systems are usually subject to dependability requirements such as safety and reliability constraints. Over the
last 50 years, a body of efficient fault-tolerance mechanisms has been devised to handle faults occurring at run-time. However,
properly implementing those mechanisms is a time-consuming task that requires a great deal of know-how. In this paper, we
propose a general framework which allows system designers to decouple functional and non-functional concerns, and express non-
functional properties at design time using domain-specific languages. In the spirit of generative programming, functional models
are then automatically “augmented” with dependability mechanisms. Importantly, the real-time behavior of the initial models in
terms of sampling times and meeting deadlines is preserved. The practicality of the approach is demonstrated with the automated
implementation of one prominent software fault-tolerance pattern, namely N-Version Programming, in the CPAL model-driven
engineering workflow.

Keywords: Cognification, Model-driven engineering, Fault-tolerance, Industrial cyber physical systems, Domain-Specific
Languages

1. Motivation

Context of the paper. Cognification is the introduction
of knowledge into a process to boost its efficiency and rele-
vance [1]. Cognification has been at the heart of the ongoing
digital revolution with the aim to replace (or for the least com-
plement) intellectual labor, in a similar way as the industrial
revolution was about replacing physical labor by machines and
processes. Like pointed out in [1], cognification does not im-
ply the use of artificial intelligence. It starts by applying the
know-how gathered by human designers.

Model-Based Software Engineering (MBSE) is an enabling
technique towards this direction. And it is steadily gaining ac-
ceptance in the design of Cyber-Physical Systems (CPS) [2, 3].
Using models as main artifacts in the design possesses key ad-
vantages like offering an always up-to-date specification of the
system under design, the possibility to perform early-stage val-
idation/verification, and to generate code from the models. All
this helps increase both productivity and quality. For a long
time, MBSE only dealt with functional concerns, i.e. what the
system does. Instead, it overlooked non-functional require-

∗Corresponding author. University of Luxembourg – Faculty of Science,
Technology and Communication, 6 Avenue de la Fonte, L-4364 Esch-sur-
Alzette, Luxembourg. Tel.: (+352) 46 66 44 5859, Fax: (+352) 46 66 44
35859.

Declarations of interest: none

Email addresses: tingting.hu@uni.lu (Tingting Hu),
ivan.cibrario@ieiit.cnr.it (Ivan Cibrario Bertolotti),
nicolas.navet@uni.lu (Nicolas Navet),
lionel.havet@realtimeatwork.com (Lionel Havet)

ments [4] like real-time, energy, security and dependability ob-
jectives, which have become increasingly essential in the de-
sign of CPS. This limitation of MBSE has been acknowledged
and partially addressed, for instance, in the context of real-time
control systems in [5, 6].

CPS such as automotive and Avionics systems need to keep
delivering their functionality in the presence of run-time faults.
Even though some faults can be avoided by following a proper
MBSE design flow, or removed by including fault detection and
fault removal mechanisms in the system, they can not be com-
pletely prevented. The adoption of fault tolerance mechanisms
is a proactive quality assurance method, especially needed for
safety-critical components of a CPS [7, 8, 9]. Fault tolerance
is usually achieved by introducing redundancy in software or
hardware. Thanks to the increasing use of code generators, the
final code to be deployed on the target platform can often be
automatically generated from validated models. This requires
taking into account and addressing non-functional properties in
the early design phase, at the model level.

Among the non-functional requirements, dependability, and
especially safety and reliability, are identified as difficult ones
to fulfill with MBSE [4]. Many works such as [10, 11] have
been proposed to model and assess the dependability of CPS,
in the context of MBSE. But few [12] have been targeted at
enhancing the dependability at the design time by incorporat-
ing fault tolerance mechanisms, in particular in an automated
manner. The Authors of [12] proposed a model-based design
framework for fault-tolerant automation systems. But it mainly
focused on code generation. Moreover, it didn’t take into ac-
count software design faults, which need to be handled with

Preprint submitted to Computer Standards & Interfaces January 14, 2020

more complex fault tolerance methods, such as N-Version Pro-
gramming (NVP). In this work, we propose a general frame-
work, which automates the “augmentation” of a model into a
functionally equivalent model that meets additional dependabil-
ity objectives.

Decoupling functional and non-functional concerns. This
work relies on the principle that, especially in the field of criti-
cal systems, it is possible and beneficial in terms of system en-
gineering to decouple functional and non-functional concerns.
The idea is not novel, for instance interlocking systems cur-
rently used in the French railways have been designed in this
manner two decades ago. First, a proof of functional correct-
ness is obtained on a model [13]. Then, the execution plat-
form is designed to meet the assumptions of the model, for
instance, in terms of temporal behavior and how input/output
channels operate. The functional behavior of the component
will remain correct on any platforms meeting the model as-
sumptions, thus easing re-use and portability. After functional
correctness is validated, the possibility and capability to express
non-functional concerns on top of the functional models are es-
sential to integrate them in the design and evaluate their impact
on functional correctness. Works strengthening the expressive
power of modeling languages in this respect will be discussed
in Section 2.

Descriptive versus prescriptive models. Both descriptive
and prescriptive models are found in MBSE for CPS. In [14],
the author discusses the fundamental difference between de-
scriptive and prescriptive models. Prescriptive models are suffi-
ciently precise to define the execution semantics of the models,
that is, how exactly they will execute. For instance, a prescrip-
tive model will set the scheduling parameters of a set of soft-
ware components. Descriptive models, on the other hand, are
meant to assist in the understanding, design and implementation
of a system, in sharing always up-to-date information among
stakeholders. But they do not have to state how models should
execute. They are usually starting incomplete and are enriched
along the development process.

Domain-specific modeling languages. As pointed out
in [14], prescriptive models are not a universal solution, one
reason being that they tend to impose design choices too early
in the design phase and contain too much low-level information.
We believe it is however possible to mitigate these limitations
with the use of high-level domain-specific modeling languages
(DSML) that abstract as much as possible implementation de-
tails, while preserving a complete semantics of execution. The
latter property means that besides the validation of functional
correctness, the designer can perform early-stage verification
of non-functional properties. For instance, real-time execution
properties can be verified by performing schedulability analysis
on the model defining the execution semantics.

Cyber-Physical Action Languages. This study adopted
a DSML for CPS, namely the Cyber-Physical Action Lan-
guage (CPAL) [15]. It is the cornerstone of a MBSE design
flow developed since 2012. It has been inspired by a vari-
ety of successful approaches for critical systems design such
as Promela [16, 17] and synchronous languages [18]. And it
has been built upon a few important underpinning principles

shared with other modern DSLs for CPS like Mbdeddr [19] and
MITA1. These languages feature high-level constructs (e.g., na-
tive support of automata), I/O abstractions and the possibility to
rely on additional dedicated internal DSLs, such as the one for
dependability mechanisms described in this work. The main
use cases of CPAL in the industry have been in the design of
critical embedded networks [20, 21], while it has been used in
the academia for teaching and research purposes. Regarding
the latter, the CPAL project is targeted at exploring the possi-
bilities and addressing the limitations of DSMLs in the context
of “cognifying” MBSE [1].

Contributions of the paper. Cyber-Physical Systems are
usually subject to dependability requirements such as safety
and reliability constraints. Over the last 50 years, a body of
efficient fault-tolerance mechanisms has been devised to han-
dle faults occurring at run-time. However, properly implement-
ing those mechanisms is a time-consuming task that requires
a great deal of know-how and it is usually error-prone. Our
work aims at capturing the expert knowledge and integrating it
into the MBSE design flow. In this paper, we propose an auto-
mated way to augment prescriptive models specified in DSML
with fault-tolerance features, so as to enhance the dependabil-
ity of the modeled CPS. More generally, this work explores
the extent to which supporting non-functional properties can
be achieved in an automated manner by means of model trans-
formation (MT). Specific attention is paid that the augmented
model remains correct not only in the functional domain, but
also with respect to the relevant set of non-functional properties
(e.g., sampling times and deadlines). The proposed technique
is illustrated with one of the prominent fault-tolerance patterns,
namely N-Version Programming (NVP, see [22, 23]).

The plugin-based, model-to-model transformation frame-
work developed for this study is available in open source2 under
the GNU AGPL-3.0 license. It can be freely reused by anyone,
for instance to perform design-space exploration, possibly also
adapting it to other modeling languages.

Outline of the paper. Section 2 provides an overview of the
related work. Then, the fault-tolerance augmentation frame-
work is described in terms of its software architecture and
implementation choices in Section 3. The application of the
framework to NVP is presented in Section 4, while Section 5
and 6 discuss the run-time behavior of the NVP-augmented
model with respect to the original model, by means of two case
studies. Finally, conclusions and perspectives are drawn in Sec-
tion 7.

