
Approximation-Refinement Testing of
Compute-Intensive Cyber-Physical Models:
An Approach Based on System Identification

Claudio Menghi

claudio.menghi@uni.lu

University of Luxembourg

Luxembourg, Luxembourg

Shiva Nejati

shiva.nejati@uni.lu

University of Ottawa

Ottawa, Canada

University of Luxembourg

Luxembourg, Luxembourg

Lionel Briand

lionel.briand@uni.lu

University of Ottawa

Ottawa, Canada

University of Luxembourg

Luxembourg, Luxembourg

Yago Isasi Parache

isasi@luxspace.lu

Luxspace Sàrl

Luxembourg, Luxembourg

ABSTRACT
Black-box testing has been extensively applied to test models of

Cyber-Physical systems (CPS) since these models are not often

amenable to static and symbolic testing and verification. Black-box

testing, however, requires to execute the model under test for a

large number of candidate test inputs. This poses a challenge for

a large and practically-important category of CPS models, known

as compute-intensive CPS (CI-CPS) models, where a single simu-

lation may take hours to complete. We propose a novel approach,

namely ARIsTEO, to enable effective and efficient testing of CI-CPS

models. Our approach embeds black-box testing into an iterative

approximation-refinement loop. At the start, some sampled inputs

and outputs of the CI-CPS model under test are used to generate

a surrogate model that is faster to execute and can be subjected

to black-box testing. Any failure-revealing test identified for the

surrogate model is checked on the original model. If spurious, the

test results are used to refine the surrogate model to be tested again.

Otherwise, the test reveals a valid failure. We evaluated ARIsTEO by

comparing it with S-Taliro, an open-source and industry-strength

tool for testing CPS models. Our results, obtained based on five

publicly-available CPS models, show that, on average, ARIsTEO is

able to find 24% more requirements violations than S-Taliro and

is 31% faster than S-Taliro in finding those violations. We further

assessed the effectiveness and efficiency of ARIsTEO on a large in-

dustrial case study from the satellite domain. In contrast to S-Taliro,

ARIsTEO successfully tested two different versions of this model

and could identify three requirements violations, requiring four

hours, on average, for each violation.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Formal software verification.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00

https://doi.org/10.1145/3377811.3380370

KEYWORDS
Cyber-Physical Systems, Model Testing, Search-Based Testing, Ro-

bustness, Falsification

ACM Reference Format:
Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. 2020.

Approximation-Refinement Testing of Compute-Intensive Cyber-Physical

Models: An Approach Based on System Identification. In 42nd International
Conference on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3377811.3380370

1 INTRODUCTION
A common practice in the development of Cyber-Physical Systems

(CPS) is to specify CPS behaviors using executable and dynamic

models [5, 33, 68]. These models support engineers in a number

of activities, most notably in automated code generation and early

testing and simulation of CPS. Recent technological advancements

in the areas of robotics and autonomous systems have led to increas-

ingly more complex CPS whose models are often characterized as

compute-intensive [22, 24, 31, 55, 88]. Compute-Intensive CPS mod-

els (CI-CPS) require a lot of computational power to execute [23]

since they include complex computations such as dynamic, non-

linear and non-algebraic mathematics, and further, they have to

be executed for long durations in order to thoroughly exercise

interactions between the CPS and its environment. For example,

non-trivial simulations of an industrial model of a satellite system,

capturing the satellite behavior for 24h, takes on average around

84 minutes (~1.5 hours) [4].
1
The sheer amount of time required

for just a single execution of CI-CPS models significantly impedes

testing and verification of these models since many testing and ver-

ification strategies require to execute the Model Under Test (MUT)

for hundreds or thousands of test inputs.

Approaches to verification and testing of CPS models can be

largely classified into exhaustive verification, and white-box and

black-box testing. Exhaustive verification approaches often trans-

late CPS models into the input language of model checkers or

Satisfiability Modulo Theories (SMT) solvers. CPS models, how-

ever, may contain constructs that cannot be easily encoded into the

SMT solver input languages. For example, CPS models specified

in the Simulink language [5] allow importing arbitrary C code via

S-Function blocks or include other plugins (e.g., the Deep Learning

1
Machine M1: 12-core Intel Core i7 3.20GHz 32GB of RAM.

https://doi.org/10.1145/3377811.3380370
https://doi.org/10.1145/3377811.3380370
https://doi.org/10.1145/3377811.3380370

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache

Toolbox [3]). In addition, CPS models typically capture continuous

dynamic and hybrid systems [15]. Translating such modeling con-

structs into low-level logic-based languages is complex, has to be

handled on a case-by case basis and may lead to loss of precision

which may or may not be acceptable depending on the application

domain. Furthermore, it is well-known that model checking such

systems is in general undecidable [14, 16, 59]. White-box testing

uses the internal structure of the model under test to specifically

choose inputs that exercise different paths through the model. Most

white-box testing techniques aim to generate a set of test cases that

satisfy some structural coverage criteria (e.g., [41, 62]). To achieve

their intended coverage goals, they may rely either on SMT-solvers

(e.g., [54, 65]) or on randomized search algorithms (e.g., [46, 72, 77]).

But irrespective of their underlying technique, coverage-guided

testing approaches are not meant to demonstrate that CPS models

satisfy their requirements.

More recently, falsification-based testing techniques have been

proposed as a way to test CPS models with respect to their require-

ments [12, 80, 97, 98]. These techniques are black-box and aim to

find test inputs violating system requirements. They are guided

by (quantitative) fitness functions that can estimate how far a can-

didate test is from violating some system requirement. Candidate

tests are sampled from the search input space using randomized or

meta-heuristic search strategies (e.g., [27, 72, 74]). To compute fit-

ness functions, the model under test is executed for each candidate

test input. The fitness values then determine whether the goal of

testing is achieved (i.e., a requirement violation is found) or further

test candidates should be selected. In the latter case, the fitness

values may guide selection of new test candidates. Falsification-

based testing has shown to be effective in revealing requirements

violations in complex CPS models that cannot be handled by al-

ternative verification methods. However, serious scalability issues

arise when testing CI-CPS models since simulating such models

for every candidate test may take such a large amount time to the

extent that testing becomes impractical.

In this paper, in order to enable efficient and effective testing of

CI-CPS models, we propose a technique that combines falsification-

based testing with an approximation-refinement loop. Our tech-

nique, shown in Figure 1, is referred to as AppRoxImation-based

TEst generatiOn (ARIsTEO) and targets systems that exhibit both

continuous and discrete dynamic behaviors (e.g., Simulink [7] and

hybrid systems [56]). As shown in the figure, provided with a CI-

CPS model under test (MUT), we automatically create an approxi-

mation of the MUT that closely mimics its behavior but is signif-

icantly cheaper to execute. We refer to the approximation model

as surrogate model, and generate it using System Identification (SI)

(e.g., [29, 93]) which is a methodology for building mathematical

models of dynamic systems using measurements of the system’s

inputs and outputs [93]. Specifically, we use some pairs of inputs

and outputs from the MUT to build an initial surrogate model. We

then apply falsification testing to the surrogate model instead of

the MUT until we find a test revealing some requirement violation

for the surrogate model. The identified failure, however, might be

spurious. Hence, we check the test on the MUT. If the test is spuri-

ous, we use the output of the test to retrain, using SI, our surrogate

model into a new model that more closely mimics the behavior of

the MUT, and continue with testing the retrained surrogate model.

(initial)
Surrogate

Model

Test
(refined)

Surrogate
Model

Approximation
Model Under Test

(MUT)

Falsification

Refinement Check

Real
Failure

Spurious
Failure

Figure 1: ARIsTEO: AppRoxImation-based TEst generatiOn.

If the test is not spurious, we have found a requirement violation

by running the MUT very few times.

ARIsTEO is inspired, at a high-level, by the counter-example

guided abstraction-refinement (CEGAR) loop [36, 37, 67] proposed

to increase scalability of formal verification techniques. In CEGAR,

boolean abstract models are generated and refined based on counter-

examples produced by model checking, while in ARIsTEO, numeri-

cal approximation of CPS models are learned and retrained using

test inputs and outputs generated by model testing.

Our contributions are as follows:

• We developed ARIsTEO, an approximation-refinement testing tech-
nique, to identify requirements violations for CI-CPSmodels.ARIsTEO
combines falsification-based testing with surrogate models built

using System Identification (SI). We have implemented ARIsTEO

as a Matlab/Simulink standalone application, relying on the exist-

ing state-of-the-art System Identification toolbox of Matlab as well

as S-Taliro [19], a state-of-the-art, open source falsification-based

framework for Simulink models.

• We compared ARIsTEO and S-Taliro to assess the effectiveness and
efficiency of our proposed approximation-refinement testing loop. Our
experiments, performed on five publicly-available Simulink models

from the literature, show that, on average, ARIsTEO finds 23.9%

more requirements violations than S-Taliro and finds the violations

in 31.3% less time than the time S-Taliro needs to find them.

• We evaluated usefulness and applicability of ARIsTEO in revealing
requirements violations in large and industrial CI-CPS models from
the satellite domain. We analyzed three different requirements over

two different versions of a CI-CPS model provided by LuxSpace [4],

our industrial partner. ARIsTEO successfully detected violations in

each of these versions and for all the requirements, requiring four

hour, on average, to find each violation. In contrast, S-Taliro was

not able to find any violation on neither of the model versions and

after running for four hours.

Structure. Section 2 presents our running example, formulates

the problem and describes our assumptions. Section 3 describes

ARIsTEO, which is then evaluated in Section 4. Section 5 provides

an in-depth discussion of threats to validity. Section 6 presents the

related work. Section 7 concludes the paper.

2 CPS MODELS AND FALSIFICATION-BASED
TESTING

In this section, we describe how test inputs are generated for

black-box testing of CPS models. We then introduce the baseline

Testing Compute-Intensive Cyber-Physical Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Input Profile for the SAT-EX case study.

Magnetometer Gyro Reaction wheel Magnetorquer

int(n) pchip(16) pchip(16) pchip(16) pchip(16)

R [-20,50] [-15,50] [-20,50] [-20,50]

falsification-based testing framework we use in this paper to test

CPS models against their requirements.

Black-box testing of CPS models. We consider CPS models

under test (MUT) specified in Simulink since it is a prevalent lan-

guage used in CPS development [39, 68]. Our approach is not tied

to the Simulink language, and can be applied to other executable

languages requiring inputs and generating outputs that are signals

over time (e.g., hybrid systems [56]). Such languages are common

for CPS as engineers need to describe models capturing interactions

of a system with its physical environment [15]. We use SAT-EX, a
model of a $20-million satellite, as a running example, which is a

simplification of a real model developed by LuxSpace [4], a satellite

system provider and partner in our research project.

