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Abstract In the first part of this survey we recall the definition and some of the
constructions related to Krichever–Novikov type algebras. Krichever and Novikov
introduced them for higher genus Riemann surfaces with two marked points in
generalization of the classical algebras of Conformal Field Theory. Schlichenmaier
extended the theory to the multi-point situation and even to a larger class of alge-
bras. The almost-gradedness of the algebras and the classification of almost-graded
central extensions play an important role in the theory and in applications. In the
second part we specialize the construction to the genus zero multi-point case. This
yields beside instructive examples also additional results. In particular, we construct
universal central extensions for the involved algebras, which are vector field alge-
bras, differential operator algebras, current algebras and Lie superalgebras. We point
out that the recently (re-)discussed N-Virasoro algebras are nothing else as multi-
point genus zero Krichever-Novikov type algebras. The survey closes with structure
equations and central extensions for the three-point case.

1 Introduction

Krichever-Novikov (KN) type algebras constitutes an important class of infinite di-
mensional algebras. Roughly speaking, they are defined as algebras of meromorphic
objects on compact Riemann surfaces, or equivalently on projective curves. The
non-holomorphicity is controlled by a fixed finite set of points where algebraic poles
are allowed. A splitting of this set of possible points of poles into two disjoint subsets
will induce an “almost-grading” (see Definition 5.1 below). It is a weaker concept
as a grading, but still powerful enough to act as a basic tool in representation theory.
For example, highest weight representations still can be defined. Of course, central
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extensions of these algebras are also needed. They are forced, e.g. by representation
theory and by quantization.

Examples of KN type algebras are the well-known algebras of Conformal Field
Theory (CFT) [4], [22] the Witt algebra, the Virasoro algebra, the affine Lie algebras
(affineKac-Moody algebras), etc. They appear when the geometric setting consists of
the Riemann Sphere, i.e. the genus zero Riemann surface, and the points of possible
poles are {0} and {∞}. The almost-grading is now a honest grading.

Historically, starting from these well-known genus zero algebras, in 1986
Krichever and Novikov [33], [34], [35] suggested a global operator approach via
KN objects. Still they only considered two possible points where poles are allowed
and were dealing with the vector field and the function algebra. For work on affine
algebras Sheinman [55], [56], [57], [58]. should be mentioned.

From the applications in CFT (e.g. string theory) but also from purely mathe-
matical reasons, the need of a multi-point theory is evident. In 1990 Schlichenmaier
developed a systematic theory valid for all genera (including zero) and any fixed
finite set of points where poles are allowed [41], [42], [43], [44]. These extensions
were not at all straight-forward. The main point was to introduce a replacement of
the graded algebra structure present in the “classical” case. Krichever and Novikov
found that the already mentioned almost-grading (Definition 5.1) will be enough
to allow for the standard constructions in representation theory. In [43], [44] it was
realized that a splitting of the set A of points where poles are allowed, into two
disjoint non-empty subsets A = I ∪ O is crucial for introducing an almost-grading
in the multi-point situation. The corresponding almost-grading was explicitly given.
In contrast to the classical situation and original KN situation, where there is only
one grading, we will have a finite set of non-equivalent gradings and new interesting
phenomena show up. This is already true for the genus zero case (i.e. the Riemann
sphere case) with more than two points where poles are allowed. These algebras will
be only almost-graded, see e.g. [45], [19], [20], [54].

Also other (Lie) algebras were introduced. In fact most of them come from a
Mother Poisson Algebra [46], the algebra of meromorphic form of all weight, see
Section 4.2. This algebra carries a (weak) almost-grading which gives the almost-
grading for the other algebras. For the relevant algebras almost-graded central ex-
tensions are constructed and classified. In the first part of the survey we present the
basic definitions and structural results for the KN type algebras.

In the second part, starting in Section 7 we have a closer look at the genus
zero multi-point situation. In this case the meromorphic objects can be given via
rational functions. We obtain by them illustrative examples of KN type algebras.
Furthermore, from the applications, e.g. in conformal field theory, resp. string theory,
they correspond to the tree-level. Also we obtain additional results. For example we
obtain universal central extensions of those algebras which are perfect 1. We show
that all cocycles are bounded cocycle classes with respect to the standard splitting,
see Equation (90) for its definition. The classification result of the author for bounded
cocycles gives now the universal central extension.

1 Most of them are perfect algebras.
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In Section 8 the genus zero 3-point situation is covered in detail. Explicit structure
equations (including central extensions) are given for the algebras.

KN type algebras have a lot of interesting applications. They show up in the con-
text of deformations of algebras, moduli spaces of marked curves, Wess-Zumino-
Novikov-Witten (WZNW) models, Knizhnik-Zamolodchikov (KZ) equations, in-
tegrable systems, quantum field theories, symmetry algebras, and in many more
domains of mathematics and theoretical physics. The KN type algebras carry a very
rich representation theory. We have Verma modules, highest weight representations,
Fermionic and Bosonic Fock representations, semi-infinite wedge forms, b − c sys-
tems, Sugawara representations and vertex algebras. Unfortunately, this survey does
not allow to touch on these applications and the presentation of the representation
theory. Instead I refer to my book from 2014 with the title Krichever–Novikov type
algebras. Theory and applications, [52] which collects all the results, proofs and
some applications of the multi-point KN algebras. There also a quite extensive list
of references can be found, including articles published by physicists on applications
in the field-theoretical context. For some applications in the context of integrable
systems see also Sheinman, Current algebras on Riemann surfaces [59].

For the proofs of the statements and more material we have to refer to the original
articles and the corresponding parts of [52]. There is a certain overlap of the first
part with a previous survey of mine [53].

2 The Witt and the Virasoro Algebra and their Relatives

These algebras supply important examples of non-trivial infinite dimensional Lie
algebras. They are widely used in Conformal Field Theory and String Theory. We
recall their conventional algebraic definitions.

The Witt algebra W, sometimes also called Virasoro algebra without central
term, is the Lie algebra generated as vector space over C by the basis elements
{en | n ∈ Z} with Lie structure

[en, em] = (m − n)en+m, n,m ∈ Z. (1)

The algebraW is more than just a Lie algebra. It is a graded Lie algebra. If we
set for the degree deg(en) := n then

W =
⊕
n∈Z

Wn, Wn = 〈en〉C. (2)

Obviously, deg([en, em]) = deg(en) + deg(em).

Remark 2.1 AlgebraicallyW can also be given as Lie algebra of derivations of the
algebra of Laurent polynomials C[z, z−1]. Moreover, in the purely algebraic context
our field of definition C can be replaced by an arbitrary field K of characteristics 0.
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For the Witt algebra the universal one-dimensional central extension is the Vi-
rasoro algebra V. As vector space it is the direct sum V = C ⊕ W. If we set for
x ∈ W, x̂ := (0, x), and t := (1, 0) then its basis elements are ên, n ∈ Z and t with
the Lie product 2:

[ên, êm] = (m − n)ên+m +
1
12
(n3 − n)δ−mn t, [ên, t] = [t, t] = 0, (3)

for all n,m ∈ Z. By setting deg(ên) := deg(en) = n and deg(t) := 0 the Lie algebraV
becomes a graded algebra. The algebraW will only be a subspace, not a subalgebra
ofV. But it will be a quotient. Up to equivalence of central extensions and rescaling
the central element t, this is beside the trivial (splitting) central extension, the only
central extension ofW.

Given g a finite-dimensional Lie algebra (e.g. a finite-dimensional simple Lie alge-
bra) then the tensor product of g with the associative algebra of Laurent polynomials
C[z, z−1] carries a Lie algebra structure via

[x ⊗ zn, y ⊗ zm] := [x, y] ⊗ zn+m. (4)

This algebra is called current algebra or loop algebra and denoted by g. Again we
consider central extensions. For this let β be a symmetric, bilinear form for g which
is invariant (i.e. β([x, y], z) = β(x, [y, z]) for all x, y, z ∈ g). Then a central extension
is given by

[x̂ ⊗ zn, ŷ ⊗ zm] := ̂[x, y] ⊗ zn+m − β(x, y) · m δ−mn · t . (5)

This algebra is denoted by ĝ and called affine Lie algebra. With respect to the
classification of Kac-Moody Lie algebras, in the case of a simple g they are exactly
the Kac-Moody algebras of untwisted affine type, [28], [29], [37].

To complete the description let me introduce the Lie superalgebra of Neveu-
Schwarz type. The centrally extended superalgebra has as basis (we drop theˆ )

en, n ∈ Z, ϕm, m ∈ Z +
1
2
, t (6)

with structure equations

[en, em] = (m − n)em+n +
1

12
(n3 − n) δ−mn t,

[en, ϕm] = (m −
n
2
) ϕm+n,

[ϕn, ϕm] = en+m −
1
6
(n2 −

1
4
) δ−mn t .

(7)

2 Here δl
k
is the Kronecker delta which is equal to 1 if k = l, otherwise zero.
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By “setting t = 0” we obtain the non-extended superalgebra. The elements en (and
t) are a basis of the subspace of even elements, the elements ϕm are a basis of the
subspace of odd elements.

These algebras are Lie superalgebras, defined as follows.

Definition 2.2 Let S be a vector space which is decomposed into even and odd
elements S = S0̄ ⊕ S1̄, i.e. S is a Z/2Z-graded vector space. Furthermore, let [., .]
be a Z/2Z-graded bilinear map S×S → S such that for elements x, y of pure parity

[x, y] = −(−1)x̄ȳ[y, x]. (8)

Here x̄ is the parity of x, etc. These conditions say that

[S0̄,S0̄] ⊆ S0̄, [S0̄,S1̄] ⊆ S1̄, [S1̄,S1̄] ⊆ S0̄, (9)

and that [x, y] is symmetric for x and y odd, otherwise anti-symmetric. Now S is a
Lie superalgebra if in addition the super-Jacobi identity (for x, y, z of pure parity)

(−1)x̄z̄[x, [y, z]] + (−1)ȳ x̄[y, [z, x]] + (−1)z̄ȳ[z, [x, y]] = 0 (10)

is valid. As long as the type of the arguments is different from (even, odd, odd) all
signs can be put to +1 and we obtain the form of the usual Jacobi identity. In the
remaining case we get

[x, [y, z]] + [y, [z, x]] − [z, [x, y]] = 0. (11)

By the definitions S0 is a Lie algebra.

3 The Geometric Picture

A geometric description of the Witt algebra over C can be given as follows. LetW be
the algebra of those meromorphic vector fields on the Riemann sphere S2 = P1(C)
which are holomorphic outside {0} and {∞}. Its elements can be given as

v(z) = ṽ(z)
d
dz

(12)

where ṽ is a meromorphic function on P1(C), which is holomorphic outside {0,∞}.
Those are exactly the Laurent polynomials C[z, z−1]. Consequently, this subalgebra
has the set {en, n ∈ Z} with en = zn+1 d

dz as vector space basis. The Lie bracket of
vector fields calculates as

[v, u] =
(
ṽ

d
dz

ũ − ũ
d
dz

ṽ

)
d
dz
. (13)
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Evaluated for the basis elements en this gives (1) and the algebra can be identified
with the Witt algebra defined purely algebraically.

The subalgebra of global holomorphic vector fields is the 3-dimensional subspace
〈e−1, e0, e1〉C. It is isomorphic to the Lie algebra sl(2,C).

Similarly, the algebra C[z, z−1] can be given as the algebra of meromorphic
functions on S2 = P1(C) holomorphic outside of {0,∞}.

Recall that the Riemann sphere is the (compact) Riemann surface of genus zero. In
the geometric setup for the Virasoro algebra the objects are defined on the Riemann
sphere and might have poles at most at two fixed points. For a global operator
approach to conformal field theory and its quantization this is not sufficient. One
needs Riemann surfaces of arbitrary genus. Moreover, one needs more than two
points were singularities are allowed 3. This higher genus multi-point case was
systematically examined by the Schlichenmaier [41], [42], [43], [44], [45] [46], [48],
[47] and is presented in a current book [52]. For some related approach and partial
results, see also Sadov [40].