2. Related Work

Many effort such as [11, 24, 25] have been invested into
strengthening the expressiveness of a modeling language re-
garding dependability, including fault tolerance concepts, with
the goal to facilitate dependability analysis. The Authors
of [11] defined fault-tolerance patterns with the Architecture

1https://projects.eclipse.org/projects/iot.mita
2 https://github.com/minimap-xl/nhc

2

Analysis and Design Language (AADL) to assist dependability
analysis at the architecture level. However, when constructing
AADL models with dependability features, system designers
need to instantiate a selected fault-tolerance pattern and cus-
tomize it as needed. Instead, this paper proposes a general
framework that automates this process by MT for CPAL mod-
els. Similarly, the Authors of [24] extend Simulink models
to support the specification of common fault-tolerance design
patterns, such as voting, comparison, and sparing, so that the
extended models can tolerate hardware faults. However, the
proposed approach still requires manual effort to extend the
models. Work presented in [25] extends UML/Marte with a
unified and complete dependability profile, which covers fault-
tolerance concepts as well. However, as the others, no automa-
tion support is provided.

Directly related to this work is [26] that proposes a MT
workflow to automate the verification of dependability prop-
erties from the CHESS modeling language that is based on
UML/Marte. With respect to [26], this work is concerned with
augmenting models with dependability features while retaining
the ability to accomplish non-functional analyses on both the
original and the transformed model, be it in a simulation en-
vironment or on the actual target. For example, both schedul-
ing and code coverage analysis shall still be applicable to the
transformed model, in order to properly assess MT suitability,
overhead, and performance in a specific application scenario, as
will be discussed in Sections 5.2 and 5.4, respectively. To this
purpose, it is critical that MT operates within the boundaries of
the CPAL language, for which the analysis tools were originally
designed and on which they operate.

Sometimes, a specialized form of MT has been adopted to
incorporate useful features in the design process, like aspect-
oriented programming in a component-based system [27]. In
other cases, MT has been seen as a way of translating a model
from one language to another, but without augmenting it in any
way [28]. Generally, the goal is to exploit the capability of
other modeling languages or their toolkits to perform special-
ized tasks, for instance model checking [29]. Instead, a key
point of the work presented here is its ability to augment a
model with automatically generated code to meet user-specified
dependability properties.

MT is indeed a key issue in MBSE that can be performed at
different levels of abstraction. Typically MT is done on UML
diagrams [30] but then without the executability, or at the oppo-
site end of the spectrum, on the actual code [31] but then with-
out the transformation being captured in the models. Likewise,
the tool described in [32] applies MT to a model of a distributed
system described by Petri nets to automatically generate the C
code of an I2C-based communication layer for it. However, the
dissimilarity of the source and target languages prevents MT
from being applied more than once in sequence and binds the
tool itself to accomplish a very particular, ad-hoc goal. Instead,
the framework proposed in this paper enables users to apply
one or more fault-tolerance patterns to the same model multiple
times, for instance to perform design space exploration.

Model and tool integration, as well as separation of concerns,
are important CPS research topics that have been addressed in

very recent related work. Among those, [33] describes an in-
tegrated design and simulation platform for evaluating the re-
silience of a transportation network to cyber-attacks. Simi-
larly, [34] discusses OpenMETA, an experimental design au-
tomation tool suite in the automotive domain. Even though both
works highlight the significance of integrated platforms, akin
to the CPAL project, in rapid and effective CPS development.
Neither of them includes model transformation (MT) features.
In other words, they support design space exploration mainly
through the composition, rather than the transformation or the
augmentation, of existing models.

In the past decades, various MBSE frameworks have been
proposed to facilitate the modeling, simulation, validation and
code generation of CPS. Simulink and SCADE are the most
successful ones among them. Simulink models are purely func-
tional. To support the analysis of non-functional properties
such as real-time, [35, 36] proposed different frameworks to
extend Simulink models and enable the specification of sched-
ulers, tasks, and messages. Instead, those are built-in concepts
in CPAL. Even though MT is supported in Simulink via the
control system toolbox, it is limited to the conversion among
various control model types or between discrete and continu-
ous time representations. Instead, the MT framework proposed
in this paper can be applied to dependability augmentation of
CPS models and beyond, thanks to its generality. Regarding
dependability, work presented in [37] translates Simulink state-
flow models into timed automata supported by the Uppaal ver-
ifier. It then relies on the verification capability of Uppaal to
identify design faults missed by the Simulink Design Verifier
and Simulink Polyspace. The verification outputs serve as ref-
erence to correct Simulink models. System dependability is im-
proved by eliminating design faults at the development phase.

SCADE [38] also supports the MDD flow, in which graphi-
cal models are used to specify mathematically accurate control
models and capture the data flow among various components.
The final code to be executed on the target platform is gener-
ated from the models with the certified code generator KCG. It
ensures that the generated code is compliant with most safety
standards. Simulation in SCADE is based on the generated
code, either in an emulated environment or on the target plat-
forms. Instead, the CPAL project supports three modes: direct
model simulation, model execution on the target platforms, as
well as code generation and execution on the target platforms.
Direct model simulation offers the opportunity to examine sys-
tem behavior under diverse scenarios. SCADE is extending its
support for multicore architectures [38], using an annotation-
based approach, while modeling and timing simulation for mul-
ticore systems are already supported in CPAL. Most MT work
related to SCADE is to transform models in other DSMLs (e.g.
SysML, Simulink) to SCADE, or vice versa. Instead, this work
focuses on in-place MT.

The Eclipse Modeling Framework (EMF) [39] is widely used
in MBSE, thanks to its large ecosystem and tooling set, includ-
ing those for model transformation. Models/meta-models are
specified with the Ecore modeling language, which is compliant
with the essential Meta-Object Facility (eMOF) specification

3

Automated Augmentation Layer

Plugins Table

D

Model Transformation Plugins

MT Templates

C

Model Transformation Utilities
Layer

B

AST Representation LayerA
AST data types and node
creation functions shared

with, and used by, the
CPAL parser

Duplicate and free an AST,
apply a MT function to its
nodes, perform pattern-

matching, …

Instantiate and customize a
MT template, or “skeleton,”

based on user-model
information

Layer Main Purpose

AST Dumper

Parse dependability
annotations and apply the
corresponding plugins to

the user model

Figure 1: Layered structure of the MT framework.

standardized by OMG. The proposed framework is not built
with EMF and MT tools from its ecosystem due to practical
considerations. Indeed, otherwise, they need to be included as
part of the proposed framework and delivered to end users. This
may make the proposed framework unnecessarily fat. More im-
portantly, this introduces extra dependencies of the MT process
on one or more specific external tools, which limits the flex-
ibility of the proposed framework and has the potential risk
of making it vulnerable to tool updates. Hence, the proposed
framework is implemented in C, based on a well-known inter-
mediate representation, namely the abstract syntax tree (AST).
On a side note, as discussed in [40, 41], the advantages of us-
ing a specialized MT language are becoming less obvious, with
respect to general purpose languages.

3. Architecture design and Implementation

The MT framework proposed in this work has been designed
according to a modular four-layer architecture depicted in Fig-
ure 1 and implemented as about 8000 lines of C code. Indi-
vidual layers will be discussed in the following, in bottom-up
order. Even though the framework will be applied and illus-
trated taking the NVP dependability pattern as an example in
Sections 4–6, its internal structure is general and does not de-
pend on assumptions specific to any particular pattern.

3.1. AST Representation

Model transformation is carried out by means of a CPAL-
to-CPAL translator, sometimes called a transpiler. As for in-
ternal representation, the MT framework is based on a syntax-
directed AST representation directly derived from the CPAL
grammar, in which AST node types are in direct correspon-
dence with grammar symbols. The AST representation layer
(layer A in Figure 1) thus provides functions to create individ-
ual AST nodes and bind them together. This choice offers sev-
eral prominent advantages:

a) it streamlines the development of MT plugins, through the
template mechanism described in Section 3.3, because tem-
plates can also be written in CPAL;

b) it enables the immediate reuse of the existing flex- and
bison-based CPAL lexer and parser;

c) it is amenable to a compact and efficient C-language im-
plementation without introducing any undue assumption on
which specific dependability patterns the tool is going to
handle.

Not less importantly, the AST is a language-independent rep-
resentation of the corresponding source model. For instance, an
AST node may represent an abstract variable declaration inde-
pendently from any concrete grammatical details of the declara-
tion itself. In a similar way, the AST enables the MT framework
code to manipulate relatively complex entities, like process def-
initions, regardless of the underlying modeling language.

Therefore, as long as one stays in the domain of proce-
dural languages, whose execution semantics are close to that
of CPAL, it is foreseen that the MT framework could be re-
targeted towards a different modeling language by modifying
this layer only, while leaving the AST representation unaltered.
As a consequence, the AST representation layer also shields
the layers to be discussed next against modeling language de-
pendencies.

Another important part of the AST representation layer is the
dumper, a software module that emits the CPAL source corre-
sponding to an AST as the last stage of MT. As a side bene-
fit of working at the CPAL level, it was possible to enhance
the human-readability of the code emitted by the dumper and
simplify source code comparisons, without additional effort, by
means of the standard CPAL code beautifier.