Let time domainT = [0,b] be a non-singular bounded interval of
R. A signal is a function f : T → R. We indicate individual signals

using lower case letters, and sets of signals using upper case letters.

Let M be an MUT. We write Y =M(U) to indicate that the model

M takes a set of signalsU = {u1,u2 . . .um } as input and produces

a set of signals Y = {y1,y2 . . .yn } as output. Each ui corresponds
to one model input signal, and each yi corresponds to one model

output signal. We use the notation ui (t) and yi (t) to, respectively,
indicate the values of the input signal ui and the output signal yi
at time t . For example, the SAT-EX model has four input signals

indicating the temperatures perceived by the Magnetometer, Gyro,

Reaction wheel and Magnetorquer components, and one output

signal representing the orientation (a.k.a attitude) of the satellite.

To execute a Simulink MUTM, the simulation engine receives

signal inputs defined over a time domain and computes signal

outputs at successive time steps over the same time domain used for

the inputs. A test input forM is, therefore, a set of signal functions

assigned to the input signals {u1,u2 . . .um } of M. To generate

signal functions, we have to generate values over the time interval

T = [0,b]. This, however, cannot be done in a purely random

fashion, since input signals are expected to conform to some specific

shape to ensure dynamic properties pertaining to their semantic.

For example, input signals may be constant, piecewise constant,

linear, piecewise linear, sinusoidal, etc. To address this issue, we

parameterize each input signal ui by an interpolation function, a

value range R and a number n of control points (with n > 2). To

generate a signal function for ui , we then randomly select n control

points ui (t1) to ui (tn) within R such that t1 = 0, tn = b and t2 to
tn−1 are from T such that t1 < t2 < . . . < tn−1 < tn . The values of
t2 < t3 < . . . < tn−1 can be either randomly chosen or they can

be fixed with equal differences between each subsequent pairs, i.e,

(ti+1 − ti) = (ti − ti−1). The interpolation function is then used to

connect the n control points ui (t1) to ui (tn). ARIsTEO currently

supports several interpolation functions, such as piecewise constant,

linear and piecewise cubic interpolation. For each inputui ofM, we

define a triple ⟨inti ,Ri ,ni ⟩, where inti is an interpolation function,

Ri is the range of signal values and ni is the number of control

Algorithm 1 Baseline Falsification-based Testing.

1: function Falsification-Test(M, IP, MAX)
2: repeat
3: if U is null then
4: U = Generate(M, IP); ▷ Generate a candidate test input
5: else
6: U = Search(M, IP,U); ▷ Generate next candidate test

input

7: end if
8: Y =M(U); ▷ ExecuteM forU
9: if TObj(U ,Y) ≤ 0 then ▷ Check ifU reveals a violation

10: returnU ;

11: end if
12: until the number of executions ofM reaches MAX
13: return ⊥ and the test input U , among those generated, with

the lowest fitness value;

14: end function

points. We refer to the set of all such triples for all inputs u1 to um
ofM as an input profile ofM and denote it by IP. Provided with

an input profile for an MUT M, we can randomly generate test

inputs for M as sets of signal functions for every input u1 to um .

For example, the input profile for SAT-EX provided by LuxSpace is

reported in Table 1, where [−20, 50], [−15, 50], [−20, 50], [−20, 50]

are real value domains.

Baseline falsification-based testing. The goal is to produce a
test inputU that, when executed on the MUTM, reveals a violation

of some requirement of M. Algorithm 1 represents a high-level

overview of falsification-based testing. It is a black-box testing pro-

cess and includes threemain components: (1) a test input generation

component (Generate in Algorithm 1), (2) a test objective deter-

mining whether, or not, a requirement violation is identified (TObj

in Algorithm 1), and (3) a search strategy to traverse the search

input space and select candidate tests (Search in Algorithm 1).

We describe Generate, Search and TObj. The input to the

algorithm is an MUT M together with its input profile IP and

the maximum number MAX of executions of MUT that can be per-

formed within an allotted test budget time. Note that we choose the

maximum number of executions as a loop terminating condition,

but an equivalent terminating condition can be defined in term of

maximum execution time.

Initial test Generation (Generate). It produces a (candidate) test

input U for M by randomly selecting control points within the

ranges and applying the interpolation functions as specified in IP.
Iterative search (Search). It selects a new (candidate) test input

U from the search input space of M. It uses the input profile IP
to generate new test inputs. The existing candidate test input U
may or may not be used in the selection of the new test input. In

particular, Search(M, IP,U) can be implemented using different

randomized or meta-heuristic search algorithms [73, 78, 80]. These

algorithms can be purely explorative and generate the new test

input randomly without considering the existing test inputU (e.g.,

Monte-Carlo search [80]), or they may be purely exploitative and
generate the new test input by slightly modifying U (e.g., Hill

Climbing [73, 78]). Alternatively, the search algorithmmay combine

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache

both explorative and exploitative heuristics (e.g., Hill Climbing with

random restarts [70]).

Test objective (TObj). It maps every test input U and its corre-

sponding output Y , i.e., Y = M(U), into a test objective value

TObj(U ,Y) in the set R of real numbers. Note that computing test

objective values requires simulating M for each candidate test in-

put. We assume for each requirement ofM, we have a test objective

TObj that satisfies the following conditions:

TObj1 If TObj(U ,M(U)) < 0, the requirement is violated;

TObj2 If TObj(U ,M(U)) ≥ 0, the requirement is satisfied;

TObj3 The more positive the test objective value, the farther the

system from violating its requirement; the more negative,

the farther the system from satisfying its requirement.

These conditions ensure that we can infer using the value of TObj

whether a test cases passes or fails, and further, TObj serves as a

distance function, estimating how far a test is from violating model

requirements, and hence, it can be used to guide generation of test

cases. The robustness semantics of STL is an example of a semantics

that satisfies those conditions [49]. An example requirement for

SAT-EX is:

SatReq “the difference among the satellite attitude and the target
attitude should not exceed 2 degrees".

This requirement can be expressed in many languages including

formal logics that predicate on signals, such as Signal Temporal Log-

ics (STL) [71] and Restricted Signals First-Order Logic (RFOL) [76].

For example, this requirement can be expressed in STL as

G[0,24h] (error < 2)

where error is the difference among the satellite attitude and the

target attitude, G is the “globally" STL temporal operator which is

parametrized with the interval [0, 24h], i.e., the property error < 2

should hold for the entire simulation time (24h).
We define a test objective TObj for this requirement as

TObj(U ,M(U)) = min
t ∈[0,24h]

(error (t) − 2)

This is consistent with the robustness semantics of STL [49]. This

value ensures the conditions TObj1, TObj2 and TObj3 since if the

property is violated, i.e., there exists a time instant t such that

error (t) − 2 < 0, a negative value is returned. In the opposite case,

the property is satisfied and TObj(U ,M(U)) returns a non negative

value. Furthermore, the more positive the test objective value, the

farther the system from violating its requirement; and the more

negative, the farther the system from satisfying its requirement.

In our work, we use the S-Taliro tool [19] which implements the

falsification-based testing shown in Algorithm 2. S-Taliro is a well-

developed, open source research tool for falsification based-testing

and has been recently classified as ready for industrial deploy-

ment [64]. It has been applied to several realistic and industrial

systems [95] and based on a recent survey on the topic [64] is the

most mature tool for falsification of CPSs. Further, S-Taliro supports

a range of standard search algorithms such as Simulated Annealing,

Monte Carlo [80], and gradient descent methods [12].

Algorithm 2 The ARIsTEO Main Loop.

1: function ARIsTEO(M, IP, MAX_REF)
2: repeat
3: if ˆM is null then
4:

ˆM=Approximate(M); ▷ Generate a surrogate model

5: else
6:

ˆM=Refine(
ˆM,U ,M); ▷ Refine the surrogate model

7: end if
8: U=Falsification-Test(

ˆM, IP, MAX);
9: if TObj(U ,M(U)) ≤ 0 then ▷ TestU finds a real violation

10: returnU ;

11: end if
12: until the number of executions ofM reaches MAX_REF
13: return ⊥;

14: end function

Test objectives can be defined manually. Alternatively, assuming

that the requirements are specified in logic languages, test objec-

tives satisfying the three conditions we described earlier can be gen-

erated automatically. In particular, we have identified two existing

tools that generate quantitative test objectives from requirements

encoded in logic-based languages: Taliro [48] and Socrates [76]. In

this paper, we use Taliro since it is integrated into S-Taliro. To do so,

we specified our requirements into Signal Temporal logic (STL) [71]

and used Taliro to automatically convert them into quantitative

test objectives capturing degrees of satisfaction and refutation con-

forming to our conditions TObj1-TObj3 on test objectives.

3 ARISTEO
Algorithm 2 shows the approximation-refinement loop of ARIsTEO.

The algorithm relies on the following inputs: a CI-CPS modelM

(i.e., the model under test—MUT), the input profile IP of MUT, and

the maximum number of iterations MAX_REF that can be executed

by ARIsTEO. In the first iteration, an initial surrogate model
ˆM

is computed such that it approximates the MUT behavior (Line 4).

Note that
ˆM is built such that it has the same input profile asM,

i.e.,
ˆM and M have exactly the same inputs and outputs. At every

iteration, the algorithm applies falsification-based testing to the

surrogate model
ˆM in order to find a test input U violating the

requirement captured by the test objective TObj (Line 8). Note that,

if the falsification-based testing framework is not able to find a test

input U violating the requirement, it returns the one, among those

generated, with the lowest fitness value. The number MAX of itera-

tions of falsification-based testing for
ˆM is an internal parameter of

ARIsTEO, and in general, can be set to a high value since executing

ˆM is not expensive. OnceU is found, the algorithm checks whether

U leads to a violation when it is checked on the MUT (Line 9). Recall

from Section 2 that test objectives TObj are defined such that a

negative value indicates a requirement violation. If so,U is returned

as a failure-revealing test forM (Line 10). Otherwise,U is spurious

and in the next iteration it is used to refine the surrogate model
ˆM

(Line 6). If no failure-revealing test forM is found after MAX_REF
iterations the algorithm stops and a null value (⊥) is returned.

