
Deep dive into Interledger:
Understanding the Interledger ecosystem

– Part 4 –

Lucian Trestioreanu, Cyril Cassagnes, and Radu State

Ripple UBRI @ Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg

29, Avenue JF Kennedy, 1855 Luxembourg, Luxembourg

Abstract. At the technical level, the goal of Interledger is to provide an architecture
and a minimal set of protocols to enable interoperability for any value transfer system. The
Interledger protocol is literally a protocol for interledger payments. To understand how is it
possible to achieve this goal, several aspects of the technology require a deeper analysis. For
this reason, in our journey to become knowledgeable and active contributor we decided to
create our own test-bed on our premises. By doing so, we noticed that some aspects are well
documented but we found that others might need more attention and clarification. Despite
a large community effort, the task to keep information on a fast evolving software ecosystem
is tedious and not always the priority for such a project. Therefore, the purpose of this
document is to guide, through several hands-on activities, community members who want
to engage at different levels. The document consolidates all the relevant information from
generating a simple payment to ultimately create a test-bed with the Interledger protocol
suite between Ripple and other distributed ledger technology.

Contents

1 What this document covers 3

2 Who this document is for 3

3 The Interledger ecosystem 3
3.1 The Interledger protocol suite . 3

3.1.1 The Bilateral Transfer Protocol . 3

4 Customer apps for money transfer 7
4.0.1 @Kava-Labs: Switch API . 7

5 A private Ripple network example 11

6 Evaluation and discussion 13

7 Conclusions and future work 13

List of Figures

1 Packet data structure . 3
2 Example 1: BTP . 4
3 BTP: the finite state machine diagram . 5
4 Protocols and details . 6
5 The protocol suite . 6
6 Ecosystem overview . 12

List of Tables

2

1 What this document covers

In Part 4, we are going to conclude our series by discussing one last major component of
the Interledger protocol suite, namely the Bilateral Transfer Protocol (BTP) which is a link
protocol and a carrier for ILP, and a trading app named Switch. Finally, we are going to see
the architecture of an entire, functional, private Ripple network which is currently the basis of
our test-bed. We are also going to discuss some examples along the way. For easier orientation,
we kept the general chapter structure unmodified.

2 Who this document is for

No prerequisites regarding the Interledger ecosystem are expected from the reader. However,
developers, computer science students or people used to deal with computer programming chal-
lenges should be able to reproduce our setup without struggle.

3 The Interledger ecosystem

3.1 The Interledger protocol suite

3.1.1 The Bilateral Transfer Protocol

The Bilateral Transfer Protocol (BTP) emerged as a necessity, due to a combination of ILP
goals (fast and cheap transactions) and the realities of some ledgers (expensive and/or slow
settlements). With BTP, two parties can send funds directly to each other, up to a maximum
amount they are willing to trust before settlement. BTP is used between connectors (Moneyd
included) for transferring ILP packets and messages necessary to exchange payments, settlement,
configuration and routing information.

BTP packet

ILP packet

STREAM packet

Application packet

Fig. 1: Packet data structure. [1, 2]

As shown in Figure 1, BTP is a ”carrier” for ILP packets and as such, for other protocols
like STREAM for example. BTP establishes the ”link” between connectors, on top of which the
ILP packets are being sent. When setting-up the connector plugins, one also generally sets-up a
BTP connection. The data is sent over web socket connections. One of the peers acts as a server
while the other is connected as a client. It implements a Bilateral Ledger, where the two peers
keep track of their (yet) un-settled accounts and balances. The Bilateral Ledger, a micro-ledger
kept by the two peers in-between them, is not to be confused with the Underlying Ledger - the
main ledger where all accounts and transactions are stored, e.g. the Ripple ledger. With regards

3

to Figure 5, it is to be noted that ILP can still work without BTP [3].

Example 1. We can now complete our diagrams presented in Part 1 - Example 1, Part 2 -
Example 1 and Part 3 - Example 1 with the BTP protocol, which is illustrated in Figure 2.

In order to connect to Interledger, each Alice and Bob’s ILP modules establish a BTP
connection over wss with the parent connector. As long as they are connected to Interledger,
this connection will be live. The ILP packets will travel over BTP. While opening the BTP
connection, both of them also negotiate a unique paychan with their direct peer, the connector.