For the whole contribution let Σ = Σg be a compact Riemann surface without
any restriction for the genus g = g(Σ). Furthermore, let A be a finite subset of Σ.
Later we will need a splitting of A into two non-empty disjoint subsets I and O, i.e.
A = I ∪O. Set N := #A, K := #I, M := #O, with N = K + M . More precisely, let

I = (P1, . . . , PK ), and O = (Q1, . . . ,QM ) (14)

be disjoint ordered tuples of distinct points (“marked points”, “punctures”) on the
Riemann surface. In particular, we assume Pi , Q j for every pair (i, j). The points
in I are called the in-points, the points in O the out-points. .

Sometimes we refer to the classical situation. By this we understand

Σ0 = P
1(C) = S2, I = {z = 0}, O = {z = ∞}. (15)

The following figures should indicate the geometric picture. Figure 1 shows the
classical situation.

Figure 2 is genus 2, but still the two-point situation.

Fig. 1 Riemann surface of genus zero with one incoming and one outgoing point.

3 The singularities correspond to points where free fields are entering the region of interaction or
leaving it. In particular, from the very beginning there is a natural decomposition of the set of points
into two disjoint subsets.
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Fig. 2 Riemann surface of genus two with one incoming and one outgoing point.

Finally, in Figure 3 the case of a Riemann surface of genus 2 with two incoming
points and one outgoing point is visualized.

P1

P2

Q1

Fig. 3 Riemann surface of genus two with two incoming points and one outgoing point.

Remark 3.1 We stress the fact, that these multi-point generalizations are needed also
in the case of genus zero. Even in the case of genus zero and three points interesting
algebras show up. See Section 8, [54].

3.1 Meromorphic forms

To introduce the elements of the generalized algebras (later calledKrichever-Novikov
type algebras) we first have to discuss forms of certain (conformal) weights.

Let K = KΣ be the canonical line bundle of Σ. Its local sections are the local
holomorphic differentials.

If P ∈ Σ is a point and z a local holomorphic coordinate at P then a local
holomorphic differential can be written as f (z)dz with a local holomorphic function
f defined in a neighborhood of P. A global holomorphic differential can be described
locally in coordinates (Ui, zi)i∈J by a system of local holomorphic functions ( fi)i∈J ,
which are related by the transformation rule induced by the coordinate change map
zj = zj(zi) and the condition fidzi = fjdzj . This yields

fj = fi ·
(

dzj
dzi

)−1
. (16)
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Ameromorphic section ofK, i.e. a meromorphic differential is given as a collection
of local meromorphic functions (hi)i∈J (with respect to a coordinate covering) for
which the transformation law (16) remains true.

In the following λ is either an integer or a half-integer. If λ is an integer then
(1) Kλ := K ⊗λ for λ > 0,
(2) K0 := O, the trivial line bundle, and
(3) Kλ := (K∗)⊗(−λ) for λ < 0.
Here K∗ denotes the dual line bundle of the canonical line bundle. This is the
holomorphic tangent line bundle, whose local sections are the holomorphic tangent
vector fields f (z)(d/dz).

If λ is a half-integer, then we first have to fix a “square root” of the canonical line
bundle, sometimes called a theta characteristics. . This means we fix a line bundle
L for which L⊗2 = K. After such a choice of L is done we set Kλ := KλL := L⊗2λ.
In most cases we will drop the mentioning of L, but we have to keep the choice in
mind. The fine-structure of the algebras we are about to define will depend on the
choice. But the main properties will remain the same.

Remark 3.2 A Riemann surface of genus g has exactly 22g non-isomorphic square
roots of K. The choice of a theta characteristic is also called a spin structure on Σ
[3]. Only for g = 0 we have a unique unique square root.

We set

F λ(A) := { f is a global meromorphic section of Kλ |
f is holomorphic on Σ \ A}. (17)

Obviously, this is a C-vector space. To avoid cumbersome notation, we will often
drop the set A in the notation if A is fixed and clear from the context. Recall that in
the case of half-integer λ everything depends on the theta characteristic L.

Definition 3.3 The elements of the space F λ(A) are called meromorphic forms of
weight λ (with respect to the theta characteristic L).

If f is a meromorphic λ-form it can be represented locally by meromorphic
functions fi via f = fi(dzi)⊗λ. If f . 0 the local representing functions have only
finitely many zeros and poles. Whether a point P is a zero or a pole of f does not
depend on the coordinate zi chosen. We can define for P ∈ Σ the order

ordP( f ) := ordP( fi), (18)

where ordP( fi) is the lowest nonvanishing order in the Laurent series expansion of
fi in the variable zi around P. It will not depend on the coordinate zi chosen.

The order ordP( f ) is (strictly) positive if and only if P is a zero of f . It is negative
if and only if P is a pole of f . Moreover, its value gives the order of the zero and
pole respectively.

By compactness of our Riemann surface Σ our f , 0 can only have finitely many
zeros and poles. We define the (sectional) degree of f to be
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sdeg( f ) :=
∑
P∈Σ

ordP( f ). (19)

Proposition 3.4 Let f ∈ F λ, f . 0 then

sdeg( f ) = 2λ(g − 1). (20)

For this and related results see e.g. [49].

Later we will need the additional geometric data of a coordinate zi at every point
Pi ∈ A. In fact, only the first order infinitesimal neighbourhood will play a role.

4 Algebraic Structures

Next we introduce algebraic operations on the vector space of meromorphic forms
of arbitrary weights. This space is obtained by summing over all weights

F :=
⊕
λ∈ 1

2Z

F λ. (21)

The basic operations will allow us to introduce finally our intended algebras. We
will drop the subset A in the notation.

4.1 Associative structure

The natural map of the locally free sheaves of rang one

Kλ × Kν → Kλ ⊗ Kν � Kλ+ν, (s, t) 7→ s ⊗ t, (22)

defines a bilinear map
· : F λ × F ν → F λ+ν . (23)

With respect to local trivialisations this corresponds to the multiplication of the local
representing meromorphic functions

(s dzλ, t dzν) 7→ s dzλ · t dzν = s · t dzλ+ν . (24)

If there is no danger of confusion then we will mostly use the same symbol for the
section and for the local representing function.

The following is obvious

Proposition 4.1 The space F is an associative and commutative graded (over 1
2Z)

algebra. Moreover, A = F 0 is a subalgebra and the F λ are modules over A.
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Of course, A is the algebra of those meromorphic functions on Σ which are holo-
morphic outside of A.

4.2 Lie and Poisson algebra structure

Next we define a Lie algebra structure on the space F . The structure is induced by
the map

F λ × F ν → F λ+ν+1, (e, f ) 7→ [e, f ], (25)

which is defined in local representatives of the sections by

(e dzλ, f dzν) 7→ [e dzλ, f dzν] :=
(
(−λ)e

df
dz
+ ν f

de
dz

)
dzλ+ν+1, (26)

and bilinearly extended to F .

Proposition 4.2 [52, Prop. 2.6 and 2.7] The prescription [., .] given by (26) is well-
defined and defines a Lie algebra structure on the vector space F .

Proposition 4.3 [52, Prop. 2.8] The subspace L = F −1 is a Lie subalgebra, and
the F λ’s are Lie modules over L.

The L consists of meromorphic vector fields on Σ and the Lie module structure is
the Lie derivative. of forms.

We have the Leibniz rule

∀e, f , g ∈ F : [e, f · g] = [e, f ] · g + f · [e, g]. (27)

relating the associative and the Lie structure. Hence, by definition

Theorem 4.4 [52, Thm. 2.10] The space F with respect to · and [., .] is a Poisson
algebra.

Next we consider important substructures. We already encountered the subalgebras
A and L. But there are more structures around.

4.3 The algebra of differential operators

If we look at F , considered as Lie algebra, more closely, we see that F 0 is an abelian
Lie subalgebra and the vector space sum F 0⊕F −1 = A⊕L is also a Lie subalgebra.
In an equivalent way it can also be constructed as semidirect sum of A considered
as abelian Lie algebra and L operating on A by taking the derivative.

Definition 4.5 The Lie algebra of differential operators of degree ≤ 1 is defined as
the semidirect sum of A with L and is denoted by D1.
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In terms of elements the Lie product is

[(g, e), (h, f )] = (e . h − f . g , [e, f ]). (28)

The projection on the second factor (g, e) 7→ e is a Lie homomorphism and we
obtain a short exact sequences of Lie algebras

0 −−−−−−→ A −−−−−−→ D1 −−−−−−→ L −−−−−−→ 0 . (29)

Hence, A is an (abelian) Lie ideal of D1 and L a quotient Lie algebra. Obviously,
L is also a subalgebra of D1.

The vector spaces F λ become Lie modules over D1 by the operation

(g, e). f := g · f + e. f , (g, e) ∈ D1(A), f ∈ F λ(A). (30)

Differential operators of arbitrary degree can be constructed via universal con-
structions, see e.g. [52].

4.4 Lie superalgebras of half forms

Recall from Definition 2.2 the notion of a Lie superalgebra.
With the help of our associative product (22) we will obtain examples of Lie

superalgebras. First we consider

· F −1/2 × F −1/2 → F −1 = L , (31)

and introduce the vector space S with the product

S := L ⊕ F −1/2, [(e, ϕ), ( f , ψ)] := ([e, f ] + ϕ · ψ, e . ϕ − f . ψ). (32)

The elements of L are denoted by e, f , . . . , and the elements of F −1/2 by ϕ, ψ, . . ..
The definition (32) can be reformulated as an extension of [., .] on L to a super-

bracket (denoted by the same symbol) on S by setting

[e, ϕ] := −[ϕ, e] := e . ϕ = (e
dϕ
dz
−

1
2
ϕ

de
dz
)(dz)−1/2 (33)

and
[ϕ, ψ] := ϕ · ψ . (34)

The elements of L are elements of even parity, and the elements of F −1/2 are
elements of odd parity. For such elements x we denote by x̄ ∈ {0̄, 1̄} their parity.

The sum (32) can also be described as S = S0̄ ⊕ S1̄, where Sī is the subspace of
elements of parity ī.
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Proposition 4.6 [52, Prop. 2.15], [51] The spaceS with the above introduced parity
and product is a Lie superalgebra.

Leidwanger and Morier-Genoux introduced in [36] a Jordan superalgebra in our
geometric setting. They put

J := F 0 ⊕ F −1/2 = J0̄ ⊕ J1̄. (35)

Recall thatA = F 0 is the associative algebra of meromorphic functions. They define
the (Jordan) product ◦ via the algebra structures for the spaces F λ by

f ◦ g := f · g ∈ F 0,

f ◦ ϕ := f · ϕ ∈ F −1/2,

ϕ ◦ ψ := [ϕ, ψ] ∈ F 0.

(36)

By rescaling the second definition with the factor 1/2 one obtains a Lie anti-algebra
as introduced by Ovsienko [38]. See [36] for more details and additional results on
representations.

4.5 Higher genus current algebras

Wefix an arbitrary finite-dimensional complexLie algebra g. Our goal is to generalize
the classical current algebra to higher genus. For this let (Σ, A) be the geometric data
consisting of the Riemann surface Σ and the subset of points A used to defineA, the
algebra of meromorphic functions which are holomorphic outside of the set A ⊆ Σ.

Definition 4.7 The higher genus current algebra associated to the Lie algebra g and
the geometric data (Σ, A) is the Lie algebra g = g(A) = g(Σ, A) given as vector space
by g = g ⊗C A with the Lie product

[x ⊗ f , y ⊗ g] = [x, y] ⊗ f · g, x, y ∈ g, f , g ∈ A. (37)

Sometimes this algebra is also called loop algebra.

Proposition 4.8 g is a Lie algebra.

As usual we will suppress the mentioning of (Σ, A) if not needed. The elements
of g can be interpreted as meromorphic functions Σ→ g from the Riemann surface
Σ to the Lie algebra g, which are holomorphic outside of A.