Testing Compute-Intensive Cyber-Physical Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

The falsification-based testing procedure is described in Section 2

(Algorithm 1). In Section 3.1, we describe the Approximate method

(line 4), and in Section 3.2, we describe the Refine method (line 6).

3.1 Approximation
Given an MUT M, the goal of the approximation is to produce

a surrogate model
ˆM such that: (C1) M and

ˆM have the same

interface, i.e., the same inputs and outputs; (C2) provided with the

same input values, they generate similar output values; and (C3) ˆM

is less expensive to execute thanM.

We rely on System Identification (SI) techniques to produce

surrogate models [93] since their purpose is to automatically build

mathematical models of dynamical systems from data when it is

difficult to build the models analytically, or when engineers want

to build models from data obtained based on measurements of the

actual hardware. Note that the more complex SI structures (i.e., non-

linear nlarx and hw) rely on machine learning and neural network

algorithms [69].

To build
ˆM using SI, we need some input and output data from

the MUTM. SinceM is expensive to execute, to build the initial

surrogate model
ˆM (line 6), we run M for one inputU only. Note

that an inputU of M is a set {u1, . . . ,um } of signal functions over

T = [0,b]. So, each ui is a sequence ui (0),ui (δ),ui (2 · δ) . . .ui (l · δ)
where b = l ·δ and δ is the sampling rate applied to the time domain

[0,b]. Similarly, the outputY =M(U) is a set {y1, . . . ,yn } of signal
functions where eachyj is a sequenceyj (0),yj (δ),yj (2·δ) . . .yj (l ·δ)
obtained based on the same sampling rate and the same time domain

as those used for the input. We refer to the data used to build
ˆM

as traning data and denote it by D. Specifically, D = ⟨U ,Y ⟩. For
CI-CPS, the size l of D tends to be large since we typically execute

such models for a long time duration (large b) and use a small

sampling rate (small δ) for them. For example, we typically run

SAT-EX for b = 86 400s (24h) and use the sampling rate δ = 0.0312s.

Hence, a single execution of SAT-EX generates a training data set
D with size l = 2 769 200. Such training data size is sufficient for SI

to build reasonably accurate surrogate models.

We use the System Identification Toolbox [69] of Matlab to gen-

erate surrogate models. In order to effectively use SI, we need

to anticipate the expected structure and parameters of surrogate
models, a.k.a configuration. Table 2 shows some standard model

structures and parameters supported by SI. Specifically, selecting

the model structure is about deciding which mathematical equation

among those shown in Table 2 is more likely to fit to our training

data and is better able to capture the dynamics of the modelM. As

shown in Table 2, equations specifying the model structure have

some parameters that need to be specified so that we can apply

SI techniques. For example, for arx(na,nb,nk), the values of the
parameters na, nb and nk are the model parameters.

Table 2 provides a short description for each model structure. We

note that some of the equations in the table are simplified and refer

to the case in which the MUT has a single input signal and a single

output signal. The equations, however, can be generalized to models

with multiple input and output signals. Briefly, model structures

can be linear or non-linear in terms of the relation between the

inputs and outputs, or they can be continuous and discrete in terms

of their underlying training data. Specifically, the training data

generated from MUT can be either discrete (i.e., sampled at a fixed

rate) or continuous (i.e., sampled at a variable rate). Provided with

discrete training data, we can select either continuous or discrete

model structures, while for continuous training data, we can select

continuous model structures only. As discussed earlier, our training

data D is discrete since it is sampled at the fix sampling rate of δ .
Hence, we can choose both types of model structures to generate

surrogate models. In our work we support training data sampled at

a fixed sampling rate to build and refine the surrogate models. Data

sampled at a variable time rate can be then handled by exploiting

the resampling procedure of Matlab [9].

The users of ARIsTEO need to choose upfront the configuration

to be used by the SI, i.e., the model structure and the values of its

parameters. This choice depends on domain specific knowledge

that the engineers possess for the model under analysis. The values

of the parameters selected by the user should be chosen such that

the resulting surrogate model (i) has the same interface as the

MUT to ensure C1 and (ii) has a simpler structure than the MUT

to ensure C3. The System Identification Toolbox provides some

generic guidance for selecting the parameters ensuring these two

criteria [6]. In this work we performed an empirical evaluation over

a set of benchmark models to determine the configuration to be

used in our experiments (Section 4.1).

Once a configuration is selected, SI uses the training data to learn

values for the coefficients of the equation from Table 2 that corre-

sponds to the selected structure and paramters. For example, after

selecting arx(na,nb,nk) and assigning values to na, nb and nk , SI
generates a surrogate model by learning values for the coefficients:

a1, . . . ana and b1, . . .bnb .
Similar to standard machine learning algorithms, SI’s objective

is to compute the model coefficients by minimizing the difference

(error) between the outputs ofM and
ˆM for the training data [93].

SI uses different standard notions of errors depending on the model

structure selected. In our work, we compute the Mean Squared

Error (MSE) [93] between the outputs ofM and
ˆM.

SI learns a surrogate model
ˆM by minimizing MSE over the

training dataD and hence, ensuring C2. The learning algorithm se-

lected by SI depends on the chosen model structure, on the purpose

of the identification process, i.e., whether the identified model will

be used for prediction or simulation, and on whether the system is

continuous or discrete.

3.2 Refinement
The refinement step rebuilds the surrogate model

ˆM when the

test inputU obtained by falsification-based testing of the surrogate

model is spurious for MUT (i.e., it does not reveal any failure ac-

cording to the test objective). Note that
ˆM may not be sufficiently

accurate to predict the behavior of the MUT. Hence, it is likely that

we need to improve its accuracy and we do so by reusing the data

obtained when checking a candidate test input U on MUT (line 9

of Algorithm 2).

Let U = {u1, . . . ,um } and Y = {y1, . . . ,yn } be the spurious test
inputs and its output, respectively. Similar to the data used to build

the initial
ˆM by the approximate step (line 9 of Algorithm 2), the

data D ′ = ⟨U ,Y ⟩ used to rebuild
ˆM is also discretized based on

the same sampling rate δ . To refine the surrogate model, we do not

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache

Table 2: Model structure and parameter choices for developing surrogate models.

Li
ne
ar

Model Structure Equation Model Type

arx(na,nb,nk) y(t) = a1 · y(t − 1) + . . . + ana · y(t − na) + b1 · u(t − nk) + . . . + bnb · u(t − nb − nk + 1) + e(t) Discrete

Description

The output y depends on previous input values, i.e., u(t − nk),. . . ,u(t − nb − nk + 1), and on values assumed by the output y in previous steps, i.e., y(t − 1),. . . ,y(t − na).
na and nb are the number of past output and input values to be used in predicting the next output. nk is the delay (number of samples) from the input to the output.

Model Structure Equation Model Type

armax(na,nb,nk,nc) y(t) = a1 ·y(t − 1)+ . . .+ana ·y(t −na)+b1 ·u(t −nk)+ . . .+bnb ·u(t −nb −nk + 1)+c1 ·e(t − 1)+ . . .+cnc ·e(t −nc)+e(t) Discrete

Description

Extends the arx model by considering how the values e(t − 1),. . . , e(t − nc) of the noise e at time t , t − 1, . . ., t − nc influence the value y(t) of the output y.

Model Structure Equation Model Type

bj(nb,nc,nf ,nd,nk) y(t) = B(z)
F (z) · u(t) +

C(z)
D(z) · e(t) Discrete

Description

Box-Jenkins models allow a more general noise description than armax models. The output y depends on a finite number of previous input u and output y values. The

values nb , nc , nd , nf , nk indicate the parameters of the matrix B, C , D, F and the value of the input delay.

Model Structure Equation Model Type

tf(np,nz) y(t) = b0+b1 ·s+b2 ·s2+...+bn ·snz
1+f1 ·s+f2 ·s2+...+fm ·snp · u(t) + e(t) Continuous

Description

Represents a transfer function model. The values np , nz indicate the number of poles and zeros of the transfer function.

Model Structure Equation Model Type

ss(n) x(0) = x0
Ûx(t) = Fx(t) +Gu(t) + Kw(t)
y(t) = Hx(t) + Du(t) +w(t)

Continuous

Description

Uses state variables to describe a system by a set of first-order differential or difference equations. n is an integer indicating the size of the matrix F , G, K , H and D.

N
on

Li
ne
ar

Model Structure Equation Model Type

nlarx(f ,na,nb,nk) y(t) = f (y(t − 1), ...,y(t − na),u(t − nk), ...,u(t − nk − nb + 1)) Discrete

Description

Uses a non linear function f to describe the input/output relation. Wavelet, sigmoid networks or neural networks in the Deep Learning Matlab Toolbox [3] can be used

to compute the function f . na and nb are the number of past output and input values used to predict the next output value. nk is the delay from the input to the output.

Model Structure Equation Model Type

hw(f ,h,na,nb,nk) w(t) = f (u(t))
x(t) = (B(z)/F (z)) ·w(t)
y(t) = h(x(t))

Continuous

Description

Hammerstein-Wiener models describe dynamic systems two nonlinear blocks in series with a linear block. Specifically, f and h are non linear functions, B(z), F (z), na,
nb, nk are defined as for bj models. Different nonlinearity estimators can be used to learn f and h similarly to the nlarx case.

change the considered configuration, but we combine the new D ′

and existing training data D, and refine
ˆM using these data.

Alternative policies can be chosen to refine the surrogate model.

For example, the refinement activity may also change the configu-

ration of ARIsTEO. This is a rather drastic change in the surrogate

model. When engineers have a clear understanding of the underly-

ing model, they may be able to define a systematic methodology

on how to move from less complex structures (e.g., linear) to more

complex ones (e.g., non-linear). Without proper domain knowledge,

such modification may be too disruptive. In this paper, our refine-

ment strategy is focused on incrementing the training data and

rebuilding the surrogate model without changing the configuration.

4 EVALUATION
In this section, we empirically evaluate ARIsTEO by answering the

following research questions:

• Configuration - RQ1. Which are the optimal (most effective and
efficient) SI configurations for ARIsTEO? Which of the optimal config-
urations can be used in the rest of our experiments? We investigate

the performance of ARIsTEO for different SI configurations (model

structures and parameters listed in Table 2) to identify the optimal

ones, i.e., those that offer the best trade-offs between effectiveness

(revealing the most requirements violations) and efficiency (reveal-

ing the violations in less time). We then select one configuration

among the optimal ones and use that configuration for the rest of

our experiments.