3.2. Model Transformation Utilities
The MT utilities layer (B in Figure 1) offers a set of generic

AST manipulation functions that upper layers can use as build-
ing blocks, regardless of the specific dependability patterns they
realize. Its design has been inspired by the AST optimizations
of gcc and includes a compact subset of the functions available
there. All functions in this layer are inherently recursive, as
they have to traverse the AST structure. One of their goals is
to shield the upper layers from the complexity and pitfalls of
recursion. Their typical level of abstraction is best illustrated
by an example. Among others, the layer provides the function:

int MT_Apply(AST *tree , enum ast_node_code type ,
char *name , mt_apply_f f, void *hl_cookie);

It recursively applies a functor f to all nodes of a given AST
tree that match a pattern specified by a node type and name,
as per a breadth-first traversal. The argument hl cookie points
to caller-defined state information, which is held for the whole
application and passed to each invocation of f. The advantage
of using MT Apply becomes evident when considering that f is
always invoked on one AST node at a time, regardless of AST
complexity. Additional functions allow f to escape from the
recursive descent and return a status indication to the top-level
caller of MT Apply, without delving into any details of how non-
local jumps work.

Also within this layer, MT Apply is used as a basis for more
complex MT functions, for instance:

4

int MT_Make_Unique(AST *tree , char *suffix);

This function makes all global objects in an AST tree

unique, by appending a unique suffix to their names, and re-
turns the number of AST nodes it has modified. This function is
useful to distinguish global objects in a dependability template
when the same dependability pattern is applied to diverse com-
ponents of a user model based on the same template, as better
illustrated in Section 4.2.

Its implementation is straightforward and basically consists
of a sequence of calls to MT Apply. Each call scans the AST
for a certain type of global object, without any filtering on the
name. The functor f passed to MT Apply synthesizes the new,
unique name and updates the AST node by invoking MT Rename,
another utility function in this layer. The hl cookie, which per-
sists across all calls to MT Apply, is used to propagate the suffix
downwards (from MT Make Unique to f) and the count of modi-
fied AST nodes upwards.

In turn, the MT Rename function:

void MT_Rename(AST *tree , char *old , char *new);

replaces an old top-level identifier with a new one in the AST
tree. Its implementation is based on MT Transform, a lower-
level variant of MT Apply on which MT Apply itself is based.
With respect to MT Apply, MT Transform supports finer control
of recursion rules, which determine on which AST nodes the
functor f will be invoked. This is necessary, in this case, to
properly implement language scoping rules. More specifically,
since the MT Rename function shall only operate on a top-level
identifier, its recursive descent along the AST must stop when
it would enter a portion of AST where the top-level identifier is
shadowed. This happens, for instance, when there is a parame-
ter or a local variable with the same name.

3.3. Model Transformation Plugins
Above the MT utilities there is a layer composed of multiple

MT modules, or plugins (C in Figure 1). Each MT plugin is
responsible for a specific kind of MT on the input user model.
All of them can accept arguments coming from the dependabil-
ity annotations (specified in the user model), which trigger the
execution of MT plugins and direct them to operate on specific
entities of the user model. For instance, an argument may indi-
cate which user process instance the MT plugin must transform.
More details about dependability annotations are given in Sec-
tion 3.4. In turn, a plugin is made up of two components: a
template, or skeleton, written in CPAL, and the MT code writ-
ten in C.

The skeleton contains the bulk of the transformed code, in
which the parts that depend on user model contents and that
must be specialized according to it are represented by place-
holders. On its part, the MT code scans the user model AST
and identifies the entities it shall operate on, based on its argu-
ments. Then, it turns to the AST of the skeleton, locates the
placeholders, and replaces them with the information extracted
from the user model AST. At the end of this process, which re-
sembles template instantiation in object-oriented languages, the
specialized skeleton becomes the MT plugin output.

The dual-language approach to MT plugin implementation
has several distinct advantages. Firstly, it greatly reduces the
number of AST nodes the plugin must synthesize from scratch
because most of the output AST can be copied from the AST of
the skeleton. Synthesizing AST nodes within a plugin is pos-
sible by means of the layer presented in Section 3.1. But it
must be done carefully to ensure the AST is still grammati-
cally correct. Instead, the template AST comes from parsing a
CPAL module and its conformance is therefore guaranteed by
construction. Moreover, since skeleton placeholders are them-
selves legal language entities, a skeleton can be probed with the
full suite of CPAL analysis and simulation tools while it is being
developed. As a result, this reduces MT plugins development
time and improves their quality.

This plugin-based architecture has the advantage of enabling
the reuse of a large fraction of the MT framework. This is be-
cause the code specific to a certain MT method resides just in
the corresponding plugin, whereas the other framework layers
only contain general-purpose code.

Even more importantly, this approach fits well in the MDE
paradigm outlined in Section 1 and adheres to sound software
engineering techniques because:

a) a skeleton that corresponds to a certain fault tolerance (FT)
technique represents a formally specified, but still human-
readable, design pattern [42] for that technique;

b) it drives the automatic MT process, thus ensuring the con-
sistency between the design pattern and the MT output;

c) it enables a clear separation between “what” the MT plugin
should provide (stated in the dependability annotation) and
“how” this goal is accomplished (realized by the plugin code
based on the skeleton).

For instance, the same MT plugin code can operate on differ-
ent skeletons depending on the execution target. In this way, the
implementation details of a FT mechanism can be tailored to the
target itself, while the plugin code is still target-independent.

This approach has the advantage of shielding novice users
from the low-level implementation complexity of the design
pattern because they will work only at the abstract annotation
level. At the same time, this does not prevent advanced users
from adapting design patterns according to their specific needs
by working at the skeleton level, but still without ever delv-
ing below CPAL language abstraction. Indeed, the expressive
power of CPAL ensures that plugins can have a broad range
of functionalities, without being limited in principle to special,
restricted application scenarios.

Lastly, the automatic application of design patterns also en-
hances model quality because both the pattern itself and its spe-
cialization (embodied by the MT plugin skeleton and code, re-
spectively) can be developed, thoroughly analyzed and tested
once, and then reused multiple times. Further information about
the dual-language approach will be given in Section 4 by means
of a case study involving the NVP dependability pattern.

3.4. Automated Augmentation Process
The augmentation process is implemented by the top layer

of the MT framework (D in Figure 1). Each MT plugin is reg-

5

Parsed user model

User
model

A

Dependability
configuration(s)

B

@dependability:nvp:…arguments… {}
…

Parsed config. A

Parsed config. B

Parser

Parser

Parser

Model
Trans.

Model
Trans.

MT A

MT B Fu
rth

er
 p

ro
ce

ss
in

g

1) User model
parsing

2) Parallel parsing/MT/
analysis of multiple

configurations

Figure 2: Parallel MT workflow.

istered in a configuration table that contains its name, the file
name of its skeleton, and three pointers to its MT code. Of
these, one points to the main MT method (also called driver)
while the other two indicate pre- and post-processing methods.

As a whole, the MT process is driven by dependability an-
notations. To ease the specification of various kinds of non-
functional aspects, the CPAL language incorporates a general-
purpose annotation system. For consistency, dependability an-
notations adhere to the same syntax. They can therefore be re-
garded as embodying an internal DSL for dependability, which
complies with its host DSL (CPAL itself in this case) and pos-
sesses adequate expressive power for the particular concern of
interest. More specifically, a dependability annotation is written
as:
@dependability:<MT_plugin >:<Arguments > {<Snippet >}

where <MT plugin> is the name of a MT plugin, <Arguments> is
a colon-separated list of plugin arguments, and <Snippet> is an
optional code snippet. <Snippet> is currently unused but avail-
able to further extend the internal DSL’s expressive power. An
example of annotation is given at the bottom left of Figure 2. As
outlined in the previous section, being declarative, the internal
DSL hides the details related to dependability mechanisms and
the MT process (namely the “how”) from the designers, letting
them focus only on specifying the “what”.

Depending on the specific dependability pattern being called
for, the use of a dependability annotation may or may not re-
quire further information or additional effort from the user. For
instance, the application of triple modular redundancy (TMR)
to a process does not. Indeed, in the latter case, MT will simply
instantiate the target process, which is already present in the
original model, in multiple identical copies. On the contrary,
using NVP requires the user to provide a total of N diverse ver-
sions of the target process, whereas only one version had likely
been defined in the original model.

Processing an annotation provokes the execution of a MT
plugin. Multiple annotations are honored in sequence using the
AST of the user model as initial input, and taking the output of
the previous annotation as input to the next. The plugin name
<MT plugin> mentioned in the annotation is first looked up in

the configuration table. Then, the plugin driver is called, with
the AST of the corresponding skeleton passed to it, together
with the input and output ASTs and any additional <Arguments>
found in the annotation, also in AST form. If the driver is about
to be called for the first time, the call is preceded by the invo-
cation of the plugin pre-processor. Similarly, the plugin post-
processor is invoked after processing all dependability annota-
tions, if the plugin has been used at least once.

For efficiency, a MT cache stores the AST of the plugin skele-
ton for possible reuse. In addition, although the automated aug-
mentation layer handles dependability annotations in sequence,
it supports multiple threads of control that operate concurrently
on different sets of annotations, possibly starting from the same
user model.

Although end users are ultimately responsible of identify-
ing the portion of their models to be augmented, pinpointing
suitable MT modules, and expressing their needs by means of
appropriate dependability annotations, the MT tool carries out
augmentation in a completely automatic way, without further
user intervention.