Later we will introduce central extensions for these current algebras. They will
generalize affine Lie algebras, respectively affine Kac-Moody algebras of untwisted
type.
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For some applications it is useful to extend the definition by considering differ-
ential operators (of degree ≤ 1) associated to g. We define D1

g := g ⊕ L and take in
the summands the Lie product defined there and put additionally

[e, x ⊗ g] := −[x ⊗ g, e] := x ⊗ (e.g). (38)

This operation can be described as semidirect sum of g with L and we get

Proposition 4.9 [52, Prop. 2.15] D1
g is a Lie algebra.

4.6 Krichever–Novikov type algebras

Above we could even allow that the set A of points where poles are allowed is
arbitrary, even non-finite. In case that A is finite andmoreover #A ≥ 2 the constructed
algebras we a called Krichever–Novikov (KN) type algebras. In this way we get the
KN vector field algebra, the function algebra, the current algebra, the differential
operator algebra, the Lie superalgebra, etc. The reader might ask what is so special
about this situation so that these algebras deserve special names. In fact in this casewe
can endow the algebra with a (strong) almost-graded structure. This will be discussed
in the next section. The almost-grading is a crucial tool for representation theory and
for extending the classical result to higher genus. Recall that in the classical case we
have genus zero and #A = 2.

Strictly speaking, a KN type algebra should be considered to be one of the above
algebras for 2 ≤ #A < ∞ together with a fixed chosen almost-grading, induced by
the splitting A = I ∪O into two disjoint non-empty subset, see Definition 5.1.

5 Almost-Graded Structure

5.1 Definition of almost-gradedness

In the classical situation discussed in Section 2 the algebras introduced in the last
section are graded algebras. In the higher genus case and even in the genus zero case
with more than two points where poles are allowed there is no non-trivial grading
anymore. As realized by Krichever and Novikov [33] there is a weaker concept, an
almost-grading, which to a large extend is a valuable replacement of a honest grading.
Such an almost-grading is induced by a splitting of the set A into two non-empty
and disjoint sets I and O. The (almost-)grading is fixed by exhibiting certain basis
elements in the spaces F λ as homogeneous.

Definition 5.1 Let L be a Lie or an associative algebra such that L = ⊕n∈ZLn is a
vector space direct sum, then L is called an almost-graded (Lie-) algebra if

(i) dimLn < ∞,
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(ii) There exists constants L1, L2 ∈ Z such that

Ln · Lm ⊆

n+m+L2⊕
h=n+m−L1

Lh, ∀n,m ∈ Z.

The elements in Ln are called homogeneous elements of degree n, and Ln is called
homogeneous subspace of degree n.

If dimLn is bounded with a bound independent of n we call L strongly almost-
graded. If we drop the condition that dimLn is finite dimensional we call L weakly
almost-graded.

In a similar manner almost-graded modules over almost-graded algebras are
defined.We can extend in an obviousway the definition to superalgebras, respectively
even to more general algebraic structures. Note that this definition makes complete
sense also for more general index sets J. In fact we will consider the index set
J = (1/2)Z in the case of superalgebras. The even elements (with respect to the
super-grading) will have integer degree, the odd elements half-integer degree.

5.2 Separating cycle and Krichever-Novikov pairing

Before we give the almost-grading we introduce an important structure.
First we recall the splitting of A (14) into two non-empty disjoint subsets I and

O. Let Ci be positively oriented (deformed) circles on Σ around the points Pi in
I, i = 1, . . . ,K and C∗j positively oriented circles on Σ around the points Q j in O,
j = 1, . . . , M .

A cycle CS on Σ is called a separating cycle if it is smooth, positively oriented
of multiplicity one and if it separates the in-points from the out-points. It might
have more than one component. In the following we will integrate meromorphic
differentials on Σ without poles in Σ \ A over closed curves C. Hence, we might
consider C and C ′ as equivalent if [C] = [C ′] in H1(Σ \ A,Z). In this sense we write
for every separating cycle

[CS] =

K∑
i=1
[Ci] = −

M∑
j=1
[C∗j ]. (39)

The minus sign appears due to the opposite orientation. Another way for giving
such a CS is via level lines of a “proper time evolution”, for which I refer to [52,
Section 3.9].

Given such a separating cycleCS (respectively cycle class) we define a linear map

F 1 → C, ω 7→
1

2πi

∫
CS

ω. (40)
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The map will not depend on the separating line CS chosen, as two of such will be
homologous and the poles of ω are only located in I and O.

Consequently, the integration of ω over CS can also be described over the special
cyclesCi or equivalently overC∗j . This integration corresponds to calculating residues

ω 7→
1

2πi

∫
CS

ω =

K∑
i=1

resPi (ω) = −

M∑
l=1

resQl
(ω). (41)

Definition 5.2 The pairing

F λ × F 1−λ → C, ( f , g) 7→ 〈 f , g〉 :=
1

2πi

∫
CS

f · g, (42)

between λ and 1 − λ forms is called Krichever-Novikov (KN) pairing .

Note that the pairing depends not only on A (as the F λ depend on it) but also
critically on the splitting of A into I and O as the integration path will depend on it.
Once the splitting is fixed the pairing will be fixed too.

Below we will see that the pairing is non-degenerate.

5.3 The homogeneous subspaces

Given the vector spaces F λ of forms of weight λ we will now single out subspaces
F λm of degree m by giving a basis of these subspaces. This has been done in the
2-point case by Krichever and Novikov [33] and in the multi-point case by the author
[41], [42], [43], [44], see also Sadov [40]. See in particular [52, Chapters 3,4,5] for
a complete treatment. All proofs of the statements to come can be found there.

Depending on whether the weight λ is integer or half-integer we set Jλ = Z or
Jλ = Z+ 1/2. For F λ we introduce for m ∈ Jλ subspaces F λm of dimension K , where
K = #I, by exhibiting certain elements f λm,p ∈ F

λ, p = 1, . . . ,K which constitute
a basis of F λm . The elements are the elements of degree m. As explained in the
following, the degree is in an essential way related to the zero orders of the elements
at the points in I.

Let I = (P1, P2, . . . , PK ) then we require for the zero-order at the point Pi ∈ I of
the element f λn,p

ordPi ( f
λ
n,p) = (n + 1 − λ) − δpi , i = 1, . . . ,K . (43)

The prescription at the points in O is made in such a way that the element f λm,p
is essentially uniquely given. Essentially unique means up to multiplication with
a constant4. After fixing as additional geometric data a system of coordinates zl

4 Strictly speaking, there are some special cases where some constants have to be added such that
the Krichever-Novikov duality (47) is valid.
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centered at Pl for l = 1, . . . ,K and requiring that

f λn,p(zp) = zn−λp (1 +O(zp))(dzp)λ (44)

the element f λn,p is uniquely fixed. In fact, the element f λn,p only depends on the first
order jet of the coordinate zp .

The element f λn,p has outside of A exactly g zeros (counted with multiplicities).

Example 5.3 Here we will not give the general recipe for the prescription at the
points in O. Just to give an example which is also an important special case, assume
O = {Q} is a one-element set. If either the genus g = 0, or g ≥ 2, λ , 0, 1/2, 1 and
the points in A are in generic position then we require

ordQ( f λn,p) = −K · (n + 1 − λ) + (2λ − 1)(g − 1). (45)

In the other cases (e.g. for g = 1) there are some modifications at the point in O
necessary for finitely many n.

Theorem 5.4 [52, Thm. 3.6] Set

Bλ := { f λn,p | n ∈ Jλ, p = 1, . . . ,K }. (46)

Then (a) Bλ is a basis of the vector space F λ.
(b) The introduced basis Bλ of F λ and B1−λ of F 1−λ are dual to each other with

respect to the Krichever-Novikov pairing (42), i.e.

〈 f λn,p, f 1−λ
−m,r 〉 = δ

r
p δ

m
n , ∀n,m ∈ Jλ, r, p = 1, . . . ,K . (47)

In particular, from part (b) of the theorem it follows that the Krichever-Novikov
pairing is non-degenerate.

An important consequence from the KN duality decomposition with respect to
the basis given above is that we can write

v ∈ F λ, v =
∑

an,p f λn,p (48)

with

an,p = 〈v, f 1−λ
−n,p〉 =

K∑
i=1

resPi (v · f 1−λ
−n,p) = −

M∑
j=1

resQ j (v · f 1−λ
−n,p) . (49)

It is quite convenient to use special notations for elements of some important
weights:

en,p := f −1
n,p, ϕn,p := f −1/2

n,p , An,p := f 0
n,p,

ωn,p := f 1
−n,p, Ω

n,p := f 2
−n,p .

(50)

In view of (47) for the forms of weight 1 and 2 we invert the index n and write it as
a superscript.



Krichever–Novikov type algebras. A general review and the genus zero case 17

Remark 5.5 It is also possible (and for certain applications necessary) to write ex-
plicitely down the basis elements f λn,p in terms of “usual” objects defined on the
Riemann surface Σ. For genus zero they can be given with the help of rational func-
tions in the quasi-global variable z. Indeed the second half of this survey will deal
with it. For genus one (i.e. the torus case) representations with the help of Weierstraß
σ and Weierstraß ℘ functions exists. For genus ≥ 1 there exists expressions in terms
of theta functions (with characteristics) and prime forms. Here the Riemann surface
has first to be embedded into its Jacobian via the Jacobi map. See [52, Chapter 5],
[42], [45] for more details.

5.4 The algebras

Theorem 5.6 [52, Thm. 3.8]
There exists constants R1 and R2 (depending on the number and splitting of the

points in A and on the genus g) independent of λ and ν and independent of n,m ∈ J
such that for the basis elements

f λn,p · f νm,r = f λ+νn+m,rδ
r
p

+

n+m+R1∑
h=n+m+1

K∑
s=1

a(h,s)
(n,p)(m,r)

f λ+νh,s , a(h,s)
(n,p)(m,r)

∈ C,

[ f λn,p, f νm,r ] = (−λm + νn) f λ+ν+1
n+m,r δ

r
p

+

n+m+R2∑
h=n+m+1

K∑
s=1

b(h,s)
(n,p)(m,r)

f λ+ν+1
h,s , b(h,s)

(n,p)(m,r)
∈ C.

(51)

For N = 2 points and in generic situations one obtains R1 = g and R2 = 3g.
The theorem says in particular that with respect to both the associative and Lie

structure the algebra F is weakly almost-graded. The reason why we only have
weakly almost-gradedness is that

F λ =
⊕
m∈Jλ

F λm, with dimF λm = K, (52)

and if we add up for a fixed m all λ we get that our homogeneous spaces are infinite
dimensional.

In the proof of the theorem the KN duality property of the basis plays a crucial
role. By (48) we obtain e.g.

a(h,s)
(n,p),(m,r)

= 〈 f λn,p · f νm,r, f 1−(λ+ν)
−h,s

〉 . (53)
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By considering the orders of the 3 basis elements at the points in I and O separately
we can give finite ranges for the index (h, s) for which there are poles both at the
points in I and at the points in O. Only in those ranges there will be a residue.
Recall that for a compact Riemann surface the total residue has to be zero. Hence,
there can only be a non-vanishing residue if summed over I if it compensated by a
non-vanishing residue summed over O and vice versa.

In the definition of our KN type algebra only finitely many λs are involved, hence
the following is immediate

Theorem 5.7 The Krichever-Novikov type vector field algebrasL, function algebras
A, differential operator algebras D1, Lie superalgebras S, and Jordan superalge-
bras J are (strongly) almost-graded algebras and the corresponding modules F λ
are almost-graded modules.

We obtain with n ∈ Jλ

dimLn = dimAn = dimF λn = K,

dimSn = dimJn = 2K, dimD1
n = 3K .

(54)

IfU is any of these algebras, with product denoted by [ , ] then

[Un,Um] ⊆

n+m+Ri⊕
h=n+m

Uh, (55)

with Ri = R1 forU = A and Ri = R2 otherwise.
The lowest degree term component in (51) calculates for certain special cases.

An,p · Am,r = An+m,r δ
p
r + h.d.t.

An,p · f λm,r = f λn+m,r δ
p
r + h.d.t.

[en,p, em,r ] = (m − n) · en+m,r δ
p
r + h.d.t.

en,p . f λm,r = (m + λn) · f λn+m,r δ
p
r + h.d.t.