Testing Compute-Intensive Cyber-Physical Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

• Effectiveness - RQ2.How effective is ARIsTEO in generating tests
that reveal requirements violations? We use ARIsTEO with the opti-

mal configuration identified in RQ1 and evaluate its effectiveness

(i.e., its ability in detecting requirements violations) by comparing

it with falsification-based testing without surrogate models. We use

S-Taliro discussed in Section 2 for the baseline of comparison.

• Efficiency - RQ3. How efficient is ARIsTEO in generating tests
revealing requirements violations? Weuse ARIsTEOwith the optimal

configuration identified in RQ1 and evaluate its efficiency (i.e., the

time it takes to find violations) by comparing it with falsification-

based testing without surrogate models (i.e., S-Taliro).

A key challenge regarding the empirical evaluation of ARIsTEO

is that, both ARIsTEO and S-Taliro rely on randomized algorithms.

Hence, we have to repeat our experiments numerous times for

different models and requirements so that the results can be anal-

ysed in a sound and systematic way using statistical tests [20].

This is necessary to answer RQ1-RQ3 that involve selecting an

optimal configuration and comparing ARIsTEO with the baseline S-

Taliro. Performing these experiments on CI-CPS models is, however,

extremely expensive, to the point that the experiments become in-

feasible. A ballpark figure for the execution time of the experiments

required to answer RQ1-RQ3 is around 50 years if the experiments

are performed on our CI-CPS model case study (SAT-EX). There-
fore, instead of using CI-CPS models, we use non-CI-CPS models to

address RQ1-RQ3. The implications of this decision on the results

are assessed and mitigated in Sections 4.1 and 4.2 where we discuss

these three research questions in detail. In addition, to be able to

still assess the performance of ARIsTEO on CI-CPS models, we

consider an additional research question described below:

• Usefulness - RQ4. How applicable and useful is ARIsTEO in gen-
erating tests revealing requirements violations for industrial CI-CPS
models? We apply ARIsTEO with the optimal configuration iden-

tified in RQ1 to our CI-CPS model case study from the satellite

industry (SAT-EX) and evaluate its effectiveness and efficiency. The

focus here is to obtain representative results in terms of effective-

ness and efficiency based on an industry CI-CPS model. Note that

we still apply S-Taliro to SAT-EX to be able to compare it with

ARIsTEO for an industry CI-CPS model. This comparison, however,

is not meant to be subject to statistical analysis due to the large

execution time of SAT-EX, and is only meant to complement RQ3

with a fully realistic though extremely time consuming study.

The subject models. We used five publicly available non-CI-

CPS models (i.e., RHB(1), RHB(2), AT, AFC, IGC) that have been

previously used in the literature on falsification-based testing of

CPS models [40, 47, 51, 61, 90, 101]. The models represent realistic

and representative models of CPS systems from different domains.

RHB(1) and RHB(2) [51] are from the IoT and smart home domain.

AFC [61] is from the automotive domain and has been originally

developed by Toyota. AT [101] is another model from the auto-

motive domain. IGC [90] is from the health care domain. AT and

AFC have also been recently considered as a part of the reference

benchmarks in the ARCH competition [47] – an international com-

petition among verification and testing tools for continuous and

hybrid systems [2]. The models include both discrete (e.g., logic

decisions and state machines) and continuous (e.g., dynamical sys-

tems) behaviors. For example, RHB and AT contain state machines

represented as Stateflows diagrams [11]. Stateflow specifications

can represent logical decisions, such as the one produced by a plan-

ner (i.e., sequences of states and transitions labeled with movement

commands). These models have been manually developed and may

violate their requirements due to human errors. Some of the vio-

lations have been identified by the existing testing tools and are

reported in the literature [47, 51, 61, 90, 101]. Regarding the CI-CPS

model to address RQ4, we use the SAT-EX case study that we intro-

duced as a running example in Sections 2 and 3. SAT-EX contains
2192 blocks and has to be simulated for 24h, for each test case, to

sufficiently exercise the system dynamics and interactions with the

environment. The SAT-EX case study is a complex industrial system

that includes physical dynamics and control algorithms, but also

complex logic and decisions. For example, the satellite includes a

function that controls the hysteresis logic that regulates the switch-

ing between the course and the fine pointing laws of the satellite,

a Kalman filter [63] to estimate the position of the satellite, logic

that controls the normal and safe modes of the satellite, complex

functions that go beyond reading and retrieving sensors readings,

and pre-compiled S-Functions provided by third parties vendors.

Like the non-CI-CPS models, SAT-EX is manually developed by

engineers and is likely to be faulty. Its inputs and input profiles are

shown in Table 1.

Implementation andDataAvailability.We implementedARIs-

TEO as a Matlab application and as an add-on of S-Taliro. Our (san-

itized) models, data and tool are available online [1] and are also

submitted alongside the paper.

4.1 RQ1 - Configuration
Recall that ARIsTEO requires to be provided with a configuration to

build surrogate models. The universe of the possible configurations

is infinite as the model structures in Table 2 can be parametrized in

an infinite number of ways by associating different values to their

parameters. RQ1 identifies the optimal configurations that yield

the best tradeoff between effectiveness and efficiency for ARIsTEO

among a reasonably large set of alternative representative configu-

rations. It then selects one among the optimal configurations.

We do not evaluate configurations by measuring their prediction

accuracy (i.e., by measuring their prediction error when applied to a

set of test data as is common practice in assessing prediction models

in the machine learning area [28]) because our focus is not to have

the most accurate configuration but the one that is able to have

the most effective impact on ARIsTEO’s approximation-refinement

loop by quickly finding requirements violations. However, it is

likely that there exists a relationship between the two.

Experiment design. We consider five different configurations

obtained by five different sets of parameter values for each model

structure in Table 2. We denote the five configurations related to

each model structure S by S1 to S5. For example, the configurations

related to the model structure ss are denoted by ss1 to ss5. The
specific parameter value sets for the 35 configurations based on the

seven model structures in Table 2 are available online [1].

To answer RQ1, we apply ARIsTEO to the five non-CI-CPS mod-

els using each configuration among the 35 possible ones. That is,

we execute ARIsTEO 175 times. We further rerun each applica-

tion of ARIsTEO 100 times to account for the randomness in both

falsification-based testing and the approximation-refinement loop

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache

Number of Iterations
(Efficiency)

(E
ffe

ct
iv

en
es

s)
Pe

rc
en

ta
ge

 o
f S

uc
ce

ss
fu

l R
un

s

bj1 ss2

arx1 arx2 arx3 arx4 arx5
armax1 armax2 armax3 armax4 armax5
bj1 bj2 bj3 bj4 bj5
tf1 tf2 tf3 tf4 tf5
ss1 ss2 ss3 ss4 ss5
nlarx1 nlarx2 nlarx3 nlarx4 nlarx5
hw1 hw2 hw3 hw4 hw5

Figure 2: Effectiveness and efficiency of different configura-
tions across our non-CI-CPS subject models.

of ARIsTEO [27]. We set the value of MAX_REF, i.e, the number of

iterations of the ARIsTEO’s main loop, to 10 (see Algorithm 2) and

the value of MAX, i.e, the number times each iteration of ARIsTEO

executes falsification-based testing (see Algorithm 1), to 100 for

RHB(1), RHB(2) and AFC, and to 1000 for AT and IGC. These values

were used in the original experiments that apply falsification-based

testing to these models [10]. Running all the 17,500 experiments

required 4 315 567 hours (≈ 99 days).
2

Due the sheer size of the experiments required to answer RQ1,

we used our non-CI-CPS subject models. While these models are

smaller than typical CI-CPS models, the complexity of their struc-

ture (how Simulink blocks are used and connected) is similar to the

one of SAT-EX. Specifically, the structural complexity index [81, 83],

which provides an estimation of the complexity of the structure of

a Simulink model, is 1.8, 1.6, 1.2, 1.1, 2.1 for the RHB(1), RHB(2),

AT, AFC and IGC benchmarks, respectively, and 1.5 for the SAT-EX
case study. We conjecture that given these similarities, the efficiency

and effectiveness comparisons of the configurations performed

on non-CI-CPS models would likely remain the same should the

comparisons be performed on CI-CPS models. However, due to com-

putational time restrictions, we are not able to check this conjecture.

Finally, we note that even if we select a sub-optimal configuration, it

will be a disadvantage for ARIsTEO. So, the results for RQ2-RQ4 are

likely to improve if we find a way to identify a better configuration

for ARIsTEO using CI-CPS models.

Results. The scatter plot in Figure 2 shows the results of our

experiments. The x-axis indicates our efficiency metric which is

defined as the number of iterations that ARIsTEO requires to reveal
a requirement violation in a model for a given configuration. As

2
We used the high performance HPC facilities of the University of Luxembourg [96]

with 100 Dell PowerEdge C6320 and a total of 2800 cores with 12.8 TB RAM. The

parallelization reduced the experiments time to approximately 15 days.

described in the experiment design, the maximum number of itera-

tions is 10. Given a configuration for ARIsTEO, the fewer iterations

required to reveal a violation, the more efficient that configuration

is. The y-axis indicates our effectiveness metric which is defined as

the number of ARIsTEO runs (out of 100) that can reveal a violation
in a model. For effectiveness we are interested in knowing how

often we are able to reveal a requirement violation. The higher the

number of runs detecting violations, the more effective that configu-

ration is. The ideal configuration is the one that finds requirements

violations in 100% of the runs in just one iteration as indicated by

the origin of the plot in Figure 2 with coordinates (1, 100).

For each configuration, there is one point in the plot in Figure 2

whose coordinates, respectively, indicate the average efficiency and

effectiveness of that configuration for the non-CI-CPS subject mod-

els. As shown in the figure, bj1 and ss2 are on the Pareto frontier [8]

and dominate other configurations in terms of efficiency and ef-

fectiveness. That is, any configuration other than bj1 and ss2 is

strictly dominated in terms of both efficiency and effectiveness by

either bj1 or ss2. But bj1 does not dominate ss2, and neither does ss2.

Specifically, bj1 is more efficient but less effective than ss2, and ss2

is less efficient but more effective than bj1. For our experiments, we

select bj1 as the optimal configuration since efficiency is paramount

when dealing with CI-CPS models. In terms of effectiveness, bj1 is

only slightly less effective than ss2 (46.4% versus 52.4%).

The answer to RQ1 is that, among all the 35 configurations we

compared, the bj1 and the ss2 configurations are the optimal con-

figurations offering the best trade-off between efficiency (i.e., time

required to reveal requirements violations) and effectiveness (i.e.,

number of violations revealed) for ARIsTEO. We select bj1 as we

prioritize efficiency.