This approach is very favorable for productivity because
users can solely focus on the high-level dependability properties
their system must implement, without necessarily grasping all
the lower-level details of how they are practically realized. At
the same time, it also retains considerable flexibility. Indeed,
as described in Section 3.3, nothing prevents more advanced
users from adapting the standard design patterns provided by
MT plugins to their own specific requirements, by working on
their skeletons.

3.5. Model Transformation Workflow

The main program of the MT tool implements and coordi-
nates the whole MT workflow. As shown in Figure 2, it takes
a user model and a set of dependability configuration files as
input. Each configuration file contains a set of dependability
annotations, as specified in Section 3.4, and represents a de-
pendability augmentation scenario the user would like to apply
to the input model and investigate. Both the user model and
the configuration files are first parsed to acquire their contents
in AST form. Then, the tool activates the automated augmenta-
tion layer to apply each configuration to the user model. Finally,
all the output ASTs are converted back to CPAL by means of
the dumper described in Section 3.1, optionally beautified, and
saved for further processing.

Since the MT framework as a whole is thread-safe and sup-
ports concurrent execution, the tool may fork into multiple
threads, one for each scenario, in order to speed up the anal-
ysis. The same reasoning also applies to any further processing
to be performed on the transformed models, because the stan-
dard CPAL analysis tools support concurrent execution, too.
This is important from the user experience point of view, espe-
cially if design-space exploration is being performed by means
of automatic tools rather than by hand as the number of dis-
tinct dependability scenarios those tools generate may be very
large. A multi-threaded approach enables multiple scenarios to
be analyzed efficiently in parallel, and then compared. Note

6

also that, as a baseline case, when there is only one dependabil-
ity configuration to be evaluated, dependability annotations can
be embedded directly in the user model for convenience of use.

4. Model Augmentation with NVP

In this section, we apply the model-transformation frame-
work detailed in Section 3 to the augmentation of the N-Version
Programming dependability pattern.

4.1. N-Version Programming with an internal DSL
Software is particularly prone to design and implementation

errors. Such errors may not be tolerable in safety or mission
critical systems. NVP [22] is a proven effective mechanism that
targets such kind of errors and enhances system dependability
by increasing diversity and redundancy. More specifically, in-
stead of a single version of a software component, it requires
the software designer to provide N different implementations
(called member versions) that realize the same functional logic
so as to avoid common-mode faults. At run time, each mem-
ber version computes independently its own outputs based on
the same inputs. A decision algorithm, typically majority vot-
ing, determines the final outputs. Different actions can be taken
upon detection of a faulty member version: continue, recovery,
or even termination.

It is natural that member versions exhibit different complex-
ities, leading to variable execution times and jitters. This in-
creases the difficulty of assessing the suitability and impact of
adopting fault tolerance mechanisms, such as NVP, in real-time
systems. This concern can be partially addressed by exploring
the timing annotation capability offered by CPAL. Estimated
execution time and jitter can be specified for individual member
versions and the decision algorithm. And timing annotations
will be respected during simulation, when the NVP module is
assessed alone, or as a component of a more complex system.

Furthermore, thanks to the executability of CPAL models,
not only during simulation, but also on selected hardware plat-
forms, it is possible to collect the worst-case execution time of
a process on real hardware. This is provided as a built-in fea-
ture of the CPAL execution engine. Hence, realistic timings can
be collected and re-injected into the models so as to carry out
a more time-accurate simulation. This effectively complements
schedulability analysis, which usually demonstrates a certain
pessimism, to achieve a better understanding of the timing be-
havior of the system under design.

Typically, a control function in a CPS executes either period-
ically or upon the occurrence of events, computing commands
for actuators based on sensor inputs. This can be straightfor-
wardly modeled as a CPAL process that is either time-triggered
or event-triggered, and whose interface is identified by sensor
inputs and actuator outputs. For instance, the following code
statement instantiates a control function that runs every 100 ms,
whose functional logic is defined in Original Process, working
on two inputs and generating two outputs, which come from
and are to be used by other components of the modeled CPS.
process Original_Process: p1[100ms](input1 , input2 ,

output1 , output2);

The view of the functional architecture, that is, processes
and data flows among them, as produced by the CPAL devel-
opment environment is shown in the upper part of Figure 3.
Processes are represented by rounded rectangles, with the pro-
cess instance name and its activation pattern indicated within,
while arrowhead lines represent data flows. Regular rectangles
are for global variables, except buffered communication chan-
nels are shown with directed rectangles.

If a control function, e.g. the one represented by p1, is iden-
tified as a safety critical component by software designers, var-
ious fault-tolerance patterns can be applied to augment p1 and
enhance its dependability. Automated model augmentation can
be driven by dependability annotations specified either in a con-
figuration file, or directly in the user model as shown in Figure 2
and explained in Section 3.4. For simplicity, it is assumed the
following dependability annotation is indicated directly in the
user model, using NVP as an example.
@dependability:nvp:majority_voting:p1:Mem_1:Mem_2:Mem_3 {}

As we can see, this is a specialization of the general depend-
ability annotation outlined in Section 3.4, in which nvp indi-
cates a NVP transformation is desired for enchancing depend-
ability and also determines the MT plugin to be used for the
transformation. The arguments needed for NVP transformation
consist of the decision algorithm (e.g. majority voting), the
component of the user model to apply NVP transformation to
(e.g. the control function represented by process instance p1),
and the member versions (e.g. Mem 1, Mem 2, and Mem 3).

Among them, the decision algorithm is provided as part of
the NVP skeleton. More than one decision algorithm can be
made available and can be referred to in the annotation sim-
ply by their name. Contrarily, the member versions shall come
from the user model since their implementation is application
specific. For the purpose of demonstration, only three member
versions are indicated through their name in the above exam-
ple. No limit is imposed by the MT framework on the number
of member versions that can be specified in the annotation.

As mentioned in Section 3.4, more than one dependability
annotation can be specified for the same or diverse components
of the modeled system. For instance, a NVP dependability an-
notation can also be specified for another component, e.g. p2. If
they relate to the same model file, their occurrence determines
the order in which transformations will be performed. Depend-
ability annotations for other fault tolerance mechanisms can be
specified in a similar way, which together form the internal DSL
for dependability presented in Section 3.4.

4.2. Generative transformation

This section illustrates the key transformation steps imple-
mented in the MT driver for NVP, based on the example and the
dependability annotation given in Section 4.1. The output of the
MT process, namely the CPAL code of the transformed model
is not shown here for conciseness. Instead, the functional archi-
tecture view as seen in the CPAL development environment is
depicted in the lower part of Figure 3, with comments added to
highlight the key functionality of each individual component in
the transformed model.

7

Sensor inputs
Data acquisition

Data population

Member versions

Results aggregation Actuator commands

Decision algorithm

Figure 3: Functional architecture of the original model (upper part) and the transformed model (lower part) as seen in the CPAL development environment, with
comments highlighting the key functionality of each individual component.

The transformation for NVP is performed based on two AST
trees: the user model tree Tu and the NVP skeleton tree Tft.
The general principle is to expand and customize Tft based on
information about the component to be transformed (denoted
as C, and corresponding to p1 in our example) and the parame-
ters of the desired dependability pattern, both located in Tu. In
particular, the component to be transformed can be recognized
in the dependability annotation, and its functional behavior is
specified in the user model. Once customization completes, the
expanded NVP tree T ′ft is merged with Tu, by replacing the sub-
tree corresponding to the component to be transformed, namely
p1, with T ′ft. This process may be repeated multiple times, if
more than one dependability annotation has been indicated for
the same user model.

The key transformation steps for NVP are as follows: first of
all, inputs processed by C, e.g. the control function represented
by p1, need to be populated to member versions. This task is
delegated to an initiator process (as shown in Figure 3), which
is provided as part of the NVP skeleton. Importantly, the ini-
tiator inherits the activation patterns (both time-triggered and
event-triggered ones, if any) of p1. This ensures that the sam-
pling times of inputs with the transformed model will remain
the same as with the original user model. This is achieved by
first locating p1 in Tu, recognizing its activation patterns, copy-
ing the subtree corresponding to the activation patterns from Tu

and replacing the placeholders in the initiator template in Tft.
The decision algorithm, for example majority voting as indi-

cated in the dependability annotation, is executed within a ded-
icated voter process. The voter process is responsible of col-
lecting results generated by member versions and determining
the outputs of the NVP-augmented model based on the deci-
sion algorithm. A template of the voter is available in the NVP
skeleton as well. The dummy decision algorithm referred in the
voter process will be replaced by name with the one specified
in the annotation.

Inputs and outputs of C, such as input1, input2, output1,
output2 of p1, are passed as arguments to the initiator and the
voter respectively, by copying the corresponding AST nodes
from Tu to Tft where the initiator and the voter instance are.

This ensures that the augumented model works on the same
set of inputs and outputs as C. It is worth remarking that this
transformation step handles any number of inputs and outputs
in C.