(56)

Here h.d.t. denote linear combinations of basis elements of degree between n+m+1
and n + m + Ri ,

Finally, the almost-grading ofA induces an almost-grading of the current algebra
g by setting gn = g ⊗ An. We obtain

g =
⊕
n∈Z

gn, dim gn = K · dim g. (57)
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5.5 Triangular decomposition and filtrations

Let U be one of the above introduced algebras (including the current algebra). On
the basis of the almost-grading we obtain a triangular decomposition of the algebras

U = U[+] ⊕ U[0] ⊕ U[−], (58)

where

U[+] :=
⊕
m>0
Um, U[0] =

m=0⊕
m=−Ri

Um, U[−] :=
⊕

m<−Ri

Um. (59)

By the almost-gradedness the [+] and [−] subspaces are (infinite dimensional) sub-
algebras. The [0] spaces in general not. Sometimes we call them critical strips.

With respect to the almost-grading of F λ we introduce a filtration

F λ
(n) :=

⊕
m≥n

F λm,

.... ⊇ F λ
(n−1) ⊇ F λ

(n) ⊇ F λ
(n+1) ....

(60)

Proposition 5.8 [52, Prop. 3.15]

F λ
(n) = { f ∈ F λ | ordPi ( f ) ≥ n − λ, ∀i = 1, . . . ,K }. (61)

6 Central Extensions

Central extensions of our algebras appear naturally in the context of quantization
and regularization of actions. Of course they are also of independent mathematical
interest. Recall that a projective action of a Lie algebra L defines a honest Lie action
of a centrally extended algebra L̂.

6.1 Central extensions and cocycles

For the convenience of the reader let us repeat the relation between central extensions
and the second Lie algebra cohomology with values in the trivial module. A central
extension of a Lie algebra W is a special Lie algebra structure on the vector space
direct sum Ŵ = C ⊕W . If we denote x̂ := (0, x) and t := (1, 0) then the Lie structure
is given by

[x̂, ŷ] = [̂x, y] + ψ(x, y) · t, [t, Ŵ] = 0, x, y ∈ W , (62)

with a bilinear form ψ. The map x 7→ x̂ = (0, x) is a linear splitting map. Ŵ will be
a Lie algebra, e.g. will fulfill the Jacobi identity, if and only if ψ is an antisymmetric
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bilinear form and fulfills the Lie algebra 2-cocycle condition

0 = d2ψ(x, y, z) := ψ([x, y], z) + ψ([y, z], x) + ψ([z, x], y). (63)

Two central extensions are equivalent if they essentially correspond only to the
choice of different splitting maps. A 2-cochain ψ is a coboundary if there exists a
linear form ϕ : W → C such that

ψ(x, y) = ϕ([x, y]). (64)

Every coboundary is a cocycle. The second Lie algebra cohomology H2(W,C) of
W with values in the trivial module C is defined as the quotient of the space of
2-cocycles modulo coboundaries. Moreover, two central extensions are equivalent if
and only if the difference of their defining 2-cocycles ψ and ψ ′ is a coboundary. In
this way the second Lie algebra cohomology H2(W,C) classifies equivalence classes
of central extensions. The class [0] corresponds to the trivial central extension. In
this case the splitting map is a Lie homomorphism. We construct central extensions
of our algebras by exhibiting such Lie algebra 2-cocycles.

Clearly, equivalent central extensions are isomorphic. The opposite is not true.
In our case we can always rescale the central element by multiplying it with a
nonzero scalar. This is an isomorphism but not an equivalence of central extensions.
Nevertheless, it is an irrelevant modification. Hence we will be mainly interested in
central extensions modulo equivalence and rescaling. They are classified by [0] and
the elements of the projectivized cohomology space P(H2(W,C)).

In the classical case we have dim H2(W,C) = 1, hence there are only two
essentially different central extensions, the splitting one given by the direct sum
C ⊕ W of Lie algebras and the up to equivalence and rescaling unique non-trivial
one, the Virasoro algebraV.

6.2 Geometric cocycles

The cocycle of theWitt algebra 1/12 (n3−n)δ−mn used to define the Virasoro algebra
is very special. Obviously, it does not make any sense in the higher genus and/or
multi-point case. We need to find a geometric description. For this we have first to
introduce connections.

6.2.1 Projective and affine connections

Let (Uα, zα)α∈J be a covering of the Riemann surface by holomorphic coordinates
with transition functions zβ = fβα(zα).

Definition 6.1 (a) A system of local (holomorphic, meromorphic) functions R =
(Rα(zα)) is called a (holomorphic, meromorphic) projective connection if it trans-
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forms as

Rβ(zβ) · ( f ′β,α)
2 = Rα(zα) + S( fβ,α), with S(h) =

h′′′

h′
−

3
2

(
h′′

h′

)2
, (65)

the Schwartzian derivative. Here ′ denotes differentiation with respect to the coor-
dinate zα.

(b) A system of local (holomorphic, meromorphic) functions T = (Tα(zα)) is
called a (holomorphic, meromorphic) affine connection if it transforms as

Tβ(zβ) · ( f ′β,α) = Tα(zα) +
f ′′β,α
f ′β,α

. (66)

Every Riemann surface admits a holomorphic projective connection [25],[23].
Given a point P then there exists always a meromorphic affine connection holomor-
phic outside of P and having maximally a pole of order one there [44].

From their very definition it follows that the difference of two affine (projec-
tive) connections will be a (quadratic) differential. Hence, after fixing one affine
(projective) connection all others are obtained by adding (quadratic) differentials.

Next we introduce in a geometric way cocycles by integration of certain differen-
tials, associated to pairs of Lie algebra elements, over arbitrary smooth curves. Such
cocycles we call geometric cocycles. For the proofs that the following expressions
are indeed 2-cocycles we refer to [44], [48] (and [52]).

6.2.2 The function algebraA

Weconsider it as abelian Lie algebra. LetC be an arbitrary smooth but not necessarily
connected curve. We set

ψ1
C(g, h) :=

1
2πi

∫
C

gdh, g, h ∈ A. (67)

6.2.3 The current algebra g

For g = g ⊗ A we fix a symmetric, invariant, bilinear form β (not necessarily non-
degenerate) on the finite-dimensional Lie algebra g. Recall, that invariancemeans that
we have β([x, y], z) = β(x, [y, z]) for all x, y, z ∈ g. Then the following expressions
define a cocycle

ψ2
C,β(x ⊗ g, y ⊗ h) := β(x, y) ·

1
2πi

∫
C

gdh, x, y ∈ g, g, h ∈ A. (68)
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6.2.4 The vector field algebra L

Here it is a little bit more delicate. First we have to choose a (holomorphic) projective
connection R. We define

ψ3
C,R(e, f ) :=

1
24πi

∫
C

(
1
2
(e′′′ f − e f ′′′) − R · (e′ f − e f ′)

)
dz . (69)

Only by the term coming with the projective connection it will be a well-defined
differential, i.e. independent of the coordinate chosen. Another choice of a projective
connection will result in a cohomologous one. Hence, the equivalence class of the
central extension will be the same.

6.2.5 The differential operator algebraD1

For the differential operator algebra the cocycles of type (67) forA can be extended
by zero on the subspace L. The cocycles for L can be pulled back. In addition there
is a third type of cocycles mixing A and L:

ψ4
C,T (e, g) :=

1
24πi

∫
C

(eg′′ + Teg′)dz, e ∈ L, g ∈ A, (70)

with an affine connection T , with at most a pole of order one at a fixed point in O.
Again, a different choice of the connection will not change the cohomology class.

6.2.6 The Lie superalgebra S

Here we have to take into account that it is not a Lie algebra. Hence, the Jacobi
identity has to be replaced by the super-Jacobi identity. The conditions for being a
cocycle for the superalgebra cohomology will change too. Recall the definition of
the algebra from Section 4.4, in particular that the even elements (parity 0) are the
vector fields and the odd elements (parity 1) are the half-forms. A bilinear form c is
a cocycle if the following is true. The bilinear map c will be symmetric if both x and
y are odd, otherwise it will be antisymmetric:

c(x, y) = −(−1)x̄ȳc(x, y). (71)

The super-cocycle condition reads as

(−1)x̄z̄c(x, [y, z]) + (−1)ȳ x̄c(y, [z, x]) + (−1)z̄ȳc(z, [x, y]) = 0. (72)

With the help of c we can define central extensions in the Lie superalgebra sense. If
we put the condition that the central element is even then the cocycle c has to be an
even map and c vanishes for pairs of elements of different parity.
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By convention we denote vector fields by e, f , g, ... and -1/2-forms by ϕ, ψ, χ, ..
and get

c(e, ϕ) = 0, e ∈ L, ϕ ∈ F −1/2. (73)

The super-cocycle conditions for the even elements is just the cocycle condition for
the Lie subalgebra L. The only other nonvanishing super-cocycle condition is for
the (even,odd,odd) elements and reads as

c(e, [ϕ, ψ]) − c(ϕ, e . ψ) − c(ψ, e . ϕ) = 0. (74)

Here the definition of the product [e, ψ] := e . ψ was used.
If we have a cocycle c for the algebra S we obtain by restriction a cocycle for the

algebra L. For the mixing term we know that c(e, ψ) = 0. A naive try to put just
anything for c(ϕ, ψ) (for example 0) will not work as (74) relates the restriction of
the cocycle on L with its values on F −1/2.

Proposition 6.2 [51] LetC be any closed (differentiable) curve on Σ not meeting the
points in A, and let R be any (holomorphic) projective connection then the bilinear
extension of

ΦC,R(e, f ) :=
1

24πi

∫
C

(
1
2
(e′′′ f − e f ′′′) − R · (e′ f − e f ′)

)
dz

ΦC,R(ϕ, ψ) := −
1

24πi

∫
C

(ϕ′′ · ψ + ϕ · ψ ′′ − R · ϕ · ψ) dz

ΦC,R(e, ϕ) := 0

(75)

gives a Lie superalgebra cocycle for S, hence defines a central extension of S. A
different projective connection will yield a cohomologous cocycle.

Note that the ΦC,R restricted to L gives Ψ3
C,R

.
A similar formula was given by Bryant in [12]. By adding the projective connec-

tion in the second part of (75) he corrected some formula appearing in [6]. He only
considered the two-point case and only the integration over a separating cycle. See
also [32] for the multi-point case, where still only the integration over a separating
cycle is considered.

In contrast to the differential operator algebra case the two parts cannot be pre-
scribed independently. Only with the same integration path (more precisely, homol-
ogy class) and the given factors in front of the integral it will work. The reason for
this is that (74) relates both.

6.3 Uniqueness and classification of central extensions

The above introduced cocycles depend on the choice of the connections R and T .
Different choices will not change the cohomology class. Hence, this ambiguity does
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not disturb us. What really matters is that they depend on the integration curve C
chosen.

In contrast to the classical situation, for the higher genus and/or multi-point
situation there are many essentially different closed curves and hence many non-
equivalent central extensions defined by the integration.

But we should take into account that we want to extend the almost-grading from
our algebras to the centrally extended ones. This means we take deg x̂ := deg x
and assign a degree deg(t) to the central element t, and still we want to obtain
almost-gradedness.

This is possible if and only if our defining cocycle ψ is local, or almost-graded
in the following sense, There exists M1, M2 ∈ Z such that

∀n,m : ψ(Wn,Wm) , 0 =⇒ M1 ≤ n + m ≤ M2. (76)

HereW stands for any of our algebras (including the supercase). The name “local”
was introduced in the two point case by Krichever and Novikov in [33]).

Very important, “local” is defined in terms of the almost-grading, and the almost-
grading itself depends on the splitting A = I ∪O. Hence what is “local” depends on
the splitting too.

We will call a cocycle bounded (from above) if there exists M ∈ Z such that

∀n,m : ψ(Wn,Wm) , 0 =⇒ n + m ≤ M . (77)

Similarly bounded from below can be defined. Locality means bounded from above
and from below.