4.2 RQ2 and RQ3 - Effectiveness and Efficiency
For RQ2 and RQ3, we compare ARIsTEO (Algorithm 2) with S-Taliro

(Algorithm 1). As discussed earlier, due to the large size of the ex-

periments, we use non-CI-CPS models, but we want to obtain results
that are representative for the CI-CPS case. For such comparisons,

we need to execute both tools for an equivalent amount of time

and then compare their effectiveness and efficiency. This is a non

trivial problem, because

• That equivalent amount of time cannot simply translate into

identical execution times. Non-CI-CPS models, by definition,

are very quick to execute. Hence, the benefits of performing

the falsification on the surrogate model, as done by ARIsTEO,

would not be visible if we compared the two tools based

on the execution times of non-CI-CPS models. Therefore,

comparisons would be in favour of S-Taliro if we fix the

execution times of the two tools for non-CI-CPS models.

• Neither can we can run the two tools for the same number
of iterations, as commonly done in this domain [47], because

one iteration of ARIsTEO takes more time than one iteration

of S-Taliro. Recall that ARIsTEO, in addition to performing

falsification, builds and refines surrogate models in each

iteration. Thus, by fixing the number of iterations for the

two tools, comparisons would be in favour of ARIsTEO.

To answer RQ2 and RQ3 without favouring neither of the tools,

we propose the following:

Testing Compute-Intensive Cyber-Physical Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: The effectiveness results. Percentages of cases in
which ARIsTEO (IAi labelled columns) and S-Taliro (IBi la-
belled columns) were able to detect requirements violations
for different iteration pairs (IAi and IBi) and benchmarks.

IA1 IB1 IA2 IB2 IA3 IB3 IA4 IB4 IA5 IB5 IA6 IB6

RHB(1) 0% 5% 2% 2% 8% 8% 7% 7% 11% 6% 9% 8%

RHB(2) 5% 2% 6% 8% 4% 9% 5% 10% 13% 10% 7% 10%

AT 85% 7% 92% 7% 93% 7% 99% 4% 100% 8% 100% 13%

AFC 100% 77% 100% 73% 100% 88% 100% 86% 100% 92% 100% 95%

IGC 33% 4% 31% 6% 34% 9% 37% 15% 40% 18% 13% 21%

Suppose that we could perform RQ2 and RQ3 on a CI-CPS

model, and that we execute ARIsTEO and S-Taliro on this model for

the same time limit TL. Let IA and IB be the number of iterations

of ARIsTEO and S-Taliro within TL, respectively. Recall that one
iteration of ARIsTEO typically takes more time than one iteration of

the baseline (IA < IB). If we know the values of IA and IB, we can
execute ARIsTEO IA times and S-Taliro IB times on non-CI-CPS

models and use the results to compare the tools as if they were

executing on CI-CPS models.

To run our experiment, we need to know the relation between IA
and IB. We approximate this relation empirically using our SAT-EX
CI-CPS model. We execute ARIsTEO for 10 iterations and we set the

number of falsification iterations in each iteration of ARIsTEO to

100 as suggested by the literature onCPS falsification testing [10, 19]

(i.e., MAX_REF = 10 and MAX = 100 in Algorithm 2). We repeated these

runs of ARIsTEO five times. The first iteration of ARIsTEO took,

on average, 16 902s, and the subsequent iterations of ARIsTEO

took, on average, 9 865s. Note that the first iteration of ARIsTEO

is always more expensive than the subsequent iterations since

ARIsTEO builds surrogate models in the first iteration. Similarly,

we executed S-Taliro for 10 iterations on SAT-EX, and repeated this

run five times. Each iteration of S-Taliro took, on average, 8 336s on

SAT-EX. This preliminary experiment took approximately 20 days.

We then solve the two equations below to approximate the relation

between IA and IB:

TL = 9 865 × (IA − 1) + 16 902 (1)

TL = 8 336 × IB (2)

The above yields IB = 1.2 × IA + 0.8. Though we obtained this

relation between IA and IB based on one CI-CPS case study, SAT-EX
is a large and industrial system representative of the CPS domain.

Further, for CI-CPS models that are more compute-intensive than

SAT-EX, executing the models takes even more time compared to

the approximation and refinement time, and hence, the relation

above could be further improved in favour of ARIsTEO.

Experiment design. To answer RQ2 and RQ3, we applied

ARIsTEO with the configuration identified by RQ1 (bj1) and S-

Taliro to the five non-CI-CPS models in Table ??. We executed

ARIsTEO and S-Taliro for the following pairs of iterations: ⟨IA1 =

5, IB1 = 7⟩, ⟨IA2 = 7, IB2 = 9⟩, ⟨IA3 = 9, IB3 = 12⟩, ⟨IA4 =

11, IB4 = 14⟩, ⟨IA5 = 13, IB5 = 16⟩, and ⟨IA6 = 15, IB6 = 19⟩. Note

that every pair approximately satisfies IBi = 1.2 × IAi + 0.8. We

repeated each run 100 times to account for their randomness. For

RQ2, we compute the effectiveness metric as in RQ1: the number

of runs revealing requirements violations (out of 100) for each tool.

For RQ3, we assess efficiency by computing the efficiency metric as
in RQ1: the number of iterations that each tool requires to reveal a

requirement violation. However, as discussed above, the number of

iterations of ARIsTEO and S-Taliro are not comparable. Hence, for

RQ3, we report efficiency in terms of the estimated time that each

tool needs to perform those iterations on CI-CPS models computed

using equations 1 and 2.

Results-RQ2. Table 3 shows the effectiveness values for ARIs-
TEO and S-Taliro for the five iteration pairs discussed in the ex-

periment design. For the AT, AFC and IGC models, the average

effectiveness of ARIsTEO is significantly higher than that of S-

Taliro (75.4% versus 35.0% on average across benchmarks), while

for RHB(1) and RHB(2), ARIsTEO and S-Taliro reveal almost the

same number of violations (6.4% versus 7.0% on average across

benchmarks). The former difference in proportion is statistically

significant as confirmed by a two-sample z-test [75] with the level

of significance (α) set to 0.05.

RHB(1) and RHB(2) have more outputs than the other bench-

marks and they have shorter simulation times (see Table ??). This
is an increased challenge for building accurate surrogate models.

In practice, CI-CPS models can have a large number of outputs but

they usually involve long simulation times.

The answer to RQ2 is that the selected configuration of ARIsTEO

is significantly more effective than S-Taliro for three benchmark

models while, for the other two models, they reveal almost the

same number of violations. On average, over the five models,

ARIsTEO detects 23.9%more requirements violations than S-Taliro

(min=-8%, max=95%).

Results-RQ3. The execution times (computed using equations 1

and 2) of ARIsTEO and S-Taliro for our non-CI-CPS subject models

and the iteration pairs ⟨IAi , IBi ⟩ are shown in Figure 3. The box

plots in the same row are related to the same benchmark model,

while the box plots in the same column are related to the same

iteration pair. Recall that we described the iteration pairs ⟨IAi , IBi ⟩
considered for our experiments earlier in the experiment design

subsection. As expected, the average execution times of the two

tools increases with their number of iterations.

To statistically compare the results, we used the Wilcoxon rank

sum test [75] with the level of significance (α) set to 0.05. The results
show that ARIsTEO is significantly more efficient than S-Taliro

for the AT and IGC models (Figure 3 – rows 3,5). The efficiency

improvement that ARIsTEO brings about over S-Taliro for AT and

IGC across different iterations ranges from 14.4% (2.2h) to 73.1%

(31.2h). Note that, for AT and IGC, ARIsTEO is significantly more

effective than S-Taliro (see Table 3). This shows that, many runs of

ARIsTEO for AT and IGC can reveal a requirement violation and

stop before reaching the maximum ten iterations, hence yielding

better efficiency results of ARIsTEO compared to the other model.

For the RHB(1) and RHB(2) models (Figure 3 – rows 1,2), ARIs-

TEO and S-Taliro yield comparable efficiency results. The effective-

ness results in Table 3 confirm that, for RHB(1) and RHB(2), both

ARIsTEO and S-Taliro have to execute for ten iterations most of the

times as they cannot reveal violations (low effectiveness). Hence,

the efficiency results are worse for RHB(1) and RHB(2) than for

the other models. Further, as we run the tools for more iterations,

the efficiency results slightly increases as indicated by the increase

in the number of outliers. For the AFC model (Figure 3 – row 4),

ARIsTEO is slightly more efficient than S-Taliro. For AFC, S-Taliro

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache

ARIsTEO S-Taliro
0

10

20

R
H

B(
1)

Ti
m

e
(h

) IA1,IB1

ARIsTEO S-Taliro
0

10

20

R
H

B(
2)

Ti
m

e
(h

)

ARIsTEO S-Taliro
0

10

20

AT
Ti

m
e

(h
)

ARIsTEO S-Taliro
0

10

20

AF
C

Ti
m

e
(h

)

ARIsTEO S-Taliro
0

10

20

IG
C

Ti
m

e
(h

)

ARIsTEO S-Taliro
0

10
20

 IA2,IB2

ARIsTEO S-Taliro
0

10

20

ARIsTEO S-Taliro
0

10

20

ARIsTEO S-Taliro
0

10

20

ARIsTEO S-Taliro
0

10

20

ARIsTEO S-Taliro
0

10
20
30

 IA3,IB3

ARIsTEO S-Taliro
0

10

20

30

ARIsTEO S-Taliro
0

10

20

30

ARIsTEO S-Taliro
0

10

20

30

ARIsTEO S-Taliro
0

10

20

30

ARIsTEO S-Taliro
0

20

 IA4,IB4

ARIsTEO S-Taliro
0

20

ARIsTEO S-Taliro
0

20

ARIsTEO S-Taliro
0

20

ARIsTEO S-Taliro
0

10

20

30

ARIsTEO S-Taliro
0

20

40
 IA5,IB5

ARIsTEO S-Taliro
0

20

40

ARIsTEO S-Taliro
0

20

40

ARIsTEO S-Taliro
0

20

40

ARIsTEO S-Taliro
0

20

40

ARIsTEO S-Taliro
0

20

40

 IA6,IB6

ARIsTEO S-Taliro
0

20

40

ARIsTEO S-Taliro
0

20

40

ARIsTEO S-Taliro
0

20

40

ARIsTEO S-Taliro
0

20

40

Figure 3: Comparing the efficiency of ARIsTEO and S-Taliro. The box plots show the execution time (computed using equa-
tions 1 and 2) of ARIsTEO and S-Taliro (in hours) for our non-CI-CPS subject models (labels on the left of the figure) and over
different iterations (labels on the top of the figure). Diamonds depict the average.

is relatively effective in finding violations, and hence, is efficient.