The NVP skeleton also includes a standard template for
member versions, which contains a dummy subprocess dec-
laration and call. This subprocess determines the functional
logic of a member version. The template is instantiated once
per each member version cited in the dependability annotation,
with the dummy subprocess replaced by name with the user-
defined member version. Hence, in the case of p1, the tem-
plate should be instantiated three times, corresponding to the
three member versions indicated in the dependability annota-
tion, namely Mem 1, Mem 2 and Mem 3, as shown in the middle of
Figure 3. The subtree corresponding to the expanded templates
are then appended to Tft. In this way, an instance of the user-
defined member version is created and will be executed within
the expanded template at run time. Hence, the functional logic
is preserved as well.

The last step is to uniquely rename global objects in the ex-
panded NVP skeleton T ′ft, such as data types, function def-
initions, and variable declarations, with the utility function
MT Make Unique introduced in Section 3.2. This is because the
skeleton may need to be instantiated and customized multiple
times if NVP transformation is indicated for more than one
component of the same user model. If no renaming were ap-
plied, global objects with the same name would be defined more
than once after all NVP transformations, which would be erro-
neous. Unique renaming is achieved by using the process in-
stance name of C as suffix, e.g. initiator p1 as shown in Fig-
ure 3, in which the target process instance name p1 is appended
to the skeleton-derived base name initiator to obtain the full
process instance name.

Once the NVP skeleton expansion based on Tft is completed
for a dependability annotation, C in the user model (e.g. the
control function represented by p1) is replaced with its NVP-
augmented version by substituting the subtree corresponding to
C in Tu with the expanded T ′ft. The subtree corresponding to
the processed dependability annotation is removed from Tu as

8

well. It is common that C interacts with other components of
the modeled CPS, and hence, they are left untouched in Tu so
as to preserve their way of interaction.

It is worth noting that member versions and the voter are
both event-driven, with their execution triggered by input data
from the initiator and populated through the inter-process com-
munication channel, and by outputs computed by member ver-
sions and aggregated to the voter, respectively. Hence the sam-
pling time of the transformed model only depends on the initia-
tor. Last, the aforementioned generative transformation proce-
dure is standard for any user model, regardless of its functional
logic and complexity, as well as the way it interacts with other
components of the modeled system through inputs and outputs.
Hence, it can be implemented as an algorithm and can be fully
automated.

As demonstrated in Figure 3, in order to augment p1 with
NVP, namely, transforming it from how it looks like in the up-
per part of the figure to the lower part, end users only need to
specify the desired dependability pattern by means of a depend-
ability annotation, and the rest is automatically handled by the
framework. As shown in the figure, inputs/outputs as well as
timings are retained. p1 is replaced with three kinds of modules,
namely the initiator which inherits activation patterns and pop-
ulates inputs, the member versions which run the user-provided
control logic, and the voter which encapsulates the decision al-
gorithm.

4.3. Comparison with manual code development

Two distinct considerations can be brought forward to esti-
mate the amount of programming time and effort that could be
saved by using the MT framework described in this paper for
NVP, instead of developing equivalent code by hand.

The first one is related to the quantity of CPAL code in the
NVP skeleton. It currently consists of 252 lines and approxi-
mates the amount of additional code that programmers would
have to write, were they not using the MT framework. This def-
initely implies a significant development effort, considering the
conciseness of the CPAL language and the fact that the mod-
els of the two case studies to be discussed in Sections 5 and 6
comprise 353 and 328 lines of code, respectively.

In addition, when appraising manual code development, the
extra testing time and effort that stem from deploying newly
developed code, instead of instantiating a proven design pat-
tern, must also be taken into account. They are harder to quan-
tify exactly, but published literature states that typically testing
consumes more than 40% of the resources and a lead time of
15–50% of a software development project [43].

The second consideration involves the hand-written NVP im-
plementation outlined in [23], which is made up of about 1400
lines of C code. This figure gives an idea of the development
effort programmers would face if they opted for a lower-level
NVP implementation, rather than developing it in CPAL or by
means of automated MT.

In summary, these data corroborate the idea that savings
coming from automated MT are going to be significant, also in
terms of code quality, as discussed in Section 3. Although the

Figure 4: Logic of the chip temperature controller described as a FSM whose
transitions between states (solid rectangles) are triggered by Boolean conditions
that evaluate to true, or after a certain time spent in a continuous manner in a
state (screenshot from CPAL-Editor).

assessment has been performed based specifically on the NVP
pattern, there is no reason to believe that other patterns would
behave differently from this point of view.

5. Illustration: chip temperature control

In this section, the automated model transformation frame-
work is further illustrated with NVP augmentation applied to
a case study, namely a chip temperature controller design, to
demonstrate the properties preserved during the transformation
process.

5.1. Case study description

The controller under design maintains the temperature of a
chip, equipped with a heatsink (i.e., convection heat spreader)
and a fan, within a predefined range by controlling the fan
speed in discrete steps. Below a certain temperature thresh-
old (30 °C), the fan is idle. As soon as the temperature exceeds
the threshold, the fan is set to full speed. When the tempera-
ture falls below the threshold, the fan speed is set to half speed
for 10 s before going back to idle, unless the temperature ex-
ceeded the threshold again. In the latter case, the controller
immediately brings the fan back to full speed. The controller
includes a “forced” mode, which can be used to keep the fan at
full speed regardless of the temperature. The functional logic of
the controller is specified with the Finite State Machine (FSM)
shown in Figure 4, activated every 100 ms. Threshold crossings

9

Temperature
filter

Temperature
controller

Environmental
model

temperature temp_above

forced
mode

fan speed temperature

thermal
load

Figure 5: Abstract structure of the modeled CPS: sensing with the tempera-
ture filter; control through the temperature controller; actuation impact on the
environment.

are dampened by a hysteresis-based temperature filter, imple-
mented by another FSM not shown in the figure for simplicity.

The CPAL model of the temperature controller was originally
conceived to execute on a Cortex®-M4 NXP FRDM-K64F tar-
get and interact with a temperature sensor (thermistor) and a
12 V fan controlled by pulse-width modulation (PWM). For the
simulation experiments of this work, it was complemented by
an environmental model, which represents the thermal behav-
ior of a heatsink/fan combination and a heat source that sup-
plies a varying thermal load at an ambient temperature of 20 °C.
For the sake of illustration, the model considers natural and
forced convection as described in [44], but neglects radiative
heat transfer and the non-linearity of air flow velocity with re-
spect to fan speed.

This case study, even though intuitive, represents a classic
feedback control system. As depicted in Figure 5, the temper-
ature filter module, which models a sensor node, samples the
environment temperature every 100 ms, assesses if the prede-
fined threshold is exceeded or not, and notifies the temperature
controller accordingly. The temperature controller, which im-
plements the control logic demonstrated in Figure 4, determines
the actuator command. In other words, it sets the fan speed. De-
pending on the fan speed and the current thermal load, e.g heat
generated on the chip due to computation, the temperature goes
up and down. This is represented by the environmental model.

To improve the dependability of the modelled CPS, NVP
augmentation is applied to the temperature controller using the
MT framework. In the following, the CPAL model correspond-
ing to the system depicted in Figure 5 is referred to as the orig-
inal model, whereas the one augmented with NVP is denoted
the NVP-augmented model. Observation of key properties of
the NVP augmentation and the MT framework in general are
made, for what concerns both timing domain and value domain
correctness. Even though illustrated with the case study, the ob-
served properties apply whatever the model the NVP pattern is
applied to.

5.2. Timing domain correctness

As already illustrated in Figure 3, the NVP-augmented con-
troller model works on the same set of inputs and outputs as the
original model. At run time, its execution is driven by the ini-
tiator process as the member versions and the voter are purely
event-triggered. Hence, the sampling times of the inputs de-
pend only on the initiator, whose activation pattern is inherited

from the original controller model. Sampling times are thus re-
spected by the design of the NVP transformation.

The actuation times will differ because all member versions
plus the voter should be executed before actuation can take
place. Whether this departure from the initial timing behavior
raises issues depends on the dynamics of the controlled system,
the control law and its implementation. This is studied in Sec-
tion 5.3 for our case-study. If required, like classically done
in synchronous systems to offset temporal variabilities due to
scheduling and varying execution times [45, 46], it is possible
for both models (the original model and the NVP-augmented
model) to postpone the application of the control at a time that
ensures that member versions and voter have finished execut-
ing, for instance, immediately before the next activation of the
controller. With this latter implementation, referred to as “de-
ferred control application” in the following, the original and
augmented models behave identically from a timing point of
view.

While NVP improves reliability, it also increases CPU load
due to extra execution times and may create deadline misses
when the NVP-augmented model becomes part of a more com-
plex software system. This shall be verified using a real-time
schedulability analysis method suited to the task model and
scheduling policy of the application. For instance, this is cur-
rently possible when tasks are periodic or triggered by periodic
tasks, such as the processes introduced by NVP transformation,
and they are scheduled with the default scheduling model of
CPAL, that is, FIFO with priorities as secondary criterion to
distinguish between tasks released at the same time. An open
source implementation of this schedulability analysis published
in [6] is available in [47].

5.3. Value domain correctness
With deferred control application, the values sampled (that

is, the state of the controlled process) and the control applied
in the original and the augmented models will always match in
a fault-free environment. Here we are interested in the most
common implementation where in both models the control is
applied immediately after it has been computed, and thus at a
later time for the NVP-augmented model.