It is to be noted that while we made this choice for clarity, the order we presented SPSP,
STREAM, ILP and BTP is not necessarily the real temporal order of events. This is illustrated
in greater depth in Part 1 - Example 2, Part 2 - Example 2 and Part 3 - Example 2.

4. STREAM logical connection
using ILP address and secret

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query
SPSP server

SPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer
1. Bob shares his payment pointer

STREAM module
(client)

STREAM module
(server)

ILP module
Moneyd

ILP module
Moneyd

Alice’s ILP address Bob’s ILP address

INTERLEDGER

Money (XRP)

Connector

5. ILP transfer

Fig. 2: Example 1: BTP. [1, 2]

The finite state machine of the BTP protocol is presented in Figure 3.

4

Fig. 3: BTP: the finite state machine diagram.

5

Sender

Node A: g.node-a

(13) Routing Table Module

Routing Table

Account for Ledger B

(11) Account Module

(12) Bilateral Ledger

IP layer connection (e.g. WebSocket)

Interaction between programs

Explanation of something

Node B: g.node-a.child-b

Routing Table Module

Routing Table

Account for Ledger B

Account Module

Bilateral Ledger

(A) BTP over WebSocket

(C) SPSP over HTTPS

The identifier of nodes (g.xxx) is (3) ILP address

Packet Data Structure

BTP Packet

ILP Packet

(7) DCP Packet

BTP Packet

ILP Packet

(8) RBP Packet

The details (order, value type, length) are defined as (9) ASN.1 .
The ASN.1 structure is encoded in binary by (10) Canonical OER rule.

(1) BTP Packet

(2) ILP Packet

(4) STREAM Packet

(5) Application Packet

Application

Account for Ledger A

Account Module

Bilateral Ledger

(
4
)

 S
T
R
E
A
M

P
a
c
k
e
t

(14) Configuration Module

(
7
)

 D
C
P

P
a
c
k
e
t

(6) SPSP information

(8) RBP Packet

Ledger B

Account for Node A

Account for Node B

Payment Channel
for Node A and B

(B) Ledger specific connection

(to receiver SPSP server)

(1) BTP Packet (to Node C)

(to Ledger A)

Fig. 4: Protocols and details. Advanced diagram. [1, 2]

The relationship between protocols, and especially the STREAM protocol, can be best un-
derstood by referring to Figure 4 and further, by reading the thorough explanations provided
by [1, 2].

Application

Transport

Interledger

Link

Ledger

SPSP

STREAM

...

ILPv4

...

BTP ...

... ...

Fig. 5: The protocol suite. [4]

6

By concluding BTP, we have now seen all the major protocols of Interledger, namely BTP,
ILP, STREAM and SPSP, a protocol suite also depicted in Figure 5.

Other protocols examples are the Interledger Dynamic Configuration Protocol (ILDCP),
or the Route Broadcasting Protocol (RBP). DCP is built over ILP and used to exchange
node information such as ILP address, while RBP is used to transfer routing information. Both
use the data field in the ILP packets [1].

4 Customer apps for money transfer

4.0.1 @Kava-Labs: Switch API

Switch API1 has been built mostly for cryptocurrencies trading like from XRP to ETH or
Lightning. This means that the accounts involved in the currency swap belong to the same
user. It ’streams money’, meaning that for example, a 20 units transfer would be split into
small chunks and each of these chunks would be separately sent on the paychan until the whole
amount is sent [5, 6].

Switch API handles multiple uplinks, with dedicated plugins for each currency - XRP, ETH
and Lightning. We investigated XRP and ETH. For communicating with the XRP connector
we set up a dedicated XRP plugin2, while for the Ethereum uplink we use a dedicated Ethereum
plugin3.

To handle the ETH settlement, Machinomy contracts have to be deployed on the ETH
network, as explained in Part 3 - Section 4.2. We have tested a stream payment between XRP
and ETH using Ganache4 as ETH provider.

Some particular aspects of running Switch API - as of May 2019:

• The modules ”ethers” and ”ilp-plugin-ethereum” must be updated to the last version on
the connector machine and Switch API machine.

• When setting up Switch API the credentials must be lowercase.