But, its average execution time is slightly worse than that of ARIs-

TEO. Comparing the interquartile ranges of the box plots shows

that ARIsTEO is generally more efficient that S-Taliro. However, a

Wilcoxon test does not reject the null hypothesis (p-value = 0.06).

The average execution time of ARIsTEO and S-Taliro across

the different models is, respectively, approximately 19h and 25h.

Though there is significant variation across the different models,

ARIsTEO is, on average, 31.3% more efficient than S-Taliro.

The answer to RQ3 is that, for the considered models, the se-

lected configuration of ARIsTEO is on average 31.3% (min=−1.6%,

max=85.2%) more efficient than S-Taliro.

4.3 RQ4 - Practical Usefulness
We assess the usefulness of ARIsTEO in revealing requirements

violations of a representative industrial CI-CPS model.

Experiment design. We received three different requirements

from our industry partner [4]. One is the SatReq requirement pre-

sented in Section 2, and the two others (SatReq1 and SatReq2) are

strengthened versions of SatReq that, if violated, indicate increas-

ingly critical violations. We also received the input profile IP (Sec-

tion 2) and a more restricted input profile IP
′
, representing realistic

input subranges associated with more critical violations. For each

combination of the requirement (SatReq, SatReq1 and SatReq2) and

the input profiles IP and IP
′
, we checked whether ARIsTEO was

able to detect any requirement violation, and further, we recorded

the time needed by ARIsTEO to detect a violation. In addition, for

the two most critical requirements (SatReq1 and SatReq2) and the

input profiles IP and IP
′
, we checked whether S-Taliro is able to

detect any violation within the time limit required by ARIsTEO to

successfully reveal violations for SatReq1 and SatReq2. Running

this experiment took approximately four days and both tools were

run twice for each requirement and input profile combination.

Results. ARIsTEO found a violation for every requirement and

input profile combination in our study in just one iteration, re-

quiring approximately four hours of execution time. Given that

simulating the model under test takes approximately an hour and

a half, detecting errors in four hours is highly efficient as it corre-

sponds to roughly two model simulations. In comparison, S-Taliro

failed to find any violations for SatReq1 and SatReq2 after running

the tool for four hours based on the input profiles IP and IP
′
.

The answer to RQ4 is that ARIsTEO efficiently detected require-

ments violations – in practical time – that S-Taliro could not find,

for three different requirements and two input profiles on an

industrial CI-CPS model.

5 DISCUSSION AND THREATS TO VALIDITY
External validity. The selection of the models used in the evalua-

tion, because of the specific features they contain, is a threat to

external validity as it influences the extent to which our results

can be generalized. In the future, it is therefore important to eval-

uate ARIsTEO with a larger, more diverse set of models, which

vary in terms of complexity along different dimensions, such as

control algorithms, physical dynamics, state behavior, logic, and

decisions. We may, over time, be able to determine the character-

istics of models on which ARIsTEO fares better. However, below,

we note some facts, which tend to alleviate the threat to external

validity in our results: (1) the non-CI-CPS models (see Section 4)

we considered have been widely used in the literature on falsifica-

tion-based testing of CPS [40, 47, 51, 61, 90, 101], as they represent

Testing Compute-Intensive Cyber-Physical Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

realistic and representative models of CPS systems from different

domains; (2) our CI-CPS model is a complex model of a satellite

system and environment (see Section 4), developed by our industry

partner, and is representative of industrial systems containing com-

plex algorithms, equations, logic and decisions. It also includes third

party components, with unknown features, that are provided as

pre-compiled functions; (3) ARIsTEO is obtained by combining sys-

tem identification (SI) with falsification and abstraction-refinement.

The goal of SI is not to produce a model that accurately predict the

system outputs, but a model that is sufficiently accurate to allow

ARIsTEO to detect faulty inputs. Thus, in order for ARIsTEO to

perform well, the model learned by SI does not need to be perfect

in predicting the behaviour of the MUT. Consequently, there is no

straightforward relationship between SI prediction accuracy and

the performance of ARIsTEO. In other words, even if the predictions

of the models produced by SI are not perfectly accurate, they may

still be sufficient for guiding the search of ARIsTEO toward faulty

inputs. More empirical studies, such as that presented in this paper,

are needed to precisely determine the characteristics of models on

which ARIsTEO fares better.

Internal validity.When addressing RQ2 and RQ3, the use of an

optimal configuration is a threat to internal validity, as it maxi-

mizes, on average, the effectiveness and efficiency of ARIsTEO on

the considered set of models. However, a number of considerations

alleviate this threat. First, the configuration of ARIsTEO is not in-

dividually optimized for each model but for all models at once. It

represents a general compromise among the many diverse models

based on which it was selected. This configuration, based on our

experiment, therefore represents a good default configuration when

engineers do not have additional information. Furthermore, all the

configuration parameters of ARIsTEO which are common with

S-Taliro have been assigned the same values; S-Taliro is, therefore,

in our comparisons, not at a disadvantage due to sub-optimal con-

figuration values. Last, because it is compute-intensive, the satellite

model used to address RQ4 was not part of the model set used for

selecting the configuration of ARIsTEO. RQ4 yields results that are

consistent with previous RQs. In fact, the results for RQ4 are likely

to improve if we find a way to identify a better configuration for

ARIsTEO using CI-CPS models.

6 RELATEDWORK
Formal verification techniques such as model checking aim to

exhaustively check correctness of behavioural/functional models

(e.g., [50, 57]), but they often face scalability issues for complex CPS

models. The CEGAR framework has been proposed to help model

checking scale to such models (e.g., [17, 18, 30, 34, 35, 43, 60, 79, 85,

86, 86, 87, 91, 94, 99]). As discussed in Section 1, the approximation-

refinement loop of ARIsTEO, at a general level, is inspired by CE-

GAR. Two CEGAR-based model checking approaches have been

proposed for hybrid systems capturing CPS models: (a) abstracting

hybrid system models into discrete finite state machines without

dynamics [18, 34, 35, 86, 91, 94] and (b) abstracting hybrid sys-

tems into hybrid systems with simpler dynamics [30, 43, 60, 85, 87].

These two lines of work, although supported by various automated

tools (e.g., [32, 52, 53, 58, 86]), are difficult to use in practice due to

implicit and restrictive assumptions that they make on the struc-

ture of the hybrid systems under analysis. Further, due to their

limited scalability, they are inadequate for testing CI-CPS models.

For example, Ratschan [86] proposes an approach that took more

than 10h to verify the RHB benchmark (a non-CI-CPS model also

used in this paper). In contrast, our technique tests models instead

of exhaustively verifying them. Being black-box, our approach is

agnostic to the modeling language used for MUT, and hence, is

applicable to Simulink models irrespective of their internal com-

plexities. Further, as shown in our evaluation, our approach can

effectively and efficiently test industrial CI-CPS models.

There has been earlier work to combine CEGAR with testing in-

stead of model checking (e.g., [25, 38, 42, 42, 44, 64, 66, 66, 102, 103]).

However, based on a recent survey on the topic [64], ARIsTEO is

the first approach that combines the ideas behind CEGAR with

the system identification framework to develop an effective and

efficient testing framework for CI-CPS models. Non-CEGAR based

model testing approaches for CPS have been presented in the lit-

erature [21, 26, 46, 46, 80, 82, 89, 97, 98] and are supported by

tools [13, 19, 45, 47, 64, 100]. Among these, we considered S-Taliro

as a baseline for the reasons reported in Section 3.

Zhang et al. [100] reduce the number of simulations of the MUT

by iteratively evaluating different inputs for short simulation times

and by generating at each iteration the next input based on the

final state of the simulation. This approach assumes that the inputs

are piecewise constants and does not support complex input pro-

files such as those used in our evaluation for testing our industry

CI-CPS model. To reduce the simulation time of CI-CPS models, we

can manually simplify the models while preserving the behaviour

needed to test the requirements of interest [15, 84]. However, such

manual simplifications are error-prone and reduce maintainabil-

ity [23]. Further, finding an optimal balance between accuracy and

execution time is a complex task [92].

7 CONCLUSIONS
We presented ARIsTEO, a technique that combines testing with an

approximation-refinement loop to detect requirements violations

in CI-CPS models. We implemented ARIsTEO as a Matlab/Simulink

application and compared its effectiveness and efficiency with the

one of S-Taliro, a state-of-the-art testing framework for Simulink

models. ARIsTEO finds 23.9% more violations than S-Taliro and

finds those violations in 31.3% less time than S-Taliro. We evaluated

the practical usefulness of ARIsTEO on two versions of an industrial

CI-CPS model to check three different requirements. ARIsTEO

successfully triggered requirements violations in every case and

required four hours on average for each violation, while S-Taliro

failed to find any violations within four-hours.

ACKNOWLEDGMENTS
This work has received funding from the European Research Coun-

cil under the European Union’s Horizon 2020 research and innova-

tion programme (grant No 694277), the University of Luxembourg

(grant “ReACP"), and the Canada Research Chair programme.

The experiments presented in this paper were carried out using the

HPC facilities of the University of Luxembourg [96] – see

https://hpc.uni.lu.

https://hpc.uni.lu

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache

REFERENCES
[1] 2019. ARIsTEO. https://github.com/SNTSVV/ARIsTEO

[2] 2019. Cyber-Physical Systems and Internet-of-Things Week. http://cpslab.cs.

mcgill.ca/cpsiotweek2019/

[3] 2019. Deep Learning Toolbox. https://it.mathworks.com/products/deep-learning.

html

[4] 2019. Luxspace. https://luxspace.lu/

[5] 2019. Mathworks. https://mathworks.com. Accessed: 2019-08-07.

[6] 2019. Model Structure Selection: Determining Model Order and Input De-
lay. https://nl.mathworks.com/help/ident/ug/model-structure-selection-

determining-model-order-and-input-delay.html

[7] 2019. Modeling Dynamic Systems in Simulink. https://nl.mathworks.com/help/

simulink/ug/modeling-dynamic-systems.html Accessed: 2019-08-07.