Regarding the case study, we assume here an extreme value
of 90 ms of additional execution time per cycle for NVP, while
the cycle time remains at 100 ms. Under this assumption, Fig-
ure 6 shows the evolution of the fan speed and system tempera-
ture under the same thermal load scenario. For the sake of clar-
ity, both the fan speed and the thermal load are normalized to
1 in the figure. More specifically, a fan speed of 1 corresponds
to full speed. Similarly, a thermal load of 1 is the maximum
thermal load the system can sustain while still maintaining the
temperature at or below the predefined threshold, e.g. 30 °C.
When the thermal load is higher than unity, heatsink convec-
tion will stabilize the temperature at a higher value while the
controller keeps the fan at full speed.

In simulations without faults (e.g., the first 400 s of Figure 6),
the outputs of the two models match very closely, leading to a
difference in temperature of maximum 0.8 °C in long experi-
ments (not shown here for conciseness) with varying thermal

10

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600

T
e
m
p
e
ra
tu
re

 (
°C
)

Time (s)

NVP-augmented model
Original model

 0

 0.5

 1

 1.5
F
a
n

 s
p
e
e
d

NVP-augmented model
Original model

 0

 0.5

 1

 1.5

 2

 2.5

T
h
e
rm
a
l
lo
a
d NVP-augmented model

Original model

Figure 6: Fan speed computed by the original and NVP-augmented model (middle plot) for a given thermal load scenario (upper plot) and resulting temperature of
the chip (lower plot). Faults are injected from time 400 s onward to both models.

load. It should be pointed out that a sensitivity analysis based
on input and output jitter margin [48] can be used to determine
the maximum tolerable additional execution time induced by
the NVP so that the quality of control remains acceptable.

In the second part of Figure 6, from time 400 s onward, a
member version becomes permanently faulty and the same fault
is also injected into the original model. If no fault is injected,
the system should behave similarly as during the time interval
100 s to 200 s, since the thermal load and the ambient tempera-
ture are the same. However, as we can see, in the original model
the control is no longer correct as the fan operates steadily at
half speed, while it should be working at full speed from 400 s
to 500 s and alternate between idle and full speed from 500 s to
600 s when the thermal load is significantly lowered down. As
a result, the chip temperature in the original model is either too
high or too low, with respect to the set point.

5.4. Code coverage of the NVP-augmented model

It is worth noting that, in order to obtain evidence of the cor-
rectness of the augmented model and check that no dead code
was introduced during model transformation, long simulations
have been performed, with and without fault injection.

In particular, the original model and the NVP-augmented
model are executed in parallel under the same configuration.
“Forced mode” and “thermal load”, the two free variables of
the models, are varied randomly during long simulations in or-
der to comprehensively stimulate the models. From half of the
simulation onward, a fault is introduced at every cycle to one of
the member versions. As expected, the NVP-augmented con-
troller was always able to reach an agreement between member
versions. The output computed by both models, that is, the fan
speed, are compared at every cycle and they always matched,

F

0

!

x
Cart displacement

Pendulum angle, π: upright

Force applied to the
cart by the controller

Figure 7: Schematization of an inverted pendulum on a cart.

regardless of the presence of the fault in the member version.
The 9600 s simulations performed were able to achieve 100%
code coverage, modulo the “no majority reached” statements in
the NVP-augmented model, which cannot be executed with a
single fault.

6. Illustration: inverted pendulum

To further illustrate its suitability for different application
scenarios, the MT framework was also applied to a dissimi-
lar case study, more specifically to the NVP augmentation of
a controller that balances an inverted pendulum on a movable
cart. This is a well-known example of non-linear, unstable con-
trol problem. With respect to the chip temperature controller
analyzed in Section 5, it is much more sensitive to any distur-
bances NVP augmentation may introduce in the control loop.

6.1. Plant model
The plant being modeled is depicted in Figure 7. It consists

of a cart of mass M that moves in a mono-dimensional space

11

Parameter Value
M (mass of the cart) 0.5 kg
m (mass of the pendulum) 0.2 kg
l (length to the pendulum center of mass) 0.3 m
I (moment of inertia of the pendulum) 0.018 kg ·m2

b (coefficient of friction) 0.1 N · s/m
g (acceleration of gravity) 9.8 m/s2

Table 1: Physical parameters of the plant shown in Figure 7.

Plant
Inner PID

controller (!)
Kp, Ki, Kd

F

Ref. !r = π

−

+

!

Outer PID
controller (x)

Hp, Hi, Hd

x

−

Ref. xr = 0

+
−

Figure 8: Cascaded PID controller schematic. In the case study, Kp = 9, Ki =

0.95, Kd = 300, Hp = 0.001, Hi = 0, Hd = 10 with a sampling interval of
1 KHz.

and carries an inverted pendulum of mass m, length l, and mo-
ment of inertia I. For simplicity, friction is considered to be
proportional to the speed of the cart with proportionality con-
stant b. The whole system is subject to gravity acceleration g,
which makes the pendulum unstable in the upright position. At
each instant, x represents the relative position (displacement)
of the cart with respect to its initial position and θ is the angle
of the pendulum. The controller applies a force F to the cart
with the goal of keeping the pendulum upright (θ = π) and nul-
lify its displacement (x = 0). Table 1 summarizes the physical
parameters of the plant, derived from [49].

The two governing equations that express x and θ (and their
derivatives) as a function of F and the physical parameters of
the plant can be written as:

(M + m) ẍ + (ml cos(θ)) θ̈ = F − bẋ + mlθ2 sin(θ)
(ml cos(θ)) ẍ + (I + ml2) θ̈ = −mgl sin(θ) (1)

These equations provide a straightforward way to simulate
the plant, by solving them with respect to ẍ and θ̈ and then
proceeding to calculate x and θ through numerical integration.
Carrying out the simulation in a process with a period of 100 µs
ensures simulation fidelity, because this period is at least one
order of magnitude smaller than the plant time constants.

To evaluate the controller’s behavior, the plant model also in-
cludes an additional process that runs every 20 s. This process
perturbs the system by applying an impulse of random magni-
tude to the pendulum, thus changing its angle θ and bringing
the system out of equilibrium. For the sake of simplicity, it is
assumed that the variation of θ induced by the impulse takes
place instantaneously.

6.2. Inverted pendulum controller
The controller used in the case study is a classic cas-

caded discrete-time proportional-integrative-derivative (PID)
controller, whose structure is depicted in Figure 8. The inner
controller controls the plant parameter that varies more rapidly,
the pendulum angle θ in this case. At the same time, the outer

-0.04

-0.02

 0

 0.02

 0.04

 0 20 40 60 80 100 120

P
o
s
iti
o
n

 x
 (
m
)

Time (s)

NVP-augmented model vs. Original model

-π/180

0

+π/180

A
n
g
le

 θ
 (
ra
d
)

NVP-augmented model vs. Original model

Figure 9: Difference in x and θ between the NVP-augmented and the original
model, showing the effect of an additional execution time of 900 µs in the NVP-
augmented controller, random perturbations introduced every 20 s.

controller adjusts the set point of the inner controller to con-
trol the plant parameter that varies more slowly, that is, the cart
displacement x.

Considering that the controller itself was not a focal point of
this work, the controller parameters were determined in an ap-
proximate way after linearizing the model in θ, and were not
optimized afterwards. For this reason, a certain amount of ring-
ing at the natural frequency of the pendulum is visible in the
simulation results to be discussed in the following.

The discrete-time controller is implemented as a periodic
process with a period of 1 ms that coincides with the sampling
interval. As illustrated in Figure 8, the controller acquires the
current values of θ and x from the plant model on each cycle
and calculates the force F to be imparted to the cart. Back-
ward finite differences are used as approximations for first-
order derivatives. Similarly, summations weighted by the sam-
pling time approximate the integral term, according to usual
practice.

As in the previous case study, automatic model transforma-
tion was applied to this controller process to obtain a NVP-
augmented model with N = 3, conforming to the general struc-
ture outlined in the bottom part of Figure 3.

6.3. Timing and value domain correctness

The negative effect of the extra execution time of the NVP-
augmented controller, due to its higher complexity, was evalu-
ated by introducing a delay of 900 µs in output actuation by the
voter process. Although this delay is rather extreme (it amounts
to 90% of the sampling time) the experimental results shown in
Figure 9 show that its actual effect on control accuracy is quite
limited.

The figure depicts the difference in the pendulum angle θ and
cart position x between the original and the NVP-augmented
controller during a 120 s simulation in absence of faults. Dif-
ferences in θ stayed well within one degree and differences in
x were limited to no more than ±2 cm. As also discussed in
Sections 5.2 and 5.3, if this limited degradation is deemed un-
acceptable, deferred control application remains a viable option
also in this case.

At the same time, the very good agreement between the two
controllers indirectly confirms that MT transformation operated
correctly from the timing and value correctness point of view.