• After each run, it creates a config file in /home/user/.switch/config. If run with the same
credentials (for tests), this file must be manually deleted or would output the warning
”can not create duplicate uplink”.

• When using a private ETH network, Ganache included, the network ID and the Machinomy
contract address should be set. We have used the Kovan network ID, 42, which we have
set in Ganache, while in the following files, we have changed the address to the Machinomy
contract address deployed on the ETH network (Ganache):

– ’/home/user/node modules/ilp-plugin-ethereum/build/utils/channel.js’ on the refer-
ence node.js connector handling the ETH uplink - the ILSP 2 connector in
Figure 6, AND

– in the same file on the machine running the Switch API app

1https://github.com/Kava-Labs/ilp-sdk/blob/master/README.md, accessed June 2019
2https://github.com/Kava-Labs/ilp-plugin-xrp-paychan, accessed June 2019
3https://github.com/interledgerjs/ilp-plugin-ethereum, accessed June 2019
4https://truffleframework.com/ganache, accessed June 2019

7

https://github.com/Kava-Labs/ilp-sdk/blob/master/README.md
https://github.com/Kava-Labs/ilp-plugin-xrp-paychan
https://github.com/interledgerjs/ilp-plugin-ethereum
https://truffleframework.com/ganache

42: {

unidirectional: {

abi: Unidirectional_testnet_json_1.default,

address: ’0xa711d0a8b93faacd0f0f1897c11a1d7286d29720’

}

}

The Machinomy contract address is the ”Unidirectional contract” address deployed
by Machinomy.

• Settings regarding settlement, on the machine running Switch API, when running
Switch API on private XRP and ETH networks:

– File: ’switch-api/build/settlement/machinomy.js’ :

remoteConnectors: {

local: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.131:7442‘ // Reference ETH

connector IP:port. ILSP 2 in Figure 26.

},

testnet: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.131:7442‘ // Reference ETH

connector IP:port. ILSP 2 in Figure 26.

},

mainnet: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.131:7442‘

}

}

– File: ’switch-api/build/settlement/xrp-paychan.js’ :

const getXrpServerWebsocketUri = (ledgerEnv) => ledgerEnv === ’mainnet’

? ’ws://192.168.1.98:51233’ // XRP validator IP

: ’ws://192.168.1.98:51233’; // XRP validator IP

.

remoteConnectors: { //XRP parent connector

local: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.146:7444‘ //

XRP referenceConnector - ILSP 1 in Figure 26.

},

testnet: {

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.146:7444‘ //

XRP referenceConnector - ILSP 1 in Figure 26.

},

mainnet: {

8

’Kava Labs’: (token) =>

‘btp+ws://:${token}@192.168.1.146:7444‘ //

XRP referenceConnector - ILSP 1 in Figure 26.

}

}[ledgerEnv],

• Additional settings on the machine running Switch API. The ”Ethers” module pro-
vides support for setting up different providers 5.

– file: /home/user/node modules/ethers/utils/networks.js:

kovan: {

chainId: 42,

name: ’kovan’,

_defaultProvider:

etcDefaultProvider(’http://192.168.1.87:8545’) // set ETH

provider IP and port (Ganache)

}

– in file /home/user/node modules/ethers/ethers.js, set network to kovan:

function getDefaultProvider(network) {

console.log(’ETHERS.js get default provider (network): network:’,

network);

if (network == null) {

network = ’kovan’; //set kovan

}

– in file /home/user/node modules/ilp-plugin-ethereum/build/index.js, set provider to
kovan:

class EthereumPlugin extends eventemitter2_1.EventEmitter2 {

constructor({ role = ’client’, ethereumPrivateKey, ethereumProvider =

’kovan’, getGasPrice, outgoingChanne

• Additional setting on the machine running the connector providing the ETH link:

– in file /home/user/node modules/ethers/utils/networks.js:

kovan: {

chainId: 42,

name: ’kovan’, _defaultProvider:

etcDefaultProvider(’http://192.168.1.87:8545’) //ETH provider

IP:port (Ganache)

}

• Example script which can be used for streaming XRP-ETH using Switch API [5]:

const { connect } = require(’@kava-labs/switch-api’)