[8] 2019. Pareto Frontier. https://en.wikipedia.org/wiki/Pareto_efficiency

[9] 2019. Resample. https://nl.mathworks.com/help/signal/ref/resample.html

[10] 2019. Setting for the baseline (S-Taliro) for the considered benchmark models.
https://sites.google.com/a/asu.edu/s-taliro/s-taliro/download

[11] 2019. Stateflow. https://nl.mathworks.com/products/stateflow.html

[12] Houssam Abbas, Andrew Winn, Georgios Fainekos, and A. Agung Julius. 2014.

Functional gradient descent method for metric temporal logic specifications. In

2014 American Control Conference. IEEE, 2312–2317.
[13] Takumi Akazaki, Shuang Liu, Yoriyuki Yamagata, Yihai Duan, and Jianye Hao.

2018. Falsification of cyber-physical systems using deep reinforcement learning.

In International Symposium on Formal Methods. Springer, 456–465.
[14] R. Alur. 2011. Formal verification of hybrid systems. In International Conference

on Embedded Software (EMSOFT). ACM, 273–278.

[15] Rajeev Alur. 2015. Principles of Cyber-Physical Systems. MIT Press.

[16] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger,

P-H Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine.

1995. The algorithmic analysis of hybrid systems. Theoretical computer science
138, 1 (1995), 3–34.

[17] Rajeev Alur, Thao Dang, and Franjo Ivančić. 2003. Counter-example guided

predicate abstraction of hybrid systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 208–223.

[18] Rajeev Alur, Thao Dang, and Franjo Ivančić. 2006. Predicate abstraction for

reachability analysis of hybrid systems. ACM transactions on embedded comput-
ing systems (TECS) 5, 1 (2006), 152–199.

[19] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-

narayanan. 2011. S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid

Systems. In Tools and Algorithms for the Construction and Analysis of Systems.
Springer.

[20] Andrea Arcuri and Lionel C. Briand. 2014. A Hitchhiker’s guide to statistical

tests for assessing randomized algorithms in software engineering. Softw. Test.,
Verif. Reliab. 24, 3 (2014), 219–250.

[21] Aitor Arrieta, Goiuria Sagardui, Leire Etxeberria, and Justyna Zander. 2017.

Automatic generation of test system instances for configurable cyber-physical

systems. Software Quality Journal 3 (2017), 1041–1083. https://doi.org/10.1007/

s11219-016-9341-7

[22] Aitor Arrieta, Shuai Wang, Ainhoa Arruabarrena, Urtzi Markiegi, Goiuria Sagar-

dui, and Leire Etxeberria. 2018. Multi-objective Black-box Test Case Selection

for Cost-effectively Testing Simulation Models. In Genetic and Evolutionary
Computation Conference (GECCO). ACM, 1411–1418.

[23] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Ainhoa Arruabarrena, Leire Etxeber-

ria, and Goiuria Sagardui. 2019. Pareto efficient multi-objective black-box test

case selection for simulation-based testing. Information and Software Technology
(2019).

[24] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2016. Search-

based test case selection of cyber-physical system product lines for simulation-

based validation. In International Systems and Software Product Line Conference.
ACM, 297–306.

[25] Thomas Ball, Orna Kupferman, and Greta Yorsh. 2005. Abstraction for falsi-

fication. In International Conference on Computer Aided Verification. Springer,
67–81.

[26] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded

Maler, Dejan Ničković, and Sriram Sankaranarayanan. 2018. Specification-Based

Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Appli-

cations. In Lectures on Runtime Verification: Introductory and Advanced Topics.
Springer, 135–175.

[27] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2018. Testing Vision-

Based Control Systems Using Learnable Evolutionary Algorithms. In Interna-
tional Conference on Software Engineering (ICSE). 1016–1026.

[28] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[29] Sergio Bittanti. 2019. Model Identification and Data Analysis. Wiley.

[30] Sergiy Bogomolov, Mirco Giacobbe, Thomas A. Henzinger, and Hui Kong. 2017.

Conic Abstractions for Hybrid Systems. In Formal Modeling and Analysis of
Timed Systems, Alessandro Abate and Gilles Geeraerts (Eds.). Springer, 116–132.

[31] Devendra K Chaturvedi. 2009.Modeling and simulation of systems usingMATLAB
and Simulink. CRC press.

[32] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An

analyzer for non-linear hybrid systems. In International Conference on Computer
Aided Verification. Springer, 258–263.

[33] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,

Taylor T Johnson, and Christoph Csallner. 2018. Automatically finding bugs in

a commercial cyber-physical system development tool chain with SLforge. In

International Conference on Software Engineering. ACM, 981–992.

[34] Edmund Clarke, Ansgar Fehnker, Zhi Han, Bruce Krogh, Joël Ouaknine, Olaf

Stursberg, and Michael Theobald. 2003. Abstraction and counterexample-guided

refinement in model checking of hybrid systems. International journal of foun-
dations of computer science 14, 04 (2003), 583–604.

[35] Edmund Clarke, Ansgar Fehnker, Zhi Han, Bruce Krogh, Olaf Stursberg,

and Michael Theobald. 2003. Verification of Hybrid Systems Based on

Counterexample-Guided Abstraction Refinement. In Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 192–207.

[36] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000.

Counterexample-guided abstraction refinement. In International Conference on
Computer Aided Verification. Springer, 154–169.

[37] Edmund M Clarke, Orna Grumberg, and David E Long. 1994. Model checking

and abstraction. Transactions on Programming Languages and Systems (TOPLAS)
16, 5 (1994), 1512–1542.

[38] Cas J. F. Cremers. 2008. The Scyther Tool: Verification, Falsification, and Analysis

of Security Protocols. In International Conference on Computer Aided Verification.
Springer, 414–418.

[39] Yanja Dajsuren, Mark G.J. van den Brand, Alexander Serebrenik, and Serguei

Roubtsov. 2013. Simulink Models Are Also Software: Modularity Assessment. In

International ACM Sigsoft Conference on Quality of Software Architectures. ACM.

[40] Thao Dang, Alexandre Donzé, and Oded Maler. 2004. Verification of analog and

mixed-signal circuits using hybrid system techniques. In International Confer-
ence on Formal Methods in Computer-Aided Design. Springer, 21–36.

[41] Thao Dang and Tarik Nahhal. 2009. Coverage-guided test generation for con-

tinuous and hybrid systems. Formal Methods in System Design 34, 2 (2009),

183–213.

[42] Jyotirmoy Deshmukh, Xiaoqing Jin, James Kapinski, and Oded Maler. 2015.

Stochastic Local Search for Falsification of Hybrid Systems. In Automated Tech-
nology for Verification and Analysis, Bernd Finkbeiner, Geguang Pu, and Lijun

Zhang (Eds.). Springer, 500–517.

[43] Henning Dierks, Sebastian Kupferschmid, and Kim G Larsen. 2007. Automatic

abstraction refinement for timed automata. In International Conference on Formal
Modeling and Analysis of Timed Systems. Springer, 114–129.

[44] Dong Wang, Pei-Hsin Ho, Jiang Long, J. Kukula, Yunshan Zhu, T. Ma, and R.

Damiano. 2001. Formal property verification by abstraction refinement with

formal, simulation and hybrid engines. In Design Automation Conference. IEEE,
35–40.

[45] Alexandre Donzé. 2010. Breach, a toolbox for verification and parameter synthe-

sis of hybrid systems. In International Conference on Computer Aided Verification.
Springer, 167–170.

[46] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin,

and Jyotirmoy V Deshmukh. 2015. Efficient guiding strategies for testing of

temporal properties of hybrid systems. In NASA Formal Methods Symposium.

Springer, 127–142.

[47] Gidon Ernst, Paolo Arcaini, Alexandre Donze, Georgios Fainekos, Logan Mathe-

sen, Giulia Pedrielli, Shakiba Yaghoubi, Yoriyuki Yamagata, and Zhenya Zhang.

2019. ARCH-COMP 2019 Category Report: Falsification. EPiC Series in Comput-
ing 61 (2019), 129–140.

[48] Georgios E Fainekos and George J Pappas. 2008. A user guide for TaLiRo. Tech-
nical Report. Technical report, Dept. of CIS, Univ. of Pennsylvania.

[49] Georgios E Fainekos and George J Pappas. 2009. Robustness of temporal logic

specifications for continuous-time signals. Theoretical Computer Science 410, 42
(2009), 4262–4291.

[50] Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. 2017. DryVR:

Data-Driven Verification and Compositional Reasoning for Automotive Systems.

In International Conference on Computer Aided Verification. Springer, 441–461.
[51] Ansgar Fehnker and Franjo Ivancic. 2004. Benchmarks for hybrid systems veri-

fication. In International Workshop on Hybrid Systems: Computation and Control.
Springer, 326–341.

[52] Goran Frehse. 2008. PHAVer: algorithmic verification of hybrid systems past

HyTech. International Journal on Software Tools for Technology Transfer 10, 3
(2008), 263–279.

[53] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,

Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.

2011. SpaceEx: Scalable verification of hybrid systems. In International Confer-
ence on Computer Aided Verification. Springer, 379–395.

[54] Sicun Gao, Soonho Kong, and Edmund M Clarke. 2013. dReal: An SMT solver

for nonlinear theories over the reals. In International conference on automated

https://github.com/SNTSVV/ARIsTEO
http://cpslab.cs.mcgill.ca/cpsiotweek2019/
http://cpslab.cs.mcgill.ca/cpsiotweek2019/
https://it.mathworks.com/products/deep-learning.html
https://it.mathworks.com/products/deep-learning.html
https://luxspace.lu/
https://mathworks.com
https://nl.mathworks.com/help/ident/ug/model-structure-selection-determining-model-order-and-input-delay.html
https://nl.mathworks.com/help/ident/ug/model-structure-selection-determining-model-order-and-input-delay.html
https://nl.mathworks.com/help/simulink/ug/modeling-dynamic-systems.html
https://nl.mathworks.com/help/simulink/ug/modeling-dynamic-systems.html
https://en.wikipedia.org/wiki/Pareto_efficiency
https://nl.mathworks.com/help/signal/ref/resample.html
https://sites.google.com/a/asu.edu/s-taliro/s-taliro/download
https://nl.mathworks.com/products/stateflow.html
https://doi.org/10.1007/s11219-016-9341-7
https://doi.org/10.1007/s11219-016-9341-7

Testing Compute-Intensive Cyber-Physical Systems ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

deduction. Springer, 208–214.
[55] Carlos A González, Mojtaba Varmazyar, Shiva Nejati, Lionel C Briand, and Yago

Isasi. 2018. Enabling model testing of cyber-physical systems. In International
Conference on Model Driven Engineering Languages and Systems. ACM, 176–186.

