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high-dimensional data - Appendix
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A Derivation of the test statistic

Here we derive the proposed test statistic. Note that a more intuitive explana-
tion of the setting is given in the paper.

Setting

The setting is similar to Goeman et al. (2004). Denote the response across
all samples by y = (y1,...,yn)", and the library sizes by m = (mq,...,m,)T.
Each y; is modelled by E[y;|r;] = v;exp(a+r;), where « is the intercept,
log(y;) an offset, and r; a realisation of the random effect. We use ; = m,;/m,
where m = ([}, m;)/™. For the random vector r = (r1,...,7,)7 we as-
sume E[r] =0 and Var[r] = 72X X7T, where X is the n x p covariate matrix.
The aim is to test Hy: 72 =0 against H, : 72 > 0. For simplicity we define
R = (1/p)X X" and let R;; denote the element in the 7" row and j** column
of R.

Distribution

We assume y;|r; ~ NB(p;, @), where p; > 0and ¢ > Oforalli = 1,...,n. Under
the chosen parametrization E[y;|r;] = p; and Var[y;|r;] = p; + ¢u?. The density
function is:
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Score

Le Cessie and van Houwelingen (1995) show how to obtain the score for test-
ing Hy: 72 =0 against Hy : 72 > 0. The calculations from le Cessie and van
Houwelingen (1995) start with the marginal likelihood function:

L(a, ) =E, lH fi(yi|7‘i7a772)] .
=1

The crucial step of le Cessie and van Houwelingen (1995) is to take the Tay-
lor expansion with respect to the random effect before taking the expectation.
Differentiating this approximation of L(c, 72) with respect to 72, and evaluating
the result at 72 = 0 gives the score. Under the null hypothesis only some terms
of the score can be different from zero:
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Plugging the expressions for lgl)(O) and lgz) (0) into u}, leads to
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Parameter estimation

Under the null hypothesis we have y; ~ NB(u;, ¢) where pu; = 7; exp(a). Max-
imum likelihood estimation leads to & = log(y) — log(¥). The maximum like-
lihood estimate for the dispersion parameter ¢ can be obtained by numeric
maximisation.

Test statistic

In matrix notation the test statistic is

= 5 (4~ fro) "TRI(y ~ fio) — & (o + 0y © fio) T*d.
where
1o is the column vector (exp(&)/m)m,
T is the diagonal matrix with the diagonal elements T;; = 1/(1 + &f;),

Y o fig is the entrywise product of the vectors y and fig, and

d is the column vector of the main diagonal of R.



B Cancer dataset

Variables

The prostate cancer dataset from TCGA et al. (2013) includes data of various
types and on three different levels. We used preprocessed forms of the RNA-Seq
data (gene, level 3), of the DNA methylation data (human methylation 450
array, level 3), and of the DNA copy number data (CNV data extracted from
SNP array, level 3). The last-mentioned data involves copy numbers measured
at equally spaced loci on the genome, obtained from the segmented copy number
profiles.

Samples

Our criterion for sample selection was the availability of gene expression, methy-
lation, copy number and single nucleotide polymorphism data. This lead to a
sample size of 162 individuals.

Normalisation

TCGA et al. (2013) use MapSplice (Wang et al., 2010) and RSEM (Li & Dewey,
2011) for calculating RNA-Seq gene expression data. The methylation data from
TCGA et al. (2013) consists of the calculated beta values, i.e. the ratios between
the methylated and the total probe intensities, mapped to the genome. We use
the logit transformation to obtain values on the real line. In contrast, we do
not modify the normalised copy number data from TCGA et al. (2013).

Batch effects

According to the TCGA batch effects tool (MD Anderson Cancer Center, 2016),
the between batch dispersion (DB) is much smaller than the within batch dis-
persion (DW) in the RNA-Seq gene expression data, the copy number data, and
the methylation data. Due to the small dispersion separability criteria (DSC =
DB/DW) we do not correct the data for batch effects.
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Figure A: ROC curves from the simulation study. Given an 128 x 1000
covariate matrix and a coefficient vector of length 1000, we show how the area
under the curve depends on the dispersion parameter (default ¢ = 0.01), the
sample size (default n = 128), the effect size (default s = 1), and the number of
non-zero coefficients (default r = 20). At all times only one of the parameters
differs from its default value. For each line we simulate 10 000 expression vectors,
and each expression vector is simulated under the alternative hypothesis with a
probability of 50%.



solid dashed dotted dash-dot

10) 0.045 0.052 0.047 0.049
n 0.054 0.053 0.052 0.051
S 0.050 0.051 0.049 0.051
r 0.051 0.051 0.056 0.047
solid dashed dotted dash-dot
10) 0.009 0.008 0.007 0.010
n 0.011 0.011 0.009 0.007
S 0.011 0.009 0.010 0.010
r 0.011 0.010 0.010 0.009

Table A: Type I error rates in the simulation study. Under each simula-
tion setup from Figure A we calculate the type I error rates at the 5% (top) and
1% (bottom) significance levels. The row and column names match the entries
with the lines in Figure A. As the average rates are 5.1% and 1.0% respectively,
there is little concern about rejecting more true null hypotheses than expected.
Additional Note: In order to verify that the type I error rate is not only main-
tained across genes, but also for individual genes, we simulate 5000 expression
vectors y = (y1,...,y128) from the negative binomial distribution with p = 7
and ¢ = 0.1. Testing for associations with the given covariate matrix X leads
to the type I error rates 4.4% and 0.7% at the 5% and 1% significance levels,
respectively.

a=001 a=005 a=010 o=0.20
joint 0.51 0.67 0.77 0.86
individual 0.31 0.62 0.70 0.79

Table B: Statistical power of joint and individual testing at various sig-
nificance levels a. We simulate 1000 response vectors under the alternative
hypothesis (n =128, p=r =50, s =1, ¢ = 0.01). After testing the covariates
jointly as well as individually, we compare the joint p-value with the minimum of
the FDR-corrected individual p-values. Joint testing rejects a higher percentage
of false null hypotheses than individual testing.

