

Using the Vertical Land Movement estimates from the IGS TIGA combined solution to derive Global Mean Sea Level changes

Janusz Bogusz¹⁾, Addisu Hunegnaw²⁾, F. Norman Teferle²⁾, Anna Klos¹⁾

Military University of Technology, Warsaw, Poland
University of Luxembourg, Luxembourg

Overview:

- 1. GPS-derived vertical land movement from TIGA combined solution
- 2. Analysis of the relative sea-level records
- 3. Correcting the relative sea-level records for vertical land movement (GPS-observed vs GIA-predicted)
- 4. Reconstruction of absolute sea-level rise
- 5. Conclusions

TIGA combined solution:

Three independent GPS daily solutions (repro2) provided by:

- BLT (British Isles continuous GNSS Facility University of Luxembourg consortium): Bernese software,
- GFZ (GeoForschungsZentrum, Germany): EPOS P8 software,
- ULR (University of La Rochelle, France): GAMIT software

as part of their TIGA (Tide Gauge Benchmark Monitoring Group – Working Group of the International GNSS Service) activities have been used for this study.

TIGA combined solution:

The combination has been performed at the University of Luxembourg using Combination and Analysis of Terrestrial Reference Frame (CATREF) software – 815 stations in total.

Solution	No of common stations	RMS [mm/yr]	Bias [mm/yr]
IGS	465	0.7	0.2
JPL	326	1.0	0.1
NGL	460	1.1	0.1

AGU San Francisco, CA | 9–13 December 2019

Vertical Land Movement:

Extended trajectory model (Bevis and Brown, 2014):

TIGA combined solution: 99 out of 815 (12%)

Klos A., Kusche J., Fenoglio-Marc L., Bos M.S., Bogusz J. (2019). Introducing a vertical land motion model for improving estimates of sea level rates derived from tide gauge records affected by earthquakes. GPS Solutions, 23:102, doi:10.1007/s10291-019-0896-1.

arguments of postseismic function of relaxation (ITRF2014) time of EQ

 $+ \mathcal{E}$

Permanent Service for Mean Sea Level (PSMSL; Simon et al., 2013) Revised Local Reference (RLR) monthly-averaged time series (Holgate et al., 2013) – 158 stations in total.

These include:

- 27 selected TG from Ray and Douglas (2011) and Douglas (1997) "gold standard";
- 62 TG from Japanese seas.

Deterministic model [days]:

6703 65	1	con (nodal tide	
0795,05		cpri (nouai tide	
3396,82	2	CPN Woodworth, 2012)	
2264,55	3	cpn	
1698,41	4	cpn	
431,00	1	cpC (Chandler	
215,50	2	cpC Trupin and Wahr, 19	90)
143,67	3	срС	
107,75	4	срС	
365,25	1	cpy (tropical)	
182,63	2	сру	
121,75	3	сру	
91,31	4	сру	

$$RSL(t) = RSL_0 + \sum_{i=1}^{2} v_i \cdot t + \sum_{i=1}^{12} \left[S_i \cdot \sin(\omega_i \cdot t) + C_i \cdot \cos(\omega_i \cdot t) \right] + C_i \cdot \cos(\omega_i \cdot t) + C_i \cdot \cos(\omega_$$

 $+a \cdot IB + b \cdot MWS + c \cdot ZWS + d \cdot PDO + e \cdot NPGO + f \cdot ENSO + ... + \varepsilon$

Deterministic model [days]:

6793,65	1 cpn (nodal tide
3396,82	2 cpn Woodworth, 2012)
2264,55	3 cpn
1698,41	4 cpn
431,00	1 cpC (Chandler
215,50	2 cpC Trupin and Wahr, 1990)
143,67	3 cpC
107,75	4 cpC
365,25	1 cpy (tropical)
182,63	2 cpy
121,75	3 сру
91,31	4 cpy

$$RSL(t) = RSL_0 + \sum_{i=1}^{2} v_i \cdot t + \sum_{i=1}^{12} \left[S_i \cdot \sin(\omega_i \cdot t) + C_i \cdot \cos(\omega_i \cdot t) \right] + C_i \cdot \cos(\omega_i \cdot t) + C_i \cdot \cos(\omega_$$

 $+a \cdot IB + b \cdot MWS + c \cdot ZWS + d \cdot PDO + e \cdot NPGO + f \cdot ENSO + ... + \varepsilon$

Geophysical effects:

inverted barometer,

$$RSL(t) = RSL_0 + \sum_{i=1}^{2} v_i \cdot t + \sum_{i=1}^{12} \left[S_i \cdot \sin(\omega_i \cdot t) + C_i \cdot \cos(\omega_i \cdot t) \right] + a \cdot IB + b \cdot MWS + c \cdot ZWS + d \cdot PDO + e \cdot NPGO + f \cdot ENSO + \dots + \varepsilon$$

- meridional and zonal components of wind stress,
- Pacific Decadal Oscillation (PDO),
- North Pacific Gyre Oscillation (NPGO),
- ENSO,

. . .

Their inclusions depends on the basin considered. Sea-level trends are affected below the 1-sigma significance level.

Multivariate regression analysis – Hector software (Bos et al., 2013).

- 1. White
- 2. Power-law
- 3. Power-law+White
- 4. ARMA(1,0)
- 5. ARMA(1,0)+White
- 6. ARMA(5,5)+White
- 7. ARMA(5,0)+White
- 8. ARMA(1,1)+White
- 9. ARFIMA(5,d,5)+White
- 10. ARFIMA(1,d,0)+White
- 11. GGM
- 12. GGM+White (Bos et al., 2013; Royston et al. 2018)

Klos A., Olivares G., Teferle F.N., Hunegnaw A., Bogusz J. (2018): "On the combined effect of periodic signals and coloured noise on velocity uncertainties". GPS Solutions, Volume 22, Issue 1, DOI: 10.1007/s10291-017-0674-x.

TIGA combined solution and Glacial Isostatic Adjustment (GIA): ICE-6G_C (VM5a) (Peltier et al., 2015)

Distance and location dependency comparison between GPS corrected and GIA corrected 158 TG records. Correlation is higher in high latitudes.

AGU San Francisco, CA | 9-13 December 2019

Conclusions:

- 1. TIGA combined solution is specially dedicated to compute VLM from GNSS
- 2. PPP or NS? Single or combined? CM or CF? Non-tidal effects?
- 3. Non-linear motion and interannual variations for sufficient correction of TG records?
- 4. Systematic errors of GNSSs integration with other techniques like InSAR?
- 5. Considering of real stochastic properties

Acknowledgments:

Kibrom Ebuy Abraha* (University of Luxembourg, Geodesy and Geospatial Engineering),

Alvaro Santamaría-Gómez*, Médéric Gravelle, Guy Wöppelman (Centre Littoral de Geophysique,

University of La Rochelle (ULR), France),

Tilo Schöne, Zhiguo Deng (German Research Centre for Geosciences (GFZ), Germany),

Richard Bingley, Dionne Hansen* (British Isles continuous GNSS Facility, University of Nottingham, United Kingdom),

Laura Sanchez (German Geodetic Research Institute, Technical University of Munich (DGFI),

Germany),

Michael Moore (Geoscience Australia).

*now at various other institutions

Janusz Bogusz is supported by the National Science Centre, Poland, grant No. UMO-2017/25/B/ST10/02818.

Contact me at: janusz.bogusz@wat.edu.pl THANK YOU FOR THE ATTENTION