5https://docs.ethers.io/ethers.js/html/api-providers.html, accessed June 2019

9

https://docs.ethers.io/ethers.js/html/api-providers.html

const BigNumber = require(’bignumber.js’)

async function run() {

// Connect the API

console.log(’*** example-js ***: adding API’)

const api = await connect()

//Add new uplink with an account

console.log(’**** example-js ****: addING uplink machinomy’)

const ethUplink = await api.add({

settlerType: ’machinomy’,

privateKey:

’6da09c0a78255932210aaf5b9f61046a00e9e3ab389c7357e388c4b35682342e’

}) //switch Api wallet ETH

console.log(’*** example-js ***: addED uplink eth’)

// Add new uplink with an XRP testnet credential

console.log(’*** example-js ***: addING uplink XRP’)

const xrpUplink = await api.add({

settlerType: ’xrp-paychan’,

secret: ’sasa3hrRUndoxAMoXEc3MMyZHNL3W’ //switch API wallet XRP

})

console.log(’*** example-js ***: addED uplink XRP’)

// Display the amount in client custody, in real-time

xrpUplink.balance$.subscribe(amount => {

console.log(’XRP Interledger balance:’, amount.toString())

})

ethUplink.balance$.subscribe(amount => {

console.log(’ETH Interledger balance:’, amount.toString())

})

// Deposit 20 XRP into a payment channel

console.log(’EXAMPLE.js: start depositing 20XRP’)

await api.deposit({

uplink: xrpUplink,

amount: new BigNumber(20)

})

console.log(’EXAMPLE.js: depositED 20xrp’)

// Deposit 0.05 ETH into a payment channel

console.log(’EXAMPLE.js: start depositing 0.05ETH’)

await api.deposit({

uplink: ethUplink,

amount: new BigNumber(0.05)

})

console.log(’EXAMPLE.js: depositED 0.05ETH’)

// Stream 10 XRP to ETH, prefunding only $0.05 at a time

// If the connector cheats or the exchange rate is too low, your funds are

safe!

await api.streamMoney({

amount: new BigNumber(10),

10

source: xrpUplink,

dest: ethUplink

})

await api.disconnect()

}

run().catch(err => console.error(err))

This file can be placed in Switch API home directory and run with:
DEBUG=* node –inspect ./file-name.js

On top of this, Kava Labs has built an app for swapping the BTC, ETH and XRP cryp-
tocurrencies just in a matter of seconds6.

5 A private Ripple network example

We are concluding our series by providing an example of a private Ripple network, which is
currently our testbed. The diagram of the network is illustrated in Figure 6.

It can be noticed that depending on the currency they operate, all customer apps and
connectors are connected to at least on ledger in order to exchange ledger-related data. The
connectors are peered over BTP using WS and a dedicated xrp plugin, which is different from the
plugins used with MoneyD, Moneyd GUI, Switch API, etc. Switch API’s uplinks can connect
to the same connector or to different connectors, as it is the case here.

Apps that need real-time information like currency rates also need an internet connection:
the connector trading ETH and Switch API.

Alice (XRP wallet), Bob (ETH wallet) and Charlie (XRP wallet), operating Moneyd in-
stances and SPSP, can send each other value in the following combinations:

• Alice XRP <-> Charlie XRP

• Alice XRP -> Bob ETH and Bob ETH -> Alice XRP

• Charlie XRP -> Bob Eth and Bob ETH -> Charlie XRP

6https://github.com/Kava-Labs/switch, accessed June 2019

11

https://github.com/Kava-Labs/switch

“M
o

n
ey

d
X

R
P

”
“M

o
n

ey
d

ET
H

”

M
o

n
ey

d
co

re

C
o

n
n

ec
to

r
co

re

X
R

P
 u

p
lin

k
ET

H
 u

p
lin

k

X
R

P
 p

lu
gi

n
ET

H
 p

lu
gi

n

A
lic

e
: 1

9
2

.1
6

8
.1

.7
6

B
o

b
:

1
9

2
.1

6
8

.1
.3

5

X
R

P
 p

lu
gi

n
ET

H
 p

lu
gi

n
 k

av
a

IL
SP

 2

ET
H

 le
d

ge
r

P
o

A

In
te

rn
et

:
Fe

tc
h

 c
o

n
ve

rs
io

n
 r

at
e

A
lic

e
 <

->
 C

o
n

n
e

ct
o

r
2

:

X
R

P
 p

ay
ch

an
B

TP
, p

o
rt

 7
4

4
2

B
o

b
 <

->
 C

o
n

n
e

ct
o

r
2

:

ET
H

 p
ay

ch
an

B
TP

, p
o

rt
 7

4
4

2

SP
SP

 s
er

ve
r

p
o

rt
 6

0
0

0

SP
SP

 c
lie

n
t

M
o

n
ey

d
G

U
I

M
o

n
ey

d
G

U
I

M
o

n
ey

d
co

re

SP
SP

 c
lie

n
t

SP
SP

 s
er

ve
r

p
o

rt
 6

0
0

0

M
ac

h
in

o
m

y

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

7
7

6
9

7
7

6
9

C
o

n
n

ec
to

r
co

re

X
R

P
 p

lu
gi

n

IL
SP

 1

Ilp
-p

lu
gi

n
-m

in
ia

cc
o

u
n

ts
R

at
es

 b
ac

ke
n

d
“o
n
e

-t
o

-o
n
e”

ET
H

 p
lu

gi
n

 k
av

a
X

R
P

 p
lu

gi
n

 k
av

a

“M
o

n
e

yd
X

R
P

”

X
R

P
 u

p
lin

k

X
R

P
 p

lu
gi

n

C
h

ar
lie

: 1
9

2
.1

6
8

.1
.1

1
6

C
h

ar
lie

 <
->

 C
o

n
n

e
ct

o
r

1
:

X

R
P

 p
ay

ch
an

B
TP

, p
o

rt
 7

4
4

2

SP
SP

 s
er

ve
r

p
o

rt
 6

0
0

0

SP
SP

 c
lie

n
t

M
o

n
ey

d
G

U
I

M
o

n
ey

d
co

re

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

7
7

6
9

In
te

rn
et

:
Fe

tc
h

 c
o

n
ve

rs
io

n
 r

at
e

D
av

e
, t

ra
d

in
g

w
it

h
 “

Sw
it

ch
 A

P
I”

D
av

e
 <

->
 C

o
n

n
ec

to
r

1
:

X

R
P

 p
ay

ch
an

B
TP

D
av

e
 <

->
 C

o
n

n
e

ct
o

r
2

:

ET
H

 p
ay

ch
an

B
TP

p
e

e
r

B
TP

IL
P

-p
lu

gi
n

-x
rp

-p
ay

ch
an

IL
P

-p
lu

gi
n

-x
rp

-p
ay

ch
an

X
R

P
 p

lu
gi

n
 k

av
a

w
s(

s)
:/

/1
9

2
.1

6
8

.1
.9

8
:

5
1

2
3

3
1

9
2

.1
6

8
.1

.8
7

:8
5

4
5

M
o

n
ey

d
G

U
I

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

R
at

es
 b

ac
ke

n
d

“e
cb

-p
lu

s-
co

in
m

ar
ke

tc
ap

”
IL

P
-p

lu
gi

n
-m

in
ia

cc
o

u
n

ts

M
o

n
ey

d
G

U
I

W
eb

 b
ro

w
se

r
lo

ca
lh

o
st

:7
7

7
0

C
o

in
ca

p
A

P
I

R
ip

p
le

 L
e

d
ge

r

Tr
ac

ke
rs

V
al

id
at

o
rs

Js
C

o
n

n
e

ct
o

r
1

:
1

9
2

.1
6

8
.1

.1
4

6
Js

C
o

n
n

e
ct

o
r

2
:

1
9

2
.1

6
8

.1
.1

3
1

Sw
it

ch
 A

P
I c

o
re

Fig. 6: Ecosystem overview. The machines involved are time-synchronized using time servers.
The ETH gas price and the currency rates are fetched from online. To keep the diagram readable
we didn’t illustrate all plugin connections to the ledgers; each plugin provides for connection to
the appropriate ledger using wss or ws.