[56] Robert L Grossman, Anil Nerode, Anders P Ravn, and Hans Rischel. 1993. Hybrid
systems. Vol. 736. Springer.

[57] Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. 1997. HyTech: A

model checker for hybrid systems. In International Conference on Computer
Aided Verification. Springer, 460–463.

[58] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. 1997. HYTECH: a

model checker for hybrid systems. International Journal on Software Tools for
Technology Transfer 1, 1 (1997), 110–122.

[59] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. 1998.

What’s decidable about hybrid automata? Journal of computer and system
sciences 57, 1 (1998), 94–124.

[60] Sumit K Jha, Bruce H Krogh, James E Weimer, and Edmund M Clarke. 2007.

Reachability for linear hybrid automata using iterative relaxation abstraction. In

International Workshop on Hybrid Systems: Computation and Control. Springer,
287–300.

[61] Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken

Butts. 2014. Powertrain control verification benchmark. In International confer-
ence on Hybrid systems: computation and control. ACM, 253–262.

[62] A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, Insup Lee, and

George J. Pappas. 2007. Robust Test Generation and Coverage for Hybrid

Systems. In Hybrid Systems: Computation and Control. Springer, 329–342.
[63] Rudolph Emil Kalman. 1960. A new approach to linear filtering and prediction

problems. Journal of basic Engineering 82, 1 (1960), 35–45.

[64] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts. 2016. Simulation-Based

Approaches for Verification of Embedded Control Systems: An Overview of

Traditional and Advanced Modeling, Testing, and Verification Techniques. IEEE
Control Systems Magazine 36, 6 (2016), 45–64.

[65] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. 2015. dReach: δ -
reachability analysis for hybrid systems. In International Conference on TOOLS
and Algorithms for the Construction and Analysis of Systems. Springer, 200–205.

[66] Daniel Kroening and Georg Weissenbacher. 2010. Verification and falsification

of programs with loops using predicate abstraction. Formal Aspects of Computing
22, 2 (2010), 105–128. https://doi.org/10.1007/s00165-009-0110-2

[67] RP Kurshan. 1994. Computer-Aided Verification of Coordinating Processes: The

Automata.

[68] Grischa Liebel, Nadja Marko, Matthias Tichy, Andrea Leitner, and Jörgen Hans-

son. 2018. Model-based engineering in the embedded systems domain: an

industrial survey on the state-of-practice. Software & Systems Modeling 17, 1

(2018), 91–113.

[69] Lennart Ljung. 2008. System identification toolbox 7: Getting started guide. The
MathWorks.

[70] Sean Luke. 2013. Essentials of Metaheuristics . Lulu, Fairfax, Virginie, USA.

[71] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-

tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, 152–166.

[72] Reza Matinnejad, Shiva Nejati, Lionel Briand, Thomas Bruckmann, and Claude

Poull. 2013. Automated model-in-the-loop testing of continuous controllers

using search. In International Symposium on Search Based Software Engineering.
Springer, 141–157.

[73] Reza Matinnejad, Shiva Nejati, Lionel Briand, Thomas Bruckmann, and Claude

Poull. 2015. Search-based automated testing of continuous controllers: Frame-

work, tool support, and case studies. Information and Software Technology 57

(2015), 705–722.

[74] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2016.

Automated Test Suite Generation for Time-continuous Simulink Models. In

International Conference on Software Engineering (ICSE). ACM, 595–606.

[75] John H McDonald. 2009. Handbook of biological statistics. Vol. 2.
[76] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019.

Generating Automated and Online Test Oracles for Simulink Models with Con-

tinuous and Uncertain Behaviors. In Foundations of Software Engineering (FSE).
ACM.

[77] Shiva Nejati. 2019. Testing Cyber-physical Systems via Evolutionary Algorithms

and Machine Learning. In International Workshop on Search-Based Software Test-
ing (SBST). IEEE.

[78] Shiva Nejati, Khouloud Gaaloul, Claudio Menghi, Lionel C. Briand, Stephen

Foster, and David Wolfe. 2019. Evaluating Model Testing and Model Checking

for Finding Requirements Violations in Simulink Models. In Foundations of
Software Engineering (FSE).

[79] Johanna Nellen, Kai Driessen, Martin Neuhäußer, Erika Ábrahám, and Benedikt

Wolters. 2016. Two CEGAR-based approaches for the safety verification of

PLC-controlled plants. Information Systems Frontiers 18, 5 (2016), 927–952.

https://doi.org/10.1007/s10796-016-9671-9

[80] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancić,

Aarti Gupta, and George J. Pappas. 2010. Monte-carlo Techniques for Falsifi-

cation of Temporal Properties of Non-linear Hybrid Systems. In International
Conference on Hybrid Systems: Computation and Control. ACM.

[81] Marta Olszewska. 2011. Simulink-specific design quality metrics. Turku Centre
for Computer Science (2011).

[82] Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. 2007. Hybrid systems: From

verification to falsification. In International Conference on Computer Aided Veri-
fication. Springer, 463–476.

[83] Marta Pląska, Mikko Huova, Marina Waldén, Kaisa Sere, and Matti Linjama.

2009. Quality analysis of simulink models. In International Conference on Quality
Engineering in Software Technology. Verlag.

[84] Seth Popinchalk. 2012. Improving Simulation Performance in Simulink. The
MathWorks, Inc (2012), 1–10.

[85] Pavithra Prabhakar, Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh

Viswanathan. 2015. Hybrid automata-based cegar for rectangular hybrid sys-

tems. Formal Methods in System Design 46, 2 (2015), 105–134.

[86] Stefan Ratschan and Zhikun She. 2007. Safety verification of hybrid systems by

constraint propagation-based abstraction refinement. Transactions on Embedded
Computing Systems (TECS) 6, 1 (2007), 8.

[87] Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. 2016. Hybridiza-

tion Based CEGAR for Hybrid Automata with Affine Dynamics. In Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 752–769.

[88] Goiuria Sagardui, Joseba Agirre, Urtzi Markiegi, Aitor Arrieta, Carlos Fernando

Nicolás, and Jose María Martín. 2017. Multiplex: A co-simulation architec-

ture for elevators validation. In International Workshop of Electronics, Control,
Measurement, Signals and their application to Mechatronics (ECMSM). IEEE, 1–6.

[89] Sriram Sankaranarayanan and Georgios Fainekos. 2012. Falsification of tempo-

ral properties of hybrid systems using the cross-entropy method. In International
conference on Hybrid Systems: Computation and Control. ACM, 125–134.

[90] Sriram Sankaranarayanan and Georgios Fainekos. 2012. Simulating insulin

infusion pump risks by in-silico modeling of the insulin-glucose regulatory sys-

tem. In International Conference on Computational Methods in Systems Biology.
Springer, 322–341.

[91] Marc Segelken. 2007. Abstraction and counterexample-guided construction

of ω-automata for model checking of step-discrete linear hybrid models. In

International Conference on Computer Aided Verification. Springer, 433–448.
[92] Gaddadevara Matt Siddesh, Ganesh Chandra Deka, Krishnarajana-

gar GopalaIyengar Srinivasa, and Lalit Mohan Patnaik. 2015. Cyber-Physical
Systems: A Computational Perspective. Chapman & Hall/CRC.

[93] Torsten Söderström and Petre Stoica. 1989. System identification. (1989).

[94] Maria Sorea. 2004. Lazy approximation for dense real-time systems. In Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Springer,
363–378.

[95] Cumhur Erkan Tuncali, Bardh Hoxha, Guohui Ding, Georgios Fainekos, and

Sriram Sankaranarayanan. 2018. Experience Report: Application of Falsification

Methods on the UxAS System. In NASA Formal Methods. Springer, 452–459.
[96] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an

Academic HPC Cluster: The UL Experience. In Proc. of the 2014 Intl. Conf. on
High Performance Computing & Simulation (HPCS 2014). IEEE, Bologna, Italy,
959–967.

[97] S. Yaghoubi and G. Fainekos. 2017. Hybrid approximate gradient and stochastic

descent for falsification of nonlinear systems. In 2017 American Control Confer-
ence (ACC). 529–534. https://doi.org/10.23919/ACC.2017.7963007

[98] Shakiba Yaghoubi and Georgios Fainekos. 2017. Local descent for temporal

logic falsification of cyber-physical systems. In Workshop on Design, Modeling
and Evaluation of Cyber Physical Systems.

[99] Wenji Zhang, Pavithra Prabhakar, and Balasubramaniam Natarajan. 2017. Ab-

straction based reachability analysis for finite branching stochastic hybrid

systems. In International Conference on Cyber-Physical Systems (ICCPS). IEEE,
121–130.

[100] Zhenya Zhang, Gidon Ernst, Sean Sedwards, Paolo Arcaini, and Ichiro Hasuo.

2018. Two-layered falsification of hybrid systems guided by monte carlo tree

search. Transactions on Computer-Aided Design of Integrated Circuits and Systems
37, 11 (2018), 2894–2905.

[101] Qianchuan Zhao, Bruce H Krogh, and Paul Hubbard. 2003. Generating test

inputs for embedded control systems. Control Systems Magazine 23, 4 (2003),
49–57.

[102] Aditya Zutshi, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and James

Kapinski. 2014. Multiple Shooting, CEGAR-based Falsification for Hybrid Sys-

tems. In International Conference on Embedded Software (EMSOFT). ACM, 5:1–

5:10.

[103] Aditya Zutshi, Sriram Sankaranarayanan, Jyotirmoy V. Deshmukh, James Kap-

inski, and Xiaoqing Jin. 2015. Falsification of Safety Properties for Closed Loop

Control Systems. In International Conference on Hybrid Systems: Computation
and Control (HSCC). ACM, 299–300.

https://doi.org/10.1007/s00165-009-0110-2
https://doi.org/10.1007/s10796-016-9671-9
https://doi.org/10.23919/ACC.2017.7963007

	Abstract
	1 Introduction
	2 CPS Models and Falsification-Based Testing
	3 ARIsTEO
	3.1 Approximation
	3.2 Refinement

	4 Evaluation
	4.1 RQ1 - Configuration
	4.2 RQ2 and RQ3 - Effectiveness and Efficiency
	4.3 RQ4 - Practical Usefulness

	5 Discussion and Threats to Validity
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