CCDC27 FAMISTA LDHC CLEC4E ZNF774  RNF125
BMPS8A  HLA-DRB1 APIP ST8SIAL RPS2 CLIP3
KTI12 HLA-DQA2 SLC35C1 MTERF2 CDIP1 SPINT4
1D2 HLA-DQB2 ACP2 RAB35 TEKT5  KRTAPS-1
POMC B4GALT1 PTPMT1 MPHOSPHY9 LCAT SHISAS
KCNK3 NUDT2 YPEL4 GOLGA5 ZSWIM7

CCR4 FAM24A LTBR EMC7 NUFIP2

Table C: List of gene symbols. In the application HapMap these genes
obtain the minimal p-value of 0.001 (given by the reciprocal of the number of
permutations).
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Figure B: Empirical cumulative distribution plots of p-values from the
application HapMap. At any reasonable significance level, the non-stratified
permutation test (grey) rejects more null hypotheses than the stratified per-
mutation test (black). Naturally, genetic variation is high between and low
within populations. Ignoring population structure increases genetic variation
and thereby statistical power, whereas accounting for population structure de-
creases bias.

IL22RA2  Cl10orf67 HCARI1 ZNF428 V5h RASGRP4
crude 6.03E+02 1.97E+03  4.08E402 5.07E+02 4.55E4-02 8.92E4-02
MCV  9.85E+02 4.88E+03 1.55E4+03 4.99E+03 7.85E405 2.71E+403

DEFB125 KBTBD13 KCNK13 VANGL2 CDKN2AIPNL CXCL1
crude 8.59E+02 4.06E+02 5.38E402 4.74E+02 2.03E4-03 1.39E+03
MCV 143E+04 1.05E+03 3.63E4+03 1.77E+03 1.99E+04 7.15E4+03

Table D: Precision of estimated p-values from tests with 100 permu-
tations, estimated from 1000 repetitions. At all randomly selected genes
from the application HapMap (columns) the crude permutation test (first row)
is outperformed by the method of control variables (second row).
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Figure C: Comparison with known associations. In the application
HapMap only these 10 genes have a covariate group that is declared jointly
significant by the proposed test! and that includes at least one individually
significant SNP as found by Lappalainen et al. (2013)2. We decompose the
corresponding proposed test statistics to obtain the contributions (y-axes) of
the individual SNPs (indices on z-axes). Whereas 79% of the individually signif-
icant SNPs (black) from Lappalainen et al. (2013) have a positive contribution
to the proposed test statistics, this is only true for 45% of the other SNPs (grey).

We obtain a p-value equal to the reciprocal of the number of permutations in
the application HapMap. *Lappalainen et al. (2013) obtain a p-value below the false
discovery rate of 5% in the gene expression analysis of 373 samples from European
populations.
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Figure D: Cumulative distribution functions of RNA-Seq from the ap-
plication HapMap for randomly selected genes. Each row represents one
gene, and each column represents one model. It is of interest how close the
fitted distributions (red) come to the empirical distributions (black). If library
sizes are ignored (columns 1 and 2), the negative binomial distribution with a
free dispersion parameter has a much better fit than the Poisson distribution.
If an offset is included (columns 3 and 4), the differences become smaller.
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Figure E: Cumulative distribution functions of RNA-Seq from the ap-
plication TCGA for randomly selected genes. Each row represents one
gene, and each column represents one model. It is of interest how close the
fitted distributions (red) come to the empirical distributions (black). Whether
library sizes are ignored (columns 1 and 2) or an offset is included (columns 3
and 4), the negative binomial distribution with a free dispersion parameter has
a much better fit than the Poisson distribution.



SDF4 VPS13D KPNAG6 TACSTD2 PRKAB2 NUCKS1

RER1 CTRC ZBTB8A RORI1 HIST2H2AB FAMT2A
NPHP4 FBX042 TEKT2 SYDE2 PSMD4 RASSF5
ACOTT SZRD1 THRAP3 EPHX4 BGLAP HLX
TASIR1 CNR2 ZMPSTE24 CCDCI18 NUF2 MRPL55
ZBTB48 SRSF10 PPCS GPR&8S8 ADCY10 EXOCS8
CAMTA1 TMEMS50A ERMAP PSRC1 TNFSF4 OR2L13
PARKT SEPN1 CFAP57 FAM19A3 RC3H1

TARDBP PIGV TMEM125  TRIM33 ASTN1

CLCNG6 GPN2 SZT2 NRAS DHX9

KIAA2013 PPPI1RS8 KLF17 ATP1A1 PRG4

Table E: List of gene symbols. In the application TCGA these genes are
insignificant in both individual tests but significant in the joint test at a false
discovery rate of 5%. Their expression is associated with methylations and copy
numbers jointly, but with neither of them individually.
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