Given a cocycle class we call it bounded (respectively local) if and only if
it contains a representing cocycle which is bounded (respectively local). Not all
cocycles in a bounded class have to be bounded. If we choose as integration path a
separating cocycleCS , or one of theCi then the above introduced geometric cocycles
are local, respectively bounded (from above). Recall that in this case integration can
be done by calculating residues at the in-points or at the out-points. All these cocycles
are cohomologically nontrivial. The theorems in the following concern the opposite
direction. Theywere treated inmyworks [48], [47], [51]. See also [52] for a complete
and common treatment.

The following result for the vector field algebra L gives the principal structure of
the classification results.
Theorem 6.3 [48], [52, Thm. 6.41] Let L be the Krichever–Novikov vector field
algebra with a given almost-grading induced by the splitting A = I ∪O.
(a) The space of bounded cohomology classes is K-dimensional (K = #I). A basis is
given by setting the integration path in (69) to Ci , i = 1, . . . ,K the little (deformed)
circles around the points Pi ∈ I.
(b) The space of local cohomology classes is one-dimensional. A generator is given
by integrating (69) over a separating cocycle CS , i.e.

ψ3
CS,R
(e, f ) =

1
24πi

∫
CS

(
1
2
(e′′′ f − e f ′′′) − R · (e′ f − e f ′)

)
dz . (78)
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(c) Up to equivalence and rescaling there is only one non-trivial one-dimensional
central extension L̂ of the vector field algebra L which allows an extension of the
almost-grading.

Remark 6.4 In the classical situation, Part (c) shows also that the Virasoro algebra
is the unique non-trivial central extension of the Witt algebra (up to equivalence
and rescaling). This result extends to the more general situation under the condition
that one fixes the almost-grading, hence the splitting A = I ∪ O. Here I like to
repeat the fact that for L depending on the set A and its possible splittings into
two disjoint subsets there are different almost-gradings. Hence, the “unique” central
extension finally obtained will also depend on the splitting. Only in the two point
case there is only one splitting possible. In the case that the genus g ≥ 1 there are
even integration paths possible in the definition of (69) which are not homologous to
a separating cycle of any splitting. Hence, there are other central extensions possible
not corresponding to any almost-grading.

The above theorem is a model for all other classification results. We will always
obtain a statement about the bounded (from above) cocycles and then for the local
cocycles.

If we consider the function algebraA as an abelian Lie algebra then every skew-
symmetric bilinear form will be a non-trivial cocycle. Hence, there is no hope of
uniqueness. But if we add the condition of L-invariance to the cocycle, which is
given as

ψ(e.g, h) + ψ(g, e.h) = 0, ∀e ∈ L, g, h ∈ A (79)

things will change. Note that the cocycle (67) is L-invariant.
Let us denote the subspace of local cohomology classes by H2

loc
, and the subspace

of local and L-invariant cohomology classes by H2
L,loc

. Note that the conditions are
only required for at least one representative in the cohomology class. We collect
a part of the results for the cocycle classes of the other algebras in the following
theorem.

Theorem 6.5 [52, Cor. 6.48]
(a) dim H2

L,loc
(A,C) = 1,

(b) dim H2
loc
(L,C) = 1,

(c) dim H2
loc
(D1,C) = 3,

(d) dim H2
loc
(g,C) = 1 for g a simple finite-dimensional Lie algebra,

(e) dim H2
loc
(S,C) = 1,

A basis of the cohomology spaces are given by taking the cohomology classes of the
cocycles (67), (69), (70), (68), (75) obtained by integration over a separating cycle
CS .

Consequently, we obtain also for these algebras the corresponding result about
uniqueness of almost-graded central extensions. For the differential operator algebra
we get three independent cocycles. This generalizes results obtained in [2] for the
classical case.
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For results on the bounded cocycle classes we have to multiply the dimensions
above by K = #I. For the supercase with odd central element the bounded cohomol-
ogy vanishes.

For g a reductive Lie algebra and if the cocycle is L-invariant if restricted to the
abelian part, a complete classification of local cocycle classes for both g andD1

g can
be found in [47], [52, Chapter 9].

I like to mention that in all the applications I know of, the cocycles coming from
representations, regularizations, etc. are local. Hence, the uniqueness or classification
result above can be applied.

Remark 6.6 (OnL-invariance) TheL-invariance is a natural condition. If we restrict
a cocycle for the differential operator algebra D1 to the subalgebra A of functions
we obtain automatically anL-invariant cocycle forA. Vice versa, everyL-invariant
cocycle for A can be extended by zero on the complementary space L to a cocycle
for D1.

The cocycle (67) has another interesting property. It is multiplicative, i.e.

ψ(a · b, c) + ψ(b · c, a) + ψ(c · a, b) = 0, a, b, c ∈ A. (80)

It is this property which is needed that (68) is a cocycle for g, see also [47]. It is
shown in [48] that the classes of multiplicative bounded cocycles equals the classes
of bounded L-invariant cocycles.

7 The Genus Zero and Multi-Point Case

In the second half of this survey we consider the situation that our Riemann surface
is the Riemann sphere (i.e. of genus zero) and that we have a finite number of marked
points where poles are allowed. Again the classical situation is a special case.

There are many reasons to study this situation in detail. First, of course we give an
illustration of the definition and construction done in arbitrary genus in an explicit
way using explicit forms of generators. Second, we are able to deduce additional
properties in the genus zero case. In particular, we will construct the universal central
extensions of those algebras which admit an universal central extension.

The third reason is that recently therewas a revived interest in the genus zeromulti-
point situation by a number of people coming from field theory and representation
theory. In these communities the algebras are called N-Virasoro algebras.

But in their work is no almost-graded structure used. Now, in the case of infinite
dimensional Lie algebra the existence of a grading respectively the weaker version of
an almost-grading is crucial for understanding and constructions. It was my intention
in [54] to show that these N-Virasoro algebras are nothing else as multi-point genus
zero KN type algebras and to use the theory of KN type (in particular the almost-
gradedness) to deduce faster and more conceptual their results and even more, giving
explanations of observed results.

In the following I will review our results. For the proofs I mainly refer to [54].
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7.1 The geometric set-up

Now let Σ0 be the Riemann sphere S2, or equivalently P1(C) with the quasi-global
coordinate z. We call it quasi-global, as it is not defined at the point∞. Let us denote
the set of points

A = {P1, P2, . . . , PN }, Pi , Pj, for i , j . (81)

For notational simplicity we single out the point PN as reference point. By an
automorphism of P1(C), i.e. a fractional linear transformation or equivalently an
element of PGL(2,C), the point PN can be brought to ∞. In fact two more points
could be normalized to be 0 and 1. In this section we will not do so, but see Section 8.

Our points are given by their global coordinates

Pi = ai, ai ∈ C, i = 1, . . . , N − 1, PN = ∞. (82)

At these points we have the local coordinates

z − ai, i = 1, . . . , N − 1, w = 1/z. (83)

Recall that the canonical line bundleK ofΣ0 is the holomorphic line bundlewhose
local sections are the local holomorphic differentials. For P1(C), in the language of
algebraic geometry, we have that K = O(−2). This bundle has a unique square root
L = O(−1), which is the tautological bundle, respectively the dual of the hyperplane
section bundle. We denote this bundle also by K1/2

5. We introduced meromorphic
forms of weight λ as sections of the bundle Kλ. In our genus zero situation we can
describe the form by a meromorphic function on the affine part C with respect to the
coordinate z. By this description its behaviour at the point∞ is uniquely fixed by the
fundamental transformation dz = −w−2dw. Moreover, by the fixing PN = ∞ the set
of meromorphic forms f of weight λ on P1(C) holomorphic outside of A correspond
1:1 to meromorphic functions a(z) holomorphic outside of A via f (z) = a(z)dzλ.
Both a and f will have the same orders at the points in C. For the order at the point
∞ we have

ord∞( f ) = ord∞(a) − 2λ. (84)

Recall that on a compact Riemann surface the sum of the orders (summed over all
points) of a meromorphic function f . 0 equals zero. Hence, more generally

Proposition 7.1 Let f ∈ F λ, f . 0 then∑
P∈Σ0

ordP( f ) = −2λ. (85)

For this and related results see e.g. [49]. Also recall that the meromorphic functions
in our case are nothing else as rational functions with respect to the variable z.

Recall from Section 4 that

5 There is no ambiguity in choosing the square root.
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F :=
⊕
λ∈ 1

2Z

F λ. (86)

We specialize from Section 5 the almost-grading for genus zero as follows. We
numerate the points in the splitting like

A = I ∪O, I = (P1, P2, . . . , PK ), O = (PK+1, . . . , PN = ∞). (87)

As PN = ∞ ∈ O it is enough to construct a basis {An,p | n ∈ Z, p = 1, . . . ,K}
for A = F 0. The decomposition of A into homogeneous subspaces induces a
decomposition of F λ by

F λn = An−λdzλ, respectively f λn,p = An−λ,pdzλ. (88)

The shift by −λ is quite convenient and is beside other things related to the duality
property. The recipe for constructing the An,p is given in [43], [42], see also [52].
As a principal property we have (like in the arbitrary genus case)

ordPi (An,p) = (n + 1) − δpi , i = 1, . . . ,K . (89)

At the points in O corresponding orders are set to make the element unique up to
multiplication by a non-zero scalar.

Example 7.2 We call the splitting

I = (P1, P2, . . . , PK ), O = (PN = ∞), K = N − 1 (90)

the standard splitting. Recall that Pi corresponds to the point given by the coordinate
z = ai . We set

α(p) :=
( K∏
i=1
i,p

(ap − ai)
)−1

. (91)

and define

An,p(z) := (z − ap)
n ·

K∏
i=1
i,p

(z − ai)n+1 · α(p)n+1 . (92)

The last factor is a normalization factor yielding

An,p(z) = (z − ap)
n(1 +O(z − ap)). (93)

With this description the order at∞ is fixed as

−(Kn + K − 1) . (94)

In particular, we obtain for L the basis
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en,p = f −1
n,p = An+1,p

d
dz
= (z − ap)

n+1 ·

K∏
i=1
i,p

(z − ai)n+2 · α(p)n+2 d
dz
. (95)

7.2 The Algebras for the Standard Splitting

Theorem 5.6 is of course also valid in our special genus zero situation. We will have
a closer look on the result for the standard splitting. Recall that in case of the standard
splitting the set O consists only of the point∞.

For illustration we give the bounds R1 and R2 in Theorem 5.6

Proposition 7.3

R1 =

{
0, K = 1,
1, K > 1,

R2 =


0, K = 1,
1, K = 2,
2, K > 2 .

(96)

Proof For the upper bound we have to check the order at ∞ with respect to the
variable w. We use for the individual factors in the expression (53) the value (94)
and sumover all factors and do not forget to decrease the order by 2 coming from dz. If
we do this for the algebraA we get as order at∞ forω := An,p ·Am,r ·A−(n+m+k)−1,sdz
the value −2K + K · k + 1. A pole is only possible if this value is ≤ −1. Hence only
for

k ≤ −
2
K
+ 2 . (97)

This yields the claimed value for R1. For the Lie algebra L, respectively for the Lie
module we have to consider ω := [An+1,p, Am−λ,r ] · A−(n+m+k)−(1−λ) dz. Here the As
should be taken as the local expressions of the vector fields, resp. of the forms. For
the order at∞ we obtain −3K + K · k + 2. Which yields that a pole is only possible
for

k ≤ −
3
K
+ 3 , (98)

and hence the claimed value for R2. �

Indeed these bounds are also valid for K = M .
For the algebra A we obtain by using (96) and (56)

An,i · Am, j = δ
j
i An+m, j +

K∑
s=1

α
(n+m+1,s)
(n,i)(m, j)

An+m+1,s . (99)

The unknown structure coefficients in (99) of the algebras can be directly calculated
by calculating the residues of the rational expression for ω.
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Example 7.4 N = 2.By a PGL(2,C) action the two points can be transported to 0 and
∞. This is the classical situation and there is only one splitting. Hence, everything
is fixed. The above basis gives back the conventional one.