12

6 Evaluation and discussion

In this paper, we have provided the details on how to set-up a private ILP network comprising of
two ledgers - XRP and ETH, ILP service providers (connectors), and customer apps (Moneyd,
SPSP, Switch API). The payments can be streamed from one ledger to the other with the Switch
API app, making use of Machinomy smart contracts deployed on the ETH ledger. Time (the
time on the machines must be synchronised), conversion rates and gas price are fetched from
the internet.

In our opinion, at the present moment, as one moves from the core - the Rippled servers
making-up the ledger, to the periphery - the customer apps, the support and availability of apps
decreases. The most information to be found concerns the Rippled servers, while in regards to
customer apps we have tried so far, at present only Moneyd-XRP seems fairly supported. Some
of the plugins are undergoing changes (e.g. ETH plugin), and with the advent of connectors
like Rafiki, they may be, at least partially, replaced with new approaches like the ”settlement
engine”. Intuitively this is the way the ecosystem should be built and we are confident the future
will bring many improvements.

7 Conclusions and future work

Sometimes abstract concepts are explained separately from the actual implementation, making
it difficult to make the connections. This work fills a hole in the documentation regarding a
lack of a comprehensive high level view of the ecosystem and how the different pieces are joined
together.

We are currently studying the all-new @Coil/Rafiki which is still in beta and will soon
provide the results.

Acknowledgements

This work was done in the framework of the Ripple UBRI initiative.

13

Acronyms

API Abstract Programming Interface. 7–9, 11, 13, 14

BTP Bilateral Transfer Protocol. 3, 4, 7

ILP Interledger Protocol. 3, 4, 7, 13

ILSP Interledger Service Provider. 7

SPSP Simple Payment Setup Protocol. 4, 7, 13

Glossary

Moneyd An ILP provider, allowing all applications on an end-user computer to use funds on
the live ILP network. 3, 13

Switch API A SDK for cross-chain trading between BTC, ETH, DAI and XRP with In-
terledger Streaming. 7–9, 11, 13

XRP Ripple’s digital payment asset which is used for Interledger payments. 7–9, 11, 13

References

[1] Ripple. Relationship between Protocols, [Online] Accessed: June 14, 2019. https://interledger.org/rfcs/

0033-relationship-between-protocols/.

[2] Ripple. Interledger Architecture, [Online] Accessed: June 6, 2019. https://interledger.org/rfcs/

0001-interledger-architecture/#protocol-layers.

[3] Ripple. The Bilateral Transfer Protocol, [Online] Accessed: June 11, 2019. https://interledger.org/rfcs/
0023-bilateral-transfer-protocol/draft-2.html.

[4] Ripple. Install Rippled, [Online] Accessed: June 6, 2019. https://developers.ripple.com/

install-rippled.html.

[5] Kincaid O’Neil Kava Labs. Lightning fast, non-custodial trades - in 20 lines of code, [Online] Accessed: June
13, 2019. https://medium.com/kava-labs/fast-non-custodial-trading-using-layer-2-ddeb2283f71b.

[6] Kevin Davis Kava Labs. Kava Development Update #3, [Online] Accessed: June 13, 2019. https://medium.

com/kava-labs/kava-development-update-3-69e20f88b4c9.

14

https://interledger.org/rfcs/0033-relationship-between-protocols/
https://interledger.org/rfcs/0033-relationship-between-protocols/
https://interledger.org/rfcs/0001-interledger-architecture/#protocol-layers
https://interledger.org/rfcs/0001-interledger-architecture/#protocol-layers
https://interledger.org/rfcs/0023-bilateral-transfer-protocol/draft-2.html
https://interledger.org/rfcs/0023-bilateral-transfer-protocol/draft-2.html
https://developers.ripple.com/install-rippled.html
https://developers.ripple.com/install-rippled.html
https://medium.com/kava-labs/fast-non-custodial-trading-using-layer-2-ddeb2283f71b
https://medium.com/kava-labs/kava-development-update-3-69e20f88b4c9
https://medium.com/kava-labs/kava-development-update-3-69e20f88b4c9

	What this document covers
	Who this document is for
	The Interledger ecosystem
	The Interledger protocol suite
	The Bilateral Transfer Protocol

	Customer apps for money transfer
	@Kava-Labs: Switch API

	A private Ripple network example
	Evaluation and discussion
	Conclusions and future work