12

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100 120

P
o
s
iti
o
n

 x
 (
m
)

Time (s)

NVP-augmented model
Original model

π/2

π

3π/2

A
n
g
le

 θ
 (
ra
d
)

NVP-augmented model
Original model

Figure 10: Effect of the lack of Ki in the original and NVP-augmented controller due to a fault injected from t = 50 s onward (vertical dashed line), random
perturbations introduced every 20 s.

6.4. Fault injection

The next set of simulations was aimed at verifying that the
NVP-augmented model is fault tolerant. To this purpose, a fault
was injected in both the original controller and one of the mem-
ber versions of the NVP-augmented controller. The fault starts
at t = 50 s and mimics the loss of the integrative term of the
inner-loop PID controller, that is, it forces Ki = 0.

As shown in Figure 10, the fault remained silent until t = 80 s
due to the limited magnitude of the system perturbations in-
troduced meanwhile. Afterwards, the now-faulty original con-
troller still retained the ability of keeping the pendulum in an
upright position, since no significant deviations of the pendu-
lum angle around the equilibrium point θ = π are visible in the
upper right part of the figure.

However, the original controller lost the ability to limit cart
displacement and significant deviations from the set point x = 0
became evident, as highlighted in the bottom right part of Fig-
ure 10. On the contrary, and as expected, the NVP-augmented
controller remained fully functional although one of its member
versions failed.

Finally, code coverage analysis of the NVP-augmented
model was performed. The 120 s simulation whose results have
been shown in Figure 10 was sufficient to achieve 100% cover-
age. As described in Section 5.4 regarding the first case study,
the only statements not executed have to do with the voter being
unable to determine a majority, which is impossible in presence
of a single fault.

In summary, this second case study further confirmed the vi-
ability of the model transformation process, as well as its appli-
cability to a dissimilar and more complex control problem.

7. Conclusion

In this work, we develop a framework and the associated
toolset to augment a model with dependability mechanisms in
an automated manner. In particular, end-users such as system
designers are only required to indicate the part of a modelled
system to apply fault tolerance augmentation to, by means of
annotations. Then the augmentation process is fully automated

by the framework. The framework is showcased by augmenting
an intuitive, but yet realistic Cyber-Physical System with one
representative fault-tolerance pattern, namely N-Version Pro-
gramming. It is worth remarking that other fault-tolerance pat-
terns can be included in the framework in a similar way.

Importantly, the abstraction level of the transformation re-
tains both the benefits of high-level modeling and the exe-
cutability, which allows for early stage validation, for example,
by means of simulation. The natural next step is to automate
the implementation of fault-injection patterns to inject both data
and timing errors.

In the longer run, this work is a building block towards the
use of design-space exploration to select, implement and val-
idate the best set of dependability mechanisms to meet cer-
tain dependability objectives (e.g. a reliability requirement im-
posed by a given safety standard). Our open-source MT frame-
work is a key component in that regard, as it can be extended
with plugins and has been designed for efficiency with inter-
nal caches. Multi-threading is also an attractive feature from
the users’ perspective. It is especially useful when perform-
ing compute-intensive analyses, like design-space exploration,
in which multiple design options and choices of different de-
pendability mechanisms can be evaluated concurrently and then
compared.

References

[1] J. Cabot, R. Clarisó, M. Brambilla, S. Gérard, Cognifying model-driven
software engineering., in: M. Seidl, S. Zschaler (Eds.), STAF Workshops,
Vol. 10748 of Lecture Notes in Computer Science, Springer, 2017, pp.
154–160.

[2] E. Lee, The past, present and future of cyber-physical systems: A focus
on models, Sensors 15 (3) (2015) 4837–4869. doi:10.3390/s150304837.

[3] P. Derler, E. A. Lee, A. Sangiovanni Vincentelli, Modeling cyber–
physical systems, Proceedings of the IEEE 100 (1) (2012) 13–28.
doi:10.1109/JPROC.2011.2160929.

[4] D. Ameller, X. Franch, C. Gómez, S. Martı́nez-Fernández, J. Araujo,
S. Biffl, J. Cabot, V. Cortellessa, D. Méndez, A. Moreira, H. Muccini,
A. Vallecillo, M. Wimmer, V. Amaral, W. Bühm, H. Bruneliere, L. Bur-
gueño, M. Goulão, S. Teufl, L. Berardinelli, Dealing with non-functional
requirements in model-driven development: A survey, IEEE Transactions
on Software Engineering (2019) 1–1. doi:10.1109/TSE.2019.2904476.

13

[5] S. Lampke, S. Schliecker, D. Ziegenbein, A. Hamann, Resource-aware
control – model-based co-engineering of control algorithms and real-time
systems, SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8 (2015) 106–
114. doi:10.4271/2015-01-0168.

[6] S. M. Sundharam, N. Navet, S. Altmeyer, L. Havet, A model-driven co-
design framework for fusing control and scheduling viewpoints, Sensors
18 (2) (2018) 628. doi:10.3390/s18020628.

[7] X. Wang, N. Hovakimyan, L. Sha, L1simplex: Fault-tolerant control of
cyber-physical systems, in: Proc. ACM/IEEE International Conference
on Cyber-Physical Systems (ICCPS), 2013, pp. 41–50.

[8] S. Yoon, J. Lee, Y. Kim, S. Kim, H. Lim, Fast controller switching for
fault-tolerant cyber-physical systems on software-defined networks, in:
Proc. 22nd IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC), 2017, pp. 211–212. doi:10.1109/PRDC.2017.35.

[9] Y. Xu, I. Koren, C. M. Krishna, AdaFT: A framework for adaptive fault
tolerance for cyber-physical systems, ACM Trans. Embed. Comput. Syst.
16 (3) (2017) 79:1–79:25. doi:10.1145/2980763.

[10] S. Bernardi, J. Merseguer, D. C. Petriu, Dependability modeling and anal-
ysis of software systems specified with UML, ACM Comput. Surv. 45 (1)
(2012) 2:1–2:48. doi:10.1145/2379776.2379778.

[11] A.-E. Rugina, K. Kanoun, M. Kaaniche, Software dependability mod-
eling using AADL (architecture analysis and design language), Interna-
tional Journal of Performability Engineering 7 (2011) 313–325.

[12] C. Buckl, D. Sojer, A. Knoll, FTOS: model-driven development of
fault-tolerant automation systems, in: Proc. 15th IEEE Conference on
Emerging Technologies Factory Automation (ETFA), 2010, pp. 1–8.
doi:10.1109/ETFA.2010.5641211.

[13] M. Antoni, Formal validation method and tools for computerized inter-
locking system, Presentation at the 18th International Symposium on For-
mal Methods (FM 2012), Industry Day, available at http://fm2012.
cnam.fr/fm2012/ID2012-Marc-Antoni.pdf (August 2012).

[14] B. Selic, Programming ⊂modeling ⊂ engineering, in: Proc. 7th Intl. Sym-
posium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA), 2016, pp. 11–26. doi:10.1007/978-3-319-47169-3 2.

[15] N. Navet, L. Fejoz, CPAL: High-level abstractions for safe embedded sys-
tems, in: Proc. 16th Workshop on Domain-Specific Modeling, DSM’16,
ACM, Amsterdam, Netherlands, 2016.

[16] G. J. Holzmann, The model checker SPIN, IEEE Transactions on Soft-
ware Engineering 23 (1997) 279–295.

[17] I. Cibrario Bertolotti, T. Hu, N. Navet, Model-based design lan-
guages: A case study, in: Proc. 13th IEEE International Work-
shop on Factory Communication Systems (WFCS), 2017, pp. 1–6.
doi:10.1109/WFCS.2017.7991964.

[18] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
R. de Simone, The synchronous languages 12 years later, Proceedings of
the IEEE 91 (1) (2003) 64–83. doi:10.1109/JPROC.2002.805826.

[19] M. Voelter, D. Ratiu, B. Schaetz, B. Kolb, Mbeddr: An extensible C-
based programming language and IDE for embedded systems, in: Proc.
3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity (SPLASH ’12), 2012, pp. 121–140.

[20] L. Fejoz, B. Régnier, P. Miramont, N. Navet, Simulation-based fault in-
jection as a verification oracle for the engineering of time-triggered Eth-
ernet networks, in: Proc. of Embedded Real-Time Software and Systems
(ERTSS’18), 2018.

[21] G. Bloom, G. Cena, I. Cibrario Bertolotti, T. Hu, N. Navet,
A. Valenzano, Event notification in CAN-based sensor networks, IEEE
Transactions on Industrial Informatics 15 (10) (2019) 5613–5625.
doi:10.1109/TII.2019.2904082.

[22] A. Avižienis, The methodology of N-version programming, in: M. R.
Lyu (Ed.), Software Fault Tolerance, John Wiley & Sons, Inc., 1995, pp.
23–46.

[23] T. Hu, I. Cibrario Bertolotti, N. Navet, Towards seamless integration of N-
Version Programming in model-based design, in: Proc. 22nd IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), 2017, pp. 1–8.

[24] K. Ding, A. Morozov, K. Janschek, More: Model-based redundancy for
simulink, in: B. Gallina, A. Skavhaug, F. Bitsch (Eds.), Computer Safety,
Reliability, and Security, Springer International Publishing, Cham, 2018,
pp. 250–264.