Example 7.5 N = 3. Here by a PGL(2,C) action the three points can be normalized
to {0, 1,∞}. Hence, up to isomorphy there are only one three-point algebra (for
each type of algebras). If we fix such an algebra we obtain three different splittings
of the set {0, 1,∞} and consequently also 3 essentially different almost-gradings,
triangular decompositions, etc. The three-point case is in a certain sense special as
there are still the automorphism of P1(C) permuting these three points. They induce
automorphisms of the algebras which permute the almost-gradings.Wewill consider
this situation in detail in Section 8.

Example 7.6 N = 4. This is the first case where we have a moduli parameter for the
geometric situation. We normalize our A to

{0, 1, a,∞}, a ∈ C, a , 0, 1 . (100)

We have 2 different types of splittings, i.e. the type 4 = 3+ 1 and the type 4 = 2+ 2.
For example

{0, 1, a} ∪ {∞}, and {0, 1} ∪ {a,∞} . (101)

The first type is the standard splitting for which we gave the basis above (92). For
the second splitting a basis of A and hence of all F λ is

An,1(z) = zn(z − 1)n+1(z − a)−(n+1)a(n+1),

An,2(z) = zn+1(z − 1)n(z − a)−(n+1)(1 − a)(n+1) ,
(102)

where n ∈ Z. The last factor is again a normalization constant. This basis defines
an almost-grading for the four-point algebra which is not equivalent to the standard
almost-grading. Again the algebra coefficients can be calculated easily via residues.
Using (96) for K = M = 2 the general expression is given also by (99).

7.3 Central Extensions

Recall that in Section 6 we gave expressions for the central extensions by integrating
differential forms γ̂ over cycles on the Riemann surface yielding cocycles. Such
cocycles we called geometric cocycles. The relevant space is the homology space
H1(Σ \ A,C).

For genus zero and N ≥ 1 we have

dim H1(Σ0 \ A,C) = (N − 1). (103)

A basis of this cohomology space is given by circles Ci around the points Pi where
we leave out one of them. For example we can take [Ci], i = 1, . . . , N − 1. We have
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the relation
N−1∑
i=1
[Ci] = −[CN ]. (104)

But there is another choice. As explained above after choosing a splitting with
separating cycle [CS] we take it as one of the basis elements and N − 2 other [Ci]s
which are linearly independent. For the standard splitting with PN = {∞} we have

[CS] = −[C∞], [Ci], i = 1, . . . , N − 2. (105)

There is a crucial difference to the case of higher genus. In genus zero our cycles
are always build from circles around our points where poles are allowed. This is not
the case in higher genus. And this makes a big difference. Integration around the Ci

can be done via calculations of residues. Hence, we always get for our geometric
cocycles (for the standard splitting)

γ[CS ] =

N−1∑
i=1

resPi (γ̂) = − res∞(γ̂), γ[Ci ] = resPi (γ̂), i = 1, . . . , N − 2. (106)

Another difference to higher genus is that that in genus zero and our system
of coordinates zi the coordinate change maps are projective transformation and
the Schwartzian derivative vanishes, see (65). Hence, the projective connection R
appearing in the definition of the cocycle for the vector field algebra can be set
to R = 0 on all our coordinate patches. In the mixing cocycle for the differential
operator algebra there appears the affine connection. We cannot take T = 0 globally,
but from (66) it follows that we may take Ti = 0 on the affine part and T(w) = −2/w
around the point∞.

If we consider the standard splitting and specialize the cocycles γ introduced in
Section 6 then the theorems presented there show that γ[CS ] will be local, whereas
the γ[Ci ] are bounded. We also know that the γ[Ci ], i = 1, . . . , N − 1 gives a basis of
the space of bounded cocycle classes. Here bounded means bounded with respect
to the standard splitting where the only point in O is the point∞. For simplicity we
will sometimes use γi for γ[Ci ] and γS for γ[CS ].

7.4 Universal central extensions

In the following we will show that in the genus zero case all cocycle classes will be
bounded. Moreover, we will describe with this result the universal central extensions
in case that they exist.

Theorem 7.7 In the case of genus zero all cocycle classes for the algebras in Section 4
are bounded classes with respect to the standard splitting. In particular, a basis of
all cocycle classes is given by γi, i = 1, . . . , N − 1. This is also true for the function
algebra A if we assume that the cocycle is L-invariant or multiplicative.



32 Martin Schlichenmaier

Note that we do not make any reference on any splitting at the beginning. Also
we remark that this theorem is only true in genus zero. Below we will make some
comments on the proof. But first we draw some consequences.

First we take a look on the function algebra A.

Theorem 7.8 In the N-point genus zero situation the space of L-invariant (or mul-
tiplicative) cocycles is (N − 1) dimensional and is isomorphic to H1(Σ0 \ A,C) via

[C] 7→ γAC ; γAC ( f , g) =
1

2πi

∫
C

f dg. (107)

In particular, every L-invariant cocycle is multiplicative and vice versa. These
cocycles are geometric.

Proposition 7.9 Up to rescaling the cocycle

γA∞ = −

N−1∑
i=1

γACi
( f , g) = res∞( f dg) (108)

is the unique L-invariant (and equivalently multiplicative) cocycle which is local
with respect to the standard splitting.

Remark 7.10 (Heisenberg algebra.) We consider the central extensions of A with
central terms coming from the L-invariant or equivalently multiplicative cocycles.
The corresponding central extension Â ofA will have a (N −1)-dimensional center
and will be given as

[ f̂ , ĝ] =
N−1∑
i=1

αi · γ
A
Ci
( f , g) · ti, αi ∈ C, [ti, Â] = 0 . (109)

The local cocycle γA
CS

will yield a one-dimensional central extension which is
almost-graded. One might either call the (N − 1)-dimensional central extension
or the almost-graded one-dimensional central extension (multi-point) Heisenberg
algebra.

Nowwe turn to the other algebras. ALie algebra is called perfect if the commutator
ideal of L equals L, i.e. L = [L, L]. Recall that a Lie algebra L has a universal central
extension if and only if it is perfect. In this case the (higher-dimensional) center can
be given by the space of cocycle classes H2(L,C).

Proposition 7.11 The genus zero KN type vector field algebras, differential operator
algebras, the super algebras, and current algebras for semi-simple finite Lie algebras
are perfect Lie algebras and consequently admit central extensions.

For the proofs see e.g. [54], resp. the Remark 7.13 below. For the general genus
vector field case see also [60] and for the general current algebra case see also [31],
[30]. Obviously, the function algebra as abelian Lie algebra is not perfect.

Combining Proposition 7.11 and Theorem 7.7 we obtain
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Theorem 7.12
(a) In genus zero with N marked points the vector field algebra L has a universal
central extension with (N − 1)-dimensional center.
(b) The differential operator algebra D1 has a universal central extension with
3(N − 1)-dimensional center.
(c) The Lie superalgebraS has a universal central extensionwith (N−1)-dimensional
center.
(d) The current algebra g associated to a simple Lie algebra g has a universal central
extension with (N − 1) dimensional center.

The corresponding cocycles and hence the universal central extension can be
explicitly given by the cocycles introduced in Section 6, in Equations (69), (67), (70),
(75), (68), where the integration runs over Ci , i = 1, . . . , N − 1. Equivalently they
can be calculated via residues at the point Pi , i = 1, . . . , N − 1.

Proof (of Theorem 7.7) We only give some rough ideas of the proof. The complete
proof needs several pages and can be found in the original publication [54]. Also we
will only deal with the vector field algebra as a typical example.

The following elements

e(i)n = (z − ai)n+1 d
dz
, n ∈ Z, i = 1, . . . , N − 1. (110)

give a generating set of L. For each i separately, we get the usual Witt algebra as
subalgebra of L . Now we fix one of the superscripts, e.g. i = 1, then

e(1)n , n ∈ Z, e(i)m , m ≤ −2, i = 2, . . . , N − 1 . (111)

is a basis [41]. This basis does not define any almost-grading. But we can relate it to
the filtration (60) defined with respect to the almost-grading given by the standard
splitting. With respect to this splitting we denote the basis elements as usual by en,p
We repeat the definition and the property of the filtration for λ = −1

L(n) =
⊕
m≥n

Lm, Lm := 〈em,p | p = 1, . . . ,K〉 ,

L(n) = { f ∈ L | ordPi ( f ) ≥ n + 1, i = 1, . , N − 1 } .
(112)

Now we take the alternate basis into account and get

L(n) =
⋂

i=1,...,N−1
〈e(i)

k
| k ≥ n〉

C
, for n ≥ −1

L(n) =

N−1∑
i=1
〈e(i)

k
| k ≥ n〉

C
, for n < −1 .

(113)
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Attention, the sum in the second line is not a direct sum. Also note that L−1 consists
of those vector fields which are holomorphic on the affine part. In particular for L−1
all sets in the intersection are equal, hence it is enough to consider just one i.

We make a cohomological change via the linear form φ : L → C with

φ(e(1)n ) :=
1
n
γ(e(1)0 , e(1)n ), n ∈ Z, n , 0 φ(e(1)0 ) :=

1
2
γ(e(1)
−1, e

(1)
1 ),

φ(e(i)n ) :=
1
n
γ(e(i)0 , e

(i)
n ), n ≤ −2 .

(114)

The cohomologous cocycle is now

γ′(e, f ) = γ(e, f ) − φ([e, f ]). (115)

With the help of the filtration property and (113) we are able to show that

γ′(e, f ) = 0 e ∈ Lk, f ∈ Ll if k + l > 0. (116)

Hence, [γ] is bounded class class for the standard splitting and we can use Theo-
rem 6.3 to conclude the proof. �

Remark 7.13 The alternative generating set introduced above shows also that L is a
perfect algebra. As [e(i)o , e

(i)
n ] = n · e(i)n and [e(i)

−1, e
(i)
1 ] = 2 · e(i)0 all generators can be

written as commutators, i.e. [L,L] = L.

Remark 7.14 Let me give here some references to other works on multi-point genus
zero work: [1], [5], [7], [8], [9], [13], [14], [15], [16], [17], [18], [24], [26], [27],
[45].

Remark 7.15 In the genus one case, i.e. the elliptic curve case, also interesting
algebras show up, see e.g. [45], [19], [20] [21] [39], [11] [10]. In joint work with
Alice Fialowski the current author examined deformations of the elliptic algebras to
genus zero algebras, respectively subalgebras of them.

8 The three-point and Genus Zero Case

8.1 Symmetries

The case of genus zero with only three points where poles are allowed is to a certain
extend special as we have additional symmetries. These symmetries can be used to
simplify the calculations of structure constants even further.

Additionally, the three-point cases play a role in quite a number of applications.
See e.g. the tetrahedron algebra appearing in statistical mechanics, in particular the
work of Terwilliger and collaborators [24], [5].
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By a complex automorphism of the Riemann sphere, i.e. by a fractional linear
transformation, respectively by an PGL(2) action the three points can be brought to
the points 0, 1 and ∞. The corresponding automorphism will yield an isomorphism
of the involved algebras. Even after this is done there are still automorphisms of P1(C)
permuting the 3 points {0, 1,∞}. Hence, we still have the action of the symmetric
group S3 of 3 elements. The corresponding algebraic maps are now automorphisms
of the algebras.

Recall that in the previous section we discussed for every splitting of the set A,
(here {0, 1,∞}), into two disjoint non-empty subset I and O a distinguished basis
which yields an almost-graded structure for the algebras. Essentially different split-
tings will yield essentially different basis elements respectively essentially different
almost-gradings.

Here the only type of splitting is into a subset consisting of two points and a subset
consisting of one point. After having fixed A = {0, 1,∞} we apply an automorphism
from the remaining group S3 such that

A = I ∪O, I := {0, 1}, and O := {∞}. (117)

This is exactly the situation which we will consider here.
I like to stress the fact, that this does not say, that there is only one possible choice

of an almost-grading. In fact, given the set A and hence a unique algebra, we have 3
essentially different splitting, hence also 3 essentially different set of basis elements
and consequently 3 almost-gradings. But in the three-point situation there will be
always an automorphism of our algebra mapping the different almost-gradings to
each other.

Remark 8.1 In [45] the situation A = {α,−α,∞} was considered for α ∈ C, α , 0.
This changes nothing. The corresponding algebras are isomorphic to the algebras
considered here. Even our basis elements can be identified (up to some rescaling and
re-indexing) and the structure equations remain the same (again up to scaling factors).
The reason for the choice there was that we wanted to introduce a free parameter α
which can be used to study degeneration process, respectively deformation families.
For α → 0 we “degenerate” to the two-point situation. In this respect see also our
joint work with Fialowski [19], [20], [21]. Clearly, everything that will be done in
this section could be formulated also for {α,−α,∞}, α , 0.

8.2 The associative algebra

The basis elements of degree n of the algebraA with respect to our standard splitting
are (see Section 7)

An,1(z) = zn(z − 1)n+1, An,2(z) = zn+1(z − 1)n, n ∈ Z, (118)
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where we ignore the scaling factors. We “symmetrize” and “anti-symmetrize” them
for each degree separately by taking

An(z) = An,2(z) − An,1(z) = zn(z − 1)n,
Bn(z) = An,2(z) + An,1(z) = zn(z − 1)n(2z − 1),

(119)

Proposition 8.2 The associative algebra A of meromorphic functions on the Rie-
mann sphere P1(C) holomorphic outside of 0, 1, and∞ has as vector space basis

{An, Bn | n ∈ Z}, (120)

with the structure equations

An · Am = An+m,

An · Bm = Bn+m,

Bn · Bm = An+m + 4An+m+1.

(121)

Proof That the elements An,1, An,2 with n ∈ Z are a basis ofA is a general fact by its
very construction as Krichever–Novikov multi-point basis in [42] corresponding to
our splitting of A. The transformation (119) is obviously a base change which even
respects the homogeneous subspaces. By direct calculations the structure equations
follow. �

Our splitting introduces a (strong) almost-grading for the algebra A

A =
⊕
n∈Z

An, An = 〈An, Bn〉C, dimAn = 2. (122)

This is clear from the general construction. But it can be easily illustrated by (121)
as

An · Am ⊆ An+m ⊕ An+m+1. (123)

Next we want to study central extensions ofA (considered as Lie algebras) which
are given by geometric cocycles as introduced in Section 6 and further discussed in
Section 7. We showed that the 2 following cocycles γA0 , γA∞ defined by

γA0 ( f , g) = res0( f dg), γA∞ ( f , g) = res∞( f dg), (124)

constitute a basis of the geometric cocycles. Recall that the set of geometric cocycles
coincide with the L-invariant respectively multiplicative cocycles. Note also that

γA1 ( f , g) = res1( f dg) = −γA0 ( f , g) − γ
A
∞ ( f , g) (125)

gives the linearly dependent 3. cocycle. Recall also that resa( f dg) = − resa(gdf ),
a ∈ Σ0.
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To calculate the cocycles it is enough to do the calculation for all type of pairs of
basis elements An and Bm. See [54] for details of the calculation. We start with the
result

Proposition 8.3

γA∞ (An, Am) = 2n δ−nm ,

γA∞ (An, Bm) = 0,

γA∞ (Bn, Bm) = 2nδ−nm + 4(2n + 1) δ−n−1
m .

Proposition 8.4

γA0 (An, Am) = −n δ−nm ,

γA0 (An, Bm) = n δ−nm + 2n δ−n−1
m +

∞∑
k=2

n (−1)k−12k
(2k − 3)!!

k!
δ−n−km ,

γA0 (Bn, Bm) = −nδ−nm − 2(2n + 1) δ−n−1
m .

Here (2k − 1)!! = 1 · 3 · · · (2k − 1) is the double factorial.
Note that the second relation in the above proposition is expressed as a formal

infinite sum. But for given n and m maximally one term will be non-zero. Hence, it
has a well-defined value.

In accordance with the general results [48] about local cocycles only the cocycle
γA∞ is local. Here it will vanish for n,m outside of−1 ≤ n+m ≤ 0. Consequently, only
the central extension, the Heisenberg algebra, defined via γA∞ will admit an extension
of the almost-grading to the central extension. Consequently, we obtain only in this
case a triangular decomposition which is of importance for the representations
appearing in field theory. This is not possible for the central extension defined by
γA0 nor by γA1 .

8.3 Current and affine algebra

Recall that for a finite-dimensional Lie algebra g the current algebra of KN-type
is defined by g = g ⊗ A. In particular every choice of a basis in g and a basis in
A will yield a basis of g. For A we choose the basis An, Bn, n ∈ Z introduced
above. Automatically we get an almost-graded structure of g induced by the splitting
{0, 1} ∪ {∞}. For its algebraic structure we obtain (via Proposition 8.2)

Proposition 8.5

[x ⊗ An, y ⊗ Am] = [x, y] ⊗ An+m,

[x ⊗ An, y ⊗ Bm = [x, y] ⊗ Bn+m,

[x ⊗ Bn, y ⊗ Bm = [x, y] ⊗ (An+m + 4An+m+1).
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Its central extensions are given by geometric cocycles

γgβ(x ⊗ f , y ⊗ g) = β(x, y) · γA( f , g), (126)

with β(., .) a symmetric, invariant bilinear form for g and γA a multiplicative 2-
cocycle for the algebra A. Recall that if g is a simple Lie there exists a universal
central extension ĝ. In our case it has a two-dimensional center and will be given by

[x ⊗ f , y ⊗ g] = [x, y] ⊗ ( f · g) + α0 · β(x, y) · γA0 ( f , g) · t0
+ α∞ · β(x, y) · γA∞ ( f , g) · t∞

(127)

with α0, α∞ ∈ C, t0, t∞ central in ĝ, and β the Cartan-Killing form. The values of the
cocycles for the introduced basis elements have been calculated above and will not
be repeated here. In accordance with the general results [47] the centrally extended
current algebra will be an almost-graded extension of the current algebra with respect
to this basis if and only if α0 = 0. It is an easy task to write everything explicitely
for special cases of the Lie algebra g.

8.4 Three-point sl(2,C)-current algebra for genus 0

As an example we will give the universal central extension of the 3-point sl(2,C)-
current algebra. The general theory has been developed above. The 3-point sl(2,C)
algebra is of relevance in quite a number of applications, we only name statistical
mechanics [24], [26]. Hence, the explicite knowledge of the structure equations with
respect to some basis might be of some interest. We take sl(2,C) with the standard
matrix generators

H :=
(
1 0
0 −1

)
, X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
, (128)

and induced relations

[H, X] = 2X, [H,Y ] = −2Y, [X,Y ] = 2X . (129)

As basis elements for the current algebra sl(2,C) with respect to the almost-grading
introduced above we take the elements

Z (s) = Z ⊗ An, Z (a) = Z ⊗ Bn, Z ∈ {H, X,Y }. (130)

The structure of the current algebra comes via (121) fromA (and of course from g).
We need the Cartan-Killing form. Up to a normalization it is given by

β(A, B) = tr(A · B). (131)
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Hence,

β(X,Y ) = β(Y, X) = 1, β(H,H) = 2,
β(H, X) = β(H,Y ) = β(X,H) = β(Y,H) = 0. (132)

The universal central extension will have a two-dimensional center and will be given
by

[Z⊗ f ,W⊗g] = [Z,W]⊗ f ·g+α∞ ·β(Z,W)·γA∞ ( f , g)·t∞+α0 ·β(Z,W)·γA0 ( f , g)·t0,

with t∞, t0 central elements, α∞, α0 ∈ C. Recall that γAa ( f , g) can be calculated as
resa( f dg).

From the general theory we know that the central extension will be almost-graded
with respect to the standard splitting if and only if α0 = 0.

All the data needed has been calculated already before. If we collect them we
obtain the following results.

[H(s)n ,H(s)m ] = α∞ · 4n · δ−nm · t∞ − α0 · 2n · δ−nm · t0,

[H(s)n ,H(a)m ] = 2α0

(
n δ−nm + 2n δ−n−1

m +

∞∑
k=2

n (−1)k−12k
(2k − 3)!!

k!
δ−n−km

)
· t0.

[H(a)n ,H(a)m ] = α∞(4nδ−nm + 8(2n + 1)δ−n−1
m ) · t∞ − α0(2nδ−nm + 4(2n + 1)δ−n−1

m ) · t0

[H(s)n , X (s)m ] = 2X (s)n+m, [H
(s)
n , X (a)m ] = 2X (a)n+m, [H

(a)
n , X (a)m ] = 2X (s)n+m + 8X (s)n+m,

[H(s)n ,Y (s)m ] = −2Y (s)n+m, [H
(s)
n ,Y (a)m ] = −2Y (a)n+m, [H

(a)
n ,Y (a)m ] = −2Y (s)n+m − 8Y (s)n+m,

[X (s)n ,Y (s)m ] = H(s)n+m + α∞ · 2n · δ−nm · t∞ − α0 · n · δ−nm · t0,

[X (s)n ,Y (a)m ] = H(a)n+m + α0

(
n δ−nm + 2n δ−n−1

m +

∞∑
k=2

n (−1)k−12k
(2k − 3)!!

k!
δ−n−km

)
· t0.

[X (a)n ,Y (a)m ] = H(s)n+m + 4H(s)
n+m+1 + α∞(2nδ−nm + 4(2n + 1)δ−n−1

m ) · t∞

− α0(nδ−nm + 2(2n + 1)δ−n−1
m ) · t0 .

Of course, the elements t∞ and t0 are central and we have anti-symmetry. The local
cocycle, i.e. the cocycle comingwith t∞ was given in [50] and reproduced in [52, Equ.
12.75]. Unfortunately, there the central terms related to [H(.)n ,H

(.)
m ] were forgotten.

Remark 8.6 By Cox and Jurisich [16, Thm.2.4] a different form of a universal central
extension for the sl(2,C) current algebra was proposed. This form was taken up in
[17]. An inspection of the structure equation shows that in the proposed form two
independent cocycles coming with the central elements ω0 and ω1 show up. Both
would be local. But this contradicts the uniqueness of the local cocycle class (up to
rescaling) as obtained in [47], which was also recalled in the current article. A closer
examination shows that if “ω1 , 0” the proposed structure constants do not define a
Lie algebra.
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The principal structure, as far as the central extension is concerned, in particular
also that we have one unique local cocycle class (up to rescaling) does not depend in
an essential manner on the simple Lie algebra. See also Bremner [9] for the example
of the 4-point case. Here the universal central extension is 3-dimensional. One of
the classes will be local with respect to the standard splitting, the other two not. The
latter two are “coupled” with ultraspherical (Gegenbauer) polynomials. I like also to
mention that in [5] also the 3-point case was considered in another basis exhibiting
another symmetry useful in the context of statistical mechanics.

Remark 8.7 As an additional example we like to give the case of the current algebra
of gl(n,C) for the N-point case. Of course, as gl(n,C) is not perfect it does not admit a
universal central extension. But by the classification results we can give the maximal
central extension for which the cocycles are multiplicative (or L-invariant)

[x ⊗ f , y ⊗ g] = [x, y] ⊗ f · g +
N−1∑
i=1

αi · tr(x · y) resai ( f dg) · ti

+

N−1∑
i=1

βi · tr(x)tr(y) resai ( f dg) · si .

(133)

Here αi, βi ∈ C and ti and si are central.

8.5 Vector field algebra

Recall that in the genus g = 0 case and PN = ∞ the elements g for F λ for λ ∈ 1
2Z

are given by
g(z) = a(z)dzλ, with a(z) ∈ A. (134)

In particular, a basis of A induces a basis of F λ. We take as basis elements the
elements

gλn := An−λdzλ, hλn := Bn−λdzλ, n ∈ Jλ. (135)

The corresponding almost-grading reads as

F λ =
⊕
n∈Jλ

F λn , F λn = 〈g
λ
n, h

λ
n〉C. (136)

For the vector field (i.e. forms of weight −1) we use

en := An+1
d
dz
, fn := Bn+1

d
dz
, n ∈ Z. (137)

The vector spaces F λ are modules over L. If e = a d
dz and g = bdzλ then the module

structure reads as
e . g = (a · b′ + λ b · a′)dzλ. (138)
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With respect to our basis elements the structure equations are given by

Proposition 8.8

en . gλm = (m + λn) hλm+n,

en . hλm = (m + λn) gλm+n + (4(m + λn) + 2) gλn+m+1,

fn . gλm = (m + λn) gλm+n + (4(m + λn) + 2λ) gλn+m+1,

fn . hλm = (m + λn) hλm+n + (4(m + λn) + 2 + 2λ) hλn+m+1.