[25] S. Bernardi, J. Merseguer, D. C. Petriu, A dependability profile
within MARTE, Software & Systems Modeling 10 (3) (2011) 313–336.

doi:10.1007/s10270-009-0128-1.
[26] L. Montecchi, P. Lollini, A. Bondavalli, Towards a MDE transformation

workflow for dependability analysis, in: Proc. 16th IEEE International
Conference on Engineering of Complex Computer Systems, 2011, pp.
157–166. doi:10.1109/ICECCS.2011.23.

[27] A. El-Hokayem, Y. Falcone, M. Jaber, Modularizing behavioral and ar-
chitectural crosscutting concerns in formal component-based systems –
application to the behavior interaction priority framework, Journal of
Logical and Algebraic Methods in Programming 99 (2018) 143–177.
doi:https://doi.org/10.1016/j.jlamp.2018.05.005.

[28] V. Sfyrla, G. Tsiligiannis, I. Safaka, M. Bozga, J. Sifakis, Compositional
translation of Simulink models into synchronous BIP, in: Proc. Inter-
national Symposium on Industrial Embedded System (SIES), 2010, pp.
217–220. doi:10.1109/SIES.2010.5551374.

[29] M. Kölbl, S. Leue, H. Singh, From SysML to model checkers via model
transformation, in: M. d. M. Gallardo, P. Merino (Eds.), Model Checking
Software, Springer International Publishing, Cham, 2018, pp. 255–274.

[30] T. Mens, P. V. Gorp, A taxonomy of model transformation, Electronic
Notes in Theoretical Computer Science 152 (2006) 125–142, Proc. Inter-
national Workshop on Graph and Model Transformation (GraMoT 2005).
doi:https://doi.org/10.1016/j.entcs.2005.10.021.

[31] J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, G. Muller, A founda-
tion for flow-based program matching: Using temporal logic and model
checking, in: Proc. 36th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’09, ACM, 2009, pp.
114–126.

[32] A. Ataı́de, J. P. Barros, I. S. Brito, L. Gomes, Towards automatic
code generation for distributed cyber-physical systems: A first prototype
for Arduino boards, in: Proc. 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2017, pp. 1–4.
doi:10.1109/ETFA.2017.8247737.

[33] X. Koutsoukos, G. Karsai, A. Laszka, H. Neema, B. Potteiger, P. Vol-
gyesi, Y. Vorobeychik, J. Sztipanovits, SURE: A modeling and simu-
lation integration platform for evaluation of secure and resilient cyber–
physical systems, Proceedings of the IEEE 106 (1) (2018) 93–112.
doi:10.1109/JPROC.2017.2731741.

[34] J. Sztipanovits, T. Bapty, X. Koutsoukos, Z. Lattmann, S. Neema,
E. Jackson, Model and tool integration platforms for cyber–physical
system design, Proceedings of the IEEE 106 (9) (2018) 1501–1526.
doi:10.1109/JPROC.2018.2838530.

[35] F. Cremona, M. Morelli, M. Di Natale, TRES: A modular represen-
tation of schedulers, tasks, and messages to control simulations in
simulink, in: Proc. 30th Annual ACM Symposium on Applied Com-
puting, SAC’15, ACM, New York, NY, USA, 2015, pp. 1940–1947.
doi:10.1145/2695664.2695876.

[36] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, K.-E. Arzen, How does
control timing affect performance? Analysis and simulation of timing
using Jitterbug and TrueTime, IEEE Control Systems Magazine 23 (3)
(2003) 16–30. doi:10.1109/MCS.2003.1200240.

[37] Y. Jiang, H. Song, Y. Yang, H. Liu, M. Gu, Y. Guan, J. Sun, L. Sha,
Dependable model-driven development of cps: From stateflow simulation
to verified implementation, ACM Trans. Cyber-Phys. Syst. 3 (1) (2018)
12:1–12:31. doi:10.1145/3078623.

[38] J. Colaço, B. Pagano, C. Pasteur, M. Pouzet, Scade 6: From a
Kahn semantics to a Kahn implementation for multicore, in: Proc.
Forum on Specification Design Languages (FDL), 2018, pp. 5–16.
doi:10.1109/FDL.2018.8524052.

[39] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, D. Varró, Survey and
classification of model transformation tools, Softw. Syst. Model. 18 (4)
(2019) 2361–2397. doi:10.1007/s10270-018-0665-6.

[40] L. Burgueño, J. Cabot, S. Gérard, The future of model transformation
languages: An open community discussion., The Journal of Object Tech-
nology 18 (2019) 7:1. doi:10.5381/jot.2019.18.3.a7.

[41] R. Hebig, C. Seidl, T. Berger, J. K. Pedersen, A. Wa̧sowski, Model trans-
formation languages under a magnifying glass: A controlled experiment
with Xtend, ATL, and QVT, in: Proc. 26th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), ACM, New York, NY, USA,
2018, pp. 445–455. doi:10.1145/3236024.3236046.

[42] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements
of Reusable Object-oriented Software, Addison-Wesley Longman Pub-

14

lishing Co., Inc., Boston, MA, USA, 1995.
[43] C. Ebert, R. Dumke, Software Measurement: Establish – Extract – Eval-

uate – Execute, Springer Berlin Heidelberg, 2007.
[44] J. A. Visser, P. Gauché, A computer model to simulate heat transfer in

heat sinks, Transactions on Engineering Sciences 12 (1996) 569–578.
[45] T. A. Henzinger, B. Horowitz, C. M. Kirsch, Giotto: a time-triggered

language for embedded programming, Proceedings of the IEEE 91 (1)
(2003) 84–99. doi:10.1109/JPROC.2002.805825.

[46] R. Gerber, S. Hong, Slicing real-time programs for enhanced schedu-
lability, ACM Trans. Program. Lang. Syst. 19 (3) (1997) 525–555.
doi:10.1145/256167.256394.

[47] S. Altmeyer, S. Sundharam, FIFO scheduling analysis, https://

github.com/SebastianAltmeyer/FIFO-Scheduling-Analysis

(2016).
[48] A. Cervin, Stability and worst-case performance analysis of

sampled-data control systems with input and output jitter, in:
Proc. American Control Conference (ACC), 2012, pp. 3760–3765.
doi:10.1109/ACC.2012.6315304.

[49] University of Michigan, Control tutorials for MATLAB and Simulink:
Inverted pendulum, Available online, at http://ctms.engin.umich.
edu/CTMS/.

Tingting Hu received her master degree in Computer En-
gineering in 2010 and Ph.D. degree with the best disserta-
tion award in Computer and Control Engineering in 2015
both from Politecnico di Torino, Turin, Italy.
She works as a research scientist in the University of Lux-
embourg with the Faculty of Science, Technology and
Communication. Formerly, she was with the University
of Luxembourg as a post-doc researcher (2017-2018). Be-
tween 2010 and 2016, she also worked as a research fellow
in the National Research Council of Italy (CNR), Turin,
Italy. Her primary research interest concerns embed-
ded systems design and implementation, spanning through
topics such as real-time operating systems, communica-
tion protocols, formal verification of software modules

and communication protocols, as well as security, with a special focus on the practical
application of these concepts. Currently, she is focusing on the research of model driven
engineering for safety-critical embedded systems. In the meantime, she serves as a pro-
gram committee member and technical referee for several primary conferences and jour-
nals in her research area.

Ivan Cibrario Bertolotti received the Laurea degree
(summa cum laude) in computer science from the Univer-
sity of Torino, Turin, Italy, in 1996.
Since then, he has been a Researcher with the National
Research Council of Italy (CNR), Rome, Italy. Cur-
rently, he is with the Institute of Electronics, Computer
and Telecommunication Engineering (IEIIT), Turin. He
has taught several courses on real-time operating systems
at Politecnico di Torino, Turin; has co-authored two books
on the same topics; and serves as a Technical Referee
for primary international journals and conferences. His
research interests include real-time operating system de-
sign and implementation, industrial communication sys-

tems and protocols, as well as modeling languages and runtime support for cyber-physical
systems. He received, as a coauthor, the Best Paper Award presented at the 8th IEEE
Workshops on Factory Communication Systems (WFCS 2010).

Nicolas Navet has been a professor in Computer Science
at the University of Luxembourg since May 2012. For-
merly, from 1995 to 2012, he was with INRIA in France,
as doctoral candidate, researcher then head of a research
team in real-time systems. His research interests include
real-time and embedded systems, communication proto-
cols and risk assessment. Since the mid-1990s, he has
worked on many projects with OEMs and suppliers in the
automotive and aerospace domains. More information on
his work can be found at http://nicolas.navet.eu.

Lionel Havet has been a research engineer at RealTime-
at-Work since 2013. He is responsible for the development
of the CPAL language interpreter and its Integrated Devel-
opment Environment. His research interests include real-
time scheduling analysis and dependability evaluation. He
worked in the area of embedded systems at Sagem, Giat
Industries, Alspace, Philips and lead during 3 years the
development of the software embedded in automatic gear-
boxes at General Motors. He graduated in 1996 from
ISAE engineer school in Toulouse.

15