For λ = −1 we get the vector field algebra structure.

Proposition 8.9

[en, em] = (m − n) fm+n,

[en, fm] = (m − n) em+n + (4(m − n) + 2) en+m+1,

[ fn, fm] = (m − n) fm+n + 4(m − n) fn+m+1.

These expressions clearly exhibit the almost-graded structure. Observe that the al-
gebra of global holomorphic vector fields is the subalgebra

〈e−1, f−1, e0〉C, (139)

which is isomorphic to sl(2,C).

Next we calculate the universal central extension. We know that it has a two-
dimensional center and can be given as

[ê, f̂ ] = [̂e, f ] + α0 · γ
L
0 (e, f ) · to + α∞ · γL∞ (e, f ) · t∞ (140)

with

γL0 (e, f ) = 1/2 res0(e · f ′′′ − f · e′′′)dz = res0(e · f ′′′)dz = − res0( f · e′′′)dz

γL∞ (e, f ) = 1/2 res∞(e · f ′′′ − f · e′′′) = res∞(e · f ′′′)dz = − res∞( f · e′′′)dz .
(141)

First we consider the point∞ and obtain in this way the local cocycle.

Proposition 8.10

γL∞ (en, em) = 2(n3 − n) δ−nm + 4n(n + 1)(2n + 1)δ−n−1
m

γL∞ (en, fm) = 0,

γL∞ ( fn, fm) = 2(n3 − n) δ−nm + 8n(n + 1)(2n + 1)δ−n−1
m + 8(n + 1)(2n + 1)(2n + 3)δ−n−2

m

Proposition 8.11
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γL0 (en, em) = −(n
3 − n) δ−mn − 2n(n + 1)(2n + 1)δ−n−1

m

γL0 (en, fm) = (n3 − n) δ−nm + 6n2(n + 1)δ−n−1
m + 6n(n + 1)2δ−n−2

m

+
∑
k≥3

n(n + 1)(n + k − 1)(−1)k2k · 3 ·
(2k − 5)!!

k!
δ−n−km

γL0 ( fn, fm) = −(n3 − n) δ−nm − 4n(n + 1)(2n + 1)δ−n−1
m − 4(n + 1)(2n + 1)(2n + 3)δ−n−2

m .

See [27] for similar results.
Note also that we can express the term

(2k − 5)!!
k!

2k · 3 =
12

k(k − 1)

(
2(k − 2)

k − 2

)
(142)

if this is more convenient. See Section 8.8 for some mathematical background on
these calculations.

Again only the cocycle γL∞ will be local with respect to the almost-grading intro-
duced by our splitting, respectively by our basis. Hence, only for its corresponding
central extension we have a triangular decomposition. Everything what was said for
the function algebra case, remains true here.

8.6 Differential operator algebraD1

Recall that D1 is the (Lie algebra) semi-direct sum of A with L where L operates
on A by taking the derivative. The homogeneous subspace of degree n is now

〈An, Bn, en, fn〉C. (143)

The subalgebra A is abelian and Proposition 8.9 gives the structure equations for
the vector fields. Proposition 8.8 specialized for λ = 0 yields the equations for the
mixed terms.

Proposition 8.12

[en, Am] = −[Am, en] = m Bm+n,

[en, Bm] = −[Bm, en] = m Am+n + (4m + 2) An+m+1,

[ fn, Am] = −[Am, fn] = m Am+n + 4m An+m+1,

[ fn, Bm] = −[Bm, fn] = m Bm+n + (4m + 2) Bm+n+1,

The geometric cocycles yield a 6-dimensional central extension. In addition to the
4 basis elements given by the pure cocycles given by the Propositions 8.3, 8.4, 8.10,
8.11 we have two additional basis cocycles corresponding to the mixing cocycle (70)
(e ∈ L, g ∈ A)

γ
(m)
0 (e, g) = res0(eg′′dz), γ

(m)
∞ (e, g) = res∞(eg′′dz). (144)



Krichever–Novikov type algebras. A general review and the genus zero case 43

Evaluated for the basis elements we obtain

Proposition 8.13

γ
(m)
∞ (en, Am) = 0,

γ
(m)
∞ (en, Bm) = −2n(n + 1)δ−nm − 4(n + 1)(2n + 1)δ−n−1

m ,

γ
(m)
∞ ( fn, Am) = −2n(n + 1)δ−nm − 4(n + 1)(2n + 3)δ−n−1

m ,

γ
(m)
∞ ( fn, Bm) = 0 .

Proposition 8.14

γ
(m)
0 (en, Am) = −n(n + 1)δ−nm − 2(n + 1)2δ−n−1

m

+
∑
k≥2
(n + 1)(n + k)(−1)k2k ·

(2k − 3)!!
k!

δ−n−km .

γ
(m)
0 (en, Bm) = n(n + 1)δ−nm + 2(n + 1)(2n + 1)δ−n−1

m ,

γ
(m)
0 ( fn, Am) = n(n + 1)δ−nm + 2(n + 1)(2n + 3)δ−n−1

m ,

γ
(m)
0 ( fn, Bm) = −n(n + 1)δ−nm − 6(n + 1)2δ−n−1

m − 6(n + 1)(n + 2)δ−n−2
m

+
∑
k≥3
(n + 1)(n + k)(−1)k−12k · 3 ·

(2k − 5)!!
k!

δ−n−km .

ByTheorem7.12 the differential operator algebra admits a universal central extension
and the introduced six geometric cocycles, each associated to a different central
element will yield the universal central extension.

Proposition 8.15 A cocycle class [γ] for D1 will be local (with respect to the
standard splitting) if and only if γ is cohomologous to a linear combination

γ ∼ α1 · γ
A
∞ + α2 · γ

L
∞ + α3 · γ

(m)
∞ , αi ∈ C. (145)

In particular, the space of local cohomology classes is 3-dimensional.

This is a general result of [48], [52] which is for the 3-point illustrated by the above
calculations. In the very general case (meaning arbitrary genus, arbitrary number
of marked points, arbitrary splitting) the three cocycles in (145) are obtained by
integrating over a separating cycle.

8.7 The Lie superalgebra

In addition to the basis elements en and fn of L we take

ϕn = An+1/2(dz)−1/2, ψn = Bn+1/2(dz)−1/2, n ∈ Z + 1/2. (146)
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Additionally to the structure constants of Proposition 8.9 we have

Proposition 8.16

[ϕn, ϕm] = en+m
[ϕn, ψm] = fn+m
[ψn, ψm] = en+m + 4 en+m+1

[en, ϕm] = (m − n/2)ψn+m

[en, ψm] = (m − n/2) ϕn+m + (4m − 2n + 2) ϕn+m+1

[ fn, ϕm] = (m − n/2) ϕn+m + (4m − 2n − 1) ϕn+m+1

[ fn, ψm] = (m − n/2)ψn+m + (4m − 2n + 1)ψn+m+1 .

Similar expressions are given by Leidwanger and Morier-Genoud [36, Prop. 3.8].
Next we consider 2-cocycles. We have a two-dimensional space of geometric

cocycles generated by γS0 and γS∞ obtained by taking the residue from (75) at 0 and
∞. For pairs of pure vector field type arguments we have the result of Proposition 8.10
and Proposition 8.11. For mixing of pure types it is zero. It remains to consider pairs
of −1/2-forms. The calculations (see [54]) yields

Proposition 8.17

γS∞(ϕn, ϕm) = 0

γS∞(ϕn, ψm) = −4(n − 1/2)(n + 1/2)δ−nm − 8n(2n + 1)δ−n−1
m .

γS∞(ψn, ψm) = 0

Proposition 8.18

γS0 (ϕn, ϕm) = −2(n + 1/2)(n − 1/2)δ−nm + 4(n + 1/2)2δ−n−1
m

+ 2
∑
k≥2
(n + 1/2)(n − 1/2 + k)(−1)k2k

(2k − 3)!!
k!

δ−n−km

γS0 (ϕn, ψm) = 2(n − 1/2)(n + 1/2)δ−nm + 4n(2n + 1)δ−n−1
m .

γS0 (ψn, ψm) = −2(n + 1/2)(n − 1/2)δ−nm − 12(n + 1/2)2δ−n−1
m

− 12(n + 1/2)(n + 3/2)δ−n−2
m

+ 2
∑
k≥3
(n + 1/2)(n − 1/2 + k)(−1)k−12k · 3 ·

(2k − 5)!!
k!

δ−n−km .

We illustrated again that only the cocycle γS∞ is local with respect to the standard
splitting. The γS∞ is the one which was considered by Kreusch [32] (up to a different
indexing of the basis elements).



Krichever–Novikov type algebras. A general review and the genus zero case 45

Remark 8.19 Here we considered the central element to be even. We could have even
dropped this assumption. In [51] we show that the corresponding cocycles (with odd
central element) are cohomologically trivial.

8.8 Some Remarks on the Calculations of the Residues

Just to indicate the kind of arguments used above we will calculate the residues of
Andz and Bndz at the points where poles might be. In fact, everything can be finally
reduced to calculating their values for the points 0, 1 and∞. The results in the whole
section are essentially based on such kind of residue calculations for products of of
linear factors and their inverse (yielding Laurent series).

As starting point we need the Laurent series expansion of (z − 1)m around zero.
We collect the following well-known facts about binomial series.

The expansion

(z − 1)m =
∞∑
k=0

(
m
k

)
zk(−1)m−k, z ∈ C, |z | < 1 (147)

is valid for all m ∈ Z.
For negative exponents an equivalent expression is

(z − 1)−n = (−1)n
∞∑
k=0

(
n + k − 1

n − 1

)
zk, z ∈ C, |z | < 1, (148)

where n ∈ N. We have the easy relation(
2k
k

)
=
(2k − 1)!!

k!
2k, k ∈ N, (149)

where (2k − 1)!! = 1 · 3 · · · (2k − 1) is the double factorial.

Lemma 8.20 For the residues at the point 0 we have

res0(A−ndz) =


0, n ≤ 0,
−1, n = 1,

(−1)n
(2n − 3)!!
(n − 1)!

2n−1, n ≥ −2.

Proof If n < 0 then there is no pole at z = 0. Hence let n > 0. We use (148) and
calculate

A−n(z) = (−1)n
∞∑
k=0

(
n + k − 1

n − 1

)
zk−n. (150)
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The residue at z = 0 is given by the coefficient paired with z−1. Hence it is given by
the coefficient for k = n − 1

res0(A−ndz) = (−1)n
(
2(n − 1)

n − 1

)
. (151)

For n = 1 we obtain the value −1. For n > 1 we use (149) and obtain

res0(A−ndz) = (−1)n
(2n − 3)!!
(n − 1)!

2n−1. (152)

This was the claim. �

From this lemma the non-locality of the cocycle defined via the residue at 0
follows.

Lemma 8.21

res0(Bmdz) =

{
1, m = −1,
0, otherwise.

Proof We check that Bm = (1/(m + 1)Am+1)
′ if m , −1. Hence, for m , −1 the

differential Bmdz is an exact differential and hence does not have any residue. It
remains B−1(z) = z−1(z − 1)−1(2z − 1) which obviously has as residue +1 at z = 0.�

Lemma 8.22
res1(Amdz) = − res0(Amdz)

res1(Bmdz) = res0(Bmdz) .

Proof We make a change of local coordinates v = 1 − z. and the point z = 1
corresponds to the point v = 0. �

Lemma 8.23
res∞(Amdz) = 0,
res∞(Bmdz) = −2 res0(Bmdz),

=

{
−2, m = −1,
0, otherwise.

Proof By the residue theorem [49] for a compact Riemann surface the sum over all
residues of a meromorphic differential is zero. As our differentials have only poles
at 0, 1,∞ the claim follows from Lemmas 8.20, 8.21, and 8.22. �
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